* gcc-interface/decl.c (gnat_to_gnu_field): Do not set the alignment
[official-gcc.git] / gcc / ada / libgnat / a-cbhase.ads
blob3bf369905b910852ef903eae6054b292f5468b55
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . B O U N D E D _ H A S H E D _ S E T S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 2004-2017, Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
21 -- --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
25 -- --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
30 -- --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 with Ada.Iterator_Interfaces;
36 private with Ada.Containers.Hash_Tables;
37 with Ada.Containers.Helpers;
38 private with Ada.Streams;
39 private with Ada.Finalization; use Ada.Finalization;
41 generic
42 type Element_Type is private;
44 with function Hash (Element : Element_Type) return Hash_Type;
46 with function Equivalent_Elements
47 (Left, Right : Element_Type) return Boolean;
49 with function "=" (Left, Right : Element_Type) return Boolean is <>;
51 package Ada.Containers.Bounded_Hashed_Sets is
52 pragma Annotate (CodePeer, Skip_Analysis);
53 pragma Pure;
54 pragma Remote_Types;
56 type Set (Capacity : Count_Type; Modulus : Hash_Type) is tagged private
57 with Constant_Indexing => Constant_Reference,
58 Default_Iterator => Iterate,
59 Iterator_Element => Element_Type;
61 pragma Preelaborable_Initialization (Set);
63 type Cursor is private;
64 pragma Preelaborable_Initialization (Cursor);
66 Empty_Set : constant Set;
67 -- Set objects declared without an initialization expression are
68 -- initialized to the value Empty_Set.
70 No_Element : constant Cursor;
71 -- Cursor objects declared without an initialization expression are
72 -- initialized to the value No_Element.
74 function Has_Element (Position : Cursor) return Boolean;
75 -- Equivalent to Position /= No_Element
77 package Set_Iterator_Interfaces is new
78 Ada.Iterator_Interfaces (Cursor, Has_Element);
80 function "=" (Left, Right : Set) return Boolean;
81 -- For each element in Left, set equality attempts to find the equal
82 -- element in Right; if a search fails, then set equality immediately
83 -- returns False. The search works by calling Hash to find the bucket in
84 -- the Right set that corresponds to the Left element. If the bucket is
85 -- non-empty, the search calls the generic formal element equality operator
86 -- to compare the element (in Left) to the element of each node in the
87 -- bucket (in Right); the search terminates when a matching node in the
88 -- bucket is found, or the nodes in the bucket are exhausted. (Note that
89 -- element equality is called here, not Equivalent_Elements. Set equality
90 -- is the only operation in which element equality is used. Compare set
91 -- equality to Equivalent_Sets, which does call Equivalent_Elements.)
93 function Equivalent_Sets (Left, Right : Set) return Boolean;
94 -- Similar to set equality, with the difference that the element in Left is
95 -- compared to the elements in Right using the generic formal
96 -- Equivalent_Elements operation instead of element equality.
98 function To_Set (New_Item : Element_Type) return Set;
99 -- Constructs a singleton set comprising New_Element. To_Set calls Hash to
100 -- determine the bucket for New_Item.
102 function Capacity (Container : Set) return Count_Type;
103 -- Returns the current capacity of the set. Capacity is the maximum length
104 -- before which rehashing in guaranteed not to occur.
106 procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
107 -- If the value of the Capacity actual parameter is less or equal to
108 -- Container.Capacity, then the operation has no effect. Otherwise it
109 -- raises Capacity_Error (as no expansion of capacity is possible for a
110 -- bounded form).
112 function Default_Modulus (Capacity : Count_Type) return Hash_Type;
113 -- Returns a modulus value (hash table size) which is optimal for the
114 -- specified capacity (which corresponds to the maximum number of items).
116 function Length (Container : Set) return Count_Type;
117 -- Returns the number of items in the set
119 function Is_Empty (Container : Set) return Boolean;
120 -- Equivalent to Length (Container) = 0
122 procedure Clear (Container : in out Set);
123 -- Removes all of the items from the set
125 function Element (Position : Cursor) return Element_Type;
126 -- Returns the element of the node designated by the cursor
128 procedure Replace_Element
129 (Container : in out Set;
130 Position : Cursor;
131 New_Item : Element_Type);
132 -- If New_Item is equivalent (as determined by calling Equivalent_Elements)
133 -- to the element of the node designated by Position, then New_Element is
134 -- assigned to that element. Otherwise, it calls Hash to determine the
135 -- bucket for New_Item. If the bucket is not empty, then it calls
136 -- Equivalent_Elements for each node in that bucket to determine whether
137 -- New_Item is equivalent to an element in that bucket. If
138 -- Equivalent_Elements returns True then Program_Error is raised (because
139 -- an element may appear only once in the set); otherwise, New_Item is
140 -- assigned to the node designated by Position, and the node is moved to
141 -- its new bucket.
143 procedure Query_Element
144 (Position : Cursor;
145 Process : not null access procedure (Element : Element_Type));
146 -- Calls Process with the element (having only a constant view) of the node
147 -- designated by the cursor.
149 type Constant_Reference_Type
150 (Element : not null access constant Element_Type) is private
151 with Implicit_Dereference => Element;
153 function Constant_Reference
154 (Container : aliased Set;
155 Position : Cursor) return Constant_Reference_Type;
157 procedure Assign (Target : in out Set; Source : Set);
158 -- If Target denotes the same object as Source, then the operation has no
159 -- effect. If the Target capacity is less than the Source length, then
160 -- Assign raises Capacity_Error. Otherwise, Assign clears Target and then
161 -- copies the (active) elements from Source to Target.
163 function Copy
164 (Source : Set;
165 Capacity : Count_Type := 0;
166 Modulus : Hash_Type := 0) return Set;
167 -- Constructs a new set object whose elements correspond to Source. If the
168 -- Capacity parameter is 0, then the capacity of the result is the same as
169 -- the length of Source. If the Capacity parameter is equal or greater than
170 -- the length of Source, then the capacity of the result is the specified
171 -- value. Otherwise, Copy raises Capacity_Error. If the Modulus parameter
172 -- is 0, then the modulus of the result is the value returned by a call to
173 -- Default_Modulus with the capacity parameter determined as above;
174 -- otherwise the modulus of the result is the specified value.
176 procedure Move (Target : in out Set; Source : in out Set);
177 -- Clears Target (if it's not empty), and then moves (not copies) the
178 -- buckets array and nodes from Source to Target.
180 procedure Insert
181 (Container : in out Set;
182 New_Item : Element_Type;
183 Position : out Cursor;
184 Inserted : out Boolean);
185 -- Conditionally inserts New_Item into the set. If New_Item is already in
186 -- the set, then Inserted returns False and Position designates the node
187 -- containing the existing element (which is not modified). If New_Item is
188 -- not already in the set, then Inserted returns True and Position
189 -- designates the newly-inserted node containing New_Item. The search for
190 -- an existing element works as follows. Hash is called to determine
191 -- New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
192 -- is called to compare New_Item to the element of each node in that
193 -- bucket. If the bucket is empty, or there were no equivalent elements in
194 -- the bucket, the search "fails" and the New_Item is inserted in the set
195 -- (and Inserted returns True); otherwise, the search "succeeds" (and
196 -- Inserted returns False).
198 procedure Insert (Container : in out Set; New_Item : Element_Type);
199 -- Attempts to insert New_Item into the set, performing the usual insertion
200 -- search (which involves calling both Hash and Equivalent_Elements); if
201 -- the search succeeds (New_Item is equivalent to an element already in the
202 -- set, and so was not inserted), then this operation raises
203 -- Constraint_Error. (This version of Insert is similar to Replace, but
204 -- having the opposite exception behavior. It is intended for use when you
205 -- want to assert that the item is not already in the set.)
207 procedure Include (Container : in out Set; New_Item : Element_Type);
208 -- Attempts to insert New_Item into the set. If an element equivalent to
209 -- New_Item is already in the set (the insertion search succeeded, and
210 -- hence New_Item was not inserted), then the value of New_Item is assigned
211 -- to the existing element. (This insertion operation only raises an
212 -- exception if cursor tampering occurs. It is intended for use when you
213 -- want to insert the item in the set, and you don't care whether an
214 -- equivalent element is already present.)
216 procedure Replace (Container : in out Set; New_Item : Element_Type);
217 -- Searches for New_Item in the set; if the search fails (because an
218 -- equivalent element was not in the set), then it raises
219 -- Constraint_Error. Otherwise, the existing element is assigned the value
220 -- New_Item. (This is similar to Insert, but with the opposite exception
221 -- behavior. It is intended for use when you want to assert that the item
222 -- is already in the set.)
224 procedure Exclude (Container : in out Set; Item : Element_Type);
225 -- Searches for Item in the set, and if found, removes its node from the
226 -- set and then deallocates it. The search works as follows. The operation
227 -- calls Hash to determine the item's bucket; if the bucket is not empty,
228 -- it calls Equivalent_Elements to compare Item to the element of each node
229 -- in the bucket. (This is the deletion analog of Include. It is intended
230 -- for use when you want to remove the item from the set, but don't care
231 -- whether the item is already in the set.)
233 procedure Delete (Container : in out Set; Item : Element_Type);
234 -- Searches for Item in the set (which involves calling both Hash and
235 -- Equivalent_Elements). If the search fails, then the operation raises
236 -- Constraint_Error. Otherwise it removes the node from the set and then
237 -- deallocates it. (This is the deletion analog of non-conditional
238 -- Insert. It is intended for use when you want to assert that the item is
239 -- already in the set.)
241 procedure Delete (Container : in out Set; Position : in out Cursor);
242 -- Removes the node designated by Position from the set, and then
243 -- deallocates the node. The operation calls Hash to determine the bucket,
244 -- and then compares Position to each node in the bucket until there's a
245 -- match (it does not call Equivalent_Elements).
247 procedure Union (Target : in out Set; Source : Set);
248 -- Iterates over the Source set, and conditionally inserts each element
249 -- into Target.
251 function Union (Left, Right : Set) return Set;
252 -- The operation first copies the Left set to the result, and then iterates
253 -- over the Right set to conditionally insert each element into the result.
255 function "or" (Left, Right : Set) return Set renames Union;
257 procedure Intersection (Target : in out Set; Source : Set);
258 -- Iterates over the Target set (calling First and Next), calling Find to
259 -- determine whether the element is in Source. If an equivalent element is
260 -- not found in Source, the element is deleted from Target.
262 function Intersection (Left, Right : Set) return Set;
263 -- Iterates over the Left set, calling Find to determine whether the
264 -- element is in Right. If an equivalent element is found, it is inserted
265 -- into the result set.
267 function "and" (Left, Right : Set) return Set renames Intersection;
269 procedure Difference (Target : in out Set; Source : Set);
270 -- Iterates over the Source (calling First and Next), calling Find to
271 -- determine whether the element is in Target. If an equivalent element is
272 -- found, it is deleted from Target.
274 function Difference (Left, Right : Set) return Set;
275 -- Iterates over the Left set, calling Find to determine whether the
276 -- element is in the Right set. If an equivalent element is not found, the
277 -- element is inserted into the result set.
279 function "-" (Left, Right : Set) return Set renames Difference;
281 procedure Symmetric_Difference (Target : in out Set; Source : Set);
282 -- The operation iterates over the Source set, searching for the element
283 -- in Target (calling Hash and Equivalent_Elements). If an equivalent
284 -- element is found, it is removed from Target; otherwise it is inserted
285 -- into Target.
287 function Symmetric_Difference (Left, Right : Set) return Set;
288 -- The operation first iterates over the Left set. It calls Find to
289 -- determine whether the element is in the Right set. If no equivalent
290 -- element is found, the element from Left is inserted into the result. The
291 -- operation then iterates over the Right set, to determine whether the
292 -- element is in the Left set. If no equivalent element is found, the Right
293 -- element is inserted into the result.
295 function "xor" (Left, Right : Set) return Set
296 renames Symmetric_Difference;
298 function Overlap (Left, Right : Set) return Boolean;
299 -- Iterates over the Left set (calling First and Next), calling Find to
300 -- determine whether the element is in the Right set. If an equivalent
301 -- element is found, the operation immediately returns True. The operation
302 -- returns False if the iteration over Left terminates without finding any
303 -- equivalent element in Right.
305 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
306 -- Iterates over Subset (calling First and Next), calling Find to determine
307 -- whether the element is in Of_Set. If no equivalent element is found in
308 -- Of_Set, the operation immediately returns False. The operation returns
309 -- True if the iteration over Subset terminates without finding an element
310 -- not in Of_Set (that is, every element in Subset is equivalent to an
311 -- element in Of_Set).
313 function First (Container : Set) return Cursor;
314 -- Returns a cursor that designates the first non-empty bucket, by
315 -- searching from the beginning of the buckets array.
317 function Next (Position : Cursor) return Cursor;
318 -- Returns a cursor that designates the node that follows the current one
319 -- designated by Position. If Position designates the last node in its
320 -- bucket, the operation calls Hash to compute the index of this bucket,
321 -- and searches the buckets array for the first non-empty bucket, starting
322 -- from that index; otherwise, it simply follows the link to the next node
323 -- in the same bucket.
325 procedure Next (Position : in out Cursor);
326 -- Equivalent to Position := Next (Position)
328 function Find
329 (Container : Set;
330 Item : Element_Type) return Cursor;
331 -- Searches for Item in the set. Find calls Hash to determine the item's
332 -- bucket; if the bucket is not empty, it calls Equivalent_Elements to
333 -- compare Item to each element in the bucket. If the search succeeds, Find
334 -- returns a cursor designating the node containing the equivalent element;
335 -- otherwise, it returns No_Element.
337 function Contains (Container : Set; Item : Element_Type) return Boolean;
338 -- Equivalent to Find (Container, Item) /= No_Element
340 function Equivalent_Elements (Left, Right : Cursor) return Boolean;
341 -- Returns the result of calling Equivalent_Elements with the elements of
342 -- the nodes designated by cursors Left and Right.
344 function Equivalent_Elements
345 (Left : Cursor;
346 Right : Element_Type) return Boolean;
347 -- Returns the result of calling Equivalent_Elements with element of the
348 -- node designated by Left and element Right.
350 function Equivalent_Elements
351 (Left : Element_Type;
352 Right : Cursor) return Boolean;
353 -- Returns the result of calling Equivalent_Elements with element Left and
354 -- the element of the node designated by Right.
356 procedure Iterate
357 (Container : Set;
358 Process : not null access procedure (Position : Cursor));
359 -- Calls Process for each node in the set
361 function Iterate
362 (Container : Set)
363 return Set_Iterator_Interfaces.Forward_Iterator'Class;
365 generic
366 type Key_Type (<>) is private;
368 with function Key (Element : Element_Type) return Key_Type;
370 with function Hash (Key : Key_Type) return Hash_Type;
372 with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
374 package Generic_Keys is
376 function Key (Position : Cursor) return Key_Type;
377 -- Applies generic formal operation Key to the element of the node
378 -- designated by Position.
380 function Element (Container : Set; Key : Key_Type) return Element_Type;
381 -- Searches (as per the key-based Find) for the node containing Key, and
382 -- returns the associated element.
384 procedure Replace
385 (Container : in out Set;
386 Key : Key_Type;
387 New_Item : Element_Type);
388 -- Searches (as per the key-based Find) for the node containing Key, and
389 -- then replaces the element of that node (as per the element-based
390 -- Replace_Element).
392 procedure Exclude (Container : in out Set; Key : Key_Type);
393 -- Searches for Key in the set, and if found, removes its node from the
394 -- set and then deallocates it. The search works by first calling Hash
395 -- (on Key) to determine the bucket; if the bucket is not empty, it
396 -- calls Equivalent_Keys to compare parameter Key to the value of
397 -- generic formal operation Key applied to element of each node in the
398 -- bucket.
400 procedure Delete (Container : in out Set; Key : Key_Type);
401 -- Deletes the node containing Key as per Exclude, with the difference
402 -- that Constraint_Error is raised if Key is not found.
404 function Find (Container : Set; Key : Key_Type) return Cursor;
405 -- Searches for the node containing Key, and returns a cursor
406 -- designating the node. The search works by first calling Hash (on Key)
407 -- to determine the bucket. If the bucket is not empty, the search
408 -- compares Key to the element of each node in the bucket, and returns
409 -- the matching node. The comparison itself works by applying the
410 -- generic formal Key operation to the element of the node, and then
411 -- calling generic formal operation Equivalent_Keys.
413 function Contains (Container : Set; Key : Key_Type) return Boolean;
414 -- Equivalent to Find (Container, Key) /= No_Element
416 procedure Update_Element_Preserving_Key
417 (Container : in out Set;
418 Position : Cursor;
419 Process : not null access
420 procedure (Element : in out Element_Type));
421 -- Calls Process with the element of the node designated by Position,
422 -- but with the restriction that the key-value of the element is not
423 -- modified. The operation first makes a copy of the value returned by
424 -- applying generic formal operation Key on the element of the node, and
425 -- then calls Process with the element. The operation verifies that the
426 -- key-part has not been modified by calling generic formal operation
427 -- Equivalent_Keys to compare the saved key-value to the value returned
428 -- by applying generic formal operation Key to the post-Process value of
429 -- element. If the key values compare equal then the operation
430 -- completes. Otherwise, the node is removed from the map and
431 -- Program_Error is raised.
433 type Reference_Type (Element : not null access Element_Type) is private
434 with Implicit_Dereference => Element;
436 function Reference_Preserving_Key
437 (Container : aliased in out Set;
438 Position : Cursor) return Reference_Type;
440 function Constant_Reference
441 (Container : aliased Set;
442 Key : Key_Type) return Constant_Reference_Type;
444 function Reference_Preserving_Key
445 (Container : aliased in out Set;
446 Key : Key_Type) return Reference_Type;
448 private
449 type Set_Access is access all Set;
450 for Set_Access'Storage_Size use 0;
452 package Impl is new Helpers.Generic_Implementation;
454 type Reference_Control_Type is
455 new Impl.Reference_Control_Type with
456 record
457 Container : Set_Access;
458 Index : Hash_Type;
459 Old_Pos : Cursor;
460 Old_Hash : Hash_Type;
461 end record;
463 overriding procedure Finalize (Control : in out Reference_Control_Type);
464 pragma Inline (Finalize);
466 type Reference_Type (Element : not null access Element_Type) is record
467 Control : Reference_Control_Type;
468 end record;
470 use Ada.Streams;
472 procedure Read
473 (Stream : not null access Root_Stream_Type'Class;
474 Item : out Reference_Type);
476 for Reference_Type'Read use Read;
478 procedure Write
479 (Stream : not null access Root_Stream_Type'Class;
480 Item : Reference_Type);
482 for Reference_Type'Write use Write;
484 end Generic_Keys;
486 private
487 pragma Inline (Next);
489 type Node_Type is record
490 Element : aliased Element_Type;
491 Next : Count_Type;
492 end record;
494 package HT_Types is
495 new Hash_Tables.Generic_Bounded_Hash_Table_Types (Node_Type);
497 type Set (Capacity : Count_Type; Modulus : Hash_Type) is
498 new HT_Types.Hash_Table_Type (Capacity, Modulus) with null record;
500 use HT_Types, HT_Types.Implementation;
501 use Ada.Streams;
503 procedure Write
504 (Stream : not null access Root_Stream_Type'Class;
505 Container : Set);
507 for Set'Write use Write;
509 procedure Read
510 (Stream : not null access Root_Stream_Type'Class;
511 Container : out Set);
513 for Set'Read use Read;
515 type Set_Access is access all Set;
516 for Set_Access'Storage_Size use 0;
518 -- Note: If a Cursor object has no explicit initialization expression,
519 -- it must default initialize to the same value as constant No_Element.
520 -- The Node component of type Cursor has scalar type Count_Type, so it
521 -- requires an explicit initialization expression of its own declaration,
522 -- in order for objects of record type Cursor to properly initialize.
524 type Cursor is record
525 Container : Set_Access;
526 Node : Count_Type := 0;
527 end record;
529 procedure Write
530 (Stream : not null access Root_Stream_Type'Class;
531 Item : Cursor);
533 for Cursor'Write use Write;
535 procedure Read
536 (Stream : not null access Root_Stream_Type'Class;
537 Item : out Cursor);
539 for Cursor'Read use Read;
541 subtype Reference_Control_Type is Implementation.Reference_Control_Type;
542 -- It is necessary to rename this here, so that the compiler can find it
544 type Constant_Reference_Type
545 (Element : not null access constant Element_Type) is
546 record
547 Control : Reference_Control_Type :=
548 raise Program_Error with "uninitialized reference";
549 -- The RM says, "The default initialization of an object of
550 -- type Constant_Reference_Type or Reference_Type propagates
551 -- Program_Error."
552 end record;
554 procedure Read
555 (Stream : not null access Root_Stream_Type'Class;
556 Item : out Constant_Reference_Type);
558 for Constant_Reference_Type'Read use Read;
560 procedure Write
561 (Stream : not null access Root_Stream_Type'Class;
562 Item : Constant_Reference_Type);
564 for Constant_Reference_Type'Write use Write;
566 -- Three operations are used to optimize in the expansion of "for ... of"
567 -- loops: the Next(Cursor) procedure in the visible part, and the following
568 -- Pseudo_Reference and Get_Element_Access functions. See Sem_Ch5 for
569 -- details.
571 function Pseudo_Reference
572 (Container : aliased Set'Class) return Reference_Control_Type;
573 pragma Inline (Pseudo_Reference);
574 -- Creates an object of type Reference_Control_Type pointing to the
575 -- container, and increments the Lock. Finalization of this object will
576 -- decrement the Lock.
578 type Element_Access is access all Element_Type with
579 Storage_Size => 0;
581 function Get_Element_Access
582 (Position : Cursor) return not null Element_Access;
583 -- Returns a pointer to the element designated by Position.
585 Empty_Set : constant Set :=
586 (Hash_Table_Type with Capacity => 0, Modulus => 0);
588 No_Element : constant Cursor := (Container => null, Node => 0);
590 type Iterator is new Limited_Controlled and
591 Set_Iterator_Interfaces.Forward_Iterator with
592 record
593 Container : Set_Access;
594 end record
595 with Disable_Controlled => not T_Check;
597 overriding procedure Finalize (Object : in out Iterator);
599 overriding function First (Object : Iterator) return Cursor;
601 overriding function Next
602 (Object : Iterator;
603 Position : Cursor) return Cursor;
605 end Ada.Containers.Bounded_Hashed_Sets;