/cp
[official-gcc.git] / gcc / double-int.c
blob301622eb442d2fa044427896d63f65af3e88d4f8
1 /* Operations with long integers.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "real.h"
34 #include "tree.h"
36 static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
37 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
38 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
39 bool);
41 #define add_double(l1,h1,l2,h2,lv,hv) \
42 add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
44 static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
45 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
47 static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
50 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
51 bool);
53 #define mul_double(l1,h1,l2,h2,lv,hv) \
54 mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
56 static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
57 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
58 HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
59 HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
60 HOST_WIDE_INT *);
62 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
63 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
64 and SUM1. Then this yields nonzero if overflow occurred during the
65 addition.
67 Overflow occurs if A and B have the same sign, but A and SUM differ in
68 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
69 sign. */
70 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
72 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
73 We do that by representing the two-word integer in 4 words, with only
74 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
75 number. The value of the word is LOWPART + HIGHPART * BASE. */
77 #define LOWPART(x) \
78 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
79 #define HIGHPART(x) \
80 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
81 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
83 /* Unpack a two-word integer into 4 words.
84 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
85 WORDS points to the array of HOST_WIDE_INTs. */
87 static void
88 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
90 words[0] = LOWPART (low);
91 words[1] = HIGHPART (low);
92 words[2] = LOWPART (hi);
93 words[3] = HIGHPART (hi);
96 /* Pack an array of 4 words into a two-word integer.
97 WORDS points to the array of words.
98 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
100 static void
101 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
102 HOST_WIDE_INT *hi)
104 *low = words[0] + words[1] * BASE;
105 *hi = words[2] + words[3] * BASE;
108 /* Add two doubleword integers with doubleword result.
109 Return nonzero if the operation overflows according to UNSIGNED_P.
110 Each argument is given as two `HOST_WIDE_INT' pieces.
111 One argument is L1 and H1; the other, L2 and H2.
112 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
114 static int
115 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
116 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
117 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
118 bool unsigned_p)
120 unsigned HOST_WIDE_INT l;
121 HOST_WIDE_INT h;
123 l = l1 + l2;
124 h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
125 + (unsigned HOST_WIDE_INT) h2
126 + (l < l1));
128 *lv = l;
129 *hv = h;
131 if (unsigned_p)
132 return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
133 || (h == h1
134 && l < l1));
135 else
136 return OVERFLOW_SUM_SIGN (h1, h2, h);
139 /* Negate a doubleword integer with doubleword result.
140 Return nonzero if the operation overflows, assuming it's signed.
141 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
142 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
144 static int
145 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
146 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
148 if (l1 == 0)
150 *lv = 0;
151 *hv = - (unsigned HOST_WIDE_INT) h1;
152 return (*hv & h1) < 0;
154 else
156 *lv = -l1;
157 *hv = ~h1;
158 return 0;
162 /* Multiply two doubleword integers with quadword result.
163 Return nonzero if the operation overflows according to UNSIGNED_P.
164 Each argument is given as two `HOST_WIDE_INT' pieces.
165 One argument is L1 and H1; the other, L2 and H2.
166 The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
167 *LW and *HW.
168 If lw is NULL then only the low part and no overflow is computed. */
170 static int
171 mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
172 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
173 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
174 unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
175 bool unsigned_p)
177 HOST_WIDE_INT arg1[4];
178 HOST_WIDE_INT arg2[4];
179 HOST_WIDE_INT prod[4 * 2];
180 unsigned HOST_WIDE_INT carry;
181 int i, j, k;
182 unsigned HOST_WIDE_INT neglow;
183 HOST_WIDE_INT neghigh;
185 encode (arg1, l1, h1);
186 encode (arg2, l2, h2);
188 memset (prod, 0, sizeof prod);
190 for (i = 0; i < 4; i++)
192 carry = 0;
193 for (j = 0; j < 4; j++)
195 k = i + j;
196 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
197 carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
198 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
199 carry += prod[k];
200 prod[k] = LOWPART (carry);
201 carry = HIGHPART (carry);
203 prod[i + 4] = carry;
206 decode (prod, lv, hv);
208 /* We are not interested in the wide part nor in overflow. */
209 if (lw == NULL)
210 return 0;
212 decode (prod + 4, lw, hw);
214 /* Unsigned overflow is immediate. */
215 if (unsigned_p)
216 return (*lw | *hw) != 0;
218 /* Check for signed overflow by calculating the signed representation of the
219 top half of the result; it should agree with the low half's sign bit. */
220 if (h1 < 0)
222 neg_double (l2, h2, &neglow, &neghigh);
223 add_double (neglow, neghigh, *lw, *hw, lw, hw);
225 if (h2 < 0)
227 neg_double (l1, h1, &neglow, &neghigh);
228 add_double (neglow, neghigh, *lw, *hw, lw, hw);
230 return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
233 /* Shift the doubleword integer in L1, H1 right by COUNT places
234 keeping only PREC bits of result. ARITH nonzero specifies
235 arithmetic shifting; otherwise use logical shift.
236 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
238 static void
239 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
240 unsigned HOST_WIDE_INT count, unsigned int prec,
241 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
242 bool arith)
244 unsigned HOST_WIDE_INT signmask;
246 signmask = (arith
247 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
248 : 0);
250 if (count >= HOST_BITS_PER_DOUBLE_INT)
252 /* Shifting by the host word size is undefined according to the
253 ANSI standard, so we must handle this as a special case. */
254 *hv = 0;
255 *lv = 0;
257 else if (count >= HOST_BITS_PER_WIDE_INT)
259 *hv = 0;
260 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
262 else
264 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
265 *lv = ((l1 >> count)
266 | ((unsigned HOST_WIDE_INT) h1
267 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
270 /* Zero / sign extend all bits that are beyond the precision. */
272 if (count >= prec)
274 *hv = signmask;
275 *lv = signmask;
277 else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
279 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
281 *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
282 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
284 else
286 *hv = signmask;
287 *lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
288 *lv |= signmask << (prec - count);
292 /* Shift the doubleword integer in L1, H1 left by COUNT places
293 keeping only PREC bits of result.
294 Shift right if COUNT is negative.
295 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
296 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
298 static void
299 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
300 unsigned HOST_WIDE_INT count, unsigned int prec,
301 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
303 unsigned HOST_WIDE_INT signmask;
305 if (count >= HOST_BITS_PER_DOUBLE_INT)
307 /* Shifting by the host word size is undefined according to the
308 ANSI standard, so we must handle this as a special case. */
309 *hv = 0;
310 *lv = 0;
312 else if (count >= HOST_BITS_PER_WIDE_INT)
314 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
315 *lv = 0;
317 else
319 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
320 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
321 *lv = l1 << count;
324 /* Sign extend all bits that are beyond the precision. */
326 signmask = -((prec > HOST_BITS_PER_WIDE_INT
327 ? ((unsigned HOST_WIDE_INT) *hv
328 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
329 : (*lv >> (prec - 1))) & 1);
331 if (prec >= HOST_BITS_PER_DOUBLE_INT)
333 else if (prec >= HOST_BITS_PER_WIDE_INT)
335 *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
336 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
338 else
340 *hv = signmask;
341 *lv &= ~(HOST_WIDE_INT_M1U << prec);
342 *lv |= signmask << prec;
346 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
347 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
348 CODE is a tree code for a kind of division, one of
349 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
350 or EXACT_DIV_EXPR
351 It controls how the quotient is rounded to an integer.
352 Return nonzero if the operation overflows.
353 UNS nonzero says do unsigned division. */
355 static int
356 div_and_round_double (unsigned code, int uns,
357 /* num == numerator == dividend */
358 unsigned HOST_WIDE_INT lnum_orig,
359 HOST_WIDE_INT hnum_orig,
360 /* den == denominator == divisor */
361 unsigned HOST_WIDE_INT lden_orig,
362 HOST_WIDE_INT hden_orig,
363 unsigned HOST_WIDE_INT *lquo,
364 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
365 HOST_WIDE_INT *hrem)
367 int quo_neg = 0;
368 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
369 HOST_WIDE_INT den[4], quo[4];
370 int i, j;
371 unsigned HOST_WIDE_INT work;
372 unsigned HOST_WIDE_INT carry = 0;
373 unsigned HOST_WIDE_INT lnum = lnum_orig;
374 HOST_WIDE_INT hnum = hnum_orig;
375 unsigned HOST_WIDE_INT lden = lden_orig;
376 HOST_WIDE_INT hden = hden_orig;
377 int overflow = 0;
379 if (hden == 0 && lden == 0)
380 overflow = 1, lden = 1;
382 /* Calculate quotient sign and convert operands to unsigned. */
383 if (!uns)
385 if (hnum < 0)
387 quo_neg = ~ quo_neg;
388 /* (minimum integer) / (-1) is the only overflow case. */
389 if (neg_double (lnum, hnum, &lnum, &hnum)
390 && ((HOST_WIDE_INT) lden & hden) == -1)
391 overflow = 1;
393 if (hden < 0)
395 quo_neg = ~ quo_neg;
396 neg_double (lden, hden, &lden, &hden);
400 if (hnum == 0 && hden == 0)
401 { /* single precision */
402 *hquo = *hrem = 0;
403 /* This unsigned division rounds toward zero. */
404 *lquo = lnum / lden;
405 goto finish_up;
408 if (hnum == 0)
409 { /* trivial case: dividend < divisor */
410 /* hden != 0 already checked. */
411 *hquo = *lquo = 0;
412 *hrem = hnum;
413 *lrem = lnum;
414 goto finish_up;
417 memset (quo, 0, sizeof quo);
419 memset (num, 0, sizeof num); /* to zero 9th element */
420 memset (den, 0, sizeof den);
422 encode (num, lnum, hnum);
423 encode (den, lden, hden);
425 /* Special code for when the divisor < BASE. */
426 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
428 /* hnum != 0 already checked. */
429 for (i = 4 - 1; i >= 0; i--)
431 work = num[i] + carry * BASE;
432 quo[i] = work / lden;
433 carry = work % lden;
436 else
438 /* Full double precision division,
439 with thanks to Don Knuth's "Seminumerical Algorithms". */
440 int num_hi_sig, den_hi_sig;
441 unsigned HOST_WIDE_INT quo_est, scale;
443 /* Find the highest nonzero divisor digit. */
444 for (i = 4 - 1;; i--)
445 if (den[i] != 0)
447 den_hi_sig = i;
448 break;
451 /* Insure that the first digit of the divisor is at least BASE/2.
452 This is required by the quotient digit estimation algorithm. */
454 scale = BASE / (den[den_hi_sig] + 1);
455 if (scale > 1)
456 { /* scale divisor and dividend */
457 carry = 0;
458 for (i = 0; i <= 4 - 1; i++)
460 work = (num[i] * scale) + carry;
461 num[i] = LOWPART (work);
462 carry = HIGHPART (work);
465 num[4] = carry;
466 carry = 0;
467 for (i = 0; i <= 4 - 1; i++)
469 work = (den[i] * scale) + carry;
470 den[i] = LOWPART (work);
471 carry = HIGHPART (work);
472 if (den[i] != 0) den_hi_sig = i;
476 num_hi_sig = 4;
478 /* Main loop */
479 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
481 /* Guess the next quotient digit, quo_est, by dividing the first
482 two remaining dividend digits by the high order quotient digit.
483 quo_est is never low and is at most 2 high. */
484 unsigned HOST_WIDE_INT tmp;
486 num_hi_sig = i + den_hi_sig + 1;
487 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
488 if (num[num_hi_sig] != den[den_hi_sig])
489 quo_est = work / den[den_hi_sig];
490 else
491 quo_est = BASE - 1;
493 /* Refine quo_est so it's usually correct, and at most one high. */
494 tmp = work - quo_est * den[den_hi_sig];
495 if (tmp < BASE
496 && (den[den_hi_sig - 1] * quo_est
497 > (tmp * BASE + num[num_hi_sig - 2])))
498 quo_est--;
500 /* Try QUO_EST as the quotient digit, by multiplying the
501 divisor by QUO_EST and subtracting from the remaining dividend.
502 Keep in mind that QUO_EST is the I - 1st digit. */
504 carry = 0;
505 for (j = 0; j <= den_hi_sig; j++)
507 work = quo_est * den[j] + carry;
508 carry = HIGHPART (work);
509 work = num[i + j] - LOWPART (work);
510 num[i + j] = LOWPART (work);
511 carry += HIGHPART (work) != 0;
514 /* If quo_est was high by one, then num[i] went negative and
515 we need to correct things. */
516 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
518 quo_est--;
519 carry = 0; /* add divisor back in */
520 for (j = 0; j <= den_hi_sig; j++)
522 work = num[i + j] + den[j] + carry;
523 carry = HIGHPART (work);
524 num[i + j] = LOWPART (work);
527 num [num_hi_sig] += carry;
530 /* Store the quotient digit. */
531 quo[i] = quo_est;
535 decode (quo, lquo, hquo);
537 finish_up:
538 /* If result is negative, make it so. */
539 if (quo_neg)
540 neg_double (*lquo, *hquo, lquo, hquo);
542 /* Compute trial remainder: rem = num - (quo * den) */
543 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
544 neg_double (*lrem, *hrem, lrem, hrem);
545 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
547 switch (code)
549 case TRUNC_DIV_EXPR:
550 case TRUNC_MOD_EXPR: /* round toward zero */
551 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
552 return overflow;
554 case FLOOR_DIV_EXPR:
555 case FLOOR_MOD_EXPR: /* round toward negative infinity */
556 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
558 /* quo = quo - 1; */
559 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
560 lquo, hquo);
562 else
563 return overflow;
564 break;
566 case CEIL_DIV_EXPR:
567 case CEIL_MOD_EXPR: /* round toward positive infinity */
568 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
570 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
571 lquo, hquo);
573 else
574 return overflow;
575 break;
577 case ROUND_DIV_EXPR:
578 case ROUND_MOD_EXPR: /* round to closest integer */
580 unsigned HOST_WIDE_INT labs_rem = *lrem;
581 HOST_WIDE_INT habs_rem = *hrem;
582 unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
583 HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
585 /* Get absolute values. */
586 if (!uns && *hrem < 0)
587 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
588 if (!uns && hden < 0)
589 neg_double (lden, hden, &labs_den, &habs_den);
591 /* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */
592 neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem);
593 add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
594 &ldiff, &hdiff);
596 if (((unsigned HOST_WIDE_INT) habs_rem
597 > (unsigned HOST_WIDE_INT) hdiff)
598 || (habs_rem == hdiff && labs_rem >= ldiff))
600 if (quo_neg)
601 /* quo = quo - 1; */
602 add_double (*lquo, *hquo,
603 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
604 else
605 /* quo = quo + 1; */
606 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
607 lquo, hquo);
609 else
610 return overflow;
612 break;
614 default:
615 gcc_unreachable ();
618 /* Compute true remainder: rem = num - (quo * den) */
619 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
620 neg_double (*lrem, *hrem, lrem, hrem);
621 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
622 return overflow;
626 /* Construct from a buffer of length LEN. BUFFER will be read according
627 to byte endianess and word endianess. Only the lower LEN bytes
628 of the result are set; the remaining high bytes are cleared. */
630 double_int
631 double_int::from_buffer (const unsigned char *buffer, int len)
633 double_int result = double_int_zero;
634 int words = len / UNITS_PER_WORD;
636 gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
638 for (int byte = 0; byte < len; byte++)
640 int offset;
641 int bitpos = byte * BITS_PER_UNIT;
642 unsigned HOST_WIDE_INT value;
644 if (len > UNITS_PER_WORD)
646 int word = byte / UNITS_PER_WORD;
648 if (WORDS_BIG_ENDIAN)
649 word = (words - 1) - word;
651 offset = word * UNITS_PER_WORD;
653 if (BYTES_BIG_ENDIAN)
654 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
655 else
656 offset += byte % UNITS_PER_WORD;
658 else
659 offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
661 value = (unsigned HOST_WIDE_INT) buffer[offset];
663 if (bitpos < HOST_BITS_PER_WIDE_INT)
664 result.low |= value << bitpos;
665 else
666 result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
669 return result;
673 /* Returns mask for PREC bits. */
675 double_int
676 double_int::mask (unsigned prec)
678 unsigned HOST_WIDE_INT m;
679 double_int mask;
681 if (prec > HOST_BITS_PER_WIDE_INT)
683 prec -= HOST_BITS_PER_WIDE_INT;
684 m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
685 mask.high = (HOST_WIDE_INT) m;
686 mask.low = ALL_ONES;
688 else
690 mask.high = 0;
691 mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
694 return mask;
697 /* Returns a maximum value for signed or unsigned integer
698 of precision PREC. */
700 double_int
701 double_int::max_value (unsigned int prec, bool uns)
703 return double_int::mask (prec - (uns ? 0 : 1));
706 /* Returns a minimum value for signed or unsigned integer
707 of precision PREC. */
709 double_int
710 double_int::min_value (unsigned int prec, bool uns)
712 if (uns)
713 return double_int_zero;
714 return double_int_one.lshift (prec - 1, prec, false);
717 /* Clears the bits of CST over the precision PREC. If UNS is false, the bits
718 outside of the precision are set to the sign bit (i.e., the PREC-th one),
719 otherwise they are set to zero.
721 This corresponds to returning the value represented by PREC lowermost bits
722 of CST, with the given signedness. */
724 double_int
725 double_int::ext (unsigned prec, bool uns) const
727 if (uns)
728 return this->zext (prec);
729 else
730 return this->sext (prec);
733 /* The same as double_int::ext with UNS = true. */
735 double_int
736 double_int::zext (unsigned prec) const
738 const double_int &cst = *this;
739 double_int mask = double_int::mask (prec);
740 double_int r;
742 r.low = cst.low & mask.low;
743 r.high = cst.high & mask.high;
745 return r;
748 /* The same as double_int::ext with UNS = false. */
750 double_int
751 double_int::sext (unsigned prec) const
753 const double_int &cst = *this;
754 double_int mask = double_int::mask (prec);
755 double_int r;
756 unsigned HOST_WIDE_INT snum;
758 if (prec <= HOST_BITS_PER_WIDE_INT)
759 snum = cst.low;
760 else
762 prec -= HOST_BITS_PER_WIDE_INT;
763 snum = (unsigned HOST_WIDE_INT) cst.high;
765 if (((snum >> (prec - 1)) & 1) == 1)
767 r.low = cst.low | ~mask.low;
768 r.high = cst.high | ~mask.high;
770 else
772 r.low = cst.low & mask.low;
773 r.high = cst.high & mask.high;
776 return r;
779 /* Returns true if CST fits in signed HOST_WIDE_INT. */
781 bool
782 double_int::fits_shwi () const
784 const double_int &cst = *this;
785 if (cst.high == 0)
786 return (HOST_WIDE_INT) cst.low >= 0;
787 else if (cst.high == -1)
788 return (HOST_WIDE_INT) cst.low < 0;
789 else
790 return false;
793 /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
794 unsigned HOST_WIDE_INT if UNS is true. */
796 bool
797 double_int::fits_hwi (bool uns) const
799 if (uns)
800 return this->fits_uhwi ();
801 else
802 return this->fits_shwi ();
805 /* Returns A * B. */
807 double_int
808 double_int::operator * (double_int b) const
810 const double_int &a = *this;
811 double_int ret;
812 mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
813 return ret;
816 /* Multiplies *this with B and returns a reference to *this. */
818 double_int &
819 double_int::operator *= (double_int b)
821 mul_double (low, high, b.low, b.high, &low, &high);
822 return *this;
825 /* Returns A * B. If the operation overflows according to UNSIGNED_P,
826 *OVERFLOW is set to nonzero. */
828 double_int
829 double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
831 const double_int &a = *this;
832 double_int ret, tem;
833 *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
834 &ret.low, &ret.high,
835 &tem.low, &tem.high, unsigned_p);
836 return ret;
839 double_int
840 double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
841 double_int *higher, bool *overflow) const
844 double_int lower;
845 *overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
846 &lower.low, &lower.high,
847 &higher->low, &higher->high,
848 unsigned_p);
849 return lower;
852 /* Returns A + B. */
854 double_int
855 double_int::operator + (double_int b) const
857 const double_int &a = *this;
858 double_int ret;
859 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
860 return ret;
863 /* Adds B to *this and returns a reference to *this. */
865 double_int &
866 double_int::operator += (double_int b)
868 add_double (low, high, b.low, b.high, &low, &high);
869 return *this;
873 /* Returns A + B. If the operation overflows according to UNSIGNED_P,
874 *OVERFLOW is set to nonzero. */
876 double_int
877 double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
879 const double_int &a = *this;
880 double_int ret;
881 *overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
882 &ret.low, &ret.high, unsigned_p);
883 return ret;
886 /* Returns A - B. */
888 double_int
889 double_int::operator - (double_int b) const
891 const double_int &a = *this;
892 double_int ret;
893 neg_double (b.low, b.high, &b.low, &b.high);
894 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
895 return ret;
898 /* Subtracts B from *this and returns a reference to *this. */
900 double_int &
901 double_int::operator -= (double_int b)
903 neg_double (b.low, b.high, &b.low, &b.high);
904 add_double (low, high, b.low, b.high, &low, &high);
905 return *this;
909 /* Returns A - B. If the operation overflows via inconsistent sign bits,
910 *OVERFLOW is set to nonzero. */
912 double_int
913 double_int::sub_with_overflow (double_int b, bool *overflow) const
915 double_int ret;
916 neg_double (b.low, b.high, &ret.low, &ret.high);
917 add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
918 *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
919 return ret;
922 /* Returns -A. */
924 double_int
925 double_int::operator - () const
927 const double_int &a = *this;
928 double_int ret;
929 neg_double (a.low, a.high, &ret.low, &ret.high);
930 return ret;
933 double_int
934 double_int::neg_with_overflow (bool *overflow) const
936 double_int ret;
937 *overflow = neg_double (low, high, &ret.low, &ret.high);
938 return ret;
941 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
942 specified by CODE). CODE is enum tree_code in fact, but double_int.h
943 must be included before tree.h. The remainder after the division is
944 stored to MOD. */
946 double_int
947 double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
948 double_int *mod, bool *overflow) const
950 const double_int &a = *this;
951 double_int ret;
953 *overflow = div_and_round_double (code, uns, a.low, a.high,
954 b.low, b.high, &ret.low, &ret.high,
955 &mod->low, &mod->high);
956 return ret;
959 double_int
960 double_int::divmod (double_int b, bool uns, unsigned code,
961 double_int *mod) const
963 const double_int &a = *this;
964 double_int ret;
966 div_and_round_double (code, uns, a.low, a.high,
967 b.low, b.high, &ret.low, &ret.high,
968 &mod->low, &mod->high);
969 return ret;
972 /* The same as double_int::divmod with UNS = false. */
974 double_int
975 double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
977 return this->divmod (b, false, code, mod);
980 /* The same as double_int::divmod with UNS = true. */
982 double_int
983 double_int::udivmod (double_int b, unsigned code, double_int *mod) const
985 return this->divmod (b, true, code, mod);
988 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
989 specified by CODE). CODE is enum tree_code in fact, but double_int.h
990 must be included before tree.h. */
992 double_int
993 double_int::div (double_int b, bool uns, unsigned code) const
995 double_int mod;
997 return this->divmod (b, uns, code, &mod);
1000 /* The same as double_int::div with UNS = false. */
1002 double_int
1003 double_int::sdiv (double_int b, unsigned code) const
1005 return this->div (b, false, code);
1008 /* The same as double_int::div with UNS = true. */
1010 double_int
1011 double_int::udiv (double_int b, unsigned code) const
1013 return this->div (b, true, code);
1016 /* Returns A % B (computed as unsigned depending on UNS, and rounded as
1017 specified by CODE). CODE is enum tree_code in fact, but double_int.h
1018 must be included before tree.h. */
1020 double_int
1021 double_int::mod (double_int b, bool uns, unsigned code) const
1023 double_int mod;
1025 this->divmod (b, uns, code, &mod);
1026 return mod;
1029 /* The same as double_int::mod with UNS = false. */
1031 double_int
1032 double_int::smod (double_int b, unsigned code) const
1034 return this->mod (b, false, code);
1037 /* The same as double_int::mod with UNS = true. */
1039 double_int
1040 double_int::umod (double_int b, unsigned code) const
1042 return this->mod (b, true, code);
1045 /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
1046 the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
1047 unchanged. */
1049 bool
1050 double_int::multiple_of (double_int factor,
1051 bool unsigned_p, double_int *multiple) const
1053 double_int remainder;
1054 double_int quotient = this->divmod (factor, unsigned_p,
1055 TRUNC_DIV_EXPR, &remainder);
1056 if (remainder.is_zero ())
1058 *multiple = quotient;
1059 return true;
1062 return false;
1065 /* Set BITPOS bit in A. */
1066 double_int
1067 double_int::set_bit (unsigned bitpos) const
1069 double_int a = *this;
1070 if (bitpos < HOST_BITS_PER_WIDE_INT)
1071 a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
1072 else
1073 a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1075 return a;
1078 /* Count trailing zeros in A. */
1080 double_int::trailing_zeros () const
1082 const double_int &a = *this;
1083 unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
1084 unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
1085 if (!w)
1086 return HOST_BITS_PER_DOUBLE_INT;
1087 bits += ctz_hwi (w);
1088 return bits;
1091 /* Shift A left by COUNT places. */
1093 double_int
1094 double_int::lshift (HOST_WIDE_INT count) const
1096 double_int ret;
1098 gcc_checking_assert (count >= 0);
1100 if (count >= HOST_BITS_PER_DOUBLE_INT)
1102 /* Shifting by the host word size is undefined according to the
1103 ANSI standard, so we must handle this as a special case. */
1104 ret.high = 0;
1105 ret.low = 0;
1107 else if (count >= HOST_BITS_PER_WIDE_INT)
1109 ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
1110 ret.low = 0;
1112 else
1114 ret.high = (((unsigned HOST_WIDE_INT) high << count)
1115 | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
1116 ret.low = low << count;
1119 return ret;
1122 /* Shift A right by COUNT places. */
1124 double_int
1125 double_int::rshift (HOST_WIDE_INT count) const
1127 double_int ret;
1129 gcc_checking_assert (count >= 0);
1131 if (count >= HOST_BITS_PER_DOUBLE_INT)
1133 /* Shifting by the host word size is undefined according to the
1134 ANSI standard, so we must handle this as a special case. */
1135 ret.high = 0;
1136 ret.low = 0;
1138 else if (count >= HOST_BITS_PER_WIDE_INT)
1140 ret.high = 0;
1141 ret.low
1142 = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
1144 else
1146 ret.high = high >> count;
1147 ret.low = ((low >> count)
1148 | ((unsigned HOST_WIDE_INT) high
1149 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
1152 return ret;
1155 /* Shift A left by COUNT places keeping only PREC bits of result. Shift
1156 right if COUNT is negative. ARITH true specifies arithmetic shifting;
1157 otherwise use logical shift. */
1159 double_int
1160 double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1162 double_int ret;
1163 if (count > 0)
1164 lshift_double (low, high, count, prec, &ret.low, &ret.high);
1165 else
1166 rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
1167 return ret;
1170 /* Shift A right by COUNT places keeping only PREC bits of result. Shift
1171 left if COUNT is negative. ARITH true specifies arithmetic shifting;
1172 otherwise use logical shift. */
1174 double_int
1175 double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1177 double_int ret;
1178 if (count > 0)
1179 rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
1180 else
1181 lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
1182 return ret;
1185 /* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
1186 Shift right if COUNT is negative. */
1188 double_int
1189 double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
1191 double_int r;
1192 if (count > 0)
1193 lshift_double (low, high, count, prec, &r.low, &r.high);
1194 else
1195 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
1196 return r;
1199 /* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
1200 Shift left if COUNT is negative. */
1202 double_int
1203 double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
1205 double_int r;
1206 if (count > 0)
1207 rshift_double (low, high, count, prec, &r.low, &r.high, true);
1208 else
1209 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1210 return r;
1213 /* Logical shift A left by COUNT places keeping only PREC bits of result.
1214 Shift right if COUNT is negative. */
1216 double_int
1217 double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
1219 double_int r;
1220 if (count > 0)
1221 lshift_double (low, high, count, prec, &r.low, &r.high);
1222 else
1223 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
1224 return r;
1227 /* Logical shift A right by COUNT places keeping only PREC bits of result.
1228 Shift left if COUNT is negative. */
1230 double_int
1231 double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
1233 double_int r;
1234 if (count > 0)
1235 rshift_double (low, high, count, prec, &r.low, &r.high, false);
1236 else
1237 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1238 return r;
1241 /* Rotate A left by COUNT places keeping only PREC bits of result.
1242 Rotate right if COUNT is negative. */
1244 double_int
1245 double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
1247 double_int t1, t2;
1249 count %= prec;
1250 if (count < 0)
1251 count += prec;
1253 t1 = this->llshift (count, prec);
1254 t2 = this->lrshift (prec - count, prec);
1256 return t1 | t2;
1259 /* Rotate A rigth by COUNT places keeping only PREC bits of result.
1260 Rotate right if COUNT is negative. */
1262 double_int
1263 double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
1265 double_int t1, t2;
1267 count %= prec;
1268 if (count < 0)
1269 count += prec;
1271 t1 = this->lrshift (count, prec);
1272 t2 = this->llshift (prec - count, prec);
1274 return t1 | t2;
1277 /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
1278 comparison is given by UNS. */
1281 double_int::cmp (double_int b, bool uns) const
1283 if (uns)
1284 return this->ucmp (b);
1285 else
1286 return this->scmp (b);
1289 /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
1290 and 1 if A > B. */
1293 double_int::ucmp (double_int b) const
1295 const double_int &a = *this;
1296 if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
1297 return -1;
1298 if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
1299 return 1;
1300 if (a.low < b.low)
1301 return -1;
1302 if (a.low > b.low)
1303 return 1;
1305 return 0;
1308 /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
1309 and 1 if A > B. */
1312 double_int::scmp (double_int b) const
1314 const double_int &a = *this;
1315 if (a.high < b.high)
1316 return -1;
1317 if (a.high > b.high)
1318 return 1;
1319 if (a.low < b.low)
1320 return -1;
1321 if (a.low > b.low)
1322 return 1;
1324 return 0;
1327 /* Compares two unsigned values A and B for less-than. */
1329 bool
1330 double_int::ult (double_int b) const
1332 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1333 return true;
1334 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1335 return false;
1336 if (low < b.low)
1337 return true;
1338 return false;
1341 /* Compares two unsigned values A and B for less-than or equal-to. */
1343 bool
1344 double_int::ule (double_int b) const
1346 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1347 return true;
1348 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1349 return false;
1350 if (low <= b.low)
1351 return true;
1352 return false;
1355 /* Compares two unsigned values A and B for greater-than. */
1357 bool
1358 double_int::ugt (double_int b) const
1360 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1361 return true;
1362 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1363 return false;
1364 if (low > b.low)
1365 return true;
1366 return false;
1369 /* Compares two signed values A and B for less-than. */
1371 bool
1372 double_int::slt (double_int b) const
1374 if (high < b.high)
1375 return true;
1376 if (high > b.high)
1377 return false;
1378 if (low < b.low)
1379 return true;
1380 return false;
1383 /* Compares two signed values A and B for less-than or equal-to. */
1385 bool
1386 double_int::sle (double_int b) const
1388 if (high < b.high)
1389 return true;
1390 if (high > b.high)
1391 return false;
1392 if (low <= b.low)
1393 return true;
1394 return false;
1397 /* Compares two signed values A and B for greater-than. */
1399 bool
1400 double_int::sgt (double_int b) const
1402 if (high > b.high)
1403 return true;
1404 if (high < b.high)
1405 return false;
1406 if (low > b.low)
1407 return true;
1408 return false;
1412 /* Compares two values A and B. Returns max value. Signedness of the
1413 comparison is given by UNS. */
1415 double_int
1416 double_int::max (double_int b, bool uns)
1418 return (this->cmp (b, uns) == 1) ? *this : b;
1421 /* Compares two signed values A and B. Returns max value. */
1423 double_int
1424 double_int::smax (double_int b)
1426 return (this->scmp (b) == 1) ? *this : b;
1429 /* Compares two unsigned values A and B. Returns max value. */
1431 double_int
1432 double_int::umax (double_int b)
1434 return (this->ucmp (b) == 1) ? *this : b;
1437 /* Compares two values A and B. Returns mix value. Signedness of the
1438 comparison is given by UNS. */
1440 double_int
1441 double_int::min (double_int b, bool uns)
1443 return (this->cmp (b, uns) == -1) ? *this : b;
1446 /* Compares two signed values A and B. Returns min value. */
1448 double_int
1449 double_int::smin (double_int b)
1451 return (this->scmp (b) == -1) ? *this : b;
1454 /* Compares two unsigned values A and B. Returns min value. */
1456 double_int
1457 double_int::umin (double_int b)
1459 return (this->ucmp (b) == -1) ? *this : b;
1462 /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
1464 static unsigned
1465 double_int_split_digit (double_int *cst, unsigned base)
1467 unsigned HOST_WIDE_INT resl, reml;
1468 HOST_WIDE_INT resh, remh;
1470 div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
1471 &resl, &resh, &reml, &remh);
1472 cst->high = resh;
1473 cst->low = resl;
1475 return reml;
1478 /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
1479 otherwise it is signed. */
1481 void
1482 dump_double_int (FILE *file, double_int cst, bool uns)
1484 unsigned digits[100], n;
1485 int i;
1487 if (cst.is_zero ())
1489 fprintf (file, "0");
1490 return;
1493 if (!uns && cst.is_negative ())
1495 fprintf (file, "-");
1496 cst = -cst;
1499 for (n = 0; !cst.is_zero (); n++)
1500 digits[n] = double_int_split_digit (&cst, 10);
1501 for (i = n - 1; i >= 0; i--)
1502 fprintf (file, "%u", digits[i]);
1506 /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
1507 otherwise. */
1509 void
1510 mpz_set_double_int (mpz_t result, double_int val, bool uns)
1512 bool negate = false;
1513 unsigned HOST_WIDE_INT vp[2];
1515 if (!uns && val.is_negative ())
1517 negate = true;
1518 val = -val;
1521 vp[0] = val.low;
1522 vp[1] = (unsigned HOST_WIDE_INT) val.high;
1523 mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
1525 if (negate)
1526 mpz_neg (result, result);
1529 /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
1530 values of VAL will be wrapped; otherwise, they will be set to the
1531 appropriate minimum or maximum TYPE bound. */
1533 double_int
1534 mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
1536 unsigned HOST_WIDE_INT *vp;
1537 size_t count, numb;
1538 double_int res;
1540 if (!wrap)
1542 mpz_t min, max;
1544 mpz_init (min);
1545 mpz_init (max);
1546 get_type_static_bounds (type, min, max);
1548 if (mpz_cmp (val, min) < 0)
1549 mpz_set (val, min);
1550 else if (mpz_cmp (val, max) > 0)
1551 mpz_set (val, max);
1553 mpz_clear (min);
1554 mpz_clear (max);
1557 /* Determine the number of unsigned HOST_WIDE_INT that are required
1558 for representing the value. The code to calculate count is
1559 extracted from the GMP manual, section "Integer Import and Export":
1560 http://gmplib.org/manual/Integer-Import-and-Export.html */
1561 numb = 8 * sizeof (HOST_WIDE_INT);
1562 count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
1563 if (count < 2)
1564 count = 2;
1565 vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
1567 vp[0] = 0;
1568 vp[1] = 0;
1569 mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
1571 gcc_assert (wrap || count <= 2);
1573 res.low = vp[0];
1574 res.high = (HOST_WIDE_INT) vp[1];
1576 res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
1577 if (mpz_sgn (val) < 0)
1578 res = -res;
1580 return res;