1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
32 #include "coretypes.h"
38 #include "tree-pass.h"
43 #include "diagnostic-core.h"
44 #include "gimple-predict.h"
45 #include "fold-const.h"
52 #include "gimple-iterator.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
58 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
59 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
60 static sreal real_almost_one
, real_br_prob_base
,
61 real_inv_br_prob_base
, real_one_half
, real_bb_freq_max
;
63 static void combine_predictions_for_insn (rtx_insn
*, basic_block
);
64 static void dump_prediction (FILE *, enum br_predictor
, int, basic_block
, int);
65 static void predict_paths_leading_to (basic_block
, enum br_predictor
, enum prediction
);
66 static void predict_paths_leading_to_edge (edge
, enum br_predictor
, enum prediction
);
67 static bool can_predict_insn_p (const rtx_insn
*);
69 /* Information we hold about each branch predictor.
70 Filled using information from predict.def. */
74 const char *const name
; /* Name used in the debugging dumps. */
75 const int hitrate
; /* Expected hitrate used by
76 predict_insn_def call. */
80 /* Use given predictor without Dempster-Shaffer theory if it matches
81 using first_match heuristics. */
82 #define PRED_FLAG_FIRST_MATCH 1
84 /* Recompute hitrate in percent to our representation. */
86 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
88 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
89 static const struct predictor_info predictor_info
[]= {
90 #include "predict.def"
92 /* Upper bound on predictors. */
97 /* Return TRUE if frequency FREQ is considered to be hot. */
100 maybe_hot_frequency_p (struct function
*fun
, int freq
)
102 struct cgraph_node
*node
= cgraph_node::get (fun
->decl
);
104 || !opt_for_fn (fun
->decl
, flag_branch_probabilities
))
106 if (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
108 if (node
->frequency
== NODE_FREQUENCY_HOT
)
111 if (profile_status_for_fn (fun
) == PROFILE_ABSENT
)
113 if (node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
114 && freq
< (ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
* 2 / 3))
116 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
) == 0)
118 if (freq
* PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)
119 < ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
)
124 static gcov_type min_count
= -1;
126 /* Determine the threshold for hot BB counts. */
129 get_hot_bb_threshold ()
131 gcov_working_set_t
*ws
;
134 ws
= find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE
));
136 min_count
= ws
->min_counter
;
141 /* Set the threshold for hot BB counts. */
144 set_hot_bb_threshold (gcov_type min
)
149 /* Return TRUE if frequency FREQ is considered to be hot. */
152 maybe_hot_count_p (struct function
*fun
, gcov_type count
)
154 if (fun
&& profile_status_for_fn (fun
) != PROFILE_READ
)
156 /* Code executed at most once is not hot. */
157 if (profile_info
->runs
>= count
)
159 return (count
>= get_hot_bb_threshold ());
162 /* Return true in case BB can be CPU intensive and should be optimized
163 for maximal performance. */
166 maybe_hot_bb_p (struct function
*fun
, const_basic_block bb
)
168 gcc_checking_assert (fun
);
169 if (profile_status_for_fn (fun
) == PROFILE_READ
)
170 return maybe_hot_count_p (fun
, bb
->count
);
171 return maybe_hot_frequency_p (fun
, bb
->frequency
);
174 /* Return true in case BB can be CPU intensive and should be optimized
175 for maximal performance. */
178 maybe_hot_edge_p (edge e
)
180 if (profile_status_for_fn (cfun
) == PROFILE_READ
)
181 return maybe_hot_count_p (cfun
, e
->count
);
182 return maybe_hot_frequency_p (cfun
, EDGE_FREQUENCY (e
));
185 /* Return true if profile COUNT and FREQUENCY, or function FUN static
186 node frequency reflects never being executed. */
189 probably_never_executed (struct function
*fun
,
190 gcov_type count
, int frequency
)
192 gcc_checking_assert (fun
);
193 if (profile_status_for_fn (fun
) == PROFILE_READ
)
195 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
196 if (count
* unlikely_count_fraction
>= profile_info
->runs
)
200 if (!ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
)
202 if (ENTRY_BLOCK_PTR_FOR_FN (fun
)->count
)
204 gcov_type computed_count
;
205 /* Check for possibility of overflow, in which case entry bb count
206 is large enough to do the division first without losing much
208 if (ENTRY_BLOCK_PTR_FOR_FN (fun
)->count
< REG_BR_PROB_BASE
*
211 gcov_type scaled_count
212 = frequency
* ENTRY_BLOCK_PTR_FOR_FN (fun
)->count
*
213 unlikely_count_fraction
;
214 computed_count
= RDIV (scaled_count
,
215 ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
);
219 computed_count
= RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun
)->count
,
220 ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
);
221 computed_count
*= frequency
* unlikely_count_fraction
;
223 if (computed_count
>= profile_info
->runs
)
228 if ((!profile_info
|| !(opt_for_fn (fun
->decl
, flag_branch_probabilities
)))
229 && (cgraph_node::get (fun
->decl
)->frequency
230 == NODE_FREQUENCY_UNLIKELY_EXECUTED
))
236 /* Return true in case BB is probably never executed. */
239 probably_never_executed_bb_p (struct function
*fun
, const_basic_block bb
)
241 return probably_never_executed (fun
, bb
->count
, bb
->frequency
);
245 /* Return true in case edge E is probably never executed. */
248 probably_never_executed_edge_p (struct function
*fun
, edge e
)
250 return probably_never_executed (fun
, e
->count
, EDGE_FREQUENCY (e
));
253 /* Return true when current function should always be optimized for size. */
256 optimize_function_for_size_p (struct function
*fun
)
258 if (!fun
|| !fun
->decl
)
259 return optimize_size
;
260 cgraph_node
*n
= cgraph_node::get (fun
->decl
);
261 return n
&& n
->optimize_for_size_p ();
264 /* Return true when current function should always be optimized for speed. */
267 optimize_function_for_speed_p (struct function
*fun
)
269 return !optimize_function_for_size_p (fun
);
272 /* Return the optimization type that should be used for the function FUN. */
275 function_optimization_type (struct function
*fun
)
277 return (optimize_function_for_speed_p (fun
)
279 : OPTIMIZE_FOR_SIZE
);
282 /* Return TRUE when BB should be optimized for size. */
285 optimize_bb_for_size_p (const_basic_block bb
)
287 return (optimize_function_for_size_p (cfun
)
288 || (bb
&& !maybe_hot_bb_p (cfun
, bb
)));
291 /* Return TRUE when BB should be optimized for speed. */
294 optimize_bb_for_speed_p (const_basic_block bb
)
296 return !optimize_bb_for_size_p (bb
);
299 /* Return the optimization type that should be used for block BB. */
302 bb_optimization_type (const_basic_block bb
)
304 return (optimize_bb_for_speed_p (bb
)
306 : OPTIMIZE_FOR_SIZE
);
309 /* Return TRUE when BB should be optimized for size. */
312 optimize_edge_for_size_p (edge e
)
314 return optimize_function_for_size_p (cfun
) || !maybe_hot_edge_p (e
);
317 /* Return TRUE when BB should be optimized for speed. */
320 optimize_edge_for_speed_p (edge e
)
322 return !optimize_edge_for_size_p (e
);
325 /* Return TRUE when BB should be optimized for size. */
328 optimize_insn_for_size_p (void)
330 return optimize_function_for_size_p (cfun
) || !crtl
->maybe_hot_insn_p
;
333 /* Return TRUE when BB should be optimized for speed. */
336 optimize_insn_for_speed_p (void)
338 return !optimize_insn_for_size_p ();
341 /* Return TRUE when LOOP should be optimized for size. */
344 optimize_loop_for_size_p (struct loop
*loop
)
346 return optimize_bb_for_size_p (loop
->header
);
349 /* Return TRUE when LOOP should be optimized for speed. */
352 optimize_loop_for_speed_p (struct loop
*loop
)
354 return optimize_bb_for_speed_p (loop
->header
);
357 /* Return TRUE when LOOP nest should be optimized for speed. */
360 optimize_loop_nest_for_speed_p (struct loop
*loop
)
362 struct loop
*l
= loop
;
363 if (optimize_loop_for_speed_p (loop
))
366 while (l
&& l
!= loop
)
368 if (optimize_loop_for_speed_p (l
))
376 while (l
!= loop
&& !l
->next
)
385 /* Return TRUE when LOOP nest should be optimized for size. */
388 optimize_loop_nest_for_size_p (struct loop
*loop
)
390 return !optimize_loop_nest_for_speed_p (loop
);
393 /* Return true when edge E is likely to be well predictable by branch
397 predictable_edge_p (edge e
)
399 if (profile_status_for_fn (cfun
) == PROFILE_ABSENT
)
402 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100)
403 || (REG_BR_PROB_BASE
- e
->probability
404 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100))
410 /* Set RTL expansion for BB profile. */
413 rtl_profile_for_bb (basic_block bb
)
415 crtl
->maybe_hot_insn_p
= maybe_hot_bb_p (cfun
, bb
);
418 /* Set RTL expansion for edge profile. */
421 rtl_profile_for_edge (edge e
)
423 crtl
->maybe_hot_insn_p
= maybe_hot_edge_p (e
);
426 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
428 default_rtl_profile (void)
430 crtl
->maybe_hot_insn_p
= true;
433 /* Return true if the one of outgoing edges is already predicted by
437 rtl_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
440 if (!INSN_P (BB_END (bb
)))
442 for (note
= REG_NOTES (BB_END (bb
)); note
; note
= XEXP (note
, 1))
443 if (REG_NOTE_KIND (note
) == REG_BR_PRED
444 && INTVAL (XEXP (XEXP (note
, 0), 0)) == (int)predictor
)
449 /* Structure representing predictions in tree level. */
451 struct edge_prediction
{
452 struct edge_prediction
*ep_next
;
454 enum br_predictor ep_predictor
;
458 /* This map contains for a basic block the list of predictions for the
461 static hash_map
<const_basic_block
, edge_prediction
*> *bb_predictions
;
463 /* Return true if the one of outgoing edges is already predicted by
467 gimple_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
469 struct edge_prediction
*i
;
470 edge_prediction
**preds
= bb_predictions
->get (bb
);
475 for (i
= *preds
; i
; i
= i
->ep_next
)
476 if (i
->ep_predictor
== predictor
)
481 /* Return true if the one of outgoing edges is already predicted by
482 PREDICTOR for edge E predicted as TAKEN. */
485 edge_predicted_by_p (edge e
, enum br_predictor predictor
, bool taken
)
487 struct edge_prediction
*i
;
488 basic_block bb
= e
->src
;
489 edge_prediction
**preds
= bb_predictions
->get (bb
);
493 int probability
= predictor_info
[(int) predictor
].hitrate
;
496 probability
= REG_BR_PROB_BASE
- probability
;
498 for (i
= *preds
; i
; i
= i
->ep_next
)
499 if (i
->ep_predictor
== predictor
501 && i
->ep_probability
== probability
)
506 /* Return true when the probability of edge is reliable.
508 The profile guessing code is good at predicting branch outcome (ie.
509 taken/not taken), that is predicted right slightly over 75% of time.
510 It is however notoriously poor on predicting the probability itself.
511 In general the profile appear a lot flatter (with probabilities closer
512 to 50%) than the reality so it is bad idea to use it to drive optimization
513 such as those disabling dynamic branch prediction for well predictable
516 There are two exceptions - edges leading to noreturn edges and edges
517 predicted by number of iterations heuristics are predicted well. This macro
518 should be able to distinguish those, but at the moment it simply check for
519 noreturn heuristic that is only one giving probability over 99% or bellow
520 1%. In future we might want to propagate reliability information across the
521 CFG if we find this information useful on multiple places. */
523 probability_reliable_p (int prob
)
525 return (profile_status_for_fn (cfun
) == PROFILE_READ
526 || (profile_status_for_fn (cfun
) == PROFILE_GUESSED
527 && (prob
<= HITRATE (1) || prob
>= HITRATE (99))));
530 /* Same predicate as above, working on edges. */
532 edge_probability_reliable_p (const_edge e
)
534 return probability_reliable_p (e
->probability
);
537 /* Same predicate as edge_probability_reliable_p, working on notes. */
539 br_prob_note_reliable_p (const_rtx note
)
541 gcc_assert (REG_NOTE_KIND (note
) == REG_BR_PROB
);
542 return probability_reliable_p (XINT (note
, 0));
546 predict_insn (rtx_insn
*insn
, enum br_predictor predictor
, int probability
)
548 gcc_assert (any_condjump_p (insn
));
549 if (!flag_guess_branch_prob
)
552 add_reg_note (insn
, REG_BR_PRED
,
553 gen_rtx_CONCAT (VOIDmode
,
554 GEN_INT ((int) predictor
),
555 GEN_INT ((int) probability
)));
558 /* Predict insn by given predictor. */
561 predict_insn_def (rtx_insn
*insn
, enum br_predictor predictor
,
562 enum prediction taken
)
564 int probability
= predictor_info
[(int) predictor
].hitrate
;
567 probability
= REG_BR_PROB_BASE
- probability
;
569 predict_insn (insn
, predictor
, probability
);
572 /* Predict edge E with given probability if possible. */
575 rtl_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
578 last_insn
= BB_END (e
->src
);
580 /* We can store the branch prediction information only about
581 conditional jumps. */
582 if (!any_condjump_p (last_insn
))
585 /* We always store probability of branching. */
586 if (e
->flags
& EDGE_FALLTHRU
)
587 probability
= REG_BR_PROB_BASE
- probability
;
589 predict_insn (last_insn
, predictor
, probability
);
592 /* Predict edge E with the given PROBABILITY. */
594 gimple_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
596 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
597 && EDGE_COUNT (e
->src
->succs
) > 1
598 && flag_guess_branch_prob
601 struct edge_prediction
*i
= XNEW (struct edge_prediction
);
602 edge_prediction
*&preds
= bb_predictions
->get_or_insert (e
->src
);
606 i
->ep_probability
= probability
;
607 i
->ep_predictor
= predictor
;
612 /* Remove all predictions on given basic block that are attached
615 remove_predictions_associated_with_edge (edge e
)
620 edge_prediction
**preds
= bb_predictions
->get (e
->src
);
624 struct edge_prediction
**prediction
= preds
;
625 struct edge_prediction
*next
;
629 if ((*prediction
)->ep_edge
== e
)
631 next
= (*prediction
)->ep_next
;
636 prediction
= &((*prediction
)->ep_next
);
641 /* Clears the list of predictions stored for BB. */
644 clear_bb_predictions (basic_block bb
)
646 edge_prediction
**preds
= bb_predictions
->get (bb
);
647 struct edge_prediction
*pred
, *next
;
652 for (pred
= *preds
; pred
; pred
= next
)
654 next
= pred
->ep_next
;
660 /* Return true when we can store prediction on insn INSN.
661 At the moment we represent predictions only on conditional
662 jumps, not at computed jump or other complicated cases. */
664 can_predict_insn_p (const rtx_insn
*insn
)
666 return (JUMP_P (insn
)
667 && any_condjump_p (insn
)
668 && EDGE_COUNT (BLOCK_FOR_INSN (insn
)->succs
) >= 2);
671 /* Predict edge E by given predictor if possible. */
674 predict_edge_def (edge e
, enum br_predictor predictor
,
675 enum prediction taken
)
677 int probability
= predictor_info
[(int) predictor
].hitrate
;
680 probability
= REG_BR_PROB_BASE
- probability
;
682 predict_edge (e
, predictor
, probability
);
685 /* Invert all branch predictions or probability notes in the INSN. This needs
686 to be done each time we invert the condition used by the jump. */
689 invert_br_probabilities (rtx insn
)
693 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
694 if (REG_NOTE_KIND (note
) == REG_BR_PROB
)
695 XINT (note
, 0) = REG_BR_PROB_BASE
- XINT (note
, 0);
696 else if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
697 XEXP (XEXP (note
, 0), 1)
698 = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (XEXP (note
, 0), 1)));
701 /* Dump information about the branch prediction to the output file. */
704 dump_prediction (FILE *file
, enum br_predictor predictor
, int probability
,
705 basic_block bb
, int used
)
713 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
714 if (! (e
->flags
& EDGE_FALLTHRU
))
717 fprintf (file
, " %s heuristics%s: %.1f%%",
718 predictor_info
[predictor
].name
,
719 used
? "" : " (ignored)", probability
* 100.0 / REG_BR_PROB_BASE
);
723 fprintf (file
, " exec %" PRId64
, bb
->count
);
726 fprintf (file
, " hit %" PRId64
, e
->count
);
727 fprintf (file
, " (%.1f%%)", e
->count
* 100.0 / bb
->count
);
731 fprintf (file
, "\n");
734 /* We can not predict the probabilities of outgoing edges of bb. Set them
735 evenly and hope for the best. */
737 set_even_probabilities (basic_block bb
)
743 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
744 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
746 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
747 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
748 e
->probability
= (REG_BR_PROB_BASE
+ nedges
/ 2) / nedges
;
753 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
754 note if not already present. Remove now useless REG_BR_PRED notes. */
757 combine_predictions_for_insn (rtx_insn
*insn
, basic_block bb
)
762 int best_probability
= PROB_EVEN
;
763 enum br_predictor best_predictor
= END_PREDICTORS
;
764 int combined_probability
= REG_BR_PROB_BASE
/ 2;
766 bool first_match
= false;
769 if (!can_predict_insn_p (insn
))
771 set_even_probabilities (bb
);
775 prob_note
= find_reg_note (insn
, REG_BR_PROB
, 0);
776 pnote
= ®_NOTES (insn
);
778 fprintf (dump_file
, "Predictions for insn %i bb %i\n", INSN_UID (insn
),
781 /* We implement "first match" heuristics and use probability guessed
782 by predictor with smallest index. */
783 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
784 if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
786 enum br_predictor predictor
= ((enum br_predictor
)
787 INTVAL (XEXP (XEXP (note
, 0), 0)));
788 int probability
= INTVAL (XEXP (XEXP (note
, 0), 1));
791 if (best_predictor
> predictor
)
792 best_probability
= probability
, best_predictor
= predictor
;
794 d
= (combined_probability
* probability
795 + (REG_BR_PROB_BASE
- combined_probability
)
796 * (REG_BR_PROB_BASE
- probability
));
798 /* Use FP math to avoid overflows of 32bit integers. */
800 /* If one probability is 0% and one 100%, avoid division by zero. */
801 combined_probability
= REG_BR_PROB_BASE
/ 2;
803 combined_probability
= (((double) combined_probability
) * probability
804 * REG_BR_PROB_BASE
/ d
+ 0.5);
807 /* Decide which heuristic to use. In case we didn't match anything,
808 use no_prediction heuristic, in case we did match, use either
809 first match or Dempster-Shaffer theory depending on the flags. */
811 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
815 dump_prediction (dump_file
, PRED_NO_PREDICTION
,
816 combined_probability
, bb
, true);
819 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
,
821 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
,
826 combined_probability
= best_probability
;
827 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
831 if (REG_NOTE_KIND (*pnote
) == REG_BR_PRED
)
833 enum br_predictor predictor
= ((enum br_predictor
)
834 INTVAL (XEXP (XEXP (*pnote
, 0), 0)));
835 int probability
= INTVAL (XEXP (XEXP (*pnote
, 0), 1));
837 dump_prediction (dump_file
, predictor
, probability
, bb
,
838 !first_match
|| best_predictor
== predictor
);
839 *pnote
= XEXP (*pnote
, 1);
842 pnote
= &XEXP (*pnote
, 1);
847 add_int_reg_note (insn
, REG_BR_PROB
, combined_probability
);
849 /* Save the prediction into CFG in case we are seeing non-degenerated
851 if (!single_succ_p (bb
))
853 BRANCH_EDGE (bb
)->probability
= combined_probability
;
854 FALLTHRU_EDGE (bb
)->probability
855 = REG_BR_PROB_BASE
- combined_probability
;
858 else if (!single_succ_p (bb
))
860 int prob
= XINT (prob_note
, 0);
862 BRANCH_EDGE (bb
)->probability
= prob
;
863 FALLTHRU_EDGE (bb
)->probability
= REG_BR_PROB_BASE
- prob
;
866 single_succ_edge (bb
)->probability
= REG_BR_PROB_BASE
;
869 /* Combine predictions into single probability and store them into CFG.
870 Remove now useless prediction entries.
871 If DRY_RUN is set, only produce dumps and do not modify profile. */
874 combine_predictions_for_bb (basic_block bb
, bool dry_run
)
876 int best_probability
= PROB_EVEN
;
877 enum br_predictor best_predictor
= END_PREDICTORS
;
878 int combined_probability
= REG_BR_PROB_BASE
/ 2;
880 bool first_match
= false;
882 struct edge_prediction
*pred
;
884 edge e
, first
= NULL
, second
= NULL
;
887 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
888 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
891 if (first
&& !second
)
897 /* When there is no successor or only one choice, prediction is easy.
899 We are lazy for now and predict only basic blocks with two outgoing
900 edges. It is possible to predict generic case too, but we have to
901 ignore first match heuristics and do more involved combining. Implement
905 if (!bb
->count
&& !dry_run
)
906 set_even_probabilities (bb
);
907 clear_bb_predictions (bb
);
909 fprintf (dump_file
, "%i edges in bb %i predicted to even probabilities\n",
915 fprintf (dump_file
, "Predictions for bb %i\n", bb
->index
);
917 edge_prediction
**preds
= bb_predictions
->get (bb
);
920 /* We implement "first match" heuristics and use probability guessed
921 by predictor with smallest index. */
922 for (pred
= *preds
; pred
; pred
= pred
->ep_next
)
924 enum br_predictor predictor
= pred
->ep_predictor
;
925 int probability
= pred
->ep_probability
;
927 if (pred
->ep_edge
!= first
)
928 probability
= REG_BR_PROB_BASE
- probability
;
931 /* First match heuristics would be widly confused if we predicted
933 if (best_predictor
> predictor
)
935 struct edge_prediction
*pred2
;
936 int prob
= probability
;
938 for (pred2
= (struct edge_prediction
*) *preds
;
939 pred2
; pred2
= pred2
->ep_next
)
940 if (pred2
!= pred
&& pred2
->ep_predictor
== pred
->ep_predictor
)
942 int probability2
= pred
->ep_probability
;
944 if (pred2
->ep_edge
!= first
)
945 probability2
= REG_BR_PROB_BASE
- probability2
;
947 if ((probability
< REG_BR_PROB_BASE
/ 2) !=
948 (probability2
< REG_BR_PROB_BASE
/ 2))
951 /* If the same predictor later gave better result, go for it! */
952 if ((probability
>= REG_BR_PROB_BASE
/ 2 && (probability2
> probability
))
953 || (probability
<= REG_BR_PROB_BASE
/ 2 && (probability2
< probability
)))
957 best_probability
= prob
, best_predictor
= predictor
;
960 d
= (combined_probability
* probability
961 + (REG_BR_PROB_BASE
- combined_probability
)
962 * (REG_BR_PROB_BASE
- probability
));
964 /* Use FP math to avoid overflows of 32bit integers. */
966 /* If one probability is 0% and one 100%, avoid division by zero. */
967 combined_probability
= REG_BR_PROB_BASE
/ 2;
969 combined_probability
= (((double) combined_probability
)
971 * REG_BR_PROB_BASE
/ d
+ 0.5);
975 /* Decide which heuristic to use. In case we didn't match anything,
976 use no_prediction heuristic, in case we did match, use either
977 first match or Dempster-Shaffer theory depending on the flags. */
979 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
983 dump_prediction (dump_file
, PRED_NO_PREDICTION
, combined_probability
, bb
, true);
986 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
, bb
,
988 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
, bb
,
993 combined_probability
= best_probability
;
994 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
998 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
1000 enum br_predictor predictor
= pred
->ep_predictor
;
1001 int probability
= pred
->ep_probability
;
1003 if (pred
->ep_edge
!= EDGE_SUCC (bb
, 0))
1004 probability
= REG_BR_PROB_BASE
- probability
;
1005 dump_prediction (dump_file
, predictor
, probability
, bb
,
1006 !first_match
|| best_predictor
== predictor
);
1009 clear_bb_predictions (bb
);
1011 if (!bb
->count
&& !dry_run
)
1013 first
->probability
= combined_probability
;
1014 second
->probability
= REG_BR_PROB_BASE
- combined_probability
;
1018 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1019 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1021 T1 and T2 should be one of the following cases:
1022 1. T1 is SSA_NAME, T2 is NULL
1023 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1024 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1027 strips_small_constant (tree t1
, tree t2
)
1034 else if (TREE_CODE (t1
) == SSA_NAME
)
1036 else if (tree_fits_shwi_p (t1
))
1037 value
= tree_to_shwi (t1
);
1043 else if (tree_fits_shwi_p (t2
))
1044 value
= tree_to_shwi (t2
);
1045 else if (TREE_CODE (t2
) == SSA_NAME
)
1053 if (value
<= 4 && value
>= -4)
1059 /* Return the SSA_NAME in T or T's operands.
1060 Return NULL if SSA_NAME cannot be found. */
1063 get_base_value (tree t
)
1065 if (TREE_CODE (t
) == SSA_NAME
)
1068 if (!BINARY_CLASS_P (t
))
1071 switch (TREE_OPERAND_LENGTH (t
))
1074 return strips_small_constant (TREE_OPERAND (t
, 0), NULL
);
1076 return strips_small_constant (TREE_OPERAND (t
, 0),
1077 TREE_OPERAND (t
, 1));
1083 /* Check the compare STMT in LOOP. If it compares an induction
1084 variable to a loop invariant, return true, and save
1085 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1086 Otherwise return false and set LOOP_INVAIANT to NULL. */
1089 is_comparison_with_loop_invariant_p (gcond
*stmt
, struct loop
*loop
,
1090 tree
*loop_invariant
,
1091 enum tree_code
*compare_code
,
1095 tree op0
, op1
, bound
, base
;
1097 enum tree_code code
;
1100 code
= gimple_cond_code (stmt
);
1101 *loop_invariant
= NULL
;
1117 op0
= gimple_cond_lhs (stmt
);
1118 op1
= gimple_cond_rhs (stmt
);
1120 if ((TREE_CODE (op0
) != SSA_NAME
&& TREE_CODE (op0
) != INTEGER_CST
)
1121 || (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op1
) != INTEGER_CST
))
1123 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, true))
1125 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, true))
1127 if (TREE_CODE (iv0
.step
) != INTEGER_CST
1128 || TREE_CODE (iv1
.step
) != INTEGER_CST
)
1130 if ((integer_zerop (iv0
.step
) && integer_zerop (iv1
.step
))
1131 || (!integer_zerop (iv0
.step
) && !integer_zerop (iv1
.step
)))
1134 if (integer_zerop (iv0
.step
))
1136 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
1137 code
= invert_tree_comparison (code
, false);
1140 if (tree_fits_shwi_p (iv1
.step
))
1149 if (tree_fits_shwi_p (iv0
.step
))
1155 if (TREE_CODE (bound
) != INTEGER_CST
)
1156 bound
= get_base_value (bound
);
1159 if (TREE_CODE (base
) != INTEGER_CST
)
1160 base
= get_base_value (base
);
1164 *loop_invariant
= bound
;
1165 *compare_code
= code
;
1167 *loop_iv_base
= base
;
1171 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1174 expr_coherent_p (tree t1
, tree t2
)
1177 tree ssa_name_1
= NULL
;
1178 tree ssa_name_2
= NULL
;
1180 gcc_assert (TREE_CODE (t1
) == SSA_NAME
|| TREE_CODE (t1
) == INTEGER_CST
);
1181 gcc_assert (TREE_CODE (t2
) == SSA_NAME
|| TREE_CODE (t2
) == INTEGER_CST
);
1186 if (TREE_CODE (t1
) == INTEGER_CST
&& TREE_CODE (t2
) == INTEGER_CST
)
1188 if (TREE_CODE (t1
) == INTEGER_CST
|| TREE_CODE (t2
) == INTEGER_CST
)
1191 /* Check to see if t1 is expressed/defined with t2. */
1192 stmt
= SSA_NAME_DEF_STMT (t1
);
1193 gcc_assert (stmt
!= NULL
);
1194 if (is_gimple_assign (stmt
))
1196 ssa_name_1
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1197 if (ssa_name_1
&& ssa_name_1
== t2
)
1201 /* Check to see if t2 is expressed/defined with t1. */
1202 stmt
= SSA_NAME_DEF_STMT (t2
);
1203 gcc_assert (stmt
!= NULL
);
1204 if (is_gimple_assign (stmt
))
1206 ssa_name_2
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1207 if (ssa_name_2
&& ssa_name_2
== t1
)
1211 /* Compare if t1 and t2's def_stmts are identical. */
1212 if (ssa_name_2
!= NULL
&& ssa_name_1
== ssa_name_2
)
1218 /* Predict branch probability of BB when BB contains a branch that compares
1219 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1220 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1223 for (int i = 0; i < bound; i++) {
1230 In this loop, we will predict the branch inside the loop to be taken. */
1233 predict_iv_comparison (struct loop
*loop
, basic_block bb
,
1234 tree loop_bound_var
,
1235 tree loop_iv_base_var
,
1236 enum tree_code loop_bound_code
,
1237 int loop_bound_step
)
1240 tree compare_var
, compare_base
;
1241 enum tree_code compare_code
;
1242 tree compare_step_var
;
1246 if (predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1247 || predicted_by_p (bb
, PRED_LOOP_ITERATIONS
)
1248 || predicted_by_p (bb
, PRED_LOOP_EXIT
))
1251 stmt
= last_stmt (bb
);
1252 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1254 if (!is_comparison_with_loop_invariant_p (as_a
<gcond
*> (stmt
),
1261 /* Find the taken edge. */
1262 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1263 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1266 /* When comparing an IV to a loop invariant, NE is more likely to be
1267 taken while EQ is more likely to be not-taken. */
1268 if (compare_code
== NE_EXPR
)
1270 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1273 else if (compare_code
== EQ_EXPR
)
1275 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1279 if (!expr_coherent_p (loop_iv_base_var
, compare_base
))
1282 /* If loop bound, base and compare bound are all constants, we can
1283 calculate the probability directly. */
1284 if (tree_fits_shwi_p (loop_bound_var
)
1285 && tree_fits_shwi_p (compare_var
)
1286 && tree_fits_shwi_p (compare_base
))
1289 bool overflow
, overall_overflow
= false;
1290 widest_int compare_count
, tem
;
1292 /* (loop_bound - base) / compare_step */
1293 tem
= wi::sub (wi::to_widest (loop_bound_var
),
1294 wi::to_widest (compare_base
), SIGNED
, &overflow
);
1295 overall_overflow
|= overflow
;
1296 widest_int loop_count
= wi::div_trunc (tem
,
1297 wi::to_widest (compare_step_var
),
1299 overall_overflow
|= overflow
;
1301 if (!wi::neg_p (wi::to_widest (compare_step_var
))
1302 ^ (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1304 /* (loop_bound - compare_bound) / compare_step */
1305 tem
= wi::sub (wi::to_widest (loop_bound_var
),
1306 wi::to_widest (compare_var
), SIGNED
, &overflow
);
1307 overall_overflow
|= overflow
;
1308 compare_count
= wi::div_trunc (tem
, wi::to_widest (compare_step_var
),
1310 overall_overflow
|= overflow
;
1314 /* (compare_bound - base) / compare_step */
1315 tem
= wi::sub (wi::to_widest (compare_var
),
1316 wi::to_widest (compare_base
), SIGNED
, &overflow
);
1317 overall_overflow
|= overflow
;
1318 compare_count
= wi::div_trunc (tem
, wi::to_widest (compare_step_var
),
1320 overall_overflow
|= overflow
;
1322 if (compare_code
== LE_EXPR
|| compare_code
== GE_EXPR
)
1324 if (loop_bound_code
== LE_EXPR
|| loop_bound_code
== GE_EXPR
)
1326 if (wi::neg_p (compare_count
))
1328 if (wi::neg_p (loop_count
))
1330 if (loop_count
== 0)
1332 else if (wi::cmps (compare_count
, loop_count
) == 1)
1333 probability
= REG_BR_PROB_BASE
;
1336 tem
= compare_count
* REG_BR_PROB_BASE
;
1337 tem
= wi::udiv_trunc (tem
, loop_count
);
1338 probability
= tem
.to_uhwi ();
1341 if (!overall_overflow
)
1342 predict_edge (then_edge
, PRED_LOOP_IV_COMPARE
, probability
);
1347 if (expr_coherent_p (loop_bound_var
, compare_var
))
1349 if ((loop_bound_code
== LT_EXPR
|| loop_bound_code
== LE_EXPR
)
1350 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1351 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1352 else if ((loop_bound_code
== GT_EXPR
|| loop_bound_code
== GE_EXPR
)
1353 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1354 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1355 else if (loop_bound_code
== NE_EXPR
)
1357 /* If the loop backedge condition is "(i != bound)", we do
1358 the comparison based on the step of IV:
1359 * step < 0 : backedge condition is like (i > bound)
1360 * step > 0 : backedge condition is like (i < bound) */
1361 gcc_assert (loop_bound_step
!= 0);
1362 if (loop_bound_step
> 0
1363 && (compare_code
== LT_EXPR
1364 || compare_code
== LE_EXPR
))
1365 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1366 else if (loop_bound_step
< 0
1367 && (compare_code
== GT_EXPR
1368 || compare_code
== GE_EXPR
))
1369 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1371 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1374 /* The branch is predicted not-taken if loop_bound_code is
1375 opposite with compare_code. */
1376 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1378 else if (expr_coherent_p (loop_iv_base_var
, compare_var
))
1381 for (i = s; i < h; i++)
1383 The branch should be predicted taken. */
1384 if (loop_bound_step
> 0
1385 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1386 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1387 else if (loop_bound_step
< 0
1388 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1389 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1391 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1395 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1396 exits are resulted from short-circuit conditions that will generate an
1399 if (foo() || global > 10)
1402 This will be translated into:
1407 if foo() goto BB6 else goto BB5
1409 if global > 10 goto BB6 else goto BB7
1413 iftmp = (PHI 0(BB5), 1(BB6))
1414 if iftmp == 1 goto BB8 else goto BB3
1416 outside of the loop...
1418 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1419 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1420 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1421 exits to predict them using PRED_LOOP_EXIT. */
1424 predict_extra_loop_exits (edge exit_edge
)
1427 bool check_value_one
;
1428 gimple
*lhs_def_stmt
;
1430 tree cmp_rhs
, cmp_lhs
;
1434 last
= last_stmt (exit_edge
->src
);
1437 cmp_stmt
= dyn_cast
<gcond
*> (last
);
1441 cmp_rhs
= gimple_cond_rhs (cmp_stmt
);
1442 cmp_lhs
= gimple_cond_lhs (cmp_stmt
);
1443 if (!TREE_CONSTANT (cmp_rhs
)
1444 || !(integer_zerop (cmp_rhs
) || integer_onep (cmp_rhs
)))
1446 if (TREE_CODE (cmp_lhs
) != SSA_NAME
)
1449 /* If check_value_one is true, only the phi_args with value '1' will lead
1450 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1452 check_value_one
= (((integer_onep (cmp_rhs
))
1453 ^ (gimple_cond_code (cmp_stmt
) == EQ_EXPR
))
1454 ^ ((exit_edge
->flags
& EDGE_TRUE_VALUE
) != 0));
1456 lhs_def_stmt
= SSA_NAME_DEF_STMT (cmp_lhs
);
1460 phi_stmt
= dyn_cast
<gphi
*> (lhs_def_stmt
);
1464 for (i
= 0; i
< gimple_phi_num_args (phi_stmt
); i
++)
1468 tree val
= gimple_phi_arg_def (phi_stmt
, i
);
1469 edge e
= gimple_phi_arg_edge (phi_stmt
, i
);
1471 if (!TREE_CONSTANT (val
) || !(integer_zerop (val
) || integer_onep (val
)))
1473 if ((check_value_one
^ integer_onep (val
)) == 1)
1475 if (EDGE_COUNT (e
->src
->succs
) != 1)
1477 predict_paths_leading_to_edge (e
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1481 FOR_EACH_EDGE (e1
, ei
, e
->src
->preds
)
1482 predict_paths_leading_to_edge (e1
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1486 /* Predict edge probabilities by exploiting loop structure. */
1489 predict_loops (void)
1493 /* Try to predict out blocks in a loop that are not part of a
1495 FOR_EACH_LOOP (loop
, 0)
1497 basic_block bb
, *bbs
;
1498 unsigned j
, n_exits
;
1500 struct tree_niter_desc niter_desc
;
1502 struct nb_iter_bound
*nb_iter
;
1503 enum tree_code loop_bound_code
= ERROR_MARK
;
1504 tree loop_bound_step
= NULL
;
1505 tree loop_bound_var
= NULL
;
1506 tree loop_iv_base
= NULL
;
1509 exits
= get_loop_exit_edges (loop
);
1510 n_exits
= exits
.length ();
1517 FOR_EACH_VEC_ELT (exits
, j
, ex
)
1520 HOST_WIDE_INT nitercst
;
1521 int max
= PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS
);
1523 enum br_predictor predictor
;
1525 predict_extra_loop_exits (ex
);
1527 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
1528 niter
= niter_desc
.niter
;
1529 if (!niter
|| TREE_CODE (niter_desc
.niter
) != INTEGER_CST
)
1530 niter
= loop_niter_by_eval (loop
, ex
);
1532 if (TREE_CODE (niter
) == INTEGER_CST
)
1534 if (tree_fits_uhwi_p (niter
)
1536 && compare_tree_int (niter
, max
- 1) == -1)
1537 nitercst
= tree_to_uhwi (niter
) + 1;
1540 predictor
= PRED_LOOP_ITERATIONS
;
1542 /* If we have just one exit and we can derive some information about
1543 the number of iterations of the loop from the statements inside
1544 the loop, use it to predict this exit. */
1545 else if (n_exits
== 1)
1547 nitercst
= estimated_stmt_executions_int (loop
);
1553 predictor
= PRED_LOOP_ITERATIONS_GUESSED
;
1558 /* If the prediction for number of iterations is zero, do not
1559 predict the exit edges. */
1563 probability
= ((REG_BR_PROB_BASE
+ nitercst
/ 2) / nitercst
);
1564 predict_edge (ex
, predictor
, probability
);
1568 /* Find information about loop bound variables. */
1569 for (nb_iter
= loop
->bounds
; nb_iter
;
1570 nb_iter
= nb_iter
->next
)
1572 && gimple_code (nb_iter
->stmt
) == GIMPLE_COND
)
1574 stmt
= as_a
<gcond
*> (nb_iter
->stmt
);
1577 if (!stmt
&& last_stmt (loop
->header
)
1578 && gimple_code (last_stmt (loop
->header
)) == GIMPLE_COND
)
1579 stmt
= as_a
<gcond
*> (last_stmt (loop
->header
));
1581 is_comparison_with_loop_invariant_p (stmt
, loop
,
1587 bbs
= get_loop_body (loop
);
1589 for (j
= 0; j
< loop
->num_nodes
; j
++)
1591 int header_found
= 0;
1597 /* Bypass loop heuristics on continue statement. These
1598 statements construct loops via "non-loop" constructs
1599 in the source language and are better to be handled
1601 if (predicted_by_p (bb
, PRED_CONTINUE
))
1604 /* Loop branch heuristics - predict an edge back to a
1605 loop's head as taken. */
1606 if (bb
== loop
->latch
)
1608 e
= find_edge (loop
->latch
, loop
->header
);
1612 predict_edge_def (e
, PRED_LOOP_BRANCH
, TAKEN
);
1616 /* Loop exit heuristics - predict an edge exiting the loop if the
1617 conditional has no loop header successors as not taken. */
1619 /* If we already used more reliable loop exit predictors, do not
1620 bother with PRED_LOOP_EXIT. */
1621 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1622 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS
))
1624 /* For loop with many exits we don't want to predict all exits
1625 with the pretty large probability, because if all exits are
1626 considered in row, the loop would be predicted to iterate
1627 almost never. The code to divide probability by number of
1628 exits is very rough. It should compute the number of exits
1629 taken in each patch through function (not the overall number
1630 of exits that might be a lot higher for loops with wide switch
1631 statements in them) and compute n-th square root.
1633 We limit the minimal probability by 2% to avoid
1634 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1635 as this was causing regression in perl benchmark containing such
1638 int probability
= ((REG_BR_PROB_BASE
1639 - predictor_info
[(int) PRED_LOOP_EXIT
].hitrate
)
1641 if (probability
< HITRATE (2))
1642 probability
= HITRATE (2);
1643 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1644 if (e
->dest
->index
< NUM_FIXED_BLOCKS
1645 || !flow_bb_inside_loop_p (loop
, e
->dest
))
1646 predict_edge (e
, PRED_LOOP_EXIT
, probability
);
1649 predict_iv_comparison (loop
, bb
, loop_bound_var
, loop_iv_base
,
1651 tree_to_shwi (loop_bound_step
));
1654 /* Free basic blocks from get_loop_body. */
1659 /* Attempt to predict probabilities of BB outgoing edges using local
1662 bb_estimate_probability_locally (basic_block bb
)
1664 rtx_insn
*last_insn
= BB_END (bb
);
1667 if (! can_predict_insn_p (last_insn
))
1669 cond
= get_condition (last_insn
, NULL
, false, false);
1673 /* Try "pointer heuristic."
1674 A comparison ptr == 0 is predicted as false.
1675 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1676 if (COMPARISON_P (cond
)
1677 && ((REG_P (XEXP (cond
, 0)) && REG_POINTER (XEXP (cond
, 0)))
1678 || (REG_P (XEXP (cond
, 1)) && REG_POINTER (XEXP (cond
, 1)))))
1680 if (GET_CODE (cond
) == EQ
)
1681 predict_insn_def (last_insn
, PRED_POINTER
, NOT_TAKEN
);
1682 else if (GET_CODE (cond
) == NE
)
1683 predict_insn_def (last_insn
, PRED_POINTER
, TAKEN
);
1687 /* Try "opcode heuristic."
1688 EQ tests are usually false and NE tests are usually true. Also,
1689 most quantities are positive, so we can make the appropriate guesses
1690 about signed comparisons against zero. */
1691 switch (GET_CODE (cond
))
1694 /* Unconditional branch. */
1695 predict_insn_def (last_insn
, PRED_UNCONDITIONAL
,
1696 cond
== const0_rtx
? NOT_TAKEN
: TAKEN
);
1701 /* Floating point comparisons appears to behave in a very
1702 unpredictable way because of special role of = tests in
1704 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1706 /* Comparisons with 0 are often used for booleans and there is
1707 nothing useful to predict about them. */
1708 else if (XEXP (cond
, 1) == const0_rtx
1709 || XEXP (cond
, 0) == const0_rtx
)
1712 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, NOT_TAKEN
);
1717 /* Floating point comparisons appears to behave in a very
1718 unpredictable way because of special role of = tests in
1720 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1722 /* Comparisons with 0 are often used for booleans and there is
1723 nothing useful to predict about them. */
1724 else if (XEXP (cond
, 1) == const0_rtx
1725 || XEXP (cond
, 0) == const0_rtx
)
1728 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, TAKEN
);
1732 predict_insn_def (last_insn
, PRED_FPOPCODE
, TAKEN
);
1736 predict_insn_def (last_insn
, PRED_FPOPCODE
, NOT_TAKEN
);
1741 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1742 || XEXP (cond
, 1) == constm1_rtx
)
1743 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, NOT_TAKEN
);
1748 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1749 || XEXP (cond
, 1) == constm1_rtx
)
1750 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, TAKEN
);
1758 /* Set edge->probability for each successor edge of BB. */
1760 guess_outgoing_edge_probabilities (basic_block bb
)
1762 bb_estimate_probability_locally (bb
);
1763 combine_predictions_for_insn (BB_END (bb
), bb
);
1766 static tree
expr_expected_value (tree
, bitmap
, enum br_predictor
*predictor
);
1768 /* Helper function for expr_expected_value. */
1771 expr_expected_value_1 (tree type
, tree op0
, enum tree_code code
,
1772 tree op1
, bitmap visited
, enum br_predictor
*predictor
)
1777 *predictor
= PRED_UNCONDITIONAL
;
1779 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1781 if (TREE_CONSTANT (op0
))
1784 if (code
!= SSA_NAME
)
1787 def
= SSA_NAME_DEF_STMT (op0
);
1789 /* If we were already here, break the infinite cycle. */
1790 if (!bitmap_set_bit (visited
, SSA_NAME_VERSION (op0
)))
1793 if (gimple_code (def
) == GIMPLE_PHI
)
1795 /* All the arguments of the PHI node must have the same constant
1797 int i
, n
= gimple_phi_num_args (def
);
1798 tree val
= NULL
, new_val
;
1800 for (i
= 0; i
< n
; i
++)
1802 tree arg
= PHI_ARG_DEF (def
, i
);
1803 enum br_predictor predictor2
;
1805 /* If this PHI has itself as an argument, we cannot
1806 determine the string length of this argument. However,
1807 if we can find an expected constant value for the other
1808 PHI args then we can still be sure that this is
1809 likely a constant. So be optimistic and just
1810 continue with the next argument. */
1811 if (arg
== PHI_RESULT (def
))
1814 new_val
= expr_expected_value (arg
, visited
, &predictor2
);
1816 /* It is difficult to combine value predictors. Simply assume
1817 that later predictor is weaker and take its prediction. */
1818 if (predictor
&& *predictor
< predictor2
)
1819 *predictor
= predictor2
;
1824 else if (!operand_equal_p (val
, new_val
, false))
1829 if (is_gimple_assign (def
))
1831 if (gimple_assign_lhs (def
) != op0
)
1834 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def
)),
1835 gimple_assign_rhs1 (def
),
1836 gimple_assign_rhs_code (def
),
1837 gimple_assign_rhs2 (def
),
1838 visited
, predictor
);
1841 if (is_gimple_call (def
))
1843 tree decl
= gimple_call_fndecl (def
);
1846 if (gimple_call_internal_p (def
)
1847 && gimple_call_internal_fn (def
) == IFN_BUILTIN_EXPECT
)
1849 gcc_assert (gimple_call_num_args (def
) == 3);
1850 tree val
= gimple_call_arg (def
, 0);
1851 if (TREE_CONSTANT (val
))
1855 tree val2
= gimple_call_arg (def
, 2);
1856 gcc_assert (TREE_CODE (val2
) == INTEGER_CST
1857 && tree_fits_uhwi_p (val2
)
1858 && tree_to_uhwi (val2
) < END_PREDICTORS
);
1859 *predictor
= (enum br_predictor
) tree_to_uhwi (val2
);
1861 return gimple_call_arg (def
, 1);
1865 if (DECL_BUILT_IN_CLASS (decl
) == BUILT_IN_NORMAL
)
1866 switch (DECL_FUNCTION_CODE (decl
))
1868 case BUILT_IN_EXPECT
:
1871 if (gimple_call_num_args (def
) != 2)
1873 val
= gimple_call_arg (def
, 0);
1874 if (TREE_CONSTANT (val
))
1877 *predictor
= PRED_BUILTIN_EXPECT
;
1878 return gimple_call_arg (def
, 1);
1881 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
:
1882 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1
:
1883 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2
:
1884 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4
:
1885 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8
:
1886 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16
:
1887 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE
:
1888 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N
:
1889 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
:
1890 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2
:
1891 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4
:
1892 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8
:
1893 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16
:
1894 /* Assume that any given atomic operation has low contention,
1895 and thus the compare-and-swap operation succeeds. */
1897 *predictor
= PRED_COMPARE_AND_SWAP
;
1898 return boolean_true_node
;
1907 if (get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
)
1910 enum br_predictor predictor2
;
1911 op0
= expr_expected_value (op0
, visited
, predictor
);
1914 op1
= expr_expected_value (op1
, visited
, &predictor2
);
1915 if (predictor
&& *predictor
< predictor2
)
1916 *predictor
= predictor2
;
1919 res
= fold_build2 (code
, type
, op0
, op1
);
1920 if (TREE_CONSTANT (res
))
1924 if (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
)
1927 op0
= expr_expected_value (op0
, visited
, predictor
);
1930 res
= fold_build1 (code
, type
, op0
);
1931 if (TREE_CONSTANT (res
))
1938 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1939 The function is used by builtin_expect branch predictor so the evidence
1940 must come from this construct and additional possible constant folding.
1942 We may want to implement more involved value guess (such as value range
1943 propagation based prediction), but such tricks shall go to new
1947 expr_expected_value (tree expr
, bitmap visited
,
1948 enum br_predictor
*predictor
)
1950 enum tree_code code
;
1953 if (TREE_CONSTANT (expr
))
1956 *predictor
= PRED_UNCONDITIONAL
;
1960 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1961 return expr_expected_value_1 (TREE_TYPE (expr
),
1962 op0
, code
, op1
, visited
, predictor
);
1965 /* Predict using opcode of the last statement in basic block. */
1967 tree_predict_by_opcode (basic_block bb
)
1969 gimple
*stmt
= last_stmt (bb
);
1977 enum br_predictor predictor
;
1979 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1981 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1982 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1984 op0
= gimple_cond_lhs (stmt
);
1985 op1
= gimple_cond_rhs (stmt
);
1986 cmp
= gimple_cond_code (stmt
);
1987 type
= TREE_TYPE (op0
);
1988 visited
= BITMAP_ALLOC (NULL
);
1989 val
= expr_expected_value_1 (boolean_type_node
, op0
, cmp
, op1
, visited
,
1991 BITMAP_FREE (visited
);
1992 if (val
&& TREE_CODE (val
) == INTEGER_CST
)
1994 if (predictor
== PRED_BUILTIN_EXPECT
)
1996 int percent
= PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY
);
1998 gcc_assert (percent
>= 0 && percent
<= 100);
1999 if (integer_zerop (val
))
2000 percent
= 100 - percent
;
2001 predict_edge (then_edge
, PRED_BUILTIN_EXPECT
, HITRATE (percent
));
2004 predict_edge (then_edge
, predictor
,
2005 integer_zerop (val
) ? NOT_TAKEN
: TAKEN
);
2007 /* Try "pointer heuristic."
2008 A comparison ptr == 0 is predicted as false.
2009 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2010 if (POINTER_TYPE_P (type
))
2013 predict_edge_def (then_edge
, PRED_TREE_POINTER
, NOT_TAKEN
);
2014 else if (cmp
== NE_EXPR
)
2015 predict_edge_def (then_edge
, PRED_TREE_POINTER
, TAKEN
);
2019 /* Try "opcode heuristic."
2020 EQ tests are usually false and NE tests are usually true. Also,
2021 most quantities are positive, so we can make the appropriate guesses
2022 about signed comparisons against zero. */
2027 /* Floating point comparisons appears to behave in a very
2028 unpredictable way because of special role of = tests in
2030 if (FLOAT_TYPE_P (type
))
2032 /* Comparisons with 0 are often used for booleans and there is
2033 nothing useful to predict about them. */
2034 else if (integer_zerop (op0
) || integer_zerop (op1
))
2037 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, NOT_TAKEN
);
2042 /* Floating point comparisons appears to behave in a very
2043 unpredictable way because of special role of = tests in
2045 if (FLOAT_TYPE_P (type
))
2047 /* Comparisons with 0 are often used for booleans and there is
2048 nothing useful to predict about them. */
2049 else if (integer_zerop (op0
)
2050 || integer_zerop (op1
))
2053 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, TAKEN
);
2057 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, TAKEN
);
2060 case UNORDERED_EXPR
:
2061 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, NOT_TAKEN
);
2066 if (integer_zerop (op1
)
2067 || integer_onep (op1
)
2068 || integer_all_onesp (op1
)
2071 || real_minus_onep (op1
))
2072 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, NOT_TAKEN
);
2077 if (integer_zerop (op1
)
2078 || integer_onep (op1
)
2079 || integer_all_onesp (op1
)
2082 || real_minus_onep (op1
))
2083 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, TAKEN
);
2091 /* Try to guess whether the value of return means error code. */
2093 static enum br_predictor
2094 return_prediction (tree val
, enum prediction
*prediction
)
2098 return PRED_NO_PREDICTION
;
2099 /* Different heuristics for pointers and scalars. */
2100 if (POINTER_TYPE_P (TREE_TYPE (val
)))
2102 /* NULL is usually not returned. */
2103 if (integer_zerop (val
))
2105 *prediction
= NOT_TAKEN
;
2106 return PRED_NULL_RETURN
;
2109 else if (INTEGRAL_TYPE_P (TREE_TYPE (val
)))
2111 /* Negative return values are often used to indicate
2113 if (TREE_CODE (val
) == INTEGER_CST
2114 && tree_int_cst_sgn (val
) < 0)
2116 *prediction
= NOT_TAKEN
;
2117 return PRED_NEGATIVE_RETURN
;
2119 /* Constant return values seems to be commonly taken.
2120 Zero/one often represent booleans so exclude them from the
2122 if (TREE_CONSTANT (val
)
2123 && (!integer_zerop (val
) && !integer_onep (val
)))
2125 *prediction
= TAKEN
;
2126 return PRED_CONST_RETURN
;
2129 return PRED_NO_PREDICTION
;
2132 /* Find the basic block with return expression and look up for possible
2133 return value trying to apply RETURN_PREDICTION heuristics. */
2135 apply_return_prediction (void)
2137 greturn
*return_stmt
= NULL
;
2141 int phi_num_args
, i
;
2142 enum br_predictor pred
;
2143 enum prediction direction
;
2146 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
2148 gimple
*last
= last_stmt (e
->src
);
2150 && gimple_code (last
) == GIMPLE_RETURN
)
2152 return_stmt
= as_a
<greturn
*> (last
);
2158 return_val
= gimple_return_retval (return_stmt
);
2161 if (TREE_CODE (return_val
) != SSA_NAME
2162 || !SSA_NAME_DEF_STMT (return_val
)
2163 || gimple_code (SSA_NAME_DEF_STMT (return_val
)) != GIMPLE_PHI
)
2165 phi
= as_a
<gphi
*> (SSA_NAME_DEF_STMT (return_val
));
2166 phi_num_args
= gimple_phi_num_args (phi
);
2167 pred
= return_prediction (PHI_ARG_DEF (phi
, 0), &direction
);
2169 /* Avoid the degenerate case where all return values form the function
2170 belongs to same category (ie they are all positive constants)
2171 so we can hardly say something about them. */
2172 for (i
= 1; i
< phi_num_args
; i
++)
2173 if (pred
!= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
))
2175 if (i
!= phi_num_args
)
2176 for (i
= 0; i
< phi_num_args
; i
++)
2178 pred
= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
);
2179 if (pred
!= PRED_NO_PREDICTION
)
2180 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi
, i
), pred
,
2185 /* Look for basic block that contains unlikely to happen events
2186 (such as noreturn calls) and mark all paths leading to execution
2187 of this basic blocks as unlikely. */
2190 tree_bb_level_predictions (void)
2193 bool has_return_edges
= false;
2197 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
2198 if (!(e
->flags
& (EDGE_ABNORMAL
| EDGE_FAKE
| EDGE_EH
)))
2200 has_return_edges
= true;
2204 apply_return_prediction ();
2206 FOR_EACH_BB_FN (bb
, cfun
)
2208 gimple_stmt_iterator gsi
;
2210 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2212 gimple
*stmt
= gsi_stmt (gsi
);
2215 if (is_gimple_call (stmt
))
2217 if ((gimple_call_flags (stmt
) & ECF_NORETURN
)
2218 && has_return_edges
)
2219 predict_paths_leading_to (bb
, PRED_NORETURN
,
2221 decl
= gimple_call_fndecl (stmt
);
2223 && lookup_attribute ("cold",
2224 DECL_ATTRIBUTES (decl
)))
2225 predict_paths_leading_to (bb
, PRED_COLD_FUNCTION
,
2228 else if (gimple_code (stmt
) == GIMPLE_PREDICT
)
2230 predict_paths_leading_to (bb
, gimple_predict_predictor (stmt
),
2231 gimple_predict_outcome (stmt
));
2232 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2233 hints to callers. */
2239 /* Callback for hash_map::traverse, asserts that the pointer map is
2243 assert_is_empty (const_basic_block
const &, edge_prediction
*const &value
,
2246 gcc_assert (!value
);
2250 /* Predict branch probabilities and estimate profile for basic block BB. */
2253 tree_estimate_probability_bb (basic_block bb
)
2259 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2261 /* Predict edges to user labels with attributes. */
2262 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2264 gimple_stmt_iterator gi
;
2265 for (gi
= gsi_start_bb (e
->dest
); !gsi_end_p (gi
); gsi_next (&gi
))
2267 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gi
));
2272 decl
= gimple_label_label (label_stmt
);
2273 if (DECL_ARTIFICIAL (decl
))
2276 /* Finally, we have a user-defined label. */
2277 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl
)))
2278 predict_edge_def (e
, PRED_COLD_LABEL
, NOT_TAKEN
);
2279 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl
)))
2280 predict_edge_def (e
, PRED_HOT_LABEL
, TAKEN
);
2284 /* Predict early returns to be probable, as we've already taken
2285 care for error returns and other cases are often used for
2286 fast paths through function.
2288 Since we've already removed the return statements, we are
2289 looking for CFG like:
2299 if (e
->dest
!= bb
->next_bb
2300 && e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2301 && single_succ_p (e
->dest
)
2302 && single_succ_edge (e
->dest
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
2303 && (last
= last_stmt (e
->dest
)) != NULL
2304 && gimple_code (last
) == GIMPLE_RETURN
)
2309 if (single_succ_p (bb
))
2311 FOR_EACH_EDGE (e1
, ei1
, bb
->preds
)
2312 if (!predicted_by_p (e1
->src
, PRED_NULL_RETURN
)
2313 && !predicted_by_p (e1
->src
, PRED_CONST_RETURN
)
2314 && !predicted_by_p (e1
->src
, PRED_NEGATIVE_RETURN
))
2315 predict_edge_def (e1
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2318 if (!predicted_by_p (e
->src
, PRED_NULL_RETURN
)
2319 && !predicted_by_p (e
->src
, PRED_CONST_RETURN
)
2320 && !predicted_by_p (e
->src
, PRED_NEGATIVE_RETURN
))
2321 predict_edge_def (e
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2324 /* Look for block we are guarding (ie we dominate it,
2325 but it doesn't postdominate us). */
2326 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
) && e
->dest
!= bb
2327 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
)
2328 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e
->dest
))
2330 gimple_stmt_iterator bi
;
2332 /* The call heuristic claims that a guarded function call
2333 is improbable. This is because such calls are often used
2334 to signal exceptional situations such as printing error
2336 for (bi
= gsi_start_bb (e
->dest
); !gsi_end_p (bi
);
2339 gimple
*stmt
= gsi_stmt (bi
);
2340 if (is_gimple_call (stmt
)
2341 /* Constant and pure calls are hardly used to signalize
2342 something exceptional. */
2343 && gimple_has_side_effects (stmt
))
2345 predict_edge_def (e
, PRED_CALL
, NOT_TAKEN
);
2351 tree_predict_by_opcode (bb
);
2354 /* Predict branch probabilities and estimate profile of the tree CFG.
2355 This function can be called from the loop optimizers to recompute
2356 the profile information.
2357 If DRY_RUN is set, do not modify CFG and only produce dump files. */
2360 tree_estimate_probability (bool dry_run
)
2364 add_noreturn_fake_exit_edges ();
2365 connect_infinite_loops_to_exit ();
2366 /* We use loop_niter_by_eval, which requires that the loops have
2368 create_preheaders (CP_SIMPLE_PREHEADERS
);
2369 calculate_dominance_info (CDI_POST_DOMINATORS
);
2371 bb_predictions
= new hash_map
<const_basic_block
, edge_prediction
*>;
2372 tree_bb_level_predictions ();
2373 record_loop_exits ();
2375 if (number_of_loops (cfun
) > 1)
2378 FOR_EACH_BB_FN (bb
, cfun
)
2379 tree_estimate_probability_bb (bb
);
2381 FOR_EACH_BB_FN (bb
, cfun
)
2382 combine_predictions_for_bb (bb
, dry_run
);
2385 bb_predictions
->traverse
<void *, assert_is_empty
> (NULL
);
2387 delete bb_predictions
;
2388 bb_predictions
= NULL
;
2391 estimate_bb_frequencies (false);
2392 free_dominance_info (CDI_POST_DOMINATORS
);
2393 remove_fake_exit_edges ();
2396 /* Predict edges to successors of CUR whose sources are not postdominated by
2397 BB by PRED and recurse to all postdominators. */
2400 predict_paths_for_bb (basic_block cur
, basic_block bb
,
2401 enum br_predictor pred
,
2402 enum prediction taken
,
2409 /* We are looking for all edges forming edge cut induced by
2410 set of all blocks postdominated by BB. */
2411 FOR_EACH_EDGE (e
, ei
, cur
->preds
)
2412 if (e
->src
->index
>= NUM_FIXED_BLOCKS
2413 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, bb
))
2419 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2420 if (e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2422 gcc_assert (bb
== cur
|| dominated_by_p (CDI_POST_DOMINATORS
, cur
, bb
));
2424 /* See if there is an edge from e->src that is not abnormal
2425 and does not lead to BB. */
2426 FOR_EACH_EDGE (e2
, ei2
, e
->src
->succs
)
2428 && !(e2
->flags
& (EDGE_EH
| EDGE_FAKE
))
2429 && !dominated_by_p (CDI_POST_DOMINATORS
, e2
->dest
, bb
))
2435 /* If there is non-abnormal path leaving e->src, predict edge
2436 using predictor. Otherwise we need to look for paths
2439 The second may lead to infinite loop in the case we are predicitng
2440 regions that are only reachable by abnormal edges. We simply
2441 prevent visiting given BB twice. */
2444 if (!edge_predicted_by_p (e
, pred
, taken
))
2445 predict_edge_def (e
, pred
, taken
);
2447 else if (bitmap_set_bit (visited
, e
->src
->index
))
2448 predict_paths_for_bb (e
->src
, e
->src
, pred
, taken
, visited
);
2450 for (son
= first_dom_son (CDI_POST_DOMINATORS
, cur
);
2452 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
2453 predict_paths_for_bb (son
, bb
, pred
, taken
, visited
);
2456 /* Sets branch probabilities according to PREDiction and
2460 predict_paths_leading_to (basic_block bb
, enum br_predictor pred
,
2461 enum prediction taken
)
2463 bitmap visited
= BITMAP_ALLOC (NULL
);
2464 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2465 BITMAP_FREE (visited
);
2468 /* Like predict_paths_leading_to but take edge instead of basic block. */
2471 predict_paths_leading_to_edge (edge e
, enum br_predictor pred
,
2472 enum prediction taken
)
2474 bool has_nonloop_edge
= false;
2478 basic_block bb
= e
->src
;
2479 FOR_EACH_EDGE (e2
, ei
, bb
->succs
)
2480 if (e2
->dest
!= e
->src
&& e2
->dest
!= e
->dest
2481 && !(e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2482 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e2
->dest
))
2484 has_nonloop_edge
= true;
2487 if (!has_nonloop_edge
)
2489 bitmap visited
= BITMAP_ALLOC (NULL
);
2490 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2491 BITMAP_FREE (visited
);
2494 predict_edge_def (e
, pred
, taken
);
2497 /* This is used to carry information about basic blocks. It is
2498 attached to the AUX field of the standard CFG block. */
2502 /* Estimated frequency of execution of basic_block. */
2505 /* To keep queue of basic blocks to process. */
2508 /* Number of predecessors we need to visit first. */
2512 /* Similar information for edges. */
2513 struct edge_prob_info
2515 /* In case edge is a loopback edge, the probability edge will be reached
2516 in case header is. Estimated number of iterations of the loop can be
2517 then computed as 1 / (1 - back_edge_prob). */
2518 sreal back_edge_prob
;
2519 /* True if the edge is a loopback edge in the natural loop. */
2520 unsigned int back_edge
:1;
2523 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2525 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2527 /* Helper function for estimate_bb_frequencies.
2528 Propagate the frequencies in blocks marked in
2529 TOVISIT, starting in HEAD. */
2532 propagate_freq (basic_block head
, bitmap tovisit
)
2541 /* For each basic block we need to visit count number of his predecessors
2542 we need to visit first. */
2543 EXECUTE_IF_SET_IN_BITMAP (tovisit
, 0, i
, bi
)
2548 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
2550 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2552 bool visit
= bitmap_bit_p (tovisit
, e
->src
->index
);
2554 if (visit
&& !(e
->flags
& EDGE_DFS_BACK
))
2556 else if (visit
&& dump_file
&& !EDGE_INFO (e
)->back_edge
)
2558 "Irreducible region hit, ignoring edge to %i->%i\n",
2559 e
->src
->index
, bb
->index
);
2561 BLOCK_INFO (bb
)->npredecessors
= count
;
2562 /* When function never returns, we will never process exit block. */
2563 if (!count
&& bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2564 bb
->count
= bb
->frequency
= 0;
2567 BLOCK_INFO (head
)->frequency
= 1;
2569 for (bb
= head
; bb
; bb
= nextbb
)
2572 sreal cyclic_probability
= 0;
2573 sreal frequency
= 0;
2575 nextbb
= BLOCK_INFO (bb
)->next
;
2576 BLOCK_INFO (bb
)->next
= NULL
;
2578 /* Compute frequency of basic block. */
2582 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2583 gcc_assert (!bitmap_bit_p (tovisit
, e
->src
->index
)
2584 || (e
->flags
& EDGE_DFS_BACK
));
2586 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2587 if (EDGE_INFO (e
)->back_edge
)
2589 cyclic_probability
+= EDGE_INFO (e
)->back_edge_prob
;
2591 else if (!(e
->flags
& EDGE_DFS_BACK
))
2593 /* frequency += (e->probability
2594 * BLOCK_INFO (e->src)->frequency /
2595 REG_BR_PROB_BASE); */
2597 sreal tmp
= e
->probability
;
2598 tmp
*= BLOCK_INFO (e
->src
)->frequency
;
2599 tmp
*= real_inv_br_prob_base
;
2603 if (cyclic_probability
== 0)
2605 BLOCK_INFO (bb
)->frequency
= frequency
;
2609 if (cyclic_probability
> real_almost_one
)
2610 cyclic_probability
= real_almost_one
;
2612 /* BLOCK_INFO (bb)->frequency = frequency
2613 / (1 - cyclic_probability) */
2615 cyclic_probability
= sreal (1) - cyclic_probability
;
2616 BLOCK_INFO (bb
)->frequency
= frequency
/ cyclic_probability
;
2620 bitmap_clear_bit (tovisit
, bb
->index
);
2622 e
= find_edge (bb
, head
);
2625 /* EDGE_INFO (e)->back_edge_prob
2626 = ((e->probability * BLOCK_INFO (bb)->frequency)
2627 / REG_BR_PROB_BASE); */
2629 sreal tmp
= e
->probability
;
2630 tmp
*= BLOCK_INFO (bb
)->frequency
;
2631 EDGE_INFO (e
)->back_edge_prob
= tmp
* real_inv_br_prob_base
;
2634 /* Propagate to successor blocks. */
2635 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2636 if (!(e
->flags
& EDGE_DFS_BACK
)
2637 && BLOCK_INFO (e
->dest
)->npredecessors
)
2639 BLOCK_INFO (e
->dest
)->npredecessors
--;
2640 if (!BLOCK_INFO (e
->dest
)->npredecessors
)
2645 BLOCK_INFO (last
)->next
= e
->dest
;
2653 /* Estimate frequencies in loops at same nest level. */
2656 estimate_loops_at_level (struct loop
*first_loop
)
2660 for (loop
= first_loop
; loop
; loop
= loop
->next
)
2665 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2667 estimate_loops_at_level (loop
->inner
);
2669 /* Find current loop back edge and mark it. */
2670 e
= loop_latch_edge (loop
);
2671 EDGE_INFO (e
)->back_edge
= 1;
2673 bbs
= get_loop_body (loop
);
2674 for (i
= 0; i
< loop
->num_nodes
; i
++)
2675 bitmap_set_bit (tovisit
, bbs
[i
]->index
);
2677 propagate_freq (loop
->header
, tovisit
);
2678 BITMAP_FREE (tovisit
);
2682 /* Propagates frequencies through structure of loops. */
2685 estimate_loops (void)
2687 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2690 /* Start by estimating the frequencies in the loops. */
2691 if (number_of_loops (cfun
) > 1)
2692 estimate_loops_at_level (current_loops
->tree_root
->inner
);
2694 /* Now propagate the frequencies through all the blocks. */
2695 FOR_ALL_BB_FN (bb
, cfun
)
2697 bitmap_set_bit (tovisit
, bb
->index
);
2699 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun
), tovisit
);
2700 BITMAP_FREE (tovisit
);
2703 /* Drop the profile for NODE to guessed, and update its frequency based on
2704 whether it is expected to be hot given the CALL_COUNT. */
2707 drop_profile (struct cgraph_node
*node
, gcov_type call_count
)
2709 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
2710 /* In the case where this was called by another function with a
2711 dropped profile, call_count will be 0. Since there are no
2712 non-zero call counts to this function, we don't know for sure
2713 whether it is hot, and therefore it will be marked normal below. */
2714 bool hot
= maybe_hot_count_p (NULL
, call_count
);
2718 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2719 node
->name (), node
->order
,
2720 hot
? "Function is hot" : "Function is normal");
2721 /* We only expect to miss profiles for functions that are reached
2722 via non-zero call edges in cases where the function may have
2723 been linked from another module or library (COMDATs and extern
2724 templates). See the comments below for handle_missing_profiles.
2725 Also, only warn in cases where the missing counts exceed the
2726 number of training runs. In certain cases with an execv followed
2727 by a no-return call the profile for the no-return call is not
2728 dumped and there can be a mismatch. */
2729 if (!DECL_COMDAT (node
->decl
) && !DECL_EXTERNAL (node
->decl
)
2730 && call_count
> profile_info
->runs
)
2732 if (flag_profile_correction
)
2736 "Missing counts for called function %s/%i\n",
2737 node
->name (), node
->order
);
2740 warning (0, "Missing counts for called function %s/%i",
2741 node
->name (), node
->order
);
2744 profile_status_for_fn (fn
)
2745 = (flag_guess_branch_prob
? PROFILE_GUESSED
: PROFILE_ABSENT
);
2747 = hot
? NODE_FREQUENCY_HOT
: NODE_FREQUENCY_NORMAL
;
2750 /* In the case of COMDAT routines, multiple object files will contain the same
2751 function and the linker will select one for the binary. In that case
2752 all the other copies from the profile instrument binary will be missing
2753 profile counts. Look for cases where this happened, due to non-zero
2754 call counts going to 0-count functions, and drop the profile to guessed
2755 so that we can use the estimated probabilities and avoid optimizing only
2758 The other case where the profile may be missing is when the routine
2759 is not going to be emitted to the object file, e.g. for "extern template"
2760 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2761 all other cases of non-zero calls to 0-count functions. */
2764 handle_missing_profiles (void)
2766 struct cgraph_node
*node
;
2767 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
2768 vec
<struct cgraph_node
*> worklist
;
2769 worklist
.create (64);
2771 /* See if 0 count function has non-0 count callers. In this case we
2772 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2773 FOR_EACH_DEFINED_FUNCTION (node
)
2775 struct cgraph_edge
*e
;
2776 gcov_type call_count
= 0;
2777 gcov_type max_tp_first_run
= 0;
2778 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
2782 for (e
= node
->callers
; e
; e
= e
->next_caller
)
2784 call_count
+= e
->count
;
2786 if (e
->caller
->tp_first_run
> max_tp_first_run
)
2787 max_tp_first_run
= e
->caller
->tp_first_run
;
2790 /* If time profile is missing, let assign the maximum that comes from
2791 caller functions. */
2792 if (!node
->tp_first_run
&& max_tp_first_run
)
2793 node
->tp_first_run
= max_tp_first_run
+ 1;
2797 && (call_count
* unlikely_count_fraction
>= profile_info
->runs
))
2799 drop_profile (node
, call_count
);
2800 worklist
.safe_push (node
);
2804 /* Propagate the profile dropping to other 0-count COMDATs that are
2805 potentially called by COMDATs we already dropped the profile on. */
2806 while (worklist
.length () > 0)
2808 struct cgraph_edge
*e
;
2810 node
= worklist
.pop ();
2811 for (e
= node
->callees
; e
; e
= e
->next_caller
)
2813 struct cgraph_node
*callee
= e
->callee
;
2814 struct function
*fn
= DECL_STRUCT_FUNCTION (callee
->decl
);
2816 if (callee
->count
> 0)
2818 if (DECL_COMDAT (callee
->decl
) && fn
&& fn
->cfg
2819 && profile_status_for_fn (fn
) == PROFILE_READ
)
2821 drop_profile (node
, 0);
2822 worklist
.safe_push (callee
);
2826 worklist
.release ();
2829 /* Convert counts measured by profile driven feedback to frequencies.
2830 Return nonzero iff there was any nonzero execution count. */
2833 counts_to_freqs (void)
2835 gcov_type count_max
, true_count_max
= 0;
2838 /* Don't overwrite the estimated frequencies when the profile for
2839 the function is missing. We may drop this function PROFILE_GUESSED
2840 later in drop_profile (). */
2841 if (!flag_auto_profile
&& !ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
)
2844 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2845 true_count_max
= MAX (bb
->count
, true_count_max
);
2847 count_max
= MAX (true_count_max
, 1);
2848 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2849 bb
->frequency
= (bb
->count
* BB_FREQ_MAX
+ count_max
/ 2) / count_max
;
2851 return true_count_max
;
2854 /* Return true if function is likely to be expensive, so there is no point to
2855 optimize performance of prologue, epilogue or do inlining at the expense
2856 of code size growth. THRESHOLD is the limit of number of instructions
2857 function can execute at average to be still considered not expensive. */
2860 expensive_function_p (int threshold
)
2862 unsigned int sum
= 0;
2866 /* We can not compute accurately for large thresholds due to scaled
2868 gcc_assert (threshold
<= BB_FREQ_MAX
);
2870 /* Frequencies are out of range. This either means that function contains
2871 internal loop executing more than BB_FREQ_MAX times or profile feedback
2872 is available and function has not been executed at all. */
2873 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
== 0)
2876 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2877 limit
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
* threshold
;
2878 FOR_EACH_BB_FN (bb
, cfun
)
2882 FOR_BB_INSNS (bb
, insn
)
2883 if (active_insn_p (insn
))
2885 sum
+= bb
->frequency
;
2894 /* Estimate and propagate basic block frequencies using the given branch
2895 probabilities. If FORCE is true, the frequencies are used to estimate
2896 the counts even when there are already non-zero profile counts. */
2899 estimate_bb_frequencies (bool force
)
2904 if (force
|| profile_status_for_fn (cfun
) != PROFILE_READ
|| !counts_to_freqs ())
2906 static int real_values_initialized
= 0;
2908 if (!real_values_initialized
)
2910 real_values_initialized
= 1;
2911 real_br_prob_base
= REG_BR_PROB_BASE
;
2912 real_bb_freq_max
= BB_FREQ_MAX
;
2913 real_one_half
= sreal (1, -1);
2914 real_inv_br_prob_base
= sreal (1) / real_br_prob_base
;
2915 real_almost_one
= sreal (1) - real_inv_br_prob_base
;
2918 mark_dfs_back_edges ();
2920 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->probability
=
2923 /* Set up block info for each basic block. */
2924 alloc_aux_for_blocks (sizeof (block_info
));
2925 alloc_aux_for_edges (sizeof (edge_prob_info
));
2926 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2931 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2933 EDGE_INFO (e
)->back_edge_prob
= e
->probability
;
2934 EDGE_INFO (e
)->back_edge_prob
*= real_inv_br_prob_base
;
2938 /* First compute frequencies locally for each loop from innermost
2939 to outermost to examine frequencies for back edges. */
2943 FOR_EACH_BB_FN (bb
, cfun
)
2944 if (freq_max
< BLOCK_INFO (bb
)->frequency
)
2945 freq_max
= BLOCK_INFO (bb
)->frequency
;
2947 freq_max
= real_bb_freq_max
/ freq_max
;
2948 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2950 sreal tmp
= BLOCK_INFO (bb
)->frequency
* freq_max
+ real_one_half
;
2951 bb
->frequency
= tmp
.to_int ();
2954 free_aux_for_blocks ();
2955 free_aux_for_edges ();
2957 compute_function_frequency ();
2960 /* Decide whether function is hot, cold or unlikely executed. */
2962 compute_function_frequency (void)
2965 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
2967 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
2968 || MAIN_NAME_P (DECL_NAME (current_function_decl
)))
2969 node
->only_called_at_startup
= true;
2970 if (DECL_STATIC_DESTRUCTOR (current_function_decl
))
2971 node
->only_called_at_exit
= true;
2973 if (profile_status_for_fn (cfun
) != PROFILE_READ
)
2975 int flags
= flags_from_decl_or_type (current_function_decl
);
2976 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
))
2978 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2979 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl
))
2981 node
->frequency
= NODE_FREQUENCY_HOT
;
2982 else if (flags
& ECF_NORETURN
)
2983 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2984 else if (MAIN_NAME_P (DECL_NAME (current_function_decl
)))
2985 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2986 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
2987 || DECL_STATIC_DESTRUCTOR (current_function_decl
))
2988 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2992 /* Only first time try to drop function into unlikely executed.
2993 After inlining the roundoff errors may confuse us.
2994 Ipa-profile pass will drop functions only called from unlikely
2995 functions to unlikely and that is most of what we care about. */
2996 if (!cfun
->after_inlining
)
2997 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2998 FOR_EACH_BB_FN (bb
, cfun
)
3000 if (maybe_hot_bb_p (cfun
, bb
))
3002 node
->frequency
= NODE_FREQUENCY_HOT
;
3005 if (!probably_never_executed_bb_p (cfun
, bb
))
3006 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3010 /* Build PREDICT_EXPR. */
3012 build_predict_expr (enum br_predictor predictor
, enum prediction taken
)
3014 tree t
= build1 (PREDICT_EXPR
, void_type_node
,
3015 build_int_cst (integer_type_node
, predictor
));
3016 SET_PREDICT_EXPR_OUTCOME (t
, taken
);
3021 predictor_name (enum br_predictor predictor
)
3023 return predictor_info
[predictor
].name
;
3026 /* Predict branch probabilities and estimate profile of the tree CFG. */
3030 const pass_data pass_data_profile
=
3032 GIMPLE_PASS
, /* type */
3033 "profile_estimate", /* name */
3034 OPTGROUP_NONE
, /* optinfo_flags */
3035 TV_BRANCH_PROB
, /* tv_id */
3036 PROP_cfg
, /* properties_required */
3037 0, /* properties_provided */
3038 0, /* properties_destroyed */
3039 0, /* todo_flags_start */
3040 0, /* todo_flags_finish */
3043 class pass_profile
: public gimple_opt_pass
3046 pass_profile (gcc::context
*ctxt
)
3047 : gimple_opt_pass (pass_data_profile
, ctxt
)
3050 /* opt_pass methods: */
3051 virtual bool gate (function
*) { return flag_guess_branch_prob
; }
3052 virtual unsigned int execute (function
*);
3054 }; // class pass_profile
3057 pass_profile::execute (function
*fun
)
3061 if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
3064 loop_optimizer_init (LOOPS_NORMAL
);
3065 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3066 flow_loops_dump (dump_file
, NULL
, 0);
3068 mark_irreducible_loops ();
3070 nb_loops
= number_of_loops (fun
);
3074 tree_estimate_probability (false);
3079 loop_optimizer_finalize ();
3080 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3081 gimple_dump_cfg (dump_file
, dump_flags
);
3082 if (profile_status_for_fn (fun
) == PROFILE_ABSENT
)
3083 profile_status_for_fn (fun
) = PROFILE_GUESSED
;
3090 make_pass_profile (gcc::context
*ctxt
)
3092 return new pass_profile (ctxt
);
3097 const pass_data pass_data_strip_predict_hints
=
3099 GIMPLE_PASS
, /* type */
3100 "*strip_predict_hints", /* name */
3101 OPTGROUP_NONE
, /* optinfo_flags */
3102 TV_BRANCH_PROB
, /* tv_id */
3103 PROP_cfg
, /* properties_required */
3104 0, /* properties_provided */
3105 0, /* properties_destroyed */
3106 0, /* todo_flags_start */
3107 0, /* todo_flags_finish */
3110 class pass_strip_predict_hints
: public gimple_opt_pass
3113 pass_strip_predict_hints (gcc::context
*ctxt
)
3114 : gimple_opt_pass (pass_data_strip_predict_hints
, ctxt
)
3117 /* opt_pass methods: */
3118 opt_pass
* clone () { return new pass_strip_predict_hints (m_ctxt
); }
3119 virtual unsigned int execute (function
*);
3121 }; // class pass_strip_predict_hints
3123 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3124 we no longer need. */
3126 pass_strip_predict_hints::execute (function
*fun
)
3132 FOR_EACH_BB_FN (bb
, fun
)
3134 gimple_stmt_iterator bi
;
3135 for (bi
= gsi_start_bb (bb
); !gsi_end_p (bi
);)
3137 gimple
*stmt
= gsi_stmt (bi
);
3139 if (gimple_code (stmt
) == GIMPLE_PREDICT
)
3141 gsi_remove (&bi
, true);
3144 else if (is_gimple_call (stmt
))
3146 tree fndecl
= gimple_call_fndecl (stmt
);
3149 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
3150 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_EXPECT
3151 && gimple_call_num_args (stmt
) == 2)
3152 || (gimple_call_internal_p (stmt
)
3153 && gimple_call_internal_fn (stmt
) == IFN_BUILTIN_EXPECT
))
3155 var
= gimple_call_lhs (stmt
);
3159 = gimple_build_assign (var
, gimple_call_arg (stmt
, 0));
3160 gsi_replace (&bi
, ass_stmt
, true);
3164 gsi_remove (&bi
, true);
3178 make_pass_strip_predict_hints (gcc::context
*ctxt
)
3180 return new pass_strip_predict_hints (ctxt
);
3183 /* Rebuild function frequencies. Passes are in general expected to
3184 maintain profile by hand, however in some cases this is not possible:
3185 for example when inlining several functions with loops freuqencies might run
3186 out of scale and thus needs to be recomputed. */
3189 rebuild_frequencies (void)
3191 timevar_push (TV_REBUILD_FREQUENCIES
);
3193 /* When the max bb count in the function is small, there is a higher
3194 chance that there were truncation errors in the integer scaling
3195 of counts by inlining and other optimizations. This could lead
3196 to incorrect classification of code as being cold when it isn't.
3197 In that case, force the estimation of bb counts/frequencies from the
3198 branch probabilities, rather than computing frequencies from counts,
3199 which may also lead to frequencies incorrectly reduced to 0. There
3200 is less precision in the probabilities, so we only do this for small
3202 gcov_type count_max
= 0;
3204 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
3205 count_max
= MAX (bb
->count
, count_max
);
3207 if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
3208 || (!flag_auto_profile
&& profile_status_for_fn (cfun
) == PROFILE_READ
3209 && count_max
< REG_BR_PROB_BASE
/10))
3211 loop_optimizer_init (0);
3212 add_noreturn_fake_exit_edges ();
3213 mark_irreducible_loops ();
3214 connect_infinite_loops_to_exit ();
3215 estimate_bb_frequencies (true);
3216 remove_fake_exit_edges ();
3217 loop_optimizer_finalize ();
3219 else if (profile_status_for_fn (cfun
) == PROFILE_READ
)
3223 timevar_pop (TV_REBUILD_FREQUENCIES
);
3226 /* Perform a dry run of the branch prediction pass and report comparsion of
3227 the predicted and real profile into the dump file. */
3230 report_predictor_hitrates (void)
3234 loop_optimizer_init (LOOPS_NORMAL
);
3235 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3236 flow_loops_dump (dump_file
, NULL
, 0);
3238 mark_irreducible_loops ();
3240 nb_loops
= number_of_loops (cfun
);
3244 tree_estimate_probability (true);
3249 loop_optimizer_finalize ();