1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
27 #include <isl/union_map.h>
31 #include "coretypes.h"
35 #include "double-int.h"
43 #include "fold-const.h"
46 #include "hard-reg-set.h"
49 #include "dominance.h"
51 #include "basic-block.h"
52 #include "tree-ssa-alias.h"
53 #include "internal-fn.h"
54 #include "gimple-expr.h"
57 #include "gimple-iterator.h"
58 #include "gimple-ssa.h"
59 #include "tree-phinodes.h"
60 #include "ssa-iterators.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-ssa-loop-niter.h"
63 #include "tree-ssa-loop.h"
64 #include "tree-into-ssa.h"
67 #include "tree-chrec.h"
68 #include "tree-data-ref.h"
69 #include "tree-scalar-evolution.h"
70 #include "tree-pass.h"
72 #include "tree-ssa-propagate.h"
73 #include "cp/cp-tree.h"
76 #include "graphite-poly.h"
77 #include "graphite-scop-detection.h"
79 /* Forward declarations. */
80 static void make_close_phi_nodes_unique (basic_block
);
82 /* The type of the analyzed basic block. */
84 typedef enum gbb_type
{
86 GBB_LOOP_SING_EXIT_HEADER
,
87 GBB_LOOP_MULT_EXIT_HEADER
,
94 /* Detect the type of BB. Loop headers are only marked, if they are
95 new. This means their loop_father is different to LAST_LOOP.
96 Otherwise they are treated like any other bb and their type can be
100 get_bb_type (basic_block bb
, struct loop
*last_loop
)
102 vec
<basic_block
> dom
;
104 struct loop
*loop
= bb
->loop_father
;
106 /* Check, if we entry into a new loop. */
107 if (loop
!= last_loop
)
109 if (single_exit (loop
) != NULL
)
110 return GBB_LOOP_SING_EXIT_HEADER
;
111 else if (loop
->num
!= 0)
112 return GBB_LOOP_MULT_EXIT_HEADER
;
114 return GBB_COND_HEADER
;
117 dom
= get_dominated_by (CDI_DOMINATORS
, bb
);
118 nb_dom
= dom
.length ();
124 if (nb_dom
== 1 && single_succ_p (bb
))
127 return GBB_COND_HEADER
;
130 /* A SCoP detection region, defined using bbs as borders.
132 All control flow touching this region, comes in passing basic_block
133 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
134 edges for the borders we are able to represent also regions that do
135 not have a single entry or exit edge.
137 But as they have a single entry basic_block and a single exit
138 basic_block, we are able to generate for every sd_region a single
146 / \ This region contains: {3, 4, 5, 6, 7, 8}
154 typedef struct sd_region_p
156 /* The entry bb dominates all bbs in the sd_region. It is part of
160 /* The exit bb postdominates all bbs in the sd_region, but is not
161 part of the region. */
167 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
170 move_sd_regions (vec
<sd_region
> *source
, vec
<sd_region
> *target
)
175 FOR_EACH_VEC_ELT (*source
, i
, s
)
176 target
->safe_push (*s
);
181 /* Something like "n * m" is not allowed. */
184 graphite_can_represent_init (tree e
)
186 switch (TREE_CODE (e
))
188 case POLYNOMIAL_CHREC
:
189 return graphite_can_represent_init (CHREC_LEFT (e
))
190 && graphite_can_represent_init (CHREC_RIGHT (e
));
193 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
194 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
195 && tree_fits_shwi_p (TREE_OPERAND (e
, 1));
197 return graphite_can_represent_init (TREE_OPERAND (e
, 1))
198 && tree_fits_shwi_p (TREE_OPERAND (e
, 0));
201 case POINTER_PLUS_EXPR
:
203 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
204 && graphite_can_represent_init (TREE_OPERAND (e
, 1));
209 case NON_LVALUE_EXPR
:
210 return graphite_can_represent_init (TREE_OPERAND (e
, 0));
219 /* Return true when SCEV can be represented in the polyhedral model.
221 An expression can be represented, if it can be expressed as an
222 affine expression. For loops (i, j) and parameters (m, n) all
223 affine expressions are of the form:
225 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
227 1 i + 20 j + (-2) m + 25
229 Something like "i * n" or "n * m" is not allowed. */
232 graphite_can_represent_scev (tree scev
)
234 if (chrec_contains_undetermined (scev
))
237 /* We disable the handling of pointer types, because it’s currently not
238 supported by Graphite with the ISL AST generator. SSA_NAME nodes are
239 the only nodes, which are disabled in case they are pointers to object
240 types, but this can be changed. */
242 if (TYPE_PTROB_P (TREE_TYPE (scev
)) && TREE_CODE (scev
) == SSA_NAME
)
245 switch (TREE_CODE (scev
))
250 case NON_LVALUE_EXPR
:
251 return graphite_can_represent_scev (TREE_OPERAND (scev
, 0));
254 case POINTER_PLUS_EXPR
:
256 return graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
257 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
260 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 0)))
261 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 1)))
262 && !(chrec_contains_symbols (TREE_OPERAND (scev
, 0))
263 && chrec_contains_symbols (TREE_OPERAND (scev
, 1)))
264 && graphite_can_represent_init (scev
)
265 && graphite_can_represent_scev (TREE_OPERAND (scev
, 0))
266 && graphite_can_represent_scev (TREE_OPERAND (scev
, 1));
268 case POLYNOMIAL_CHREC
:
269 /* Check for constant strides. With a non constant stride of
270 'n' we would have a value of 'iv * n'. Also check that the
271 initial value can represented: for example 'n * m' cannot be
273 if (!evolution_function_right_is_integer_cst (scev
)
274 || !graphite_can_represent_init (scev
))
276 return graphite_can_represent_scev (CHREC_LEFT (scev
));
282 /* Only affine functions can be represented. */
283 if (tree_contains_chrecs (scev
, NULL
)
284 || !scev_is_linear_expression (scev
))
291 /* Return true when EXPR can be represented in the polyhedral model.
293 This means an expression can be represented, if it is linear with
294 respect to the loops and the strides are non parametric.
295 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
296 entry of the region we analyse. */
299 graphite_can_represent_expr (basic_block scop_entry
, loop_p loop
,
302 tree scev
= analyze_scalar_evolution (loop
, expr
);
304 scev
= instantiate_scev (scop_entry
, loop
, scev
);
306 return graphite_can_represent_scev (scev
);
309 /* Return true if the data references of STMT can be represented by
313 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED
,
320 vec
<data_reference_p
> drs
= vNULL
;
323 for (outer
= loop_containing_stmt (stmt
); outer
; outer
= loop_outer (outer
))
325 graphite_find_data_references_in_stmt (outer
,
326 loop_containing_stmt (stmt
),
329 FOR_EACH_VEC_ELT (drs
, j
, dr
)
330 for (i
= 0; i
< DR_NUM_DIMENSIONS (dr
); i
++)
331 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr
, i
)))
337 free_data_refs (drs
);
342 free_data_refs (drs
);
346 /* Return true only when STMT is simple enough for being handled by
347 Graphite. This depends on SCOP_ENTRY, as the parameters are
348 initialized relatively to this basic block, the linear functions
349 are initialized to OUTERMOST_LOOP and BB is the place where we try
350 to evaluate the STMT. */
353 stmt_simple_for_scop_p (basic_block scop_entry
, loop_p outermost_loop
,
354 gimple stmt
, basic_block bb
)
356 loop_p loop
= bb
->loop_father
;
358 gcc_assert (scop_entry
);
360 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
361 Calls have side-effects, except those to const or pure
363 if (gimple_has_volatile_ops (stmt
)
364 || (gimple_code (stmt
) == GIMPLE_CALL
365 && !(gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
)))
366 || (gimple_code (stmt
) == GIMPLE_ASM
))
369 if (is_gimple_debug (stmt
))
372 if (!stmt_has_simple_data_refs_p (outermost_loop
, stmt
))
375 switch (gimple_code (stmt
))
383 /* We can handle all binary comparisons. Inequalities are
384 also supported as they can be represented with union of
386 enum tree_code code
= gimple_cond_code (stmt
);
387 if (!(code
== LT_EXPR
395 for (unsigned i
= 0; i
< 2; ++i
)
397 tree op
= gimple_op (stmt
, i
);
398 if (!graphite_can_represent_expr (scop_entry
, loop
, op
)
399 /* We can not handle REAL_TYPE. Failed for pr39260. */
400 || TREE_CODE (TREE_TYPE (op
)) == REAL_TYPE
)
412 /* These nodes cut a new scope. */
419 /* Returns the statement of BB that contains a harmful operation: that
420 can be a function call with side effects, the induction variables
421 are not linear with respect to SCOP_ENTRY, etc. The current open
422 scop should end before this statement. The evaluation is limited using
423 OUTERMOST_LOOP as outermost loop that may change. */
426 harmful_stmt_in_bb (basic_block scop_entry
, loop_p outer_loop
, basic_block bb
)
428 gimple_stmt_iterator gsi
;
430 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
431 if (!stmt_simple_for_scop_p (scop_entry
, outer_loop
, gsi_stmt (gsi
), bb
))
432 return gsi_stmt (gsi
);
437 /* Return true if LOOP can be represented in the polyhedral
438 representation. This is evaluated taking SCOP_ENTRY and
439 OUTERMOST_LOOP in mind. */
442 graphite_can_represent_loop (basic_block scop_entry
, loop_p loop
)
445 struct tree_niter_desc niter_desc
;
447 /* FIXME: For the moment, graphite cannot be used on loops that
448 iterate using induction variables that wrap. */
450 return number_of_iterations_exit (loop
, single_exit (loop
), &niter_desc
, false)
451 && niter_desc
.control
.no_overflow
452 && (niter
= number_of_latch_executions (loop
))
453 && !chrec_contains_undetermined (niter
)
454 && graphite_can_represent_expr (scop_entry
, loop
, niter
);
457 /* Store information needed by scopdet_* functions. */
461 /* Exit of the open scop would stop if the current BB is harmful. */
464 /* Where the next scop would start if the current BB is harmful. */
467 /* The bb or one of its children contains open loop exits. That means
468 loop exit nodes that are not surrounded by a loop dominated by bb. */
471 /* The bb or one of its children contains only structures we can handle. */
475 static struct scopdet_info
build_scops_1 (basic_block
, loop_p
,
476 vec
<sd_region
> *, loop_p
);
478 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
479 to SCOPS. TYPE is the gbb_type of BB. */
481 static struct scopdet_info
482 scopdet_basic_block_info (basic_block bb
, loop_p outermost_loop
,
483 vec
<sd_region
> *scops
, gbb_type type
)
485 loop_p loop
= bb
->loop_father
;
486 struct scopdet_info result
;
489 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
490 basic_block entry_block
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
491 stmt
= harmful_stmt_in_bb (entry_block
, outermost_loop
, bb
);
492 result
.difficult
= (stmt
!= NULL
);
499 result
.exits
= false;
501 /* Mark bbs terminating a SESE region difficult, if they start
502 a condition or if the block it exits to cannot be split
503 with make_forwarder_block. */
504 if (!single_succ_p (bb
)
505 || bb_has_abnormal_pred (single_succ (bb
)))
506 result
.difficult
= true;
508 result
.exit
= single_succ (bb
);
513 result
.next
= single_succ (bb
);
514 result
.exits
= false;
515 result
.exit
= single_succ (bb
);
518 case GBB_LOOP_SING_EXIT_HEADER
:
520 auto_vec
<sd_region
, 3> regions
;
521 struct scopdet_info sinfo
;
522 edge exit_e
= single_exit (loop
);
524 sinfo
= build_scops_1 (bb
, outermost_loop
, ®ions
, loop
);
526 if (!graphite_can_represent_loop (entry_block
, loop
))
527 result
.difficult
= true;
529 result
.difficult
|= sinfo
.difficult
;
531 /* Try again with another loop level. */
533 && loop_depth (outermost_loop
) + 1 == loop_depth (loop
))
535 outermost_loop
= loop
;
540 sinfo
= scopdet_basic_block_info (bb
, outermost_loop
, scops
, type
);
543 result
.difficult
= true;
546 move_sd_regions (®ions
, scops
);
550 open_scop
.entry
= bb
;
551 open_scop
.exit
= exit_e
->dest
;
552 scops
->safe_push (open_scop
);
558 result
.exit
= exit_e
->dest
;
559 result
.next
= exit_e
->dest
;
561 /* If we do not dominate result.next, remove it. It's either
562 the exit block, or another bb dominates it and will
563 call the scop detection for this bb. */
564 if (!dominated_by_p (CDI_DOMINATORS
, result
.next
, bb
))
567 if (exit_e
->src
->loop_father
!= loop
)
570 result
.exits
= false;
572 if (result
.difficult
)
573 move_sd_regions (®ions
, scops
);
581 case GBB_LOOP_MULT_EXIT_HEADER
:
583 /* XXX: For now we just do not join loops with multiple exits. If the
584 exits lead to the same bb it may be possible to join the loop. */
585 auto_vec
<sd_region
, 3> regions
;
586 vec
<edge
> exits
= get_loop_exit_edges (loop
);
589 build_scops_1 (bb
, loop
, ®ions
, loop
);
591 /* Scan the code dominated by this loop. This means all bbs, that are
592 are dominated by a bb in this loop, but are not part of this loop.
595 - The loop exit destination is dominated by the exit sources.
597 TODO: We miss here the more complex cases:
598 - The exit destinations are dominated by another bb inside
600 - The loop dominates bbs, that are not exit destinations. */
601 FOR_EACH_VEC_ELT (exits
, i
, e
)
602 if (e
->src
->loop_father
== loop
603 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
))
605 if (loop_outer (outermost_loop
))
606 outermost_loop
= loop_outer (outermost_loop
);
608 /* Pass loop_outer to recognize e->dest as loop header in
610 if (e
->dest
->loop_father
->header
== e
->dest
)
611 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
612 loop_outer (e
->dest
->loop_father
));
614 build_scops_1 (e
->dest
, outermost_loop
, ®ions
,
615 e
->dest
->loop_father
);
620 result
.difficult
= true;
621 result
.exits
= false;
622 move_sd_regions (®ions
, scops
);
626 case GBB_COND_HEADER
:
628 auto_vec
<sd_region
, 3> regions
;
629 struct scopdet_info sinfo
;
630 vec
<basic_block
> dominated
;
633 basic_block last_exit
= NULL
;
635 result
.exits
= false;
637 /* First check the successors of BB, and check if it is
638 possible to join the different branches. */
639 FOR_EACH_VEC_SAFE_ELT (bb
->succs
, i
, e
)
641 /* Ignore loop exits. They will be handled after the loop
643 if (loop_exits_to_bb_p (loop
, e
->dest
))
649 /* Do not follow edges that lead to the end of the
650 conditions block. For example, in
660 the edge from 0 => 6. Only check if all paths lead to
663 if (!single_pred_p (e
->dest
))
665 /* Check, if edge leads directly to the end of this
670 if (e
->dest
!= last_exit
)
671 result
.difficult
= true;
676 if (!dominated_by_p (CDI_DOMINATORS
, e
->dest
, bb
))
678 result
.difficult
= true;
682 sinfo
= build_scops_1 (e
->dest
, outermost_loop
, ®ions
, loop
);
684 result
.exits
|= sinfo
.exits
;
685 result
.difficult
|= sinfo
.difficult
;
687 /* Checks, if all branches end at the same point.
688 If that is true, the condition stays joinable.
689 Have a look at the example above. */
693 last_exit
= sinfo
.exit
;
695 if (sinfo
.exit
!= last_exit
)
696 result
.difficult
= true;
699 result
.difficult
= true;
703 result
.difficult
= true;
705 /* Join the branches of the condition if possible. */
706 if (!result
.exits
&& !result
.difficult
)
708 /* Only return a next pointer if we dominate this pointer.
709 Otherwise it will be handled by the bb dominating it. */
710 if (dominated_by_p (CDI_DOMINATORS
, last_exit
, bb
)
712 result
.next
= last_exit
;
716 result
.exit
= last_exit
;
722 /* Scan remaining bbs dominated by BB. */
723 dominated
= get_dominated_by (CDI_DOMINATORS
, bb
);
725 FOR_EACH_VEC_ELT (dominated
, i
, dom_bb
)
727 /* Ignore loop exits: they will be handled after the loop body. */
728 if (loop_depth (find_common_loop (loop
, dom_bb
->loop_father
))
735 /* Ignore the bbs processed above. */
736 if (single_pred_p (dom_bb
) && single_pred (dom_bb
) == bb
)
739 if (loop_depth (loop
) > loop_depth (dom_bb
->loop_father
))
740 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
,
743 sinfo
= build_scops_1 (dom_bb
, outermost_loop
, ®ions
, loop
);
745 result
.exits
|= sinfo
.exits
;
746 result
.difficult
= true;
750 dominated
.release ();
753 move_sd_regions (®ions
, scops
);
765 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
766 SCOPS. The analyse if a sd_region can be handled is based on the value
767 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
768 is the loop in which CURRENT is handled.
770 TODO: These functions got a little bit big. They definitely should be cleaned
773 static struct scopdet_info
774 build_scops_1 (basic_block current
, loop_p outermost_loop
,
775 vec
<sd_region
> *scops
, loop_p loop
)
777 bool in_scop
= false;
779 struct scopdet_info sinfo
;
781 /* Initialize result. */
782 struct scopdet_info result
;
783 result
.exits
= false;
784 result
.difficult
= false;
787 open_scop
.entry
= NULL
;
788 open_scop
.exit
= NULL
;
791 /* Loop over the dominance tree. If we meet a difficult bb, close
792 the current SCoP. Loop and condition header start a new layer,
793 and can only be added if all bbs in deeper layers are simple. */
794 while (current
!= NULL
)
796 sinfo
= scopdet_basic_block_info (current
, outermost_loop
, scops
,
797 get_bb_type (current
, loop
));
799 if (!in_scop
&& !(sinfo
.exits
|| sinfo
.difficult
))
801 open_scop
.entry
= current
;
802 open_scop
.exit
= NULL
;
805 else if (in_scop
&& (sinfo
.exits
|| sinfo
.difficult
))
807 open_scop
.exit
= current
;
808 scops
->safe_push (open_scop
);
812 result
.difficult
|= sinfo
.difficult
;
813 result
.exits
|= sinfo
.exits
;
815 current
= sinfo
.next
;
818 /* Try to close open_scop, if we are still in an open SCoP. */
821 open_scop
.exit
= sinfo
.exit
;
822 gcc_assert (open_scop
.exit
);
823 scops
->safe_push (open_scop
);
826 result
.exit
= sinfo
.exit
;
830 /* Checks if a bb is contained in REGION. */
833 bb_in_sd_region (basic_block bb
, sd_region
*region
)
835 return bb_in_region (bb
, region
->entry
, region
->exit
);
838 /* Returns the single entry edge of REGION, if it does not exits NULL. */
841 find_single_entry_edge (sd_region
*region
)
847 FOR_EACH_EDGE (e
, ei
, region
->entry
->preds
)
848 if (!bb_in_sd_region (e
->src
, region
))
863 /* Returns the single exit edge of REGION, if it does not exits NULL. */
866 find_single_exit_edge (sd_region
*region
)
872 FOR_EACH_EDGE (e
, ei
, region
->exit
->preds
)
873 if (bb_in_sd_region (e
->src
, region
))
888 /* Create a single entry edge for REGION. */
891 create_single_entry_edge (sd_region
*region
)
893 if (find_single_entry_edge (region
))
896 /* There are multiple predecessors for bb_3
909 There are two edges (1->3, 2->3), that point from outside into the region,
910 and another one (5->3), a loop latch, lead to bb_3.
918 | |\ (3.0 -> 3.1) = single entry edge
927 If the loop is part of the SCoP, we have to redirect the loop latches.
933 | | (3.0 -> 3.1) = entry edge
942 if (region
->entry
->loop_father
->header
!= region
->entry
943 || dominated_by_p (CDI_DOMINATORS
,
944 loop_latch_edge (region
->entry
->loop_father
)->src
,
947 edge forwarder
= split_block_after_labels (region
->entry
);
948 region
->entry
= forwarder
->dest
;
951 /* This case is never executed, as the loop headers seem always to have a
952 single edge pointing from outside into the loop. */
955 gcc_checking_assert (find_single_entry_edge (region
));
958 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
961 sd_region_without_exit (edge e
)
963 sd_region
*r
= (sd_region
*) e
->aux
;
966 return r
->exit
== NULL
;
971 /* Create a single exit edge for REGION. */
974 create_single_exit_edge (sd_region
*region
)
978 edge forwarder
= NULL
;
981 /* We create a forwarder bb (5) for all edges leaving this region
982 (3->5, 4->5). All other edges leading to the same bb, are moved
983 to a new bb (6). If these edges where part of another region (2->5)
984 we update the region->exit pointer, of this region.
986 To identify which edge belongs to which region we depend on the e->aux
987 pointer in every edge. It points to the region of the edge or to NULL,
988 if the edge is not part of any region.
990 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
991 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
996 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
997 | | \/ 3->5 no region, 4->5 no region,
999 \| / 5->6 region->exit = 6
1002 Now there is only a single exit edge (5->6). */
1003 exit
= region
->exit
;
1004 region
->exit
= NULL
;
1005 forwarder
= make_forwarder_block (exit
, &sd_region_without_exit
, NULL
);
1007 /* Unmark the edges, that are no longer exit edges. */
1008 FOR_EACH_EDGE (e
, ei
, forwarder
->src
->preds
)
1012 /* Mark the new exit edge. */
1013 single_succ_edge (forwarder
->src
)->aux
= region
;
1015 /* Update the exit bb of all regions, where exit edges lead to
1017 FOR_EACH_EDGE (e
, ei
, forwarder
->dest
->preds
)
1019 ((sd_region
*) e
->aux
)->exit
= forwarder
->dest
;
1021 gcc_checking_assert (find_single_exit_edge (region
));
1024 /* Unmark the exit edges of all REGIONS.
1025 See comment in "create_single_exit_edge". */
1028 unmark_exit_edges (vec
<sd_region
> regions
)
1035 FOR_EACH_VEC_ELT (regions
, i
, s
)
1036 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
1041 /* Mark the exit edges of all REGIONS.
1042 See comment in "create_single_exit_edge". */
1045 mark_exit_edges (vec
<sd_region
> regions
)
1052 FOR_EACH_VEC_ELT (regions
, i
, s
)
1053 FOR_EACH_EDGE (e
, ei
, s
->exit
->preds
)
1054 if (bb_in_sd_region (e
->src
, s
))
1058 /* Create for all scop regions a single entry and a single exit edge. */
1061 create_sese_edges (vec
<sd_region
> regions
)
1066 FOR_EACH_VEC_ELT (regions
, i
, s
)
1067 create_single_entry_edge (s
);
1069 mark_exit_edges (regions
);
1071 FOR_EACH_VEC_ELT (regions
, i
, s
)
1072 /* Don't handle multiple edges exiting the function. */
1073 if (!find_single_exit_edge (s
)
1074 && s
->exit
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
1075 create_single_exit_edge (s
);
1077 unmark_exit_edges (regions
);
1079 calculate_dominance_info (CDI_DOMINATORS
);
1080 fix_loop_structure (NULL
);
1082 #ifdef ENABLE_CHECKING
1083 verify_loop_structure ();
1084 verify_ssa (false, true);
1088 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1091 build_graphite_scops (vec
<sd_region
> regions
,
1097 FOR_EACH_VEC_ELT (regions
, i
, s
)
1099 edge entry
= find_single_entry_edge (s
);
1100 edge exit
= find_single_exit_edge (s
);
1106 scop
= new_scop (new_sese (entry
, exit
));
1107 scops
->safe_push (scop
);
1109 /* Are there overlapping SCoPs? */
1110 #ifdef ENABLE_CHECKING
1115 FOR_EACH_VEC_ELT (regions
, j
, s2
)
1117 gcc_assert (!bb_in_sd_region (s
->entry
, s2
));
1123 /* Returns true when BB contains only close phi nodes. */
1126 contains_only_close_phi_nodes (basic_block bb
)
1128 gimple_stmt_iterator gsi
;
1130 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1131 if (gimple_code (gsi_stmt (gsi
)) != GIMPLE_LABEL
)
1137 /* Print statistics for SCOP to FILE. */
1140 print_graphite_scop_statistics (FILE* file
, scop_p scop
)
1145 long n_conditions
= 0;
1149 long n_p_conditions
= 0;
1153 FOR_ALL_BB_FN (bb
, cfun
)
1155 gimple_stmt_iterator psi
;
1156 loop_p loop
= bb
->loop_father
;
1158 if (!bb_in_sese_p (bb
, SCOP_REGION (scop
)))
1162 n_p_bbs
+= bb
->count
;
1164 if (EDGE_COUNT (bb
->succs
) > 1)
1167 n_p_conditions
+= bb
->count
;
1170 for (psi
= gsi_start_bb (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1173 n_p_stmts
+= bb
->count
;
1176 if (loop
->header
== bb
&& loop_in_sese_p (loop
, SCOP_REGION (scop
)))
1179 n_p_loops
+= bb
->count
;
1184 fprintf (file
, "\nBefore limit_scops SCoP statistics (");
1185 fprintf (file
, "BBS:%ld, ", n_bbs
);
1186 fprintf (file
, "LOOPS:%ld, ", n_loops
);
1187 fprintf (file
, "CONDITIONS:%ld, ", n_conditions
);
1188 fprintf (file
, "STMTS:%ld)\n", n_stmts
);
1189 fprintf (file
, "\nBefore limit_scops SCoP profiling statistics (");
1190 fprintf (file
, "BBS:%ld, ", n_p_bbs
);
1191 fprintf (file
, "LOOPS:%ld, ", n_p_loops
);
1192 fprintf (file
, "CONDITIONS:%ld, ", n_p_conditions
);
1193 fprintf (file
, "STMTS:%ld)\n", n_p_stmts
);
1196 /* Print statistics for SCOPS to FILE. */
1199 print_graphite_statistics (FILE* file
, vec
<scop_p
> scops
)
1204 FOR_EACH_VEC_ELT (scops
, i
, scop
)
1205 print_graphite_scop_statistics (file
, scop
);
1208 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1218 * SCoP frontier, as this line is not surrounded by any loop. *
1222 This is necessary as scalar evolution and parameter detection need a
1223 outermost loop to initialize parameters correctly.
1225 TODO: FIX scalar evolution and parameter detection to allow more flexible
1229 limit_scops (vec
<scop_p
> *scops
)
1231 auto_vec
<sd_region
, 3> regions
;
1236 FOR_EACH_VEC_ELT (*scops
, i
, scop
)
1240 sese region
= SCOP_REGION (scop
);
1241 build_sese_loop_nests (region
);
1243 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region
), j
, loop
)
1244 if (!loop_in_sese_p (loop_outer (loop
), region
)
1245 && single_exit (loop
))
1247 sd_region open_scop
;
1248 open_scop
.entry
= loop
->header
;
1249 open_scop
.exit
= single_exit (loop
)->dest
;
1251 /* This is a hack on top of the limit_scops hack. The
1252 limit_scops hack should disappear all together. */
1253 if (single_succ_p (open_scop
.exit
)
1254 && contains_only_close_phi_nodes (open_scop
.exit
))
1255 open_scop
.exit
= single_succ_edge (open_scop
.exit
)->dest
;
1257 regions
.safe_push (open_scop
);
1261 free_scops (*scops
);
1264 create_sese_edges (regions
);
1265 build_graphite_scops (regions
, scops
);
1268 /* Returns true when P1 and P2 are close phis with the same
1272 same_close_phi_node (gphi
*p1
, gphi
*p2
)
1274 return operand_equal_p (gimple_phi_arg_def (p1
, 0),
1275 gimple_phi_arg_def (p2
, 0), 0);
1278 /* Remove the close phi node at GSI and replace its rhs with the rhs
1282 remove_duplicate_close_phi (gphi
*phi
, gphi_iterator
*gsi
)
1285 use_operand_p use_p
;
1286 imm_use_iterator imm_iter
;
1287 tree res
= gimple_phi_result (phi
);
1288 tree def
= gimple_phi_result (gsi
->phi ());
1290 gcc_assert (same_close_phi_node (phi
, gsi
->phi ()));
1292 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
1294 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1295 SET_USE (use_p
, res
);
1297 update_stmt (use_stmt
);
1299 /* It is possible that we just created a duplicate close-phi
1300 for an already-processed containing loop. Check for this
1301 case and clean it up. */
1302 if (gimple_code (use_stmt
) == GIMPLE_PHI
1303 && gimple_phi_num_args (use_stmt
) == 1)
1304 make_close_phi_nodes_unique (gimple_bb (use_stmt
));
1307 remove_phi_node (gsi
, true);
1310 /* Removes all the close phi duplicates from BB. */
1313 make_close_phi_nodes_unique (basic_block bb
)
1317 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1319 gphi_iterator gsi
= psi
;
1320 gphi
*phi
= psi
.phi ();
1322 /* At this point, PHI should be a close phi in normal form. */
1323 gcc_assert (gimple_phi_num_args (phi
) == 1);
1325 /* Iterate over the next phis and remove duplicates. */
1327 while (!gsi_end_p (gsi
))
1328 if (same_close_phi_node (phi
, gsi
.phi ()))
1329 remove_duplicate_close_phi (phi
, &gsi
);
1335 /* Transforms LOOP to the canonical loop closed SSA form. */
1338 canonicalize_loop_closed_ssa (loop_p loop
)
1340 edge e
= single_exit (loop
);
1343 if (!e
|| e
->flags
& EDGE_ABNORMAL
)
1348 if (single_pred_p (bb
))
1350 e
= split_block_after_labels (bb
);
1351 make_close_phi_nodes_unique (e
->src
);
1356 basic_block close
= split_edge (e
);
1358 e
= single_succ_edge (close
);
1360 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1362 gphi
*phi
= psi
.phi ();
1365 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1366 if (gimple_phi_arg_edge (phi
, i
) == e
)
1368 tree res
, arg
= gimple_phi_arg_def (phi
, i
);
1369 use_operand_p use_p
;
1372 if (TREE_CODE (arg
) != SSA_NAME
)
1375 close_phi
= create_phi_node (NULL_TREE
, close
);
1376 res
= create_new_def_for (arg
, close_phi
,
1377 gimple_phi_result_ptr (close_phi
));
1378 add_phi_arg (close_phi
, arg
,
1379 gimple_phi_arg_edge (close_phi
, 0),
1381 use_p
= gimple_phi_arg_imm_use_ptr (phi
, i
);
1382 replace_exp (use_p
, res
);
1387 make_close_phi_nodes_unique (close
);
1390 /* The code above does not properly handle changes in the post dominance
1391 information (yet). */
1392 free_dominance_info (CDI_POST_DOMINATORS
);
1395 /* Converts the current loop closed SSA form to a canonical form
1396 expected by the Graphite code generation.
1398 The loop closed SSA form has the following invariant: a variable
1399 defined in a loop that is used outside the loop appears only in the
1400 phi nodes in the destination of the loop exit. These phi nodes are
1401 called close phi nodes.
1403 The canonical loop closed SSA form contains the extra invariants:
1405 - when the loop contains only one exit, the close phi nodes contain
1406 only one argument. That implies that the basic block that contains
1407 the close phi nodes has only one predecessor, that is a basic block
1410 - the basic block containing the close phi nodes does not contain
1413 - there exist only one phi node per definition in the loop.
1417 canonicalize_loop_closed_ssa_form (void)
1421 #ifdef ENABLE_CHECKING
1422 verify_loop_closed_ssa (true);
1425 FOR_EACH_LOOP (loop
, 0)
1426 canonicalize_loop_closed_ssa (loop
);
1428 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1429 update_ssa (TODO_update_ssa
);
1431 #ifdef ENABLE_CHECKING
1432 verify_loop_closed_ssa (true);
1436 /* Find Static Control Parts (SCoP) in the current function and pushes
1440 build_scops (vec
<scop_p
> *scops
)
1442 struct loop
*loop
= current_loops
->tree_root
;
1443 auto_vec
<sd_region
, 3> regions
;
1445 canonicalize_loop_closed_ssa_form ();
1446 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
1447 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->loop_father
,
1449 create_sese_edges (regions
);
1450 build_graphite_scops (regions
, scops
);
1452 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1453 print_graphite_statistics (dump_file
, *scops
);
1455 limit_scops (scops
);
1458 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1459 fprintf (dump_file
, "\nnumber of SCoPs: %d\n",
1460 scops
? scops
->length () : 0);
1463 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1464 different colors. If there are not enough colors, paint the
1465 remaining SCoPs in gray.
1468 - "*" after the node number denotes the entry of a SCoP,
1469 - "#" after the node number denotes the exit of a SCoP,
1470 - "()" around the node number denotes the entry or the
1471 exit nodes of the SCOP. These are not part of SCoP. */
1474 dot_all_scops_1 (FILE *file
, vec
<scop_p
> scops
)
1483 /* Disable debugging while printing graph. */
1484 int tmp_dump_flags
= dump_flags
;
1487 fprintf (file
, "digraph all {\n");
1489 FOR_ALL_BB_FN (bb
, cfun
)
1491 int part_of_scop
= false;
1493 /* Use HTML for every bb label. So we are able to print bbs
1494 which are part of two different SCoPs, with two different
1495 background colors. */
1496 fprintf (file
, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1498 fprintf (file
, "CELLSPACING=\"0\">\n");
1500 /* Select color for SCoP. */
1501 FOR_EACH_VEC_ELT (scops
, i
, scop
)
1503 sese region
= SCOP_REGION (scop
);
1504 if (bb_in_sese_p (bb
, region
)
1505 || (SESE_EXIT_BB (region
) == bb
)
1506 || (SESE_ENTRY_BB (region
) == bb
))
1519 case 3: /* purple */
1522 case 4: /* orange */
1525 case 5: /* yellow */
1565 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color
);
1567 if (!bb_in_sese_p (bb
, region
))
1568 fprintf (file
, " (");
1570 if (bb
== SESE_ENTRY_BB (region
)
1571 && bb
== SESE_EXIT_BB (region
))
1572 fprintf (file
, " %d*# ", bb
->index
);
1573 else if (bb
== SESE_ENTRY_BB (region
))
1574 fprintf (file
, " %d* ", bb
->index
);
1575 else if (bb
== SESE_EXIT_BB (region
))
1576 fprintf (file
, " %d# ", bb
->index
);
1578 fprintf (file
, " %d ", bb
->index
);
1580 if (!bb_in_sese_p (bb
,region
))
1581 fprintf (file
, ")");
1583 fprintf (file
, "</TD></TR>\n");
1584 part_of_scop
= true;
1590 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1591 fprintf (file
, " %d </TD></TR>\n", bb
->index
);
1593 fprintf (file
, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1596 FOR_ALL_BB_FN (bb
, cfun
)
1598 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1599 fprintf (file
, "%d -> %d;\n", bb
->index
, e
->dest
->index
);
1602 fputs ("}\n\n", file
);
1604 /* Enable debugging again. */
1605 dump_flags
= tmp_dump_flags
;
1608 /* Display all SCoPs using dotty. */
1611 dot_all_scops (vec
<scop_p
> scops
)
1613 /* When debugging, enable the following code. This cannot be used
1614 in production compilers because it calls "system". */
1617 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1618 gcc_assert (stream
);
1620 dot_all_scops_1 (stream
, scops
);
1623 x
= system ("dotty /tmp/allscops.dot &");
1625 dot_all_scops_1 (stderr
, scops
);
1629 /* Display all SCoPs using dotty. */
1632 dot_scop (scop_p scop
)
1634 auto_vec
<scop_p
, 1> scops
;
1637 scops
.safe_push (scop
);
1639 /* When debugging, enable the following code. This cannot be used
1640 in production compilers because it calls "system". */
1644 FILE *stream
= fopen ("/tmp/allscops.dot", "w");
1645 gcc_assert (stream
);
1647 dot_all_scops_1 (stream
, scops
);
1649 x
= system ("dotty /tmp/allscops.dot &");
1652 dot_all_scops_1 (stderr
, scops
);