* gcc-interface/decl.c (gnat_to_gnu_field): Do not set the alignment
[official-gcc.git] / gcc / ada / libgnarl / s-taprop__vxworks.adb
blob83ebc22312e0e843907b3634ccb74ba132eca003
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is the VxWorks version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Conversion;
43 with Interfaces.C;
45 with System.Multiprocessors;
46 with System.Tasking.Debug;
47 with System.Interrupt_Management;
48 with System.Float_Control;
49 with System.OS_Constants;
51 with System.Soft_Links;
52 -- We use System.Soft_Links instead of System.Tasking.Initialization
53 -- because the later is a higher level package that we shouldn't depend
54 -- on. For example when using the restricted run time, it is replaced by
55 -- System.Tasking.Restricted.Stages.
57 with System.Task_Info;
58 with System.VxWorks.Ext;
60 package body System.Task_Primitives.Operations is
62 package OSC renames System.OS_Constants;
63 package SSL renames System.Soft_Links;
65 use System.Tasking.Debug;
66 use System.Tasking;
67 use System.OS_Interface;
68 use System.Parameters;
69 use type System.VxWorks.Ext.t_id;
70 use type Interfaces.C.int;
71 use type System.OS_Interface.unsigned;
73 subtype int is System.OS_Interface.int;
74 subtype unsigned is System.OS_Interface.unsigned;
76 Relative : constant := 0;
78 ----------------
79 -- Local Data --
80 ----------------
82 -- The followings are logically constants, but need to be initialized at
83 -- run time.
85 Environment_Task_Id : Task_Id;
86 -- A variable to hold Task_Id for the environment task
88 -- The followings are internal configuration constants needed
90 Dispatching_Policy : Character;
91 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
93 Foreign_Task_Elaborated : aliased Boolean := True;
94 -- Used to identified fake tasks (i.e., non-Ada Threads)
96 Locking_Policy : Character;
97 pragma Import (C, Locking_Policy, "__gl_locking_policy");
99 Mutex_Protocol : Priority_Type;
101 Single_RTS_Lock : aliased RTS_Lock;
102 -- This is a lock to allow only one thread of control in the RTS at a
103 -- time; it is used to execute in mutual exclusion from all other tasks.
104 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
106 Time_Slice_Val : Integer;
107 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
109 Null_Thread_Id : constant Thread_Id := 0;
110 -- Constant to indicate that the thread identifier has not yet been
111 -- initialized.
113 --------------------
114 -- Local Packages --
115 --------------------
117 package Specific is
119 procedure Initialize;
120 pragma Inline (Initialize);
121 -- Initialize task specific data
123 function Is_Valid_Task return Boolean;
124 pragma Inline (Is_Valid_Task);
125 -- Does executing thread have a TCB?
127 procedure Set (Self_Id : Task_Id);
128 pragma Inline (Set);
129 -- Set the self id for the current task, unless Self_Id is null, in
130 -- which case the task specific data is deleted.
132 function Self return Task_Id;
133 pragma Inline (Self);
134 -- Return a pointer to the Ada Task Control Block of the calling task
136 end Specific;
138 package body Specific is separate;
139 -- The body of this package is target specific
141 ----------------------------------
142 -- ATCB allocation/deallocation --
143 ----------------------------------
145 package body ATCB_Allocation is separate;
146 -- The body of this package is shared across several targets
148 ---------------------------------
149 -- Support for foreign threads --
150 ---------------------------------
152 function Register_Foreign_Thread
153 (Thread : Thread_Id;
154 Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
155 -- Allocate and initialize a new ATCB for the current Thread. The size of
156 -- the secondary stack can be optionally specified.
158 function Register_Foreign_Thread
159 (Thread : Thread_Id;
160 Sec_Stack_Size : Size_Type := Unspecified_Size)
161 return Task_Id is separate;
163 -----------------------
164 -- Local Subprograms --
165 -----------------------
167 procedure Abort_Handler (signo : Signal);
168 -- Handler for the abort (SIGABRT) signal to handle asynchronous abort
170 procedure Install_Signal_Handlers;
171 -- Install the default signal handlers for the current task
173 function Is_Task_Context return Boolean;
174 -- This function returns True if the current execution is in the context of
175 -- a task, and False if it is an interrupt context.
177 type Set_Stack_Limit_Proc_Acc is access procedure;
178 pragma Convention (C, Set_Stack_Limit_Proc_Acc);
180 Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
181 pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
182 -- Procedure to be called when a task is created to set stack limit. Used
183 -- only for VxWorks 5 and VxWorks MILS guest OS.
185 function To_Address is
186 new Ada.Unchecked_Conversion (Task_Id, System.Address);
188 -------------------
189 -- Abort_Handler --
190 -------------------
192 procedure Abort_Handler (signo : Signal) is
193 pragma Unreferenced (signo);
195 Self_ID : constant Task_Id := Self;
196 Old_Set : aliased sigset_t;
197 Unblocked_Mask : aliased sigset_t;
198 Result : int;
199 pragma Warnings (Off, Result);
201 use System.Interrupt_Management;
203 begin
204 -- It is not safe to raise an exception when using ZCX and the GCC
205 -- exception handling mechanism.
207 if ZCX_By_Default then
208 return;
209 end if;
211 if Self_ID.Deferral_Level = 0
212 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
213 and then not Self_ID.Aborting
214 then
215 Self_ID.Aborting := True;
217 -- Make sure signals used for RTS internal purposes are unmasked
219 Result := sigemptyset (Unblocked_Mask'Access);
220 pragma Assert (Result = 0);
221 Result :=
222 sigaddset
223 (Unblocked_Mask'Access,
224 Signal (Abort_Task_Interrupt));
225 pragma Assert (Result = 0);
226 Result := sigaddset (Unblocked_Mask'Access, SIGBUS);
227 pragma Assert (Result = 0);
228 Result := sigaddset (Unblocked_Mask'Access, SIGFPE);
229 pragma Assert (Result = 0);
230 Result := sigaddset (Unblocked_Mask'Access, SIGILL);
231 pragma Assert (Result = 0);
232 Result := sigaddset (Unblocked_Mask'Access, SIGSEGV);
233 pragma Assert (Result = 0);
235 Result :=
236 pthread_sigmask
237 (SIG_UNBLOCK,
238 Unblocked_Mask'Access,
239 Old_Set'Access);
240 pragma Assert (Result = 0);
242 raise Standard'Abort_Signal;
243 end if;
244 end Abort_Handler;
246 -----------------
247 -- Stack_Guard --
248 -----------------
250 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
251 pragma Unreferenced (T);
252 pragma Unreferenced (On);
254 begin
255 -- Nothing needed (why not???)
257 null;
258 end Stack_Guard;
260 -------------------
261 -- Get_Thread_Id --
262 -------------------
264 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
265 begin
266 return T.Common.LL.Thread;
267 end Get_Thread_Id;
269 ----------
270 -- Self --
271 ----------
273 function Self return Task_Id renames Specific.Self;
275 -----------------------------
276 -- Install_Signal_Handlers --
277 -----------------------------
279 procedure Install_Signal_Handlers is
280 act : aliased struct_sigaction;
281 old_act : aliased struct_sigaction;
282 Tmp_Set : aliased sigset_t;
283 Result : int;
285 begin
286 act.sa_flags := 0;
287 act.sa_handler := Abort_Handler'Address;
289 Result := sigemptyset (Tmp_Set'Access);
290 pragma Assert (Result = 0);
291 act.sa_mask := Tmp_Set;
293 Result :=
294 sigaction
295 (Signal (Interrupt_Management.Abort_Task_Interrupt),
296 act'Unchecked_Access,
297 old_act'Unchecked_Access);
298 pragma Assert (Result = 0);
300 Interrupt_Management.Initialize_Interrupts;
301 end Install_Signal_Handlers;
303 ---------------------
304 -- Initialize_Lock --
305 ---------------------
307 procedure Initialize_Lock
308 (Prio : System.Any_Priority;
309 L : not null access Lock)
311 begin
312 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
313 L.Prio_Ceiling := int (Prio);
314 L.Protocol := Mutex_Protocol;
315 pragma Assert (L.Mutex /= 0);
316 end Initialize_Lock;
318 procedure Initialize_Lock
319 (L : not null access RTS_Lock;
320 Level : Lock_Level)
322 pragma Unreferenced (Level);
323 begin
324 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
325 L.Prio_Ceiling := int (System.Any_Priority'Last);
326 L.Protocol := Mutex_Protocol;
327 pragma Assert (L.Mutex /= 0);
328 end Initialize_Lock;
330 -------------------
331 -- Finalize_Lock --
332 -------------------
334 procedure Finalize_Lock (L : not null access Lock) is
335 Result : int;
336 begin
337 Result := semDelete (L.Mutex);
338 pragma Assert (Result = 0);
339 end Finalize_Lock;
341 procedure Finalize_Lock (L : not null access RTS_Lock) is
342 Result : int;
343 begin
344 Result := semDelete (L.Mutex);
345 pragma Assert (Result = 0);
346 end Finalize_Lock;
348 ----------------
349 -- Write_Lock --
350 ----------------
352 procedure Write_Lock
353 (L : not null access Lock;
354 Ceiling_Violation : out Boolean)
356 Result : int;
358 begin
359 if L.Protocol = Prio_Protect
360 and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
361 then
362 Ceiling_Violation := True;
363 return;
364 else
365 Ceiling_Violation := False;
366 end if;
368 Result := semTake (L.Mutex, WAIT_FOREVER);
369 pragma Assert (Result = 0);
370 end Write_Lock;
372 procedure Write_Lock
373 (L : not null access RTS_Lock;
374 Global_Lock : Boolean := False)
376 Result : int;
377 begin
378 if not Single_Lock or else Global_Lock then
379 Result := semTake (L.Mutex, WAIT_FOREVER);
380 pragma Assert (Result = 0);
381 end if;
382 end Write_Lock;
384 procedure Write_Lock (T : Task_Id) is
385 Result : int;
386 begin
387 if not Single_Lock then
388 Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
389 pragma Assert (Result = 0);
390 end if;
391 end Write_Lock;
393 ---------------
394 -- Read_Lock --
395 ---------------
397 procedure Read_Lock
398 (L : not null access Lock;
399 Ceiling_Violation : out Boolean)
401 begin
402 Write_Lock (L, Ceiling_Violation);
403 end Read_Lock;
405 ------------
406 -- Unlock --
407 ------------
409 procedure Unlock (L : not null access Lock) is
410 Result : int;
411 begin
412 Result := semGive (L.Mutex);
413 pragma Assert (Result = 0);
414 end Unlock;
416 procedure Unlock
417 (L : not null access RTS_Lock;
418 Global_Lock : Boolean := False)
420 Result : int;
421 begin
422 if not Single_Lock or else Global_Lock then
423 Result := semGive (L.Mutex);
424 pragma Assert (Result = 0);
425 end if;
426 end Unlock;
428 procedure Unlock (T : Task_Id) is
429 Result : int;
430 begin
431 if not Single_Lock then
432 Result := semGive (T.Common.LL.L.Mutex);
433 pragma Assert (Result = 0);
434 end if;
435 end Unlock;
437 -----------------
438 -- Set_Ceiling --
439 -----------------
441 -- Dynamic priority ceilings are not supported by the underlying system
443 procedure Set_Ceiling
444 (L : not null access Lock;
445 Prio : System.Any_Priority)
447 pragma Unreferenced (L, Prio);
448 begin
449 null;
450 end Set_Ceiling;
452 -----------
453 -- Sleep --
454 -----------
456 procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
457 pragma Unreferenced (Reason);
459 Result : int;
461 begin
462 pragma Assert (Self_ID = Self);
464 -- Release the mutex before sleeping
466 Result :=
467 semGive (if Single_Lock
468 then Single_RTS_Lock.Mutex
469 else Self_ID.Common.LL.L.Mutex);
470 pragma Assert (Result = 0);
472 -- Perform a blocking operation to take the CV semaphore. Note that a
473 -- blocking operation in VxWorks will reenable task scheduling. When we
474 -- are no longer blocked and control is returned, task scheduling will
475 -- again be disabled.
477 Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
478 pragma Assert (Result = 0);
480 -- Take the mutex back
482 Result :=
483 semTake ((if Single_Lock
484 then Single_RTS_Lock.Mutex
485 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
486 pragma Assert (Result = 0);
487 end Sleep;
489 -----------------
490 -- Timed_Sleep --
491 -----------------
493 -- This is for use within the run-time system, so abort is assumed to be
494 -- already deferred, and the caller should be holding its own ATCB lock.
496 procedure Timed_Sleep
497 (Self_ID : Task_Id;
498 Time : Duration;
499 Mode : ST.Delay_Modes;
500 Reason : System.Tasking.Task_States;
501 Timedout : out Boolean;
502 Yielded : out Boolean)
504 pragma Unreferenced (Reason);
506 Orig : constant Duration := Monotonic_Clock;
507 Absolute : Duration;
508 Ticks : int;
509 Result : int;
510 Wakeup : Boolean := False;
512 begin
513 Timedout := False;
514 Yielded := True;
516 if Mode = Relative then
517 Absolute := Orig + Time;
519 -- Systematically add one since the first tick will delay *at most*
520 -- 1 / Rate_Duration seconds, so we need to add one to be on the
521 -- safe side.
523 Ticks := To_Clock_Ticks (Time);
525 if Ticks > 0 and then Ticks < int'Last then
526 Ticks := Ticks + 1;
527 end if;
529 else
530 Absolute := Time;
531 Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
532 end if;
534 if Ticks > 0 then
535 loop
536 -- Release the mutex before sleeping
538 Result :=
539 semGive (if Single_Lock
540 then Single_RTS_Lock.Mutex
541 else Self_ID.Common.LL.L.Mutex);
542 pragma Assert (Result = 0);
544 -- Perform a blocking operation to take the CV semaphore. Note
545 -- that a blocking operation in VxWorks will reenable task
546 -- scheduling. When we are no longer blocked and control is
547 -- returned, task scheduling will again be disabled.
549 Result := semTake (Self_ID.Common.LL.CV, Ticks);
551 if Result = 0 then
553 -- Somebody may have called Wakeup for us
555 Wakeup := True;
557 else
558 if errno /= S_objLib_OBJ_TIMEOUT then
559 Wakeup := True;
561 else
562 -- If Ticks = int'last, it was most probably truncated so
563 -- let's make another round after recomputing Ticks from
564 -- the absolute time.
566 if Ticks /= int'Last then
567 Timedout := True;
569 else
570 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
572 if Ticks < 0 then
573 Timedout := True;
574 end if;
575 end if;
576 end if;
577 end if;
579 -- Take the mutex back
581 Result :=
582 semTake ((if Single_Lock
583 then Single_RTS_Lock.Mutex
584 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
585 pragma Assert (Result = 0);
587 exit when Timedout or Wakeup;
588 end loop;
590 else
591 Timedout := True;
593 -- Should never hold a lock while yielding
595 if Single_Lock then
596 Result := semGive (Single_RTS_Lock.Mutex);
597 Result := taskDelay (0);
598 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
600 else
601 Result := semGive (Self_ID.Common.LL.L.Mutex);
602 Result := taskDelay (0);
603 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
604 end if;
605 end if;
606 end Timed_Sleep;
608 -----------------
609 -- Timed_Delay --
610 -----------------
612 -- This is for use in implementing delay statements, so we assume the
613 -- caller is holding no locks.
615 procedure Timed_Delay
616 (Self_ID : Task_Id;
617 Time : Duration;
618 Mode : ST.Delay_Modes)
620 Orig : constant Duration := Monotonic_Clock;
621 Absolute : Duration;
622 Ticks : int;
623 Timedout : Boolean;
624 Aborted : Boolean := False;
626 Result : int;
627 pragma Warnings (Off, Result);
629 begin
630 if Mode = Relative then
631 Absolute := Orig + Time;
632 Ticks := To_Clock_Ticks (Time);
634 if Ticks > 0 and then Ticks < int'Last then
636 -- First tick will delay anytime between 0 and 1 / sysClkRateGet
637 -- seconds, so we need to add one to be on the safe side.
639 Ticks := Ticks + 1;
640 end if;
642 else
643 Absolute := Time;
644 Ticks := To_Clock_Ticks (Time - Orig);
645 end if;
647 if Ticks > 0 then
649 -- Modifying State, locking the TCB
651 Result :=
652 semTake ((if Single_Lock
653 then Single_RTS_Lock.Mutex
654 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
656 pragma Assert (Result = 0);
658 Self_ID.Common.State := Delay_Sleep;
659 Timedout := False;
661 loop
662 Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
664 -- Release the TCB before sleeping
666 Result :=
667 semGive (if Single_Lock
668 then Single_RTS_Lock.Mutex
669 else Self_ID.Common.LL.L.Mutex);
670 pragma Assert (Result = 0);
672 exit when Aborted;
674 Result := semTake (Self_ID.Common.LL.CV, Ticks);
676 if Result /= 0 then
678 -- If Ticks = int'last, it was most probably truncated, so make
679 -- another round after recomputing Ticks from absolute time.
681 if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
682 Timedout := True;
683 else
684 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
686 if Ticks < 0 then
687 Timedout := True;
688 end if;
689 end if;
690 end if;
692 -- Take back the lock after having slept, to protect further
693 -- access to Self_ID.
695 Result :=
696 semTake
697 ((if Single_Lock
698 then Single_RTS_Lock.Mutex
699 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
701 pragma Assert (Result = 0);
703 exit when Timedout;
704 end loop;
706 Self_ID.Common.State := Runnable;
708 Result :=
709 semGive
710 (if Single_Lock
711 then Single_RTS_Lock.Mutex
712 else Self_ID.Common.LL.L.Mutex);
714 else
715 Result := taskDelay (0);
716 end if;
717 end Timed_Delay;
719 ---------------------
720 -- Monotonic_Clock --
721 ---------------------
723 function Monotonic_Clock return Duration is
724 TS : aliased timespec;
725 Result : int;
726 begin
727 Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
728 pragma Assert (Result = 0);
729 return To_Duration (TS);
730 end Monotonic_Clock;
732 -------------------
733 -- RT_Resolution --
734 -------------------
736 function RT_Resolution return Duration is
737 begin
738 return 1.0 / Duration (sysClkRateGet);
739 end RT_Resolution;
741 ------------
742 -- Wakeup --
743 ------------
745 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
746 pragma Unreferenced (Reason);
747 Result : int;
748 begin
749 Result := semGive (T.Common.LL.CV);
750 pragma Assert (Result = 0);
751 end Wakeup;
753 -----------
754 -- Yield --
755 -----------
757 procedure Yield (Do_Yield : Boolean := True) is
758 pragma Unreferenced (Do_Yield);
759 Result : int;
760 pragma Unreferenced (Result);
761 begin
762 Result := taskDelay (0);
763 end Yield;
765 ------------------
766 -- Set_Priority --
767 ------------------
769 procedure Set_Priority
770 (T : Task_Id;
771 Prio : System.Any_Priority;
772 Loss_Of_Inheritance : Boolean := False)
774 pragma Unreferenced (Loss_Of_Inheritance);
776 Result : int;
778 begin
779 Result :=
780 taskPrioritySet
781 (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
782 pragma Assert (Result = 0);
784 -- Note: in VxWorks 6.6 (or earlier), the task is placed at the end of
785 -- the priority queue instead of the head. This is not the behavior
786 -- required by Annex D (RM D.2.3(5/2)), but we consider it an acceptable
787 -- variation (RM 1.1.3(6)), given this is the built-in behavior of the
788 -- operating system. VxWorks versions starting from 6.7 implement the
789 -- required Annex D semantics.
791 -- In older versions we attempted to better approximate the Annex D
792 -- required behavior, but this simulation was not entirely accurate,
793 -- and it seems better to live with the standard VxWorks semantics.
795 T.Common.Current_Priority := Prio;
796 end Set_Priority;
798 ------------------
799 -- Get_Priority --
800 ------------------
802 function Get_Priority (T : Task_Id) return System.Any_Priority is
803 begin
804 return T.Common.Current_Priority;
805 end Get_Priority;
807 ----------------
808 -- Enter_Task --
809 ----------------
811 procedure Enter_Task (Self_ID : Task_Id) is
812 begin
813 -- Store the user-level task id in the Thread field (to be used
814 -- internally by the run-time system) and the kernel-level task id in
815 -- the LWP field (to be used by the debugger).
817 Self_ID.Common.LL.Thread := taskIdSelf;
818 Self_ID.Common.LL.LWP := getpid;
820 Specific.Set (Self_ID);
822 -- Properly initializes the FPU for PPC/MIPS systems
824 System.Float_Control.Reset;
826 -- Install the signal handlers
828 -- This is called for each task since there is no signal inheritance
829 -- between VxWorks tasks.
831 Install_Signal_Handlers;
833 -- If stack checking is enabled, set the stack limit for this task
835 if Set_Stack_Limit_Hook /= null then
836 Set_Stack_Limit_Hook.all;
837 end if;
838 end Enter_Task;
840 -------------------
841 -- Is_Valid_Task --
842 -------------------
844 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
846 -----------------------------
847 -- Register_Foreign_Thread --
848 -----------------------------
850 function Register_Foreign_Thread return Task_Id is
851 begin
852 if Is_Valid_Task then
853 return Self;
854 else
855 return Register_Foreign_Thread (taskIdSelf);
856 end if;
857 end Register_Foreign_Thread;
859 --------------------
860 -- Initialize_TCB --
861 --------------------
863 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
864 begin
865 Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
866 Self_ID.Common.LL.Thread := Null_Thread_Id;
868 if Self_ID.Common.LL.CV = 0 then
869 Succeeded := False;
871 else
872 Succeeded := True;
874 if not Single_Lock then
875 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
876 end if;
877 end if;
878 end Initialize_TCB;
880 -----------------
881 -- Create_Task --
882 -----------------
884 procedure Create_Task
885 (T : Task_Id;
886 Wrapper : System.Address;
887 Stack_Size : System.Parameters.Size_Type;
888 Priority : System.Any_Priority;
889 Succeeded : out Boolean)
891 Adjusted_Stack_Size : size_t;
893 use type System.Multiprocessors.CPU_Range;
895 begin
896 -- Check whether both Dispatching_Domain and CPU are specified for
897 -- the task, and the CPU value is not contained within the range of
898 -- processors for the domain.
900 if T.Common.Domain /= null
901 and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
902 and then
903 (T.Common.Base_CPU not in T.Common.Domain'Range
904 or else not T.Common.Domain (T.Common.Base_CPU))
905 then
906 Succeeded := False;
907 return;
908 end if;
910 -- Ask for four extra bytes of stack space so that the ATCB pointer can
911 -- be stored below the stack limit, plus extra space for the frame of
912 -- Task_Wrapper. This is so the user gets the amount of stack requested
913 -- exclusive of the needs.
915 -- We also have to allocate n more bytes for the task name storage and
916 -- enough space for the Wind Task Control Block which is around 0x778
917 -- bytes. VxWorks also seems to carve out additional space, so use 2048
918 -- as a nice round number. We might want to increment to the nearest
919 -- page size in case we ever support VxVMI.
921 -- ??? - we should come back and visit this so we can set the task name
922 -- to something appropriate.
924 Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
926 -- Since the initial signal mask of a thread is inherited from the
927 -- creator, and the Environment task has all its signals masked, we do
928 -- not need to manipulate caller's signal mask at this point. All tasks
929 -- in RTS will have All_Tasks_Mask initially.
931 -- We now compute the VxWorks task name and options, then spawn ...
933 declare
934 Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
935 Name_Address : System.Address;
936 -- Task name we are going to hand down to VxWorks
938 function Get_Task_Options return int;
939 pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
940 -- Function that returns the options to be set for the task that we
941 -- are creating. We fetch the options assigned to the current task,
942 -- so offering some user level control over the options for a task
943 -- hierarchy, and force VX_FP_TASK because it is almost always
944 -- required.
946 begin
947 -- If there is no Ada task name handy, let VxWorks choose one.
948 -- Otherwise, tell VxWorks what the Ada task name is.
950 if T.Common.Task_Image_Len = 0 then
951 Name_Address := System.Null_Address;
952 else
953 Name (1 .. Name'Last - 1) :=
954 T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
955 Name (Name'Last) := ASCII.NUL;
956 Name_Address := Name'Address;
957 end if;
959 -- Now spawn the VxWorks task for real
961 T.Common.LL.Thread :=
962 taskSpawn
963 (Name_Address,
964 To_VxWorks_Priority (int (Priority)),
965 Get_Task_Options,
966 Adjusted_Stack_Size,
967 Wrapper,
968 To_Address (T));
969 end;
971 -- Set processor affinity
973 Set_Task_Affinity (T);
975 -- Only case of failure is if taskSpawn returned 0 (aka Null_Thread_Id)
977 if T.Common.LL.Thread = Null_Thread_Id then
978 Succeeded := False;
979 else
980 Succeeded := True;
981 Task_Creation_Hook (T.Common.LL.Thread);
982 Set_Priority (T, Priority);
983 end if;
984 end Create_Task;
986 ------------------
987 -- Finalize_TCB --
988 ------------------
990 procedure Finalize_TCB (T : Task_Id) is
991 Result : int;
993 begin
994 if not Single_Lock then
995 Result := semDelete (T.Common.LL.L.Mutex);
996 pragma Assert (Result = 0);
997 end if;
999 T.Common.LL.Thread := Null_Thread_Id;
1001 Result := semDelete (T.Common.LL.CV);
1002 pragma Assert (Result = 0);
1004 if T.Known_Tasks_Index /= -1 then
1005 Known_Tasks (T.Known_Tasks_Index) := null;
1006 end if;
1008 ATCB_Allocation.Free_ATCB (T);
1009 end Finalize_TCB;
1011 ---------------
1012 -- Exit_Task --
1013 ---------------
1015 procedure Exit_Task is
1016 begin
1017 Specific.Set (null);
1018 end Exit_Task;
1020 ----------------
1021 -- Abort_Task --
1022 ----------------
1024 procedure Abort_Task (T : Task_Id) is
1025 Result : int;
1026 begin
1027 Result :=
1028 kill
1029 (T.Common.LL.Thread,
1030 Signal (Interrupt_Management.Abort_Task_Interrupt));
1031 pragma Assert (Result = 0);
1032 end Abort_Task;
1034 ----------------
1035 -- Initialize --
1036 ----------------
1038 procedure Initialize (S : in out Suspension_Object) is
1039 begin
1040 -- Initialize internal state (always to False (RM D.10(6)))
1042 S.State := False;
1043 S.Waiting := False;
1045 -- Initialize internal mutex
1047 -- Use simpler binary semaphore instead of VxWorks mutual exclusion
1048 -- semaphore, because we don't need the fancier semantics and their
1049 -- overhead.
1051 S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
1053 -- Initialize internal condition variable
1055 S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
1056 end Initialize;
1058 --------------
1059 -- Finalize --
1060 --------------
1062 procedure Finalize (S : in out Suspension_Object) is
1063 pragma Unmodified (S);
1064 -- S may be modified on other targets, but not on VxWorks
1066 Result : STATUS;
1068 begin
1069 -- Destroy internal mutex
1071 Result := semDelete (S.L);
1072 pragma Assert (Result = OK);
1074 -- Destroy internal condition variable
1076 Result := semDelete (S.CV);
1077 pragma Assert (Result = OK);
1078 end Finalize;
1080 -------------------
1081 -- Current_State --
1082 -------------------
1084 function Current_State (S : Suspension_Object) return Boolean is
1085 begin
1086 -- We do not want to use lock on this read operation. State is marked
1087 -- as Atomic so that we ensure that the value retrieved is correct.
1089 return S.State;
1090 end Current_State;
1092 ---------------
1093 -- Set_False --
1094 ---------------
1096 procedure Set_False (S : in out Suspension_Object) is
1097 Result : STATUS;
1099 begin
1100 SSL.Abort_Defer.all;
1102 Result := semTake (S.L, WAIT_FOREVER);
1103 pragma Assert (Result = OK);
1105 S.State := False;
1107 Result := semGive (S.L);
1108 pragma Assert (Result = OK);
1110 SSL.Abort_Undefer.all;
1111 end Set_False;
1113 --------------
1114 -- Set_True --
1115 --------------
1117 procedure Set_True (S : in out Suspension_Object) is
1118 Result : STATUS;
1120 begin
1121 -- Set_True can be called from an interrupt context, in which case
1122 -- Abort_Defer is undefined.
1124 if Is_Task_Context then
1125 SSL.Abort_Defer.all;
1126 end if;
1128 Result := semTake (S.L, WAIT_FOREVER);
1129 pragma Assert (Result = OK);
1131 -- If there is already a task waiting on this suspension object then we
1132 -- resume it, leaving the state of the suspension object to False, as it
1133 -- is specified in (RM D.10 (9)). Otherwise, it just leaves the state to
1134 -- True.
1136 if S.Waiting then
1137 S.Waiting := False;
1138 S.State := False;
1140 Result := semGive (S.CV);
1141 pragma Assert (Result = OK);
1142 else
1143 S.State := True;
1144 end if;
1146 Result := semGive (S.L);
1147 pragma Assert (Result = OK);
1149 -- Set_True can be called from an interrupt context, in which case
1150 -- Abort_Undefer is undefined.
1152 if Is_Task_Context then
1153 SSL.Abort_Undefer.all;
1154 end if;
1156 end Set_True;
1158 ------------------------
1159 -- Suspend_Until_True --
1160 ------------------------
1162 procedure Suspend_Until_True (S : in out Suspension_Object) is
1163 Result : STATUS;
1165 begin
1166 SSL.Abort_Defer.all;
1168 Result := semTake (S.L, WAIT_FOREVER);
1170 if S.Waiting then
1172 -- Program_Error must be raised upon calling Suspend_Until_True
1173 -- if another task is already waiting on that suspension object
1174 -- (RM D.10(10)).
1176 Result := semGive (S.L);
1177 pragma Assert (Result = OK);
1179 SSL.Abort_Undefer.all;
1181 raise Program_Error;
1183 else
1184 -- Suspend the task if the state is False. Otherwise, the task
1185 -- continues its execution, and the state of the suspension object
1186 -- is set to False (RM D.10 (9)).
1188 if S.State then
1189 S.State := False;
1191 Result := semGive (S.L);
1192 pragma Assert (Result = 0);
1194 SSL.Abort_Undefer.all;
1196 else
1197 S.Waiting := True;
1199 -- Release the mutex before sleeping
1201 Result := semGive (S.L);
1202 pragma Assert (Result = OK);
1204 SSL.Abort_Undefer.all;
1206 Result := semTake (S.CV, WAIT_FOREVER);
1207 pragma Assert (Result = 0);
1208 end if;
1209 end if;
1210 end Suspend_Until_True;
1212 ----------------
1213 -- Check_Exit --
1214 ----------------
1216 -- Dummy version
1218 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1219 pragma Unreferenced (Self_ID);
1220 begin
1221 return True;
1222 end Check_Exit;
1224 --------------------
1225 -- Check_No_Locks --
1226 --------------------
1228 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1229 pragma Unreferenced (Self_ID);
1230 begin
1231 return True;
1232 end Check_No_Locks;
1234 ----------------------
1235 -- Environment_Task --
1236 ----------------------
1238 function Environment_Task return Task_Id is
1239 begin
1240 return Environment_Task_Id;
1241 end Environment_Task;
1243 --------------
1244 -- Lock_RTS --
1245 --------------
1247 procedure Lock_RTS is
1248 begin
1249 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1250 end Lock_RTS;
1252 ----------------
1253 -- Unlock_RTS --
1254 ----------------
1256 procedure Unlock_RTS is
1257 begin
1258 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1259 end Unlock_RTS;
1261 ------------------
1262 -- Suspend_Task --
1263 ------------------
1265 function Suspend_Task
1266 (T : ST.Task_Id;
1267 Thread_Self : Thread_Id) return Boolean
1269 begin
1270 if T.Common.LL.Thread /= Null_Thread_Id
1271 and then T.Common.LL.Thread /= Thread_Self
1272 then
1273 return taskSuspend (T.Common.LL.Thread) = 0;
1274 else
1275 return True;
1276 end if;
1277 end Suspend_Task;
1279 -----------------
1280 -- Resume_Task --
1281 -----------------
1283 function Resume_Task
1284 (T : ST.Task_Id;
1285 Thread_Self : Thread_Id) return Boolean
1287 begin
1288 if T.Common.LL.Thread /= Null_Thread_Id
1289 and then T.Common.LL.Thread /= Thread_Self
1290 then
1291 return taskResume (T.Common.LL.Thread) = 0;
1292 else
1293 return True;
1294 end if;
1295 end Resume_Task;
1297 --------------------
1298 -- Stop_All_Tasks --
1299 --------------------
1301 procedure Stop_All_Tasks
1303 Thread_Self : constant Thread_Id := taskIdSelf;
1304 C : Task_Id;
1306 Dummy : int;
1307 Old : int;
1309 begin
1310 Old := Int_Lock;
1312 C := All_Tasks_List;
1313 while C /= null loop
1314 if C.Common.LL.Thread /= Null_Thread_Id
1315 and then C.Common.LL.Thread /= Thread_Self
1316 then
1317 Dummy := Task_Stop (C.Common.LL.Thread);
1318 end if;
1320 C := C.Common.All_Tasks_Link;
1321 end loop;
1323 Dummy := Int_Unlock (Old);
1324 end Stop_All_Tasks;
1326 ---------------
1327 -- Stop_Task --
1328 ---------------
1330 function Stop_Task (T : ST.Task_Id) return Boolean is
1331 begin
1332 if T.Common.LL.Thread /= Null_Thread_Id then
1333 return Task_Stop (T.Common.LL.Thread) = 0;
1334 else
1335 return True;
1336 end if;
1337 end Stop_Task;
1339 -------------------
1340 -- Continue_Task --
1341 -------------------
1343 function Continue_Task (T : ST.Task_Id) return Boolean
1345 begin
1346 if T.Common.LL.Thread /= Null_Thread_Id then
1347 return Task_Cont (T.Common.LL.Thread) = 0;
1348 else
1349 return True;
1350 end if;
1351 end Continue_Task;
1353 ---------------------
1354 -- Is_Task_Context --
1355 ---------------------
1357 function Is_Task_Context return Boolean is
1358 begin
1359 return System.OS_Interface.Interrupt_Context /= 1;
1360 end Is_Task_Context;
1362 ----------------
1363 -- Initialize --
1364 ----------------
1366 procedure Initialize (Environment_Task : Task_Id) is
1367 Result : int;
1368 pragma Unreferenced (Result);
1370 begin
1371 Environment_Task_Id := Environment_Task;
1373 Interrupt_Management.Initialize;
1374 Specific.Initialize;
1376 if Locking_Policy = 'C' then
1377 Mutex_Protocol := Prio_Protect;
1378 elsif Locking_Policy = 'I' then
1379 Mutex_Protocol := Prio_Inherit;
1380 else
1381 Mutex_Protocol := Prio_None;
1382 end if;
1384 if Time_Slice_Val > 0 then
1385 Result :=
1386 Set_Time_Slice
1387 (To_Clock_Ticks
1388 (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
1390 elsif Dispatching_Policy = 'R' then
1391 Result := Set_Time_Slice (To_Clock_Ticks (0.01));
1393 end if;
1395 -- Initialize the lock used to synchronize chain of all ATCBs
1397 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1399 -- Make environment task known here because it doesn't go through
1400 -- Activate_Tasks, which does it for all other tasks.
1402 Known_Tasks (Known_Tasks'First) := Environment_Task;
1403 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1405 Enter_Task (Environment_Task);
1407 -- Set processor affinity
1409 Set_Task_Affinity (Environment_Task);
1410 end Initialize;
1412 -----------------------
1413 -- Set_Task_Affinity --
1414 -----------------------
1416 procedure Set_Task_Affinity (T : ST.Task_Id) is
1417 Result : int := 0;
1418 pragma Unreferenced (Result);
1420 use System.Task_Info;
1421 use type System.Multiprocessors.CPU_Range;
1423 begin
1424 -- Do nothing if the underlying thread has not yet been created. If the
1425 -- thread has not yet been created then the proper affinity will be set
1426 -- during its creation.
1428 if T.Common.LL.Thread = Null_Thread_Id then
1429 null;
1431 -- pragma CPU
1433 elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1435 -- Ada 2012 pragma CPU uses CPU numbers starting from 1, while on
1436 -- VxWorks the first CPU is identified by a 0, so we need to adjust.
1438 Result :=
1439 taskCpuAffinitySet
1440 (T.Common.LL.Thread, int (T.Common.Base_CPU) - 1);
1442 -- Task_Info
1444 elsif T.Common.Task_Info /= Unspecified_Task_Info then
1445 Result := taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info);
1447 -- Handle dispatching domains
1449 elsif T.Common.Domain /= null
1450 and then (T.Common.Domain /= ST.System_Domain
1451 or else T.Common.Domain.all /=
1452 (Multiprocessors.CPU'First ..
1453 Multiprocessors.Number_Of_CPUs => True))
1454 then
1455 declare
1456 CPU_Set : unsigned := 0;
1458 begin
1459 -- Set the affinity to all the processors belonging to the
1460 -- dispatching domain.
1462 for Proc in T.Common.Domain'Range loop
1463 if T.Common.Domain (Proc) then
1465 -- The thread affinity mask is a bit vector in which each
1466 -- bit represents a logical processor.
1468 CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
1469 end if;
1470 end loop;
1472 Result := taskMaskAffinitySet (T.Common.LL.Thread, CPU_Set);
1473 end;
1474 end if;
1475 end Set_Task_Affinity;
1477 end System.Task_Primitives.Operations;