1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 package body Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
is
32 package Ops
renames Tree_Operations
;
41 (Tree
: Tree_Type
'Class;
42 Key
: Key_Type
) return Count_Type
46 N
: Nodes_Type
renames Tree
.Nodes
;
53 if Is_Greater_Key_Node
(Key
, N
(X
)) then
54 X
:= Ops
.Right
(N
(X
));
57 X
:= Ops
.Left
(N
(X
));
69 (Tree
: Tree_Type
'Class;
70 Key
: Key_Type
) return Count_Type
74 N
: Nodes_Type
renames Tree
.Nodes
;
81 if Is_Greater_Key_Node
(Key
, N
(X
)) then
82 X
:= Ops
.Right
(N
(X
));
85 X
:= Ops
.Left
(N
(X
));
93 if Is_Less_Key_Node
(Key
, N
(Y
)) then
105 (Tree
: Tree_Type
'Class;
106 Key
: Key_Type
) return Count_Type
110 N
: Nodes_Type
renames Tree
.Nodes
;
117 if Is_Less_Key_Node
(Key
, N
(X
)) then
118 X
:= Ops
.Left
(N
(X
));
121 X
:= Ops
.Right
(N
(X
));
128 --------------------------------
129 -- Generic_Conditional_Insert --
130 --------------------------------
132 procedure Generic_Conditional_Insert
133 (Tree
: in out Tree_Type
'Class;
135 Node
: out Count_Type
;
136 Inserted
: out Boolean)
140 N
: Nodes_Type
renames Tree
.Nodes
;
143 -- This is a "conditional" insertion, meaning that the insertion request
144 -- can "fail" in the sense that no new node is created. If the Key is
145 -- equivalent to an existing node, then we return the existing node and
146 -- Inserted is set to False. Otherwise, we allocate a new node (via
147 -- Insert_Post) and Inserted is set to True.
149 -- Note that we are testing for equivalence here, not equality. Key must
150 -- be strictly less than its next neighbor, and strictly greater than
151 -- its previous neighbor, in order for the conditional insertion to
154 -- We search the tree to find the nearest neighbor of Key, which is
155 -- either the smallest node greater than Key (Inserted is True), or the
156 -- largest node less or equivalent to Key (Inserted is False).
163 Inserted
:= Is_Less_Key_Node
(Key
, N
(X
));
164 X
:= (if Inserted
then Ops
.Left
(N
(X
)) else Ops
.Right
(N
(X
)));
169 -- Either Tree is empty, or Key is less than Y. If Y is the first
170 -- node in the tree, then there are no other nodes that we need to
171 -- search for, and we insert a new node into the tree.
173 if Y
= Tree
.First
then
174 Insert_Post
(Tree
, Y
, True, Node
);
178 -- Y is the next nearest-neighbor of Key. We know that Key is not
179 -- equivalent to Y (because Key is strictly less than Y), so we move
180 -- to the previous node, the nearest-neighbor just smaller or
181 -- equivalent to Key.
183 Node
:= Ops
.Previous
(Tree
, Y
);
186 -- Y is the previous nearest-neighbor of Key. We know that Key is not
187 -- less than Y, which means either that Key is equivalent to Y, or
193 -- Key is equivalent to or greater than Node. We must resolve which is
194 -- the case, to determine whether the conditional insertion succeeds.
196 if Is_Greater_Key_Node
(Key
, N
(Node
)) then
198 -- Key is strictly greater than Node, which means that Key is not
199 -- equivalent to Node. In this case, the insertion succeeds, and we
200 -- insert a new node into the tree.
202 Insert_Post
(Tree
, Y
, Inserted
, Node
);
207 -- Key is equivalent to Node. This is a conditional insertion, so we do
208 -- not insert a new node in this case. We return the existing node and
209 -- report that no insertion has occurred.
212 end Generic_Conditional_Insert
;
214 ------------------------------------------
215 -- Generic_Conditional_Insert_With_Hint --
216 ------------------------------------------
218 procedure Generic_Conditional_Insert_With_Hint
219 (Tree
: in out Tree_Type
'Class;
220 Position
: Count_Type
;
222 Node
: out Count_Type
;
223 Inserted
: out Boolean)
225 N
: Nodes_Type
renames Tree
.Nodes
;
228 -- The purpose of a hint is to avoid a search from the root of
229 -- tree. If we have it hint it means we only need to traverse the
230 -- subtree rooted at the hint to find the nearest neighbor. Note
231 -- that finding the neighbor means merely walking the tree; this
232 -- is not a search and the only comparisons that occur are with
233 -- the hint and its neighbor.
235 -- If Position is 0, this is interpreted to mean that Key is
236 -- large relative to the nodes in the tree. If the tree is empty,
237 -- or Key is greater than the last node in the tree, then we're
238 -- done; otherwise the hint was "wrong" and we must search.
240 if Position
= 0 then -- largest
242 or else Is_Greater_Key_Node
(Key
, N
(Tree
.Last
))
244 Insert_Post
(Tree
, Tree
.Last
, False, Node
);
247 Conditional_Insert_Sans_Hint
(Tree
, Key
, Node
, Inserted
);
253 pragma Assert
(Tree
.Length
> 0);
255 -- A hint can either name the node that immediately follows Key,
256 -- or immediately precedes Key. We first test whether Key is
257 -- less than the hint, and if so we compare Key to the node that
258 -- precedes the hint. If Key is both less than the hint and
259 -- greater than the hint's preceding neighbor, then we're done;
260 -- otherwise we must search.
262 -- Note also that a hint can either be an anterior node or a leaf
263 -- node. A new node is always inserted at the bottom of the tree
264 -- (at least prior to rebalancing), becoming the new left or
265 -- right child of leaf node (which prior to the insertion must
266 -- necessarily be null, since this is a leaf). If the hint names
267 -- an anterior node then its neighbor must be a leaf, and so
268 -- (here) we insert after the neighbor. If the hint names a leaf
269 -- then its neighbor must be anterior and so we insert before the
272 if Is_Less_Key_Node
(Key
, N
(Position
)) then
274 Before
: constant Count_Type
:= Ops
.Previous
(Tree
, Position
);
278 Insert_Post
(Tree
, Tree
.First
, True, Node
);
281 elsif Is_Greater_Key_Node
(Key
, N
(Before
)) then
282 if Ops
.Right
(N
(Before
)) = 0 then
283 Insert_Post
(Tree
, Before
, False, Node
);
285 Insert_Post
(Tree
, Position
, True, Node
);
291 Conditional_Insert_Sans_Hint
(Tree
, Key
, Node
, Inserted
);
298 -- We know that Key isn't less than the hint so we try again,
299 -- this time to see if it's greater than the hint. If so we
300 -- compare Key to the node that follows the hint. If Key is both
301 -- greater than the hint and less than the hint's next neighbor,
302 -- then we're done; otherwise we must search.
304 if Is_Greater_Key_Node
(Key
, N
(Position
)) then
306 After
: constant Count_Type
:= Ops
.Next
(Tree
, Position
);
310 Insert_Post
(Tree
, Tree
.Last
, False, Node
);
313 elsif Is_Less_Key_Node
(Key
, N
(After
)) then
314 if Ops
.Right
(N
(Position
)) = 0 then
315 Insert_Post
(Tree
, Position
, False, Node
);
317 Insert_Post
(Tree
, After
, True, Node
);
323 Conditional_Insert_Sans_Hint
(Tree
, Key
, Node
, Inserted
);
330 -- We know that Key is neither less than the hint nor greater
331 -- than the hint, and that's the definition of equivalence.
332 -- There's nothing else we need to do, since a search would just
333 -- reach the same conclusion.
337 end Generic_Conditional_Insert_With_Hint
;
339 -------------------------
340 -- Generic_Insert_Post --
341 -------------------------
343 procedure Generic_Insert_Post
344 (Tree
: in out Tree_Type
'Class;
349 N
: Nodes_Type
renames Tree
.Nodes
;
352 if Tree
.Busy
> 0 then
353 raise Program_Error
with
354 "attempt to tamper with cursors (container is busy)";
357 if Tree
.Length
>= Tree
.Capacity
then
358 raise Capacity_Error
with "not enough capacity to insert new item";
362 pragma Assert
(Z
/= 0);
365 pragma Assert
(Tree
.Length
= 0);
366 pragma Assert
(Tree
.Root
= 0);
367 pragma Assert
(Tree
.First
= 0);
368 pragma Assert
(Tree
.Last
= 0);
375 pragma Assert
(Ops
.Left
(N
(Y
)) = 0);
377 Ops
.Set_Left
(N
(Y
), Z
);
379 if Y
= Tree
.First
then
384 pragma Assert
(Ops
.Right
(N
(Y
)) = 0);
386 Ops
.Set_Right
(N
(Y
), Z
);
388 if Y
= Tree
.Last
then
393 Ops
.Set_Color
(N
(Z
), Red
);
394 Ops
.Set_Parent
(N
(Z
), Y
);
395 Ops
.Rebalance_For_Insert
(Tree
, Z
);
396 Tree
.Length
:= Tree
.Length
+ 1;
397 end Generic_Insert_Post
;
399 -----------------------
400 -- Generic_Iteration --
401 -----------------------
403 procedure Generic_Iteration
404 (Tree
: Tree_Type
'Class;
407 procedure Iterate
(Index
: Count_Type
);
413 procedure Iterate
(Index
: Count_Type
) is
415 N
: Nodes_Type
renames Tree
.Nodes
;
420 if Is_Less_Key_Node
(Key
, N
(J
)) then
421 J
:= Ops
.Left
(N
(J
));
422 elsif Is_Greater_Key_Node
(Key
, N
(J
)) then
423 J
:= Ops
.Right
(N
(J
));
425 Iterate
(Ops
.Left
(N
(J
)));
427 J
:= Ops
.Right
(N
(J
));
432 -- Start of processing for Generic_Iteration
436 end Generic_Iteration
;
438 -------------------------------
439 -- Generic_Reverse_Iteration --
440 -------------------------------
442 procedure Generic_Reverse_Iteration
443 (Tree
: Tree_Type
'Class;
446 procedure Iterate
(Index
: Count_Type
);
452 procedure Iterate
(Index
: Count_Type
) is
454 N
: Nodes_Type
renames Tree
.Nodes
;
459 if Is_Less_Key_Node
(Key
, N
(J
)) then
460 J
:= Ops
.Left
(N
(J
));
461 elsif Is_Greater_Key_Node
(Key
, N
(J
)) then
462 J
:= Ops
.Right
(N
(J
));
464 Iterate
(Ops
.Right
(N
(J
)));
466 J
:= Ops
.Left
(N
(J
));
471 -- Start of processing for Generic_Reverse_Iteration
475 end Generic_Reverse_Iteration
;
477 ----------------------------------
478 -- Generic_Unconditional_Insert --
479 ----------------------------------
481 procedure Generic_Unconditional_Insert
482 (Tree
: in out Tree_Type
'Class;
484 Node
: out Count_Type
)
488 N
: Nodes_Type
renames Tree
.Nodes
;
499 Before
:= Is_Less_Key_Node
(Key
, N
(X
));
500 X
:= (if Before
then Ops
.Left
(N
(X
)) else Ops
.Right
(N
(X
)));
503 Insert_Post
(Tree
, Y
, Before
, Node
);
504 end Generic_Unconditional_Insert
;
506 --------------------------------------------
507 -- Generic_Unconditional_Insert_With_Hint --
508 --------------------------------------------
510 procedure Generic_Unconditional_Insert_With_Hint
511 (Tree
: in out Tree_Type
'Class;
514 Node
: out Count_Type
)
516 N
: Nodes_Type
renames Tree
.Nodes
;
519 -- There are fewer constraints for an unconditional insertion
520 -- than for a conditional insertion, since we allow duplicate
521 -- keys. So instead of having to check (say) whether Key is
522 -- (strictly) greater than the hint's previous neighbor, here we
523 -- allow Key to be equal to or greater than the previous node.
525 -- There is the issue of what to do if Key is equivalent to the
526 -- hint. Does the new node get inserted before or after the hint?
527 -- We decide that it gets inserted after the hint, reasoning that
528 -- this is consistent with behavior for non-hint insertion, which
529 -- inserts a new node after existing nodes with equivalent keys.
531 -- First we check whether the hint is null, which is interpreted
532 -- to mean that Key is large relative to existing nodes.
533 -- Following our rule above, if Key is equal to or greater than
534 -- the last node, then we insert the new node immediately after
535 -- last. (We don't have an operation for testing whether a key is
536 -- "equal to or greater than" a node, so we must say instead "not
537 -- less than", which is equivalent.)
539 if Hint
= 0 then -- largest
540 if Tree
.Last
= 0 then
541 Insert_Post
(Tree
, 0, False, Node
);
542 elsif Is_Less_Key_Node
(Key
, N
(Tree
.Last
)) then
543 Unconditional_Insert_Sans_Hint
(Tree
, Key
, Node
);
545 Insert_Post
(Tree
, Tree
.Last
, False, Node
);
551 pragma Assert
(Tree
.Length
> 0);
553 -- We decide here whether to insert the new node prior to the
554 -- hint. Key could be equivalent to the hint, so in theory we
555 -- could write the following test as "not greater than" (same as
556 -- "less than or equal to"). If Key were equivalent to the hint,
557 -- that would mean that the new node gets inserted before an
558 -- equivalent node. That wouldn't break any container invariants,
559 -- but our rule above says that new nodes always get inserted
560 -- after equivalent nodes. So here we test whether Key is both
561 -- less than the hint and equal to or greater than the hint's
562 -- previous neighbor, and if so insert it before the hint.
564 if Is_Less_Key_Node
(Key
, N
(Hint
)) then
566 Before
: constant Count_Type
:= Ops
.Previous
(Tree
, Hint
);
569 Insert_Post
(Tree
, Hint
, True, Node
);
570 elsif Is_Less_Key_Node
(Key
, N
(Before
)) then
571 Unconditional_Insert_Sans_Hint
(Tree
, Key
, Node
);
572 elsif Ops
.Right
(N
(Before
)) = 0 then
573 Insert_Post
(Tree
, Before
, False, Node
);
575 Insert_Post
(Tree
, Hint
, True, Node
);
582 -- We know that Key isn't less than the hint, so it must be equal
583 -- or greater. So we just test whether Key is less than or equal
584 -- to (same as "not greater than") the hint's next neighbor, and
585 -- if so insert it after the hint.
588 After
: constant Count_Type
:= Ops
.Next
(Tree
, Hint
);
591 Insert_Post
(Tree
, Hint
, False, Node
);
592 elsif Is_Greater_Key_Node
(Key
, N
(After
)) then
593 Unconditional_Insert_Sans_Hint
(Tree
, Key
, Node
);
594 elsif Ops
.Right
(N
(Hint
)) = 0 then
595 Insert_Post
(Tree
, Hint
, False, Node
);
597 Insert_Post
(Tree
, After
, True, Node
);
600 end Generic_Unconditional_Insert_With_Hint
;
607 (Tree
: Tree_Type
'Class;
608 Key
: Key_Type
) return Count_Type
612 N
: Nodes_Type
renames Tree
.Nodes
;
619 if Is_Less_Key_Node
(Key
, N
(X
)) then
621 X
:= Ops
.Left
(N
(X
));
623 X
:= Ops
.Right
(N
(X
));
630 end Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
;