* c-parser.c (c_parser_omp_requires): Call sorry_at on requires
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_coverage_fuchsia.cc
blob8426aad432a0af279ae5215ba938715bb5fc4b90
1 //===-- sanitizer_coverage_fuchsia.cc -------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version.
9 //
10 // This Fuchsia-specific implementation uses the same basic scheme and the
11 // same simple '.sancov' file format as the generic implementation. The
12 // difference is that we just produce a single blob of output for the whole
13 // program, not a separate one per DSO. We do not sort the PC table and do
14 // not prune the zeros, so the resulting file is always as large as it
15 // would be to report 100% coverage. Implicit tracing information about
16 // the address ranges of DSOs allows offline tools to split the one big
17 // blob into separate files that the 'sancov' tool can understand.
19 // Unlike the traditional implementation that uses an atexit hook to write
20 // out data files at the end, the results on Fuchsia do not go into a file
21 // per se. The 'coverage_dir' option is ignored. Instead, they are stored
22 // directly into a shared memory object (a Zircon VMO). At exit, that VMO
23 // is handed over to a system service that's responsible for getting the
24 // data out to somewhere that it can be fed into the sancov tool (where and
25 // how is not our problem).
27 #include "sanitizer_platform.h"
28 #if SANITIZER_FUCHSIA
29 #include "sanitizer_atomic.h"
30 #include "sanitizer_common.h"
31 #include "sanitizer_internal_defs.h"
33 #include <zircon/process.h>
34 #include <zircon/sanitizer.h>
35 #include <zircon/syscalls.h>
37 using namespace __sanitizer; // NOLINT
39 namespace __sancov {
40 namespace {
42 // TODO(mcgrathr): Move the constant into a header shared with other impls.
43 constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL;
44 static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64");
46 constexpr const char kSancovSinkName[] = "sancov";
48 // Collects trace-pc guard coverage.
49 // This class relies on zero-initialization.
50 class TracePcGuardController final {
51 public:
52 // For each PC location being tracked, there is a u32 reserved in global
53 // data called the "guard". At startup, we assign each guard slot a
54 // unique index into the big results array. Later during runtime, the
55 // first call to TracePcGuard (below) will store the corresponding PC at
56 // that index in the array. (Each later call with the same guard slot is
57 // presumed to be from the same PC.) Then it clears the guard slot back
58 // to zero, which tells the compiler not to bother calling in again. At
59 // the end of the run, we have a big array where each element is either
60 // zero or is a tracked PC location that was hit in the trace.
62 // This is called from global constructors. Each translation unit has a
63 // contiguous array of guard slots, and a constructor that calls here
64 // with the bounds of its array. Those constructors are allowed to call
65 // here more than once for the same array. Usually all of these
66 // constructors run in the initial thread, but it's possible that a
67 // dlopen call on a secondary thread will run constructors that get here.
68 void InitTracePcGuard(u32 *start, u32 *end) {
69 if (end > start && *start == 0 && common_flags()->coverage) {
70 // Complete the setup before filling in any guards with indices.
71 // This avoids the possibility of code called from Setup reentering
72 // TracePcGuard.
73 u32 idx = Setup(end - start);
74 for (u32 *p = start; p < end; ++p) {
75 *p = idx++;
80 void TracePcGuard(u32 *guard, uptr pc) {
81 atomic_uint32_t *guard_ptr = reinterpret_cast<atomic_uint32_t *>(guard);
82 u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed);
83 if (idx > 0) array_[idx] = pc;
86 void Dump() {
87 BlockingMutexLock locked(&setup_lock_);
88 if (array_) {
89 CHECK_NE(vmo_, ZX_HANDLE_INVALID);
91 // Publish the VMO to the system, where it can be collected and
92 // analyzed after this process exits. This always consumes the VMO
93 // handle. Any failure is just logged and not indicated to us.
94 __sanitizer_publish_data(kSancovSinkName, vmo_);
95 vmo_ = ZX_HANDLE_INVALID;
97 // This will route to __sanitizer_log_write, which will ensure that
98 // information about shared libraries is written out. This message
99 // uses the `dumpfile` symbolizer markup element to highlight the
100 // dump. See the explanation for this in:
101 // https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md
102 Printf("SanitizerCoverage: {{{dumpfile:%s:%s}}} with up to %u PCs\n",
103 kSancovSinkName, vmo_name_, next_index_ - 1);
107 private:
108 // We map in the largest possible view into the VMO: one word
109 // for every possible 32-bit index value. This avoids the need
110 // to change the mapping when increasing the size of the VMO.
111 // We can always spare the 32G of address space.
112 static constexpr size_t MappingSize = sizeof(uptr) << 32;
114 BlockingMutex setup_lock_ = BlockingMutex(LINKER_INITIALIZED);
115 uptr *array_ = nullptr;
116 u32 next_index_ = 0;
117 zx_handle_t vmo_ = {};
118 char vmo_name_[ZX_MAX_NAME_LEN] = {};
120 size_t DataSize() const { return next_index_ * sizeof(uintptr_t); }
122 u32 Setup(u32 num_guards) {
123 BlockingMutexLock locked(&setup_lock_);
124 DCHECK(common_flags()->coverage);
126 if (next_index_ == 0) {
127 CHECK_EQ(vmo_, ZX_HANDLE_INVALID);
128 CHECK_EQ(array_, nullptr);
130 // The first sample goes at [1] to reserve [0] for the magic number.
131 next_index_ = 1 + num_guards;
133 zx_status_t status = _zx_vmo_create(DataSize(), 0, &vmo_);
134 CHECK_EQ(status, ZX_OK);
136 // Give the VMO a name including our process KOID so it's easy to spot.
137 internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu", kSancovSinkName,
138 internal_getpid());
139 _zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_,
140 internal_strlen(vmo_name_));
142 // Map the largest possible view we might need into the VMO. Later
143 // we might need to increase the VMO's size before we can use larger
144 // indices, but we'll never move the mapping address so we don't have
145 // any multi-thread synchronization issues with that.
146 uintptr_t mapping;
147 status =
148 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
149 0, vmo_, 0, MappingSize, &mapping);
150 CHECK_EQ(status, ZX_OK);
152 // Hereafter other threads are free to start storing into
153 // elements [1, next_index_) of the big array.
154 array_ = reinterpret_cast<uptr *>(mapping);
156 // Store the magic number.
157 // Hereafter, the VMO serves as the contents of the '.sancov' file.
158 array_[0] = Magic64;
160 return 1;
161 } else {
162 // The VMO is already mapped in, but it's not big enough to use the
163 // new indices. So increase the size to cover the new maximum index.
165 CHECK_NE(vmo_, ZX_HANDLE_INVALID);
166 CHECK_NE(array_, nullptr);
168 uint32_t first_index = next_index_;
169 next_index_ += num_guards;
171 zx_status_t status = _zx_vmo_set_size(vmo_, DataSize());
172 CHECK_EQ(status, ZX_OK);
174 return first_index;
179 static TracePcGuardController pc_guard_controller;
181 } // namespace
182 } // namespace __sancov
184 namespace __sanitizer {
185 void InitializeCoverage(bool enabled, const char *dir) {
186 CHECK_EQ(enabled, common_flags()->coverage);
187 CHECK_EQ(dir, common_flags()->coverage_dir);
189 static bool coverage_enabled = false;
190 if (!coverage_enabled) {
191 coverage_enabled = enabled;
192 Atexit(__sanitizer_cov_dump);
193 AddDieCallback(__sanitizer_cov_dump);
196 } // namespace __sanitizer
198 extern "C" {
199 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage( // NOLINT
200 const uptr *pcs, uptr len) {
201 UNIMPLEMENTED();
204 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) {
205 if (!*guard) return;
206 __sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1);
209 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init,
210 u32 *start, u32 *end) {
211 if (start == end || *start) return;
212 __sancov::pc_guard_controller.InitTracePcGuard(start, end);
215 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() {
216 __sancov::pc_guard_controller.Dump();
218 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
219 __sanitizer_dump_trace_pc_guard_coverage();
221 // Default empty implementations (weak). Users should redefine them.
222 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {}
223 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {}
224 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {}
225 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {}
226 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {}
227 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {}
228 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {}
229 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {}
230 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {}
231 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {}
232 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {}
233 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {}
234 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {}
235 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {}
236 } // extern "C"
238 #endif // !SANITIZER_FUCHSIA