commit changelogs for previous change
[official-gcc.git] / gcc / tree-into-ssa.c
blob6acd69ef3e065ab250651f97f6a086ba057767fd
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "tree-gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
51 /* This file builds the SSA form for a function as described in:
52 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
53 Computing Static Single Assignment Form and the Control Dependence
54 Graph. ACM Transactions on Programming Languages and Systems,
55 13(4):451-490, October 1991. */
57 /* True if the code is in ssa form. */
58 bool in_ssa_p;
60 /* Structure to map a variable VAR to the set of blocks that contain
61 definitions for VAR. */
62 struct def_blocks_d
64 /* The variable. */
65 tree var;
67 /* Blocks that contain definitions of VAR. Bit I will be set if the
68 Ith block contains a definition of VAR. */
69 bitmap def_blocks;
71 /* Blocks that contain a PHI node for VAR. */
72 bitmap phi_blocks;
74 /* Blocks where VAR is live-on-entry. Similar semantics as
75 DEF_BLOCKS. */
76 bitmap livein_blocks;
80 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
81 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
82 basic blocks where VAR is defined (assigned a new value). It also
83 contains a bitmap of all the blocks where VAR is live-on-entry
84 (i.e., there is a use of VAR in block B without a preceding
85 definition in B). The live-on-entry information is used when
86 computing PHI pruning heuristics. */
87 static htab_t def_blocks;
89 /* Stack of trees used to restore the global currdefs to its original
90 state after completing rewriting of a block and its dominator
91 children. Its elements have the following properties:
93 - An SSA_NAME indicates that the current definition of the
94 underlying variable should be set to the given SSA_NAME.
96 - A _DECL node indicates that the underlying variable has no
97 current definition.
99 - A NULL node is used to mark the last node associated with the
100 current block.
102 - A NULL node at the top entry is used to mark the last node
103 associated with the current block. */
104 static VEC(tree,heap) *block_defs_stack;
106 /* Basic block vectors used in this file ought to be allocated in the
107 heap. We use pointer vector, because ints can be easily passed by
108 value. */
109 DEF_VEC_I(int);
110 DEF_VEC_ALLOC_I(int,heap);
112 /* Set of existing SSA names being replaced by update_ssa. */
113 static sbitmap old_ssa_names;
115 /* Set of new SSA names being added by update_ssa. Note that both
116 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
117 the operations done on them are presence tests. */
118 static sbitmap new_ssa_names;
120 /* Symbols whose SSA form needs to be updated or created for the first
121 time. */
122 static bitmap syms_to_rename;
124 /* Set of SSA names that have been marked to be released after they
125 were registered in the replacement table. They will be finally
126 released after we finish updating the SSA web. */
127 static bitmap names_to_release;
129 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
130 to grow as the callers to register_new_name_mapping will typically
131 create new names on the fly. FIXME. Currently set to 1/3 to avoid
132 frequent reallocations but still need to find a reasonable growth
133 strategy. */
134 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
136 /* Tuple used to represent replacement mappings. */
137 struct repl_map_d
139 tree name;
140 bitmap set;
143 /* NEW -> OLD_SET replacement table. If we are replacing several
144 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
145 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
146 static htab_t repl_tbl;
148 /* true if register_new_name_mapping needs to initialize the data
149 structures needed by update_ssa. */
150 static bool need_to_initialize_update_ssa_p = true;
152 /* true if update_ssa needs to update virtual operands. */
153 static bool need_to_update_vops_p = false;
155 /* Statistics kept by update_ssa to use in the virtual mapping
156 heuristic. If the number of virtual mappings is beyond certain
157 threshold, the updater will switch from using the mappings into
158 renaming the virtual symbols from scratch. In some cases, the
159 large number of name mappings for virtual names causes significant
160 slowdowns in the PHI insertion code. */
161 struct update_ssa_stats_d
163 unsigned num_virtual_mappings;
164 unsigned num_total_mappings;
165 bitmap virtual_symbols;
166 unsigned num_virtual_symbols;
168 static struct update_ssa_stats_d update_ssa_stats;
170 /* Global data to attach to the main dominator walk structure. */
171 struct mark_def_sites_global_data
173 /* This bitmap contains the variables which are set before they
174 are used in a basic block. */
175 bitmap kills;
177 /* Bitmap of names to rename. */
178 sbitmap names_to_rename;
180 /* Set of blocks that mark_def_sites deems interesting for the
181 renamer to process. */
182 sbitmap interesting_blocks;
186 /* Information stored for SSA names. */
187 struct ssa_name_info
189 /* This field indicates whether or not the variable may need PHI nodes.
190 See the enum's definition for more detailed information about the
191 states. */
192 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
194 /* The actual definition of the ssa name. */
195 tree current_def;
199 /* The main entry point to the SSA renamer (rewrite_blocks) may be
200 called several times to do different, but related, tasks.
201 Initially, we need it to rename the whole program into SSA form.
202 At other times, we may need it to only rename into SSA newly
203 exposed symbols. Finally, we can also call it to incrementally fix
204 an already built SSA web. */
205 enum rewrite_mode {
206 /* Convert the whole function into SSA form. */
207 REWRITE_ALL,
209 /* Incrementally update the SSA web by replacing existing SSA
210 names with new ones. See update_ssa for details. */
211 REWRITE_UPDATE
215 /* Use TREE_VISITED to keep track of which statements we want to
216 rename. When renaming a subset of the variables, not all
217 statements will be processed. This is decided in mark_def_sites. */
218 #define REWRITE_THIS_STMT(T) TREE_VISITED (T)
220 /* Use the unsigned flag to keep track of which statements we want to
221 visit when marking new definition sites. This is slightly
222 different than REWRITE_THIS_STMT: it's used by update_ssa to
223 distinguish statements that need to have both uses and defs
224 processed from those that only need to have their defs processed.
225 Statements that define new SSA names only need to have their defs
226 registered, but they don't need to have their uses renamed. */
227 #define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
230 /* Prototypes for debugging functions. */
231 extern void dump_tree_ssa (FILE *);
232 extern void debug_tree_ssa (void);
233 extern void debug_def_blocks (void);
234 extern void dump_tree_ssa_stats (FILE *);
235 extern void debug_tree_ssa_stats (void);
236 void dump_update_ssa (FILE *);
237 void debug_update_ssa (void);
238 void dump_names_replaced_by (FILE *, tree);
239 void debug_names_replaced_by (tree);
241 /* Get the information associated with NAME. */
243 static inline struct ssa_name_info *
244 get_ssa_name_ann (tree name)
246 if (!SSA_NAME_AUX (name))
247 SSA_NAME_AUX (name) = xcalloc (1, sizeof (struct ssa_name_info));
249 return (struct ssa_name_info *) SSA_NAME_AUX (name);
253 /* Gets phi_state field for VAR. */
255 static inline enum need_phi_state
256 get_phi_state (tree var)
258 if (TREE_CODE (var) == SSA_NAME)
259 return get_ssa_name_ann (var)->need_phi_state;
260 else
261 return var_ann (var)->need_phi_state;
265 /* Sets phi_state field for VAR to STATE. */
267 static inline void
268 set_phi_state (tree var, enum need_phi_state state)
270 if (TREE_CODE (var) == SSA_NAME)
271 get_ssa_name_ann (var)->need_phi_state = state;
272 else
273 var_ann (var)->need_phi_state = state;
277 /* Return the current definition for VAR. */
279 tree
280 get_current_def (tree var)
282 if (TREE_CODE (var) == SSA_NAME)
283 return get_ssa_name_ann (var)->current_def;
284 else
285 return var_ann (var)->current_def;
289 /* Sets current definition of VAR to DEF. */
291 void
292 set_current_def (tree var, tree def)
294 if (TREE_CODE (var) == SSA_NAME)
295 get_ssa_name_ann (var)->current_def = def;
296 else
297 var_ann (var)->current_def = def;
301 /* Compute global livein information given the set of blockx where
302 an object is locally live at the start of the block (LIVEIN)
303 and the set of blocks where the object is defined (DEF_BLOCKS).
305 Note: This routine augments the existing local livein information
306 to include global livein (i.e., it modifies the underlying bitmap
307 for LIVEIN). */
309 void
310 compute_global_livein (bitmap livein, bitmap def_blocks)
312 basic_block bb, *worklist, *tos;
313 unsigned i;
314 bitmap_iterator bi;
316 tos = worklist
317 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
319 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
321 *tos++ = BASIC_BLOCK (i);
324 /* Iterate until the worklist is empty. */
325 while (tos != worklist)
327 edge e;
328 edge_iterator ei;
330 /* Pull a block off the worklist. */
331 bb = *--tos;
333 /* For each predecessor block. */
334 FOR_EACH_EDGE (e, ei, bb->preds)
336 basic_block pred = e->src;
337 int pred_index = pred->index;
339 /* None of this is necessary for the entry block. */
340 if (pred != ENTRY_BLOCK_PTR
341 && ! bitmap_bit_p (livein, pred_index)
342 && ! bitmap_bit_p (def_blocks, pred_index))
344 *tos++ = pred;
345 bitmap_set_bit (livein, pred_index);
350 free (worklist);
354 /* Return the set of blocks where variable VAR is defined and the blocks
355 where VAR is live on entry (livein). If no entry is found in
356 DEF_BLOCKS, a new one is created and returned. */
358 static inline struct def_blocks_d *
359 get_def_blocks_for (tree var)
361 struct def_blocks_d db, *db_p;
362 void **slot;
364 db.var = var;
365 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
366 if (*slot == NULL)
368 db_p = XNEW (struct def_blocks_d);
369 db_p->var = var;
370 db_p->def_blocks = BITMAP_ALLOC (NULL);
371 db_p->phi_blocks = BITMAP_ALLOC (NULL);
372 db_p->livein_blocks = BITMAP_ALLOC (NULL);
373 *slot = (void *) db_p;
375 else
376 db_p = (struct def_blocks_d *) *slot;
378 return db_p;
382 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
383 VAR is defined by a PHI node. */
385 static void
386 set_def_block (tree var, basic_block bb, bool phi_p)
388 struct def_blocks_d *db_p;
389 enum need_phi_state state;
391 state = get_phi_state (var);
392 db_p = get_def_blocks_for (var);
394 /* Set the bit corresponding to the block where VAR is defined. */
395 bitmap_set_bit (db_p->def_blocks, bb->index);
396 if (phi_p)
397 bitmap_set_bit (db_p->phi_blocks, bb->index);
399 /* Keep track of whether or not we may need to insert PHI nodes.
401 If we are in the UNKNOWN state, then this is the first definition
402 of VAR. Additionally, we have not seen any uses of VAR yet, so
403 we do not need a PHI node for this variable at this time (i.e.,
404 transition to NEED_PHI_STATE_NO).
406 If we are in any other state, then we either have multiple definitions
407 of this variable occurring in different blocks or we saw a use of the
408 variable which was not dominated by the block containing the
409 definition(s). In this case we may need a PHI node, so enter
410 state NEED_PHI_STATE_MAYBE. */
411 if (state == NEED_PHI_STATE_UNKNOWN)
412 set_phi_state (var, NEED_PHI_STATE_NO);
413 else
414 set_phi_state (var, NEED_PHI_STATE_MAYBE);
418 /* Mark block BB as having VAR live at the entry to BB. */
420 static void
421 set_livein_block (tree var, basic_block bb)
423 struct def_blocks_d *db_p;
424 enum need_phi_state state = get_phi_state (var);
426 db_p = get_def_blocks_for (var);
428 /* Set the bit corresponding to the block where VAR is live in. */
429 bitmap_set_bit (db_p->livein_blocks, bb->index);
431 /* Keep track of whether or not we may need to insert PHI nodes.
433 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
434 by the single block containing the definition(s) of this variable. If
435 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
436 NEED_PHI_STATE_MAYBE. */
437 if (state == NEED_PHI_STATE_NO)
439 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
441 if (def_block_index == -1
442 || ! dominated_by_p (CDI_DOMINATORS, bb,
443 BASIC_BLOCK (def_block_index)))
444 set_phi_state (var, NEED_PHI_STATE_MAYBE);
446 else
447 set_phi_state (var, NEED_PHI_STATE_MAYBE);
451 /* Return true if symbol SYM is marked for renaming. */
453 static inline bool
454 symbol_marked_for_renaming (tree sym)
456 gcc_assert (DECL_P (sym));
457 return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
461 /* Return true if NAME is in OLD_SSA_NAMES. */
463 static inline bool
464 is_old_name (tree name)
466 unsigned ver = SSA_NAME_VERSION (name);
467 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
471 /* Return true if NAME is in NEW_SSA_NAMES. */
473 static inline bool
474 is_new_name (tree name)
476 unsigned ver = SSA_NAME_VERSION (name);
477 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
481 /* Hashing and equality functions for REPL_TBL. */
483 static hashval_t
484 repl_map_hash (const void *p)
486 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
489 static int
490 repl_map_eq (const void *p1, const void *p2)
492 return ((const struct repl_map_d *)p1)->name
493 == ((const struct repl_map_d *)p2)->name;
496 static void
497 repl_map_free (void *p)
499 BITMAP_FREE (((struct repl_map_d *)p)->set);
500 free (p);
504 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
506 static inline bitmap
507 names_replaced_by (tree new)
509 struct repl_map_d m;
510 void **slot;
512 m.name = new;
513 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
515 /* If N was not registered in the replacement table, return NULL. */
516 if (slot == NULL || *slot == NULL)
517 return NULL;
519 return ((struct repl_map_d *) *slot)->set;
523 /* Add OLD to REPL_TBL[NEW].SET. */
525 static inline void
526 add_to_repl_tbl (tree new, tree old)
528 struct repl_map_d m, *mp;
529 void **slot;
531 m.name = new;
532 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
533 if (*slot == NULL)
535 mp = XNEW (struct repl_map_d);
536 mp->name = new;
537 mp->set = BITMAP_ALLOC (NULL);
538 *slot = (void *) mp;
540 else
541 mp = (struct repl_map_d *) *slot;
543 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
547 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
548 represents the set of names O_1 ... O_j replaced by N_i. This is
549 used by update_ssa and its helpers to introduce new SSA names in an
550 already formed SSA web. */
552 static void
553 add_new_name_mapping (tree new, tree old)
555 timevar_push (TV_TREE_SSA_INCREMENTAL);
557 /* OLD and NEW must be different SSA names for the same symbol. */
558 gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
560 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
561 caller may have created new names since the set was created. */
562 if (new_ssa_names->n_bits <= num_ssa_names - 1)
564 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
565 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
566 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
569 /* If this mapping is for virtual names, we will need to update
570 virtual operands. */
571 if (!is_gimple_reg (new))
573 tree sym;
574 size_t uid;
576 need_to_update_vops_p = true;
578 /* Keep counts of virtual mappings and symbols to use in the
579 virtual mapping heuristic. If we have large numbers of
580 virtual mappings for a relatively low number of symbols, it
581 will make more sense to rename the symbols from scratch.
582 Otherwise, the insertion of PHI nodes for each of the old
583 names in these mappings will be very slow. */
584 sym = SSA_NAME_VAR (new);
585 uid = DECL_UID (sym);
586 update_ssa_stats.num_virtual_mappings++;
587 if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
589 bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
590 update_ssa_stats.num_virtual_symbols++;
594 /* Update the REPL_TBL table. */
595 add_to_repl_tbl (new, old);
597 /* If OLD had already been registered as a new name, then all the
598 names that OLD replaces should also be replaced by NEW. */
599 if (is_new_name (old))
600 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
602 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
603 respectively. */
604 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
605 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
607 /* Update mapping counter to use in the virtual mapping heuristic. */
608 update_ssa_stats.num_total_mappings++;
610 timevar_pop (TV_TREE_SSA_INCREMENTAL);
614 /* Call back for walk_dominator_tree used to collect definition sites
615 for every variable in the function. For every statement S in block
618 1- Variables defined by S in the DEFS of S are marked in the bitmap
619 WALK_DATA->GLOBAL_DATA->KILLS.
621 2- If S uses a variable VAR and there is no preceding kill of VAR,
622 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
624 This information is used to determine which variables are live
625 across block boundaries to reduce the number of PHI nodes
626 we create. */
628 static void
629 mark_def_sites (struct dom_walk_data *walk_data,
630 basic_block bb,
631 block_stmt_iterator bsi)
633 struct mark_def_sites_global_data *gd =
634 (struct mark_def_sites_global_data *) walk_data->global_data;
635 bitmap kills = gd->kills;
636 tree stmt, def;
637 use_operand_p use_p;
638 def_operand_p def_p;
639 ssa_op_iter iter;
641 stmt = bsi_stmt (bsi);
642 update_stmt_if_modified (stmt);
644 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
645 REWRITE_THIS_STMT (stmt) = 0;
647 /* If a variable is used before being set, then the variable is live
648 across a block boundary, so mark it live-on-entry to BB. */
649 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
650 SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
652 tree sym = USE_FROM_PTR (use_p);
653 gcc_assert (DECL_P (sym));
654 if (!bitmap_bit_p (kills, DECL_UID (sym)))
655 set_livein_block (sym, bb);
656 REWRITE_THIS_STMT (stmt) = 1;
659 /* Note that virtual definitions are irrelevant for computing KILLS
660 because a V_MAY_DEF does not constitute a killing definition of the
661 variable. However, the operand of a virtual definitions is a use
662 of the variable, so it may cause the variable to be considered
663 live-on-entry. */
664 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
666 tree sym = USE_FROM_PTR (use_p);
667 gcc_assert (DECL_P (sym));
668 set_livein_block (sym, bb);
669 set_def_block (sym, bb, false);
670 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
671 REWRITE_THIS_STMT (stmt) = 1;
674 /* Now process the defs and must-defs made by this statement. */
675 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
677 gcc_assert (DECL_P (def));
678 set_def_block (def, bb, false);
679 bitmap_set_bit (kills, DECL_UID (def));
680 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
683 /* If we found the statement interesting then also mark the block BB
684 as interesting. */
685 if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
686 SET_BIT (gd->interesting_blocks, bb->index);
690 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
691 return a bitmap with all the blocks in the iterated dominance
692 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
693 frontier information as returned by compute_dominance_frontiers.
695 The resulting set of blocks are the potential sites where PHI nodes
696 are needed. The caller is responsible from freeing the memory
697 allocated for the return value. */
699 static bitmap
700 find_idf (bitmap def_blocks, bitmap *dfs)
702 bitmap_iterator bi;
703 unsigned bb_index;
704 VEC(int,heap) *work_stack;
705 bitmap phi_insertion_points;
707 work_stack = VEC_alloc (int, heap, n_basic_blocks);
708 phi_insertion_points = BITMAP_ALLOC (NULL);
710 /* Seed the work list with all the blocks in DEF_BLOCKS. */
711 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
712 /* We use VEC_quick_push here for speed. This is safe because we
713 know that the number of definition blocks is no greater than
714 the number of basic blocks, which is the initial capacity of
715 WORK_STACK. */
716 VEC_quick_push (int, work_stack, bb_index);
718 /* Pop a block off the worklist, add every block that appears in
719 the original block's DF that we have not already processed to
720 the worklist. Iterate until the worklist is empty. Blocks
721 which are added to the worklist are potential sites for
722 PHI nodes. */
723 while (VEC_length (int, work_stack) > 0)
725 bb_index = VEC_pop (int, work_stack);
727 /* Since the registration of NEW -> OLD name mappings is done
728 separately from the call to update_ssa, when updating the SSA
729 form, the basic blocks where new and/or old names are defined
730 may have disappeared by CFG cleanup calls. In this case,
731 we may pull a non-existing block from the work stack. */
732 gcc_assert (bb_index < (unsigned) last_basic_block);
734 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
735 0, bb_index, bi)
737 /* Use a safe push because if there is a definition of VAR
738 in every basic block, then WORK_STACK may eventually have
739 more than N_BASIC_BLOCK entries. */
740 VEC_safe_push (int, heap, work_stack, bb_index);
741 bitmap_set_bit (phi_insertion_points, bb_index);
745 VEC_free (int, heap, work_stack);
747 return phi_insertion_points;
751 /* Return the set of blocks where variable VAR is defined and the blocks
752 where VAR is live on entry (livein). Return NULL, if no entry is
753 found in DEF_BLOCKS. */
755 static inline struct def_blocks_d *
756 find_def_blocks_for (tree var)
758 struct def_blocks_d dm;
759 dm.var = var;
760 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
764 /* Retrieve or create a default definition for symbol SYM. */
766 static inline tree
767 get_default_def_for (tree sym)
769 tree ddef = default_def (sym);
771 if (ddef == NULL_TREE)
773 ddef = make_ssa_name (sym, build_empty_stmt ());
774 set_default_def (sym, ddef);
777 return ddef;
781 /* Insert PHI nodes for variable VAR using the iterated dominance
782 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
783 function assumes that the caller is incrementally updating the SSA
784 form, in which case (1) VAR is assumed to be an SSA name, (2) a new
785 SSA name is created for VAR's symbol, and, (3) all the arguments
786 for the newly created PHI node are set to VAR.
788 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
789 PHI node for VAR. On exit, only the nodes that received a PHI node
790 for VAR will be present in PHI_INSERTION_POINTS. */
792 static void
793 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
795 unsigned bb_index;
796 edge e;
797 tree phi;
798 basic_block bb;
799 bitmap_iterator bi;
800 struct def_blocks_d *def_map;
802 def_map = find_def_blocks_for (var);
803 gcc_assert (def_map);
805 /* Remove the blocks where we already have PHI nodes for VAR. */
806 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
808 /* Now compute global livein for this variable. Note this modifies
809 def_map->livein_blocks. */
810 compute_global_livein (def_map->livein_blocks, def_map->def_blocks);
812 /* And insert the PHI nodes. */
813 EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
814 0, bb_index, bi)
816 bb = BASIC_BLOCK (bb_index);
818 if (update_p && TREE_CODE (var) == SSA_NAME)
820 /* If we are rewriting SSA names, create the LHS of the PHI
821 node by duplicating VAR. This is useful in the case of
822 pointers, to also duplicate pointer attributes (alias
823 information, in particular). */
824 edge_iterator ei;
825 tree new_lhs;
827 phi = create_phi_node (var, bb);
828 new_lhs = duplicate_ssa_name (var, phi);
829 SET_PHI_RESULT (phi, new_lhs);
830 add_new_name_mapping (new_lhs, var);
832 /* Add VAR to every argument slot of PHI. We need VAR in
833 every argument so that rewrite_update_phi_arguments knows
834 which name is this PHI node replacing. If VAR is a
835 symbol marked for renaming, this is not necessary, the
836 renamer will use the symbol on the LHS to get its
837 reaching definition. */
838 FOR_EACH_EDGE (e, ei, bb->preds)
839 add_phi_arg (phi, var, e);
841 else
843 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
844 phi = create_phi_node (sym, bb);
847 /* Mark this PHI node as interesting for update_ssa. */
848 REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
849 REWRITE_THIS_STMT (phi) = 1;
854 /* Insert PHI nodes at the dominance frontier of blocks with variable
855 definitions. DFS contains the dominance frontier information for
856 the flowgraph. PHI nodes will only be inserted at the dominance
857 frontier of definition blocks for variables whose NEED_PHI_STATE
858 annotation is marked as ``maybe'' or ``unknown'' (computed by
859 mark_def_sites). */
861 static void
862 insert_phi_nodes (bitmap *dfs)
864 referenced_var_iterator rvi;
865 tree var;
867 timevar_push (TV_TREE_INSERT_PHI_NODES);
869 FOR_EACH_REFERENCED_VAR (var, rvi)
871 struct def_blocks_d *def_map;
872 bitmap idf;
874 def_map = find_def_blocks_for (var);
875 if (def_map == NULL)
876 continue;
878 if (get_phi_state (var) != NEED_PHI_STATE_NO)
880 idf = find_idf (def_map->def_blocks, dfs);
881 insert_phi_nodes_for (var, idf, false);
882 BITMAP_FREE (idf);
886 timevar_pop (TV_TREE_INSERT_PHI_NODES);
890 /* Register DEF (an SSA_NAME) to be a new definition for its underlying
891 variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
892 into the stack pointed to by BLOCK_DEFS_P. */
894 void
895 register_new_def (tree def, VEC(tree,heap) **block_defs_p)
897 tree var = SSA_NAME_VAR (def);
898 tree currdef;
900 /* If this variable is set in a single basic block and all uses are
901 dominated by the set(s) in that single basic block, then there is
902 no reason to record anything for this variable in the block local
903 definition stacks. Doing so just wastes time and memory.
905 This is the same test to prune the set of variables which may
906 need PHI nodes. So we just use that information since it's already
907 computed and available for us to use. */
908 if (get_phi_state (var) == NEED_PHI_STATE_NO)
910 set_current_def (var, def);
911 return;
914 currdef = get_current_def (var);
916 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
917 later used by the dominator tree callbacks to restore the reaching
918 definitions for all the variables defined in the block after a recursive
919 visit to all its immediately dominated blocks. If there is no current
920 reaching definition, then just record the underlying _DECL node. */
921 VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);
923 /* Set the current reaching definition for VAR to be DEF. */
924 set_current_def (var, def);
928 /* Perform a depth-first traversal of the dominator tree looking for
929 variables to rename. BB is the block where to start searching.
930 Renaming is a five step process:
932 1- Every definition made by PHI nodes at the start of the blocks is
933 registered as the current definition for the corresponding variable.
935 2- Every statement in BB is rewritten. USE and VUSE operands are
936 rewritten with their corresponding reaching definition. DEF and
937 VDEF targets are registered as new definitions.
939 3- All the PHI nodes in successor blocks of BB are visited. The
940 argument corresponding to BB is replaced with its current reaching
941 definition.
943 4- Recursively rewrite every dominator child block of BB.
945 5- Restore (in reverse order) the current reaching definition for every
946 new definition introduced in this block. This is done so that when
947 we return from the recursive call, all the current reaching
948 definitions are restored to the names that were valid in the
949 dominator parent of BB. */
951 /* SSA Rewriting Step 1. Initialization, create a block local stack
952 of reaching definitions for new SSA names produced in this block
953 (BLOCK_DEFS). Register new definitions for every PHI node in the
954 block. */
956 static void
957 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
958 basic_block bb)
960 tree phi;
962 if (dump_file && (dump_flags & TDF_DETAILS))
963 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
965 /* Mark the unwind point for this block. */
966 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
968 /* Step 1. Register new definitions for every PHI node in the block.
969 Conceptually, all the PHI nodes are executed in parallel and each PHI
970 node introduces a new version for the associated variable. */
971 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
973 tree result = PHI_RESULT (phi);
974 register_new_def (result, &block_defs_stack);
979 /* Return the current definition for variable VAR. If none is found,
980 create a new SSA name to act as the zeroth definition for VAR. If VAR
981 is call clobbered and there exists a more recent definition of
982 GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
983 has been clobbered by a function call since its last assignment. */
985 static tree
986 get_reaching_def (tree var)
988 tree currdef_var, avar;
990 /* Lookup the current reaching definition for VAR. */
991 currdef_var = get_current_def (var);
993 /* If there is no reaching definition for VAR, create and register a
994 default definition for it (if needed). */
995 if (currdef_var == NULL_TREE)
997 avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
998 currdef_var = get_default_def_for (avar);
999 set_current_def (var, currdef_var);
1002 /* Return the current reaching definition for VAR, or the default
1003 definition, if we had to create one. */
1004 return currdef_var;
1008 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1009 the block with its immediate reaching definitions. Update the current
1010 definition of a variable when a new real or virtual definition is found. */
1012 static void
1013 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1014 basic_block bb ATTRIBUTE_UNUSED,
1015 block_stmt_iterator si)
1017 tree stmt;
1018 use_operand_p use_p;
1019 def_operand_p def_p;
1020 ssa_op_iter iter;
1022 stmt = bsi_stmt (si);
1024 /* If mark_def_sites decided that we don't need to rewrite this
1025 statement, ignore it. */
1026 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1027 return;
1029 if (dump_file && (dump_flags & TDF_DETAILS))
1031 fprintf (dump_file, "Renaming statement ");
1032 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1033 fprintf (dump_file, "\n");
1036 /* Step 1. Rewrite USES and VUSES in the statement. */
1037 if (REWRITE_THIS_STMT (stmt))
1038 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1039 SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
1041 tree var = USE_FROM_PTR (use_p);
1042 gcc_assert (DECL_P (var));
1043 SET_USE (use_p, get_reaching_def (var));
1046 /* Step 2. Register the statement's DEF and VDEF operands. */
1047 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1048 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1050 tree var = DEF_FROM_PTR (def_p);
1051 gcc_assert (DECL_P (var));
1052 SET_DEF (def_p, make_ssa_name (var, stmt));
1053 register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
1058 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1059 PHI nodes. For every PHI node found, add a new argument containing the
1060 current reaching definition for the variable and the edge through which
1061 that definition is reaching the PHI node. */
1063 static void
1064 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1065 basic_block bb)
1067 edge e;
1068 edge_iterator ei;
1070 FOR_EACH_EDGE (e, ei, bb->succs)
1072 tree phi;
1074 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1076 tree currdef;
1077 currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
1078 add_phi_arg (phi, currdef, e);
1084 /* Called after visiting basic block BB. Restore CURRDEFS to its
1085 original value. */
1087 static void
1088 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1089 basic_block bb ATTRIBUTE_UNUSED)
1091 /* Restore CURRDEFS to its original state. */
1092 while (VEC_length (tree, block_defs_stack) > 0)
1094 tree tmp = VEC_pop (tree, block_defs_stack);
1095 tree saved_def, var;
1097 if (tmp == NULL_TREE)
1098 break;
1100 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
1101 definition of its underlying variable. If we recorded anything
1102 else, it must have been an _DECL node and its current reaching
1103 definition must have been NULL. */
1104 if (TREE_CODE (tmp) == SSA_NAME)
1106 saved_def = tmp;
1107 var = SSA_NAME_VAR (saved_def);
1109 else
1111 saved_def = NULL;
1112 var = tmp;
1115 set_current_def (var, saved_def);
1120 /* Dump SSA information to FILE. */
1122 void
1123 dump_tree_ssa (FILE *file)
1125 basic_block bb;
1126 const char *funcname
1127 = lang_hooks.decl_printable_name (current_function_decl, 2);
1129 fprintf (file, "SSA information for %s\n\n", funcname);
1131 FOR_EACH_BB (bb)
1133 dump_bb (bb, file, 0);
1134 fputs (" ", file);
1135 print_generic_stmt (file, phi_nodes (bb), dump_flags);
1136 fputs ("\n\n", file);
1141 /* Dump SSA information to stderr. */
1143 void
1144 debug_tree_ssa (void)
1146 dump_tree_ssa (stderr);
1150 /* Dump statistics for the hash table HTAB. */
1152 static void
1153 htab_statistics (FILE *file, htab_t htab)
1155 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1156 (long) htab_size (htab),
1157 (long) htab_elements (htab),
1158 htab_collisions (htab));
1162 /* Dump SSA statistics on FILE. */
1164 void
1165 dump_tree_ssa_stats (FILE *file)
1167 fprintf (file, "\nHash table statistics:\n");
1169 fprintf (file, " def_blocks: ");
1170 htab_statistics (file, def_blocks);
1172 fprintf (file, "\n");
1176 /* Dump SSA statistics on stderr. */
1178 void
1179 debug_tree_ssa_stats (void)
1181 dump_tree_ssa_stats (stderr);
1185 /* Hashing and equality functions for DEF_BLOCKS. */
1187 static hashval_t
1188 def_blocks_hash (const void *p)
1190 return htab_hash_pointer
1191 ((const void *)((const struct def_blocks_d *)p)->var);
1194 static int
1195 def_blocks_eq (const void *p1, const void *p2)
1197 return ((const struct def_blocks_d *)p1)->var
1198 == ((const struct def_blocks_d *)p2)->var;
1202 /* Free memory allocated by one entry in DEF_BLOCKS. */
1204 static void
1205 def_blocks_free (void *p)
1207 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1208 BITMAP_FREE (entry->def_blocks);
1209 BITMAP_FREE (entry->phi_blocks);
1210 BITMAP_FREE (entry->livein_blocks);
1211 free (entry);
1215 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1217 static int
1218 debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
1220 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1222 fprintf (stderr, "VAR: ");
1223 print_generic_expr (stderr, db_p->var, dump_flags);
1224 bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1225 bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
1227 return 1;
1231 /* Dump the DEF_BLOCKS hash table on stderr. */
1233 void
1234 debug_def_blocks (void)
1236 htab_traverse (def_blocks, debug_def_blocks_r, NULL);
1240 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1242 static inline void
1243 register_new_update_single (tree new_name, tree old_name)
1245 tree currdef = get_current_def (old_name);
1247 /* Push the current reaching definition into *BLOCK_DEFS_P.
1248 This stack is later used by the dominator tree callbacks to
1249 restore the reaching definitions for all the variables
1250 defined in the block after a recursive visit to all its
1251 immediately dominated blocks. */
1252 VEC_reserve (tree, heap, block_defs_stack, 2);
1253 VEC_quick_push (tree, block_defs_stack, currdef);
1254 VEC_quick_push (tree, block_defs_stack, old_name);
1256 /* Set the current reaching definition for OLD_NAME to be
1257 NEW_NAME. */
1258 set_current_def (old_name, new_name);
1262 /* Register NEW_NAME to be the new reaching definition for all the
1263 names in OLD_NAMES. Used by the incremental SSA update routines to
1264 replace old SSA names with new ones. */
1266 static inline void
1267 register_new_update_set (tree new_name, bitmap old_names)
1269 bitmap_iterator bi;
1270 unsigned i;
1272 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1273 register_new_update_single (new_name, ssa_name (i));
1277 /* Initialization of block data structures for the incremental SSA
1278 update pass. Create a block local stack of reaching definitions
1279 for new SSA names produced in this block (BLOCK_DEFS). Register
1280 new definitions for every PHI node in the block. */
1282 static void
1283 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1284 basic_block bb)
1286 edge e;
1287 edge_iterator ei;
1288 tree phi;
1289 bool is_abnormal_phi;
1291 if (dump_file && (dump_flags & TDF_DETAILS))
1292 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1293 bb->index);
1295 /* Mark the unwind point for this block. */
1296 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1298 /* Mark the LHS if any of the arguments flows through an abnormal
1299 edge. */
1300 is_abnormal_phi = false;
1301 FOR_EACH_EDGE (e, ei, bb->preds)
1302 if (e->flags & EDGE_ABNORMAL)
1304 is_abnormal_phi = true;
1305 break;
1308 /* If any of the PHI nodes is a replacement for a name in
1309 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1310 register it as a new definition for its corresponding name. Also
1311 register definitions for names whose underlying symbols are
1312 marked for renaming. */
1313 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1315 tree lhs, lhs_sym;
1317 if (!REGISTER_DEFS_IN_THIS_STMT (phi))
1318 continue;
1320 lhs = PHI_RESULT (phi);
1321 lhs_sym = SSA_NAME_VAR (lhs);
1323 if (symbol_marked_for_renaming (lhs_sym))
1324 register_new_update_single (lhs, lhs_sym);
1325 else
1327 /* If LHS is a new name, register a new definition for all
1328 the names replaced by LHS. */
1329 if (is_new_name (lhs))
1330 register_new_update_set (lhs, names_replaced_by (lhs));
1332 /* If LHS is an OLD name, register it as a new definition
1333 for itself. */
1334 if (is_old_name (lhs))
1335 register_new_update_single (lhs, lhs);
1338 if (is_abnormal_phi)
1339 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1344 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1345 the current reaching definition of every name re-written in BB to
1346 the original reaching definition before visiting BB. This
1347 unwinding must be done in the opposite order to what is done in
1348 register_new_update_set. */
1350 static void
1351 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1352 basic_block bb ATTRIBUTE_UNUSED)
1354 while (VEC_length (tree, block_defs_stack) > 0)
1356 tree var = VEC_pop (tree, block_defs_stack);
1357 tree saved_def;
1359 /* NULL indicates the unwind stop point for this block (see
1360 rewrite_update_init_block). */
1361 if (var == NULL)
1362 return;
1364 saved_def = VEC_pop (tree, block_defs_stack);
1365 set_current_def (var, saved_def);
1370 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1371 it is a symbol marked for renaming, replace it with USE_P's current
1372 reaching definition. */
1374 static inline void
1375 maybe_replace_use (use_operand_p use_p)
1377 tree rdef = NULL_TREE;
1378 tree use = USE_FROM_PTR (use_p);
1379 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1381 if (symbol_marked_for_renaming (sym))
1382 rdef = get_reaching_def (sym);
1383 else if (is_old_name (use))
1384 rdef = get_reaching_def (use);
1386 if (rdef && rdef != use)
1387 SET_USE (use_p, rdef);
1391 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1392 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1393 register it as the current definition for the names replaced by
1394 DEF_P. */
1396 static inline void
1397 maybe_register_def (def_operand_p def_p, tree stmt)
1399 tree def = DEF_FROM_PTR (def_p);
1400 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1402 /* If DEF is a naked symbol that needs renaming, create a
1403 new name for it. */
1404 if (symbol_marked_for_renaming (sym))
1406 if (DECL_P (def))
1408 def = make_ssa_name (def, stmt);
1409 SET_DEF (def_p, def);
1412 register_new_update_single (def, sym);
1414 else
1416 /* If DEF is a new name, register it as a new definition
1417 for all the names replaced by DEF. */
1418 if (is_new_name (def))
1419 register_new_update_set (def, names_replaced_by (def));
1421 /* If DEF is an old name, register DEF as a new
1422 definition for itself. */
1423 if (is_old_name (def))
1424 register_new_update_single (def, def);
1429 /* Update every variable used in the statement pointed-to by SI. The
1430 statement is assumed to be in SSA form already. Names in
1431 OLD_SSA_NAMES used by SI will be updated to their current reaching
1432 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1433 will be registered as a new definition for their corresponding name
1434 in OLD_SSA_NAMES. */
1436 static void
1437 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1438 basic_block bb ATTRIBUTE_UNUSED,
1439 block_stmt_iterator si)
1441 stmt_ann_t ann;
1442 tree stmt;
1443 use_operand_p use_p;
1444 def_operand_p def_p;
1445 ssa_op_iter iter;
1447 stmt = bsi_stmt (si);
1448 ann = stmt_ann (stmt);
1450 /* Only update marked statements. */
1451 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1452 return;
1454 if (dump_file && (dump_flags & TDF_DETAILS))
1456 fprintf (dump_file, "Updating SSA information for statement ");
1457 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1458 fprintf (dump_file, "\n");
1461 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1462 symbol is marked for renaming. */
1463 if (REWRITE_THIS_STMT (stmt))
1465 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1466 maybe_replace_use (use_p);
1468 if (need_to_update_vops_p)
1469 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1470 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
1471 maybe_replace_use (use_p);
1474 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1475 Also register definitions for names whose underlying symbol is
1476 marked for renaming. */
1477 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1479 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1480 maybe_register_def (def_p, stmt);
1482 if (need_to_update_vops_p)
1483 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1484 maybe_register_def (def_p, stmt);
1489 /* Replace the operand pointed to by USE_P with USE's current reaching
1490 definition. */
1492 static inline void
1493 replace_use (use_operand_p use_p, tree use)
1495 tree rdef = get_reaching_def (use);
1496 if (rdef != use)
1497 SET_USE (use_p, rdef);
1501 /* Visit all the successor blocks of BB looking for PHI nodes. For
1502 every PHI node found, check if any of its arguments is in
1503 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1504 definition, replace it. */
1506 static void
1507 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1508 basic_block bb)
1510 edge e;
1511 edge_iterator ei;
1513 FOR_EACH_EDGE (e, ei, bb->succs)
1515 tree phi;
1517 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1519 tree arg;
1520 use_operand_p arg_p;
1522 /* Skip PHI nodes that are not marked for rewrite. */
1523 if (!REWRITE_THIS_STMT (phi))
1524 continue;
1526 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1527 arg = USE_FROM_PTR (arg_p);
1529 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1530 continue;
1532 if (arg == NULL_TREE)
1534 /* When updating a PHI node for a recently introduced
1535 symbol we may find NULL arguments. That's why we
1536 take the symbol from the LHS of the PHI node. */
1537 replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
1539 else
1541 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1543 if (symbol_marked_for_renaming (sym))
1544 replace_use (arg_p, sym);
1545 else if (is_old_name (arg))
1546 replace_use (arg_p, arg);
1549 if (e->flags & EDGE_ABNORMAL)
1550 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
1556 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
1557 form.
1559 ENTRY indicates the block where to start. Every block dominated by
1560 ENTRY will be rewritten.
1562 WHAT indicates what actions will be taken by the renamer (see enum
1563 rewrite_mode).
1565 BLOCKS are the set of interesting blocks for the dominator walker
1566 to process. If this set is NULL, then all the nodes dominated
1567 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
1568 are not present in BLOCKS are ignored. */
1570 static void
1571 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
1573 struct dom_walk_data walk_data;
1575 /* Rewrite all the basic blocks in the program. */
1576 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
1578 /* Setup callbacks for the generic dominator tree walker. */
1579 memset (&walk_data, 0, sizeof (walk_data));
1581 walk_data.dom_direction = CDI_DOMINATORS;
1582 walk_data.interesting_blocks = blocks;
1584 if (what == REWRITE_UPDATE)
1585 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
1586 else
1587 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
1589 if (what == REWRITE_ALL)
1590 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
1591 else if (what == REWRITE_UPDATE)
1592 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
1593 else
1594 gcc_unreachable ();
1596 if (what == REWRITE_ALL)
1597 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
1598 else if (what == REWRITE_UPDATE)
1599 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
1600 else
1601 gcc_unreachable ();
1603 if (what == REWRITE_ALL)
1604 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
1605 else if (what == REWRITE_UPDATE)
1606 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
1607 else
1608 gcc_unreachable ();
1610 block_defs_stack = VEC_alloc (tree, heap, 10);
1612 /* Initialize the dominator walker. */
1613 init_walk_dominator_tree (&walk_data);
1615 /* Recursively walk the dominator tree rewriting each statement in
1616 each basic block. */
1617 walk_dominator_tree (&walk_data, entry);
1619 /* Finalize the dominator walker. */
1620 fini_walk_dominator_tree (&walk_data);
1622 /* Debugging dumps. */
1623 if (dump_file && (dump_flags & TDF_STATS))
1625 dump_dfa_stats (dump_file);
1626 if (def_blocks)
1627 dump_tree_ssa_stats (dump_file);
1630 if (def_blocks)
1632 htab_delete (def_blocks);
1633 def_blocks = NULL;
1636 VEC_free (tree, heap, block_defs_stack);
1638 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
1642 /* Block initialization routine for mark_def_sites. Clear the
1643 KILLS bitmap at the start of each block. */
1645 static void
1646 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
1647 basic_block bb ATTRIBUTE_UNUSED)
1649 struct mark_def_sites_global_data *gd =
1650 (struct mark_def_sites_global_data *) walk_data->global_data;
1651 bitmap kills = gd->kills;
1652 bitmap_clear (kills);
1656 /* Mark the definition site blocks for each variable, so that we know
1657 where the variable is actually live.
1659 INTERESTING_BLOCKS will be filled in with all the blocks that
1660 should be processed by the renamer. It is assumed to be
1661 initialized and zeroed by the caller. */
1663 static void
1664 mark_def_site_blocks (sbitmap interesting_blocks)
1666 struct dom_walk_data walk_data;
1667 struct mark_def_sites_global_data mark_def_sites_global_data;
1668 referenced_var_iterator rvi;
1669 tree var;
1671 /* Allocate memory for the DEF_BLOCKS hash table. */
1672 def_blocks = htab_create (num_referenced_vars,
1673 def_blocks_hash, def_blocks_eq, def_blocks_free);
1674 FOR_EACH_REFERENCED_VAR(var, rvi)
1675 set_current_def (var, NULL_TREE);
1677 /* Setup callbacks for the generic dominator tree walker to find and
1678 mark definition sites. */
1679 walk_data.walk_stmts_backward = false;
1680 walk_data.dom_direction = CDI_DOMINATORS;
1681 walk_data.initialize_block_local_data = NULL;
1682 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
1683 walk_data.before_dom_children_walk_stmts = mark_def_sites;
1684 walk_data.before_dom_children_after_stmts = NULL;
1685 walk_data.after_dom_children_before_stmts = NULL;
1686 walk_data.after_dom_children_walk_stmts = NULL;
1687 walk_data.after_dom_children_after_stmts = NULL;
1688 walk_data.interesting_blocks = NULL;
1690 /* Notice that this bitmap is indexed using variable UIDs, so it must be
1691 large enough to accommodate all the variables referenced in the
1692 function, not just the ones we are renaming. */
1693 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
1695 /* Create the set of interesting blocks that will be filled by
1696 mark_def_sites. */
1697 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
1698 walk_data.global_data = &mark_def_sites_global_data;
1700 /* We do not have any local data. */
1701 walk_data.block_local_data_size = 0;
1703 /* Initialize the dominator walker. */
1704 init_walk_dominator_tree (&walk_data);
1706 /* Recursively walk the dominator tree. */
1707 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1709 /* Finalize the dominator walker. */
1710 fini_walk_dominator_tree (&walk_data);
1712 /* We no longer need this bitmap, clear and free it. */
1713 BITMAP_FREE (mark_def_sites_global_data.kills);
1717 /* Main entry point into the SSA builder. The renaming process
1718 proceeds in four main phases:
1720 1- Compute dominance frontier and immediate dominators, needed to
1721 insert PHI nodes and rename the function in dominator tree
1722 order.
1724 2- Find and mark all the blocks that define variables
1725 (mark_def_site_blocks).
1727 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
1729 4- Rename all the blocks (rewrite_blocks) and statements in the program.
1731 Steps 3 and 4 are done using the dominator tree walker
1732 (walk_dominator_tree). */
1734 static void
1735 rewrite_into_ssa (void)
1737 bitmap *dfs;
1738 basic_block bb;
1739 sbitmap interesting_blocks;
1741 timevar_push (TV_TREE_SSA_OTHER);
1743 /* Initialize operand data structures. */
1744 init_ssa_operands ();
1746 /* Initialize the set of interesting blocks. The callback
1747 mark_def_sites will add to this set those blocks that the renamer
1748 should process. */
1749 interesting_blocks = sbitmap_alloc (last_basic_block);
1750 sbitmap_zero (interesting_blocks);
1752 /* Initialize dominance frontier. */
1753 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
1754 FOR_EACH_BB (bb)
1755 dfs[bb->index] = BITMAP_ALLOC (NULL);
1757 /* 1- Compute dominance frontiers. */
1758 calculate_dominance_info (CDI_DOMINATORS);
1759 compute_dominance_frontiers (dfs);
1761 /* 2- Find and mark definition sites. */
1762 mark_def_site_blocks (interesting_blocks);
1764 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
1765 insert_phi_nodes (dfs);
1767 /* 4- Rename all the blocks. */
1768 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
1770 /* Free allocated memory. */
1771 FOR_EACH_BB (bb)
1772 BITMAP_FREE (dfs[bb->index]);
1773 free (dfs);
1774 sbitmap_free (interesting_blocks);
1776 timevar_pop (TV_TREE_SSA_OTHER);
1777 in_ssa_p = true;
1781 struct tree_opt_pass pass_build_ssa =
1783 "ssa", /* name */
1784 NULL, /* gate */
1785 rewrite_into_ssa, /* execute */
1786 NULL, /* sub */
1787 NULL, /* next */
1788 0, /* static_pass_number */
1789 0, /* tv_id */
1790 PROP_cfg | PROP_referenced_vars, /* properties_required */
1791 PROP_ssa, /* properties_provided */
1792 0, /* properties_destroyed */
1793 0, /* todo_flags_start */
1794 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
1795 0 /* letter */
1799 /* Mark the definition of VAR at STMT and BB as interesting for the
1800 renamer. BLOCKS is the set of blocks that need updating. */
1802 static void
1803 mark_def_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1804 bool insert_phi_p)
1806 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
1807 bitmap_set_bit (blocks, bb->index);
1809 if (insert_phi_p)
1811 bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
1813 set_def_block (var, bb, is_phi_p);
1815 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
1816 site for both itself and all the old names replaced by it. */
1817 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
1819 bitmap_iterator bi;
1820 unsigned i;
1821 bitmap set = names_replaced_by (var);
1822 if (set)
1823 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1824 set_def_block (ssa_name (i), bb, is_phi_p);
1830 /* Mark the use of VAR at STMT and BB as interesting for the
1831 renamer. INSERT_PHI_P is true if we are going to insert new PHI
1832 nodes. BLOCKS is the set of blocks that need updating. */
1834 static inline void
1835 mark_use_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1836 bool insert_phi_p)
1838 REWRITE_THIS_STMT (stmt) = 1;
1839 bitmap_set_bit (blocks, bb->index);
1841 /* If VAR has not been defined in BB, then it is live-on-entry
1842 to BB. Note that we cannot just use the block holding VAR's
1843 definition because if VAR is one of the names in OLD_SSA_NAMES,
1844 it will have several definitions (itself and all the names that
1845 replace it). */
1846 if (insert_phi_p)
1848 struct def_blocks_d *db_p = get_def_blocks_for (var);
1849 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
1850 set_livein_block (var, bb);
1855 /* Do a dominator walk starting at BB processing statements that
1856 reference symbols in SYMS_TO_RENAME. This is very similar to
1857 mark_def_sites, but the scan handles statements whose operands may
1858 already be SSA names. Blocks that contain defs or uses of symbols
1859 in SYMS_TO_RENAME are added to BLOCKS.
1861 If INSERT_PHI_P is true, mark those uses as live in the
1862 corresponding block. This is later used by the PHI placement
1863 algorithm to make PHI pruning decisions. */
1865 static void
1866 prepare_block_for_update (basic_block bb, bitmap blocks, bool insert_phi_p)
1868 basic_block son;
1869 block_stmt_iterator si;
1870 tree phi;
1872 /* Process PHI nodes marking interesting those that define or use
1873 the symbols that we are interested in. */
1874 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1876 tree lhs_sym, lhs = PHI_RESULT (phi);
1878 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
1880 if (symbol_marked_for_renaming (lhs_sym))
1882 mark_use_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1883 mark_def_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1887 /* Process the statements. */
1888 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1890 tree stmt;
1891 ssa_op_iter i;
1892 use_operand_p use_p;
1893 def_operand_p def_p;
1895 stmt = bsi_stmt (si);
1897 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
1899 tree use = USE_FROM_PTR (use_p);
1900 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1901 if (symbol_marked_for_renaming (sym))
1902 mark_use_interesting (use, stmt, bb, blocks, insert_phi_p);
1905 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
1907 tree def = DEF_FROM_PTR (def_p);
1908 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1910 if (symbol_marked_for_renaming (sym))
1911 mark_def_interesting (def, stmt, bb, blocks, insert_phi_p);
1914 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
1916 tree def = DEF_FROM_PTR (def_p);
1917 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1919 if (symbol_marked_for_renaming (sym))
1921 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1922 mark_def_interesting (sym, stmt, bb, blocks, insert_phi_p);
1926 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
1928 tree use = USE_FROM_PTR (use_p);
1929 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1931 if (symbol_marked_for_renaming (sym))
1932 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1936 /* Now visit all the blocks dominated by BB. */
1937 for (son = first_dom_son (CDI_DOMINATORS, bb);
1938 son;
1939 son = next_dom_son (CDI_DOMINATORS, son))
1940 prepare_block_for_update (son, blocks, insert_phi_p);
1944 /* Helper for prepare_names_to_update. Mark all the use sites for
1945 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
1946 prepare_names_to_update. */
1948 static void
1949 prepare_use_sites_for (tree name, bitmap blocks, bool insert_phi_p)
1951 use_operand_p use_p;
1952 imm_use_iterator iter;
1954 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
1956 tree stmt = USE_STMT (use_p);
1957 basic_block bb = bb_for_stmt (stmt);
1959 if (TREE_CODE (stmt) == PHI_NODE)
1961 /* Mark this use of NAME interesting for the renamer.
1962 Notice that we explicitly call mark_use_interesting with
1963 INSERT_PHI_P == false.
1965 This is to avoid marking NAME as live-in in this block
1966 BB. If we were to mark NAME live-in to BB, then NAME
1967 would be considered live-in through ALL incoming edges to
1968 BB which is not what we want. Since we are updating the
1969 SSA form for NAME, we don't really know what other names
1970 of NAME are coming in through other edges into BB.
1972 If we considered NAME live-in at BB, then the PHI
1973 placement algorithm may try to insert PHI nodes in blocks
1974 that are not only unnecessary but also the renamer would
1975 not know how to fill in. */
1976 mark_use_interesting (name, stmt, bb, blocks, false);
1978 /* As discussed above, we only want to mark NAME live-in
1979 through the edge corresponding to its slot inside the PHI
1980 argument list. So, we look for the block BB1 where NAME
1981 is flowing through. If BB1 does not contain a definition
1982 of NAME, then consider NAME live-in at BB1. */
1983 if (insert_phi_p)
1985 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
1986 edge e = PHI_ARG_EDGE (stmt, ix);
1987 basic_block bb1 = e->src;
1988 struct def_blocks_d *db = get_def_blocks_for (name);
1990 if (!bitmap_bit_p (db->def_blocks, bb1->index))
1991 set_livein_block (name, bb1);
1994 else
1996 /* For regular statements, mark this as an interesting use
1997 for NAME. */
1998 mark_use_interesting (name, stmt, bb, blocks, insert_phi_p);
2004 /* Helper for prepare_names_to_update. Mark the definition site for
2005 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2006 prepare_names_to_update. */
2008 static void
2009 prepare_def_site_for (tree name, bitmap blocks, bool insert_phi_p)
2011 tree stmt;
2012 basic_block bb;
2014 gcc_assert (names_to_release == NULL
2015 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2017 stmt = SSA_NAME_DEF_STMT (name);
2018 bb = bb_for_stmt (stmt);
2019 if (bb)
2021 gcc_assert (bb->index < last_basic_block);
2022 mark_def_interesting (name, stmt, bb, blocks, insert_phi_p);
2027 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2028 OLD_SSA_NAMES. Add each definition block to BLOCKS. INSERT_PHI_P
2029 is true if the caller wants to insert PHI nodes for newly created
2030 names. */
2032 static void
2033 prepare_names_to_update (bitmap blocks, bool insert_phi_p)
2035 unsigned i = 0;
2036 bitmap_iterator bi;
2037 sbitmap_iterator sbi;
2039 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2040 remove it from NEW_SSA_NAMES so that we don't try to visit its
2041 defining basic block (which most likely doesn't exist). Notice
2042 that we cannot do the same with names in OLD_SSA_NAMES because we
2043 want to replace existing instances. */
2044 if (names_to_release)
2045 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2046 RESET_BIT (new_ssa_names, i);
2048 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2049 names may be considered to be live-in on blocks that contain
2050 definitions for their replacements. */
2051 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2052 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2054 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2055 OLD_SSA_NAMES, but we have to ignore its definition site. */
2056 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2058 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2059 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2060 prepare_use_sites_for (ssa_name (i), blocks, insert_phi_p);
2065 /* Dump all the names replaced by NAME to FILE. */
2067 void
2068 dump_names_replaced_by (FILE *file, tree name)
2070 unsigned i;
2071 bitmap old_set;
2072 bitmap_iterator bi;
2074 print_generic_expr (file, name, 0);
2075 fprintf (file, " -> { ");
2077 old_set = names_replaced_by (name);
2078 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2080 print_generic_expr (file, ssa_name (i), 0);
2081 fprintf (file, " ");
2084 fprintf (file, "}\n");
2088 /* Dump all the names replaced by NAME to stderr. */
2090 void
2091 debug_names_replaced_by (tree name)
2093 dump_names_replaced_by (stderr, name);
2097 /* Dump SSA update information to FILE. */
2099 void
2100 dump_update_ssa (FILE *file)
2102 unsigned i = 0;
2103 bitmap_iterator bi;
2105 if (!need_ssa_update_p ())
2106 return;
2108 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2110 sbitmap_iterator sbi;
2112 fprintf (file, "\nSSA replacement table\n");
2113 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2114 "O_1, ..., O_j\n\n");
2116 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2117 dump_names_replaced_by (file, ssa_name (i));
2119 fprintf (file, "\n");
2120 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2121 update_ssa_stats.num_virtual_mappings);
2122 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2123 update_ssa_stats.num_total_mappings
2124 - update_ssa_stats.num_virtual_mappings);
2125 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2126 update_ssa_stats.num_total_mappings);
2128 fprintf (file, "\nNumber of virtual symbols: %u\n",
2129 update_ssa_stats.num_virtual_symbols);
2132 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2134 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2135 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2137 print_generic_expr (file, referenced_var (i), 0);
2138 fprintf (file, " ");
2142 if (names_to_release && !bitmap_empty_p (names_to_release))
2144 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2145 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2147 print_generic_expr (file, ssa_name (i), 0);
2148 fprintf (file, " ");
2152 fprintf (file, "\n\n");
2156 /* Dump SSA update information to stderr. */
2158 void
2159 debug_update_ssa (void)
2161 dump_update_ssa (stderr);
2165 /* Initialize data structures used for incremental SSA updates. */
2167 static void
2168 init_update_ssa (void)
2170 /* Reserve more space than the current number of names. The calls to
2171 add_new_name_mapping are typically done after creating new SSA
2172 names, so we'll need to reallocate these arrays. */
2173 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2174 sbitmap_zero (old_ssa_names);
2176 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2177 sbitmap_zero (new_ssa_names);
2179 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2180 need_to_initialize_update_ssa_p = false;
2181 need_to_update_vops_p = false;
2182 syms_to_rename = BITMAP_ALLOC (NULL);
2183 names_to_release = NULL;
2184 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2185 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2189 /* Deallocate data structures used for incremental SSA updates. */
2191 void
2192 delete_update_ssa (void)
2194 unsigned i;
2195 bitmap_iterator bi;
2197 sbitmap_free (old_ssa_names);
2198 old_ssa_names = NULL;
2200 sbitmap_free (new_ssa_names);
2201 new_ssa_names = NULL;
2203 htab_delete (repl_tbl);
2204 repl_tbl = NULL;
2206 need_to_initialize_update_ssa_p = true;
2207 need_to_update_vops_p = false;
2208 BITMAP_FREE (syms_to_rename);
2209 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2211 if (names_to_release)
2213 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2214 release_ssa_name (ssa_name (i));
2215 BITMAP_FREE (names_to_release);
2218 for (i = 1; i < num_ssa_names; i++)
2220 tree n = ssa_name (i);
2222 if (n)
2224 free (SSA_NAME_AUX (n));
2225 SSA_NAME_AUX (n) = NULL;
2231 /* Create a new name for OLD_NAME in statement STMT and replace the
2232 operand pointed to by DEF_P with the newly created name. Return
2233 the new name and register the replacement mapping <NEW, OLD> in
2234 update_ssa's tables. */
2236 tree
2237 create_new_def_for (tree old_name, tree stmt, def_operand_p def)
2239 tree new_name = duplicate_ssa_name (old_name, stmt);
2241 SET_DEF (def, new_name);
2243 if (TREE_CODE (stmt) == PHI_NODE)
2245 edge e;
2246 edge_iterator ei;
2247 basic_block bb = bb_for_stmt (stmt);
2249 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2250 FOR_EACH_EDGE (e, ei, bb->preds)
2251 if (e->flags & EDGE_ABNORMAL)
2253 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2254 break;
2258 register_new_name_mapping (new_name, old_name);
2260 /* For the benefit of passes that will be updating the SSA form on
2261 their own, set the current reaching definition of OLD_NAME to be
2262 NEW_NAME. */
2263 set_current_def (old_name, new_name);
2265 return new_name;
2269 /* Register name NEW to be a replacement for name OLD. This function
2270 must be called for every replacement that should be performed by
2271 update_ssa. */
2273 void
2274 register_new_name_mapping (tree new, tree old)
2276 if (need_to_initialize_update_ssa_p)
2277 init_update_ssa ();
2279 add_new_name_mapping (new, old);
2283 /* Register symbol SYM to be renamed by update_ssa. */
2285 void
2286 mark_sym_for_renaming (tree sym)
2288 if (need_to_initialize_update_ssa_p)
2289 init_update_ssa ();
2291 bitmap_set_bit (syms_to_rename, DECL_UID (sym));
2293 if (!is_gimple_reg (sym))
2294 need_to_update_vops_p = true;
2298 /* Register all the symbols in SET to be renamed by update_ssa. */
2300 void
2301 mark_set_for_renaming (bitmap set)
2303 bitmap_iterator bi;
2304 unsigned i;
2306 if (bitmap_empty_p (set))
2307 return;
2309 if (need_to_initialize_update_ssa_p)
2310 init_update_ssa ();
2312 bitmap_ior_into (syms_to_rename, set);
2314 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2315 if (!is_gimple_reg (referenced_var (i)))
2317 need_to_update_vops_p = true;
2318 break;
2323 /* Return true if there is any work to be done by update_ssa. */
2325 bool
2326 need_ssa_update_p (void)
2328 return syms_to_rename || old_ssa_names || new_ssa_names;
2332 /* Return true if name N has been registered in the replacement table. */
2334 bool
2335 name_registered_for_update_p (tree n)
2337 if (!need_ssa_update_p ())
2338 return false;
2340 return is_new_name (n)
2341 || is_old_name (n)
2342 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2346 /* Return the set of all the SSA names marked to be replaced. */
2348 bitmap
2349 ssa_names_to_replace (void)
2351 unsigned i = 0;
2352 bitmap ret;
2353 sbitmap_iterator sbi;
2355 ret = BITMAP_ALLOC (NULL);
2356 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2357 bitmap_set_bit (ret, i);
2359 return ret;
2363 /* Mark NAME to be released after update_ssa has finished. */
2365 void
2366 release_ssa_name_after_update_ssa (tree name)
2368 gcc_assert (!need_to_initialize_update_ssa_p);
2370 if (names_to_release == NULL)
2371 names_to_release = BITMAP_ALLOC (NULL);
2373 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2377 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2378 frontier information. BLOCKS is the set of blocks to be updated.
2380 This is slightly different than the regular PHI insertion
2381 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2382 real names (i.e., GIMPLE registers) are inserted:
2384 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2385 nodes inside the region affected by the block that defines VAR
2386 and the blocks that define all its replacements. All these
2387 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2389 First, we compute the entry point to the region (ENTRY). This is
2390 given by the nearest common dominator to all the definition
2391 blocks. When computing the iterated dominance frontier (IDF), any
2392 block not strictly dominated by ENTRY is ignored.
2394 We then call the standard PHI insertion algorithm with the pruned
2395 IDF.
2397 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2398 names is not pruned. PHI nodes are inserted at every IDF block. */
2400 static void
2401 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2402 unsigned update_flags)
2404 basic_block entry;
2405 struct def_blocks_d *db;
2406 bitmap idf, pruned_idf;
2407 bitmap_iterator bi;
2408 unsigned i;
2410 #if defined ENABLE_CHECKING
2411 if (TREE_CODE (var) == SSA_NAME)
2412 gcc_assert (is_old_name (var));
2413 else
2414 gcc_assert (symbol_marked_for_renaming (var));
2415 #endif
2417 /* Get all the definition sites for VAR. */
2418 db = find_def_blocks_for (var);
2420 /* No need to do anything if there were no definitions to VAR. */
2421 if (db == NULL || bitmap_empty_p (db->def_blocks))
2422 return;
2424 /* Compute the initial iterated dominance frontier. */
2425 idf = find_idf (db->def_blocks, dfs);
2426 pruned_idf = BITMAP_ALLOC (NULL);
2428 if (TREE_CODE (var) == SSA_NAME)
2430 if (update_flags == TODO_update_ssa)
2432 /* If doing regular SSA updates for GIMPLE registers, we are
2433 only interested in IDF blocks dominated by the nearest
2434 common dominator of all the definition blocks. */
2435 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2436 db->def_blocks);
2438 if (entry != ENTRY_BLOCK_PTR)
2439 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2440 if (BASIC_BLOCK (i) != entry
2441 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2442 bitmap_set_bit (pruned_idf, i);
2444 else
2446 /* Otherwise, do not prune the IDF for VAR. */
2447 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2448 bitmap_copy (pruned_idf, idf);
2451 else
2453 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2454 for the first time, so we need to compute the full IDF for
2455 it. */
2456 bitmap_copy (pruned_idf, idf);
2459 if (!bitmap_empty_p (pruned_idf))
2461 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2462 are included in the region to be updated. The feeding blocks
2463 are important to guarantee that the PHI arguments are renamed
2464 properly. */
2465 bitmap_ior_into (blocks, pruned_idf);
2466 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2468 edge e;
2469 edge_iterator ei;
2470 basic_block bb = BASIC_BLOCK (i);
2472 FOR_EACH_EDGE (e, ei, bb->preds)
2473 if (e->src->index >= 0)
2474 bitmap_set_bit (blocks, e->src->index);
2477 insert_phi_nodes_for (var, pruned_idf, true);
2480 BITMAP_FREE (pruned_idf);
2481 BITMAP_FREE (idf);
2485 /* Heuristic to determine whether SSA name mappings for virtual names
2486 should be discarded and their symbols rewritten from scratch. When
2487 there is a large number of mappings for virtual names, the
2488 insertion of PHI nodes for the old names in the mappings takes
2489 considerable more time than if we inserted PHI nodes for the
2490 symbols instead.
2492 Currently the heuristic takes these stats into account:
2494 - Number of mappings for virtual SSA names.
2495 - Number of distinct virtual symbols involved in those mappings.
2497 If the number of virtual mappings is much larger than the number of
2498 virtual symbols, then it will be faster to compute PHI insertion
2499 spots for the symbols. Even if this involves traversing the whole
2500 CFG, which is what happens when symbols are renamed from scratch. */
2502 static bool
2503 switch_virtuals_to_full_rewrite_p (void)
2505 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2506 return false;
2508 if (update_ssa_stats.num_virtual_mappings
2509 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
2510 * update_ssa_stats.num_virtual_symbols)
2511 return true;
2513 return false;
2517 /* Remove every virtual mapping and mark all the affected virtual
2518 symbols for renaming. */
2520 static void
2521 switch_virtuals_to_full_rewrite (void)
2523 unsigned i = 0;
2524 sbitmap_iterator sbi;
2526 if (dump_file)
2528 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
2529 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
2530 update_ssa_stats.num_virtual_mappings);
2531 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
2532 update_ssa_stats.num_virtual_symbols);
2533 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
2534 "faster than processing\nthe name mappings.\n\n");
2537 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
2538 Note that it is not really necessary to remove the mappings from
2539 REPL_TBL, that would only waste time. */
2540 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2541 if (!is_gimple_reg (ssa_name (i)))
2542 RESET_BIT (new_ssa_names, i);
2544 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2545 if (!is_gimple_reg (ssa_name (i)))
2546 RESET_BIT (old_ssa_names, i);
2548 bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
2552 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
2553 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
2555 1- The names in OLD_SSA_NAMES dominated by the definitions of
2556 NEW_SSA_NAMES are all re-written to be reached by the
2557 appropriate definition from NEW_SSA_NAMES.
2559 2- If needed, new PHI nodes are added to the iterated dominance
2560 frontier of the blocks where each of NEW_SSA_NAMES are defined.
2562 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
2563 calling register_new_name_mapping for every pair of names that the
2564 caller wants to replace.
2566 The caller identifies the new names that have been inserted and the
2567 names that need to be replaced by calling register_new_name_mapping
2568 for every pair <NEW, OLD>. Note that the function assumes that the
2569 new names have already been inserted in the IL.
2571 For instance, given the following code:
2573 1 L0:
2574 2 x_1 = PHI (0, x_5)
2575 3 if (x_1 < 10)
2576 4 if (x_1 > 7)
2577 5 y_2 = 0
2578 6 else
2579 7 y_3 = x_1 + x_7
2580 8 endif
2581 9 x_5 = x_1 + 1
2582 10 goto L0;
2583 11 endif
2585 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
2587 1 L0:
2588 2 x_1 = PHI (0, x_5)
2589 3 if (x_1 < 10)
2590 4 x_10 = ...
2591 5 if (x_1 > 7)
2592 6 y_2 = 0
2593 7 else
2594 8 x_11 = ...
2595 9 y_3 = x_1 + x_7
2596 10 endif
2597 11 x_5 = x_1 + 1
2598 12 goto L0;
2599 13 endif
2601 We want to replace all the uses of x_1 with the new definitions of
2602 x_10 and x_11. Note that the only uses that should be replaced are
2603 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
2604 *not* be replaced (this is why we cannot just mark symbol 'x' for
2605 renaming).
2607 Additionally, we may need to insert a PHI node at line 11 because
2608 that is a merge point for x_10 and x_11. So the use of x_1 at line
2609 11 will be replaced with the new PHI node. The insertion of PHI
2610 nodes is optional. They are not strictly necessary to preserve the
2611 SSA form, and depending on what the caller inserted, they may not
2612 even be useful for the optimizers. UPDATE_FLAGS controls various
2613 aspects of how update_ssa operates, see the documentation for
2614 TODO_update_ssa*. */
2616 void
2617 update_ssa (unsigned update_flags)
2619 bitmap blocks;
2620 basic_block bb, start_bb;
2621 bitmap_iterator bi;
2622 unsigned i = 0;
2623 sbitmap tmp;
2624 bool insert_phi_p;
2625 sbitmap_iterator sbi;
2627 if (!need_ssa_update_p ())
2628 return;
2630 timevar_push (TV_TREE_SSA_INCREMENTAL);
2632 /* Ensure that the dominance information is up-to-date. */
2633 calculate_dominance_info (CDI_DOMINATORS);
2635 /* Only one update flag should be set. */
2636 gcc_assert (update_flags == TODO_update_ssa
2637 || update_flags == TODO_update_ssa_no_phi
2638 || update_flags == TODO_update_ssa_full_phi
2639 || update_flags == TODO_update_ssa_only_virtuals);
2641 /* If we only need to update virtuals, remove all the mappings for
2642 real names before proceeding. The caller is responsible for
2643 having dealt with the name mappings before calling update_ssa. */
2644 if (update_flags == TODO_update_ssa_only_virtuals)
2646 sbitmap_zero (old_ssa_names);
2647 sbitmap_zero (new_ssa_names);
2648 htab_empty (repl_tbl);
2651 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
2653 if (insert_phi_p)
2655 /* If the caller requested PHI nodes to be added, initialize
2656 live-in information data structures (DEF_BLOCKS). */
2658 /* For each SSA name N, the DEF_BLOCKS table describes where the
2659 name is defined, which blocks have PHI nodes for N, and which
2660 blocks have uses of N (i.e., N is live-on-entry in those
2661 blocks). */
2662 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
2663 def_blocks_eq, def_blocks_free);
2665 else
2667 def_blocks = NULL;
2670 blocks = BITMAP_ALLOC (NULL);
2672 /* Clear the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags
2673 for every statement and PHI node. */
2674 FOR_EACH_BB (bb)
2676 block_stmt_iterator si;
2677 tree phi;
2679 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2681 REWRITE_THIS_STMT (phi) = 0;
2682 REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
2685 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2687 tree stmt = bsi_stmt (si);
2688 /* We are going to use the operand cache API, such as
2689 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
2690 cache for each statement should be up-to-date. */
2691 gcc_assert (!stmt_modified_p (stmt));
2692 REWRITE_THIS_STMT (stmt) = 0;
2693 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
2697 /* Heuristic to avoid massive slow downs when the replacement
2698 mappings include lots of virtual names. */
2699 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
2700 switch_virtuals_to_full_rewrite ();
2702 /* If there are names defined in the replacement table, prepare
2703 definition and use sites for all the names in NEW_SSA_NAMES and
2704 OLD_SSA_NAMES. */
2705 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
2707 prepare_names_to_update (blocks, insert_phi_p);
2709 /* If all the names in NEW_SSA_NAMES had been marked for
2710 removal, and there are no symbols to rename, then there's
2711 nothing else to do. */
2712 if (sbitmap_first_set_bit (new_ssa_names) < 0
2713 && bitmap_empty_p (syms_to_rename))
2714 goto done;
2717 /* Next, determine the block at which to start the renaming process. */
2718 if (!bitmap_empty_p (syms_to_rename))
2720 /* If we have to rename some symbols from scratch, we need to
2721 start the process at the root of the CFG. FIXME, it should
2722 be possible to determine the nearest block that had a
2723 definition for each of the symbols that are marked for
2724 updating. For now this seems more work than it's worth. */
2725 start_bb = ENTRY_BLOCK_PTR;
2727 /* Traverse the CFG looking for definitions and uses of symbols
2728 in SYMS_TO_RENAME. Mark interesting blocks and statements
2729 and set local live-in information for the PHI placement
2730 heuristics. */
2731 prepare_block_for_update (start_bb, blocks, insert_phi_p);
2733 else
2735 /* Otherwise, the entry block to the region is the nearest
2736 common dominator for the blocks in BLOCKS. */
2737 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2740 /* If requested, insert PHI nodes at the iterated dominance frontier
2741 of every block, creating new definitions for names in OLD_SSA_NAMES
2742 and for symbols in SYMS_TO_RENAME. */
2743 if (insert_phi_p)
2745 bitmap *dfs;
2747 /* If the caller requested PHI nodes to be added, compute
2748 dominance frontiers. */
2749 dfs = XNEWVEC (bitmap, last_basic_block);
2750 FOR_EACH_BB (bb)
2751 dfs[bb->index] = BITMAP_ALLOC (NULL);
2752 compute_dominance_frontiers (dfs);
2754 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
2756 sbitmap_iterator sbi;
2758 /* insert_update_phi_nodes_for will call add_new_name_mapping
2759 when inserting new PHI nodes, so the set OLD_SSA_NAMES
2760 will grow while we are traversing it (but it will not
2761 gain any new members). Copy OLD_SSA_NAMES to a temporary
2762 for traversal. */
2763 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
2764 sbitmap_copy (tmp, old_ssa_names);
2765 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
2766 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks,
2767 update_flags);
2768 sbitmap_free (tmp);
2771 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2772 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks,
2773 update_flags);
2775 FOR_EACH_BB (bb)
2776 BITMAP_FREE (dfs[bb->index]);
2777 free (dfs);
2779 /* Insertion of PHI nodes may have added blocks to the region.
2780 We need to re-compute START_BB to include the newly added
2781 blocks. */
2782 if (start_bb != ENTRY_BLOCK_PTR)
2783 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2786 /* Reset the current definition for name and symbol before renaming
2787 the sub-graph. */
2788 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2789 set_current_def (ssa_name (i), NULL_TREE);
2791 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2792 set_current_def (referenced_var (i), NULL_TREE);
2794 /* Now start the renaming process at START_BB. */
2795 tmp = sbitmap_alloc (last_basic_block);
2796 sbitmap_zero (tmp);
2797 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2798 SET_BIT (tmp, i);
2800 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
2802 sbitmap_free (tmp);
2804 /* Debugging dumps. */
2805 if (dump_file)
2807 int c;
2808 unsigned i;
2810 dump_update_ssa (dump_file);
2812 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
2813 start_bb->index);
2815 c = 0;
2816 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2817 c++;
2818 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
2819 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
2820 c, PERCENT (c, last_basic_block));
2822 if (dump_flags & TDF_DETAILS)
2824 fprintf (dump_file, "Affected blocks: ");
2825 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2826 fprintf (dump_file, "%u ", i);
2827 fprintf (dump_file, "\n");
2830 fprintf (dump_file, "\n\n");
2833 /* Free allocated memory. */
2834 done:
2835 BITMAP_FREE (blocks);
2836 delete_update_ssa ();
2838 timevar_pop (TV_TREE_SSA_INCREMENTAL);