* gcc-interface/decl.c (gnat_to_gnu_field): Do not set the alignment
[official-gcc.git] / gcc / ada / libgnarl / s-taprop__linux.adb
blob2efdc978ff27e58ed769817ef113ee943bea43b0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is a GNU/Linux (GNU/LinuxThreads) version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Interfaces.C; use Interfaces; use type Interfaces.C.int;
43 with System.Task_Info;
44 with System.Tasking.Debug;
45 with System.Interrupt_Management;
46 with System.OS_Constants;
47 with System.OS_Primitives;
48 with System.Multiprocessors;
50 with System.Soft_Links;
51 -- We use System.Soft_Links instead of System.Tasking.Initialization
52 -- because the later is a higher level package that we shouldn't depend on.
53 -- For example when using the restricted run time, it is replaced by
54 -- System.Tasking.Restricted.Stages.
56 package body System.Task_Primitives.Operations is
58 package OSC renames System.OS_Constants;
59 package SSL renames System.Soft_Links;
61 use System.Tasking.Debug;
62 use System.Tasking;
63 use System.OS_Interface;
64 use System.Parameters;
65 use System.OS_Primitives;
66 use System.Task_Info;
68 ----------------
69 -- Local Data --
70 ----------------
72 -- The followings are logically constants, but need to be initialized
73 -- at run time.
75 Single_RTS_Lock : aliased RTS_Lock;
76 -- This is a lock to allow only one thread of control in the RTS at
77 -- a time; it is used to execute in mutual exclusion from all other tasks.
78 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
80 Environment_Task_Id : Task_Id;
81 -- A variable to hold Task_Id for the environment task
83 Unblocked_Signal_Mask : aliased sigset_t;
84 -- The set of signals that should be unblocked in all tasks
86 -- The followings are internal configuration constants needed
88 Next_Serial_Number : Task_Serial_Number := 100;
89 -- We start at 100 (reserve some special values for using in error checks)
91 Time_Slice_Val : Integer;
92 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
94 Dispatching_Policy : Character;
95 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
97 Locking_Policy : Character;
98 pragma Import (C, Locking_Policy, "__gl_locking_policy");
100 Foreign_Task_Elaborated : aliased Boolean := True;
101 -- Used to identified fake tasks (i.e., non-Ada Threads)
103 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
104 -- Whether to use an alternate signal stack for stack overflows
106 Abort_Handler_Installed : Boolean := False;
107 -- True if a handler for the abort signal is installed
109 Null_Thread_Id : constant pthread_t := pthread_t'Last;
110 -- Constant to indicate that the thread identifier has not yet been
111 -- initialized.
113 --------------------
114 -- Local Packages --
115 --------------------
117 package Specific is
119 procedure Initialize (Environment_Task : Task_Id);
120 pragma Inline (Initialize);
121 -- Initialize various data needed by this package
123 function Is_Valid_Task return Boolean;
124 pragma Inline (Is_Valid_Task);
125 -- Does executing thread have a TCB?
127 procedure Set (Self_Id : Task_Id);
128 pragma Inline (Set);
129 -- Set the self id for the current task
131 function Self return Task_Id;
132 pragma Inline (Self);
133 -- Return a pointer to the Ada Task Control Block of the calling task
135 end Specific;
137 package body Specific is separate;
138 -- The body of this package is target specific
140 package Monotonic is
142 function Monotonic_Clock return Duration;
143 pragma Inline (Monotonic_Clock);
144 -- Returns an absolute time, represented as an offset relative to some
145 -- unspecified starting point, typically system boot time. This clock is
146 -- not affected by discontinuous jumps in the system time.
148 function RT_Resolution return Duration;
149 pragma Inline (RT_Resolution);
150 -- Returns resolution of the underlying clock used to implement RT_Clock
152 procedure Timed_Sleep
153 (Self_ID : ST.Task_Id;
154 Time : Duration;
155 Mode : ST.Delay_Modes;
156 Reason : System.Tasking.Task_States;
157 Timedout : out Boolean;
158 Yielded : out Boolean);
159 -- Combination of Sleep (above) and Timed_Delay
161 procedure Timed_Delay
162 (Self_ID : ST.Task_Id;
163 Time : Duration;
164 Mode : ST.Delay_Modes);
165 -- Implement the semantics of the delay statement.
166 -- The caller should be abort-deferred and should not hold any locks.
168 end Monotonic;
170 package body Monotonic is separate;
172 ----------------------------------
173 -- ATCB allocation/deallocation --
174 ----------------------------------
176 package body ATCB_Allocation is separate;
177 -- The body of this package is shared across several targets
179 ---------------------------------
180 -- Support for foreign threads --
181 ---------------------------------
183 function Register_Foreign_Thread
184 (Thread : Thread_Id;
185 Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
186 -- Allocate and initialize a new ATCB for the current Thread. The size of
187 -- the secondary stack can be optionally specified.
189 function Register_Foreign_Thread
190 (Thread : Thread_Id;
191 Sec_Stack_Size : Size_Type := Unspecified_Size)
192 return Task_Id is separate;
194 -----------------------
195 -- Local Subprograms --
196 -----------------------
198 procedure Abort_Handler (signo : Signal);
200 function GNAT_pthread_condattr_setup
201 (attr : access pthread_condattr_t) return C.int;
202 pragma Import
203 (C, GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");
205 function GNAT_has_cap_sys_nice return C.int;
206 pragma Import
207 (C, GNAT_has_cap_sys_nice, "__gnat_has_cap_sys_nice");
208 -- We do not have pragma Linker_Options ("-lcap"); here, because this
209 -- library is not present on many Linux systems. 'libcap' is the Linux
210 -- "capabilities" library, called by __gnat_has_cap_sys_nice.
212 function Prio_To_Linux_Prio (Prio : Any_Priority) return C.int is
213 (C.int (Prio) + 1);
214 -- Convert Ada priority to Linux priority. Priorities are 1 .. 99 on
215 -- GNU/Linux, so we map 0 .. 98 to 1 .. 99.
217 function Get_Ceiling_Support return Boolean;
218 -- Get the value of the Ceiling_Support constant (see below).
219 -- Note well: If this function or related code is modified, it should be
220 -- tested by hand, because automated testing doesn't exercise it.
222 -------------------------
223 -- Get_Ceiling_Support --
224 -------------------------
226 function Get_Ceiling_Support return Boolean is
227 Ceiling_Support : Boolean := False;
228 begin
229 if Locking_Policy /= 'C' then
230 return False;
231 end if;
233 declare
234 function geteuid return Integer;
235 pragma Import (C, geteuid, "geteuid");
236 Superuser : constant Boolean := geteuid = 0;
237 Has_Cap : constant C.int := GNAT_has_cap_sys_nice;
238 pragma Assert (Has_Cap in 0 | 1);
239 begin
240 Ceiling_Support := Superuser or else Has_Cap = 1;
241 end;
243 return Ceiling_Support;
244 end Get_Ceiling_Support;
246 pragma Warnings (Off, "non-static call not allowed in preelaborated unit");
247 Ceiling_Support : constant Boolean := Get_Ceiling_Support;
248 pragma Warnings (On, "non-static call not allowed in preelaborated unit");
249 -- True if the locking policy is Ceiling_Locking, and the current process
250 -- has permission to use this policy. The process has permission if it is
251 -- running as 'root', or if the capability was set by the setcap command,
252 -- as in "sudo /sbin/setcap cap_sys_nice=ep exe_file". If it doesn't have
253 -- permission, then a request for Ceiling_Locking is ignored.
255 type RTS_Lock_Ptr is not null access all RTS_Lock;
257 function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int;
258 -- Initialize the mutex L. If Ceiling_Support is True, then set the ceiling
259 -- to Prio. Returns 0 for success, or ENOMEM for out-of-memory.
261 -------------------
262 -- Abort_Handler --
263 -------------------
265 procedure Abort_Handler (signo : Signal) is
266 pragma Unreferenced (signo);
268 Self_Id : constant Task_Id := Self;
269 Result : C.int;
270 Old_Set : aliased sigset_t;
272 begin
273 -- It's not safe to raise an exception when using GCC ZCX mechanism.
274 -- Note that we still need to install a signal handler, since in some
275 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
276 -- need to send the Abort signal to a task.
278 if ZCX_By_Default then
279 return;
280 end if;
282 if Self_Id.Deferral_Level = 0
283 and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
284 and then not Self_Id.Aborting
285 then
286 Self_Id.Aborting := True;
288 -- Make sure signals used for RTS internal purpose are unmasked
290 Result :=
291 pthread_sigmask
292 (SIG_UNBLOCK,
293 Unblocked_Signal_Mask'Access,
294 Old_Set'Access);
295 pragma Assert (Result = 0);
297 raise Standard'Abort_Signal;
298 end if;
299 end Abort_Handler;
301 --------------
302 -- Lock_RTS --
303 --------------
305 procedure Lock_RTS is
306 begin
307 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
308 end Lock_RTS;
310 ----------------
311 -- Unlock_RTS --
312 ----------------
314 procedure Unlock_RTS is
315 begin
316 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
317 end Unlock_RTS;
319 -----------------
320 -- Stack_Guard --
321 -----------------
323 -- The underlying thread system extends the memory (up to 2MB) when needed
325 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
326 pragma Unreferenced (T);
327 pragma Unreferenced (On);
328 begin
329 null;
330 end Stack_Guard;
332 --------------------
333 -- Get_Thread_Id --
334 --------------------
336 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
337 begin
338 return T.Common.LL.Thread;
339 end Get_Thread_Id;
341 ----------
342 -- Self --
343 ----------
345 function Self return Task_Id renames Specific.Self;
347 ----------------
348 -- Init_Mutex --
349 ----------------
351 function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int is
352 Mutex_Attr : aliased pthread_mutexattr_t;
353 Result, Result_2 : C.int;
355 begin
356 Result := pthread_mutexattr_init (Mutex_Attr'Access);
357 pragma Assert (Result in 0 | ENOMEM);
359 if Result = ENOMEM then
360 return Result;
361 end if;
363 if Ceiling_Support then
364 Result := pthread_mutexattr_setprotocol
365 (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
366 pragma Assert (Result = 0);
368 Result := pthread_mutexattr_setprioceiling
369 (Mutex_Attr'Access, Prio_To_Linux_Prio (Prio));
370 pragma Assert (Result = 0);
372 elsif Locking_Policy = 'I' then
373 Result := pthread_mutexattr_setprotocol
374 (Mutex_Attr'Access, PTHREAD_PRIO_INHERIT);
375 pragma Assert (Result = 0);
376 end if;
378 Result := pthread_mutex_init (L, Mutex_Attr'Access);
379 pragma Assert (Result in 0 | ENOMEM);
381 Result_2 := pthread_mutexattr_destroy (Mutex_Attr'Access);
382 pragma Assert (Result_2 = 0);
383 return Result; -- of pthread_mutex_init, not pthread_mutexattr_destroy
384 end Init_Mutex;
386 ---------------------
387 -- Initialize_Lock --
388 ---------------------
390 -- Note: mutexes and cond_variables needed per-task basis are initialized
391 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
392 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
393 -- status change of RTS. Therefore raising Storage_Error in the following
394 -- routines should be able to be handled safely.
396 procedure Initialize_Lock
397 (Prio : Any_Priority;
398 L : not null access Lock)
400 begin
401 if Locking_Policy = 'R' then
402 declare
403 RWlock_Attr : aliased pthread_rwlockattr_t;
404 Result : C.int;
406 begin
407 -- Set the rwlock to prefer writer to avoid writers starvation
409 Result := pthread_rwlockattr_init (RWlock_Attr'Access);
410 pragma Assert (Result = 0);
412 Result := pthread_rwlockattr_setkind_np
413 (RWlock_Attr'Access,
414 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
415 pragma Assert (Result = 0);
417 Result := pthread_rwlock_init (L.RW'Access, RWlock_Attr'Access);
419 pragma Assert (Result in 0 | ENOMEM);
421 if Result = ENOMEM then
422 raise Storage_Error with "Failed to allocate a lock";
423 end if;
424 end;
426 else
427 if Init_Mutex (L.WO'Access, Prio) = ENOMEM then
428 raise Storage_Error with "Failed to allocate a lock";
429 end if;
430 end if;
431 end Initialize_Lock;
433 procedure Initialize_Lock
434 (L : not null access RTS_Lock; Level : Lock_Level)
436 pragma Unreferenced (Level);
437 begin
438 if Init_Mutex (L.all'Access, Any_Priority'Last) = ENOMEM then
439 raise Storage_Error with "Failed to allocate a lock";
440 end if;
441 end Initialize_Lock;
443 -------------------
444 -- Finalize_Lock --
445 -------------------
447 procedure Finalize_Lock (L : not null access Lock) is
448 Result : C.int;
449 begin
450 if Locking_Policy = 'R' then
451 Result := pthread_rwlock_destroy (L.RW'Access);
452 else
453 Result := pthread_mutex_destroy (L.WO'Access);
454 end if;
455 pragma Assert (Result = 0);
456 end Finalize_Lock;
458 procedure Finalize_Lock (L : not null access RTS_Lock) is
459 Result : C.int;
460 begin
461 Result := pthread_mutex_destroy (L);
462 pragma Assert (Result = 0);
463 end Finalize_Lock;
465 ----------------
466 -- Write_Lock --
467 ----------------
469 procedure Write_Lock
470 (L : not null access Lock;
471 Ceiling_Violation : out Boolean)
473 Result : C.int;
474 begin
475 if Locking_Policy = 'R' then
476 Result := pthread_rwlock_wrlock (L.RW'Access);
477 else
478 Result := pthread_mutex_lock (L.WO'Access);
479 end if;
481 -- The cause of EINVAL is a priority ceiling violation
483 pragma Assert (Result in 0 | EINVAL);
484 Ceiling_Violation := Result = EINVAL;
485 end Write_Lock;
487 procedure Write_Lock
488 (L : not null access RTS_Lock;
489 Global_Lock : Boolean := False)
491 Result : C.int;
492 begin
493 if not Single_Lock or else Global_Lock then
494 Result := pthread_mutex_lock (L);
495 pragma Assert (Result = 0);
496 end if;
497 end Write_Lock;
499 procedure Write_Lock (T : Task_Id) is
500 Result : C.int;
501 begin
502 if not Single_Lock then
503 Result := pthread_mutex_lock (T.Common.LL.L'Access);
504 pragma Assert (Result = 0);
505 end if;
506 end Write_Lock;
508 ---------------
509 -- Read_Lock --
510 ---------------
512 procedure Read_Lock
513 (L : not null access Lock;
514 Ceiling_Violation : out Boolean)
516 Result : C.int;
517 begin
518 if Locking_Policy = 'R' then
519 Result := pthread_rwlock_rdlock (L.RW'Access);
520 else
521 Result := pthread_mutex_lock (L.WO'Access);
522 end if;
524 -- The cause of EINVAL is a priority ceiling violation
526 pragma Assert (Result in 0 | EINVAL);
527 Ceiling_Violation := Result = EINVAL;
528 end Read_Lock;
530 ------------
531 -- Unlock --
532 ------------
534 procedure Unlock (L : not null access Lock) is
535 Result : C.int;
536 begin
537 if Locking_Policy = 'R' then
538 Result := pthread_rwlock_unlock (L.RW'Access);
539 else
540 Result := pthread_mutex_unlock (L.WO'Access);
541 end if;
542 pragma Assert (Result = 0);
543 end Unlock;
545 procedure Unlock
546 (L : not null access RTS_Lock;
547 Global_Lock : Boolean := False)
549 Result : C.int;
550 begin
551 if not Single_Lock or else Global_Lock then
552 Result := pthread_mutex_unlock (L);
553 pragma Assert (Result = 0);
554 end if;
555 end Unlock;
557 procedure Unlock (T : Task_Id) is
558 Result : C.int;
559 begin
560 if not Single_Lock then
561 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
562 pragma Assert (Result = 0);
563 end if;
564 end Unlock;
566 -----------------
567 -- Set_Ceiling --
568 -----------------
570 -- Dynamic priority ceilings are not supported by the underlying system
572 procedure Set_Ceiling
573 (L : not null access Lock;
574 Prio : Any_Priority)
576 pragma Unreferenced (L, Prio);
577 begin
578 null;
579 end Set_Ceiling;
581 -----------
582 -- Sleep --
583 -----------
585 procedure Sleep
586 (Self_ID : Task_Id;
587 Reason : System.Tasking.Task_States)
589 pragma Unreferenced (Reason);
591 Result : C.int;
593 begin
594 pragma Assert (Self_ID = Self);
596 Result :=
597 pthread_cond_wait
598 (cond => Self_ID.Common.LL.CV'Access,
599 mutex => (if Single_Lock
600 then Single_RTS_Lock'Access
601 else Self_ID.Common.LL.L'Access));
603 -- EINTR is not considered a failure
605 pragma Assert (Result in 0 | EINTR);
606 end Sleep;
608 -----------------
609 -- Timed_Sleep --
610 -----------------
612 -- This is for use within the run-time system, so abort is
613 -- assumed to be already deferred, and the caller should be
614 -- holding its own ATCB lock.
616 procedure Timed_Sleep
617 (Self_ID : Task_Id;
618 Time : Duration;
619 Mode : ST.Delay_Modes;
620 Reason : System.Tasking.Task_States;
621 Timedout : out Boolean;
622 Yielded : out Boolean) renames Monotonic.Timed_Sleep;
624 -----------------
625 -- Timed_Delay --
626 -----------------
628 -- This is for use in implementing delay statements, so we assume the
629 -- caller is abort-deferred but is holding no locks.
631 procedure Timed_Delay
632 (Self_ID : Task_Id;
633 Time : Duration;
634 Mode : ST.Delay_Modes) renames Monotonic.Timed_Delay;
636 ---------------------
637 -- Monotonic_Clock --
638 ---------------------
640 function Monotonic_Clock return Duration renames Monotonic.Monotonic_Clock;
642 -------------------
643 -- RT_Resolution --
644 -------------------
646 function RT_Resolution return Duration renames Monotonic.RT_Resolution;
648 ------------
649 -- Wakeup --
650 ------------
652 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
653 pragma Unreferenced (Reason);
654 Result : C.int;
655 begin
656 Result := pthread_cond_signal (T.Common.LL.CV'Access);
657 pragma Assert (Result = 0);
658 end Wakeup;
660 -----------
661 -- Yield --
662 -----------
664 procedure Yield (Do_Yield : Boolean := True) is
665 Result : C.int;
666 pragma Unreferenced (Result);
667 begin
668 if Do_Yield then
669 Result := sched_yield;
670 end if;
671 end Yield;
673 ------------------
674 -- Set_Priority --
675 ------------------
677 procedure Set_Priority
678 (T : Task_Id;
679 Prio : Any_Priority;
680 Loss_Of_Inheritance : Boolean := False)
682 pragma Unreferenced (Loss_Of_Inheritance);
684 Result : C.int;
685 Param : aliased struct_sched_param;
687 function Get_Policy (Prio : Any_Priority) return Character;
688 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
689 -- Get priority specific dispatching policy
691 Priority_Specific_Policy : constant Character := Get_Policy (Prio);
692 -- Upper case first character of the policy name corresponding to the
693 -- task as set by a Priority_Specific_Dispatching pragma.
695 begin
696 T.Common.Current_Priority := Prio;
698 Param.sched_priority := Prio_To_Linux_Prio (Prio);
700 if Dispatching_Policy = 'R'
701 or else Priority_Specific_Policy = 'R'
702 or else Time_Slice_Val > 0
703 then
704 Result :=
705 pthread_setschedparam
706 (T.Common.LL.Thread, SCHED_RR, Param'Access);
708 elsif Dispatching_Policy = 'F'
709 or else Priority_Specific_Policy = 'F'
710 or else Time_Slice_Val = 0
711 then
712 Result :=
713 pthread_setschedparam
714 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
716 else
717 Param.sched_priority := 0;
718 Result :=
719 pthread_setschedparam
720 (T.Common.LL.Thread,
721 SCHED_OTHER, Param'Access);
722 end if;
724 pragma Assert (Result in 0 | EPERM | EINVAL);
725 end Set_Priority;
727 ------------------
728 -- Get_Priority --
729 ------------------
731 function Get_Priority (T : Task_Id) return Any_Priority is
732 begin
733 return T.Common.Current_Priority;
734 end Get_Priority;
736 ----------------
737 -- Enter_Task --
738 ----------------
740 procedure Enter_Task (Self_ID : Task_Id) is
741 begin
742 if Self_ID.Common.Task_Info /= null
743 and then Self_ID.Common.Task_Info.CPU_Affinity = No_CPU
744 then
745 raise Invalid_CPU_Number;
746 end if;
748 Self_ID.Common.LL.Thread := pthread_self;
749 Self_ID.Common.LL.LWP := lwp_self;
751 -- Set thread name to ease debugging. If the name of the task is
752 -- "foreign thread" (as set by Register_Foreign_Thread) retrieve
753 -- the name of the thread and update the name of the task instead.
755 if Self_ID.Common.Task_Image_Len = 14
756 and then Self_ID.Common.Task_Image (1 .. 14) = "foreign thread"
757 then
758 declare
759 Thread_Name : String (1 .. 16);
760 -- PR_GET_NAME returns a string of up to 16 bytes
762 Len : Natural := 0;
763 -- Length of the task name contained in Task_Name
765 Result : C.int;
766 -- Result from the prctl call
767 begin
768 Result := prctl (PR_GET_NAME, unsigned_long (Thread_Name'Address));
769 pragma Assert (Result = 0);
771 -- Find the length of the given name
773 for J in Thread_Name'Range loop
774 if Thread_Name (J) /= ASCII.NUL then
775 Len := Len + 1;
776 else
777 exit;
778 end if;
779 end loop;
781 -- Cover the odd situation where someone decides to change
782 -- Parameters.Max_Task_Image_Length to less than 16 characters.
784 if Len > Parameters.Max_Task_Image_Length then
785 Len := Parameters.Max_Task_Image_Length;
786 end if;
788 -- Copy the name of the thread to the task's ATCB
790 Self_ID.Common.Task_Image (1 .. Len) := Thread_Name (1 .. Len);
791 Self_ID.Common.Task_Image_Len := Len;
792 end;
794 elsif Self_ID.Common.Task_Image_Len > 0 then
795 declare
796 Task_Name : String (1 .. Parameters.Max_Task_Image_Length + 1);
797 Result : C.int;
799 begin
800 Task_Name (1 .. Self_ID.Common.Task_Image_Len) :=
801 Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len);
802 Task_Name (Self_ID.Common.Task_Image_Len + 1) := ASCII.NUL;
804 Result := prctl (PR_SET_NAME, unsigned_long (Task_Name'Address));
805 pragma Assert (Result = 0);
806 end;
807 end if;
809 Specific.Set (Self_ID);
811 if Use_Alternate_Stack
812 and then Self_ID.Common.Task_Alternate_Stack /= Null_Address
813 then
814 declare
815 Stack : aliased stack_t;
816 Result : C.int;
817 begin
818 Stack.ss_sp := Self_ID.Common.Task_Alternate_Stack;
819 Stack.ss_size := Alternate_Stack_Size;
820 Stack.ss_flags := 0;
821 Result := sigaltstack (Stack'Access, null);
822 pragma Assert (Result = 0);
823 end;
824 end if;
825 end Enter_Task;
827 -------------------
828 -- Is_Valid_Task --
829 -------------------
831 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
833 -----------------------------
834 -- Register_Foreign_Thread --
835 -----------------------------
837 function Register_Foreign_Thread return Task_Id is
838 begin
839 if Is_Valid_Task then
840 return Self;
841 else
842 return Register_Foreign_Thread (pthread_self);
843 end if;
844 end Register_Foreign_Thread;
846 --------------------
847 -- Initialize_TCB --
848 --------------------
850 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
851 Result : C.int;
852 Cond_Attr : aliased pthread_condattr_t;
854 begin
855 -- Give the task a unique serial number
857 Self_ID.Serial_Number := Next_Serial_Number;
858 Next_Serial_Number := Next_Serial_Number + 1;
859 pragma Assert (Next_Serial_Number /= 0);
861 Self_ID.Common.LL.Thread := Null_Thread_Id;
863 if not Single_Lock then
864 if Init_Mutex
865 (Self_ID.Common.LL.L'Access, Any_Priority'Last) /= 0
866 then
867 Succeeded := False;
868 return;
869 end if;
870 end if;
872 Result := pthread_condattr_init (Cond_Attr'Access);
873 pragma Assert (Result in 0 | ENOMEM);
875 if Result = 0 then
876 Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
877 pragma Assert (Result = 0);
879 Result :=
880 pthread_cond_init
881 (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
882 pragma Assert (Result in 0 | ENOMEM);
883 end if;
885 if Result = 0 then
886 Succeeded := True;
887 else
888 if not Single_Lock then
889 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
890 pragma Assert (Result = 0);
891 end if;
893 Succeeded := False;
894 end if;
896 Result := pthread_condattr_destroy (Cond_Attr'Access);
897 pragma Assert (Result = 0);
898 end Initialize_TCB;
900 -----------------
901 -- Create_Task --
902 -----------------
904 procedure Create_Task
905 (T : Task_Id;
906 Wrapper : System.Address;
907 Stack_Size : System.Parameters.Size_Type;
908 Priority : Any_Priority;
909 Succeeded : out Boolean)
911 Thread_Attr : aliased pthread_attr_t;
912 Adjusted_Stack_Size : C.size_t;
913 Result : C.int;
915 use type Multiprocessors.CPU_Range, Interfaces.C.size_t;
917 begin
918 -- Check whether both Dispatching_Domain and CPU are specified for
919 -- the task, and the CPU value is not contained within the range of
920 -- processors for the domain.
922 if T.Common.Domain /= null
923 and then T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU
924 and then
925 (T.Common.Base_CPU not in T.Common.Domain'Range
926 or else not T.Common.Domain (T.Common.Base_CPU))
927 then
928 Succeeded := False;
929 return;
930 end if;
932 Adjusted_Stack_Size := C.size_t (Stack_Size + Alternate_Stack_Size);
934 Result := pthread_attr_init (Thread_Attr'Access);
935 pragma Assert (Result in 0 | ENOMEM);
937 if Result /= 0 then
938 Succeeded := False;
939 return;
940 end if;
942 Result :=
943 pthread_attr_setstacksize (Thread_Attr'Access, Adjusted_Stack_Size);
944 pragma Assert (Result = 0);
946 Result :=
947 pthread_attr_setdetachstate
948 (Thread_Attr'Access, PTHREAD_CREATE_DETACHED);
949 pragma Assert (Result = 0);
951 -- Set the required attributes for the creation of the thread
953 -- Note: Previously, we called pthread_setaffinity_np (after thread
954 -- creation but before thread activation) to set the affinity but it was
955 -- not behaving as expected. Setting the required attributes for the
956 -- creation of the thread works correctly and it is more appropriate.
958 -- Do nothing if required support not provided by the operating system
960 if pthread_attr_setaffinity_np'Address = Null_Address then
961 null;
963 -- Support is available
965 elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
966 declare
967 CPUs : constant size_t :=
968 C.size_t (Multiprocessors.Number_Of_CPUs);
969 CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
970 Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
972 begin
973 CPU_ZERO (Size, CPU_Set);
974 System.OS_Interface.CPU_SET
975 (int (T.Common.Base_CPU), Size, CPU_Set);
976 Result :=
977 pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
978 pragma Assert (Result = 0);
980 CPU_FREE (CPU_Set);
981 end;
983 -- Handle Task_Info
985 elsif T.Common.Task_Info /= null then
986 Result :=
987 pthread_attr_setaffinity_np
988 (Thread_Attr'Access,
989 CPU_SETSIZE / 8,
990 T.Common.Task_Info.CPU_Affinity'Access);
991 pragma Assert (Result = 0);
993 -- Handle dispatching domains
995 -- To avoid changing CPU affinities when not needed, we set the
996 -- affinity only when assigning to a domain other than the default
997 -- one, or when the default one has been modified.
999 elsif T.Common.Domain /= null and then
1000 (T.Common.Domain /= ST.System_Domain
1001 or else T.Common.Domain.all /=
1002 (Multiprocessors.CPU'First ..
1003 Multiprocessors.Number_Of_CPUs => True))
1004 then
1005 declare
1006 CPUs : constant size_t :=
1007 C.size_t (Multiprocessors.Number_Of_CPUs);
1008 CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
1009 Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
1011 begin
1012 CPU_ZERO (Size, CPU_Set);
1014 -- Set the affinity to all the processors belonging to the
1015 -- dispatching domain.
1017 for Proc in T.Common.Domain'Range loop
1018 if T.Common.Domain (Proc) then
1019 System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
1020 end if;
1021 end loop;
1023 Result :=
1024 pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
1025 pragma Assert (Result = 0);
1027 CPU_FREE (CPU_Set);
1028 end;
1029 end if;
1031 -- Since the initial signal mask of a thread is inherited from the
1032 -- creator, and the Environment task has all its signals masked, we
1033 -- do not need to manipulate caller's signal mask at this point.
1034 -- All tasks in RTS will have All_Tasks_Mask initially.
1036 -- Note: the use of Unrestricted_Access in the following call is needed
1037 -- because otherwise we have an error of getting a access-to-volatile
1038 -- value which points to a non-volatile object. But in this case it is
1039 -- safe to do this, since we know we have no problems with aliasing and
1040 -- Unrestricted_Access bypasses this check.
1042 Result := pthread_create
1043 (T.Common.LL.Thread'Unrestricted_Access,
1044 Thread_Attr'Access,
1045 Thread_Body_Access (Wrapper),
1046 To_Address (T));
1048 pragma Assert (Result in 0 | EAGAIN | ENOMEM);
1050 if Result /= 0 then
1051 Succeeded := False;
1052 Result := pthread_attr_destroy (Thread_Attr'Access);
1053 pragma Assert (Result = 0);
1054 return;
1055 end if;
1057 Succeeded := True;
1059 Result := pthread_attr_destroy (Thread_Attr'Access);
1060 pragma Assert (Result = 0);
1062 Set_Priority (T, Priority);
1063 end Create_Task;
1065 ------------------
1066 -- Finalize_TCB --
1067 ------------------
1069 procedure Finalize_TCB (T : Task_Id) is
1070 Result : C.int;
1072 begin
1073 if not Single_Lock then
1074 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
1075 pragma Assert (Result = 0);
1076 end if;
1078 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
1079 pragma Assert (Result = 0);
1081 if T.Known_Tasks_Index /= -1 then
1082 Known_Tasks (T.Known_Tasks_Index) := null;
1083 end if;
1085 ATCB_Allocation.Free_ATCB (T);
1086 end Finalize_TCB;
1088 ---------------
1089 -- Exit_Task --
1090 ---------------
1092 procedure Exit_Task is
1093 begin
1094 Specific.Set (null);
1095 end Exit_Task;
1097 ----------------
1098 -- Abort_Task --
1099 ----------------
1101 procedure Abort_Task (T : Task_Id) is
1102 Result : C.int;
1104 ESRCH : constant := 3; -- No such process
1105 -- It can happen that T has already vanished, in which case pthread_kill
1106 -- returns ESRCH, so we don't consider that to be an error.
1108 begin
1109 if Abort_Handler_Installed then
1110 Result :=
1111 pthread_kill
1112 (T.Common.LL.Thread,
1113 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1114 pragma Assert (Result in 0 | ESRCH);
1115 end if;
1116 end Abort_Task;
1118 ----------------
1119 -- Initialize --
1120 ----------------
1122 procedure Initialize (S : in out Suspension_Object) is
1123 Result : C.int;
1125 begin
1126 -- Initialize internal state (always to False (RM D.10(6)))
1128 S.State := False;
1129 S.Waiting := False;
1131 -- Initialize internal mutex
1133 Result := pthread_mutex_init (S.L'Access, null);
1135 pragma Assert (Result in 0 | ENOMEM);
1137 if Result = ENOMEM then
1138 raise Storage_Error;
1139 end if;
1141 -- Initialize internal condition variable
1143 Result := pthread_cond_init (S.CV'Access, null);
1145 pragma Assert (Result in 0 | ENOMEM);
1147 if Result /= 0 then
1148 Result := pthread_mutex_destroy (S.L'Access);
1149 pragma Assert (Result = 0);
1151 if Result = ENOMEM then
1152 raise Storage_Error;
1153 end if;
1154 end if;
1155 end Initialize;
1157 --------------
1158 -- Finalize --
1159 --------------
1161 procedure Finalize (S : in out Suspension_Object) is
1162 Result : C.int;
1164 begin
1165 -- Destroy internal mutex
1167 Result := pthread_mutex_destroy (S.L'Access);
1168 pragma Assert (Result = 0);
1170 -- Destroy internal condition variable
1172 Result := pthread_cond_destroy (S.CV'Access);
1173 pragma Assert (Result = 0);
1174 end Finalize;
1176 -------------------
1177 -- Current_State --
1178 -------------------
1180 function Current_State (S : Suspension_Object) return Boolean is
1181 begin
1182 -- We do not want to use lock on this read operation. State is marked
1183 -- as Atomic so that we ensure that the value retrieved is correct.
1185 return S.State;
1186 end Current_State;
1188 ---------------
1189 -- Set_False --
1190 ---------------
1192 procedure Set_False (S : in out Suspension_Object) is
1193 Result : C.int;
1195 begin
1196 SSL.Abort_Defer.all;
1198 Result := pthread_mutex_lock (S.L'Access);
1199 pragma Assert (Result = 0);
1201 S.State := False;
1203 Result := pthread_mutex_unlock (S.L'Access);
1204 pragma Assert (Result = 0);
1206 SSL.Abort_Undefer.all;
1207 end Set_False;
1209 --------------
1210 -- Set_True --
1211 --------------
1213 procedure Set_True (S : in out Suspension_Object) is
1214 Result : C.int;
1216 begin
1217 SSL.Abort_Defer.all;
1219 Result := pthread_mutex_lock (S.L'Access);
1220 pragma Assert (Result = 0);
1222 -- If there is already a task waiting on this suspension object then
1223 -- we resume it, leaving the state of the suspension object to False,
1224 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1225 -- the state to True.
1227 if S.Waiting then
1228 S.Waiting := False;
1229 S.State := False;
1231 Result := pthread_cond_signal (S.CV'Access);
1232 pragma Assert (Result = 0);
1234 else
1235 S.State := True;
1236 end if;
1238 Result := pthread_mutex_unlock (S.L'Access);
1239 pragma Assert (Result = 0);
1241 SSL.Abort_Undefer.all;
1242 end Set_True;
1244 ------------------------
1245 -- Suspend_Until_True --
1246 ------------------------
1248 procedure Suspend_Until_True (S : in out Suspension_Object) is
1249 Result : C.int;
1251 begin
1252 SSL.Abort_Defer.all;
1254 Result := pthread_mutex_lock (S.L'Access);
1255 pragma Assert (Result = 0);
1257 if S.Waiting then
1259 -- Program_Error must be raised upon calling Suspend_Until_True
1260 -- if another task is already waiting on that suspension object
1261 -- (RM D.10(10)).
1263 Result := pthread_mutex_unlock (S.L'Access);
1264 pragma Assert (Result = 0);
1266 SSL.Abort_Undefer.all;
1268 raise Program_Error;
1270 else
1271 -- Suspend the task if the state is False. Otherwise, the task
1272 -- continues its execution, and the state of the suspension object
1273 -- is set to False (ARM D.10 par. 9).
1275 if S.State then
1276 S.State := False;
1277 else
1278 S.Waiting := True;
1280 loop
1281 -- Loop in case pthread_cond_wait returns earlier than expected
1282 -- (e.g. in case of EINTR caused by a signal). This should not
1283 -- happen with the current Linux implementation of pthread, but
1284 -- POSIX does not guarantee it so this may change in future.
1286 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1287 pragma Assert (Result in 0 | EINTR);
1289 exit when not S.Waiting;
1290 end loop;
1291 end if;
1293 Result := pthread_mutex_unlock (S.L'Access);
1294 pragma Assert (Result = 0);
1296 SSL.Abort_Undefer.all;
1297 end if;
1298 end Suspend_Until_True;
1300 ----------------
1301 -- Check_Exit --
1302 ----------------
1304 -- Dummy version
1306 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1307 pragma Unreferenced (Self_ID);
1308 begin
1309 return True;
1310 end Check_Exit;
1312 --------------------
1313 -- Check_No_Locks --
1314 --------------------
1316 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1317 pragma Unreferenced (Self_ID);
1318 begin
1319 return True;
1320 end Check_No_Locks;
1322 ----------------------
1323 -- Environment_Task --
1324 ----------------------
1326 function Environment_Task return Task_Id is
1327 begin
1328 return Environment_Task_Id;
1329 end Environment_Task;
1331 ------------------
1332 -- Suspend_Task --
1333 ------------------
1335 function Suspend_Task
1336 (T : ST.Task_Id;
1337 Thread_Self : Thread_Id) return Boolean
1339 begin
1340 if T.Common.LL.Thread /= Thread_Self then
1341 return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0;
1342 else
1343 return True;
1344 end if;
1345 end Suspend_Task;
1347 -----------------
1348 -- Resume_Task --
1349 -----------------
1351 function Resume_Task
1352 (T : ST.Task_Id;
1353 Thread_Self : Thread_Id) return Boolean
1355 begin
1356 if T.Common.LL.Thread /= Thread_Self then
1357 return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0;
1358 else
1359 return True;
1360 end if;
1361 end Resume_Task;
1363 --------------------
1364 -- Stop_All_Tasks --
1365 --------------------
1367 procedure Stop_All_Tasks is
1368 begin
1369 null;
1370 end Stop_All_Tasks;
1372 ---------------
1373 -- Stop_Task --
1374 ---------------
1376 function Stop_Task (T : ST.Task_Id) return Boolean is
1377 pragma Unreferenced (T);
1378 begin
1379 return False;
1380 end Stop_Task;
1382 -------------------
1383 -- Continue_Task --
1384 -------------------
1386 function Continue_Task (T : ST.Task_Id) return Boolean is
1387 pragma Unreferenced (T);
1388 begin
1389 return False;
1390 end Continue_Task;
1392 ----------------
1393 -- Initialize --
1394 ----------------
1396 procedure Initialize (Environment_Task : Task_Id) is
1397 act : aliased struct_sigaction;
1398 old_act : aliased struct_sigaction;
1399 Tmp_Set : aliased sigset_t;
1400 Result : C.int;
1401 -- Whether to use an alternate signal stack for stack overflows
1403 function State
1404 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1405 pragma Import (C, State, "__gnat_get_interrupt_state");
1406 -- Get interrupt state. Defined in a-init.c
1407 -- The input argument is the interrupt number,
1408 -- and the result is one of the following:
1410 Default : constant Character := 's';
1411 -- 'n' this interrupt not set by any Interrupt_State pragma
1412 -- 'u' Interrupt_State pragma set state to User
1413 -- 'r' Interrupt_State pragma set state to Runtime
1414 -- 's' Interrupt_State pragma set state to System (use "default"
1415 -- system handler)
1417 begin
1418 Environment_Task_Id := Environment_Task;
1420 Interrupt_Management.Initialize;
1422 -- Prepare the set of signals that should be unblocked in all tasks
1424 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1425 pragma Assert (Result = 0);
1427 for J in Interrupt_Management.Interrupt_ID loop
1428 if System.Interrupt_Management.Keep_Unmasked (J) then
1429 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1430 pragma Assert (Result = 0);
1431 end if;
1432 end loop;
1434 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1436 -- Initialize the global RTS lock
1438 Specific.Initialize (Environment_Task);
1440 if Use_Alternate_Stack then
1441 Environment_Task.Common.Task_Alternate_Stack :=
1442 Alternate_Stack'Address;
1443 end if;
1445 -- Make environment task known here because it doesn't go through
1446 -- Activate_Tasks, which does it for all other tasks.
1448 Known_Tasks (Known_Tasks'First) := Environment_Task;
1449 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1451 Enter_Task (Environment_Task);
1453 if State
1454 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
1455 then
1456 act.sa_flags := 0;
1457 act.sa_handler := Abort_Handler'Address;
1459 Result := sigemptyset (Tmp_Set'Access);
1460 pragma Assert (Result = 0);
1461 act.sa_mask := Tmp_Set;
1463 Result :=
1464 sigaction
1465 (Signal (Interrupt_Management.Abort_Task_Interrupt),
1466 act'Unchecked_Access,
1467 old_act'Unchecked_Access);
1468 pragma Assert (Result = 0);
1469 Abort_Handler_Installed := True;
1470 end if;
1472 -- pragma CPU and dispatching domains for the environment task
1474 Set_Task_Affinity (Environment_Task);
1475 end Initialize;
1477 -----------------------
1478 -- Set_Task_Affinity --
1479 -----------------------
1481 procedure Set_Task_Affinity (T : ST.Task_Id) is
1482 use type Multiprocessors.CPU_Range;
1484 begin
1485 -- Do nothing if there is no support for setting affinities or the
1486 -- underlying thread has not yet been created. If the thread has not
1487 -- yet been created then the proper affinity will be set during its
1488 -- creation.
1490 if pthread_setaffinity_np'Address /= Null_Address
1491 and then T.Common.LL.Thread /= Null_Thread_Id
1492 then
1493 declare
1494 CPUs : constant size_t :=
1495 C.size_t (Multiprocessors.Number_Of_CPUs);
1496 CPU_Set : cpu_set_t_ptr := null;
1497 Size : constant size_t := CPU_ALLOC_SIZE (CPUs);
1499 Result : C.int;
1501 begin
1502 -- We look at the specific CPU (Base_CPU) first, then at the
1503 -- Task_Info field, and finally at the assigned dispatching
1504 -- domain, if any.
1506 if T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1508 -- Set the affinity to an unique CPU
1510 CPU_Set := CPU_ALLOC (CPUs);
1511 System.OS_Interface.CPU_ZERO (Size, CPU_Set);
1512 System.OS_Interface.CPU_SET
1513 (int (T.Common.Base_CPU), Size, CPU_Set);
1515 -- Handle Task_Info
1517 elsif T.Common.Task_Info /= null then
1518 CPU_Set := T.Common.Task_Info.CPU_Affinity'Access;
1520 -- Handle dispatching domains
1522 elsif T.Common.Domain /= null and then
1523 (T.Common.Domain /= ST.System_Domain
1524 or else T.Common.Domain.all /=
1525 (Multiprocessors.CPU'First ..
1526 Multiprocessors.Number_Of_CPUs => True))
1527 then
1528 -- Set the affinity to all the processors belonging to the
1529 -- dispatching domain. To avoid changing CPU affinities when
1530 -- not needed, we set the affinity only when assigning to a
1531 -- domain other than the default one, or when the default one
1532 -- has been modified.
1534 CPU_Set := CPU_ALLOC (CPUs);
1535 System.OS_Interface.CPU_ZERO (Size, CPU_Set);
1537 for Proc in T.Common.Domain'Range loop
1538 if T.Common.Domain (Proc) then
1539 System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
1540 end if;
1541 end loop;
1542 end if;
1544 -- We set the new affinity if needed. Otherwise, the new task
1545 -- will inherit its creator's CPU affinity mask (according to
1546 -- the documentation of pthread_setaffinity_np), which is
1547 -- consistent with Ada's required semantics.
1549 if CPU_Set /= null then
1550 Result :=
1551 pthread_setaffinity_np (T.Common.LL.Thread, Size, CPU_Set);
1552 pragma Assert (Result = 0);
1554 CPU_FREE (CPU_Set);
1555 end if;
1556 end;
1557 end if;
1558 end Set_Task_Affinity;
1560 end System.Task_Primitives.Operations;