2015-05-22 Eric Botcazou <ebotcazou@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob6772328ff9671a764729ed7f7d03d3f8bb84f9bd
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Fname; use Fname;
35 with Freeze; use Freeze;
36 with Ghost; use Ghost;
37 with Impunit; use Impunit;
38 with Lib; use Lib;
39 with Lib.Load; use Lib.Load;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Namet.Sp; use Namet.Sp;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Output; use Output;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Cat; use Sem_Cat;
53 with Sem_Ch3; use Sem_Ch3;
54 with Sem_Ch4; use Sem_Ch4;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch12; use Sem_Ch12;
57 with Sem_Ch13; use Sem_Ch13;
58 with Sem_Dim; use Sem_Dim;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Res; use Sem_Res;
63 with Sem_Util; use Sem_Util;
64 with Sem_Type; use Sem_Type;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Sinfo.CN; use Sinfo.CN;
68 with Snames; use Snames;
69 with Style; use Style;
70 with Table;
71 with Targparm; use Targparm;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
75 package body Sem_Ch8 is
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
338 end record;
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
407 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
408 -- Common code to Use_One_Package and Set_Use, to determine whether use
409 -- clause must be processed. Pack_Name is an entity name that references
410 -- the package in question.
412 procedure Attribute_Renaming (N : Node_Id);
413 -- Analyze renaming of attribute as subprogram. The renaming declaration N
414 -- is rewritten as a subprogram body that returns the attribute reference
415 -- applied to the formals of the function.
417 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
418 -- Set Entity, with style check if need be. For a discriminant reference,
419 -- replace by the corresponding discriminal, i.e. the parameter of the
420 -- initialization procedure that corresponds to the discriminant.
422 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
423 -- A renaming_as_body may occur after the entity of the original decla-
424 -- ration has been frozen. In that case, the body of the new entity must
425 -- be built now, because the usual mechanism of building the renamed
426 -- body at the point of freezing will not work. Subp is the subprogram
427 -- for which N provides the Renaming_As_Body.
429 procedure Check_In_Previous_With_Clause
430 (N : Node_Id;
431 Nam : Node_Id);
432 -- N is a use_package clause and Nam the package name, or N is a use_type
433 -- clause and Nam is the prefix of the type name. In either case, verify
434 -- that the package is visible at that point in the context: either it
435 -- appears in a previous with_clause, or because it is a fully qualified
436 -- name and the root ancestor appears in a previous with_clause.
438 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
439 -- Verify that the entity in a renaming declaration that is a library unit
440 -- is itself a library unit and not a nested unit or subunit. Also check
441 -- that if the renaming is a child unit of a generic parent, then the
442 -- renamed unit must also be a child unit of that parent. Finally, verify
443 -- that a renamed generic unit is not an implicit child declared within
444 -- an instance of the parent.
446 procedure Chain_Use_Clause (N : Node_Id);
447 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
448 -- the proper scope table entry. This is usually the current scope, but it
449 -- will be an inner scope when installing the use clauses of the private
450 -- declarations of a parent unit prior to compiling the private part of a
451 -- child unit. This chain is traversed when installing/removing use clauses
452 -- when compiling a subunit or instantiating a generic body on the fly,
453 -- when it is necessary to save and restore full environments.
455 function Enclosing_Instance return Entity_Id;
456 -- In an instance nested within another one, several semantic checks are
457 -- unnecessary because the legality of the nested instance has been checked
458 -- in the enclosing generic unit. This applies in particular to legality
459 -- checks on actuals for formal subprograms of the inner instance, which
460 -- are checked as subprogram renamings, and may be complicated by confusion
461 -- in private/full views. This function returns the instance enclosing the
462 -- current one if there is such, else it returns Empty.
464 -- If the renaming determines the entity for the default of a formal
465 -- subprogram nested within another instance, choose the innermost
466 -- candidate. This is because if the formal has a box, and we are within
467 -- an enclosing instance where some candidate interpretations are local
468 -- to this enclosing instance, we know that the default was properly
469 -- resolved when analyzing the generic, so we prefer the local
470 -- candidates to those that are external. This is not always the case
471 -- but is a reasonable heuristic on the use of nested generics. The
472 -- proper solution requires a full renaming model.
474 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
475 -- Find a type derived from Character or Wide_Character in the prefix of N.
476 -- Used to resolved qualified names whose selector is a character literal.
478 function Has_Private_With (E : Entity_Id) return Boolean;
479 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
480 -- private with on E.
482 procedure Find_Expanded_Name (N : Node_Id);
483 -- The input is a selected component known to be an expanded name. Verify
484 -- legality of selector given the scope denoted by prefix, and change node
485 -- N into a expanded name with a properly set Entity field.
487 function Find_Renamed_Entity
488 (N : Node_Id;
489 Nam : Node_Id;
490 New_S : Entity_Id;
491 Is_Actual : Boolean := False) return Entity_Id;
492 -- Find the renamed entity that corresponds to the given parameter profile
493 -- in a subprogram renaming declaration. The renamed entity may be an
494 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
495 -- indicates that the renaming is the one generated for an actual subpro-
496 -- gram in an instance, for which special visibility checks apply.
498 function Has_Implicit_Operator (N : Node_Id) return Boolean;
499 -- N is an expanded name whose selector is an operator name (e.g. P."+").
500 -- declarative part contains an implicit declaration of an operator if it
501 -- has a declaration of a type to which one of the predefined operators
502 -- apply. The existence of this routine is an implementation artifact. A
503 -- more straightforward but more space-consuming choice would be to make
504 -- all inherited operators explicit in the symbol table.
506 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
507 -- A subprogram defined by a renaming declaration inherits the parameter
508 -- profile of the renamed entity. The subtypes given in the subprogram
509 -- specification are discarded and replaced with those of the renamed
510 -- subprogram, which are then used to recheck the default values.
512 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
513 -- Prefix is appropriate for record if it is of a record type, or an access
514 -- to such.
516 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
517 -- True if it is of a task type, a protected type, or else an access to one
518 -- of these types.
520 procedure Note_Redundant_Use (Clause : Node_Id);
521 -- Mark the name in a use clause as redundant if the corresponding entity
522 -- is already use-visible. Emit a warning if the use clause comes from
523 -- source and the proper warnings are enabled.
525 procedure Premature_Usage (N : Node_Id);
526 -- Diagnose usage of an entity before it is visible
528 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
529 -- Make visible entities declared in package P potentially use-visible
530 -- in the current context. Also used in the analysis of subunits, when
531 -- re-installing use clauses of parent units. N is the use_clause that
532 -- names P (and possibly other packages).
534 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
535 -- Id is the subtype mark from a use type clause. This procedure makes
536 -- the primitive operators of the type potentially use-visible. The
537 -- boolean flag Installed indicates that the clause is being reinstalled
538 -- after previous analysis, and primitive operations are already chained
539 -- on the Used_Operations list of the clause.
541 procedure Write_Info;
542 -- Write debugging information on entities declared in current scope
544 --------------------------------
545 -- Analyze_Exception_Renaming --
546 --------------------------------
548 -- The language only allows a single identifier, but the tree holds an
549 -- identifier list. The parser has already issued an error message if
550 -- there is more than one element in the list.
552 procedure Analyze_Exception_Renaming (N : Node_Id) is
553 Id : constant Node_Id := Defining_Identifier (N);
554 Nam : constant Node_Id := Name (N);
556 begin
557 -- The exception renaming declaration may be subject to pragma Ghost
558 -- with policy Ignore. Set the mode now to ensure that any nodes
559 -- generated during analysis and expansion are properly flagged as
560 -- ignored Ghost.
562 Set_Ghost_Mode (N);
563 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
565 Enter_Name (Id);
566 Analyze (Nam);
568 Set_Ekind (Id, E_Exception);
569 Set_Etype (Id, Standard_Exception_Type);
570 Set_Is_Pure (Id, Is_Pure (Current_Scope));
572 if not Is_Entity_Name (Nam)
573 or else Ekind (Entity (Nam)) /= E_Exception
574 then
575 Error_Msg_N ("invalid exception name in renaming", Nam);
576 else
577 if Present (Renamed_Object (Entity (Nam))) then
578 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
579 else
580 Set_Renamed_Object (Id, Entity (Nam));
581 end if;
583 -- An exception renaming is Ghost if the renamed entity is Ghost or
584 -- the construct appears within a Ghost scope.
586 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
587 Set_Is_Ghost_Entity (Id);
588 end if;
589 end if;
591 -- Implementation-defined aspect specifications can appear in a renaming
592 -- declaration, but not language-defined ones. The call to procedure
593 -- Analyze_Aspect_Specifications will take care of this error check.
595 if Has_Aspects (N) then
596 Analyze_Aspect_Specifications (N, Id);
597 end if;
598 end Analyze_Exception_Renaming;
600 ---------------------------
601 -- Analyze_Expanded_Name --
602 ---------------------------
604 procedure Analyze_Expanded_Name (N : Node_Id) is
605 begin
606 -- If the entity pointer is already set, this is an internal node, or a
607 -- node that is analyzed more than once, after a tree modification. In
608 -- such a case there is no resolution to perform, just set the type. For
609 -- completeness, analyze prefix as well.
611 if Present (Entity (N)) then
612 if Is_Type (Entity (N)) then
613 Set_Etype (N, Entity (N));
614 else
615 Set_Etype (N, Etype (Entity (N)));
616 end if;
618 Analyze (Prefix (N));
619 return;
620 else
621 Find_Expanded_Name (N);
622 end if;
624 Analyze_Dimension (N);
625 end Analyze_Expanded_Name;
627 ---------------------------------------
628 -- Analyze_Generic_Function_Renaming --
629 ---------------------------------------
631 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
632 begin
633 Analyze_Generic_Renaming (N, E_Generic_Function);
634 end Analyze_Generic_Function_Renaming;
636 --------------------------------------
637 -- Analyze_Generic_Package_Renaming --
638 --------------------------------------
640 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
641 begin
642 -- Test for the Text_IO special unit case here, since we may be renaming
643 -- one of the subpackages of Text_IO, then join common routine.
645 Check_Text_IO_Special_Unit (Name (N));
647 Analyze_Generic_Renaming (N, E_Generic_Package);
648 end Analyze_Generic_Package_Renaming;
650 ----------------------------------------
651 -- Analyze_Generic_Procedure_Renaming --
652 ----------------------------------------
654 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
655 begin
656 Analyze_Generic_Renaming (N, E_Generic_Procedure);
657 end Analyze_Generic_Procedure_Renaming;
659 ------------------------------
660 -- Analyze_Generic_Renaming --
661 ------------------------------
663 procedure Analyze_Generic_Renaming
664 (N : Node_Id;
665 K : Entity_Kind)
667 New_P : constant Entity_Id := Defining_Entity (N);
668 Old_P : Entity_Id;
669 Inst : Boolean := False; -- prevent junk warning
671 begin
672 if Name (N) = Error then
673 return;
674 end if;
676 -- The generic renaming declaration may be subject to pragma Ghost with
677 -- policy Ignore. Set the mode now to ensure that any nodes generated
678 -- during analysis and expansion are properly flagged as ignored Ghost.
680 Set_Ghost_Mode (N);
681 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
683 Generate_Definition (New_P);
685 if Current_Scope /= Standard_Standard then
686 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
687 end if;
689 if Nkind (Name (N)) = N_Selected_Component then
690 Check_Generic_Child_Unit (Name (N), Inst);
691 else
692 Analyze (Name (N));
693 end if;
695 if not Is_Entity_Name (Name (N)) then
696 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
697 Old_P := Any_Id;
698 else
699 Old_P := Entity (Name (N));
700 end if;
702 Enter_Name (New_P);
703 Set_Ekind (New_P, K);
705 if Etype (Old_P) = Any_Type then
706 null;
708 elsif Ekind (Old_P) /= K then
709 Error_Msg_N ("invalid generic unit name", Name (N));
711 else
712 if Present (Renamed_Object (Old_P)) then
713 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
714 else
715 Set_Renamed_Object (New_P, Old_P);
716 end if;
718 Set_Is_Pure (New_P, Is_Pure (Old_P));
719 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
721 Set_Etype (New_P, Etype (Old_P));
722 Set_Has_Completion (New_P);
724 -- An generic renaming is Ghost if the renamed entity is Ghost or the
725 -- construct appears within a Ghost scope.
727 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
728 Set_Is_Ghost_Entity (New_P);
729 end if;
731 if In_Open_Scopes (Old_P) then
732 Error_Msg_N ("within its scope, generic denotes its instance", N);
733 end if;
735 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
736 -- renamings and subsequent instantiations of Unchecked_Conversion.
738 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
739 Set_Is_Intrinsic_Subprogram
740 (New_P, Is_Intrinsic_Subprogram (Old_P));
741 end if;
743 Check_Library_Unit_Renaming (N, Old_P);
744 end if;
746 -- Implementation-defined aspect specifications can appear in a renaming
747 -- declaration, but not language-defined ones. The call to procedure
748 -- Analyze_Aspect_Specifications will take care of this error check.
750 if Has_Aspects (N) then
751 Analyze_Aspect_Specifications (N, New_P);
752 end if;
753 end Analyze_Generic_Renaming;
755 -----------------------------
756 -- Analyze_Object_Renaming --
757 -----------------------------
759 procedure Analyze_Object_Renaming (N : Node_Id) is
760 Loc : constant Source_Ptr := Sloc (N);
761 Id : constant Entity_Id := Defining_Identifier (N);
762 Dec : Node_Id;
763 Nam : constant Node_Id := Name (N);
764 T : Entity_Id;
765 T2 : Entity_Id;
767 procedure Check_Constrained_Object;
768 -- If the nominal type is unconstrained but the renamed object is
769 -- constrained, as can happen with renaming an explicit dereference or
770 -- a function return, build a constrained subtype from the object. If
771 -- the renaming is for a formal in an accept statement, the analysis
772 -- has already established its actual subtype. This is only relevant
773 -- if the renamed object is an explicit dereference.
775 function In_Generic_Scope (E : Entity_Id) return Boolean;
776 -- Determine whether entity E is inside a generic cope
778 ------------------------------
779 -- Check_Constrained_Object --
780 ------------------------------
782 procedure Check_Constrained_Object is
783 Typ : constant Entity_Id := Etype (Nam);
784 Subt : Entity_Id;
786 begin
787 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
788 and then Is_Composite_Type (Etype (Nam))
789 and then not Is_Constrained (Etype (Nam))
790 and then not Has_Unknown_Discriminants (Etype (Nam))
791 and then Expander_Active
792 then
793 -- If Actual_Subtype is already set, nothing to do
795 if Ekind_In (Id, E_Variable, E_Constant)
796 and then Present (Actual_Subtype (Id))
797 then
798 null;
800 -- A renaming of an unchecked union has no actual subtype
802 elsif Is_Unchecked_Union (Typ) then
803 null;
805 -- If a record is limited its size is invariant. This is the case
806 -- in particular with record types with an access discirminant
807 -- that are used in iterators. This is an optimization, but it
808 -- also prevents typing anomalies when the prefix is further
809 -- expanded. Limited types with discriminants are included.
811 elsif Is_Limited_Record (Typ)
812 or else
813 (Ekind (Typ) = E_Limited_Private_Type
814 and then Has_Discriminants (Typ)
815 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
816 then
817 null;
819 else
820 Subt := Make_Temporary (Loc, 'T');
821 Remove_Side_Effects (Nam);
822 Insert_Action (N,
823 Make_Subtype_Declaration (Loc,
824 Defining_Identifier => Subt,
825 Subtype_Indication =>
826 Make_Subtype_From_Expr (Nam, Typ)));
827 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
828 Set_Etype (Nam, Subt);
830 -- Freeze subtype at once, to prevent order of elaboration
831 -- issues in the backend. The renamed object exists, so its
832 -- type is already frozen in any case.
834 Freeze_Before (N, Subt);
835 end if;
836 end if;
837 end Check_Constrained_Object;
839 ----------------------
840 -- In_Generic_Scope --
841 ----------------------
843 function In_Generic_Scope (E : Entity_Id) return Boolean is
844 S : Entity_Id;
846 begin
847 S := Scope (E);
848 while Present (S) and then S /= Standard_Standard loop
849 if Is_Generic_Unit (S) then
850 return True;
851 end if;
853 S := Scope (S);
854 end loop;
856 return False;
857 end In_Generic_Scope;
859 -- Start of processing for Analyze_Object_Renaming
861 begin
862 if Nam = Error then
863 return;
864 end if;
866 -- The object renaming declaration may be subject to pragma Ghost with
867 -- policy Ignore. Set the mode now to ensure that any nodes generated
868 -- during analysis and expansion are properly flagged as ignored Ghost.
870 Set_Ghost_Mode (N);
871 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
873 Set_Is_Pure (Id, Is_Pure (Current_Scope));
874 Enter_Name (Id);
876 -- The renaming of a component that depends on a discriminant requires
877 -- an actual subtype, because in subsequent use of the object Gigi will
878 -- be unable to locate the actual bounds. This explicit step is required
879 -- when the renaming is generated in removing side effects of an
880 -- already-analyzed expression.
882 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
883 T := Etype (Nam);
884 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
886 if Present (Dec) then
887 Insert_Action (N, Dec);
888 T := Defining_Identifier (Dec);
889 Set_Etype (Nam, T);
890 end if;
892 -- Complete analysis of the subtype mark in any case, for ASIS use
894 if Present (Subtype_Mark (N)) then
895 Find_Type (Subtype_Mark (N));
896 end if;
898 elsif Present (Subtype_Mark (N)) then
899 Find_Type (Subtype_Mark (N));
900 T := Entity (Subtype_Mark (N));
901 Analyze (Nam);
903 -- Reject renamings of conversions unless the type is tagged, or
904 -- the conversion is implicit (which can occur for cases of anonymous
905 -- access types in Ada 2012).
907 if Nkind (Nam) = N_Type_Conversion
908 and then Comes_From_Source (Nam)
909 and then not Is_Tagged_Type (T)
910 then
911 Error_Msg_N
912 ("renaming of conversion only allowed for tagged types", Nam);
913 end if;
915 -- Reject renaming of component of Volatile_Full_Access object
917 if Nkind_In (Nam, N_Selected_Component, N_Indexed_Component) then
918 declare
919 P : constant Node_Id := Prefix (Nam);
920 begin
921 if Is_Entity_Name (P) then
922 if Is_Volatile_Full_Access (Entity (P))
923 or else
924 Is_Volatile_Full_Access (Etype (P))
925 then
926 Error_Msg_N
927 ("cannot rename component of Volatile_Full_Access "
928 & "object", Nam);
929 end if;
930 end if;
931 end;
932 end if;
934 Resolve (Nam, T);
936 -- If the renamed object is a function call of a limited type,
937 -- the expansion of the renaming is complicated by the presence
938 -- of various temporaries and subtypes that capture constraints
939 -- of the renamed object. Rewrite node as an object declaration,
940 -- whose expansion is simpler. Given that the object is limited
941 -- there is no copy involved and no performance hit.
943 if Nkind (Nam) = N_Function_Call
944 and then Is_Limited_View (Etype (Nam))
945 and then not Is_Constrained (Etype (Nam))
946 and then Comes_From_Source (N)
947 then
948 Set_Etype (Id, T);
949 Set_Ekind (Id, E_Constant);
950 Rewrite (N,
951 Make_Object_Declaration (Loc,
952 Defining_Identifier => Id,
953 Constant_Present => True,
954 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
955 Expression => Relocate_Node (Nam)));
956 return;
957 end if;
959 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
960 -- when renaming declaration has a named access type. The Ada 2012
961 -- coverage rules allow an anonymous access type in the context of
962 -- an expected named general access type, but the renaming rules
963 -- require the types to be the same. (An exception is when the type
964 -- of the renaming is also an anonymous access type, which can only
965 -- happen due to a renaming created by the expander.)
967 if Nkind (Nam) = N_Type_Conversion
968 and then not Comes_From_Source (Nam)
969 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
970 and then Ekind (T) /= E_Anonymous_Access_Type
971 then
972 Wrong_Type (Expression (Nam), T); -- Should we give better error???
973 end if;
975 -- Check that a class-wide object is not being renamed as an object
976 -- of a specific type. The test for access types is needed to exclude
977 -- cases where the renamed object is a dynamically tagged access
978 -- result, such as occurs in certain expansions.
980 if Is_Tagged_Type (T) then
981 Check_Dynamically_Tagged_Expression
982 (Expr => Nam,
983 Typ => T,
984 Related_Nod => N);
985 end if;
987 -- Ada 2005 (AI-230/AI-254): Access renaming
989 else pragma Assert (Present (Access_Definition (N)));
990 T := Access_Definition
991 (Related_Nod => N,
992 N => Access_Definition (N));
994 Analyze (Nam);
996 -- Ada 2005 AI05-105: if the declaration has an anonymous access
997 -- type, the renamed object must also have an anonymous type, and
998 -- this is a name resolution rule. This was implicit in the last part
999 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
1000 -- recent AI.
1002 if not Is_Overloaded (Nam) then
1003 if Ekind (Etype (Nam)) /= Ekind (T) then
1004 Error_Msg_N
1005 ("expect anonymous access type in object renaming", N);
1006 end if;
1008 else
1009 declare
1010 I : Interp_Index;
1011 It : Interp;
1012 Typ : Entity_Id := Empty;
1013 Seen : Boolean := False;
1015 begin
1016 Get_First_Interp (Nam, I, It);
1017 while Present (It.Typ) loop
1019 -- Renaming is ambiguous if more than one candidate
1020 -- interpretation is type-conformant with the context.
1022 if Ekind (It.Typ) = Ekind (T) then
1023 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1024 and then
1025 Type_Conformant
1026 (Designated_Type (T), Designated_Type (It.Typ))
1027 then
1028 if not Seen then
1029 Seen := True;
1030 else
1031 Error_Msg_N
1032 ("ambiguous expression in renaming", Nam);
1033 end if;
1035 elsif Ekind (T) = E_Anonymous_Access_Type
1036 and then
1037 Covers (Designated_Type (T), Designated_Type (It.Typ))
1038 then
1039 if not Seen then
1040 Seen := True;
1041 else
1042 Error_Msg_N
1043 ("ambiguous expression in renaming", Nam);
1044 end if;
1045 end if;
1047 if Covers (T, It.Typ) then
1048 Typ := It.Typ;
1049 Set_Etype (Nam, Typ);
1050 Set_Is_Overloaded (Nam, False);
1051 end if;
1052 end if;
1054 Get_Next_Interp (I, It);
1055 end loop;
1056 end;
1057 end if;
1059 Resolve (Nam, T);
1061 -- Ada 2005 (AI-231): In the case where the type is defined by an
1062 -- access_definition, the renamed entity shall be of an access-to-
1063 -- constant type if and only if the access_definition defines an
1064 -- access-to-constant type. ARM 8.5.1(4)
1066 if Constant_Present (Access_Definition (N))
1067 and then not Is_Access_Constant (Etype (Nam))
1068 then
1069 Error_Msg_N ("(Ada 2005): the renamed object is not "
1070 & "access-to-constant (RM 8.5.1(6))", N);
1072 elsif not Constant_Present (Access_Definition (N))
1073 and then Is_Access_Constant (Etype (Nam))
1074 then
1075 Error_Msg_N ("(Ada 2005): the renamed object is not "
1076 & "access-to-variable (RM 8.5.1(6))", N);
1077 end if;
1079 if Is_Access_Subprogram_Type (Etype (Nam)) then
1080 Check_Subtype_Conformant
1081 (Designated_Type (T), Designated_Type (Etype (Nam)));
1083 elsif not Subtypes_Statically_Match
1084 (Designated_Type (T),
1085 Available_View (Designated_Type (Etype (Nam))))
1086 then
1087 Error_Msg_N
1088 ("subtype of renamed object does not statically match", N);
1089 end if;
1090 end if;
1092 -- Special processing for renaming function return object. Some errors
1093 -- and warnings are produced only for calls that come from source.
1095 if Nkind (Nam) = N_Function_Call then
1096 case Ada_Version is
1098 -- Usage is illegal in Ada 83, but renamings are also introduced
1099 -- during expansion, and error does not apply to those.
1101 when Ada_83 =>
1102 if Comes_From_Source (N) then
1103 Error_Msg_N
1104 ("(Ada 83) cannot rename function return object", Nam);
1105 end if;
1107 -- In Ada 95, warn for odd case of renaming parameterless function
1108 -- call if this is not a limited type (where this is useful).
1110 when others =>
1111 if Warn_On_Object_Renames_Function
1112 and then No (Parameter_Associations (Nam))
1113 and then not Is_Limited_Type (Etype (Nam))
1114 and then Comes_From_Source (Nam)
1115 then
1116 Error_Msg_N
1117 ("renaming function result object is suspicious?R?", Nam);
1118 Error_Msg_NE
1119 ("\function & will be called only once?R?", Nam,
1120 Entity (Name (Nam)));
1121 Error_Msg_N -- CODEFIX
1122 ("\suggest using an initialized constant "
1123 & "object instead?R?", Nam);
1124 end if;
1126 end case;
1127 end if;
1129 Check_Constrained_Object;
1131 -- An object renaming requires an exact match of the type. Class-wide
1132 -- matching is not allowed.
1134 if Is_Class_Wide_Type (T)
1135 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1136 then
1137 Wrong_Type (Nam, T);
1138 end if;
1140 T2 := Etype (Nam);
1142 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1144 if Nkind (Nam) = N_Explicit_Dereference
1145 and then Ekind (Etype (T2)) = E_Incomplete_Type
1146 then
1147 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1148 return;
1150 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1151 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1152 return;
1153 end if;
1155 -- Ada 2005 (AI-327)
1157 if Ada_Version >= Ada_2005
1158 and then Nkind (Nam) = N_Attribute_Reference
1159 and then Attribute_Name (Nam) = Name_Priority
1160 then
1161 null;
1163 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1164 declare
1165 Nam_Decl : Node_Id;
1166 Nam_Ent : Entity_Id;
1168 begin
1169 if Nkind (Nam) = N_Attribute_Reference then
1170 Nam_Ent := Entity (Prefix (Nam));
1171 else
1172 Nam_Ent := Entity (Nam);
1173 end if;
1175 Nam_Decl := Parent (Nam_Ent);
1177 if Has_Null_Exclusion (N)
1178 and then not Has_Null_Exclusion (Nam_Decl)
1179 then
1180 -- Ada 2005 (AI-423): If the object name denotes a generic
1181 -- formal object of a generic unit G, and the object renaming
1182 -- declaration occurs within the body of G or within the body
1183 -- of a generic unit declared within the declarative region
1184 -- of G, then the declaration of the formal object of G must
1185 -- have a null exclusion or a null-excluding subtype.
1187 if Is_Formal_Object (Nam_Ent)
1188 and then In_Generic_Scope (Id)
1189 then
1190 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1191 Error_Msg_N
1192 ("renamed formal does not exclude `NULL` "
1193 & "(RM 8.5.1(4.6/2))", N);
1195 elsif In_Package_Body (Scope (Id)) then
1196 Error_Msg_N
1197 ("formal object does not have a null exclusion"
1198 & "(RM 8.5.1(4.6/2))", N);
1199 end if;
1201 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1202 -- shall exclude null.
1204 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1205 Error_Msg_N
1206 ("renamed object does not exclude `NULL` "
1207 & "(RM 8.5.1(4.6/2))", N);
1209 -- An instance is illegal if it contains a renaming that
1210 -- excludes null, and the actual does not. The renaming
1211 -- declaration has already indicated that the declaration
1212 -- of the renamed actual in the instance will raise
1213 -- constraint_error.
1215 elsif Nkind (Nam_Decl) = N_Object_Declaration
1216 and then In_Instance
1217 and then
1218 Present (Corresponding_Generic_Association (Nam_Decl))
1219 and then Nkind (Expression (Nam_Decl)) =
1220 N_Raise_Constraint_Error
1221 then
1222 Error_Msg_N
1223 ("renamed actual does not exclude `NULL` "
1224 & "(RM 8.5.1(4.6/2))", N);
1226 -- Finally, if there is a null exclusion, the subtype mark
1227 -- must not be null-excluding.
1229 elsif No (Access_Definition (N))
1230 and then Can_Never_Be_Null (T)
1231 then
1232 Error_Msg_NE
1233 ("`NOT NULL` not allowed (& already excludes null)",
1234 N, T);
1236 end if;
1238 elsif Can_Never_Be_Null (T)
1239 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1240 then
1241 Error_Msg_N
1242 ("renamed object does not exclude `NULL` "
1243 & "(RM 8.5.1(4.6/2))", N);
1245 elsif Has_Null_Exclusion (N)
1246 and then No (Access_Definition (N))
1247 and then Can_Never_Be_Null (T)
1248 then
1249 Error_Msg_NE
1250 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1251 end if;
1252 end;
1253 end if;
1255 -- Set the Ekind of the entity, unless it has been set already, as is
1256 -- the case for the iteration object over a container with no variable
1257 -- indexing. In that case it's been marked as a constant, and we do not
1258 -- want to change it to a variable.
1260 if Ekind (Id) /= E_Constant then
1261 Set_Ekind (Id, E_Variable);
1262 end if;
1264 -- Initialize the object size and alignment. Note that we used to call
1265 -- Init_Size_Align here, but that's wrong for objects which have only
1266 -- an Esize, not an RM_Size field.
1268 Init_Object_Size_Align (Id);
1270 if T = Any_Type or else Etype (Nam) = Any_Type then
1271 return;
1273 -- Verify that the renamed entity is an object or a function call. It
1274 -- may have been rewritten in several ways.
1276 elsif Is_Object_Reference (Nam) then
1277 if Comes_From_Source (N) then
1278 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1279 Error_Msg_N
1280 ("illegal renaming of discriminant-dependent component", Nam);
1281 end if;
1283 -- If the renaming comes from source and the renamed object is a
1284 -- dereference, then mark the prefix as needing debug information,
1285 -- since it might have been rewritten hence internally generated
1286 -- and Debug_Renaming_Declaration will link the renaming to it.
1288 if Nkind (Nam) = N_Explicit_Dereference
1289 and then Is_Entity_Name (Prefix (Nam))
1290 then
1291 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1292 end if;
1293 end if;
1295 -- A static function call may have been folded into a literal
1297 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1299 -- When expansion is disabled, attribute reference is not rewritten
1300 -- as function call. Otherwise it may be rewritten as a conversion,
1301 -- so check original node.
1303 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1304 and then Is_Function_Attribute_Name
1305 (Attribute_Name (Original_Node (Nam))))
1307 -- Weird but legal, equivalent to renaming a function call. Illegal
1308 -- if the literal is the result of constant-folding an attribute
1309 -- reference that is not a function.
1311 or else (Is_Entity_Name (Nam)
1312 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1313 and then
1314 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1316 or else (Nkind (Nam) = N_Type_Conversion
1317 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1318 then
1319 null;
1321 elsif Nkind (Nam) = N_Type_Conversion then
1322 Error_Msg_N
1323 ("renaming of conversion only allowed for tagged types", Nam);
1325 -- Ada 2005 (AI-327)
1327 elsif Ada_Version >= Ada_2005
1328 and then Nkind (Nam) = N_Attribute_Reference
1329 and then Attribute_Name (Nam) = Name_Priority
1330 then
1331 null;
1333 -- Allow internally generated x'Reference expression
1335 elsif Nkind (Nam) = N_Reference then
1336 null;
1338 else
1339 Error_Msg_N ("expect object name in renaming", Nam);
1340 end if;
1342 Set_Etype (Id, T2);
1344 if not Is_Variable (Nam) then
1345 Set_Ekind (Id, E_Constant);
1346 Set_Never_Set_In_Source (Id, True);
1347 Set_Is_True_Constant (Id, True);
1348 end if;
1350 -- An object renaming is Ghost if the renamed entity is Ghost or the
1351 -- construct appears within a Ghost scope.
1353 if (Is_Entity_Name (Nam)
1354 and then Is_Ghost_Entity (Entity (Nam)))
1355 or else Ghost_Mode > None
1356 then
1357 Set_Is_Ghost_Entity (Id);
1358 end if;
1360 -- The entity of the renaming declaration needs to reflect whether the
1361 -- renamed object is volatile. Is_Volatile is set if the renamed object
1362 -- is volatile in the RM legality sense.
1364 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1366 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1368 if Is_Entity_Name (Nam) then
1369 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1370 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1371 Set_Is_Volatile_Full_Access (Id,
1372 Is_Volatile_Full_Access (Entity (Nam)));
1373 end if;
1375 -- Treat as volatile if we just set the Volatile flag
1377 if Is_Volatile (Id)
1379 -- Or if we are renaming an entity which was marked this way
1381 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1383 or else (Is_Entity_Name (Nam)
1384 and then Treat_As_Volatile (Entity (Nam)))
1385 then
1386 Set_Treat_As_Volatile (Id, True);
1387 end if;
1389 -- Now make the link to the renamed object
1391 Set_Renamed_Object (Id, Nam);
1393 -- Implementation-defined aspect specifications can appear in a renaming
1394 -- declaration, but not language-defined ones. The call to procedure
1395 -- Analyze_Aspect_Specifications will take care of this error check.
1397 if Has_Aspects (N) then
1398 Analyze_Aspect_Specifications (N, Id);
1399 end if;
1401 -- Deal with dimensions
1403 Analyze_Dimension (N);
1404 end Analyze_Object_Renaming;
1406 ------------------------------
1407 -- Analyze_Package_Renaming --
1408 ------------------------------
1410 procedure Analyze_Package_Renaming (N : Node_Id) is
1411 New_P : constant Entity_Id := Defining_Entity (N);
1412 Old_P : Entity_Id;
1413 Spec : Node_Id;
1415 begin
1416 if Name (N) = Error then
1417 return;
1418 end if;
1420 -- The package renaming declaration may be subject to pragma Ghost with
1421 -- policy Ignore. Set the mode now to ensure that any nodes generated
1422 -- during analysis and expansion are properly flagged as ignored Ghost.
1424 Set_Ghost_Mode (N);
1426 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1428 Check_Text_IO_Special_Unit (Name (N));
1430 if Current_Scope /= Standard_Standard then
1431 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1432 end if;
1434 Enter_Name (New_P);
1435 Analyze (Name (N));
1437 if Is_Entity_Name (Name (N)) then
1438 Old_P := Entity (Name (N));
1439 else
1440 Old_P := Any_Id;
1441 end if;
1443 if Etype (Old_P) = Any_Type then
1444 Error_Msg_N ("expect package name in renaming", Name (N));
1446 elsif Ekind (Old_P) /= E_Package
1447 and then not (Ekind (Old_P) = E_Generic_Package
1448 and then In_Open_Scopes (Old_P))
1449 then
1450 if Ekind (Old_P) = E_Generic_Package then
1451 Error_Msg_N
1452 ("generic package cannot be renamed as a package", Name (N));
1453 else
1454 Error_Msg_Sloc := Sloc (Old_P);
1455 Error_Msg_NE
1456 ("expect package name in renaming, found& declared#",
1457 Name (N), Old_P);
1458 end if;
1460 -- Set basic attributes to minimize cascaded errors
1462 Set_Ekind (New_P, E_Package);
1463 Set_Etype (New_P, Standard_Void_Type);
1465 -- Here for OK package renaming
1467 else
1468 -- Entities in the old package are accessible through the renaming
1469 -- entity. The simplest implementation is to have both packages share
1470 -- the entity list.
1472 Set_Ekind (New_P, E_Package);
1473 Set_Etype (New_P, Standard_Void_Type);
1475 if Present (Renamed_Object (Old_P)) then
1476 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1477 else
1478 Set_Renamed_Object (New_P, Old_P);
1479 end if;
1481 Set_Has_Completion (New_P);
1483 Set_First_Entity (New_P, First_Entity (Old_P));
1484 Set_Last_Entity (New_P, Last_Entity (Old_P));
1485 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1486 Check_Library_Unit_Renaming (N, Old_P);
1487 Generate_Reference (Old_P, Name (N));
1489 -- A package renaming is Ghost if the renamed entity is Ghost or
1490 -- the construct appears within a Ghost scope.
1492 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
1493 Set_Is_Ghost_Entity (New_P);
1494 end if;
1496 -- If the renaming is in the visible part of a package, then we set
1497 -- Renamed_In_Spec for the renamed package, to prevent giving
1498 -- warnings about no entities referenced. Such a warning would be
1499 -- overenthusiastic, since clients can see entities in the renamed
1500 -- package via the visible package renaming.
1502 declare
1503 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1504 begin
1505 if Ekind (Ent) = E_Package
1506 and then not In_Private_Part (Ent)
1507 and then In_Extended_Main_Source_Unit (N)
1508 and then Ekind (Old_P) = E_Package
1509 then
1510 Set_Renamed_In_Spec (Old_P);
1511 end if;
1512 end;
1514 -- If this is the renaming declaration of a package instantiation
1515 -- within itself, it is the declaration that ends the list of actuals
1516 -- for the instantiation. At this point, the subtypes that rename
1517 -- the actuals are flagged as generic, to avoid spurious ambiguities
1518 -- if the actuals for two distinct formals happen to coincide. If
1519 -- the actual is a private type, the subtype has a private completion
1520 -- that is flagged in the same fashion.
1522 -- Resolution is identical to what is was in the original generic.
1523 -- On exit from the generic instance, these are turned into regular
1524 -- subtypes again, so they are compatible with types in their class.
1526 if not Is_Generic_Instance (Old_P) then
1527 return;
1528 else
1529 Spec := Specification (Unit_Declaration_Node (Old_P));
1530 end if;
1532 if Nkind (Spec) = N_Package_Specification
1533 and then Present (Generic_Parent (Spec))
1534 and then Old_P = Current_Scope
1535 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1536 then
1537 declare
1538 E : Entity_Id;
1540 begin
1541 E := First_Entity (Old_P);
1542 while Present (E) and then E /= New_P loop
1543 if Is_Type (E)
1544 and then Nkind (Parent (E)) = N_Subtype_Declaration
1545 then
1546 Set_Is_Generic_Actual_Type (E);
1548 if Is_Private_Type (E)
1549 and then Present (Full_View (E))
1550 then
1551 Set_Is_Generic_Actual_Type (Full_View (E));
1552 end if;
1553 end if;
1555 Next_Entity (E);
1556 end loop;
1557 end;
1558 end if;
1559 end if;
1561 -- Implementation-defined aspect specifications can appear in a renaming
1562 -- declaration, but not language-defined ones. The call to procedure
1563 -- Analyze_Aspect_Specifications will take care of this error check.
1565 if Has_Aspects (N) then
1566 Analyze_Aspect_Specifications (N, New_P);
1567 end if;
1568 end Analyze_Package_Renaming;
1570 -------------------------------
1571 -- Analyze_Renamed_Character --
1572 -------------------------------
1574 procedure Analyze_Renamed_Character
1575 (N : Node_Id;
1576 New_S : Entity_Id;
1577 Is_Body : Boolean)
1579 C : constant Node_Id := Name (N);
1581 begin
1582 if Ekind (New_S) = E_Function then
1583 Resolve (C, Etype (New_S));
1585 if Is_Body then
1586 Check_Frozen_Renaming (N, New_S);
1587 end if;
1589 else
1590 Error_Msg_N ("character literal can only be renamed as function", N);
1591 end if;
1592 end Analyze_Renamed_Character;
1594 ---------------------------------
1595 -- Analyze_Renamed_Dereference --
1596 ---------------------------------
1598 procedure Analyze_Renamed_Dereference
1599 (N : Node_Id;
1600 New_S : Entity_Id;
1601 Is_Body : Boolean)
1603 Nam : constant Node_Id := Name (N);
1604 P : constant Node_Id := Prefix (Nam);
1605 Typ : Entity_Id;
1606 Ind : Interp_Index;
1607 It : Interp;
1609 begin
1610 if not Is_Overloaded (P) then
1611 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1612 or else not Type_Conformant (Etype (Nam), New_S)
1613 then
1614 Error_Msg_N ("designated type does not match specification", P);
1615 else
1616 Resolve (P);
1617 end if;
1619 return;
1621 else
1622 Typ := Any_Type;
1623 Get_First_Interp (Nam, Ind, It);
1625 while Present (It.Nam) loop
1627 if Ekind (It.Nam) = E_Subprogram_Type
1628 and then Type_Conformant (It.Nam, New_S)
1629 then
1630 if Typ /= Any_Id then
1631 Error_Msg_N ("ambiguous renaming", P);
1632 return;
1633 else
1634 Typ := It.Nam;
1635 end if;
1636 end if;
1638 Get_Next_Interp (Ind, It);
1639 end loop;
1641 if Typ = Any_Type then
1642 Error_Msg_N ("designated type does not match specification", P);
1643 else
1644 Resolve (N, Typ);
1646 if Is_Body then
1647 Check_Frozen_Renaming (N, New_S);
1648 end if;
1649 end if;
1650 end if;
1651 end Analyze_Renamed_Dereference;
1653 ---------------------------
1654 -- Analyze_Renamed_Entry --
1655 ---------------------------
1657 procedure Analyze_Renamed_Entry
1658 (N : Node_Id;
1659 New_S : Entity_Id;
1660 Is_Body : Boolean)
1662 Nam : constant Node_Id := Name (N);
1663 Sel : constant Node_Id := Selector_Name (Nam);
1664 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1665 Old_S : Entity_Id;
1667 begin
1668 if Entity (Sel) = Any_Id then
1670 -- Selector is undefined on prefix. Error emitted already
1672 Set_Has_Completion (New_S);
1673 return;
1674 end if;
1676 -- Otherwise find renamed entity and build body of New_S as a call to it
1678 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1680 if Old_S = Any_Id then
1681 Error_Msg_N (" no subprogram or entry matches specification", N);
1682 else
1683 if Is_Body then
1684 Check_Subtype_Conformant (New_S, Old_S, N);
1685 Generate_Reference (New_S, Defining_Entity (N), 'b');
1686 Style.Check_Identifier (Defining_Entity (N), New_S);
1688 else
1689 -- Only mode conformance required for a renaming_as_declaration
1691 Check_Mode_Conformant (New_S, Old_S, N);
1692 end if;
1694 Inherit_Renamed_Profile (New_S, Old_S);
1696 -- The prefix can be an arbitrary expression that yields a task or
1697 -- protected object, so it must be resolved.
1699 Resolve (Prefix (Nam), Scope (Old_S));
1700 end if;
1702 Set_Convention (New_S, Convention (Old_S));
1703 Set_Has_Completion (New_S, Inside_A_Generic);
1705 -- AI05-0225: If the renamed entity is a procedure or entry of a
1706 -- protected object, the target object must be a variable.
1708 if Ekind (Scope (Old_S)) in Protected_Kind
1709 and then Ekind (New_S) = E_Procedure
1710 and then not Is_Variable (Prefix (Nam))
1711 then
1712 if Is_Actual then
1713 Error_Msg_N
1714 ("target object of protected operation used as actual for "
1715 & "formal procedure must be a variable", Nam);
1716 else
1717 Error_Msg_N
1718 ("target object of protected operation renamed as procedure, "
1719 & "must be a variable", Nam);
1720 end if;
1721 end if;
1723 if Is_Body then
1724 Check_Frozen_Renaming (N, New_S);
1725 end if;
1726 end Analyze_Renamed_Entry;
1728 -----------------------------------
1729 -- Analyze_Renamed_Family_Member --
1730 -----------------------------------
1732 procedure Analyze_Renamed_Family_Member
1733 (N : Node_Id;
1734 New_S : Entity_Id;
1735 Is_Body : Boolean)
1737 Nam : constant Node_Id := Name (N);
1738 P : constant Node_Id := Prefix (Nam);
1739 Old_S : Entity_Id;
1741 begin
1742 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1743 or else (Nkind (P) = N_Selected_Component
1744 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1745 then
1746 if Is_Entity_Name (P) then
1747 Old_S := Entity (P);
1748 else
1749 Old_S := Entity (Selector_Name (P));
1750 end if;
1752 if not Entity_Matches_Spec (Old_S, New_S) then
1753 Error_Msg_N ("entry family does not match specification", N);
1755 elsif Is_Body then
1756 Check_Subtype_Conformant (New_S, Old_S, N);
1757 Generate_Reference (New_S, Defining_Entity (N), 'b');
1758 Style.Check_Identifier (Defining_Entity (N), New_S);
1759 end if;
1761 else
1762 Error_Msg_N ("no entry family matches specification", N);
1763 end if;
1765 Set_Has_Completion (New_S, Inside_A_Generic);
1767 if Is_Body then
1768 Check_Frozen_Renaming (N, New_S);
1769 end if;
1770 end Analyze_Renamed_Family_Member;
1772 -----------------------------------------
1773 -- Analyze_Renamed_Primitive_Operation --
1774 -----------------------------------------
1776 procedure Analyze_Renamed_Primitive_Operation
1777 (N : Node_Id;
1778 New_S : Entity_Id;
1779 Is_Body : Boolean)
1781 Old_S : Entity_Id;
1783 function Conforms
1784 (Subp : Entity_Id;
1785 Ctyp : Conformance_Type) return Boolean;
1786 -- Verify that the signatures of the renamed entity and the new entity
1787 -- match. The first formal of the renamed entity is skipped because it
1788 -- is the target object in any subsequent call.
1790 --------------
1791 -- Conforms --
1792 --------------
1794 function Conforms
1795 (Subp : Entity_Id;
1796 Ctyp : Conformance_Type) return Boolean
1798 Old_F : Entity_Id;
1799 New_F : Entity_Id;
1801 begin
1802 if Ekind (Subp) /= Ekind (New_S) then
1803 return False;
1804 end if;
1806 Old_F := Next_Formal (First_Formal (Subp));
1807 New_F := First_Formal (New_S);
1808 while Present (Old_F) and then Present (New_F) loop
1809 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1810 return False;
1811 end if;
1813 if Ctyp >= Mode_Conformant
1814 and then Ekind (Old_F) /= Ekind (New_F)
1815 then
1816 return False;
1817 end if;
1819 Next_Formal (New_F);
1820 Next_Formal (Old_F);
1821 end loop;
1823 return True;
1824 end Conforms;
1826 -- Start of processing for Analyze_Renamed_Primitive_Operation
1828 begin
1829 if not Is_Overloaded (Selector_Name (Name (N))) then
1830 Old_S := Entity (Selector_Name (Name (N)));
1832 if not Conforms (Old_S, Type_Conformant) then
1833 Old_S := Any_Id;
1834 end if;
1836 else
1837 -- Find the operation that matches the given signature
1839 declare
1840 It : Interp;
1841 Ind : Interp_Index;
1843 begin
1844 Old_S := Any_Id;
1845 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1847 while Present (It.Nam) loop
1848 if Conforms (It.Nam, Type_Conformant) then
1849 Old_S := It.Nam;
1850 end if;
1852 Get_Next_Interp (Ind, It);
1853 end loop;
1854 end;
1855 end if;
1857 if Old_S = Any_Id then
1858 Error_Msg_N (" no subprogram or entry matches specification", N);
1860 else
1861 if Is_Body then
1862 if not Conforms (Old_S, Subtype_Conformant) then
1863 Error_Msg_N ("subtype conformance error in renaming", N);
1864 end if;
1866 Generate_Reference (New_S, Defining_Entity (N), 'b');
1867 Style.Check_Identifier (Defining_Entity (N), New_S);
1869 else
1870 -- Only mode conformance required for a renaming_as_declaration
1872 if not Conforms (Old_S, Mode_Conformant) then
1873 Error_Msg_N ("mode conformance error in renaming", N);
1874 end if;
1876 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1877 -- view of a subprogram is intrinsic, because the compiler has
1878 -- to generate a wrapper for any call to it. If the name in a
1879 -- subprogram renaming is a prefixed view, the entity is thus
1880 -- intrinsic, and 'Access cannot be applied to it.
1882 Set_Convention (New_S, Convention_Intrinsic);
1883 end if;
1885 -- Inherit_Renamed_Profile (New_S, Old_S);
1887 -- The prefix can be an arbitrary expression that yields an
1888 -- object, so it must be resolved.
1890 Resolve (Prefix (Name (N)));
1891 end if;
1892 end Analyze_Renamed_Primitive_Operation;
1894 ---------------------------------
1895 -- Analyze_Subprogram_Renaming --
1896 ---------------------------------
1898 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1899 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1900 Is_Actual : constant Boolean := Present (Formal_Spec);
1901 Nam : constant Node_Id := Name (N);
1902 Save_AV : constant Ada_Version_Type := Ada_Version;
1903 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1904 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1905 Spec : constant Node_Id := Specification (N);
1907 Old_S : Entity_Id := Empty;
1908 Rename_Spec : Entity_Id;
1910 procedure Build_Class_Wide_Wrapper
1911 (Ren_Id : out Entity_Id;
1912 Wrap_Id : out Entity_Id);
1913 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1914 -- type with unknown discriminants and a generic primitive operation of
1915 -- the said type with a box require special processing when the actual
1916 -- is a class-wide type:
1918 -- generic
1919 -- type Formal_Typ (<>) is private;
1920 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1921 -- package Gen is ...
1923 -- package Inst is new Gen (Actual_Typ'Class);
1925 -- In this case the general renaming mechanism used in the prologue of
1926 -- an instance no longer applies:
1928 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1930 -- The above is replaced the following wrapper/renaming combination:
1932 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1933 -- begin
1934 -- Prim_Op (Param); -- primitive
1935 -- end Wrapper;
1937 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1939 -- This transformation applies only if there is no explicit visible
1940 -- class-wide operation at the point of the instantiation. Ren_Id is
1941 -- the entity of the renaming declaration. Wrap_Id is the entity of
1942 -- the generated class-wide wrapper (or Any_Id).
1944 procedure Check_Null_Exclusion
1945 (Ren : Entity_Id;
1946 Sub : Entity_Id);
1947 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1948 -- following AI rules:
1950 -- If Ren is a renaming of a formal subprogram and one of its
1951 -- parameters has a null exclusion, then the corresponding formal
1952 -- in Sub must also have one. Otherwise the subtype of the Sub's
1953 -- formal parameter must exclude null.
1955 -- If Ren is a renaming of a formal function and its return
1956 -- profile has a null exclusion, then Sub's return profile must
1957 -- have one. Otherwise the subtype of Sub's return profile must
1958 -- exclude null.
1960 procedure Freeze_Actual_Profile;
1961 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1962 -- types: a callable entity freezes its profile, unless it has an
1963 -- incomplete untagged formal (RM 13.14(10.2/3)).
1965 function Has_Class_Wide_Actual return Boolean;
1966 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1967 -- defaulted formal subprogram where the actual for the controlling
1968 -- formal type is class-wide.
1970 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1971 -- Find renamed entity when the declaration is a renaming_as_body and
1972 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1973 -- rule that a renaming_as_body is illegal if the declaration occurs
1974 -- before the subprogram it completes is frozen, and renaming indirectly
1975 -- renames the subprogram itself.(Defect Report 8652/0027).
1977 ------------------------------
1978 -- Build_Class_Wide_Wrapper --
1979 ------------------------------
1981 procedure Build_Class_Wide_Wrapper
1982 (Ren_Id : out Entity_Id;
1983 Wrap_Id : out Entity_Id)
1985 Loc : constant Source_Ptr := Sloc (N);
1987 function Build_Call
1988 (Subp_Id : Entity_Id;
1989 Params : List_Id) return Node_Id;
1990 -- Create a dispatching call to invoke routine Subp_Id with actuals
1991 -- built from the parameter specifications of list Params.
1993 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1994 -- Create a subprogram specification based on the subprogram profile
1995 -- of Subp_Id.
1997 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1998 -- Find a primitive subprogram of type Typ which matches the profile
1999 -- of the renaming declaration.
2001 procedure Interpretation_Error (Subp_Id : Entity_Id);
2002 -- Emit a continuation error message suggesting subprogram Subp_Id as
2003 -- a possible interpretation.
2005 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
2006 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
2007 -- operator.
2009 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
2010 -- Determine whether subprogram Subp_Id is a suitable candidate for
2011 -- the role of a wrapped subprogram.
2013 ----------------
2014 -- Build_Call --
2015 ----------------
2017 function Build_Call
2018 (Subp_Id : Entity_Id;
2019 Params : List_Id) return Node_Id
2021 Actuals : constant List_Id := New_List;
2022 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2023 Formal : Node_Id;
2025 begin
2026 -- Build the actual parameters of the call
2028 Formal := First (Params);
2029 while Present (Formal) loop
2030 Append_To (Actuals,
2031 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2032 Next (Formal);
2033 end loop;
2035 -- Generate:
2036 -- return Subp_Id (Actuals);
2038 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2039 return
2040 Make_Simple_Return_Statement (Loc,
2041 Expression =>
2042 Make_Function_Call (Loc,
2043 Name => Call_Ref,
2044 Parameter_Associations => Actuals));
2046 -- Generate:
2047 -- Subp_Id (Actuals);
2049 else
2050 return
2051 Make_Procedure_Call_Statement (Loc,
2052 Name => Call_Ref,
2053 Parameter_Associations => Actuals);
2054 end if;
2055 end Build_Call;
2057 ----------------
2058 -- Build_Spec --
2059 ----------------
2061 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2062 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2063 Spec_Id : constant Entity_Id :=
2064 Make_Defining_Identifier (Loc,
2065 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2067 begin
2068 if Ekind (Formal_Spec) = E_Procedure then
2069 return
2070 Make_Procedure_Specification (Loc,
2071 Defining_Unit_Name => Spec_Id,
2072 Parameter_Specifications => Params);
2073 else
2074 return
2075 Make_Function_Specification (Loc,
2076 Defining_Unit_Name => Spec_Id,
2077 Parameter_Specifications => Params,
2078 Result_Definition =>
2079 New_Copy_Tree (Result_Definition (Spec)));
2080 end if;
2081 end Build_Spec;
2083 --------------------
2084 -- Find_Primitive --
2085 --------------------
2087 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2088 procedure Replace_Parameter_Types (Spec : Node_Id);
2089 -- Given a specification Spec, replace all class-wide parameter
2090 -- types with reference to type Typ.
2092 -----------------------------
2093 -- Replace_Parameter_Types --
2094 -----------------------------
2096 procedure Replace_Parameter_Types (Spec : Node_Id) is
2097 Formal : Node_Id;
2098 Formal_Id : Entity_Id;
2099 Formal_Typ : Node_Id;
2101 begin
2102 Formal := First (Parameter_Specifications (Spec));
2103 while Present (Formal) loop
2104 Formal_Id := Defining_Identifier (Formal);
2105 Formal_Typ := Parameter_Type (Formal);
2107 -- Create a new entity for each class-wide formal to prevent
2108 -- aliasing with the original renaming. Replace the type of
2109 -- such a parameter with the candidate type.
2111 if Nkind (Formal_Typ) = N_Identifier
2112 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2113 then
2114 Set_Defining_Identifier (Formal,
2115 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2117 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2118 end if;
2120 Next (Formal);
2121 end loop;
2122 end Replace_Parameter_Types;
2124 -- Local variables
2126 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2127 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2128 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2129 Subp_Id : Entity_Id;
2131 -- Start of processing for Find_Primitive
2133 begin
2134 -- Each attempt to find a suitable primitive of a particular type
2135 -- operates on its own copy of the original renaming. As a result
2136 -- the original renaming is kept decoration and side-effect free.
2138 -- Inherit the overloaded status of the renamed subprogram name
2140 if Is_Overloaded (Nam) then
2141 Set_Is_Overloaded (Alt_Nam);
2142 Save_Interps (Nam, Alt_Nam);
2143 end if;
2145 -- The copied renaming is hidden from visibility to prevent the
2146 -- pollution of the enclosing context.
2148 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2150 -- The types of all class-wide parameters must be changed to the
2151 -- candidate type.
2153 Replace_Parameter_Types (Alt_Spec);
2155 -- Try to find a suitable primitive which matches the altered
2156 -- profile of the renaming specification.
2158 Subp_Id :=
2159 Find_Renamed_Entity
2160 (N => Alt_Ren,
2161 Nam => Name (Alt_Ren),
2162 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2163 Is_Actual => Is_Actual);
2165 -- Do not return Any_Id if the resolion of the altered profile
2166 -- failed as this complicates further checks on the caller side,
2167 -- return Empty instead.
2169 if Subp_Id = Any_Id then
2170 return Empty;
2171 else
2172 return Subp_Id;
2173 end if;
2174 end Find_Primitive;
2176 --------------------------
2177 -- Interpretation_Error --
2178 --------------------------
2180 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2181 begin
2182 Error_Msg_Sloc := Sloc (Subp_Id);
2184 if Is_Internal (Subp_Id) then
2185 Error_Msg_NE
2186 ("\\possible interpretation: predefined & #",
2187 Spec, Formal_Spec);
2188 else
2189 Error_Msg_NE
2190 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2191 end if;
2192 end Interpretation_Error;
2194 ---------------------------
2195 -- Is_Intrinsic_Equality --
2196 ---------------------------
2198 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2199 begin
2200 return
2201 Ekind (Subp_Id) = E_Operator
2202 and then Chars (Subp_Id) = Name_Op_Eq
2203 and then Is_Intrinsic_Subprogram (Subp_Id);
2204 end Is_Intrinsic_Equality;
2206 ---------------------------
2207 -- Is_Suitable_Candidate --
2208 ---------------------------
2210 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2211 begin
2212 if No (Subp_Id) then
2213 return False;
2215 -- An intrinsic subprogram is never a good candidate. This is an
2216 -- indication of a missing primitive, either defined directly or
2217 -- inherited from a parent tagged type.
2219 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2220 return False;
2222 else
2223 return True;
2224 end if;
2225 end Is_Suitable_Candidate;
2227 -- Local variables
2229 Actual_Typ : Entity_Id := Empty;
2230 -- The actual class-wide type for Formal_Typ
2232 CW_Prim_OK : Boolean;
2233 CW_Prim_Op : Entity_Id;
2234 -- The class-wide subprogram (if available) which corresponds to the
2235 -- renamed generic formal subprogram.
2237 Formal_Typ : Entity_Id := Empty;
2238 -- The generic formal type with unknown discriminants
2240 Root_Prim_OK : Boolean;
2241 Root_Prim_Op : Entity_Id;
2242 -- The root type primitive (if available) which corresponds to the
2243 -- renamed generic formal subprogram.
2245 Root_Typ : Entity_Id := Empty;
2246 -- The root type of Actual_Typ
2248 Body_Decl : Node_Id;
2249 Formal : Node_Id;
2250 Prim_Op : Entity_Id;
2251 Spec_Decl : Node_Id;
2253 -- Start of processing for Build_Class_Wide_Wrapper
2255 begin
2256 -- Analyze the specification of the renaming in case the generation
2257 -- of the class-wide wrapper fails.
2259 Ren_Id := Analyze_Subprogram_Specification (Spec);
2260 Wrap_Id := Any_Id;
2262 -- Do not attempt to build a wrapper if the renaming is in error
2264 if Error_Posted (Nam) then
2265 return;
2266 end if;
2268 -- Analyze the renamed name, but do not resolve it. The resolution is
2269 -- completed once a suitable subprogram is found.
2271 Analyze (Nam);
2273 -- When the renamed name denotes the intrinsic operator equals, the
2274 -- name must be treated as overloaded. This allows for a potential
2275 -- match against the root type's predefined equality function.
2277 if Is_Intrinsic_Equality (Entity (Nam)) then
2278 Set_Is_Overloaded (Nam);
2279 Collect_Interps (Nam);
2280 end if;
2282 -- Step 1: Find the generic formal type with unknown discriminants
2283 -- and its corresponding class-wide actual type from the renamed
2284 -- generic formal subprogram.
2286 Formal := First_Formal (Formal_Spec);
2287 while Present (Formal) loop
2288 if Has_Unknown_Discriminants (Etype (Formal))
2289 and then not Is_Class_Wide_Type (Etype (Formal))
2290 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2291 then
2292 Formal_Typ := Etype (Formal);
2293 Actual_Typ := Get_Instance_Of (Formal_Typ);
2294 Root_Typ := Etype (Actual_Typ);
2295 exit;
2296 end if;
2298 Next_Formal (Formal);
2299 end loop;
2301 -- The specification of the generic formal subprogram should always
2302 -- contain a formal type with unknown discriminants whose actual is
2303 -- a class-wide type, otherwise this indicates a failure in routine
2304 -- Has_Class_Wide_Actual.
2306 pragma Assert (Present (Formal_Typ));
2308 -- Step 2: Find the proper class-wide subprogram or primitive which
2309 -- corresponds to the renamed generic formal subprogram.
2311 CW_Prim_Op := Find_Primitive (Actual_Typ);
2312 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2313 Root_Prim_Op := Find_Primitive (Root_Typ);
2314 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2316 -- The class-wide actual type has two subprograms which correspond to
2317 -- the renamed generic formal subprogram:
2319 -- with procedure Prim_Op (Param : Formal_Typ);
2321 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2322 -- procedure Prim_Op (Param : Actual_Typ'Class);
2324 -- Even though the declaration of the two subprograms is legal, a
2325 -- call to either one is ambiguous and therefore illegal.
2327 if CW_Prim_OK and Root_Prim_OK then
2329 -- A user-defined primitive has precedence over a predefined one
2331 if Is_Internal (CW_Prim_Op)
2332 and then not Is_Internal (Root_Prim_Op)
2333 then
2334 Prim_Op := Root_Prim_Op;
2336 elsif Is_Internal (Root_Prim_Op)
2337 and then not Is_Internal (CW_Prim_Op)
2338 then
2339 Prim_Op := CW_Prim_Op;
2341 elsif CW_Prim_Op = Root_Prim_Op then
2342 Prim_Op := Root_Prim_Op;
2344 -- Otherwise both candidate subprograms are user-defined and
2345 -- ambiguous.
2347 else
2348 Error_Msg_NE
2349 ("ambiguous actual for generic subprogram &",
2350 Spec, Formal_Spec);
2351 Interpretation_Error (Root_Prim_Op);
2352 Interpretation_Error (CW_Prim_Op);
2353 return;
2354 end if;
2356 elsif CW_Prim_OK and not Root_Prim_OK then
2357 Prim_Op := CW_Prim_Op;
2359 elsif not CW_Prim_OK and Root_Prim_OK then
2360 Prim_Op := Root_Prim_Op;
2362 -- An intrinsic equality may act as a suitable candidate in the case
2363 -- of a null type extension where the parent's equality is hidden. A
2364 -- call to an intrinsic equality is expanded as dispatching.
2366 elsif Present (Root_Prim_Op)
2367 and then Is_Intrinsic_Equality (Root_Prim_Op)
2368 then
2369 Prim_Op := Root_Prim_Op;
2371 -- Otherwise there are no candidate subprograms. Let the caller
2372 -- diagnose the error.
2374 else
2375 return;
2376 end if;
2378 -- At this point resolution has taken place and the name is no longer
2379 -- overloaded. Mark the primitive as referenced.
2381 Set_Is_Overloaded (Name (N), False);
2382 Set_Referenced (Prim_Op);
2384 -- Step 3: Create the declaration and the body of the wrapper, insert
2385 -- all the pieces into the tree.
2387 Spec_Decl :=
2388 Make_Subprogram_Declaration (Loc,
2389 Specification => Build_Spec (Ren_Id));
2390 Insert_Before_And_Analyze (N, Spec_Decl);
2392 -- If the operator carries an Eliminated pragma, indicate that the
2393 -- wrapper is also to be eliminated, to prevent spurious error when
2394 -- using gnatelim on programs that include box-initialization of
2395 -- equality operators.
2397 Wrap_Id := Defining_Entity (Spec_Decl);
2398 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2400 Body_Decl :=
2401 Make_Subprogram_Body (Loc,
2402 Specification => Build_Spec (Ren_Id),
2403 Declarations => New_List,
2404 Handled_Statement_Sequence =>
2405 Make_Handled_Sequence_Of_Statements (Loc,
2406 Statements => New_List (
2407 Build_Call
2408 (Subp_Id => Prim_Op,
2409 Params =>
2410 Parameter_Specifications
2411 (Specification (Spec_Decl))))));
2413 -- The generated body does not freeze and must be analyzed when the
2414 -- class-wide wrapper is frozen. The body is only needed if expansion
2415 -- is enabled.
2417 if Expander_Active then
2418 Append_Freeze_Action (Wrap_Id, Body_Decl);
2419 end if;
2421 -- Step 4: The subprogram renaming aliases the wrapper
2423 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2424 end Build_Class_Wide_Wrapper;
2426 --------------------------
2427 -- Check_Null_Exclusion --
2428 --------------------------
2430 procedure Check_Null_Exclusion
2431 (Ren : Entity_Id;
2432 Sub : Entity_Id)
2434 Ren_Formal : Entity_Id;
2435 Sub_Formal : Entity_Id;
2437 begin
2438 -- Parameter check
2440 Ren_Formal := First_Formal (Ren);
2441 Sub_Formal := First_Formal (Sub);
2442 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2443 if Has_Null_Exclusion (Parent (Ren_Formal))
2444 and then
2445 not (Has_Null_Exclusion (Parent (Sub_Formal))
2446 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2447 then
2448 Error_Msg_NE
2449 ("`NOT NULL` required for parameter &",
2450 Parent (Sub_Formal), Sub_Formal);
2451 end if;
2453 Next_Formal (Ren_Formal);
2454 Next_Formal (Sub_Formal);
2455 end loop;
2457 -- Return profile check
2459 if Nkind (Parent (Ren)) = N_Function_Specification
2460 and then Nkind (Parent (Sub)) = N_Function_Specification
2461 and then Has_Null_Exclusion (Parent (Ren))
2462 and then not (Has_Null_Exclusion (Parent (Sub))
2463 or else Can_Never_Be_Null (Etype (Sub)))
2464 then
2465 Error_Msg_N
2466 ("return must specify `NOT NULL`",
2467 Result_Definition (Parent (Sub)));
2468 end if;
2469 end Check_Null_Exclusion;
2471 ---------------------------
2472 -- Freeze_Actual_Profile --
2473 ---------------------------
2475 procedure Freeze_Actual_Profile is
2476 F : Entity_Id;
2477 Has_Untagged_Inc : Boolean;
2478 Instantiation_Node : constant Node_Id := Parent (N);
2480 begin
2481 if Ada_Version >= Ada_2012 then
2482 F := First_Formal (Formal_Spec);
2483 Has_Untagged_Inc := False;
2484 while Present (F) loop
2485 if Ekind (Etype (F)) = E_Incomplete_Type
2486 and then not Is_Tagged_Type (Etype (F))
2487 then
2488 Has_Untagged_Inc := True;
2489 exit;
2490 end if;
2492 F := Next_Formal (F);
2493 end loop;
2495 if Ekind (Formal_Spec) = E_Function
2496 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2497 and then not Is_Tagged_Type (Etype (F))
2498 then
2499 Has_Untagged_Inc := True;
2500 end if;
2502 if not Has_Untagged_Inc then
2503 F := First_Formal (Old_S);
2504 while Present (F) loop
2505 Freeze_Before (Instantiation_Node, Etype (F));
2507 if Is_Incomplete_Or_Private_Type (Etype (F))
2508 and then No (Underlying_Type (Etype (F)))
2509 then
2510 -- Exclude generic types, or types derived from them.
2511 -- They will be frozen in the enclosing instance.
2513 if Is_Generic_Type (Etype (F))
2514 or else Is_Generic_Type (Root_Type (Etype (F)))
2515 then
2516 null;
2517 else
2518 Error_Msg_NE
2519 ("type& must be frozen before this point",
2520 Instantiation_Node, Etype (F));
2521 end if;
2522 end if;
2524 F := Next_Formal (F);
2525 end loop;
2526 end if;
2527 end if;
2528 end Freeze_Actual_Profile;
2530 ---------------------------
2531 -- Has_Class_Wide_Actual --
2532 ---------------------------
2534 function Has_Class_Wide_Actual return Boolean is
2535 Formal : Entity_Id;
2536 Formal_Typ : Entity_Id;
2538 begin
2539 if Is_Actual then
2540 Formal := First_Formal (Formal_Spec);
2541 while Present (Formal) loop
2542 Formal_Typ := Etype (Formal);
2544 if Has_Unknown_Discriminants (Formal_Typ)
2545 and then not Is_Class_Wide_Type (Formal_Typ)
2546 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2547 then
2548 return True;
2549 end if;
2551 Next_Formal (Formal);
2552 end loop;
2553 end if;
2555 return False;
2556 end Has_Class_Wide_Actual;
2558 -------------------------
2559 -- Original_Subprogram --
2560 -------------------------
2562 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2563 Orig_Decl : Node_Id;
2564 Orig_Subp : Entity_Id;
2566 begin
2567 -- First case: renamed entity is itself a renaming
2569 if Present (Alias (Subp)) then
2570 return Alias (Subp);
2572 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2573 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2574 then
2575 -- Check if renamed entity is a renaming_as_body
2577 Orig_Decl :=
2578 Unit_Declaration_Node
2579 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2581 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2582 Orig_Subp := Entity (Name (Orig_Decl));
2584 if Orig_Subp = Rename_Spec then
2586 -- Circularity detected
2588 return Orig_Subp;
2590 else
2591 return (Original_Subprogram (Orig_Subp));
2592 end if;
2593 else
2594 return Subp;
2595 end if;
2596 else
2597 return Subp;
2598 end if;
2599 end Original_Subprogram;
2601 -- Local variables
2603 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2604 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2605 -- defaulted formal subprogram when the actual for a related formal
2606 -- type is class-wide.
2608 Inst_Node : Node_Id := Empty;
2609 New_S : Entity_Id;
2611 -- Start of processing for Analyze_Subprogram_Renaming
2613 begin
2614 -- The subprogram renaming declaration may be subject to pragma Ghost
2615 -- with policy Ignore. Set the mode now to ensure that any nodes
2616 -- generated during analysis and expansion are properly flagged as
2617 -- ignored Ghost.
2619 Set_Ghost_Mode (N);
2621 -- We must test for the attribute renaming case before the Analyze
2622 -- call because otherwise Sem_Attr will complain that the attribute
2623 -- is missing an argument when it is analyzed.
2625 if Nkind (Nam) = N_Attribute_Reference then
2627 -- In the case of an abstract formal subprogram association, rewrite
2628 -- an actual given by a stream attribute as the name of the
2629 -- corresponding stream primitive of the type.
2631 -- In a generic context the stream operations are not generated, and
2632 -- this must be treated as a normal attribute reference, to be
2633 -- expanded in subsequent instantiations.
2635 if Is_Actual
2636 and then Is_Abstract_Subprogram (Formal_Spec)
2637 and then Expander_Active
2638 then
2639 declare
2640 Stream_Prim : Entity_Id;
2641 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2643 begin
2644 -- The class-wide forms of the stream attributes are not
2645 -- primitive dispatching operations (even though they
2646 -- internally dispatch to a stream attribute).
2648 if Is_Class_Wide_Type (Prefix_Type) then
2649 Error_Msg_N
2650 ("attribute must be a primitive dispatching operation",
2651 Nam);
2652 return;
2653 end if;
2655 -- Retrieve the primitive subprogram associated with the
2656 -- attribute. This can only be a stream attribute, since those
2657 -- are the only ones that are dispatching (and the actual for
2658 -- an abstract formal subprogram must be dispatching
2659 -- operation).
2661 case Attribute_Name (Nam) is
2662 when Name_Input =>
2663 Stream_Prim :=
2664 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2665 when Name_Output =>
2666 Stream_Prim :=
2667 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2668 when Name_Read =>
2669 Stream_Prim :=
2670 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2671 when Name_Write =>
2672 Stream_Prim :=
2673 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2674 when others =>
2675 Error_Msg_N
2676 ("attribute must be a primitive"
2677 & " dispatching operation", Nam);
2678 return;
2679 end case;
2681 -- If no operation was found, and the type is limited,
2682 -- the user should have defined one.
2684 if No (Stream_Prim) then
2685 if Is_Limited_Type (Prefix_Type) then
2686 Error_Msg_NE
2687 ("stream operation not defined for type&",
2688 N, Prefix_Type);
2689 return;
2691 -- Otherwise, compiler should have generated default
2693 else
2694 raise Program_Error;
2695 end if;
2696 end if;
2698 -- Rewrite the attribute into the name of its corresponding
2699 -- primitive dispatching subprogram. We can then proceed with
2700 -- the usual processing for subprogram renamings.
2702 declare
2703 Prim_Name : constant Node_Id :=
2704 Make_Identifier (Sloc (Nam),
2705 Chars => Chars (Stream_Prim));
2706 begin
2707 Set_Entity (Prim_Name, Stream_Prim);
2708 Rewrite (Nam, Prim_Name);
2709 Analyze (Nam);
2710 end;
2711 end;
2713 -- Normal processing for a renaming of an attribute
2715 else
2716 Attribute_Renaming (N);
2717 return;
2718 end if;
2719 end if;
2721 -- Check whether this declaration corresponds to the instantiation
2722 -- of a formal subprogram.
2724 -- If this is an instantiation, the corresponding actual is frozen and
2725 -- error messages can be made more precise. If this is a default
2726 -- subprogram, the entity is already established in the generic, and is
2727 -- not retrieved by visibility. If it is a default with a box, the
2728 -- candidate interpretations, if any, have been collected when building
2729 -- the renaming declaration. If overloaded, the proper interpretation is
2730 -- determined in Find_Renamed_Entity. If the entity is an operator,
2731 -- Find_Renamed_Entity applies additional visibility checks.
2733 if Is_Actual then
2734 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2736 -- Check whether the renaming is for a defaulted actual subprogram
2737 -- with a class-wide actual.
2739 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2740 -- is an external axiomatization on the package.
2742 if CW_Actual
2743 and then Box_Present (Inst_Node)
2744 and then not
2745 (GNATprove_Mode
2746 and then
2747 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2748 then
2749 Build_Class_Wide_Wrapper (New_S, Old_S);
2751 elsif Is_Entity_Name (Nam)
2752 and then Present (Entity (Nam))
2753 and then not Comes_From_Source (Nam)
2754 and then not Is_Overloaded (Nam)
2755 then
2756 Old_S := Entity (Nam);
2757 New_S := Analyze_Subprogram_Specification (Spec);
2759 -- Operator case
2761 if Ekind (Entity (Nam)) = E_Operator then
2763 -- Box present
2765 if Box_Present (Inst_Node) then
2766 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2768 -- If there is an immediately visible homonym of the operator
2769 -- and the declaration has a default, this is worth a warning
2770 -- because the user probably did not intend to get the pre-
2771 -- defined operator, visible in the generic declaration. To
2772 -- find if there is an intended candidate, analyze the renaming
2773 -- again in the current context.
2775 elsif Scope (Old_S) = Standard_Standard
2776 and then Present (Default_Name (Inst_Node))
2777 then
2778 declare
2779 Decl : constant Node_Id := New_Copy_Tree (N);
2780 Hidden : Entity_Id;
2782 begin
2783 Set_Entity (Name (Decl), Empty);
2784 Analyze (Name (Decl));
2785 Hidden :=
2786 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2788 if Present (Hidden)
2789 and then In_Open_Scopes (Scope (Hidden))
2790 and then Is_Immediately_Visible (Hidden)
2791 and then Comes_From_Source (Hidden)
2792 and then Hidden /= Old_S
2793 then
2794 Error_Msg_Sloc := Sloc (Hidden);
2795 Error_Msg_N ("default subprogram is resolved " &
2796 "in the generic declaration " &
2797 "(RM 12.6(17))??", N);
2798 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2799 end if;
2800 end;
2801 end if;
2802 end if;
2804 else
2805 Analyze (Nam);
2806 New_S := Analyze_Subprogram_Specification (Spec);
2807 end if;
2809 else
2810 -- Renamed entity must be analyzed first, to avoid being hidden by
2811 -- new name (which might be the same in a generic instance).
2813 Analyze (Nam);
2815 -- The renaming defines a new overloaded entity, which is analyzed
2816 -- like a subprogram declaration.
2818 New_S := Analyze_Subprogram_Specification (Spec);
2819 end if;
2821 if Current_Scope /= Standard_Standard then
2822 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2823 end if;
2825 -- Set SPARK mode from current context
2827 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2828 Set_SPARK_Pragma_Inherited (New_S, True);
2830 Rename_Spec := Find_Corresponding_Spec (N);
2832 -- Case of Renaming_As_Body
2834 if Present (Rename_Spec) then
2836 -- Renaming declaration is the completion of the declaration of
2837 -- Rename_Spec. We build an actual body for it at the freezing point.
2839 Set_Corresponding_Spec (N, Rename_Spec);
2841 -- Deal with special case of stream functions of abstract types
2842 -- and interfaces.
2844 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2845 N_Abstract_Subprogram_Declaration
2846 then
2847 -- Input stream functions are abstract if the object type is
2848 -- abstract. Similarly, all default stream functions for an
2849 -- interface type are abstract. However, these subprograms may
2850 -- receive explicit declarations in representation clauses, making
2851 -- the attribute subprograms usable as defaults in subsequent
2852 -- type extensions.
2853 -- In this case we rewrite the declaration to make the subprogram
2854 -- non-abstract. We remove the previous declaration, and insert
2855 -- the new one at the point of the renaming, to prevent premature
2856 -- access to unfrozen types. The new declaration reuses the
2857 -- specification of the previous one, and must not be analyzed.
2859 pragma Assert
2860 (Is_Primitive (Entity (Nam))
2861 and then
2862 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2863 declare
2864 Old_Decl : constant Node_Id :=
2865 Unit_Declaration_Node (Rename_Spec);
2866 New_Decl : constant Node_Id :=
2867 Make_Subprogram_Declaration (Sloc (N),
2868 Specification =>
2869 Relocate_Node (Specification (Old_Decl)));
2870 begin
2871 Remove (Old_Decl);
2872 Insert_After (N, New_Decl);
2873 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2874 Set_Analyzed (New_Decl);
2875 end;
2876 end if;
2878 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2880 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2881 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2882 end if;
2884 Set_Convention (New_S, Convention (Rename_Spec));
2885 Check_Fully_Conformant (New_S, Rename_Spec);
2886 Set_Public_Status (New_S);
2888 -- The specification does not introduce new formals, but only
2889 -- repeats the formals of the original subprogram declaration.
2890 -- For cross-reference purposes, and for refactoring tools, we
2891 -- treat the formals of the renaming declaration as body formals.
2893 Reference_Body_Formals (Rename_Spec, New_S);
2895 -- Indicate that the entity in the declaration functions like the
2896 -- corresponding body, and is not a new entity. The body will be
2897 -- constructed later at the freeze point, so indicate that the
2898 -- completion has not been seen yet.
2900 Set_Ekind (New_S, E_Subprogram_Body);
2901 New_S := Rename_Spec;
2902 Set_Has_Completion (Rename_Spec, False);
2904 -- Ada 2005: check overriding indicator
2906 if Present (Overridden_Operation (Rename_Spec)) then
2907 if Must_Not_Override (Specification (N)) then
2908 Error_Msg_NE
2909 ("subprogram& overrides inherited operation",
2910 N, Rename_Spec);
2911 elsif
2912 Style_Check and then not Must_Override (Specification (N))
2913 then
2914 Style.Missing_Overriding (N, Rename_Spec);
2915 end if;
2917 elsif Must_Override (Specification (N)) then
2918 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2919 end if;
2921 -- Normal subprogram renaming (not renaming as body)
2923 else
2924 Generate_Definition (New_S);
2925 New_Overloaded_Entity (New_S);
2927 if Is_Entity_Name (Nam)
2928 and then Is_Intrinsic_Subprogram (Entity (Nam))
2929 then
2930 null;
2931 else
2932 Check_Delayed_Subprogram (New_S);
2933 end if;
2934 end if;
2936 -- There is no need for elaboration checks on the new entity, which may
2937 -- be called before the next freezing point where the body will appear.
2938 -- Elaboration checks refer to the real entity, not the one created by
2939 -- the renaming declaration.
2941 Set_Kill_Elaboration_Checks (New_S, True);
2943 -- If we had a previous error, indicate a completely is present to stop
2944 -- junk cascaded messages, but don't take any further action.
2946 if Etype (Nam) = Any_Type then
2947 Set_Has_Completion (New_S);
2948 return;
2950 -- Case where name has the form of a selected component
2952 elsif Nkind (Nam) = N_Selected_Component then
2954 -- A name which has the form A.B can designate an entry of task A, a
2955 -- protected operation of protected object A, or finally a primitive
2956 -- operation of object A. In the later case, A is an object of some
2957 -- tagged type, or an access type that denotes one such. To further
2958 -- distinguish these cases, note that the scope of a task entry or
2959 -- protected operation is type of the prefix.
2961 -- The prefix could be an overloaded function call that returns both
2962 -- kinds of operations. This overloading pathology is left to the
2963 -- dedicated reader ???
2965 declare
2966 T : constant Entity_Id := Etype (Prefix (Nam));
2968 begin
2969 if Present (T)
2970 and then
2971 (Is_Tagged_Type (T)
2972 or else
2973 (Is_Access_Type (T)
2974 and then Is_Tagged_Type (Designated_Type (T))))
2975 and then Scope (Entity (Selector_Name (Nam))) /= T
2976 then
2977 Analyze_Renamed_Primitive_Operation
2978 (N, New_S, Present (Rename_Spec));
2979 return;
2981 else
2982 -- Renamed entity is an entry or protected operation. For those
2983 -- cases an explicit body is built (at the point of freezing of
2984 -- this entity) that contains a call to the renamed entity.
2986 -- This is not allowed for renaming as body if the renamed
2987 -- spec is already frozen (see RM 8.5.4(5) for details).
2989 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2990 Error_Msg_N
2991 ("renaming-as-body cannot rename entry as subprogram", N);
2992 Error_Msg_NE
2993 ("\since & is already frozen (RM 8.5.4(5))",
2994 N, Rename_Spec);
2995 else
2996 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2997 end if;
2999 return;
3000 end if;
3001 end;
3003 -- Case where name is an explicit dereference X.all
3005 elsif Nkind (Nam) = N_Explicit_Dereference then
3007 -- Renamed entity is designated by access_to_subprogram expression.
3008 -- Must build body to encapsulate call, as in the entry case.
3010 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3011 return;
3013 -- Indexed component
3015 elsif Nkind (Nam) = N_Indexed_Component then
3016 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3017 return;
3019 -- Character literal
3021 elsif Nkind (Nam) = N_Character_Literal then
3022 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3023 return;
3025 -- Only remaining case is where we have a non-entity name, or a renaming
3026 -- of some other non-overloadable entity.
3028 elsif not Is_Entity_Name (Nam)
3029 or else not Is_Overloadable (Entity (Nam))
3030 then
3031 -- Do not mention the renaming if it comes from an instance
3033 if not Is_Actual then
3034 Error_Msg_N ("expect valid subprogram name in renaming", N);
3035 else
3036 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3037 end if;
3039 return;
3040 end if;
3042 -- Find the renamed entity that matches the given specification. Disable
3043 -- Ada_83 because there is no requirement of full conformance between
3044 -- renamed entity and new entity, even though the same circuit is used.
3046 -- This is a bit of an odd case, which introduces a really irregular use
3047 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3048 -- this. ???
3050 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3051 Ada_Version_Pragma := Empty;
3052 Ada_Version_Explicit := Ada_Version;
3054 if No (Old_S) then
3055 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3057 -- The visible operation may be an inherited abstract operation that
3058 -- was overridden in the private part, in which case a call will
3059 -- dispatch to the overriding operation. Use the overriding one in
3060 -- the renaming declaration, to prevent spurious errors below.
3062 if Is_Overloadable (Old_S)
3063 and then Is_Abstract_Subprogram (Old_S)
3064 and then No (DTC_Entity (Old_S))
3065 and then Present (Alias (Old_S))
3066 and then not Is_Abstract_Subprogram (Alias (Old_S))
3067 and then Present (Overridden_Operation (Alias (Old_S)))
3068 then
3069 Old_S := Alias (Old_S);
3070 end if;
3072 -- When the renamed subprogram is overloaded and used as an actual
3073 -- of a generic, its entity is set to the first available homonym.
3074 -- We must first disambiguate the name, then set the proper entity.
3076 if Is_Actual and then Is_Overloaded (Nam) then
3077 Set_Entity (Nam, Old_S);
3078 end if;
3079 end if;
3081 -- Most common case: subprogram renames subprogram. No body is generated
3082 -- in this case, so we must indicate the declaration is complete as is.
3083 -- and inherit various attributes of the renamed subprogram.
3085 if No (Rename_Spec) then
3086 Set_Has_Completion (New_S);
3087 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3088 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3089 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3091 -- A subprogram renaming is Ghost if the renamed entity is Ghost or
3092 -- the construct appears within a Ghost scope.
3094 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
3095 Set_Is_Ghost_Entity (New_S);
3096 end if;
3098 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3099 -- between a subprogram and its correct renaming.
3101 -- Note: the Any_Id check is a guard that prevents compiler crashes
3102 -- when performing a null exclusion check between a renaming and a
3103 -- renamed subprogram that has been found to be illegal.
3105 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3106 Check_Null_Exclusion
3107 (Ren => New_S,
3108 Sub => Entity (Nam));
3109 end if;
3111 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3112 -- overriding. The flag Requires_Overriding is set very selectively
3113 -- and misses some other illegal cases. The additional conditions
3114 -- checked below are sufficient but not necessary ???
3116 -- The rule does not apply to the renaming generated for an actual
3117 -- subprogram in an instance.
3119 if Is_Actual then
3120 null;
3122 -- Guard against previous errors, and omit renamings of predefined
3123 -- operators.
3125 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3126 null;
3128 elsif Requires_Overriding (Old_S)
3129 or else
3130 (Is_Abstract_Subprogram (Old_S)
3131 and then Present (Find_Dispatching_Type (Old_S))
3132 and then
3133 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3134 then
3135 Error_Msg_N
3136 ("renamed entity cannot be "
3137 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
3138 end if;
3139 end if;
3141 if Old_S /= Any_Id then
3142 if Is_Actual and then From_Default (N) then
3144 -- This is an implicit reference to the default actual
3146 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3148 else
3149 Generate_Reference (Old_S, Nam);
3150 end if;
3152 Check_Internal_Protected_Use (N, Old_S);
3154 -- For a renaming-as-body, require subtype conformance, but if the
3155 -- declaration being completed has not been frozen, then inherit the
3156 -- convention of the renamed subprogram prior to checking conformance
3157 -- (unless the renaming has an explicit convention established; the
3158 -- rule stated in the RM doesn't seem to address this ???).
3160 if Present (Rename_Spec) then
3161 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3162 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3164 if not Is_Frozen (Rename_Spec) then
3165 if not Has_Convention_Pragma (Rename_Spec) then
3166 Set_Convention (New_S, Convention (Old_S));
3167 end if;
3169 if Ekind (Old_S) /= E_Operator then
3170 Check_Mode_Conformant (New_S, Old_S, Spec);
3171 end if;
3173 if Original_Subprogram (Old_S) = Rename_Spec then
3174 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3175 end if;
3176 else
3177 Check_Subtype_Conformant (New_S, Old_S, Spec);
3178 end if;
3180 Check_Frozen_Renaming (N, Rename_Spec);
3182 -- Check explicitly that renamed entity is not intrinsic, because
3183 -- in a generic the renamed body is not built. In this case,
3184 -- the renaming_as_body is a completion.
3186 if Inside_A_Generic then
3187 if Is_Frozen (Rename_Spec)
3188 and then Is_Intrinsic_Subprogram (Old_S)
3189 then
3190 Error_Msg_N
3191 ("subprogram in renaming_as_body cannot be intrinsic",
3192 Name (N));
3193 end if;
3195 Set_Has_Completion (Rename_Spec);
3196 end if;
3198 elsif Ekind (Old_S) /= E_Operator then
3200 -- If this a defaulted subprogram for a class-wide actual there is
3201 -- no check for mode conformance, given that the signatures don't
3202 -- match (the source mentions T but the actual mentions T'Class).
3204 if CW_Actual then
3205 null;
3206 elsif not Is_Actual or else No (Enclosing_Instance) then
3207 Check_Mode_Conformant (New_S, Old_S);
3208 end if;
3210 if Is_Actual and then Error_Posted (New_S) then
3211 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3212 end if;
3213 end if;
3215 if No (Rename_Spec) then
3217 -- The parameter profile of the new entity is that of the renamed
3218 -- entity: the subtypes given in the specification are irrelevant.
3220 Inherit_Renamed_Profile (New_S, Old_S);
3222 -- A call to the subprogram is transformed into a call to the
3223 -- renamed entity. This is transitive if the renamed entity is
3224 -- itself a renaming.
3226 if Present (Alias (Old_S)) then
3227 Set_Alias (New_S, Alias (Old_S));
3228 else
3229 Set_Alias (New_S, Old_S);
3230 end if;
3232 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3233 -- renaming as body, since the entity in this case is not an
3234 -- intrinsic (it calls an intrinsic, but we have a real body for
3235 -- this call, and it is in this body that the required intrinsic
3236 -- processing will take place).
3238 -- Also, if this is a renaming of inequality, the renamed operator
3239 -- is intrinsic, but what matters is the corresponding equality
3240 -- operator, which may be user-defined.
3242 Set_Is_Intrinsic_Subprogram
3243 (New_S,
3244 Is_Intrinsic_Subprogram (Old_S)
3245 and then
3246 (Chars (Old_S) /= Name_Op_Ne
3247 or else Ekind (Old_S) = E_Operator
3248 or else Is_Intrinsic_Subprogram
3249 (Corresponding_Equality (Old_S))));
3251 if Ekind (Alias (New_S)) = E_Operator then
3252 Set_Has_Delayed_Freeze (New_S, False);
3253 end if;
3255 -- If the renaming corresponds to an association for an abstract
3256 -- formal subprogram, then various attributes must be set to
3257 -- indicate that the renaming is an abstract dispatching operation
3258 -- with a controlling type.
3260 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3262 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3263 -- see it as corresponding to a generic association for a
3264 -- formal abstract subprogram
3266 Set_Is_Abstract_Subprogram (New_S);
3268 declare
3269 New_S_Ctrl_Type : constant Entity_Id :=
3270 Find_Dispatching_Type (New_S);
3271 Old_S_Ctrl_Type : constant Entity_Id :=
3272 Find_Dispatching_Type (Old_S);
3274 begin
3275 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
3276 Error_Msg_NE
3277 ("actual must be dispatching subprogram for type&",
3278 Nam, New_S_Ctrl_Type);
3280 else
3281 Set_Is_Dispatching_Operation (New_S);
3282 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3284 -- If the actual in the formal subprogram is itself a
3285 -- formal abstract subprogram association, there's no
3286 -- dispatch table component or position to inherit.
3288 if Present (DTC_Entity (Old_S)) then
3289 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3290 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3291 end if;
3292 end if;
3293 end;
3294 end if;
3295 end if;
3297 if Is_Actual then
3298 null;
3300 -- The following is illegal, because F hides whatever other F may
3301 -- be around:
3302 -- function F (...) renames F;
3304 elsif Old_S = New_S
3305 or else (Nkind (Nam) /= N_Expanded_Name
3306 and then Chars (Old_S) = Chars (New_S))
3307 then
3308 Error_Msg_N ("subprogram cannot rename itself", N);
3310 -- This is illegal even if we use a selector:
3311 -- function F (...) renames Pkg.F;
3312 -- because F is still hidden.
3314 elsif Nkind (Nam) = N_Expanded_Name
3315 and then Entity (Prefix (Nam)) = Current_Scope
3316 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3317 then
3318 -- This is an error, but we overlook the error and accept the
3319 -- renaming if the special Overriding_Renamings mode is in effect.
3321 if not Overriding_Renamings then
3322 Error_Msg_NE
3323 ("implicit operation& is not visible (RM 8.3 (15))",
3324 Nam, Old_S);
3325 end if;
3326 end if;
3328 Set_Convention (New_S, Convention (Old_S));
3330 if Is_Abstract_Subprogram (Old_S) then
3331 if Present (Rename_Spec) then
3332 Error_Msg_N
3333 ("a renaming-as-body cannot rename an abstract subprogram",
3335 Set_Has_Completion (Rename_Spec);
3336 else
3337 Set_Is_Abstract_Subprogram (New_S);
3338 end if;
3339 end if;
3341 Check_Library_Unit_Renaming (N, Old_S);
3343 -- Pathological case: procedure renames entry in the scope of its
3344 -- task. Entry is given by simple name, but body must be built for
3345 -- procedure. Of course if called it will deadlock.
3347 if Ekind (Old_S) = E_Entry then
3348 Set_Has_Completion (New_S, False);
3349 Set_Alias (New_S, Empty);
3350 end if;
3352 if Is_Actual then
3353 Freeze_Before (N, Old_S);
3354 Freeze_Actual_Profile;
3355 Set_Has_Delayed_Freeze (New_S, False);
3356 Freeze_Before (N, New_S);
3358 -- An abstract subprogram is only allowed as an actual in the case
3359 -- where the formal subprogram is also abstract.
3361 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3362 and then Is_Abstract_Subprogram (Old_S)
3363 and then not Is_Abstract_Subprogram (Formal_Spec)
3364 then
3365 Error_Msg_N
3366 ("abstract subprogram not allowed as generic actual", Nam);
3367 end if;
3368 end if;
3370 else
3371 -- A common error is to assume that implicit operators for types are
3372 -- defined in Standard, or in the scope of a subtype. In those cases
3373 -- where the renamed entity is given with an expanded name, it is
3374 -- worth mentioning that operators for the type are not declared in
3375 -- the scope given by the prefix.
3377 if Nkind (Nam) = N_Expanded_Name
3378 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3379 and then Scope (Entity (Nam)) = Standard_Standard
3380 then
3381 declare
3382 T : constant Entity_Id :=
3383 Base_Type (Etype (First_Formal (New_S)));
3384 begin
3385 Error_Msg_Node_2 := Prefix (Nam);
3386 Error_Msg_NE
3387 ("operator for type& is not declared in&", Prefix (Nam), T);
3388 end;
3390 else
3391 Error_Msg_NE
3392 ("no visible subprogram matches the specification for&",
3393 Spec, New_S);
3394 end if;
3396 if Present (Candidate_Renaming) then
3397 declare
3398 F1 : Entity_Id;
3399 F2 : Entity_Id;
3400 T1 : Entity_Id;
3402 begin
3403 F1 := First_Formal (Candidate_Renaming);
3404 F2 := First_Formal (New_S);
3405 T1 := First_Subtype (Etype (F1));
3406 while Present (F1) and then Present (F2) loop
3407 Next_Formal (F1);
3408 Next_Formal (F2);
3409 end loop;
3411 if Present (F1) and then Present (Default_Value (F1)) then
3412 if Present (Next_Formal (F1)) then
3413 Error_Msg_NE
3414 ("\missing specification for &" &
3415 " and other formals with defaults", Spec, F1);
3416 else
3417 Error_Msg_NE
3418 ("\missing specification for &", Spec, F1);
3419 end if;
3420 end if;
3422 if Nkind (Nam) = N_Operator_Symbol
3423 and then From_Default (N)
3424 then
3425 Error_Msg_Node_2 := T1;
3426 Error_Msg_NE
3427 ("default & on & is not directly visible",
3428 Nam, Nam);
3429 end if;
3430 end;
3431 end if;
3432 end if;
3434 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3435 -- controlling access parameters are known non-null for the renamed
3436 -- subprogram. Test also applies to a subprogram instantiation that
3437 -- is dispatching. Test is skipped if some previous error was detected
3438 -- that set Old_S to Any_Id.
3440 if Ada_Version >= Ada_2005
3441 and then Old_S /= Any_Id
3442 and then not Is_Dispatching_Operation (Old_S)
3443 and then Is_Dispatching_Operation (New_S)
3444 then
3445 declare
3446 Old_F : Entity_Id;
3447 New_F : Entity_Id;
3449 begin
3450 Old_F := First_Formal (Old_S);
3451 New_F := First_Formal (New_S);
3452 while Present (Old_F) loop
3453 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3454 and then Is_Controlling_Formal (New_F)
3455 and then not Can_Never_Be_Null (Old_F)
3456 then
3457 Error_Msg_N ("access parameter is controlling,", New_F);
3458 Error_Msg_NE
3459 ("\corresponding parameter of& "
3460 & "must be explicitly null excluding", New_F, Old_S);
3461 end if;
3463 Next_Formal (Old_F);
3464 Next_Formal (New_F);
3465 end loop;
3466 end;
3467 end if;
3469 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3470 -- is to warn if an operator is being renamed as a different operator.
3471 -- If the operator is predefined, examine the kind of the entity, not
3472 -- the abbreviated declaration in Standard.
3474 if Comes_From_Source (N)
3475 and then Present (Old_S)
3476 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3477 or else Ekind (Old_S) = E_Operator)
3478 and then Nkind (New_S) = N_Defining_Operator_Symbol
3479 and then Chars (Old_S) /= Chars (New_S)
3480 then
3481 Error_Msg_NE
3482 ("& is being renamed as a different operator??", N, Old_S);
3483 end if;
3485 -- Check for renaming of obsolescent subprogram
3487 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3489 -- Another warning or some utility: if the new subprogram as the same
3490 -- name as the old one, the old one is not hidden by an outer homograph,
3491 -- the new one is not a public symbol, and the old one is otherwise
3492 -- directly visible, the renaming is superfluous.
3494 if Chars (Old_S) = Chars (New_S)
3495 and then Comes_From_Source (N)
3496 and then Scope (Old_S) /= Standard_Standard
3497 and then Warn_On_Redundant_Constructs
3498 and then (Is_Immediately_Visible (Old_S)
3499 or else Is_Potentially_Use_Visible (Old_S))
3500 and then Is_Overloadable (Current_Scope)
3501 and then Chars (Current_Scope) /= Chars (Old_S)
3502 then
3503 Error_Msg_N
3504 ("redundant renaming, entity is directly visible?r?", Name (N));
3505 end if;
3507 -- Implementation-defined aspect specifications can appear in a renaming
3508 -- declaration, but not language-defined ones. The call to procedure
3509 -- Analyze_Aspect_Specifications will take care of this error check.
3511 if Has_Aspects (N) then
3512 Analyze_Aspect_Specifications (N, New_S);
3513 end if;
3515 Ada_Version := Save_AV;
3516 Ada_Version_Pragma := Save_AVP;
3517 Ada_Version_Explicit := Save_AV_Exp;
3519 -- In GNATprove mode, the renamings of actual subprograms are replaced
3520 -- with wrapper functions that make it easier to propagate axioms to the
3521 -- points of call within an instance. Wrappers are generated if formal
3522 -- subprogram is subject to axiomatization.
3524 -- The types in the wrapper profiles are obtained from (instances of)
3525 -- the types of the formal subprogram.
3527 if Is_Actual
3528 and then GNATprove_Mode
3529 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3530 and then not Inside_A_Generic
3531 then
3532 if Ekind (Old_S) = E_Function then
3533 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3534 Analyze (N);
3536 elsif Ekind (Old_S) = E_Operator then
3537 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3538 Analyze (N);
3539 end if;
3540 end if;
3541 end Analyze_Subprogram_Renaming;
3543 -------------------------
3544 -- Analyze_Use_Package --
3545 -------------------------
3547 -- Resolve the package names in the use clause, and make all the visible
3548 -- entities defined in the package potentially use-visible. If the package
3549 -- is already in use from a previous use clause, its visible entities are
3550 -- already use-visible. In that case, mark the occurrence as a redundant
3551 -- use. If the package is an open scope, i.e. if the use clause occurs
3552 -- within the package itself, ignore it.
3554 procedure Analyze_Use_Package (N : Node_Id) is
3555 Pack_Name : Node_Id;
3556 Pack : Entity_Id;
3558 -- Start of processing for Analyze_Use_Package
3560 begin
3561 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3563 Set_Hidden_By_Use_Clause (N, No_Elist);
3565 -- Use clause not allowed in a spec of a predefined package declaration
3566 -- except that packages whose file name starts a-n are OK (these are
3567 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3569 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3570 and then Name_Buffer (1 .. 3) /= "a-n"
3571 and then
3572 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3573 then
3574 Error_Msg_N ("use clause not allowed in predefined spec", N);
3575 end if;
3577 -- Chain clause to list of use clauses in current scope
3579 if Nkind (Parent (N)) /= N_Compilation_Unit then
3580 Chain_Use_Clause (N);
3581 end if;
3583 -- Loop through package names to identify referenced packages
3585 Pack_Name := First (Names (N));
3586 while Present (Pack_Name) loop
3587 Analyze (Pack_Name);
3589 if Nkind (Parent (N)) = N_Compilation_Unit
3590 and then Nkind (Pack_Name) = N_Expanded_Name
3591 then
3592 declare
3593 Pref : Node_Id;
3595 begin
3596 Pref := Prefix (Pack_Name);
3597 while Nkind (Pref) = N_Expanded_Name loop
3598 Pref := Prefix (Pref);
3599 end loop;
3601 if Entity (Pref) = Standard_Standard then
3602 Error_Msg_N
3603 ("predefined package Standard cannot appear"
3604 & " in a context clause", Pref);
3605 end if;
3606 end;
3607 end if;
3609 Next (Pack_Name);
3610 end loop;
3612 -- Loop through package names to mark all entities as potentially
3613 -- use visible.
3615 Pack_Name := First (Names (N));
3616 while Present (Pack_Name) loop
3617 if Is_Entity_Name (Pack_Name) then
3618 Pack := Entity (Pack_Name);
3620 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3621 if Ekind (Pack) = E_Generic_Package then
3622 Error_Msg_N -- CODEFIX
3623 ("a generic package is not allowed in a use clause",
3624 Pack_Name);
3626 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3627 then
3628 Error_Msg_N -- CODEFIX
3629 ("a generic subprogram is not allowed in a use clause",
3630 Pack_Name);
3632 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3633 Error_Msg_N -- CODEFIX
3634 ("a subprogram is not allowed in a use clause",
3635 Pack_Name);
3637 else
3638 Error_Msg_N ("& is not allowed in a use clause", Pack_Name);
3639 end if;
3641 else
3642 if Nkind (Parent (N)) = N_Compilation_Unit then
3643 Check_In_Previous_With_Clause (N, Pack_Name);
3644 end if;
3646 if Applicable_Use (Pack_Name) then
3647 Use_One_Package (Pack, N);
3648 end if;
3649 end if;
3651 -- Report error because name denotes something other than a package
3653 else
3654 Error_Msg_N ("& is not a package", Pack_Name);
3655 end if;
3657 Next (Pack_Name);
3658 end loop;
3659 end Analyze_Use_Package;
3661 ----------------------
3662 -- Analyze_Use_Type --
3663 ----------------------
3665 procedure Analyze_Use_Type (N : Node_Id) is
3666 E : Entity_Id;
3667 Id : Node_Id;
3669 begin
3670 Set_Hidden_By_Use_Clause (N, No_Elist);
3672 -- Chain clause to list of use clauses in current scope
3674 if Nkind (Parent (N)) /= N_Compilation_Unit then
3675 Chain_Use_Clause (N);
3676 end if;
3678 -- If the Used_Operations list is already initialized, the clause has
3679 -- been analyzed previously, and it is begin reinstalled, for example
3680 -- when the clause appears in a package spec and we are compiling the
3681 -- corresponding package body. In that case, make the entities on the
3682 -- existing list use_visible, and mark the corresponding types In_Use.
3684 if Present (Used_Operations (N)) then
3685 declare
3686 Mark : Node_Id;
3687 Elmt : Elmt_Id;
3689 begin
3690 Mark := First (Subtype_Marks (N));
3691 while Present (Mark) loop
3692 Use_One_Type (Mark, Installed => True);
3693 Next (Mark);
3694 end loop;
3696 Elmt := First_Elmt (Used_Operations (N));
3697 while Present (Elmt) loop
3698 Set_Is_Potentially_Use_Visible (Node (Elmt));
3699 Next_Elmt (Elmt);
3700 end loop;
3701 end;
3703 return;
3704 end if;
3706 -- Otherwise, create new list and attach to it the operations that
3707 -- are made use-visible by the clause.
3709 Set_Used_Operations (N, New_Elmt_List);
3710 Id := First (Subtype_Marks (N));
3711 while Present (Id) loop
3712 Find_Type (Id);
3713 E := Entity (Id);
3715 if E /= Any_Type then
3716 Use_One_Type (Id);
3718 if Nkind (Parent (N)) = N_Compilation_Unit then
3719 if Nkind (Id) = N_Identifier then
3720 Error_Msg_N ("type is not directly visible", Id);
3722 elsif Is_Child_Unit (Scope (E))
3723 and then Scope (E) /= System_Aux_Id
3724 then
3725 Check_In_Previous_With_Clause (N, Prefix (Id));
3726 end if;
3727 end if;
3729 else
3730 -- If the use_type_clause appears in a compilation unit context,
3731 -- check whether it comes from a unit that may appear in a
3732 -- limited_with_clause, for a better error message.
3734 if Nkind (Parent (N)) = N_Compilation_Unit
3735 and then Nkind (Id) /= N_Identifier
3736 then
3737 declare
3738 Item : Node_Id;
3739 Pref : Node_Id;
3741 function Mentioned (Nam : Node_Id) return Boolean;
3742 -- Check whether the prefix of expanded name for the type
3743 -- appears in the prefix of some limited_with_clause.
3745 ---------------
3746 -- Mentioned --
3747 ---------------
3749 function Mentioned (Nam : Node_Id) return Boolean is
3750 begin
3751 return Nkind (Name (Item)) = N_Selected_Component
3752 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3753 end Mentioned;
3755 begin
3756 Pref := Prefix (Id);
3757 Item := First (Context_Items (Parent (N)));
3758 while Present (Item) and then Item /= N loop
3759 if Nkind (Item) = N_With_Clause
3760 and then Limited_Present (Item)
3761 and then Mentioned (Pref)
3762 then
3763 Change_Error_Text
3764 (Get_Msg_Id, "premature usage of incomplete type");
3765 end if;
3767 Next (Item);
3768 end loop;
3769 end;
3770 end if;
3771 end if;
3773 Next (Id);
3774 end loop;
3775 end Analyze_Use_Type;
3777 --------------------
3778 -- Applicable_Use --
3779 --------------------
3781 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3782 Pack : constant Entity_Id := Entity (Pack_Name);
3784 begin
3785 if In_Open_Scopes (Pack) then
3786 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3787 Error_Msg_NE -- CODEFIX
3788 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3789 end if;
3791 return False;
3793 elsif In_Use (Pack) then
3794 Note_Redundant_Use (Pack_Name);
3795 return False;
3797 elsif Present (Renamed_Object (Pack))
3798 and then In_Use (Renamed_Object (Pack))
3799 then
3800 Note_Redundant_Use (Pack_Name);
3801 return False;
3803 else
3804 return True;
3805 end if;
3806 end Applicable_Use;
3808 ------------------------
3809 -- Attribute_Renaming --
3810 ------------------------
3812 procedure Attribute_Renaming (N : Node_Id) is
3813 Loc : constant Source_Ptr := Sloc (N);
3814 Nam : constant Node_Id := Name (N);
3815 Spec : constant Node_Id := Specification (N);
3816 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3817 Aname : constant Name_Id := Attribute_Name (Nam);
3819 Form_Num : Nat := 0;
3820 Expr_List : List_Id := No_List;
3822 Attr_Node : Node_Id;
3823 Body_Node : Node_Id;
3824 Param_Spec : Node_Id;
3826 begin
3827 Generate_Definition (New_S);
3829 -- This procedure is called in the context of subprogram renaming, and
3830 -- thus the attribute must be one that is a subprogram. All of those
3831 -- have at least one formal parameter, with the exceptions of the GNAT
3832 -- attribute 'Img, which GNAT treats as renameable.
3834 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3835 if Aname /= Name_Img then
3836 Error_Msg_N
3837 ("subprogram renaming an attribute must have formals", N);
3838 return;
3839 end if;
3841 else
3842 Param_Spec := First (Parameter_Specifications (Spec));
3843 while Present (Param_Spec) loop
3844 Form_Num := Form_Num + 1;
3846 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3847 Find_Type (Parameter_Type (Param_Spec));
3849 -- The profile of the new entity denotes the base type (s) of
3850 -- the types given in the specification. For access parameters
3851 -- there are no subtypes involved.
3853 Rewrite (Parameter_Type (Param_Spec),
3854 New_Occurrence_Of
3855 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3856 end if;
3858 if No (Expr_List) then
3859 Expr_List := New_List;
3860 end if;
3862 Append_To (Expr_List,
3863 Make_Identifier (Loc,
3864 Chars => Chars (Defining_Identifier (Param_Spec))));
3866 -- The expressions in the attribute reference are not freeze
3867 -- points. Neither is the attribute as a whole, see below.
3869 Set_Must_Not_Freeze (Last (Expr_List));
3870 Next (Param_Spec);
3871 end loop;
3872 end if;
3874 -- Immediate error if too many formals. Other mismatches in number or
3875 -- types of parameters are detected when we analyze the body of the
3876 -- subprogram that we construct.
3878 if Form_Num > 2 then
3879 Error_Msg_N ("too many formals for attribute", N);
3881 -- Error if the attribute reference has expressions that look like
3882 -- formal parameters.
3884 elsif Present (Expressions (Nam)) then
3885 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3887 elsif
3888 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3889 Name_Pos, Name_Round, Name_Scaling,
3890 Name_Val)
3891 then
3892 if Nkind (N) = N_Subprogram_Renaming_Declaration
3893 and then Present (Corresponding_Formal_Spec (N))
3894 then
3895 Error_Msg_N
3896 ("generic actual cannot be attribute involving universal type",
3897 Nam);
3898 else
3899 Error_Msg_N
3900 ("attribute involving a universal type cannot be renamed",
3901 Nam);
3902 end if;
3903 end if;
3905 -- Rewrite attribute node to have a list of expressions corresponding to
3906 -- the subprogram formals. A renaming declaration is not a freeze point,
3907 -- and the analysis of the attribute reference should not freeze the
3908 -- type of the prefix. We use the original node in the renaming so that
3909 -- its source location is preserved, and checks on stream attributes are
3910 -- properly applied.
3912 Attr_Node := Relocate_Node (Nam);
3913 Set_Expressions (Attr_Node, Expr_List);
3915 Set_Must_Not_Freeze (Attr_Node);
3916 Set_Must_Not_Freeze (Prefix (Nam));
3918 -- Case of renaming a function
3920 if Nkind (Spec) = N_Function_Specification then
3921 if Is_Procedure_Attribute_Name (Aname) then
3922 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3923 return;
3924 end if;
3926 Find_Type (Result_Definition (Spec));
3927 Rewrite (Result_Definition (Spec),
3928 New_Occurrence_Of
3929 (Base_Type (Entity (Result_Definition (Spec))), Loc));
3931 Body_Node :=
3932 Make_Subprogram_Body (Loc,
3933 Specification => Spec,
3934 Declarations => New_List,
3935 Handled_Statement_Sequence =>
3936 Make_Handled_Sequence_Of_Statements (Loc,
3937 Statements => New_List (
3938 Make_Simple_Return_Statement (Loc,
3939 Expression => Attr_Node))));
3941 -- Case of renaming a procedure
3943 else
3944 if not Is_Procedure_Attribute_Name (Aname) then
3945 Error_Msg_N ("attribute can only be renamed as function", Nam);
3946 return;
3947 end if;
3949 Body_Node :=
3950 Make_Subprogram_Body (Loc,
3951 Specification => Spec,
3952 Declarations => New_List,
3953 Handled_Statement_Sequence =>
3954 Make_Handled_Sequence_Of_Statements (Loc,
3955 Statements => New_List (Attr_Node)));
3956 end if;
3958 -- In case of tagged types we add the body of the generated function to
3959 -- the freezing actions of the type (because in the general case such
3960 -- type is still not frozen). We exclude from this processing generic
3961 -- formal subprograms found in instantiations.
3963 -- We must exclude VM targets and restricted run-time libraries because
3964 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3965 -- available in those platforms. Note that we cannot use the function
3966 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3967 -- the ZFP run-time library is not defined as a profile, and we do not
3968 -- want to deal with AST_Handler in ZFP mode.
3970 if VM_Target = No_VM
3971 and then not Configurable_Run_Time_Mode
3972 and then not Present (Corresponding_Formal_Spec (N))
3973 and then Etype (Nam) /= RTE (RE_AST_Handler)
3974 then
3975 declare
3976 P : constant Node_Id := Prefix (Nam);
3978 begin
3979 -- The prefix of 'Img is an object that is evaluated for each call
3980 -- of the function that renames it.
3982 if Aname = Name_Img then
3983 Preanalyze_And_Resolve (P);
3985 -- For all other attribute renamings, the prefix is a subtype
3987 else
3988 Find_Type (P);
3989 end if;
3991 -- If the target type is not yet frozen, add the body to the
3992 -- actions to be elaborated at freeze time.
3994 if Is_Tagged_Type (Etype (P))
3995 and then In_Open_Scopes (Scope (Etype (P)))
3996 then
3997 Ensure_Freeze_Node (Etype (P));
3998 Append_Freeze_Action (Etype (P), Body_Node);
3999 else
4000 Rewrite (N, Body_Node);
4001 Analyze (N);
4002 Set_Etype (New_S, Base_Type (Etype (New_S)));
4003 end if;
4004 end;
4006 -- Generic formal subprograms or AST_Handler renaming
4008 else
4009 Rewrite (N, Body_Node);
4010 Analyze (N);
4011 Set_Etype (New_S, Base_Type (Etype (New_S)));
4012 end if;
4014 if Is_Compilation_Unit (New_S) then
4015 Error_Msg_N
4016 ("a library unit can only rename another library unit", N);
4017 end if;
4019 -- We suppress elaboration warnings for the resulting entity, since
4020 -- clearly they are not needed, and more particularly, in the case
4021 -- of a generic formal subprogram, the resulting entity can appear
4022 -- after the instantiation itself, and thus look like a bogus case
4023 -- of access before elaboration.
4025 Set_Suppress_Elaboration_Warnings (New_S);
4027 end Attribute_Renaming;
4029 ----------------------
4030 -- Chain_Use_Clause --
4031 ----------------------
4033 procedure Chain_Use_Clause (N : Node_Id) is
4034 Pack : Entity_Id;
4035 Level : Int := Scope_Stack.Last;
4037 begin
4038 if not Is_Compilation_Unit (Current_Scope)
4039 or else not Is_Child_Unit (Current_Scope)
4040 then
4041 null; -- Common case
4043 elsif Defining_Entity (Parent (N)) = Current_Scope then
4044 null; -- Common case for compilation unit
4046 else
4047 -- If declaration appears in some other scope, it must be in some
4048 -- parent unit when compiling a child.
4050 Pack := Defining_Entity (Parent (N));
4051 if not In_Open_Scopes (Pack) then
4052 null; -- default as well
4054 -- If the use clause appears in an ancestor and we are in the
4055 -- private part of the immediate parent, the use clauses are
4056 -- already installed.
4058 elsif Pack /= Scope (Current_Scope)
4059 and then In_Private_Part (Scope (Current_Scope))
4060 then
4061 null;
4063 else
4064 -- Find entry for parent unit in scope stack
4066 while Scope_Stack.Table (Level).Entity /= Pack loop
4067 Level := Level - 1;
4068 end loop;
4069 end if;
4070 end if;
4072 Set_Next_Use_Clause (N,
4073 Scope_Stack.Table (Level).First_Use_Clause);
4074 Scope_Stack.Table (Level).First_Use_Clause := N;
4075 end Chain_Use_Clause;
4077 ---------------------------
4078 -- Check_Frozen_Renaming --
4079 ---------------------------
4081 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4082 B_Node : Node_Id;
4083 Old_S : Entity_Id;
4085 begin
4086 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4087 B_Node :=
4088 Build_Renamed_Body
4089 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4091 if Is_Entity_Name (Name (N)) then
4092 Old_S := Entity (Name (N));
4094 if not Is_Frozen (Old_S)
4095 and then Operating_Mode /= Check_Semantics
4096 then
4097 Append_Freeze_Action (Old_S, B_Node);
4098 else
4099 Insert_After (N, B_Node);
4100 Analyze (B_Node);
4101 end if;
4103 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4104 Error_Msg_N
4105 ("subprogram used in renaming_as_body cannot be intrinsic",
4106 Name (N));
4107 end if;
4109 else
4110 Insert_After (N, B_Node);
4111 Analyze (B_Node);
4112 end if;
4113 end if;
4114 end Check_Frozen_Renaming;
4116 -------------------------------
4117 -- Set_Entity_Or_Discriminal --
4118 -------------------------------
4120 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4121 P : Node_Id;
4123 begin
4124 -- If the entity is not a discriminant, or else expansion is disabled,
4125 -- simply set the entity.
4127 if not In_Spec_Expression
4128 or else Ekind (E) /= E_Discriminant
4129 or else Inside_A_Generic
4130 then
4131 Set_Entity_With_Checks (N, E);
4133 -- The replacement of a discriminant by the corresponding discriminal
4134 -- is not done for a task discriminant that appears in a default
4135 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4136 -- for details on their handling.
4138 elsif Is_Concurrent_Type (Scope (E)) then
4139 P := Parent (N);
4140 while Present (P)
4141 and then not Nkind_In (P, N_Parameter_Specification,
4142 N_Component_Declaration)
4143 loop
4144 P := Parent (P);
4145 end loop;
4147 if Present (P)
4148 and then Nkind (P) = N_Parameter_Specification
4149 then
4150 null;
4152 else
4153 Set_Entity (N, Discriminal (E));
4154 end if;
4156 -- Otherwise, this is a discriminant in a context in which
4157 -- it is a reference to the corresponding parameter of the
4158 -- init proc for the enclosing type.
4160 else
4161 Set_Entity (N, Discriminal (E));
4162 end if;
4163 end Set_Entity_Or_Discriminal;
4165 -----------------------------------
4166 -- Check_In_Previous_With_Clause --
4167 -----------------------------------
4169 procedure Check_In_Previous_With_Clause
4170 (N : Node_Id;
4171 Nam : Entity_Id)
4173 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4174 Item : Node_Id;
4175 Par : Node_Id;
4177 begin
4178 Item := First (Context_Items (Parent (N)));
4179 while Present (Item) and then Item /= N loop
4180 if Nkind (Item) = N_With_Clause
4182 -- Protect the frontend against previous critical errors
4184 and then Nkind (Name (Item)) /= N_Selected_Component
4185 and then Entity (Name (Item)) = Pack
4186 then
4187 Par := Nam;
4189 -- Find root library unit in with_clause
4191 while Nkind (Par) = N_Expanded_Name loop
4192 Par := Prefix (Par);
4193 end loop;
4195 if Is_Child_Unit (Entity (Original_Node (Par))) then
4196 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4197 else
4198 return;
4199 end if;
4200 end if;
4202 Next (Item);
4203 end loop;
4205 -- On exit, package is not mentioned in a previous with_clause.
4206 -- Check if its prefix is.
4208 if Nkind (Nam) = N_Expanded_Name then
4209 Check_In_Previous_With_Clause (N, Prefix (Nam));
4211 elsif Pack /= Any_Id then
4212 Error_Msg_NE ("& is not visible", Nam, Pack);
4213 end if;
4214 end Check_In_Previous_With_Clause;
4216 ---------------------------------
4217 -- Check_Library_Unit_Renaming --
4218 ---------------------------------
4220 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4221 New_E : Entity_Id;
4223 begin
4224 if Nkind (Parent (N)) /= N_Compilation_Unit then
4225 return;
4227 -- Check for library unit. Note that we used to check for the scope
4228 -- being Standard here, but that was wrong for Standard itself.
4230 elsif not Is_Compilation_Unit (Old_E)
4231 and then not Is_Child_Unit (Old_E)
4232 then
4233 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4235 -- Entities defined in Standard (operators and boolean literals) cannot
4236 -- be renamed as library units.
4238 elsif Scope (Old_E) = Standard_Standard
4239 and then Sloc (Old_E) = Standard_Location
4240 then
4241 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4243 elsif Present (Parent_Spec (N))
4244 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4245 and then not Is_Child_Unit (Old_E)
4246 then
4247 Error_Msg_N
4248 ("renamed unit must be a child unit of generic parent", Name (N));
4250 elsif Nkind (N) in N_Generic_Renaming_Declaration
4251 and then Nkind (Name (N)) = N_Expanded_Name
4252 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4253 and then Is_Generic_Unit (Old_E)
4254 then
4255 Error_Msg_N
4256 ("renamed generic unit must be a library unit", Name (N));
4258 elsif Is_Package_Or_Generic_Package (Old_E) then
4260 -- Inherit categorization flags
4262 New_E := Defining_Entity (N);
4263 Set_Is_Pure (New_E, Is_Pure (Old_E));
4264 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4265 Set_Is_Remote_Call_Interface (New_E,
4266 Is_Remote_Call_Interface (Old_E));
4267 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4268 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4269 end if;
4270 end Check_Library_Unit_Renaming;
4272 ------------------------
4273 -- Enclosing_Instance --
4274 ------------------------
4276 function Enclosing_Instance return Entity_Id is
4277 S : Entity_Id;
4279 begin
4280 if not Is_Generic_Instance (Current_Scope) then
4281 return Empty;
4282 end if;
4284 S := Scope (Current_Scope);
4285 while S /= Standard_Standard loop
4286 if Is_Generic_Instance (S) then
4287 return S;
4288 end if;
4290 S := Scope (S);
4291 end loop;
4293 return Empty;
4294 end Enclosing_Instance;
4296 ---------------
4297 -- End_Scope --
4298 ---------------
4300 procedure End_Scope is
4301 Id : Entity_Id;
4302 Prev : Entity_Id;
4303 Outer : Entity_Id;
4305 begin
4306 Id := First_Entity (Current_Scope);
4307 while Present (Id) loop
4308 -- An entity in the current scope is not necessarily the first one
4309 -- on its homonym chain. Find its predecessor if any,
4310 -- If it is an internal entity, it will not be in the visibility
4311 -- chain altogether, and there is nothing to unchain.
4313 if Id /= Current_Entity (Id) then
4314 Prev := Current_Entity (Id);
4315 while Present (Prev)
4316 and then Present (Homonym (Prev))
4317 and then Homonym (Prev) /= Id
4318 loop
4319 Prev := Homonym (Prev);
4320 end loop;
4322 -- Skip to end of loop if Id is not in the visibility chain
4324 if No (Prev) or else Homonym (Prev) /= Id then
4325 goto Next_Ent;
4326 end if;
4328 else
4329 Prev := Empty;
4330 end if;
4332 Set_Is_Immediately_Visible (Id, False);
4334 Outer := Homonym (Id);
4335 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4336 Outer := Homonym (Outer);
4337 end loop;
4339 -- Reset homonym link of other entities, but do not modify link
4340 -- between entities in current scope, so that the back-end can have
4341 -- a proper count of local overloadings.
4343 if No (Prev) then
4344 Set_Name_Entity_Id (Chars (Id), Outer);
4346 elsif Scope (Prev) /= Scope (Id) then
4347 Set_Homonym (Prev, Outer);
4348 end if;
4350 <<Next_Ent>>
4351 Next_Entity (Id);
4352 end loop;
4354 -- If the scope generated freeze actions, place them before the
4355 -- current declaration and analyze them. Type declarations and
4356 -- the bodies of initialization procedures can generate such nodes.
4357 -- We follow the parent chain until we reach a list node, which is
4358 -- the enclosing list of declarations. If the list appears within
4359 -- a protected definition, move freeze nodes outside the protected
4360 -- type altogether.
4362 if Present
4363 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4364 then
4365 declare
4366 Decl : Node_Id;
4367 L : constant List_Id := Scope_Stack.Table
4368 (Scope_Stack.Last).Pending_Freeze_Actions;
4370 begin
4371 if Is_Itype (Current_Scope) then
4372 Decl := Associated_Node_For_Itype (Current_Scope);
4373 else
4374 Decl := Parent (Current_Scope);
4375 end if;
4377 Pop_Scope;
4379 while not (Is_List_Member (Decl))
4380 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4381 N_Task_Definition)
4382 loop
4383 Decl := Parent (Decl);
4384 end loop;
4386 Insert_List_Before_And_Analyze (Decl, L);
4387 end;
4389 else
4390 Pop_Scope;
4391 end if;
4392 end End_Scope;
4394 ---------------------
4395 -- End_Use_Clauses --
4396 ---------------------
4398 procedure End_Use_Clauses (Clause : Node_Id) is
4399 U : Node_Id;
4401 begin
4402 -- Remove Use_Type clauses first, because they affect the
4403 -- visibility of operators in subsequent used packages.
4405 U := Clause;
4406 while Present (U) loop
4407 if Nkind (U) = N_Use_Type_Clause then
4408 End_Use_Type (U);
4409 end if;
4411 Next_Use_Clause (U);
4412 end loop;
4414 U := Clause;
4415 while Present (U) loop
4416 if Nkind (U) = N_Use_Package_Clause then
4417 End_Use_Package (U);
4418 end if;
4420 Next_Use_Clause (U);
4421 end loop;
4422 end End_Use_Clauses;
4424 ---------------------
4425 -- End_Use_Package --
4426 ---------------------
4428 procedure End_Use_Package (N : Node_Id) is
4429 Pack_Name : Node_Id;
4430 Pack : Entity_Id;
4431 Id : Entity_Id;
4432 Elmt : Elmt_Id;
4434 function Is_Primitive_Operator_In_Use
4435 (Op : Entity_Id;
4436 F : Entity_Id) return Boolean;
4437 -- Check whether Op is a primitive operator of a use-visible type
4439 ----------------------------------
4440 -- Is_Primitive_Operator_In_Use --
4441 ----------------------------------
4443 function Is_Primitive_Operator_In_Use
4444 (Op : Entity_Id;
4445 F : Entity_Id) return Boolean
4447 T : constant Entity_Id := Base_Type (Etype (F));
4448 begin
4449 return In_Use (T) and then Scope (T) = Scope (Op);
4450 end Is_Primitive_Operator_In_Use;
4452 -- Start of processing for End_Use_Package
4454 begin
4455 Pack_Name := First (Names (N));
4456 while Present (Pack_Name) loop
4458 -- Test that Pack_Name actually denotes a package before processing
4460 if Is_Entity_Name (Pack_Name)
4461 and then Ekind (Entity (Pack_Name)) = E_Package
4462 then
4463 Pack := Entity (Pack_Name);
4465 if In_Open_Scopes (Pack) then
4466 null;
4468 elsif not Redundant_Use (Pack_Name) then
4469 Set_In_Use (Pack, False);
4470 Set_Current_Use_Clause (Pack, Empty);
4472 Id := First_Entity (Pack);
4473 while Present (Id) loop
4475 -- Preserve use-visibility of operators that are primitive
4476 -- operators of a type that is use-visible through an active
4477 -- use_type clause.
4479 if Nkind (Id) = N_Defining_Operator_Symbol
4480 and then
4481 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4482 or else
4483 (Present (Next_Formal (First_Formal (Id)))
4484 and then
4485 Is_Primitive_Operator_In_Use
4486 (Id, Next_Formal (First_Formal (Id)))))
4487 then
4488 null;
4489 else
4490 Set_Is_Potentially_Use_Visible (Id, False);
4491 end if;
4493 if Is_Private_Type (Id)
4494 and then Present (Full_View (Id))
4495 then
4496 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4497 end if;
4499 Next_Entity (Id);
4500 end loop;
4502 if Present (Renamed_Object (Pack)) then
4503 Set_In_Use (Renamed_Object (Pack), False);
4504 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4505 end if;
4507 if Chars (Pack) = Name_System
4508 and then Scope (Pack) = Standard_Standard
4509 and then Present_System_Aux
4510 then
4511 Id := First_Entity (System_Aux_Id);
4512 while Present (Id) loop
4513 Set_Is_Potentially_Use_Visible (Id, False);
4515 if Is_Private_Type (Id)
4516 and then Present (Full_View (Id))
4517 then
4518 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4519 end if;
4521 Next_Entity (Id);
4522 end loop;
4524 Set_In_Use (System_Aux_Id, False);
4525 end if;
4527 else
4528 Set_Redundant_Use (Pack_Name, False);
4529 end if;
4530 end if;
4532 Next (Pack_Name);
4533 end loop;
4535 if Present (Hidden_By_Use_Clause (N)) then
4536 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4537 while Present (Elmt) loop
4538 declare
4539 E : constant Entity_Id := Node (Elmt);
4541 begin
4542 -- Reset either Use_Visibility or Direct_Visibility, depending
4543 -- on how the entity was hidden by the use clause.
4545 if In_Use (Scope (E))
4546 and then Used_As_Generic_Actual (Scope (E))
4547 then
4548 Set_Is_Potentially_Use_Visible (Node (Elmt));
4549 else
4550 Set_Is_Immediately_Visible (Node (Elmt));
4551 end if;
4553 Next_Elmt (Elmt);
4554 end;
4555 end loop;
4557 Set_Hidden_By_Use_Clause (N, No_Elist);
4558 end if;
4559 end End_Use_Package;
4561 ------------------
4562 -- End_Use_Type --
4563 ------------------
4565 procedure End_Use_Type (N : Node_Id) is
4566 Elmt : Elmt_Id;
4567 Id : Entity_Id;
4568 T : Entity_Id;
4570 -- Start of processing for End_Use_Type
4572 begin
4573 Id := First (Subtype_Marks (N));
4574 while Present (Id) loop
4576 -- A call to Rtsfind may occur while analyzing a use_type clause,
4577 -- in which case the type marks are not resolved yet, and there is
4578 -- nothing to remove.
4580 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4581 goto Continue;
4582 end if;
4584 T := Entity (Id);
4586 if T = Any_Type or else From_Limited_With (T) then
4587 null;
4589 -- Note that the use_type clause may mention a subtype of the type
4590 -- whose primitive operations have been made visible. Here as
4591 -- elsewhere, it is the base type that matters for visibility.
4593 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4594 null;
4596 elsif not Redundant_Use (Id) then
4597 Set_In_Use (T, False);
4598 Set_In_Use (Base_Type (T), False);
4599 Set_Current_Use_Clause (T, Empty);
4600 Set_Current_Use_Clause (Base_Type (T), Empty);
4601 end if;
4603 <<Continue>>
4604 Next (Id);
4605 end loop;
4607 if Is_Empty_Elmt_List (Used_Operations (N)) then
4608 return;
4610 else
4611 Elmt := First_Elmt (Used_Operations (N));
4612 while Present (Elmt) loop
4613 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4614 Next_Elmt (Elmt);
4615 end loop;
4616 end if;
4617 end End_Use_Type;
4619 ----------------------
4620 -- Find_Direct_Name --
4621 ----------------------
4623 procedure Find_Direct_Name (N : Node_Id) is
4624 E : Entity_Id;
4625 E2 : Entity_Id;
4626 Msg : Boolean;
4628 Inst : Entity_Id := Empty;
4629 -- Enclosing instance, if any
4631 Homonyms : Entity_Id;
4632 -- Saves start of homonym chain
4634 Nvis_Entity : Boolean;
4635 -- Set True to indicate that there is at least one entity on the homonym
4636 -- chain which, while not visible, is visible enough from the user point
4637 -- of view to warrant an error message of "not visible" rather than
4638 -- undefined.
4640 Nvis_Is_Private_Subprg : Boolean := False;
4641 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4642 -- effect concerning library subprograms has been detected. Used to
4643 -- generate the precise error message.
4645 function From_Actual_Package (E : Entity_Id) return Boolean;
4646 -- Returns true if the entity is an actual for a package that is itself
4647 -- an actual for a formal package of the current instance. Such an
4648 -- entity requires special handling because it may be use-visible but
4649 -- hides directly visible entities defined outside the instance, because
4650 -- the corresponding formal did so in the generic.
4652 function Is_Actual_Parameter return Boolean;
4653 -- This function checks if the node N is an identifier that is an actual
4654 -- parameter of a procedure call. If so it returns True, otherwise it
4655 -- return False. The reason for this check is that at this stage we do
4656 -- not know what procedure is being called if the procedure might be
4657 -- overloaded, so it is premature to go setting referenced flags or
4658 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4659 -- for that processing
4661 function Known_But_Invisible (E : Entity_Id) return Boolean;
4662 -- This function determines whether a reference to the entity E, which
4663 -- is not visible, can reasonably be considered to be known to the
4664 -- writer of the reference. This is a heuristic test, used only for
4665 -- the purposes of figuring out whether we prefer to complain that an
4666 -- entity is undefined or invisible (and identify the declaration of
4667 -- the invisible entity in the latter case). The point here is that we
4668 -- don't want to complain that something is invisible and then point to
4669 -- something entirely mysterious to the writer.
4671 procedure Nvis_Messages;
4672 -- Called if there are no visible entries for N, but there is at least
4673 -- one non-directly visible, or hidden declaration. This procedure
4674 -- outputs an appropriate set of error messages.
4676 procedure Undefined (Nvis : Boolean);
4677 -- This function is called if the current node has no corresponding
4678 -- visible entity or entities. The value set in Msg indicates whether
4679 -- an error message was generated (multiple error messages for the
4680 -- same variable are generally suppressed, see body for details).
4681 -- Msg is True if an error message was generated, False if not. This
4682 -- value is used by the caller to determine whether or not to output
4683 -- additional messages where appropriate. The parameter is set False
4684 -- to get the message "X is undefined", and True to get the message
4685 -- "X is not visible".
4687 -------------------------
4688 -- From_Actual_Package --
4689 -------------------------
4691 function From_Actual_Package (E : Entity_Id) return Boolean is
4692 Scop : constant Entity_Id := Scope (E);
4693 -- Declared scope of candidate entity
4695 Act : Entity_Id;
4697 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4698 -- Recursive function that does the work and examines actuals of
4699 -- actual packages of current instance.
4701 ------------------------
4702 -- Declared_In_Actual --
4703 ------------------------
4705 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4706 Act : Entity_Id;
4708 begin
4709 if No (Associated_Formal_Package (Pack)) then
4710 return False;
4712 else
4713 Act := First_Entity (Pack);
4714 while Present (Act) loop
4715 if Renamed_Object (Pack) = Scop then
4716 return True;
4718 -- Check for end of list of actuals.
4720 elsif Ekind (Act) = E_Package
4721 and then Renamed_Object (Act) = Pack
4722 then
4723 return False;
4725 elsif Ekind (Act) = E_Package
4726 and then Declared_In_Actual (Act)
4727 then
4728 return True;
4729 end if;
4731 Next_Entity (Act);
4732 end loop;
4734 return False;
4735 end if;
4736 end Declared_In_Actual;
4738 -- Start of processing for From_Actual_Package
4740 begin
4741 if not In_Instance then
4742 return False;
4744 else
4745 Inst := Current_Scope;
4746 while Present (Inst)
4747 and then Ekind (Inst) /= E_Package
4748 and then not Is_Generic_Instance (Inst)
4749 loop
4750 Inst := Scope (Inst);
4751 end loop;
4753 if No (Inst) then
4754 return False;
4755 end if;
4757 Act := First_Entity (Inst);
4758 while Present (Act) loop
4759 if Ekind (Act) = E_Package
4760 and then Declared_In_Actual (Act)
4761 then
4762 return True;
4763 end if;
4765 Next_Entity (Act);
4766 end loop;
4768 return False;
4769 end if;
4770 end From_Actual_Package;
4772 -------------------------
4773 -- Is_Actual_Parameter --
4774 -------------------------
4776 function Is_Actual_Parameter return Boolean is
4777 begin
4778 return
4779 Nkind (N) = N_Identifier
4780 and then
4781 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4782 or else
4783 (Nkind (Parent (N)) = N_Parameter_Association
4784 and then N = Explicit_Actual_Parameter (Parent (N))
4785 and then Nkind (Parent (Parent (N))) =
4786 N_Procedure_Call_Statement));
4787 end Is_Actual_Parameter;
4789 -------------------------
4790 -- Known_But_Invisible --
4791 -------------------------
4793 function Known_But_Invisible (E : Entity_Id) return Boolean is
4794 Fname : File_Name_Type;
4796 begin
4797 -- Entities in Standard are always considered to be known
4799 if Sloc (E) <= Standard_Location then
4800 return True;
4802 -- An entity that does not come from source is always considered
4803 -- to be unknown, since it is an artifact of code expansion.
4805 elsif not Comes_From_Source (E) then
4806 return False;
4808 -- In gnat internal mode, we consider all entities known. The
4809 -- historical reason behind this discrepancy is not known??? But the
4810 -- only effect is to modify the error message given, so it is not
4811 -- critical. Since it only affects the exact wording of error
4812 -- messages in illegal programs, we do not mention this as an
4813 -- effect of -gnatg, since it is not a language modification.
4815 elsif GNAT_Mode then
4816 return True;
4817 end if;
4819 -- Here we have an entity that is not from package Standard, and
4820 -- which comes from Source. See if it comes from an internal file.
4822 Fname := Unit_File_Name (Get_Source_Unit (E));
4824 -- Case of from internal file
4826 if Is_Internal_File_Name (Fname) then
4828 -- Private part entities in internal files are never considered
4829 -- to be known to the writer of normal application code.
4831 if Is_Hidden (E) then
4832 return False;
4833 end if;
4835 -- Entities from System packages other than System and
4836 -- System.Storage_Elements are not considered to be known.
4837 -- System.Auxxxx files are also considered known to the user.
4839 -- Should refine this at some point to generally distinguish
4840 -- between known and unknown internal files ???
4842 Get_Name_String (Fname);
4844 return
4845 Name_Len < 2
4846 or else
4847 Name_Buffer (1 .. 2) /= "s-"
4848 or else
4849 Name_Buffer (3 .. 8) = "stoele"
4850 or else
4851 Name_Buffer (3 .. 5) = "aux";
4853 -- If not an internal file, then entity is definitely known,
4854 -- even if it is in a private part (the message generated will
4855 -- note that it is in a private part)
4857 else
4858 return True;
4859 end if;
4860 end Known_But_Invisible;
4862 -------------------
4863 -- Nvis_Messages --
4864 -------------------
4866 procedure Nvis_Messages is
4867 Comp_Unit : Node_Id;
4868 Ent : Entity_Id;
4869 Found : Boolean := False;
4870 Hidden : Boolean := False;
4871 Item : Node_Id;
4873 begin
4874 -- Ada 2005 (AI-262): Generate a precise error concerning the
4875 -- Beaujolais effect that was previously detected
4877 if Nvis_Is_Private_Subprg then
4879 pragma Assert (Nkind (E2) = N_Defining_Identifier
4880 and then Ekind (E2) = E_Function
4881 and then Scope (E2) = Standard_Standard
4882 and then Has_Private_With (E2));
4884 -- Find the sloc corresponding to the private with'ed unit
4886 Comp_Unit := Cunit (Current_Sem_Unit);
4887 Error_Msg_Sloc := No_Location;
4889 Item := First (Context_Items (Comp_Unit));
4890 while Present (Item) loop
4891 if Nkind (Item) = N_With_Clause
4892 and then Private_Present (Item)
4893 and then Entity (Name (Item)) = E2
4894 then
4895 Error_Msg_Sloc := Sloc (Item);
4896 exit;
4897 end if;
4899 Next (Item);
4900 end loop;
4902 pragma Assert (Error_Msg_Sloc /= No_Location);
4904 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4905 return;
4906 end if;
4908 Undefined (Nvis => True);
4910 if Msg then
4912 -- First loop does hidden declarations
4914 Ent := Homonyms;
4915 while Present (Ent) loop
4916 if Is_Potentially_Use_Visible (Ent) then
4917 if not Hidden then
4918 Error_Msg_N -- CODEFIX
4919 ("multiple use clauses cause hiding!", N);
4920 Hidden := True;
4921 end if;
4923 Error_Msg_Sloc := Sloc (Ent);
4924 Error_Msg_N -- CODEFIX
4925 ("hidden declaration#!", N);
4926 end if;
4928 Ent := Homonym (Ent);
4929 end loop;
4931 -- If we found hidden declarations, then that's enough, don't
4932 -- bother looking for non-visible declarations as well.
4934 if Hidden then
4935 return;
4936 end if;
4938 -- Second loop does non-directly visible declarations
4940 Ent := Homonyms;
4941 while Present (Ent) loop
4942 if not Is_Potentially_Use_Visible (Ent) then
4944 -- Do not bother the user with unknown entities
4946 if not Known_But_Invisible (Ent) then
4947 goto Continue;
4948 end if;
4950 Error_Msg_Sloc := Sloc (Ent);
4952 -- Output message noting that there is a non-visible
4953 -- declaration, distinguishing the private part case.
4955 if Is_Hidden (Ent) then
4956 Error_Msg_N ("non-visible (private) declaration#!", N);
4958 -- If the entity is declared in a generic package, it
4959 -- cannot be visible, so there is no point in adding it
4960 -- to the list of candidates if another homograph from a
4961 -- non-generic package has been seen.
4963 elsif Ekind (Scope (Ent)) = E_Generic_Package
4964 and then Found
4965 then
4966 null;
4968 else
4969 Error_Msg_N -- CODEFIX
4970 ("non-visible declaration#!", N);
4972 if Ekind (Scope (Ent)) /= E_Generic_Package then
4973 Found := True;
4974 end if;
4976 if Is_Compilation_Unit (Ent)
4977 and then
4978 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4979 then
4980 Error_Msg_Qual_Level := 99;
4981 Error_Msg_NE -- CODEFIX
4982 ("\\missing `WITH &;`", N, Ent);
4983 Error_Msg_Qual_Level := 0;
4984 end if;
4986 if Ekind (Ent) = E_Discriminant
4987 and then Present (Corresponding_Discriminant (Ent))
4988 and then Scope (Corresponding_Discriminant (Ent)) =
4989 Etype (Scope (Ent))
4990 then
4991 Error_Msg_N
4992 ("inherited discriminant not allowed here" &
4993 " (RM 3.8 (12), 3.8.1 (6))!", N);
4994 end if;
4995 end if;
4997 -- Set entity and its containing package as referenced. We
4998 -- can't be sure of this, but this seems a better choice
4999 -- to avoid unused entity messages.
5001 if Comes_From_Source (Ent) then
5002 Set_Referenced (Ent);
5003 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5004 end if;
5005 end if;
5007 <<Continue>>
5008 Ent := Homonym (Ent);
5009 end loop;
5010 end if;
5011 end Nvis_Messages;
5013 ---------------
5014 -- Undefined --
5015 ---------------
5017 procedure Undefined (Nvis : Boolean) is
5018 Emsg : Error_Msg_Id;
5020 begin
5021 -- We should never find an undefined internal name. If we do, then
5022 -- see if we have previous errors. If so, ignore on the grounds that
5023 -- it is probably a cascaded message (e.g. a block label from a badly
5024 -- formed block). If no previous errors, then we have a real internal
5025 -- error of some kind so raise an exception.
5027 if Is_Internal_Name (Chars (N)) then
5028 if Total_Errors_Detected /= 0 then
5029 return;
5030 else
5031 raise Program_Error;
5032 end if;
5033 end if;
5035 -- A very specialized error check, if the undefined variable is
5036 -- a case tag, and the case type is an enumeration type, check
5037 -- for a possible misspelling, and if so, modify the identifier
5039 -- Named aggregate should also be handled similarly ???
5041 if Nkind (N) = N_Identifier
5042 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5043 then
5044 declare
5045 Case_Stm : constant Node_Id := Parent (Parent (N));
5046 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5048 Lit : Node_Id;
5050 begin
5051 if Is_Enumeration_Type (Case_Typ)
5052 and then not Is_Standard_Character_Type (Case_Typ)
5053 then
5054 Lit := First_Literal (Case_Typ);
5055 Get_Name_String (Chars (Lit));
5057 if Chars (Lit) /= Chars (N)
5058 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5059 then
5060 Error_Msg_Node_2 := Lit;
5061 Error_Msg_N -- CODEFIX
5062 ("& is undefined, assume misspelling of &", N);
5063 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5064 return;
5065 end if;
5067 Lit := Next_Literal (Lit);
5068 end if;
5069 end;
5070 end if;
5072 -- Normal processing
5074 Set_Entity (N, Any_Id);
5075 Set_Etype (N, Any_Type);
5077 -- We use the table Urefs to keep track of entities for which we
5078 -- have issued errors for undefined references. Multiple errors
5079 -- for a single name are normally suppressed, however we modify
5080 -- the error message to alert the programmer to this effect.
5082 for J in Urefs.First .. Urefs.Last loop
5083 if Chars (N) = Chars (Urefs.Table (J).Node) then
5084 if Urefs.Table (J).Err /= No_Error_Msg
5085 and then Sloc (N) /= Urefs.Table (J).Loc
5086 then
5087 Error_Msg_Node_1 := Urefs.Table (J).Node;
5089 if Urefs.Table (J).Nvis then
5090 Change_Error_Text (Urefs.Table (J).Err,
5091 "& is not visible (more references follow)");
5092 else
5093 Change_Error_Text (Urefs.Table (J).Err,
5094 "& is undefined (more references follow)");
5095 end if;
5097 Urefs.Table (J).Err := No_Error_Msg;
5098 end if;
5100 -- Although we will set Msg False, and thus suppress the
5101 -- message, we also set Error_Posted True, to avoid any
5102 -- cascaded messages resulting from the undefined reference.
5104 Msg := False;
5105 Set_Error_Posted (N, True);
5106 return;
5107 end if;
5108 end loop;
5110 -- If entry not found, this is first undefined occurrence
5112 if Nvis then
5113 Error_Msg_N ("& is not visible!", N);
5114 Emsg := Get_Msg_Id;
5116 else
5117 Error_Msg_N ("& is undefined!", N);
5118 Emsg := Get_Msg_Id;
5120 -- A very bizarre special check, if the undefined identifier
5121 -- is put or put_line, then add a special error message (since
5122 -- this is a very common error for beginners to make).
5124 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5125 Error_Msg_N -- CODEFIX
5126 ("\\possible missing `WITH Ada.Text_'I'O; " &
5127 "USE Ada.Text_'I'O`!", N);
5129 -- Another special check if N is the prefix of a selected
5130 -- component which is a known unit, add message complaining
5131 -- about missing with for this unit.
5133 elsif Nkind (Parent (N)) = N_Selected_Component
5134 and then N = Prefix (Parent (N))
5135 and then Is_Known_Unit (Parent (N))
5136 then
5137 Error_Msg_Node_2 := Selector_Name (Parent (N));
5138 Error_Msg_N -- CODEFIX
5139 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5140 end if;
5142 -- Now check for possible misspellings
5144 declare
5145 E : Entity_Id;
5146 Ematch : Entity_Id := Empty;
5148 Last_Name_Id : constant Name_Id :=
5149 Name_Id (Nat (First_Name_Id) +
5150 Name_Entries_Count - 1);
5152 begin
5153 for Nam in First_Name_Id .. Last_Name_Id loop
5154 E := Get_Name_Entity_Id (Nam);
5156 if Present (E)
5157 and then (Is_Immediately_Visible (E)
5158 or else
5159 Is_Potentially_Use_Visible (E))
5160 then
5161 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5162 Ematch := E;
5163 exit;
5164 end if;
5165 end if;
5166 end loop;
5168 if Present (Ematch) then
5169 Error_Msg_NE -- CODEFIX
5170 ("\possible misspelling of&", N, Ematch);
5171 end if;
5172 end;
5173 end if;
5175 -- Make entry in undefined references table unless the full errors
5176 -- switch is set, in which case by refraining from generating the
5177 -- table entry, we guarantee that we get an error message for every
5178 -- undefined reference.
5180 if not All_Errors_Mode then
5181 Urefs.Append (
5182 (Node => N,
5183 Err => Emsg,
5184 Nvis => Nvis,
5185 Loc => Sloc (N)));
5186 end if;
5188 Msg := True;
5189 end Undefined;
5191 -- Start of processing for Find_Direct_Name
5193 begin
5194 -- If the entity pointer is already set, this is an internal node, or
5195 -- a node that is analyzed more than once, after a tree modification.
5196 -- In such a case there is no resolution to perform, just set the type.
5198 if Present (Entity (N)) then
5199 if Is_Type (Entity (N)) then
5200 Set_Etype (N, Entity (N));
5202 else
5203 declare
5204 Entyp : constant Entity_Id := Etype (Entity (N));
5206 begin
5207 -- One special case here. If the Etype field is already set,
5208 -- and references the packed array type corresponding to the
5209 -- etype of the referenced entity, then leave it alone. This
5210 -- happens for trees generated from Exp_Pakd, where expressions
5211 -- can be deliberately "mis-typed" to the packed array type.
5213 if Is_Array_Type (Entyp)
5214 and then Is_Packed (Entyp)
5215 and then Present (Etype (N))
5216 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5217 then
5218 null;
5220 -- If not that special case, then just reset the Etype
5222 else
5223 Set_Etype (N, Etype (Entity (N)));
5224 end if;
5225 end;
5226 end if;
5228 return;
5229 end if;
5231 -- Here if Entity pointer was not set, we need full visibility analysis
5232 -- First we generate debugging output if the debug E flag is set.
5234 if Debug_Flag_E then
5235 Write_Str ("Looking for ");
5236 Write_Name (Chars (N));
5237 Write_Eol;
5238 end if;
5240 Homonyms := Current_Entity (N);
5241 Nvis_Entity := False;
5243 E := Homonyms;
5244 while Present (E) loop
5246 -- If entity is immediately visible or potentially use visible, then
5247 -- process the entity and we are done.
5249 if Is_Immediately_Visible (E) then
5250 goto Immediately_Visible_Entity;
5252 elsif Is_Potentially_Use_Visible (E) then
5253 goto Potentially_Use_Visible_Entity;
5255 -- Note if a known but invisible entity encountered
5257 elsif Known_But_Invisible (E) then
5258 Nvis_Entity := True;
5259 end if;
5261 -- Move to next entity in chain and continue search
5263 E := Homonym (E);
5264 end loop;
5266 -- If no entries on homonym chain that were potentially visible,
5267 -- and no entities reasonably considered as non-visible, then
5268 -- we have a plain undefined reference, with no additional
5269 -- explanation required.
5271 if not Nvis_Entity then
5272 Undefined (Nvis => False);
5274 -- Otherwise there is at least one entry on the homonym chain that
5275 -- is reasonably considered as being known and non-visible.
5277 else
5278 Nvis_Messages;
5279 end if;
5281 goto Done;
5283 -- Processing for a potentially use visible entry found. We must search
5284 -- the rest of the homonym chain for two reasons. First, if there is a
5285 -- directly visible entry, then none of the potentially use-visible
5286 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5287 -- for the case of multiple potentially use-visible entries hiding one
5288 -- another and as a result being non-directly visible (RM 8.4(11)).
5290 <<Potentially_Use_Visible_Entity>> declare
5291 Only_One_Visible : Boolean := True;
5292 All_Overloadable : Boolean := Is_Overloadable (E);
5294 begin
5295 E2 := Homonym (E);
5296 while Present (E2) loop
5297 if Is_Immediately_Visible (E2) then
5299 -- If the use-visible entity comes from the actual for a
5300 -- formal package, it hides a directly visible entity from
5301 -- outside the instance.
5303 if From_Actual_Package (E)
5304 and then Scope_Depth (E2) < Scope_Depth (Inst)
5305 then
5306 goto Found;
5307 else
5308 E := E2;
5309 goto Immediately_Visible_Entity;
5310 end if;
5312 elsif Is_Potentially_Use_Visible (E2) then
5313 Only_One_Visible := False;
5314 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5316 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5317 -- that can occur in private_with clauses. Example:
5319 -- with A;
5320 -- private with B; package A is
5321 -- package C is function B return Integer;
5322 -- use A; end A;
5323 -- V1 : Integer := B;
5324 -- private function B return Integer;
5325 -- V2 : Integer := B;
5326 -- end C;
5328 -- V1 resolves to A.B, but V2 resolves to library unit B
5330 elsif Ekind (E2) = E_Function
5331 and then Scope (E2) = Standard_Standard
5332 and then Has_Private_With (E2)
5333 then
5334 Only_One_Visible := False;
5335 All_Overloadable := False;
5336 Nvis_Is_Private_Subprg := True;
5337 exit;
5338 end if;
5340 E2 := Homonym (E2);
5341 end loop;
5343 -- On falling through this loop, we have checked that there are no
5344 -- immediately visible entities. Only_One_Visible is set if exactly
5345 -- one potentially use visible entity exists. All_Overloadable is
5346 -- set if all the potentially use visible entities are overloadable.
5347 -- The condition for legality is that either there is one potentially
5348 -- use visible entity, or if there is more than one, then all of them
5349 -- are overloadable.
5351 if Only_One_Visible or All_Overloadable then
5352 goto Found;
5354 -- If there is more than one potentially use-visible entity and at
5355 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5356 -- Note that E points to the first such entity on the homonym list.
5357 -- Special case: if one of the entities is declared in an actual
5358 -- package, it was visible in the generic, and takes precedence over
5359 -- other entities that are potentially use-visible. Same if it is
5360 -- declared in a local instantiation of the current instance.
5362 else
5363 if In_Instance then
5365 -- Find current instance
5367 Inst := Current_Scope;
5368 while Present (Inst) and then Inst /= Standard_Standard loop
5369 if Is_Generic_Instance (Inst) then
5370 exit;
5371 end if;
5373 Inst := Scope (Inst);
5374 end loop;
5376 E2 := E;
5377 while Present (E2) loop
5378 if From_Actual_Package (E2)
5379 or else
5380 (Is_Generic_Instance (Scope (E2))
5381 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
5382 then
5383 E := E2;
5384 goto Found;
5385 end if;
5387 E2 := Homonym (E2);
5388 end loop;
5390 Nvis_Messages;
5391 goto Done;
5393 elsif
5394 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5395 then
5396 -- A use-clause in the body of a system file creates conflict
5397 -- with some entity in a user scope, while rtsfind is active.
5398 -- Keep only the entity coming from another predefined unit.
5400 E2 := E;
5401 while Present (E2) loop
5402 if Is_Predefined_File_Name
5403 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
5404 then
5405 E := E2;
5406 goto Found;
5407 end if;
5409 E2 := Homonym (E2);
5410 end loop;
5412 -- Entity must exist because predefined unit is correct
5414 raise Program_Error;
5416 else
5417 Nvis_Messages;
5418 goto Done;
5419 end if;
5420 end if;
5421 end;
5423 -- Come here with E set to the first immediately visible entity on
5424 -- the homonym chain. This is the one we want unless there is another
5425 -- immediately visible entity further on in the chain for an inner
5426 -- scope (RM 8.3(8)).
5428 <<Immediately_Visible_Entity>> declare
5429 Level : Int;
5430 Scop : Entity_Id;
5432 begin
5433 -- Find scope level of initial entity. When compiling through
5434 -- Rtsfind, the previous context is not completely invisible, and
5435 -- an outer entity may appear on the chain, whose scope is below
5436 -- the entry for Standard that delimits the current scope stack.
5437 -- Indicate that the level for this spurious entry is outside of
5438 -- the current scope stack.
5440 Level := Scope_Stack.Last;
5441 loop
5442 Scop := Scope_Stack.Table (Level).Entity;
5443 exit when Scop = Scope (E);
5444 Level := Level - 1;
5445 exit when Scop = Standard_Standard;
5446 end loop;
5448 -- Now search remainder of homonym chain for more inner entry
5449 -- If the entity is Standard itself, it has no scope, and we
5450 -- compare it with the stack entry directly.
5452 E2 := Homonym (E);
5453 while Present (E2) loop
5454 if Is_Immediately_Visible (E2) then
5456 -- If a generic package contains a local declaration that
5457 -- has the same name as the generic, there may be a visibility
5458 -- conflict in an instance, where the local declaration must
5459 -- also hide the name of the corresponding package renaming.
5460 -- We check explicitly for a package declared by a renaming,
5461 -- whose renamed entity is an instance that is on the scope
5462 -- stack, and that contains a homonym in the same scope. Once
5463 -- we have found it, we know that the package renaming is not
5464 -- immediately visible, and that the identifier denotes the
5465 -- other entity (and its homonyms if overloaded).
5467 if Scope (E) = Scope (E2)
5468 and then Ekind (E) = E_Package
5469 and then Present (Renamed_Object (E))
5470 and then Is_Generic_Instance (Renamed_Object (E))
5471 and then In_Open_Scopes (Renamed_Object (E))
5472 and then Comes_From_Source (N)
5473 then
5474 Set_Is_Immediately_Visible (E, False);
5475 E := E2;
5477 else
5478 for J in Level + 1 .. Scope_Stack.Last loop
5479 if Scope_Stack.Table (J).Entity = Scope (E2)
5480 or else Scope_Stack.Table (J).Entity = E2
5481 then
5482 Level := J;
5483 E := E2;
5484 exit;
5485 end if;
5486 end loop;
5487 end if;
5488 end if;
5490 E2 := Homonym (E2);
5491 end loop;
5493 -- At the end of that loop, E is the innermost immediately
5494 -- visible entity, so we are all set.
5495 end;
5497 -- Come here with entity found, and stored in E
5499 <<Found>> begin
5501 -- Check violation of No_Wide_Characters restriction
5503 Check_Wide_Character_Restriction (E, N);
5505 -- When distribution features are available (Get_PCS_Name /=
5506 -- Name_No_DSA), a remote access-to-subprogram type is converted
5507 -- into a record type holding whatever information is needed to
5508 -- perform a remote call on an RCI subprogram. In that case we
5509 -- rewrite any occurrence of the RAS type into the equivalent record
5510 -- type here. 'Access attribute references and RAS dereferences are
5511 -- then implemented using specific TSSs. However when distribution is
5512 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5513 -- generation of these TSSs, and we must keep the RAS type in its
5514 -- original access-to-subprogram form (since all calls through a
5515 -- value of such type will be local anyway in the absence of a PCS).
5517 if Comes_From_Source (N)
5518 and then Is_Remote_Access_To_Subprogram_Type (E)
5519 and then Ekind (E) = E_Access_Subprogram_Type
5520 and then Expander_Active
5521 and then Get_PCS_Name /= Name_No_DSA
5522 then
5523 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5524 goto Done;
5525 end if;
5527 -- Set the entity. Note that the reason we call Set_Entity for the
5528 -- overloadable case, as opposed to Set_Entity_With_Checks is
5529 -- that in the overloaded case, the initial call can set the wrong
5530 -- homonym. The call that sets the right homonym is in Sem_Res and
5531 -- that call does use Set_Entity_With_Checks, so we don't miss
5532 -- a style check.
5534 if Is_Overloadable (E) then
5535 Set_Entity (N, E);
5536 else
5537 Set_Entity_With_Checks (N, E);
5538 end if;
5540 if Is_Type (E) then
5541 Set_Etype (N, E);
5542 else
5543 Set_Etype (N, Get_Full_View (Etype (E)));
5544 end if;
5546 if Debug_Flag_E then
5547 Write_Str (" found ");
5548 Write_Entity_Info (E, " ");
5549 end if;
5551 -- If the Ekind of the entity is Void, it means that all homonyms
5552 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5553 -- test is skipped if the current scope is a record and the name is
5554 -- a pragma argument expression (case of Atomic and Volatile pragmas
5555 -- and possibly other similar pragmas added later, which are allowed
5556 -- to reference components in the current record).
5558 if Ekind (E) = E_Void
5559 and then
5560 (not Is_Record_Type (Current_Scope)
5561 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5562 then
5563 Premature_Usage (N);
5565 -- If the entity is overloadable, collect all interpretations of the
5566 -- name for subsequent overload resolution. We optimize a bit here to
5567 -- do this only if we have an overloadable entity that is not on its
5568 -- own on the homonym chain.
5570 elsif Is_Overloadable (E)
5571 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5572 then
5573 Collect_Interps (N);
5575 -- If no homonyms were visible, the entity is unambiguous
5577 if not Is_Overloaded (N) then
5578 if not Is_Actual_Parameter then
5579 Generate_Reference (E, N);
5580 end if;
5581 end if;
5583 -- Case of non-overloadable entity, set the entity providing that
5584 -- we do not have the case of a discriminant reference within a
5585 -- default expression. Such references are replaced with the
5586 -- corresponding discriminal, which is the formal corresponding to
5587 -- to the discriminant in the initialization procedure.
5589 else
5590 -- Entity is unambiguous, indicate that it is referenced here
5592 -- For a renaming of an object, always generate simple reference,
5593 -- we don't try to keep track of assignments in this case, except
5594 -- in SPARK mode where renamings are traversed for generating
5595 -- local effects of subprograms.
5597 if Is_Object (E)
5598 and then Present (Renamed_Object (E))
5599 and then not GNATprove_Mode
5600 then
5601 Generate_Reference (E, N);
5603 -- If the renamed entity is a private protected component,
5604 -- reference the original component as well. This needs to be
5605 -- done because the private renamings are installed before any
5606 -- analysis has occurred. Reference to a private component will
5607 -- resolve to the renaming and the original component will be
5608 -- left unreferenced, hence the following.
5610 if Is_Prival (E) then
5611 Generate_Reference (Prival_Link (E), N);
5612 end if;
5614 -- One odd case is that we do not want to set the Referenced flag
5615 -- if the entity is a label, and the identifier is the label in
5616 -- the source, since this is not a reference from the point of
5617 -- view of the user.
5619 elsif Nkind (Parent (N)) = N_Label then
5620 declare
5621 R : constant Boolean := Referenced (E);
5623 begin
5624 -- Generate reference unless this is an actual parameter
5625 -- (see comment below)
5627 if Is_Actual_Parameter then
5628 Generate_Reference (E, N);
5629 Set_Referenced (E, R);
5630 end if;
5631 end;
5633 -- Normal case, not a label: generate reference
5635 else
5636 if not Is_Actual_Parameter then
5638 -- Package or generic package is always a simple reference
5640 if Ekind_In (E, E_Package, E_Generic_Package) then
5641 Generate_Reference (E, N, 'r');
5643 -- Else see if we have a left hand side
5645 else
5646 case Is_LHS (N) is
5647 when Yes =>
5648 Generate_Reference (E, N, 'm');
5650 when No =>
5651 Generate_Reference (E, N, 'r');
5653 -- If we don't know now, generate reference later
5655 when Unknown =>
5656 Deferred_References.Append ((E, N));
5657 end case;
5658 end if;
5659 end if;
5661 Check_Nested_Access (E);
5662 end if;
5664 Set_Entity_Or_Discriminal (N, E);
5666 -- The name may designate a generalized reference, in which case
5667 -- the dereference interpretation will be included.
5669 if Ada_Version >= Ada_2012
5670 and then
5671 (Nkind (Parent (N)) in N_Subexpr
5672 or else Nkind_In (Parent (N), N_Object_Declaration,
5673 N_Assignment_Statement))
5674 then
5675 Check_Implicit_Dereference (N, Etype (E));
5676 end if;
5677 end if;
5678 end;
5680 -- Come here with entity set
5682 <<Done>>
5683 Check_Restriction_No_Use_Of_Entity (N);
5684 end Find_Direct_Name;
5686 ------------------------
5687 -- Find_Expanded_Name --
5688 ------------------------
5690 -- This routine searches the homonym chain of the entity until it finds
5691 -- an entity declared in the scope denoted by the prefix. If the entity
5692 -- is private, it may nevertheless be immediately visible, if we are in
5693 -- the scope of its declaration.
5695 procedure Find_Expanded_Name (N : Node_Id) is
5696 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean;
5697 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5698 -- Depends or [Refined_]Global.
5700 ----------------------------------
5701 -- In_Pragmas_Depends_Or_Global --
5702 ----------------------------------
5704 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean is
5705 Par : Node_Id;
5707 begin
5708 -- Climb the parent chain looking for a pragma
5710 Par := N;
5711 while Present (Par) loop
5712 if Nkind (Par) = N_Pragma
5713 and then Nam_In (Pragma_Name (Par), Name_Depends,
5714 Name_Global,
5715 Name_Refined_Depends,
5716 Name_Refined_Global)
5717 then
5718 return True;
5720 -- Prevent the search from going too far
5722 elsif Is_Body_Or_Package_Declaration (Par) then
5723 return False;
5724 end if;
5726 Par := Parent (Par);
5727 end loop;
5729 return False;
5730 end In_Pragmas_Depends_Or_Global;
5732 -- Local variables
5734 Selector : constant Node_Id := Selector_Name (N);
5735 Candidate : Entity_Id := Empty;
5736 P_Name : Entity_Id;
5737 Id : Entity_Id;
5739 -- Start of processing for Find_Expanded_Name
5741 begin
5742 P_Name := Entity (Prefix (N));
5744 -- If the prefix is a renamed package, look for the entity in the
5745 -- original package.
5747 if Ekind (P_Name) = E_Package
5748 and then Present (Renamed_Object (P_Name))
5749 then
5750 P_Name := Renamed_Object (P_Name);
5752 -- Rewrite node with entity field pointing to renamed object
5754 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5755 Set_Entity (Prefix (N), P_Name);
5757 -- If the prefix is an object of a concurrent type, look for
5758 -- the entity in the associated task or protected type.
5760 elsif Is_Concurrent_Type (Etype (P_Name)) then
5761 P_Name := Etype (P_Name);
5762 end if;
5764 Id := Current_Entity (Selector);
5766 declare
5767 Is_New_Candidate : Boolean;
5769 begin
5770 while Present (Id) loop
5771 if Scope (Id) = P_Name then
5772 Candidate := Id;
5773 Is_New_Candidate := True;
5775 -- Handle abstract views of states and variables. These are
5776 -- acceptable only when the reference to the view appears in
5777 -- pragmas [Refined_]Depends and [Refined_]Global.
5779 if Ekind (Id) = E_Abstract_State
5780 and then From_Limited_With (Id)
5781 and then Present (Non_Limited_View (Id))
5782 then
5783 if In_Pragmas_Depends_Or_Global (N) then
5784 Candidate := Non_Limited_View (Id);
5785 Is_New_Candidate := True;
5787 -- Hide candidate because it is not used in a proper context
5789 else
5790 Candidate := Empty;
5791 Is_New_Candidate := False;
5792 end if;
5793 end if;
5795 -- Ada 2005 (AI-217): Handle shadow entities associated with
5796 -- types declared in limited-withed nested packages. We don't need
5797 -- to handle E_Incomplete_Subtype entities because the entities
5798 -- in the limited view are always E_Incomplete_Type and
5799 -- E_Class_Wide_Type entities (see Build_Limited_Views).
5801 -- Regarding the expression used to evaluate the scope, it
5802 -- is important to note that the limited view also has shadow
5803 -- entities associated nested packages. For this reason the
5804 -- correct scope of the entity is the scope of the real entity.
5805 -- The non-limited view may itself be incomplete, in which case
5806 -- get the full view if available.
5808 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
5809 and then From_Limited_With (Id)
5810 and then Present (Non_Limited_View (Id))
5811 and then Scope (Non_Limited_View (Id)) = P_Name
5812 then
5813 Candidate := Get_Full_View (Non_Limited_View (Id));
5814 Is_New_Candidate := True;
5816 else
5817 Is_New_Candidate := False;
5818 end if;
5820 if Is_New_Candidate then
5822 -- If entity is a child unit, either it is a visible child of
5823 -- the prefix, or we are in the body of a generic prefix, as
5824 -- will happen when a child unit is instantiated in the body
5825 -- of a generic parent. This is because the instance body does
5826 -- not restore the full compilation context, given that all
5827 -- non-local references have been captured.
5829 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5830 exit when Is_Visible_Lib_Unit (Id)
5831 or else (Is_Child_Unit (Id)
5832 and then In_Open_Scopes (Scope (Id))
5833 and then In_Instance_Body);
5834 else
5835 exit when not Is_Hidden (Id);
5836 end if;
5838 exit when Is_Immediately_Visible (Id);
5839 end if;
5841 Id := Homonym (Id);
5842 end loop;
5843 end;
5845 if No (Id)
5846 and then Ekind_In (P_Name, E_Procedure, E_Function)
5847 and then Is_Generic_Instance (P_Name)
5848 then
5849 -- Expanded name denotes entity in (instance of) generic subprogram.
5850 -- The entity may be in the subprogram instance, or may denote one of
5851 -- the formals, which is declared in the enclosing wrapper package.
5853 P_Name := Scope (P_Name);
5855 Id := Current_Entity (Selector);
5856 while Present (Id) loop
5857 exit when Scope (Id) = P_Name;
5858 Id := Homonym (Id);
5859 end loop;
5860 end if;
5862 if No (Id) or else Chars (Id) /= Chars (Selector) then
5863 Set_Etype (N, Any_Type);
5865 -- If we are looking for an entity defined in System, try to find it
5866 -- in the child package that may have been provided as an extension
5867 -- to System. The Extend_System pragma will have supplied the name of
5868 -- the extension, which may have to be loaded.
5870 if Chars (P_Name) = Name_System
5871 and then Scope (P_Name) = Standard_Standard
5872 and then Present (System_Extend_Unit)
5873 and then Present_System_Aux (N)
5874 then
5875 Set_Entity (Prefix (N), System_Aux_Id);
5876 Find_Expanded_Name (N);
5877 return;
5879 elsif Nkind (Selector) = N_Operator_Symbol
5880 and then Has_Implicit_Operator (N)
5881 then
5882 -- There is an implicit instance of the predefined operator in
5883 -- the given scope. The operator entity is defined in Standard.
5884 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5886 return;
5888 elsif Nkind (Selector) = N_Character_Literal
5889 and then Has_Implicit_Character_Literal (N)
5890 then
5891 -- If there is no literal defined in the scope denoted by the
5892 -- prefix, the literal may belong to (a type derived from)
5893 -- Standard_Character, for which we have no explicit literals.
5895 return;
5897 else
5898 -- If the prefix is a single concurrent object, use its name in
5899 -- the error message, rather than that of the anonymous type.
5901 if Is_Concurrent_Type (P_Name)
5902 and then Is_Internal_Name (Chars (P_Name))
5903 then
5904 Error_Msg_Node_2 := Entity (Prefix (N));
5905 else
5906 Error_Msg_Node_2 := P_Name;
5907 end if;
5909 if P_Name = System_Aux_Id then
5910 P_Name := Scope (P_Name);
5911 Set_Entity (Prefix (N), P_Name);
5912 end if;
5914 if Present (Candidate) then
5916 -- If we know that the unit is a child unit we can give a more
5917 -- accurate error message.
5919 if Is_Child_Unit (Candidate) then
5921 -- If the candidate is a private child unit and we are in
5922 -- the visible part of a public unit, specialize the error
5923 -- message. There might be a private with_clause for it,
5924 -- but it is not currently active.
5926 if Is_Private_Descendant (Candidate)
5927 and then Ekind (Current_Scope) = E_Package
5928 and then not In_Private_Part (Current_Scope)
5929 and then not Is_Private_Descendant (Current_Scope)
5930 then
5931 Error_Msg_N ("private child unit& is not visible here",
5932 Selector);
5934 -- Normal case where we have a missing with for a child unit
5936 else
5937 Error_Msg_Qual_Level := 99;
5938 Error_Msg_NE -- CODEFIX
5939 ("missing `WITH &;`", Selector, Candidate);
5940 Error_Msg_Qual_Level := 0;
5941 end if;
5943 -- Here we don't know that this is a child unit
5945 else
5946 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5947 end if;
5949 else
5950 -- Within the instantiation of a child unit, the prefix may
5951 -- denote the parent instance, but the selector has the name
5952 -- of the original child. That is to say, when A.B appears
5953 -- within an instantiation of generic child unit B, the scope
5954 -- stack includes an instance of A (P_Name) and an instance
5955 -- of B under some other name. We scan the scope to find this
5956 -- child instance, which is the desired entity.
5957 -- Note that the parent may itself be a child instance, if
5958 -- the reference is of the form A.B.C, in which case A.B has
5959 -- already been rewritten with the proper entity.
5961 if In_Open_Scopes (P_Name)
5962 and then Is_Generic_Instance (P_Name)
5963 then
5964 declare
5965 Gen_Par : constant Entity_Id :=
5966 Generic_Parent (Specification
5967 (Unit_Declaration_Node (P_Name)));
5968 S : Entity_Id := Current_Scope;
5969 P : Entity_Id;
5971 begin
5972 for J in reverse 0 .. Scope_Stack.Last loop
5973 S := Scope_Stack.Table (J).Entity;
5975 exit when S = Standard_Standard;
5977 if Ekind_In (S, E_Function,
5978 E_Package,
5979 E_Procedure)
5980 then
5981 P := Generic_Parent (Specification
5982 (Unit_Declaration_Node (S)));
5984 -- Check that P is a generic child of the generic
5985 -- parent of the prefix.
5987 if Present (P)
5988 and then Chars (P) = Chars (Selector)
5989 and then Scope (P) = Gen_Par
5990 then
5991 Id := S;
5992 goto Found;
5993 end if;
5994 end if;
5996 end loop;
5997 end;
5998 end if;
6000 -- If this is a selection from Ada, System or Interfaces, then
6001 -- we assume a missing with for the corresponding package.
6003 if Is_Known_Unit (N) then
6004 if not Error_Posted (N) then
6005 Error_Msg_Node_2 := Selector;
6006 Error_Msg_N -- CODEFIX
6007 ("missing `WITH &.&;`", Prefix (N));
6008 end if;
6010 -- If this is a selection from a dummy package, then suppress
6011 -- the error message, of course the entity is missing if the
6012 -- package is missing.
6014 elsif Sloc (Error_Msg_Node_2) = No_Location then
6015 null;
6017 -- Here we have the case of an undefined component
6019 else
6021 -- The prefix may hide a homonym in the context that
6022 -- declares the desired entity. This error can use a
6023 -- specialized message.
6025 if In_Open_Scopes (P_Name) then
6026 declare
6027 H : constant Entity_Id := Homonym (P_Name);
6029 begin
6030 if Present (H)
6031 and then Is_Compilation_Unit (H)
6032 and then
6033 (Is_Immediately_Visible (H)
6034 or else Is_Visible_Lib_Unit (H))
6035 then
6036 Id := First_Entity (H);
6037 while Present (Id) loop
6038 if Chars (Id) = Chars (Selector) then
6039 Error_Msg_Qual_Level := 99;
6040 Error_Msg_Name_1 := Chars (Selector);
6041 Error_Msg_NE
6042 ("% not declared in&", N, P_Name);
6043 Error_Msg_NE
6044 ("\use fully qualified name starting with "
6045 & "Standard to make& visible", N, H);
6046 Error_Msg_Qual_Level := 0;
6047 goto Done;
6048 end if;
6050 Next_Entity (Id);
6051 end loop;
6052 end if;
6054 -- If not found, standard error message
6056 Error_Msg_NE ("& not declared in&", N, Selector);
6058 <<Done>> null;
6059 end;
6061 else
6062 Error_Msg_NE ("& not declared in&", N, Selector);
6063 end if;
6065 -- Check for misspelling of some entity in prefix
6067 Id := First_Entity (P_Name);
6068 while Present (Id) loop
6069 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6070 and then not Is_Internal_Name (Chars (Id))
6071 then
6072 Error_Msg_NE -- CODEFIX
6073 ("possible misspelling of&", Selector, Id);
6074 exit;
6075 end if;
6077 Next_Entity (Id);
6078 end loop;
6080 -- Specialize the message if this may be an instantiation
6081 -- of a child unit that was not mentioned in the context.
6083 if Nkind (Parent (N)) = N_Package_Instantiation
6084 and then Is_Generic_Instance (Entity (Prefix (N)))
6085 and then Is_Compilation_Unit
6086 (Generic_Parent (Parent (Entity (Prefix (N)))))
6087 then
6088 Error_Msg_Node_2 := Selector;
6089 Error_Msg_N -- CODEFIX
6090 ("\missing `WITH &.&;`", Prefix (N));
6091 end if;
6092 end if;
6093 end if;
6095 Id := Any_Id;
6096 end if;
6097 end if;
6099 <<Found>>
6100 if Comes_From_Source (N)
6101 and then Is_Remote_Access_To_Subprogram_Type (Id)
6102 and then Ekind (Id) = E_Access_Subprogram_Type
6103 and then Present (Equivalent_Type (Id))
6104 then
6105 -- If we are not actually generating distribution code (i.e. the
6106 -- current PCS is the dummy non-distributed version), then the
6107 -- Equivalent_Type will be missing, and Id should be treated as
6108 -- a regular access-to-subprogram type.
6110 Id := Equivalent_Type (Id);
6111 Set_Chars (Selector, Chars (Id));
6112 end if;
6114 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6116 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6117 if From_Limited_With (Id)
6118 or else Is_Type (Id)
6119 or else Ekind (Id) = E_Package
6120 then
6121 null;
6122 else
6123 Error_Msg_N
6124 ("limited withed package can only be used to access "
6125 & "incomplete types", N);
6126 end if;
6127 end if;
6129 if Is_Task_Type (P_Name)
6130 and then ((Ekind (Id) = E_Entry
6131 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6132 or else
6133 (Ekind (Id) = E_Entry_Family
6134 and then
6135 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6136 then
6137 -- If both the task type and the entry are in scope, this may still
6138 -- be the expanded name of an entry formal.
6140 if In_Open_Scopes (Id)
6141 and then Nkind (Parent (N)) = N_Selected_Component
6142 then
6143 null;
6145 else
6146 -- It is an entry call after all, either to the current task
6147 -- (which will deadlock) or to an enclosing task.
6149 Analyze_Selected_Component (N);
6150 return;
6151 end if;
6152 end if;
6154 Change_Selected_Component_To_Expanded_Name (N);
6156 -- Set appropriate type
6158 if Is_Type (Id) then
6159 Set_Etype (N, Id);
6160 else
6161 Set_Etype (N, Get_Full_View (Etype (Id)));
6162 end if;
6164 -- Do style check and generate reference, but skip both steps if this
6165 -- entity has homonyms, since we may not have the right homonym set yet.
6166 -- The proper homonym will be set during the resolve phase.
6168 if Has_Homonym (Id) then
6169 Set_Entity (N, Id);
6171 else
6172 Set_Entity_Or_Discriminal (N, Id);
6174 case Is_LHS (N) is
6175 when Yes =>
6176 Generate_Reference (Id, N, 'm');
6177 when No =>
6178 Generate_Reference (Id, N, 'r');
6179 when Unknown =>
6180 Deferred_References.Append ((Id, N));
6181 end case;
6182 end if;
6184 -- Check for violation of No_Wide_Characters
6186 Check_Wide_Character_Restriction (Id, N);
6188 -- If the Ekind of the entity is Void, it means that all homonyms are
6189 -- hidden from all visibility (RM 8.3(5,14-20)).
6191 if Ekind (Id) = E_Void then
6192 Premature_Usage (N);
6194 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6195 declare
6196 H : Entity_Id := Homonym (Id);
6198 begin
6199 while Present (H) loop
6200 if Scope (H) = Scope (Id)
6201 and then (not Is_Hidden (H)
6202 or else Is_Immediately_Visible (H))
6203 then
6204 Collect_Interps (N);
6205 exit;
6206 end if;
6208 H := Homonym (H);
6209 end loop;
6211 -- If an extension of System is present, collect possible explicit
6212 -- overloadings declared in the extension.
6214 if Chars (P_Name) = Name_System
6215 and then Scope (P_Name) = Standard_Standard
6216 and then Present (System_Extend_Unit)
6217 and then Present_System_Aux (N)
6218 then
6219 H := Current_Entity (Id);
6221 while Present (H) loop
6222 if Scope (H) = System_Aux_Id then
6223 Add_One_Interp (N, H, Etype (H));
6224 end if;
6226 H := Homonym (H);
6227 end loop;
6228 end if;
6229 end;
6230 end if;
6232 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6233 and then Scope (Id) /= Standard_Standard
6234 then
6235 -- In addition to user-defined operators in the given scope, there
6236 -- may be an implicit instance of the predefined operator. The
6237 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6238 -- and added to the interpretations. Procedure Add_One_Interp will
6239 -- determine which hides which.
6241 if Has_Implicit_Operator (N) then
6242 null;
6243 end if;
6244 end if;
6246 -- If there is a single interpretation for N we can generate a
6247 -- reference to the unique entity found.
6249 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6250 Generate_Reference (Id, N);
6251 end if;
6252 end Find_Expanded_Name;
6254 -------------------------
6255 -- Find_Renamed_Entity --
6256 -------------------------
6258 function Find_Renamed_Entity
6259 (N : Node_Id;
6260 Nam : Node_Id;
6261 New_S : Entity_Id;
6262 Is_Actual : Boolean := False) return Entity_Id
6264 Ind : Interp_Index;
6265 I1 : Interp_Index := 0; -- Suppress junk warnings
6266 It : Interp;
6267 It1 : Interp;
6268 Old_S : Entity_Id;
6269 Inst : Entity_Id;
6271 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6272 -- If the renamed entity is an implicit operator, check whether it is
6273 -- visible because its operand type is properly visible. This check
6274 -- applies to explicit renamed entities that appear in the source in a
6275 -- renaming declaration or a formal subprogram instance, but not to
6276 -- default generic actuals with a name.
6278 function Report_Overload return Entity_Id;
6279 -- List possible interpretations, and specialize message in the
6280 -- case of a generic actual.
6282 function Within (Inner, Outer : Entity_Id) return Boolean;
6283 -- Determine whether a candidate subprogram is defined within the
6284 -- enclosing instance. If yes, it has precedence over outer candidates.
6286 --------------------------
6287 -- Is_Visible_Operation --
6288 --------------------------
6290 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6291 Scop : Entity_Id;
6292 Typ : Entity_Id;
6293 Btyp : Entity_Id;
6295 begin
6296 if Ekind (Op) /= E_Operator
6297 or else Scope (Op) /= Standard_Standard
6298 or else (In_Instance
6299 and then (not Is_Actual
6300 or else Present (Enclosing_Instance)))
6301 then
6302 return True;
6304 else
6305 -- For a fixed point type operator, check the resulting type,
6306 -- because it may be a mixed mode integer * fixed operation.
6308 if Present (Next_Formal (First_Formal (New_S)))
6309 and then Is_Fixed_Point_Type (Etype (New_S))
6310 then
6311 Typ := Etype (New_S);
6312 else
6313 Typ := Etype (First_Formal (New_S));
6314 end if;
6316 Btyp := Base_Type (Typ);
6318 if Nkind (Nam) /= N_Expanded_Name then
6319 return (In_Open_Scopes (Scope (Btyp))
6320 or else Is_Potentially_Use_Visible (Btyp)
6321 or else In_Use (Btyp)
6322 or else In_Use (Scope (Btyp)));
6324 else
6325 Scop := Entity (Prefix (Nam));
6327 if Ekind (Scop) = E_Package
6328 and then Present (Renamed_Object (Scop))
6329 then
6330 Scop := Renamed_Object (Scop);
6331 end if;
6333 -- Operator is visible if prefix of expanded name denotes
6334 -- scope of type, or else type is defined in System_Aux
6335 -- and the prefix denotes System.
6337 return Scope (Btyp) = Scop
6338 or else (Scope (Btyp) = System_Aux_Id
6339 and then Scope (Scope (Btyp)) = Scop);
6340 end if;
6341 end if;
6342 end Is_Visible_Operation;
6344 ------------
6345 -- Within --
6346 ------------
6348 function Within (Inner, Outer : Entity_Id) return Boolean is
6349 Sc : Entity_Id;
6351 begin
6352 Sc := Scope (Inner);
6353 while Sc /= Standard_Standard loop
6354 if Sc = Outer then
6355 return True;
6356 else
6357 Sc := Scope (Sc);
6358 end if;
6359 end loop;
6361 return False;
6362 end Within;
6364 ---------------------
6365 -- Report_Overload --
6366 ---------------------
6368 function Report_Overload return Entity_Id is
6369 begin
6370 if Is_Actual then
6371 Error_Msg_NE -- CODEFIX
6372 ("ambiguous actual subprogram&, " &
6373 "possible interpretations:", N, Nam);
6374 else
6375 Error_Msg_N -- CODEFIX
6376 ("ambiguous subprogram, " &
6377 "possible interpretations:", N);
6378 end if;
6380 List_Interps (Nam, N);
6381 return Old_S;
6382 end Report_Overload;
6384 -- Start of processing for Find_Renamed_Entity
6386 begin
6387 Old_S := Any_Id;
6388 Candidate_Renaming := Empty;
6390 if Is_Overloaded (Nam) then
6391 Get_First_Interp (Nam, Ind, It);
6392 while Present (It.Nam) loop
6393 if Entity_Matches_Spec (It.Nam, New_S)
6394 and then Is_Visible_Operation (It.Nam)
6395 then
6396 if Old_S /= Any_Id then
6398 -- Note: The call to Disambiguate only happens if a
6399 -- previous interpretation was found, in which case I1
6400 -- has received a value.
6402 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6404 if It1 = No_Interp then
6405 Inst := Enclosing_Instance;
6407 if Present (Inst) then
6408 if Within (It.Nam, Inst) then
6409 if Within (Old_S, Inst) then
6411 -- Choose the innermost subprogram, which would
6412 -- have hidden the outer one in the generic.
6414 if Scope_Depth (It.Nam) <
6415 Scope_Depth (Old_S)
6416 then
6417 return Old_S;
6418 else
6419 return It.Nam;
6420 end if;
6421 end if;
6423 elsif Within (Old_S, Inst) then
6424 return (Old_S);
6426 else
6427 return Report_Overload;
6428 end if;
6430 -- If not within an instance, ambiguity is real
6432 else
6433 return Report_Overload;
6434 end if;
6436 else
6437 Old_S := It1.Nam;
6438 exit;
6439 end if;
6441 else
6442 I1 := Ind;
6443 Old_S := It.Nam;
6444 end if;
6446 elsif
6447 Present (First_Formal (It.Nam))
6448 and then Present (First_Formal (New_S))
6449 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6450 Base_Type (Etype (First_Formal (New_S))))
6451 then
6452 Candidate_Renaming := It.Nam;
6453 end if;
6455 Get_Next_Interp (Ind, It);
6456 end loop;
6458 Set_Entity (Nam, Old_S);
6460 if Old_S /= Any_Id then
6461 Set_Is_Overloaded (Nam, False);
6462 end if;
6464 -- Non-overloaded case
6466 else
6467 if Is_Actual and then Present (Enclosing_Instance) then
6468 Old_S := Entity (Nam);
6470 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6471 Candidate_Renaming := New_S;
6473 if Is_Visible_Operation (Entity (Nam)) then
6474 Old_S := Entity (Nam);
6475 end if;
6477 elsif Present (First_Formal (Entity (Nam)))
6478 and then Present (First_Formal (New_S))
6479 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6480 Base_Type (Etype (First_Formal (New_S))))
6481 then
6482 Candidate_Renaming := Entity (Nam);
6483 end if;
6484 end if;
6486 return Old_S;
6487 end Find_Renamed_Entity;
6489 -----------------------------
6490 -- Find_Selected_Component --
6491 -----------------------------
6493 procedure Find_Selected_Component (N : Node_Id) is
6494 P : constant Node_Id := Prefix (N);
6496 P_Name : Entity_Id;
6497 -- Entity denoted by prefix
6499 P_Type : Entity_Id;
6500 -- and its type
6502 Nam : Node_Id;
6504 function Available_Subtype return Boolean;
6505 -- A small optimization: if the prefix is constrained and the component
6506 -- is an array type we may already have a usable subtype for it, so we
6507 -- can use it rather than generating a new one, because the bounds
6508 -- will be the values of the discriminants and not discriminant refs.
6509 -- This simplifies value tracing in GNATProve. For consistency, both
6510 -- the entity name and the subtype come from the constrained component.
6512 function Is_Reference_In_Subunit return Boolean;
6513 -- In a subunit, the scope depth is not a proper measure of hiding,
6514 -- because the context of the proper body may itself hide entities in
6515 -- parent units. This rare case requires inspecting the tree directly
6516 -- because the proper body is inserted in the main unit and its context
6517 -- is simply added to that of the parent.
6519 -----------------------
6520 -- Available_Subtype --
6521 -----------------------
6523 function Available_Subtype return Boolean is
6524 Comp : Entity_Id;
6526 begin
6527 Comp := First_Entity (Etype (P));
6528 while Present (Comp) loop
6529 if Chars (Comp) = Chars (Selector_Name (N)) then
6530 Set_Etype (N, Etype (Comp));
6531 Set_Entity (Selector_Name (N), Comp);
6532 Set_Etype (Selector_Name (N), Etype (Comp));
6533 return True;
6534 end if;
6536 Next_Component (Comp);
6537 end loop;
6539 return False;
6540 end Available_Subtype;
6542 -----------------------------
6543 -- Is_Reference_In_Subunit --
6544 -----------------------------
6546 function Is_Reference_In_Subunit return Boolean is
6547 Clause : Node_Id;
6548 Comp_Unit : Node_Id;
6550 begin
6551 Comp_Unit := N;
6552 while Present (Comp_Unit)
6553 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6554 loop
6555 Comp_Unit := Parent (Comp_Unit);
6556 end loop;
6558 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6559 return False;
6560 end if;
6562 -- Now check whether the package is in the context of the subunit
6564 Clause := First (Context_Items (Comp_Unit));
6565 while Present (Clause) loop
6566 if Nkind (Clause) = N_With_Clause
6567 and then Entity (Name (Clause)) = P_Name
6568 then
6569 return True;
6570 end if;
6572 Clause := Next (Clause);
6573 end loop;
6575 return False;
6576 end Is_Reference_In_Subunit;
6578 -- Start of processing for Find_Selected_Component
6580 begin
6581 Analyze (P);
6583 if Nkind (P) = N_Error then
6584 return;
6585 end if;
6587 -- Selector name cannot be a character literal or an operator symbol in
6588 -- SPARK, except for the operator symbol in a renaming.
6590 if Restriction_Check_Required (SPARK_05) then
6591 if Nkind (Selector_Name (N)) = N_Character_Literal then
6592 Check_SPARK_05_Restriction
6593 ("character literal cannot be prefixed", N);
6594 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6595 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6596 then
6597 Check_SPARK_05_Restriction
6598 ("operator symbol cannot be prefixed", N);
6599 end if;
6600 end if;
6602 -- If the selector already has an entity, the node has been constructed
6603 -- in the course of expansion, and is known to be valid. Do not verify
6604 -- that it is defined for the type (it may be a private component used
6605 -- in the expansion of record equality).
6607 if Present (Entity (Selector_Name (N))) then
6608 if No (Etype (N)) or else Etype (N) = Any_Type then
6609 declare
6610 Sel_Name : constant Node_Id := Selector_Name (N);
6611 Selector : constant Entity_Id := Entity (Sel_Name);
6612 C_Etype : Node_Id;
6614 begin
6615 Set_Etype (Sel_Name, Etype (Selector));
6617 if not Is_Entity_Name (P) then
6618 Resolve (P);
6619 end if;
6621 -- Build an actual subtype except for the first parameter
6622 -- of an init proc, where this actual subtype is by
6623 -- definition incorrect, since the object is uninitialized
6624 -- (and does not even have defined discriminants etc.)
6626 if Is_Entity_Name (P)
6627 and then Ekind (Entity (P)) = E_Function
6628 then
6629 Nam := New_Copy (P);
6631 if Is_Overloaded (P) then
6632 Save_Interps (P, Nam);
6633 end if;
6635 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6636 Analyze_Call (P);
6637 Analyze_Selected_Component (N);
6638 return;
6640 elsif Ekind (Selector) = E_Component
6641 and then (not Is_Entity_Name (P)
6642 or else Chars (Entity (P)) /= Name_uInit)
6643 then
6644 -- Check if we already have an available subtype we can use
6646 if Ekind (Etype (P)) = E_Record_Subtype
6647 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6648 and then Is_Array_Type (Etype (Selector))
6649 and then not Is_Packed (Etype (Selector))
6650 and then Available_Subtype
6651 then
6652 return;
6654 -- Do not build the subtype when referencing components of
6655 -- dispatch table wrappers. Required to avoid generating
6656 -- elaboration code with HI runtimes. JVM and .NET use a
6657 -- modified version of Ada.Tags which does not contain RE_
6658 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6659 -- Avoid raising RE_Not_Available exception in those cases.
6661 elsif VM_Target = No_VM
6662 and then RTU_Loaded (Ada_Tags)
6663 and then
6664 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6665 and then Scope (Selector) =
6666 RTE (RE_Dispatch_Table_Wrapper))
6667 or else
6668 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6669 and then Scope (Selector) =
6670 RTE (RE_No_Dispatch_Table_Wrapper)))
6671 then
6672 C_Etype := Empty;
6673 else
6674 C_Etype :=
6675 Build_Actual_Subtype_Of_Component
6676 (Etype (Selector), N);
6677 end if;
6679 else
6680 C_Etype := Empty;
6681 end if;
6683 if No (C_Etype) then
6684 C_Etype := Etype (Selector);
6685 else
6686 Insert_Action (N, C_Etype);
6687 C_Etype := Defining_Identifier (C_Etype);
6688 end if;
6690 Set_Etype (N, C_Etype);
6691 end;
6693 -- If this is the name of an entry or protected operation, and
6694 -- the prefix is an access type, insert an explicit dereference,
6695 -- so that entry calls are treated uniformly.
6697 if Is_Access_Type (Etype (P))
6698 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6699 then
6700 declare
6701 New_P : constant Node_Id :=
6702 Make_Explicit_Dereference (Sloc (P),
6703 Prefix => Relocate_Node (P));
6704 begin
6705 Rewrite (P, New_P);
6706 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6707 end;
6708 end if;
6710 -- If the selected component appears within a default expression
6711 -- and it has an actual subtype, the pre-analysis has not yet
6712 -- completed its analysis, because Insert_Actions is disabled in
6713 -- that context. Within the init proc of the enclosing type we
6714 -- must complete this analysis, if an actual subtype was created.
6716 elsif Inside_Init_Proc then
6717 declare
6718 Typ : constant Entity_Id := Etype (N);
6719 Decl : constant Node_Id := Declaration_Node (Typ);
6720 begin
6721 if Nkind (Decl) = N_Subtype_Declaration
6722 and then not Analyzed (Decl)
6723 and then Is_List_Member (Decl)
6724 and then No (Parent (Decl))
6725 then
6726 Remove (Decl);
6727 Insert_Action (N, Decl);
6728 end if;
6729 end;
6730 end if;
6732 return;
6734 elsif Is_Entity_Name (P) then
6735 P_Name := Entity (P);
6737 -- The prefix may denote an enclosing type which is the completion
6738 -- of an incomplete type declaration.
6740 if Is_Type (P_Name) then
6741 Set_Entity (P, Get_Full_View (P_Name));
6742 Set_Etype (P, Entity (P));
6743 P_Name := Entity (P);
6744 end if;
6746 P_Type := Base_Type (Etype (P));
6748 if Debug_Flag_E then
6749 Write_Str ("Found prefix type to be ");
6750 Write_Entity_Info (P_Type, " "); Write_Eol;
6751 end if;
6753 -- The designated type may be a limited view with no components.
6754 -- Check whether the non-limited view is available, because in some
6755 -- cases this will not be set when installing the context.
6757 if Is_Access_Type (P_Type) then
6758 declare
6759 D : constant Entity_Id := Directly_Designated_Type (P_Type);
6760 begin
6761 if Is_Incomplete_Type (D)
6762 and then From_Limited_With (D)
6763 and then Present (Non_Limited_View (D))
6764 then
6765 Set_Directly_Designated_Type (P_Type, Non_Limited_View (D));
6766 end if;
6767 end;
6768 end if;
6770 -- First check for components of a record object (not the
6771 -- result of a call, which is handled below).
6773 if Is_Appropriate_For_Record (P_Type)
6774 and then not Is_Overloadable (P_Name)
6775 and then not Is_Type (P_Name)
6776 then
6777 -- Selected component of record. Type checking will validate
6778 -- name of selector.
6780 -- ??? Could we rewrite an implicit dereference into an explicit
6781 -- one here?
6783 Analyze_Selected_Component (N);
6785 -- Reference to type name in predicate/invariant expression
6787 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6788 and then not In_Open_Scopes (P_Name)
6789 and then (not Is_Concurrent_Type (Etype (P_Name))
6790 or else not In_Open_Scopes (Etype (P_Name)))
6791 then
6792 -- Call to protected operation or entry. Type checking is
6793 -- needed on the prefix.
6795 Analyze_Selected_Component (N);
6797 elsif (In_Open_Scopes (P_Name)
6798 and then Ekind (P_Name) /= E_Void
6799 and then not Is_Overloadable (P_Name))
6800 or else (Is_Concurrent_Type (Etype (P_Name))
6801 and then In_Open_Scopes (Etype (P_Name)))
6802 then
6803 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6804 -- enclosing construct that is not a subprogram or accept.
6806 Find_Expanded_Name (N);
6808 elsif Ekind (P_Name) = E_Package then
6809 Find_Expanded_Name (N);
6811 elsif Is_Overloadable (P_Name) then
6813 -- The subprogram may be a renaming (of an enclosing scope) as
6814 -- in the case of the name of the generic within an instantiation.
6816 if Ekind_In (P_Name, E_Procedure, E_Function)
6817 and then Present (Alias (P_Name))
6818 and then Is_Generic_Instance (Alias (P_Name))
6819 then
6820 P_Name := Alias (P_Name);
6821 end if;
6823 if Is_Overloaded (P) then
6825 -- The prefix must resolve to a unique enclosing construct
6827 declare
6828 Found : Boolean := False;
6829 Ind : Interp_Index;
6830 It : Interp;
6832 begin
6833 Get_First_Interp (P, Ind, It);
6834 while Present (It.Nam) loop
6835 if In_Open_Scopes (It.Nam) then
6836 if Found then
6837 Error_Msg_N (
6838 "prefix must be unique enclosing scope", N);
6839 Set_Entity (N, Any_Id);
6840 Set_Etype (N, Any_Type);
6841 return;
6843 else
6844 Found := True;
6845 P_Name := It.Nam;
6846 end if;
6847 end if;
6849 Get_Next_Interp (Ind, It);
6850 end loop;
6851 end;
6852 end if;
6854 if In_Open_Scopes (P_Name) then
6855 Set_Entity (P, P_Name);
6856 Set_Is_Overloaded (P, False);
6857 Find_Expanded_Name (N);
6859 else
6860 -- If no interpretation as an expanded name is possible, it
6861 -- must be a selected component of a record returned by a
6862 -- function call. Reformat prefix as a function call, the rest
6863 -- is done by type resolution.
6865 -- Error if the prefix is procedure or entry, as is P.X
6867 if Ekind (P_Name) /= E_Function
6868 and then
6869 (not Is_Overloaded (P)
6870 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6871 then
6872 -- Prefix may mention a package that is hidden by a local
6873 -- declaration: let the user know. Scan the full homonym
6874 -- chain, the candidate package may be anywhere on it.
6876 if Present (Homonym (Current_Entity (P_Name))) then
6877 P_Name := Current_Entity (P_Name);
6879 while Present (P_Name) loop
6880 exit when Ekind (P_Name) = E_Package;
6881 P_Name := Homonym (P_Name);
6882 end loop;
6884 if Present (P_Name) then
6885 if not Is_Reference_In_Subunit then
6886 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6887 Error_Msg_NE
6888 ("package& is hidden by declaration#", N, P_Name);
6889 end if;
6891 Set_Entity (Prefix (N), P_Name);
6892 Find_Expanded_Name (N);
6893 return;
6895 else
6896 P_Name := Entity (Prefix (N));
6897 end if;
6898 end if;
6900 Error_Msg_NE
6901 ("invalid prefix in selected component&", N, P_Name);
6902 Change_Selected_Component_To_Expanded_Name (N);
6903 Set_Entity (N, Any_Id);
6904 Set_Etype (N, Any_Type);
6906 -- Here we have a function call, so do the reformatting
6908 else
6909 Nam := New_Copy (P);
6910 Save_Interps (P, Nam);
6912 -- We use Replace here because this is one of those cases
6913 -- where the parser has missclassified the node, and we
6914 -- fix things up and then do the semantic analysis on the
6915 -- fixed up node. Normally we do this using one of the
6916 -- Sinfo.CN routines, but this is too tricky for that.
6918 -- Note that using Rewrite would be wrong, because we
6919 -- would have a tree where the original node is unanalyzed,
6920 -- and this violates the required interface for ASIS.
6922 Replace (P,
6923 Make_Function_Call (Sloc (P), Name => Nam));
6925 -- Now analyze the reformatted node
6927 Analyze_Call (P);
6928 Analyze_Selected_Component (N);
6929 end if;
6930 end if;
6932 -- Remaining cases generate various error messages
6934 else
6935 -- Format node as expanded name, to avoid cascaded errors
6937 Change_Selected_Component_To_Expanded_Name (N);
6938 Set_Entity (N, Any_Id);
6939 Set_Etype (N, Any_Type);
6941 -- Issue error message, but avoid this if error issued already.
6942 -- Use identifier of prefix if one is available.
6944 if P_Name = Any_Id then
6945 null;
6947 elsif Ekind (P_Name) = E_Void then
6948 Premature_Usage (P);
6950 elsif Nkind (P) /= N_Attribute_Reference then
6952 -- This may have been meant as a prefixed call to a primitive
6953 -- of an untagged type.
6955 declare
6956 F : constant Entity_Id :=
6957 Current_Entity (Selector_Name (N));
6958 begin
6959 if Present (F)
6960 and then Is_Overloadable (F)
6961 and then Present (First_Entity (F))
6962 and then Etype (First_Entity (F)) = Etype (P)
6963 and then not Is_Tagged_Type (Etype (P))
6964 then
6965 Error_Msg_N
6966 ("prefixed call is only allowed for objects "
6967 & "of a tagged type", N);
6968 end if;
6969 end;
6971 Error_Msg_N ("invalid prefix in selected component&", P);
6973 if Is_Access_Type (P_Type)
6974 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6975 then
6976 Error_Msg_N
6977 ("\dereference must not be of an incomplete type "
6978 & "(RM 3.10.1)", P);
6979 end if;
6981 else
6982 Error_Msg_N ("invalid prefix in selected component", P);
6983 end if;
6984 end if;
6986 -- Selector name is restricted in SPARK
6988 if Nkind (N) = N_Expanded_Name
6989 and then Restriction_Check_Required (SPARK_05)
6990 then
6991 if Is_Subprogram (P_Name) then
6992 Check_SPARK_05_Restriction
6993 ("prefix of expanded name cannot be a subprogram", P);
6994 elsif Ekind (P_Name) = E_Loop then
6995 Check_SPARK_05_Restriction
6996 ("prefix of expanded name cannot be a loop statement", P);
6997 end if;
6998 end if;
7000 else
7001 -- If prefix is not the name of an entity, it must be an expression,
7002 -- whose type is appropriate for a record. This is determined by
7003 -- type resolution.
7005 Analyze_Selected_Component (N);
7006 end if;
7008 Analyze_Dimension (N);
7009 end Find_Selected_Component;
7011 ---------------
7012 -- Find_Type --
7013 ---------------
7015 procedure Find_Type (N : Node_Id) is
7016 C : Entity_Id;
7017 Typ : Entity_Id;
7018 T : Entity_Id;
7019 T_Name : Entity_Id;
7021 begin
7022 if N = Error then
7023 return;
7025 elsif Nkind (N) = N_Attribute_Reference then
7027 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7028 -- need to enforce that at this point, since the declaration of the
7029 -- tagged type in the prefix would have been flagged already.
7031 if Attribute_Name (N) = Name_Class then
7032 Check_Restriction (No_Dispatch, N);
7033 Find_Type (Prefix (N));
7035 -- Propagate error from bad prefix
7037 if Etype (Prefix (N)) = Any_Type then
7038 Set_Entity (N, Any_Type);
7039 Set_Etype (N, Any_Type);
7040 return;
7041 end if;
7043 T := Base_Type (Entity (Prefix (N)));
7045 -- Case where type is not known to be tagged. Its appearance in
7046 -- the prefix of the 'Class attribute indicates that the full view
7047 -- will be tagged.
7049 if not Is_Tagged_Type (T) then
7050 if Ekind (T) = E_Incomplete_Type then
7052 -- It is legal to denote the class type of an incomplete
7053 -- type. The full type will have to be tagged, of course.
7054 -- In Ada 2005 this usage is declared obsolescent, so we
7055 -- warn accordingly. This usage is only legal if the type
7056 -- is completed in the current scope, and not for a limited
7057 -- view of a type.
7059 if Ada_Version >= Ada_2005 then
7061 -- Test whether the Available_View of a limited type view
7062 -- is tagged, since the limited view may not be marked as
7063 -- tagged if the type itself has an untagged incomplete
7064 -- type view in its package.
7066 if From_Limited_With (T)
7067 and then not Is_Tagged_Type (Available_View (T))
7068 then
7069 Error_Msg_N
7070 ("prefix of Class attribute must be tagged", N);
7071 Set_Etype (N, Any_Type);
7072 Set_Entity (N, Any_Type);
7073 return;
7075 -- ??? This test is temporarily disabled (always
7076 -- False) because it causes an unwanted warning on
7077 -- GNAT sources (built with -gnatg, which includes
7078 -- Warn_On_Obsolescent_ Feature). Once this issue
7079 -- is cleared in the sources, it can be enabled.
7081 elsif Warn_On_Obsolescent_Feature and then False then
7082 Error_Msg_N
7083 ("applying 'Class to an untagged incomplete type"
7084 & " is an obsolescent feature (RM J.11)?r?", N);
7085 end if;
7086 end if;
7088 Set_Is_Tagged_Type (T);
7089 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7090 Make_Class_Wide_Type (T);
7091 Set_Entity (N, Class_Wide_Type (T));
7092 Set_Etype (N, Class_Wide_Type (T));
7094 elsif Ekind (T) = E_Private_Type
7095 and then not Is_Generic_Type (T)
7096 and then In_Private_Part (Scope (T))
7097 then
7098 -- The Class attribute can be applied to an untagged private
7099 -- type fulfilled by a tagged type prior to the full type
7100 -- declaration (but only within the parent package's private
7101 -- part). Create the class-wide type now and check that the
7102 -- full type is tagged later during its analysis. Note that
7103 -- we do not mark the private type as tagged, unlike the
7104 -- case of incomplete types, because the type must still
7105 -- appear untagged to outside units.
7107 if No (Class_Wide_Type (T)) then
7108 Make_Class_Wide_Type (T);
7109 end if;
7111 Set_Entity (N, Class_Wide_Type (T));
7112 Set_Etype (N, Class_Wide_Type (T));
7114 else
7115 -- Should we introduce a type Any_Tagged and use Wrong_Type
7116 -- here, it would be a bit more consistent???
7118 Error_Msg_NE
7119 ("tagged type required, found}",
7120 Prefix (N), First_Subtype (T));
7121 Set_Entity (N, Any_Type);
7122 return;
7123 end if;
7125 -- Case of tagged type
7127 else
7128 if Is_Concurrent_Type (T) then
7129 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7131 -- Previous error. Use current type, which at least
7132 -- provides some operations.
7134 C := Entity (Prefix (N));
7136 else
7137 C := Class_Wide_Type
7138 (Corresponding_Record_Type (Entity (Prefix (N))));
7139 end if;
7141 else
7142 C := Class_Wide_Type (Entity (Prefix (N)));
7143 end if;
7145 Set_Entity_With_Checks (N, C);
7146 Generate_Reference (C, N);
7147 Set_Etype (N, C);
7148 end if;
7150 -- Base attribute, not allowed in Ada 83
7152 elsif Attribute_Name (N) = Name_Base then
7153 Error_Msg_Name_1 := Name_Base;
7154 Check_SPARK_05_Restriction
7155 ("attribute% is only allowed as prefix of another attribute", N);
7157 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7158 Error_Msg_N
7159 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7161 else
7162 Find_Type (Prefix (N));
7163 Typ := Entity (Prefix (N));
7165 if Ada_Version >= Ada_95
7166 and then not Is_Scalar_Type (Typ)
7167 and then not Is_Generic_Type (Typ)
7168 then
7169 Error_Msg_N
7170 ("prefix of Base attribute must be scalar type",
7171 Prefix (N));
7173 elsif Warn_On_Redundant_Constructs
7174 and then Base_Type (Typ) = Typ
7175 then
7176 Error_Msg_NE -- CODEFIX
7177 ("redundant attribute, & is its own base type?r?", N, Typ);
7178 end if;
7180 T := Base_Type (Typ);
7182 -- Rewrite attribute reference with type itself (see similar
7183 -- processing in Analyze_Attribute, case Base). Preserve prefix
7184 -- if present, for other legality checks.
7186 if Nkind (Prefix (N)) = N_Expanded_Name then
7187 Rewrite (N,
7188 Make_Expanded_Name (Sloc (N),
7189 Chars => Chars (T),
7190 Prefix => New_Copy (Prefix (Prefix (N))),
7191 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7193 else
7194 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7195 end if;
7197 Set_Entity (N, T);
7198 Set_Etype (N, T);
7199 end if;
7201 elsif Attribute_Name (N) = Name_Stub_Type then
7203 -- This is handled in Analyze_Attribute
7205 Analyze (N);
7207 -- All other attributes are invalid in a subtype mark
7209 else
7210 Error_Msg_N ("invalid attribute in subtype mark", N);
7211 end if;
7213 else
7214 Analyze (N);
7216 if Is_Entity_Name (N) then
7217 T_Name := Entity (N);
7218 else
7219 Error_Msg_N ("subtype mark required in this context", N);
7220 Set_Etype (N, Any_Type);
7221 return;
7222 end if;
7224 if T_Name = Any_Id or else Etype (N) = Any_Type then
7226 -- Undefined id. Make it into a valid type
7228 Set_Entity (N, Any_Type);
7230 elsif not Is_Type (T_Name)
7231 and then T_Name /= Standard_Void_Type
7232 then
7233 Error_Msg_Sloc := Sloc (T_Name);
7234 Error_Msg_N ("subtype mark required in this context", N);
7235 Error_Msg_NE ("\\found & declared#", N, T_Name);
7236 Set_Entity (N, Any_Type);
7238 else
7239 -- If the type is an incomplete type created to handle
7240 -- anonymous access components of a record type, then the
7241 -- incomplete type is the visible entity and subsequent
7242 -- references will point to it. Mark the original full
7243 -- type as referenced, to prevent spurious warnings.
7245 if Is_Incomplete_Type (T_Name)
7246 and then Present (Full_View (T_Name))
7247 and then not Comes_From_Source (T_Name)
7248 then
7249 Set_Referenced (Full_View (T_Name));
7250 end if;
7252 T_Name := Get_Full_View (T_Name);
7254 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7255 -- limited-with clauses
7257 if From_Limited_With (T_Name)
7258 and then Ekind (T_Name) in Incomplete_Kind
7259 and then Present (Non_Limited_View (T_Name))
7260 and then Is_Interface (Non_Limited_View (T_Name))
7261 then
7262 T_Name := Non_Limited_View (T_Name);
7263 end if;
7265 if In_Open_Scopes (T_Name) then
7266 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7268 -- In Ada 2005, a task name can be used in an access
7269 -- definition within its own body. It cannot be used
7270 -- in the discriminant part of the task declaration,
7271 -- nor anywhere else in the declaration because entries
7272 -- cannot have access parameters.
7274 if Ada_Version >= Ada_2005
7275 and then Nkind (Parent (N)) = N_Access_Definition
7276 then
7277 Set_Entity (N, T_Name);
7278 Set_Etype (N, T_Name);
7280 if Has_Completion (T_Name) then
7281 return;
7283 else
7284 Error_Msg_N
7285 ("task type cannot be used as type mark " &
7286 "within its own declaration", N);
7287 end if;
7289 else
7290 Error_Msg_N
7291 ("task type cannot be used as type mark " &
7292 "within its own spec or body", N);
7293 end if;
7295 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7297 -- In Ada 2005, a protected name can be used in an access
7298 -- definition within its own body.
7300 if Ada_Version >= Ada_2005
7301 and then Nkind (Parent (N)) = N_Access_Definition
7302 then
7303 Set_Entity (N, T_Name);
7304 Set_Etype (N, T_Name);
7305 return;
7307 else
7308 Error_Msg_N
7309 ("protected type cannot be used as type mark " &
7310 "within its own spec or body", N);
7311 end if;
7313 else
7314 Error_Msg_N ("type declaration cannot refer to itself", N);
7315 end if;
7317 Set_Etype (N, Any_Type);
7318 Set_Entity (N, Any_Type);
7319 Set_Error_Posted (T_Name);
7320 return;
7321 end if;
7323 Set_Entity (N, T_Name);
7324 Set_Etype (N, T_Name);
7325 end if;
7326 end if;
7328 if Present (Etype (N)) and then Comes_From_Source (N) then
7329 if Is_Fixed_Point_Type (Etype (N)) then
7330 Check_Restriction (No_Fixed_Point, N);
7331 elsif Is_Floating_Point_Type (Etype (N)) then
7332 Check_Restriction (No_Floating_Point, N);
7333 end if;
7335 -- A Ghost type must appear in a specific context
7337 if Is_Ghost_Entity (Etype (N)) then
7338 Check_Ghost_Context (Etype (N), N);
7339 end if;
7340 end if;
7341 end Find_Type;
7343 ------------------------------------
7344 -- Has_Implicit_Character_Literal --
7345 ------------------------------------
7347 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7348 Id : Entity_Id;
7349 Found : Boolean := False;
7350 P : constant Entity_Id := Entity (Prefix (N));
7351 Priv_Id : Entity_Id := Empty;
7353 begin
7354 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7355 Priv_Id := First_Private_Entity (P);
7356 end if;
7358 if P = Standard_Standard then
7359 Change_Selected_Component_To_Expanded_Name (N);
7360 Rewrite (N, Selector_Name (N));
7361 Analyze (N);
7362 Set_Etype (Original_Node (N), Standard_Character);
7363 return True;
7364 end if;
7366 Id := First_Entity (P);
7367 while Present (Id) and then Id /= Priv_Id loop
7368 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7370 -- We replace the node with the literal itself, resolve as a
7371 -- character, and set the type correctly.
7373 if not Found then
7374 Change_Selected_Component_To_Expanded_Name (N);
7375 Rewrite (N, Selector_Name (N));
7376 Analyze (N);
7377 Set_Etype (N, Id);
7378 Set_Etype (Original_Node (N), Id);
7379 Found := True;
7381 else
7382 -- More than one type derived from Character in given scope.
7383 -- Collect all possible interpretations.
7385 Add_One_Interp (N, Id, Id);
7386 end if;
7387 end if;
7389 Next_Entity (Id);
7390 end loop;
7392 return Found;
7393 end Has_Implicit_Character_Literal;
7395 ----------------------
7396 -- Has_Private_With --
7397 ----------------------
7399 function Has_Private_With (E : Entity_Id) return Boolean is
7400 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7401 Item : Node_Id;
7403 begin
7404 Item := First (Context_Items (Comp_Unit));
7405 while Present (Item) loop
7406 if Nkind (Item) = N_With_Clause
7407 and then Private_Present (Item)
7408 and then Entity (Name (Item)) = E
7409 then
7410 return True;
7411 end if;
7413 Next (Item);
7414 end loop;
7416 return False;
7417 end Has_Private_With;
7419 ---------------------------
7420 -- Has_Implicit_Operator --
7421 ---------------------------
7423 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7424 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7425 P : constant Entity_Id := Entity (Prefix (N));
7426 Id : Entity_Id;
7427 Priv_Id : Entity_Id := Empty;
7429 procedure Add_Implicit_Operator
7430 (T : Entity_Id;
7431 Op_Type : Entity_Id := Empty);
7432 -- Add implicit interpretation to node N, using the type for which a
7433 -- predefined operator exists. If the operator yields a boolean type,
7434 -- the Operand_Type is implicitly referenced by the operator, and a
7435 -- reference to it must be generated.
7437 ---------------------------
7438 -- Add_Implicit_Operator --
7439 ---------------------------
7441 procedure Add_Implicit_Operator
7442 (T : Entity_Id;
7443 Op_Type : Entity_Id := Empty)
7445 Predef_Op : Entity_Id;
7447 begin
7448 Predef_Op := Current_Entity (Selector_Name (N));
7449 while Present (Predef_Op)
7450 and then Scope (Predef_Op) /= Standard_Standard
7451 loop
7452 Predef_Op := Homonym (Predef_Op);
7453 end loop;
7455 if Nkind (N) = N_Selected_Component then
7456 Change_Selected_Component_To_Expanded_Name (N);
7457 end if;
7459 -- If the context is an unanalyzed function call, determine whether
7460 -- a binary or unary interpretation is required.
7462 if Nkind (Parent (N)) = N_Indexed_Component then
7463 declare
7464 Is_Binary_Call : constant Boolean :=
7465 Present
7466 (Next (First (Expressions (Parent (N)))));
7467 Is_Binary_Op : constant Boolean :=
7468 First_Entity
7469 (Predef_Op) /= Last_Entity (Predef_Op);
7470 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7472 begin
7473 if Is_Binary_Call then
7474 if Is_Binary_Op then
7475 Add_One_Interp (N, Predef_Op, T);
7476 else
7477 Add_One_Interp (N, Predef_Op2, T);
7478 end if;
7480 else
7481 if not Is_Binary_Op then
7482 Add_One_Interp (N, Predef_Op, T);
7483 else
7484 Add_One_Interp (N, Predef_Op2, T);
7485 end if;
7486 end if;
7487 end;
7489 else
7490 Add_One_Interp (N, Predef_Op, T);
7492 -- For operators with unary and binary interpretations, if
7493 -- context is not a call, add both
7495 if Present (Homonym (Predef_Op)) then
7496 Add_One_Interp (N, Homonym (Predef_Op), T);
7497 end if;
7498 end if;
7500 -- The node is a reference to a predefined operator, and
7501 -- an implicit reference to the type of its operands.
7503 if Present (Op_Type) then
7504 Generate_Operator_Reference (N, Op_Type);
7505 else
7506 Generate_Operator_Reference (N, T);
7507 end if;
7508 end Add_Implicit_Operator;
7510 -- Start of processing for Has_Implicit_Operator
7512 begin
7513 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7514 Priv_Id := First_Private_Entity (P);
7515 end if;
7517 Id := First_Entity (P);
7519 case Op_Id is
7521 -- Boolean operators: an implicit declaration exists if the scope
7522 -- contains a declaration for a derived Boolean type, or for an
7523 -- array of Boolean type.
7525 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
7526 while Id /= Priv_Id loop
7527 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7528 Add_Implicit_Operator (Id);
7529 return True;
7530 end if;
7532 Next_Entity (Id);
7533 end loop;
7535 -- Equality: look for any non-limited type (result is Boolean)
7537 when Name_Op_Eq | Name_Op_Ne =>
7538 while Id /= Priv_Id loop
7539 if Is_Type (Id)
7540 and then not Is_Limited_Type (Id)
7541 and then Is_Base_Type (Id)
7542 then
7543 Add_Implicit_Operator (Standard_Boolean, Id);
7544 return True;
7545 end if;
7547 Next_Entity (Id);
7548 end loop;
7550 -- Comparison operators: scalar type, or array of scalar
7552 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
7553 while Id /= Priv_Id loop
7554 if (Is_Scalar_Type (Id)
7555 or else (Is_Array_Type (Id)
7556 and then Is_Scalar_Type (Component_Type (Id))))
7557 and then Is_Base_Type (Id)
7558 then
7559 Add_Implicit_Operator (Standard_Boolean, Id);
7560 return True;
7561 end if;
7563 Next_Entity (Id);
7564 end loop;
7566 -- Arithmetic operators: any numeric type
7568 when Name_Op_Abs |
7569 Name_Op_Add |
7570 Name_Op_Mod |
7571 Name_Op_Rem |
7572 Name_Op_Subtract |
7573 Name_Op_Multiply |
7574 Name_Op_Divide |
7575 Name_Op_Expon =>
7576 while Id /= Priv_Id loop
7577 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7578 Add_Implicit_Operator (Id);
7579 return True;
7580 end if;
7582 Next_Entity (Id);
7583 end loop;
7585 -- Concatenation: any one-dimensional array type
7587 when Name_Op_Concat =>
7588 while Id /= Priv_Id loop
7589 if Is_Array_Type (Id)
7590 and then Number_Dimensions (Id) = 1
7591 and then Is_Base_Type (Id)
7592 then
7593 Add_Implicit_Operator (Id);
7594 return True;
7595 end if;
7597 Next_Entity (Id);
7598 end loop;
7600 -- What is the others condition here? Should we be using a
7601 -- subtype of Name_Id that would restrict to operators ???
7603 when others => null;
7604 end case;
7606 -- If we fall through, then we do not have an implicit operator
7608 return False;
7610 end Has_Implicit_Operator;
7612 -----------------------------------
7613 -- Has_Loop_In_Inner_Open_Scopes --
7614 -----------------------------------
7616 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7617 begin
7618 -- Several scope stacks are maintained by Scope_Stack. The base of the
7619 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7620 -- flag in the scope stack entry. Note that the scope stacks used to
7621 -- simply be delimited implicitly by the presence of Standard_Standard
7622 -- at their base, but there now are cases where this is not sufficient
7623 -- because Standard_Standard actually may appear in the middle of the
7624 -- active set of scopes.
7626 for J in reverse 0 .. Scope_Stack.Last loop
7628 -- S was reached without seing a loop scope first
7630 if Scope_Stack.Table (J).Entity = S then
7631 return False;
7633 -- S was not yet reached, so it contains at least one inner loop
7635 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7636 return True;
7637 end if;
7639 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7640 -- cases where Standard_Standard appears in the middle of the active
7641 -- set of scopes. This affects the declaration and overriding of
7642 -- private inherited operations in instantiations of generic child
7643 -- units.
7645 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7646 end loop;
7648 raise Program_Error; -- unreachable
7649 end Has_Loop_In_Inner_Open_Scopes;
7651 --------------------
7652 -- In_Open_Scopes --
7653 --------------------
7655 function In_Open_Scopes (S : Entity_Id) return Boolean is
7656 begin
7657 -- Several scope stacks are maintained by Scope_Stack. The base of the
7658 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7659 -- flag in the scope stack entry. Note that the scope stacks used to
7660 -- simply be delimited implicitly by the presence of Standard_Standard
7661 -- at their base, but there now are cases where this is not sufficient
7662 -- because Standard_Standard actually may appear in the middle of the
7663 -- active set of scopes.
7665 for J in reverse 0 .. Scope_Stack.Last loop
7666 if Scope_Stack.Table (J).Entity = S then
7667 return True;
7668 end if;
7670 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7671 -- cases where Standard_Standard appears in the middle of the active
7672 -- set of scopes. This affects the declaration and overriding of
7673 -- private inherited operations in instantiations of generic child
7674 -- units.
7676 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7677 end loop;
7679 return False;
7680 end In_Open_Scopes;
7682 -----------------------------
7683 -- Inherit_Renamed_Profile --
7684 -----------------------------
7686 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7687 New_F : Entity_Id;
7688 Old_F : Entity_Id;
7689 Old_T : Entity_Id;
7690 New_T : Entity_Id;
7692 begin
7693 if Ekind (Old_S) = E_Operator then
7694 New_F := First_Formal (New_S);
7696 while Present (New_F) loop
7697 Set_Etype (New_F, Base_Type (Etype (New_F)));
7698 Next_Formal (New_F);
7699 end loop;
7701 Set_Etype (New_S, Base_Type (Etype (New_S)));
7703 else
7704 New_F := First_Formal (New_S);
7705 Old_F := First_Formal (Old_S);
7707 while Present (New_F) loop
7708 New_T := Etype (New_F);
7709 Old_T := Etype (Old_F);
7711 -- If the new type is a renaming of the old one, as is the
7712 -- case for actuals in instances, retain its name, to simplify
7713 -- later disambiguation.
7715 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7716 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7717 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7718 then
7719 null;
7720 else
7721 Set_Etype (New_F, Old_T);
7722 end if;
7724 Next_Formal (New_F);
7725 Next_Formal (Old_F);
7726 end loop;
7728 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7729 Set_Etype (New_S, Etype (Old_S));
7730 end if;
7731 end if;
7732 end Inherit_Renamed_Profile;
7734 ----------------
7735 -- Initialize --
7736 ----------------
7738 procedure Initialize is
7739 begin
7740 Urefs.Init;
7741 end Initialize;
7743 -------------------------
7744 -- Install_Use_Clauses --
7745 -------------------------
7747 procedure Install_Use_Clauses
7748 (Clause : Node_Id;
7749 Force_Installation : Boolean := False)
7751 U : Node_Id;
7752 P : Node_Id;
7753 Id : Entity_Id;
7755 begin
7756 U := Clause;
7757 while Present (U) loop
7759 -- Case of USE package
7761 if Nkind (U) = N_Use_Package_Clause then
7762 P := First (Names (U));
7763 while Present (P) loop
7764 Id := Entity (P);
7766 if Ekind (Id) = E_Package then
7767 if In_Use (Id) then
7768 Note_Redundant_Use (P);
7770 elsif Present (Renamed_Object (Id))
7771 and then In_Use (Renamed_Object (Id))
7772 then
7773 Note_Redundant_Use (P);
7775 elsif Force_Installation or else Applicable_Use (P) then
7776 Use_One_Package (Id, U);
7778 end if;
7779 end if;
7781 Next (P);
7782 end loop;
7784 -- Case of USE TYPE
7786 else
7787 P := First (Subtype_Marks (U));
7788 while Present (P) loop
7789 if not Is_Entity_Name (P)
7790 or else No (Entity (P))
7791 then
7792 null;
7794 elsif Entity (P) /= Any_Type then
7795 Use_One_Type (P);
7796 end if;
7798 Next (P);
7799 end loop;
7800 end if;
7802 Next_Use_Clause (U);
7803 end loop;
7804 end Install_Use_Clauses;
7806 -------------------------------------
7807 -- Is_Appropriate_For_Entry_Prefix --
7808 -------------------------------------
7810 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7811 P_Type : Entity_Id := T;
7813 begin
7814 if Is_Access_Type (P_Type) then
7815 P_Type := Designated_Type (P_Type);
7816 end if;
7818 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7819 end Is_Appropriate_For_Entry_Prefix;
7821 -------------------------------
7822 -- Is_Appropriate_For_Record --
7823 -------------------------------
7825 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7827 function Has_Components (T1 : Entity_Id) return Boolean;
7828 -- Determine if given type has components (i.e. is either a record
7829 -- type or a type that has discriminants).
7831 --------------------
7832 -- Has_Components --
7833 --------------------
7835 function Has_Components (T1 : Entity_Id) return Boolean is
7836 begin
7837 return Is_Record_Type (T1)
7838 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7839 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7840 or else (Is_Incomplete_Type (T1)
7841 and then From_Limited_With (T1)
7842 and then Present (Non_Limited_View (T1))
7843 and then Is_Record_Type
7844 (Get_Full_View (Non_Limited_View (T1))));
7845 end Has_Components;
7847 -- Start of processing for Is_Appropriate_For_Record
7849 begin
7850 return
7851 Present (T)
7852 and then (Has_Components (T)
7853 or else (Is_Access_Type (T)
7854 and then Has_Components (Designated_Type (T))));
7855 end Is_Appropriate_For_Record;
7857 ------------------------
7858 -- Note_Redundant_Use --
7859 ------------------------
7861 procedure Note_Redundant_Use (Clause : Node_Id) is
7862 Pack_Name : constant Entity_Id := Entity (Clause);
7863 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7864 Decl : constant Node_Id := Parent (Clause);
7866 Prev_Use : Node_Id := Empty;
7867 Redundant : Node_Id := Empty;
7868 -- The Use_Clause which is actually redundant. In the simplest case it
7869 -- is Pack itself, but when we compile a body we install its context
7870 -- before that of its spec, in which case it is the use_clause in the
7871 -- spec that will appear to be redundant, and we want the warning to be
7872 -- placed on the body. Similar complications appear when the redundancy
7873 -- is between a child unit and one of its ancestors.
7875 begin
7876 Set_Redundant_Use (Clause, True);
7878 if not Comes_From_Source (Clause)
7879 or else In_Instance
7880 or else not Warn_On_Redundant_Constructs
7881 then
7882 return;
7883 end if;
7885 if not Is_Compilation_Unit (Current_Scope) then
7887 -- If the use_clause is in an inner scope, it is made redundant by
7888 -- some clause in the current context, with one exception: If we're
7889 -- compiling a nested package body, and the use_clause comes from the
7890 -- corresponding spec, the clause is not necessarily fully redundant,
7891 -- so we should not warn. If a warning was warranted, it would have
7892 -- been given when the spec was processed.
7894 if Nkind (Parent (Decl)) = N_Package_Specification then
7895 declare
7896 Package_Spec_Entity : constant Entity_Id :=
7897 Defining_Unit_Name (Parent (Decl));
7898 begin
7899 if In_Package_Body (Package_Spec_Entity) then
7900 return;
7901 end if;
7902 end;
7903 end if;
7905 Redundant := Clause;
7906 Prev_Use := Cur_Use;
7908 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7909 declare
7910 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7911 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7912 Scop : Entity_Id;
7914 begin
7915 if Cur_Unit = New_Unit then
7917 -- Redundant clause in same body
7919 Redundant := Clause;
7920 Prev_Use := Cur_Use;
7922 elsif Cur_Unit = Current_Sem_Unit then
7924 -- If the new clause is not in the current unit it has been
7925 -- analyzed first, and it makes the other one redundant.
7926 -- However, if the new clause appears in a subunit, Cur_Unit
7927 -- is still the parent, and in that case the redundant one
7928 -- is the one appearing in the subunit.
7930 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7931 Redundant := Clause;
7932 Prev_Use := Cur_Use;
7934 -- Most common case: redundant clause in body,
7935 -- original clause in spec. Current scope is spec entity.
7937 elsif
7938 Current_Scope =
7939 Defining_Entity (
7940 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7941 then
7942 Redundant := Cur_Use;
7943 Prev_Use := Clause;
7945 else
7946 -- The new clause may appear in an unrelated unit, when
7947 -- the parents of a generic are being installed prior to
7948 -- instantiation. In this case there must be no warning.
7949 -- We detect this case by checking whether the current top
7950 -- of the stack is related to the current compilation.
7952 Scop := Current_Scope;
7953 while Present (Scop) and then Scop /= Standard_Standard loop
7954 if Is_Compilation_Unit (Scop)
7955 and then not Is_Child_Unit (Scop)
7956 then
7957 return;
7959 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7960 exit;
7961 end if;
7963 Scop := Scope (Scop);
7964 end loop;
7966 Redundant := Cur_Use;
7967 Prev_Use := Clause;
7968 end if;
7970 elsif New_Unit = Current_Sem_Unit then
7971 Redundant := Clause;
7972 Prev_Use := Cur_Use;
7974 else
7975 -- Neither is the current unit, so they appear in parent or
7976 -- sibling units. Warning will be emitted elsewhere.
7978 return;
7979 end if;
7980 end;
7982 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7983 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7984 then
7985 -- Use_clause is in child unit of current unit, and the child unit
7986 -- appears in the context of the body of the parent, so it has been
7987 -- installed first, even though it is the redundant one. Depending on
7988 -- their placement in the context, the visible or the private parts
7989 -- of the two units, either might appear as redundant, but the
7990 -- message has to be on the current unit.
7992 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7993 Redundant := Cur_Use;
7994 Prev_Use := Clause;
7995 else
7996 Redundant := Clause;
7997 Prev_Use := Cur_Use;
7998 end if;
8000 -- If the new use clause appears in the private part of a parent unit
8001 -- it may appear to be redundant w.r.t. a use clause in a child unit,
8002 -- but the previous use clause was needed in the visible part of the
8003 -- child, and no warning should be emitted.
8005 if Nkind (Parent (Decl)) = N_Package_Specification
8006 and then
8007 List_Containing (Decl) = Private_Declarations (Parent (Decl))
8008 then
8009 declare
8010 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
8011 Spec : constant Node_Id :=
8012 Specification (Unit (Cunit (Current_Sem_Unit)));
8014 begin
8015 if Is_Compilation_Unit (Par)
8016 and then Par /= Cunit_Entity (Current_Sem_Unit)
8017 and then Parent (Cur_Use) = Spec
8018 and then
8019 List_Containing (Cur_Use) = Visible_Declarations (Spec)
8020 then
8021 return;
8022 end if;
8023 end;
8024 end if;
8026 -- Finally, if the current use clause is in the context then
8027 -- the clause is redundant when it is nested within the unit.
8029 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
8030 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
8031 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
8032 then
8033 Redundant := Clause;
8034 Prev_Use := Cur_Use;
8036 else
8037 null;
8038 end if;
8040 if Present (Redundant) then
8041 Error_Msg_Sloc := Sloc (Prev_Use);
8042 Error_Msg_NE -- CODEFIX
8043 ("& is already use-visible through previous use clause #??",
8044 Redundant, Pack_Name);
8045 end if;
8046 end Note_Redundant_Use;
8048 ---------------
8049 -- Pop_Scope --
8050 ---------------
8052 procedure Pop_Scope is
8053 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8054 S : constant Entity_Id := SST.Entity;
8056 begin
8057 if Debug_Flag_E then
8058 Write_Info;
8059 end if;
8061 -- Set Default_Storage_Pool field of the library unit if necessary
8063 if Ekind_In (S, E_Package, E_Generic_Package)
8064 and then
8065 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8066 then
8067 declare
8068 Aux : constant Node_Id :=
8069 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8070 begin
8071 if No (Default_Storage_Pool (Aux)) then
8072 Set_Default_Storage_Pool (Aux, Default_Pool);
8073 end if;
8074 end;
8075 end if;
8077 Scope_Suppress := SST.Save_Scope_Suppress;
8078 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8079 Check_Policy_List := SST.Save_Check_Policy_List;
8080 Default_Pool := SST.Save_Default_Storage_Pool;
8081 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8082 SPARK_Mode := SST.Save_SPARK_Mode;
8083 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8084 Default_SSO := SST.Save_Default_SSO;
8085 Uneval_Old := SST.Save_Uneval_Old;
8087 if Debug_Flag_W then
8088 Write_Str ("<-- exiting scope: ");
8089 Write_Name (Chars (Current_Scope));
8090 Write_Str (", Depth=");
8091 Write_Int (Int (Scope_Stack.Last));
8092 Write_Eol;
8093 end if;
8095 End_Use_Clauses (SST.First_Use_Clause);
8097 -- If the actions to be wrapped are still there they will get lost
8098 -- causing incomplete code to be generated. It is better to abort in
8099 -- this case (and we do the abort even with assertions off since the
8100 -- penalty is incorrect code generation).
8102 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8103 raise Program_Error;
8104 end if;
8106 -- Free last subprogram name if allocated, and pop scope
8108 Free (SST.Last_Subprogram_Name);
8109 Scope_Stack.Decrement_Last;
8110 end Pop_Scope;
8112 ---------------
8113 -- Push_Scope --
8114 ---------------
8116 procedure Push_Scope (S : Entity_Id) is
8117 E : constant Entity_Id := Scope (S);
8119 begin
8120 if Ekind (S) = E_Void then
8121 null;
8123 -- Set scope depth if not a non-concurrent type, and we have not yet set
8124 -- the scope depth. This means that we have the first occurrence of the
8125 -- scope, and this is where the depth is set.
8127 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8128 and then not Scope_Depth_Set (S)
8129 then
8130 if S = Standard_Standard then
8131 Set_Scope_Depth_Value (S, Uint_0);
8133 elsif Is_Child_Unit (S) then
8134 Set_Scope_Depth_Value (S, Uint_1);
8136 elsif not Is_Record_Type (Current_Scope) then
8137 if Ekind (S) = E_Loop then
8138 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8139 else
8140 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8141 end if;
8142 end if;
8143 end if;
8145 Scope_Stack.Increment_Last;
8147 declare
8148 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8150 begin
8151 SST.Entity := S;
8152 SST.Save_Scope_Suppress := Scope_Suppress;
8153 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8154 SST.Save_Check_Policy_List := Check_Policy_List;
8155 SST.Save_Default_Storage_Pool := Default_Pool;
8156 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8157 SST.Save_SPARK_Mode := SPARK_Mode;
8158 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8159 SST.Save_Default_SSO := Default_SSO;
8160 SST.Save_Uneval_Old := Uneval_Old;
8162 if Scope_Stack.Last > Scope_Stack.First then
8163 SST.Component_Alignment_Default := Scope_Stack.Table
8164 (Scope_Stack.Last - 1).
8165 Component_Alignment_Default;
8166 end if;
8168 SST.Last_Subprogram_Name := null;
8169 SST.Is_Transient := False;
8170 SST.Node_To_Be_Wrapped := Empty;
8171 SST.Pending_Freeze_Actions := No_List;
8172 SST.Actions_To_Be_Wrapped := (others => No_List);
8173 SST.First_Use_Clause := Empty;
8174 SST.Is_Active_Stack_Base := False;
8175 SST.Previous_Visibility := False;
8176 SST.Locked_Shared_Objects := No_Elist;
8177 end;
8179 if Debug_Flag_W then
8180 Write_Str ("--> new scope: ");
8181 Write_Name (Chars (Current_Scope));
8182 Write_Str (", Id=");
8183 Write_Int (Int (Current_Scope));
8184 Write_Str (", Depth=");
8185 Write_Int (Int (Scope_Stack.Last));
8186 Write_Eol;
8187 end if;
8189 -- Deal with copying flags from the previous scope to this one. This is
8190 -- not necessary if either scope is standard, or if the new scope is a
8191 -- child unit.
8193 if S /= Standard_Standard
8194 and then Scope (S) /= Standard_Standard
8195 and then not Is_Child_Unit (S)
8196 then
8197 if Nkind (E) not in N_Entity then
8198 return;
8199 end if;
8201 -- Copy categorization flags from Scope (S) to S, this is not done
8202 -- when Scope (S) is Standard_Standard since propagation is from
8203 -- library unit entity inwards. Copy other relevant attributes as
8204 -- well (Discard_Names in particular).
8206 -- We only propagate inwards for library level entities,
8207 -- inner level subprograms do not inherit the categorization.
8209 if Is_Library_Level_Entity (S) then
8210 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8211 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8212 Set_Discard_Names (S, Discard_Names (E));
8213 Set_Suppress_Value_Tracking_On_Call
8214 (S, Suppress_Value_Tracking_On_Call (E));
8215 Set_Categorization_From_Scope (E => S, Scop => E);
8216 end if;
8217 end if;
8219 if Is_Child_Unit (S)
8220 and then Present (E)
8221 and then Ekind_In (E, E_Package, E_Generic_Package)
8222 and then
8223 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8224 then
8225 declare
8226 Aux : constant Node_Id :=
8227 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8228 begin
8229 if Present (Default_Storage_Pool (Aux)) then
8230 Default_Pool := Default_Storage_Pool (Aux);
8231 end if;
8232 end;
8233 end if;
8234 end Push_Scope;
8236 ---------------------
8237 -- Premature_Usage --
8238 ---------------------
8240 procedure Premature_Usage (N : Node_Id) is
8241 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8242 E : Entity_Id := Entity (N);
8244 begin
8245 -- Within an instance, the analysis of the actual for a formal object
8246 -- does not see the name of the object itself. This is significant only
8247 -- if the object is an aggregate, where its analysis does not do any
8248 -- name resolution on component associations. (see 4717-008). In such a
8249 -- case, look for the visible homonym on the chain.
8251 if In_Instance and then Present (Homonym (E)) then
8252 E := Homonym (E);
8253 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8254 E := Homonym (E);
8255 end loop;
8257 if Present (E) then
8258 Set_Entity (N, E);
8259 Set_Etype (N, Etype (E));
8260 return;
8261 end if;
8262 end if;
8264 if Kind = N_Component_Declaration then
8265 Error_Msg_N
8266 ("component&! cannot be used before end of record declaration", N);
8268 elsif Kind = N_Parameter_Specification then
8269 Error_Msg_N
8270 ("formal parameter&! cannot be used before end of specification",
8273 elsif Kind = N_Discriminant_Specification then
8274 Error_Msg_N
8275 ("discriminant&! cannot be used before end of discriminant part",
8278 elsif Kind = N_Procedure_Specification
8279 or else Kind = N_Function_Specification
8280 then
8281 Error_Msg_N
8282 ("subprogram&! cannot be used before end of its declaration",
8285 elsif Kind = N_Full_Type_Declaration then
8286 Error_Msg_N
8287 ("type& cannot be used before end of its declaration!", N);
8289 else
8290 Error_Msg_N
8291 ("object& cannot be used before end of its declaration!", N);
8292 end if;
8293 end Premature_Usage;
8295 ------------------------
8296 -- Present_System_Aux --
8297 ------------------------
8299 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8300 Loc : Source_Ptr;
8301 Aux_Name : Unit_Name_Type;
8302 Unum : Unit_Number_Type;
8303 Withn : Node_Id;
8304 With_Sys : Node_Id;
8305 The_Unit : Node_Id;
8307 function Find_System (C_Unit : Node_Id) return Entity_Id;
8308 -- Scan context clause of compilation unit to find with_clause
8309 -- for System.
8311 -----------------
8312 -- Find_System --
8313 -----------------
8315 function Find_System (C_Unit : Node_Id) return Entity_Id is
8316 With_Clause : Node_Id;
8318 begin
8319 With_Clause := First (Context_Items (C_Unit));
8320 while Present (With_Clause) loop
8321 if (Nkind (With_Clause) = N_With_Clause
8322 and then Chars (Name (With_Clause)) = Name_System)
8323 and then Comes_From_Source (With_Clause)
8324 then
8325 return With_Clause;
8326 end if;
8328 Next (With_Clause);
8329 end loop;
8331 return Empty;
8332 end Find_System;
8334 -- Start of processing for Present_System_Aux
8336 begin
8337 -- The child unit may have been loaded and analyzed already
8339 if Present (System_Aux_Id) then
8340 return True;
8342 -- If no previous pragma for System.Aux, nothing to load
8344 elsif No (System_Extend_Unit) then
8345 return False;
8347 -- Use the unit name given in the pragma to retrieve the unit.
8348 -- Verify that System itself appears in the context clause of the
8349 -- current compilation. If System is not present, an error will
8350 -- have been reported already.
8352 else
8353 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8355 The_Unit := Unit (Cunit (Current_Sem_Unit));
8357 if No (With_Sys)
8358 and then
8359 (Nkind (The_Unit) = N_Package_Body
8360 or else (Nkind (The_Unit) = N_Subprogram_Body
8361 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8362 then
8363 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8364 end if;
8366 if No (With_Sys) and then Present (N) then
8368 -- If we are compiling a subunit, we need to examine its
8369 -- context as well (Current_Sem_Unit is the parent unit);
8371 The_Unit := Parent (N);
8372 while Nkind (The_Unit) /= N_Compilation_Unit loop
8373 The_Unit := Parent (The_Unit);
8374 end loop;
8376 if Nkind (Unit (The_Unit)) = N_Subunit then
8377 With_Sys := Find_System (The_Unit);
8378 end if;
8379 end if;
8381 if No (With_Sys) then
8382 return False;
8383 end if;
8385 Loc := Sloc (With_Sys);
8386 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8387 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8388 Name_Buffer (1 .. 7) := "system.";
8389 Name_Buffer (Name_Len + 8) := '%';
8390 Name_Buffer (Name_Len + 9) := 's';
8391 Name_Len := Name_Len + 9;
8392 Aux_Name := Name_Find;
8394 Unum :=
8395 Load_Unit
8396 (Load_Name => Aux_Name,
8397 Required => False,
8398 Subunit => False,
8399 Error_Node => With_Sys);
8401 if Unum /= No_Unit then
8402 Semantics (Cunit (Unum));
8403 System_Aux_Id :=
8404 Defining_Entity (Specification (Unit (Cunit (Unum))));
8406 Withn :=
8407 Make_With_Clause (Loc,
8408 Name =>
8409 Make_Expanded_Name (Loc,
8410 Chars => Chars (System_Aux_Id),
8411 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8412 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8414 Set_Entity (Name (Withn), System_Aux_Id);
8416 Set_Library_Unit (Withn, Cunit (Unum));
8417 Set_Corresponding_Spec (Withn, System_Aux_Id);
8418 Set_First_Name (Withn, True);
8419 Set_Implicit_With (Withn, True);
8421 Insert_After (With_Sys, Withn);
8422 Mark_Rewrite_Insertion (Withn);
8423 Set_Context_Installed (Withn);
8425 return True;
8427 -- Here if unit load failed
8429 else
8430 Error_Msg_Name_1 := Name_System;
8431 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8432 Error_Msg_N
8433 ("extension package `%.%` does not exist",
8434 Opt.System_Extend_Unit);
8435 return False;
8436 end if;
8437 end if;
8438 end Present_System_Aux;
8440 -------------------------
8441 -- Restore_Scope_Stack --
8442 -------------------------
8444 procedure Restore_Scope_Stack
8445 (List : Elist_Id;
8446 Handle_Use : Boolean := True)
8448 SS_Last : constant Int := Scope_Stack.Last;
8449 Elmt : Elmt_Id;
8451 begin
8452 -- Restore visibility of previous scope stack, if any, using the list
8453 -- we saved (we use Remove, since this list will not be used again).
8455 loop
8456 Elmt := Last_Elmt (List);
8457 exit when Elmt = No_Elmt;
8458 Set_Is_Immediately_Visible (Node (Elmt));
8459 Remove_Last_Elmt (List);
8460 end loop;
8462 -- Restore use clauses
8464 if SS_Last >= Scope_Stack.First
8465 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8466 and then Handle_Use
8467 then
8468 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8469 end if;
8470 end Restore_Scope_Stack;
8472 ----------------------
8473 -- Save_Scope_Stack --
8474 ----------------------
8476 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8477 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8478 -- from immediate visibility entities and Restore_Scope_Stack took care
8479 -- of restoring their visibility analyzing the context of each entity. The
8480 -- problem of such approach is that it was fragile and caused unexpected
8481 -- visibility problems, and indeed one test was found where there was a
8482 -- real problem.
8484 -- Furthermore, the following experiment was carried out:
8486 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8487 -- entities whose attribute Is_Immediately_Visible is modified
8488 -- from True to False.
8490 -- - Restore_Scope_Stack was modified to store in another Elist2
8491 -- all the entities whose attribute Is_Immediately_Visible is
8492 -- modified from False to True.
8494 -- - Extra code was added to verify that all the elements of Elist1
8495 -- are found in Elist2
8497 -- This test shows that there may be more occurrences of this problem which
8498 -- have not yet been detected. As a result, we replaced that approach by
8499 -- the current one in which Save_Scope_Stack returns the list of entities
8500 -- whose visibility is changed, and that list is passed to Restore_Scope_
8501 -- Stack to undo that change. This approach is simpler and safer, although
8502 -- it consumes more memory.
8504 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8505 Result : constant Elist_Id := New_Elmt_List;
8506 E : Entity_Id;
8507 S : Entity_Id;
8508 SS_Last : constant Int := Scope_Stack.Last;
8510 procedure Remove_From_Visibility (E : Entity_Id);
8511 -- If E is immediately visible then append it to the result and remove
8512 -- it temporarily from visibility.
8514 ----------------------------
8515 -- Remove_From_Visibility --
8516 ----------------------------
8518 procedure Remove_From_Visibility (E : Entity_Id) is
8519 begin
8520 if Is_Immediately_Visible (E) then
8521 Append_Elmt (E, Result);
8522 Set_Is_Immediately_Visible (E, False);
8523 end if;
8524 end Remove_From_Visibility;
8526 -- Start of processing for Save_Scope_Stack
8528 begin
8529 if SS_Last >= Scope_Stack.First
8530 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8531 then
8532 if Handle_Use then
8533 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8534 end if;
8536 -- If the call is from within a compilation unit, as when called from
8537 -- Rtsfind, make current entries in scope stack invisible while we
8538 -- analyze the new unit.
8540 for J in reverse 0 .. SS_Last loop
8541 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8542 or else No (Scope_Stack.Table (J).Entity);
8544 S := Scope_Stack.Table (J).Entity;
8546 Remove_From_Visibility (S);
8548 E := First_Entity (S);
8549 while Present (E) loop
8550 Remove_From_Visibility (E);
8551 Next_Entity (E);
8552 end loop;
8553 end loop;
8555 end if;
8557 return Result;
8558 end Save_Scope_Stack;
8560 -------------
8561 -- Set_Use --
8562 -------------
8564 procedure Set_Use (L : List_Id) is
8565 Decl : Node_Id;
8566 Pack_Name : Node_Id;
8567 Pack : Entity_Id;
8568 Id : Entity_Id;
8570 begin
8571 if Present (L) then
8572 Decl := First (L);
8573 while Present (Decl) loop
8574 if Nkind (Decl) = N_Use_Package_Clause then
8575 Chain_Use_Clause (Decl);
8577 Pack_Name := First (Names (Decl));
8578 while Present (Pack_Name) loop
8579 Pack := Entity (Pack_Name);
8581 if Ekind (Pack) = E_Package
8582 and then Applicable_Use (Pack_Name)
8583 then
8584 Use_One_Package (Pack, Decl);
8585 end if;
8587 Next (Pack_Name);
8588 end loop;
8590 elsif Nkind (Decl) = N_Use_Type_Clause then
8591 Chain_Use_Clause (Decl);
8593 Id := First (Subtype_Marks (Decl));
8594 while Present (Id) loop
8595 if Entity (Id) /= Any_Type then
8596 Use_One_Type (Id);
8597 end if;
8599 Next (Id);
8600 end loop;
8601 end if;
8603 Next (Decl);
8604 end loop;
8605 end if;
8606 end Set_Use;
8608 ---------------------
8609 -- Use_One_Package --
8610 ---------------------
8612 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8613 Id : Entity_Id;
8614 Prev : Entity_Id;
8615 Current_Instance : Entity_Id := Empty;
8616 Real_P : Entity_Id;
8617 Private_With_OK : Boolean := False;
8619 begin
8620 if Ekind (P) /= E_Package then
8621 return;
8622 end if;
8624 Set_In_Use (P);
8625 Set_Current_Use_Clause (P, N);
8627 -- Ada 2005 (AI-50217): Check restriction
8629 if From_Limited_With (P) then
8630 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8631 end if;
8633 -- Find enclosing instance, if any
8635 if In_Instance then
8636 Current_Instance := Current_Scope;
8637 while not Is_Generic_Instance (Current_Instance) loop
8638 Current_Instance := Scope (Current_Instance);
8639 end loop;
8641 if No (Hidden_By_Use_Clause (N)) then
8642 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8643 end if;
8644 end if;
8646 -- If unit is a package renaming, indicate that the renamed
8647 -- package is also in use (the flags on both entities must
8648 -- remain consistent, and a subsequent use of either of them
8649 -- should be recognized as redundant).
8651 if Present (Renamed_Object (P)) then
8652 Set_In_Use (Renamed_Object (P));
8653 Set_Current_Use_Clause (Renamed_Object (P), N);
8654 Real_P := Renamed_Object (P);
8655 else
8656 Real_P := P;
8657 end if;
8659 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8660 -- found in the private part of a package specification
8662 if In_Private_Part (Current_Scope)
8663 and then Has_Private_With (P)
8664 and then Is_Child_Unit (Current_Scope)
8665 and then Is_Child_Unit (P)
8666 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8667 then
8668 Private_With_OK := True;
8669 end if;
8671 -- Loop through entities in one package making them potentially
8672 -- use-visible.
8674 Id := First_Entity (P);
8675 while Present (Id)
8676 and then (Id /= First_Private_Entity (P)
8677 or else Private_With_OK) -- Ada 2005 (AI-262)
8678 loop
8679 Prev := Current_Entity (Id);
8680 while Present (Prev) loop
8681 if Is_Immediately_Visible (Prev)
8682 and then (not Is_Overloadable (Prev)
8683 or else not Is_Overloadable (Id)
8684 or else (Type_Conformant (Id, Prev)))
8685 then
8686 if No (Current_Instance) then
8688 -- Potentially use-visible entity remains hidden
8690 goto Next_Usable_Entity;
8692 -- A use clause within an instance hides outer global entities,
8693 -- which are not used to resolve local entities in the
8694 -- instance. Note that the predefined entities in Standard
8695 -- could not have been hidden in the generic by a use clause,
8696 -- and therefore remain visible. Other compilation units whose
8697 -- entities appear in Standard must be hidden in an instance.
8699 -- To determine whether an entity is external to the instance
8700 -- we compare the scope depth of its scope with that of the
8701 -- current instance. However, a generic actual of a subprogram
8702 -- instance is declared in the wrapper package but will not be
8703 -- hidden by a use-visible entity. similarly, an entity that is
8704 -- declared in an enclosing instance will not be hidden by an
8705 -- an entity declared in a generic actual, which can only have
8706 -- been use-visible in the generic and will not have hidden the
8707 -- entity in the generic parent.
8709 -- If Id is called Standard, the predefined package with the
8710 -- same name is in the homonym chain. It has to be ignored
8711 -- because it has no defined scope (being the only entity in
8712 -- the system with this mandated behavior).
8714 elsif not Is_Hidden (Id)
8715 and then Present (Scope (Prev))
8716 and then not Is_Wrapper_Package (Scope (Prev))
8717 and then Scope_Depth (Scope (Prev)) <
8718 Scope_Depth (Current_Instance)
8719 and then (Scope (Prev) /= Standard_Standard
8720 or else Sloc (Prev) > Standard_Location)
8721 then
8722 if In_Open_Scopes (Scope (Prev))
8723 and then Is_Generic_Instance (Scope (Prev))
8724 and then Present (Associated_Formal_Package (P))
8725 then
8726 null;
8728 else
8729 Set_Is_Potentially_Use_Visible (Id);
8730 Set_Is_Immediately_Visible (Prev, False);
8731 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8732 end if;
8733 end if;
8735 -- A user-defined operator is not use-visible if the predefined
8736 -- operator for the type is immediately visible, which is the case
8737 -- if the type of the operand is in an open scope. This does not
8738 -- apply to user-defined operators that have operands of different
8739 -- types, because the predefined mixed mode operations (multiply
8740 -- and divide) apply to universal types and do not hide anything.
8742 elsif Ekind (Prev) = E_Operator
8743 and then Operator_Matches_Spec (Prev, Id)
8744 and then In_Open_Scopes
8745 (Scope (Base_Type (Etype (First_Formal (Id)))))
8746 and then (No (Next_Formal (First_Formal (Id)))
8747 or else Etype (First_Formal (Id)) =
8748 Etype (Next_Formal (First_Formal (Id)))
8749 or else Chars (Prev) = Name_Op_Expon)
8750 then
8751 goto Next_Usable_Entity;
8753 -- In an instance, two homonyms may become use_visible through the
8754 -- actuals of distinct formal packages. In the generic, only the
8755 -- current one would have been visible, so make the other one
8756 -- not use_visible.
8758 elsif Present (Current_Instance)
8759 and then Is_Potentially_Use_Visible (Prev)
8760 and then not Is_Overloadable (Prev)
8761 and then Scope (Id) /= Scope (Prev)
8762 and then Used_As_Generic_Actual (Scope (Prev))
8763 and then Used_As_Generic_Actual (Scope (Id))
8764 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8765 Current_Use_Clause (Scope (Id)))
8766 then
8767 Set_Is_Potentially_Use_Visible (Prev, False);
8768 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8769 end if;
8771 Prev := Homonym (Prev);
8772 end loop;
8774 -- On exit, we know entity is not hidden, unless it is private
8776 if not Is_Hidden (Id)
8777 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8778 then
8779 Set_Is_Potentially_Use_Visible (Id);
8781 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8782 Set_Is_Potentially_Use_Visible (Full_View (Id));
8783 end if;
8784 end if;
8786 <<Next_Usable_Entity>>
8787 Next_Entity (Id);
8788 end loop;
8790 -- Child units are also made use-visible by a use clause, but they may
8791 -- appear after all visible declarations in the parent entity list.
8793 while Present (Id) loop
8794 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8795 Set_Is_Potentially_Use_Visible (Id);
8796 end if;
8798 Next_Entity (Id);
8799 end loop;
8801 if Chars (Real_P) = Name_System
8802 and then Scope (Real_P) = Standard_Standard
8803 and then Present_System_Aux (N)
8804 then
8805 Use_One_Package (System_Aux_Id, N);
8806 end if;
8808 end Use_One_Package;
8810 ------------------
8811 -- Use_One_Type --
8812 ------------------
8814 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8815 Elmt : Elmt_Id;
8816 Is_Known_Used : Boolean;
8817 Op_List : Elist_Id;
8818 T : Entity_Id;
8820 function Spec_Reloaded_For_Body return Boolean;
8821 -- Determine whether the compilation unit is a package body and the use
8822 -- type clause is in the spec of the same package. Even though the spec
8823 -- was analyzed first, its context is reloaded when analysing the body.
8825 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8826 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8827 -- class-wide operations of ancestor types are use-visible if the
8828 -- ancestor type is visible.
8830 ----------------------------
8831 -- Spec_Reloaded_For_Body --
8832 ----------------------------
8834 function Spec_Reloaded_For_Body return Boolean is
8835 begin
8836 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8837 declare
8838 Spec : constant Node_Id :=
8839 Parent (List_Containing (Parent (Id)));
8841 begin
8842 -- Check whether type is declared in a package specification,
8843 -- and current unit is the corresponding package body. The
8844 -- use clauses themselves may be within a nested package.
8846 return
8847 Nkind (Spec) = N_Package_Specification
8848 and then
8849 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8850 Cunit_Entity (Current_Sem_Unit));
8851 end;
8852 end if;
8854 return False;
8855 end Spec_Reloaded_For_Body;
8857 -------------------------------
8858 -- Use_Class_Wide_Operations --
8859 -------------------------------
8861 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8862 Scop : Entity_Id;
8863 Ent : Entity_Id;
8865 function Is_Class_Wide_Operation_Of
8866 (Op : Entity_Id;
8867 T : Entity_Id) return Boolean;
8868 -- Determine whether a subprogram has a class-wide parameter or
8869 -- result that is T'Class.
8871 ---------------------------------
8872 -- Is_Class_Wide_Operation_Of --
8873 ---------------------------------
8875 function Is_Class_Wide_Operation_Of
8876 (Op : Entity_Id;
8877 T : Entity_Id) return Boolean
8879 Formal : Entity_Id;
8881 begin
8882 Formal := First_Formal (Op);
8883 while Present (Formal) loop
8884 if Etype (Formal) = Class_Wide_Type (T) then
8885 return True;
8886 end if;
8887 Next_Formal (Formal);
8888 end loop;
8890 if Etype (Op) = Class_Wide_Type (T) then
8891 return True;
8892 end if;
8894 return False;
8895 end Is_Class_Wide_Operation_Of;
8897 -- Start of processing for Use_Class_Wide_Operations
8899 begin
8900 Scop := Scope (Typ);
8901 if not Is_Hidden (Scop) then
8902 Ent := First_Entity (Scop);
8903 while Present (Ent) loop
8904 if Is_Overloadable (Ent)
8905 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8906 and then not Is_Potentially_Use_Visible (Ent)
8907 then
8908 Set_Is_Potentially_Use_Visible (Ent);
8909 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8910 end if;
8912 Next_Entity (Ent);
8913 end loop;
8914 end if;
8916 if Is_Derived_Type (Typ) then
8917 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8918 end if;
8919 end Use_Class_Wide_Operations;
8921 -- Start of processing for Use_One_Type
8923 begin
8924 -- It is the type determined by the subtype mark (8.4(8)) whose
8925 -- operations become potentially use-visible.
8927 T := Base_Type (Entity (Id));
8929 -- Either the type itself is used, the package where it is declared
8930 -- is in use or the entity is declared in the current package, thus
8931 -- use-visible.
8933 Is_Known_Used :=
8934 In_Use (T)
8935 or else In_Use (Scope (T))
8936 or else Scope (T) = Current_Scope;
8938 Set_Redundant_Use (Id,
8939 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8941 if Ekind (T) = E_Incomplete_Type then
8942 Error_Msg_N ("premature usage of incomplete type", Id);
8944 elsif In_Open_Scopes (Scope (T)) then
8945 null;
8947 -- A limited view cannot appear in a use_type clause. However, an access
8948 -- type whose designated type is limited has the flag but is not itself
8949 -- a limited view unless we only have a limited view of its enclosing
8950 -- package.
8952 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8953 Error_Msg_N
8954 ("incomplete type from limited view "
8955 & "cannot appear in use clause", Id);
8957 -- If the subtype mark designates a subtype in a different package,
8958 -- we have to check that the parent type is visible, otherwise the
8959 -- use type clause is a noop. Not clear how to do that???
8961 elsif not Redundant_Use (Id) then
8962 Set_In_Use (T);
8964 -- If T is tagged, primitive operators on class-wide operands
8965 -- are also available.
8967 if Is_Tagged_Type (T) then
8968 Set_In_Use (Class_Wide_Type (T));
8969 end if;
8971 Set_Current_Use_Clause (T, Parent (Id));
8973 -- Iterate over primitive operations of the type. If an operation is
8974 -- already use_visible, it is the result of a previous use_clause,
8975 -- and already appears on the corresponding entity chain. If the
8976 -- clause is being reinstalled, operations are already use-visible.
8978 if Installed then
8979 null;
8981 else
8982 Op_List := Collect_Primitive_Operations (T);
8983 Elmt := First_Elmt (Op_List);
8984 while Present (Elmt) loop
8985 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8986 or else Chars (Node (Elmt)) in Any_Operator_Name)
8987 and then not Is_Hidden (Node (Elmt))
8988 and then not Is_Potentially_Use_Visible (Node (Elmt))
8989 then
8990 Set_Is_Potentially_Use_Visible (Node (Elmt));
8991 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8993 elsif Ada_Version >= Ada_2012
8994 and then All_Present (Parent (Id))
8995 and then not Is_Hidden (Node (Elmt))
8996 and then not Is_Potentially_Use_Visible (Node (Elmt))
8997 then
8998 Set_Is_Potentially_Use_Visible (Node (Elmt));
8999 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9000 end if;
9002 Next_Elmt (Elmt);
9003 end loop;
9004 end if;
9006 if Ada_Version >= Ada_2012
9007 and then All_Present (Parent (Id))
9008 and then Is_Tagged_Type (T)
9009 then
9010 Use_Class_Wide_Operations (T);
9011 end if;
9012 end if;
9014 -- If warning on redundant constructs, check for unnecessary WITH
9016 if Warn_On_Redundant_Constructs
9017 and then Is_Known_Used
9019 -- with P; with P; use P;
9020 -- package P is package X is package body X is
9021 -- type T ... use P.T;
9023 -- The compilation unit is the body of X. GNAT first compiles the
9024 -- spec of X, then proceeds to the body. At that point P is marked
9025 -- as use visible. The analysis then reinstalls the spec along with
9026 -- its context. The use clause P.T is now recognized as redundant,
9027 -- but in the wrong context. Do not emit a warning in such cases.
9028 -- Do not emit a warning either if we are in an instance, there is
9029 -- no redundancy between an outer use_clause and one that appears
9030 -- within the generic.
9032 and then not Spec_Reloaded_For_Body
9033 and then not In_Instance
9034 then
9035 -- The type already has a use clause
9037 if In_Use (T) then
9039 -- Case where we know the current use clause for the type
9041 if Present (Current_Use_Clause (T)) then
9042 Use_Clause_Known : declare
9043 Clause1 : constant Node_Id := Parent (Id);
9044 Clause2 : constant Node_Id := Current_Use_Clause (T);
9045 Ent1 : Entity_Id;
9046 Ent2 : Entity_Id;
9047 Err_No : Node_Id;
9048 Unit1 : Node_Id;
9049 Unit2 : Node_Id;
9051 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
9052 -- Return the appropriate entity for determining which unit
9053 -- has a deeper scope: the defining entity for U, unless U
9054 -- is a package instance, in which case we retrieve the
9055 -- entity of the instance spec.
9057 --------------------
9058 -- Entity_Of_Unit --
9059 --------------------
9061 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
9062 begin
9063 if Nkind (U) = N_Package_Instantiation
9064 and then Analyzed (U)
9065 then
9066 return Defining_Entity (Instance_Spec (U));
9067 else
9068 return Defining_Entity (U);
9069 end if;
9070 end Entity_Of_Unit;
9072 -- Start of processing for Use_Clause_Known
9074 begin
9075 -- If both current use type clause and the use type clause
9076 -- for the type are at the compilation unit level, one of
9077 -- the units must be an ancestor of the other, and the
9078 -- warning belongs on the descendant.
9080 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9081 and then
9082 Nkind (Parent (Clause2)) = N_Compilation_Unit
9083 then
9084 -- If the unit is a subprogram body that acts as spec,
9085 -- the context clause is shared with the constructed
9086 -- subprogram spec. Clearly there is no redundancy.
9088 if Clause1 = Clause2 then
9089 return;
9090 end if;
9092 Unit1 := Unit (Parent (Clause1));
9093 Unit2 := Unit (Parent (Clause2));
9095 -- If both clauses are on same unit, or one is the body
9096 -- of the other, or one of them is in a subunit, report
9097 -- redundancy on the later one.
9099 if Unit1 = Unit2 then
9100 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9101 Error_Msg_NE -- CODEFIX
9102 ("& is already use-visible through previous "
9103 & "use_type_clause #??", Clause1, T);
9104 return;
9106 elsif Nkind (Unit1) = N_Subunit then
9107 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9108 Error_Msg_NE -- CODEFIX
9109 ("& is already use-visible through previous "
9110 & "use_type_clause #??", Clause1, T);
9111 return;
9113 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9114 and then Nkind (Unit1) /= Nkind (Unit2)
9115 and then Nkind (Unit1) /= N_Subunit
9116 then
9117 Error_Msg_Sloc := Sloc (Clause1);
9118 Error_Msg_NE -- CODEFIX
9119 ("& is already use-visible through previous "
9120 & "use_type_clause #??", Current_Use_Clause (T), T);
9121 return;
9122 end if;
9124 -- There is a redundant use type clause in a child unit.
9125 -- Determine which of the units is more deeply nested.
9126 -- If a unit is a package instance, retrieve the entity
9127 -- and its scope from the instance spec.
9129 Ent1 := Entity_Of_Unit (Unit1);
9130 Ent2 := Entity_Of_Unit (Unit2);
9132 if Scope (Ent2) = Standard_Standard then
9133 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9134 Err_No := Clause1;
9136 elsif Scope (Ent1) = Standard_Standard then
9137 Error_Msg_Sloc := Sloc (Id);
9138 Err_No := Clause2;
9140 -- If both units are child units, we determine which one
9141 -- is the descendant by the scope distance to the
9142 -- ultimate parent unit.
9144 else
9145 declare
9146 S1, S2 : Entity_Id;
9148 begin
9149 S1 := Scope (Ent1);
9150 S2 := Scope (Ent2);
9151 while Present (S1)
9152 and then Present (S2)
9153 and then S1 /= Standard_Standard
9154 and then S2 /= Standard_Standard
9155 loop
9156 S1 := Scope (S1);
9157 S2 := Scope (S2);
9158 end loop;
9160 if S1 = Standard_Standard then
9161 Error_Msg_Sloc := Sloc (Id);
9162 Err_No := Clause2;
9163 else
9164 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9165 Err_No := Clause1;
9166 end if;
9167 end;
9168 end if;
9170 Error_Msg_NE -- CODEFIX
9171 ("& is already use-visible through previous "
9172 & "use_type_clause #??", Err_No, Id);
9174 -- Case where current use type clause and the use type
9175 -- clause for the type are not both at the compilation unit
9176 -- level. In this case we don't have location information.
9178 else
9179 Error_Msg_NE -- CODEFIX
9180 ("& is already use-visible through previous "
9181 & "use type clause??", Id, T);
9182 end if;
9183 end Use_Clause_Known;
9185 -- Here if Current_Use_Clause is not set for T, another case
9186 -- where we do not have the location information available.
9188 else
9189 Error_Msg_NE -- CODEFIX
9190 ("& is already use-visible through previous "
9191 & "use type clause??", Id, T);
9192 end if;
9194 -- The package where T is declared is already used
9196 elsif In_Use (Scope (T)) then
9197 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9198 Error_Msg_NE -- CODEFIX
9199 ("& is already use-visible through package use clause #??",
9200 Id, T);
9202 -- The current scope is the package where T is declared
9204 else
9205 Error_Msg_Node_2 := Scope (T);
9206 Error_Msg_NE -- CODEFIX
9207 ("& is already use-visible inside package &??", Id, T);
9208 end if;
9209 end if;
9210 end Use_One_Type;
9212 ----------------
9213 -- Write_Info --
9214 ----------------
9216 procedure Write_Info is
9217 Id : Entity_Id := First_Entity (Current_Scope);
9219 begin
9220 -- No point in dumping standard entities
9222 if Current_Scope = Standard_Standard then
9223 return;
9224 end if;
9226 Write_Str ("========================================================");
9227 Write_Eol;
9228 Write_Str (" Defined Entities in ");
9229 Write_Name (Chars (Current_Scope));
9230 Write_Eol;
9231 Write_Str ("========================================================");
9232 Write_Eol;
9234 if No (Id) then
9235 Write_Str ("-- none --");
9236 Write_Eol;
9238 else
9239 while Present (Id) loop
9240 Write_Entity_Info (Id, " ");
9241 Next_Entity (Id);
9242 end loop;
9243 end if;
9245 if Scope (Current_Scope) = Standard_Standard then
9247 -- Print information on the current unit itself
9249 Write_Entity_Info (Current_Scope, " ");
9250 end if;
9252 Write_Eol;
9253 end Write_Info;
9255 --------
9256 -- ws --
9257 --------
9259 procedure ws is
9260 S : Entity_Id;
9261 begin
9262 for J in reverse 1 .. Scope_Stack.Last loop
9263 S := Scope_Stack.Table (J).Entity;
9264 Write_Int (Int (S));
9265 Write_Str (" === ");
9266 Write_Name (Chars (S));
9267 Write_Eol;
9268 end loop;
9269 end ws;
9271 --------
9272 -- we --
9273 --------
9275 procedure we (S : Entity_Id) is
9276 E : Entity_Id;
9277 begin
9278 E := First_Entity (S);
9279 while Present (E) loop
9280 Write_Int (Int (E));
9281 Write_Str (" === ");
9282 Write_Name (Chars (E));
9283 Write_Eol;
9284 Next_Entity (E);
9285 end loop;
9286 end we;
9287 end Sem_Ch8;