1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
40 #include "cfgcleanup.h"
42 #include "tree-pass.h"
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
48 #define STACK_POP_CODE POST_DEC
52 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx_insn
*, bool);
53 static void validate_replace_src_1 (rtx
*, void *);
54 static rtx_insn
*split_insn (rtx_insn
*);
56 struct target_recog default_target_recog
;
58 struct target_recog
*this_target_recog
= &default_target_recog
;
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
67 init_recog and init_recog_no_volatile are responsible for setting this. */
71 struct recog_data_d recog_data
;
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative
*recog_op_alt
;
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt
[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES
];
82 /* On return from `constrain_operands', indicate which alternative
85 int which_alternative
;
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed
;
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
101 init_recog_no_volatile (void)
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
116 asm_labels_ok (rtx body
)
121 asmop
= extract_asm_operands (body
);
122 if (asmop
== NULL_RTX
)
125 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
136 check_asm_operands (rtx x
)
140 const char **constraints
;
143 if (!asm_labels_ok (x
))
146 /* Post-reload, be more strict with things. */
147 if (reload_completed
)
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn
*insn
= make_insn_raw (x
);
152 constrain_operands (1, get_enabled_alternatives (insn
));
153 return which_alternative
>= 0;
156 noperands
= asm_noperands (x
);
162 operands
= XALLOCAVEC (rtx
, noperands
);
163 constraints
= XALLOCAVEC (const char *, noperands
);
165 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
167 for (i
= 0; i
< noperands
; i
++)
169 const char *c
= constraints
[i
];
172 if (! asm_operand_ok (operands
[i
], c
, constraints
))
179 /* Static data for the next two routines. */
190 static change_t
*changes
;
191 static int changes_allocated
;
193 static int num_changes
= 0;
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
214 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
218 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
221 gcc_assert (in_group
!= 0 || num_changes
== 0);
225 /* Save the information describing this change. */
226 if (num_changes
>= changes_allocated
)
228 if (changes_allocated
== 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
233 changes_allocated
*= 2;
235 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
238 changes
[num_changes
].object
= object
;
239 changes
[num_changes
].loc
= loc
;
240 changes
[num_changes
].old
= old
;
241 changes
[num_changes
].unshare
= unshare
;
243 if (object
&& !MEM_P (object
))
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
247 changes
[num_changes
].old_code
= INSN_CODE (object
);
248 INSN_CODE (object
) = -1;
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
259 return apply_change_group ();
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
266 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
268 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
275 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
277 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
285 Return true if anything was changed. */
287 canonicalize_change_group (rtx_insn
*insn
, rtx x
)
289 if (COMMUTATIVE_P (x
)
290 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem
= XEXP (x
, 0);
295 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
296 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
312 insn_invalid_p (rtx_insn
*insn
, bool in_group
)
314 rtx pat
= PATTERN (insn
);
315 int num_clobbers
= 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
318 int icode
= recog (pat
, insn
,
319 (GET_CODE (pat
) == SET
320 && ! reload_completed
321 && ! reload_in_progress
)
322 ? &num_clobbers
: 0);
323 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
329 || (!is_asm
&& icode
< 0))
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers
> 0)
339 if (added_clobbers_hard_reg_p (icode
))
342 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
343 XVECEXP (newpat
, 0, 0) = pat
;
344 add_clobbers (newpat
, icode
);
346 validate_change (insn
, &PATTERN (insn
), newpat
, 1);
348 PATTERN (insn
) = pat
= newpat
;
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed
)
356 if (! constrain_operands (1, get_preferred_alternatives (insn
)))
360 INSN_CODE (insn
) = icode
;
364 /* Return number of changes made and not validated yet. */
366 num_changes_pending (void)
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
375 verify_changes (int num
)
378 rtx last_validated
= NULL_RTX
;
380 /* The changes have been applied and all INSN_CODEs have been reset to force
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
389 for (i
= num
; i
< num_changes
; i
++)
391 rtx object
= changes
[i
].object
;
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object
== 0 || object
== last_validated
)
400 if (! memory_address_addr_space_p (GET_MODE (object
),
402 MEM_ADDR_SPACE (object
)))
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
408 && REG_P (changes
[i
].old
)
409 && asm_noperands (PATTERN (object
)) > 0
410 && REG_EXPR (changes
[i
].old
) != NULL_TREE
411 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes
[i
].old
))
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
413 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
419 else if (DEBUG_INSN_P (object
))
421 else if (insn_invalid_p (as_a
<rtx_insn
*> (object
), true))
423 rtx pat
= PATTERN (object
);
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat
) == PARALLEL
431 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object
)) < 0)
436 if (XVECLEN (pat
, 0) == 2)
437 newpat
= XVECEXP (pat
, 0, 0);
443 = gen_rtx_PARALLEL (VOIDmode
,
444 rtvec_alloc (XVECLEN (pat
, 0) - 1));
445 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
446 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
458 validate_change (object
, &PATTERN (object
), newpat
, 1);
461 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
462 || GET_CODE (pat
) == VAR_LOCATION
)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
469 last_validated
= object
;
472 return (i
== num_changes
);
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
480 confirm_change_group (void)
483 rtx last_object
= NULL
;
485 for (i
= 0; i
< num_changes
; i
++)
487 rtx object
= changes
[i
].object
;
489 if (changes
[i
].unshare
)
490 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
496 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
497 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
498 last_object
= object
;
502 if (last_object
&& INSN_P (last_object
))
503 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
512 apply_change_group (void)
514 if (verify_changes (0))
516 confirm_change_group ();
527 /* Return the number of changes so far in the current group. */
530 num_validated_changes (void)
535 /* Retract the changes numbered NUM and up. */
538 cancel_changes (int num
)
542 /* Back out all the changes. Do this in the opposite order in which
544 for (i
= num_changes
- 1; i
>= num
; i
--)
546 *changes
[i
].loc
= changes
[i
].old
;
547 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
548 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
553 /* Reduce conditional compilation elsewhere. */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
558 simplify_while_replacing (rtx
*loc
, rtx to
, rtx_insn
*object
,
559 machine_mode op0_mode
)
562 enum rtx_code code
= GET_CODE (x
);
563 rtx new_rtx
= NULL_RTX
;
564 scalar_int_mode is_mode
;
566 if (SWAPPABLE_OPERANDS_P (x
)
567 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
569 validate_unshare_change (object
, loc
,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
571 : swap_condition (code
),
572 GET_MODE (x
), XEXP (x
, 1),
578 /* Canonicalize arithmetics with all constant operands. */
579 switch (GET_RTX_CLASS (code
))
582 if (CONSTANT_P (XEXP (x
, 0)))
583 new_rtx
= simplify_unary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
588 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
589 new_rtx
= simplify_binary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
593 case RTX_COMM_COMPARE
:
594 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
595 new_rtx
= simplify_relational_operation (code
, GET_MODE (x
), op0_mode
,
596 XEXP (x
, 0), XEXP (x
, 1));
603 validate_change (object
, loc
, new_rtx
, 1);
610 /* If we have a PLUS whose second operand is now a CONST_INT, use
611 simplify_gen_binary to try to simplify it.
612 ??? We may want later to remove this, once simplification is
613 separated from this function. */
614 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
615 validate_change (object
, loc
,
617 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
620 if (CONST_SCALAR_INT_P (XEXP (x
, 1)))
621 validate_change (object
, loc
,
623 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
624 simplify_gen_unary (NEG
,
625 GET_MODE (x
), XEXP (x
, 1),
630 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
632 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
634 /* If any of the above failed, substitute in something that
635 we know won't be recognized. */
637 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
638 validate_change (object
, loc
, new_rtx
, 1);
642 /* All subregs possible to simplify should be simplified. */
643 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
646 /* Subregs of VOIDmode operands are incorrect. */
647 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
648 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
650 validate_change (object
, loc
, new_rtx
, 1);
654 /* If we are replacing a register with memory, try to change the memory
655 to be the mode required for memory in extract operations (this isn't
656 likely to be an insertion operation; if it was, nothing bad will
657 happen, we might just fail in some cases). */
659 if (MEM_P (XEXP (x
, 0))
660 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &is_mode
)
661 && CONST_INT_P (XEXP (x
, 1))
662 && CONST_INT_P (XEXP (x
, 2))
663 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0),
664 MEM_ADDR_SPACE (XEXP (x
, 0)))
665 && !MEM_VOLATILE_P (XEXP (x
, 0)))
667 int pos
= INTVAL (XEXP (x
, 2));
668 machine_mode new_mode
= is_mode
;
669 if (GET_CODE (x
) == ZERO_EXTRACT
&& targetm
.have_extzv ())
670 new_mode
= insn_data
[targetm
.code_for_extzv
].operand
[1].mode
;
671 else if (GET_CODE (x
) == SIGN_EXTRACT
&& targetm
.have_extv ())
672 new_mode
= insn_data
[targetm
.code_for_extv
].operand
[1].mode
;
673 scalar_int_mode wanted_mode
= (new_mode
== VOIDmode
675 : as_a
<scalar_int_mode
> (new_mode
));
677 /* If we have a narrower mode, we can do something. */
678 if (GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
680 int offset
= pos
/ BITS_PER_UNIT
;
683 /* If the bytes and bits are counted differently, we
684 must adjust the offset. */
685 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
687 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
690 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
691 == GET_MODE_BITSIZE (wanted_mode
));
692 pos
%= GET_MODE_BITSIZE (wanted_mode
);
694 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
696 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
697 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
708 /* Replace every occurrence of FROM in X with TO. Mark each change with
709 validate_change passing OBJECT. */
712 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx_insn
*object
,
719 machine_mode op0_mode
= VOIDmode
;
720 int prev_changes
= num_changes
;
726 fmt
= GET_RTX_FORMAT (code
);
728 op0_mode
= GET_MODE (XEXP (x
, 0));
730 /* X matches FROM if it is the same rtx or they are both referring to the
731 same register in the same mode. Avoid calling rtx_equal_p unless the
732 operands look similar. */
735 || (REG_P (x
) && REG_P (from
)
736 && GET_MODE (x
) == GET_MODE (from
)
737 && REGNO (x
) == REGNO (from
))
738 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
739 && rtx_equal_p (x
, from
)))
741 validate_unshare_change (object
, loc
, to
, 1);
745 /* Call ourself recursively to perform the replacements.
746 We must not replace inside already replaced expression, otherwise we
747 get infinite recursion for replacements like (reg X)->(subreg (reg X))
748 so we must special case shared ASM_OPERANDS. */
750 if (GET_CODE (x
) == PARALLEL
)
752 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
754 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
755 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
757 /* Verify that operands are really shared. */
758 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
759 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
761 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
762 from
, to
, object
, simplify
);
765 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
770 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
773 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
774 else if (fmt
[i
] == 'E')
775 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
776 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
780 /* If we didn't substitute, there is nothing more to do. */
781 if (num_changes
== prev_changes
)
784 /* ??? The regmove is no more, so is this aberration still necessary? */
785 /* Allow substituted expression to have different mode. This is used by
786 regmove to change mode of pseudo register. */
787 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
788 op0_mode
= GET_MODE (XEXP (x
, 0));
790 /* Do changes needed to keep rtx consistent. Don't do any other
791 simplifications, as it is not our job. */
793 simplify_while_replacing (loc
, to
, object
, op0_mode
);
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797 with TO. After all changes have been made, validate by seeing
798 if INSN is still valid. */
801 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx_insn
*insn
, rtx
*loc
)
803 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
804 return apply_change_group ();
807 /* Try replacing every occurrence of FROM in INSN with TO. After all
808 changes have been made, validate by seeing if INSN is still valid. */
811 validate_replace_rtx (rtx from
, rtx to
, rtx_insn
*insn
)
813 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
814 return apply_change_group ();
817 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
818 is a part of INSN. After all changes have been made, validate by seeing if
820 validate_replace_rtx (from, to, insn) is equivalent to
821 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
824 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx_insn
*insn
)
826 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
827 return apply_change_group ();
830 /* Same as above, but do not simplify rtx afterwards. */
832 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
835 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
836 return apply_change_group ();
840 /* Try replacing every occurrence of FROM in INSN with TO. This also
841 will replace in REG_EQUAL and REG_EQUIV notes. */
844 validate_replace_rtx_group (rtx from
, rtx to
, rtx_insn
*insn
)
847 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
848 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
849 if (REG_NOTE_KIND (note
) == REG_EQUAL
850 || REG_NOTE_KIND (note
) == REG_EQUIV
)
851 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
854 /* Function called by note_uses to replace used subexpressions. */
855 struct validate_replace_src_data
857 rtx from
; /* Old RTX */
858 rtx to
; /* New RTX */
859 rtx_insn
*insn
; /* Insn in which substitution is occurring. */
863 validate_replace_src_1 (rtx
*x
, void *data
)
865 struct validate_replace_src_data
*d
866 = (struct validate_replace_src_data
*) data
;
868 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
875 validate_replace_src_group (rtx from
, rtx to
, rtx_insn
*insn
)
877 struct validate_replace_src_data d
;
882 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
885 /* Try simplify INSN.
886 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887 pattern and return true if something was simplified. */
890 validate_simplify_insn (rtx_insn
*insn
)
896 pat
= PATTERN (insn
);
898 if (GET_CODE (pat
) == SET
)
900 newpat
= simplify_rtx (SET_SRC (pat
));
901 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
902 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
903 newpat
= simplify_rtx (SET_DEST (pat
));
904 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
905 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
907 else if (GET_CODE (pat
) == PARALLEL
)
908 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
910 rtx s
= XVECEXP (pat
, 0, i
);
912 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
914 newpat
= simplify_rtx (SET_SRC (s
));
915 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
916 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
917 newpat
= simplify_rtx (SET_DEST (s
));
918 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
919 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
922 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926 any ordered tests applied to the condition codes.
927 EQ and NE tests do not count. */
930 next_insn_tests_no_inequality (rtx_insn
*insn
)
932 rtx_insn
*next
= next_cc0_user (insn
);
934 /* If there is no next insn, we have to take the conservative choice. */
938 return (INSN_P (next
)
939 && ! inequality_comparisons_p (PATTERN (next
)));
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943 This is either a register reference, a memory reference,
944 or a constant. In the case of a memory reference, the address
945 is checked for general validity for the target machine.
947 Register and memory references must have mode MODE in order to be valid,
948 but some constants have no machine mode and are valid for any mode.
950 If MODE is VOIDmode, OP is checked for validity for whatever mode
953 The main use of this function is as a predicate in match_operand
954 expressions in the machine description. */
957 general_operand (rtx op
, machine_mode mode
)
959 enum rtx_code code
= GET_CODE (op
);
961 if (mode
== VOIDmode
)
962 mode
= GET_MODE (op
);
964 /* Don't accept CONST_INT or anything similar
965 if the caller wants something floating. */
966 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
967 && GET_MODE_CLASS (mode
) != MODE_INT
968 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
973 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
977 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
979 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
980 && targetm
.legitimate_constant_p (mode
== VOIDmode
984 /* Except for certain constants with VOIDmode, already checked for,
985 OP's mode must match MODE if MODE specifies a mode. */
987 if (GET_MODE (op
) != mode
)
992 rtx sub
= SUBREG_REG (op
);
994 #ifdef INSN_SCHEDULING
995 /* On machines that have insn scheduling, we want all memory
996 reference to be explicit, so outlaw paradoxical SUBREGs.
997 However, we must allow them after reload so that they can
998 get cleaned up by cleanup_subreg_operands. */
999 if (!reload_completed
&& MEM_P (sub
)
1000 && paradoxical_subreg_p (op
))
1003 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004 may result in incorrect reference. We should simplify all valid
1005 subregs of MEM anyway. But allow this after reload because we
1006 might be called from cleanup_subreg_operands.
1008 ??? This is a kludge. */
1009 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
1014 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1015 && !REG_CAN_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1016 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1017 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
1018 /* LRA can generate some invalid SUBREGS just for matched
1019 operand reload presentation. LRA needs to treat them as
1021 && ! LRA_SUBREG_P (op
))
1024 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1025 create such rtl, and we must reject it. */
1026 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1027 /* LRA can use subreg to store a floating point value in an
1028 integer mode. Although the floating point and the
1029 integer modes need the same number of hard registers, the
1030 size of floating point mode can be less than the integer
1032 && ! lra_in_progress
1033 && paradoxical_subreg_p (op
))
1037 code
= GET_CODE (op
);
1041 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1042 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1046 rtx y
= XEXP (op
, 0);
1048 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1051 /* Use the mem's mode, since it will be reloaded thus. LRA can
1052 generate move insn with invalid addresses which is made valid
1053 and efficiently calculated by LRA through further numerous
1056 || memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1063 /* Return 1 if OP is a valid memory address for a memory reference
1066 The main use of this function is as a predicate in match_operand
1067 expressions in the machine description. */
1070 address_operand (rtx op
, machine_mode mode
)
1072 return memory_address_p (mode
, op
);
1075 /* Return 1 if OP is a register reference of mode MODE.
1076 If MODE is VOIDmode, accept a register in any mode.
1078 The main use of this function is as a predicate in match_operand
1079 expressions in the machine description. */
1082 register_operand (rtx op
, machine_mode mode
)
1084 if (GET_CODE (op
) == SUBREG
)
1086 rtx sub
= SUBREG_REG (op
);
1088 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1089 because it is guaranteed to be reloaded into one.
1090 Just make sure the MEM is valid in itself.
1091 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1092 but currently it does result from (SUBREG (REG)...) where the
1093 reg went on the stack.) */
1094 if (!REG_P (sub
) && (reload_completed
|| !MEM_P (sub
)))
1097 else if (!REG_P (op
))
1099 return general_operand (op
, mode
);
1102 /* Return 1 for a register in Pmode; ignore the tested mode. */
1105 pmode_register_operand (rtx op
, machine_mode mode ATTRIBUTE_UNUSED
)
1107 return register_operand (op
, Pmode
);
1110 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1111 or a hard register. */
1114 scratch_operand (rtx op
, machine_mode mode
)
1116 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1119 return (GET_CODE (op
) == SCRATCH
1122 || (REGNO (op
) < FIRST_PSEUDO_REGISTER
1123 && REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
))));
1126 /* Return 1 if OP is a valid immediate operand for mode MODE.
1128 The main use of this function is as a predicate in match_operand
1129 expressions in the machine description. */
1132 immediate_operand (rtx op
, machine_mode mode
)
1134 /* Don't accept CONST_INT or anything similar
1135 if the caller wants something floating. */
1136 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1137 && GET_MODE_CLASS (mode
) != MODE_INT
1138 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1141 if (CONST_INT_P (op
)
1143 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1146 return (CONSTANT_P (op
)
1147 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1148 || GET_MODE (op
) == VOIDmode
)
1149 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1150 && targetm
.legitimate_constant_p (mode
== VOIDmode
1155 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1158 const_int_operand (rtx op
, machine_mode mode
)
1160 if (!CONST_INT_P (op
))
1163 if (mode
!= VOIDmode
1164 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1170 #if TARGET_SUPPORTS_WIDE_INT
1171 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1174 const_scalar_int_operand (rtx op
, machine_mode mode
)
1176 if (!CONST_SCALAR_INT_P (op
))
1179 if (CONST_INT_P (op
))
1180 return const_int_operand (op
, mode
);
1182 if (mode
!= VOIDmode
)
1184 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (mode
);
1185 int prec
= GET_MODE_PRECISION (int_mode
);
1186 int bitsize
= GET_MODE_BITSIZE (int_mode
);
1188 if (CONST_WIDE_INT_NUNITS (op
) * HOST_BITS_PER_WIDE_INT
> bitsize
)
1191 if (prec
== bitsize
)
1195 /* Multiword partial int. */
1197 = CONST_WIDE_INT_ELT (op
, CONST_WIDE_INT_NUNITS (op
) - 1);
1198 return (sext_hwi (x
, prec
& (HOST_BITS_PER_WIDE_INT
- 1)) == x
);
1204 /* Returns 1 if OP is an operand that is a constant integer or constant
1205 floating-point number of MODE. */
1208 const_double_operand (rtx op
, machine_mode mode
)
1210 return (GET_CODE (op
) == CONST_DOUBLE
)
1211 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
);
1214 /* Returns 1 if OP is an operand that is a constant integer or constant
1215 floating-point number of MODE. */
1218 const_double_operand (rtx op
, machine_mode mode
)
1220 /* Don't accept CONST_INT or anything similar
1221 if the caller wants something floating. */
1222 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1223 && GET_MODE_CLASS (mode
) != MODE_INT
1224 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1227 return ((CONST_DOUBLE_P (op
) || CONST_INT_P (op
))
1228 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1229 || GET_MODE (op
) == VOIDmode
));
1232 /* Return 1 if OP is a general operand that is not an immediate
1233 operand of mode MODE. */
1236 nonimmediate_operand (rtx op
, machine_mode mode
)
1238 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1241 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1244 nonmemory_operand (rtx op
, machine_mode mode
)
1246 if (CONSTANT_P (op
))
1247 return immediate_operand (op
, mode
);
1248 return register_operand (op
, mode
);
1251 /* Return 1 if OP is a valid operand that stands for pushing a
1252 value of mode MODE onto the stack.
1254 The main use of this function is as a predicate in match_operand
1255 expressions in the machine description. */
1258 push_operand (rtx op
, machine_mode mode
)
1260 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1262 #ifdef PUSH_ROUNDING
1263 rounded_size
= PUSH_ROUNDING (rounded_size
);
1269 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1274 if (rounded_size
== GET_MODE_SIZE (mode
))
1276 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1281 if (GET_CODE (op
) != PRE_MODIFY
1282 || GET_CODE (XEXP (op
, 1)) != PLUS
1283 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1284 || !CONST_INT_P (XEXP (XEXP (op
, 1), 1))
1285 || INTVAL (XEXP (XEXP (op
, 1), 1))
1286 != ((STACK_GROWS_DOWNWARD
? -1 : 1) * (int) rounded_size
))
1290 return XEXP (op
, 0) == stack_pointer_rtx
;
1293 /* Return 1 if OP is a valid operand that stands for popping a
1294 value of mode MODE off the stack.
1296 The main use of this function is as a predicate in match_operand
1297 expressions in the machine description. */
1300 pop_operand (rtx op
, machine_mode mode
)
1305 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1310 if (GET_CODE (op
) != STACK_POP_CODE
)
1313 return XEXP (op
, 0) == stack_pointer_rtx
;
1316 /* Return 1 if ADDR is a valid memory address
1317 for mode MODE in address space AS. */
1320 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED
,
1321 rtx addr
, addr_space_t as
)
1323 #ifdef GO_IF_LEGITIMATE_ADDRESS
1324 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1325 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1331 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1335 /* Return 1 if OP is a valid memory reference with mode MODE,
1336 including a valid address.
1338 The main use of this function is as a predicate in match_operand
1339 expressions in the machine description. */
1342 memory_operand (rtx op
, machine_mode mode
)
1346 if (! reload_completed
)
1347 /* Note that no SUBREG is a memory operand before end of reload pass,
1348 because (SUBREG (MEM...)) forces reloading into a register. */
1349 return MEM_P (op
) && general_operand (op
, mode
);
1351 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1355 if (GET_CODE (inner
) == SUBREG
)
1356 inner
= SUBREG_REG (inner
);
1358 return (MEM_P (inner
) && general_operand (op
, mode
));
1361 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1362 that is, a memory reference whose address is a general_operand. */
1365 indirect_operand (rtx op
, machine_mode mode
)
1367 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1368 if (! reload_completed
1369 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1371 int offset
= SUBREG_BYTE (op
);
1372 rtx inner
= SUBREG_REG (op
);
1374 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1377 /* The only way that we can have a general_operand as the resulting
1378 address is if OFFSET is zero and the address already is an operand
1379 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1382 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1383 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1384 && CONST_INT_P (XEXP (XEXP (inner
, 0), 1))
1385 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1386 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1390 && memory_operand (op
, mode
)
1391 && general_operand (XEXP (op
, 0), Pmode
));
1394 /* Return 1 if this is an ordered comparison operator (not including
1395 ORDERED and UNORDERED). */
1398 ordered_comparison_operator (rtx op
, machine_mode mode
)
1400 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1402 switch (GET_CODE (op
))
1420 /* Return 1 if this is a comparison operator. This allows the use of
1421 MATCH_OPERATOR to recognize all the branch insns. */
1424 comparison_operator (rtx op
, machine_mode mode
)
1426 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1427 && COMPARISON_P (op
));
1430 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1433 extract_asm_operands (rtx body
)
1436 switch (GET_CODE (body
))
1442 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1443 tmp
= SET_SRC (body
);
1444 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1449 tmp
= XVECEXP (body
, 0, 0);
1450 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1452 if (GET_CODE (tmp
) == SET
)
1454 tmp
= SET_SRC (tmp
);
1455 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1466 /* If BODY is an insn body that uses ASM_OPERANDS,
1467 return the number of operands (both input and output) in the insn.
1468 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1470 Otherwise return -1. */
1473 asm_noperands (const_rtx body
)
1475 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1480 if (GET_CODE (body
) == PARALLEL
&& XVECLEN (body
, 0) >= 2
1481 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
1483 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1484 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1485 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1492 if (GET_CODE (body
) == SET
)
1494 else if (GET_CODE (body
) == PARALLEL
)
1496 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1498 /* Multiple output operands, or 1 output plus some clobbers:
1500 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1501 /* Count backwards through CLOBBERs to determine number of SETs. */
1502 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1504 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1506 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1510 /* N_SETS is now number of output operands. */
1513 /* Verify that all the SETs we have
1514 came from a single original asm_operands insn
1515 (so that invalid combinations are blocked). */
1516 for (i
= 0; i
< n_sets
; i
++)
1518 rtx elt
= XVECEXP (body
, 0, i
);
1519 if (GET_CODE (elt
) != SET
)
1521 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1523 /* If these ASM_OPERANDS rtx's came from different original insns
1524 then they aren't allowed together. */
1525 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1526 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1532 /* 0 outputs, but some clobbers:
1533 body is [(asm_operands ...) (clobber (reg ...))...]. */
1534 /* Make sure all the other parallel things really are clobbers. */
1535 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1536 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1541 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1542 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1545 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1546 copy its operands (both input and output) into the vector OPERANDS,
1547 the locations of the operands within the insn into the vector OPERAND_LOCS,
1548 and the constraints for the operands into CONSTRAINTS.
1549 Write the modes of the operands into MODES.
1550 Write the location info into LOC.
1551 Return the assembler-template.
1552 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1553 return the basic assembly string.
1555 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1556 we don't store that info. */
1559 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1560 const char **constraints
, machine_mode
*modes
,
1563 int nbase
= 0, n
, i
;
1566 switch (GET_CODE (body
))
1569 /* Zero output asm: BODY is (asm_operands ...). */
1574 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1575 asmop
= SET_SRC (body
);
1577 /* The output is in the SET.
1578 Its constraint is in the ASM_OPERANDS itself. */
1580 operands
[0] = SET_DEST (body
);
1582 operand_locs
[0] = &SET_DEST (body
);
1584 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1586 modes
[0] = GET_MODE (SET_DEST (body
));
1592 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1594 asmop
= XVECEXP (body
, 0, 0);
1595 if (GET_CODE (asmop
) == SET
)
1597 asmop
= SET_SRC (asmop
);
1599 /* At least one output, plus some CLOBBERs. The outputs are in
1600 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1601 for (i
= 0; i
< nparallel
; i
++)
1603 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1604 break; /* Past last SET */
1606 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1608 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1610 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1612 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1616 else if (GET_CODE (asmop
) == ASM_INPUT
)
1619 *loc
= ASM_INPUT_SOURCE_LOCATION (asmop
);
1620 return XSTR (asmop
, 0);
1629 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1630 for (i
= 0; i
< n
; i
++)
1633 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1635 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1637 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1639 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1643 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1644 for (i
= 0; i
< n
; i
++)
1647 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1649 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1651 constraints
[nbase
+ i
] = "";
1653 modes
[nbase
+ i
] = Pmode
;
1657 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1659 return ASM_OPERANDS_TEMPLATE (asmop
);
1662 /* Parse inline assembly string STRING and determine which operands are
1663 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1664 to true if operand I is referenced.
1666 This is intended to distinguish barrier-like asms such as:
1668 asm ("" : "=m" (...));
1670 from real references such as:
1672 asm ("sw\t$0, %0" : "=m" (...)); */
1675 get_referenced_operands (const char *string
, bool *used
,
1676 unsigned int noperands
)
1678 memset (used
, 0, sizeof (bool) * noperands
);
1679 const char *p
= string
;
1685 /* A letter followed by a digit indicates an operand number. */
1686 if (ISALPHA (p
[0]) && ISDIGIT (p
[1]))
1691 unsigned long opnum
= strtoul (p
, &endptr
, 10);
1692 if (endptr
!= p
&& opnum
< noperands
)
1706 /* Check if an asm_operand matches its constraints.
1707 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1710 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1713 bool incdec_ok
= false;
1715 /* Use constrain_operands after reload. */
1716 gcc_assert (!reload_completed
);
1718 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1719 many alternatives as required to match the other operands. */
1720 if (*constraint
== '\0')
1725 enum constraint_num cn
;
1726 char c
= *constraint
;
1734 case '0': case '1': case '2': case '3': case '4':
1735 case '5': case '6': case '7': case '8': case '9':
1736 /* If caller provided constraints pointer, look up
1737 the matching constraint. Otherwise, our caller should have
1738 given us the proper matching constraint, but we can't
1739 actually fail the check if they didn't. Indicate that
1740 results are inconclusive. */
1744 unsigned long match
;
1746 match
= strtoul (constraint
, &end
, 10);
1748 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1749 constraint
= (const char *) end
;
1755 while (ISDIGIT (*constraint
));
1761 /* The rest of the compiler assumes that reloading the address
1762 of a MEM into a register will make it fit an 'o' constraint.
1763 That is, if it sees a MEM operand for an 'o' constraint,
1764 it assumes that (mem (base-reg)) will fit.
1766 That assumption fails on targets that don't have offsettable
1767 addresses at all. We therefore need to treat 'o' asm
1768 constraints as a special case and only accept operands that
1769 are already offsettable, thus proving that at least one
1770 offsettable address exists. */
1771 case 'o': /* offsettable */
1772 if (offsettable_nonstrict_memref_p (op
))
1777 if (general_operand (op
, VOIDmode
))
1783 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1784 to exist, excepting those that expand_call created. Further,
1785 on some machines which do not have generalized auto inc/dec,
1786 an inc/dec is not a memory_operand.
1788 Match any memory and hope things are resolved after reload. */
1792 cn
= lookup_constraint (constraint
);
1793 switch (get_constraint_type (cn
))
1797 && reg_class_for_constraint (cn
) != NO_REGS
1798 && GET_MODE (op
) != BLKmode
1799 && register_operand (op
, VOIDmode
))
1806 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
1811 case CT_SPECIAL_MEMORY
:
1812 /* Every memory operand can be reloaded to fit. */
1813 result
= result
|| memory_operand (op
, VOIDmode
);
1817 /* Every address operand can be reloaded to fit. */
1818 result
= result
|| address_operand (op
, VOIDmode
);
1822 result
= result
|| constraint_satisfied_p (op
, cn
);
1827 len
= CONSTRAINT_LEN (c
, constraint
);
1830 while (--len
&& *constraint
);
1835 /* For operands without < or > constraints reject side-effects. */
1836 if (AUTO_INC_DEC
&& !incdec_ok
&& result
&& MEM_P (op
))
1837 switch (GET_CODE (XEXP (op
, 0)))
1853 /* Given an rtx *P, if it is a sum containing an integer constant term,
1854 return the location (type rtx *) of the pointer to that constant term.
1855 Otherwise, return a null pointer. */
1858 find_constant_term_loc (rtx
*p
)
1861 enum rtx_code code
= GET_CODE (*p
);
1863 /* If *P IS such a constant term, P is its location. */
1865 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1869 /* Otherwise, if not a sum, it has no constant term. */
1871 if (GET_CODE (*p
) != PLUS
)
1874 /* If one of the summands is constant, return its location. */
1876 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1877 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1880 /* Otherwise, check each summand for containing a constant term. */
1882 if (XEXP (*p
, 0) != 0)
1884 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1889 if (XEXP (*p
, 1) != 0)
1891 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1899 /* Return 1 if OP is a memory reference
1900 whose address contains no side effects
1901 and remains valid after the addition
1902 of a positive integer less than the
1903 size of the object being referenced.
1905 We assume that the original address is valid and do not check it.
1907 This uses strict_memory_address_p as a subroutine, so
1908 don't use it before reload. */
1911 offsettable_memref_p (rtx op
)
1913 return ((MEM_P (op
))
1914 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1915 MEM_ADDR_SPACE (op
)));
1918 /* Similar, but don't require a strictly valid mem ref:
1919 consider pseudo-regs valid as index or base regs. */
1922 offsettable_nonstrict_memref_p (rtx op
)
1924 return ((MEM_P (op
))
1925 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1926 MEM_ADDR_SPACE (op
)));
1929 /* Return 1 if Y is a memory address which contains no side effects
1930 and would remain valid for address space AS after the addition of
1931 a positive integer less than the size of that mode.
1933 We assume that the original address is valid and do not check it.
1934 We do check that it is valid for narrower modes.
1936 If STRICTP is nonzero, we require a strictly valid address,
1937 for the sake of use in reload.c. */
1940 offsettable_address_addr_space_p (int strictp
, machine_mode mode
, rtx y
,
1943 enum rtx_code ycode
= GET_CODE (y
);
1947 int (*addressp
) (machine_mode
, rtx
, addr_space_t
) =
1948 (strictp
? strict_memory_address_addr_space_p
1949 : memory_address_addr_space_p
);
1950 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1952 if (CONSTANT_ADDRESS_P (y
))
1955 /* Adjusting an offsettable address involves changing to a narrower mode.
1956 Make sure that's OK. */
1958 if (mode_dependent_address_p (y
, as
))
1961 machine_mode address_mode
= GET_MODE (y
);
1962 if (address_mode
== VOIDmode
)
1963 address_mode
= targetm
.addr_space
.address_mode (as
);
1964 #ifdef POINTERS_EXTEND_UNSIGNED
1965 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
1968 /* ??? How much offset does an offsettable BLKmode reference need?
1969 Clearly that depends on the situation in which it's being used.
1970 However, the current situation in which we test 0xffffffff is
1971 less than ideal. Caveat user. */
1973 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1975 /* If the expression contains a constant term,
1976 see if it remains valid when max possible offset is added. */
1978 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1983 *y2
= plus_constant (address_mode
, *y2
, mode_sz
- 1);
1984 /* Use QImode because an odd displacement may be automatically invalid
1985 for any wider mode. But it should be valid for a single byte. */
1986 good
= (*addressp
) (QImode
, y
, as
);
1988 /* In any case, restore old contents of memory. */
1993 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1996 /* The offset added here is chosen as the maximum offset that
1997 any instruction could need to add when operating on something
1998 of the specified mode. We assume that if Y and Y+c are
1999 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2000 go inside a LO_SUM here, so we do so as well. */
2001 if (GET_CODE (y
) == LO_SUM
2003 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
2004 z
= gen_rtx_LO_SUM (address_mode
, XEXP (y
, 0),
2005 plus_constant (address_mode
, XEXP (y
, 1),
2007 #ifdef POINTERS_EXTEND_UNSIGNED
2008 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2009 else if (POINTERS_EXTEND_UNSIGNED
> 0
2010 && GET_CODE (y
) == ZERO_EXTEND
2011 && GET_MODE (XEXP (y
, 0)) == pointer_mode
)
2012 z
= gen_rtx_ZERO_EXTEND (address_mode
,
2013 plus_constant (pointer_mode
, XEXP (y
, 0),
2017 z
= plus_constant (address_mode
, y
, mode_sz
- 1);
2019 /* Use QImode because an odd displacement may be automatically invalid
2020 for any wider mode. But it should be valid for a single byte. */
2021 return (*addressp
) (QImode
, z
, as
);
2024 /* Return 1 if ADDR is an address-expression whose effect depends
2025 on the mode of the memory reference it is used in.
2027 ADDRSPACE is the address space associated with the address.
2029 Autoincrement addressing is a typical example of mode-dependence
2030 because the amount of the increment depends on the mode. */
2033 mode_dependent_address_p (rtx addr
, addr_space_t addrspace
)
2035 /* Auto-increment addressing with anything other than post_modify
2036 or pre_modify always introduces a mode dependency. Catch such
2037 cases now instead of deferring to the target. */
2038 if (GET_CODE (addr
) == PRE_INC
2039 || GET_CODE (addr
) == POST_INC
2040 || GET_CODE (addr
) == PRE_DEC
2041 || GET_CODE (addr
) == POST_DEC
)
2044 return targetm
.mode_dependent_address_p (addr
, addrspace
);
2047 /* Return true if boolean attribute ATTR is supported. */
2050 have_bool_attr (bool_attr attr
)
2055 return HAVE_ATTR_enabled
;
2056 case BA_PREFERRED_FOR_SIZE
:
2057 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_size
;
2058 case BA_PREFERRED_FOR_SPEED
:
2059 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_speed
;
2064 /* Return the value of ATTR for instruction INSN. */
2067 get_bool_attr (rtx_insn
*insn
, bool_attr attr
)
2072 return get_attr_enabled (insn
);
2073 case BA_PREFERRED_FOR_SIZE
:
2074 return get_attr_enabled (insn
) && get_attr_preferred_for_size (insn
);
2075 case BA_PREFERRED_FOR_SPEED
:
2076 return get_attr_enabled (insn
) && get_attr_preferred_for_speed (insn
);
2081 /* Like get_bool_attr_mask, but don't use the cache. */
2083 static alternative_mask
2084 get_bool_attr_mask_uncached (rtx_insn
*insn
, bool_attr attr
)
2086 /* Temporarily install enough information for get_attr_<foo> to assume
2087 that the insn operands are already cached. As above, the attribute
2088 mustn't depend on the values of operands, so we don't provide their
2089 real values here. */
2090 rtx_insn
*old_insn
= recog_data
.insn
;
2091 int old_alternative
= which_alternative
;
2093 recog_data
.insn
= insn
;
2094 alternative_mask mask
= ALL_ALTERNATIVES
;
2095 int n_alternatives
= insn_data
[INSN_CODE (insn
)].n_alternatives
;
2096 for (int i
= 0; i
< n_alternatives
; i
++)
2098 which_alternative
= i
;
2099 if (!get_bool_attr (insn
, attr
))
2100 mask
&= ~ALTERNATIVE_BIT (i
);
2103 recog_data
.insn
= old_insn
;
2104 which_alternative
= old_alternative
;
2108 /* Return the mask of operand alternatives that are allowed for INSN
2109 by boolean attribute ATTR. This mask depends only on INSN and on
2110 the current target; it does not depend on things like the values of
2113 static alternative_mask
2114 get_bool_attr_mask (rtx_insn
*insn
, bool_attr attr
)
2116 /* Quick exit for asms and for targets that don't use these attributes. */
2117 int code
= INSN_CODE (insn
);
2118 if (code
< 0 || !have_bool_attr (attr
))
2119 return ALL_ALTERNATIVES
;
2121 /* Calling get_attr_<foo> can be expensive, so cache the mask
2123 if (!this_target_recog
->x_bool_attr_masks
[code
][attr
])
2124 this_target_recog
->x_bool_attr_masks
[code
][attr
]
2125 = get_bool_attr_mask_uncached (insn
, attr
);
2126 return this_target_recog
->x_bool_attr_masks
[code
][attr
];
2129 /* Return the set of alternatives of INSN that are allowed by the current
2133 get_enabled_alternatives (rtx_insn
*insn
)
2135 return get_bool_attr_mask (insn
, BA_ENABLED
);
2138 /* Return the set of alternatives of INSN that are allowed by the current
2139 target and are preferred for the current size/speed optimization
2143 get_preferred_alternatives (rtx_insn
*insn
)
2145 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
)))
2146 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2148 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2151 /* Return the set of alternatives of INSN that are allowed by the current
2152 target and are preferred for the size/speed optimization choice
2153 associated with BB. Passing a separate BB is useful if INSN has not
2154 been emitted yet or if we are considering moving it to a different
2158 get_preferred_alternatives (rtx_insn
*insn
, basic_block bb
)
2160 if (optimize_bb_for_speed_p (bb
))
2161 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2163 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2166 /* Assert that the cached boolean attributes for INSN are still accurate.
2167 The backend is required to define these attributes in a way that only
2168 depends on the current target (rather than operands, compiler phase,
2172 check_bool_attrs (rtx_insn
*insn
)
2174 int code
= INSN_CODE (insn
);
2176 for (int i
= 0; i
<= BA_LAST
; ++i
)
2178 enum bool_attr attr
= (enum bool_attr
) i
;
2179 if (this_target_recog
->x_bool_attr_masks
[code
][attr
])
2180 gcc_assert (this_target_recog
->x_bool_attr_masks
[code
][attr
]
2181 == get_bool_attr_mask_uncached (insn
, attr
));
2186 /* Like extract_insn, but save insn extracted and don't extract again, when
2187 called again for the same insn expecting that recog_data still contain the
2188 valid information. This is used primary by gen_attr infrastructure that
2189 often does extract insn again and again. */
2191 extract_insn_cached (rtx_insn
*insn
)
2193 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2195 extract_insn (insn
);
2196 recog_data
.insn
= insn
;
2199 /* Do uncached extract_insn, constrain_operands and complain about failures.
2200 This should be used when extracting a pre-existing constrained instruction
2201 if the caller wants to know which alternative was chosen. */
2203 extract_constrain_insn (rtx_insn
*insn
)
2205 extract_insn (insn
);
2206 if (!constrain_operands (reload_completed
, get_enabled_alternatives (insn
)))
2207 fatal_insn_not_found (insn
);
2210 /* Do cached extract_insn, constrain_operands and complain about failures.
2211 Used by insn_attrtab. */
2213 extract_constrain_insn_cached (rtx_insn
*insn
)
2215 extract_insn_cached (insn
);
2216 if (which_alternative
== -1
2217 && !constrain_operands (reload_completed
,
2218 get_enabled_alternatives (insn
)))
2219 fatal_insn_not_found (insn
);
2222 /* Do cached constrain_operands on INSN and complain about failures. */
2224 constrain_operands_cached (rtx_insn
*insn
, int strict
)
2226 if (which_alternative
== -1)
2227 return constrain_operands (strict
, get_enabled_alternatives (insn
));
2232 /* Analyze INSN and fill in recog_data. */
2235 extract_insn (rtx_insn
*insn
)
2240 rtx body
= PATTERN (insn
);
2242 recog_data
.n_operands
= 0;
2243 recog_data
.n_alternatives
= 0;
2244 recog_data
.n_dups
= 0;
2245 recog_data
.is_asm
= false;
2247 switch (GET_CODE (body
))
2259 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2264 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2265 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2266 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
2267 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
2273 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2276 /* This insn is an `asm' with operands. */
2278 /* expand_asm_operands makes sure there aren't too many operands. */
2279 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2281 /* Now get the operand values and constraints out of the insn. */
2282 decode_asm_operands (body
, recog_data
.operand
,
2283 recog_data
.operand_loc
,
2284 recog_data
.constraints
,
2285 recog_data
.operand_mode
, NULL
);
2286 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2289 const char *p
= recog_data
.constraints
[0];
2290 recog_data
.n_alternatives
= 1;
2292 recog_data
.n_alternatives
+= (*p
++ == ',');
2294 recog_data
.is_asm
= true;
2297 fatal_insn_not_found (insn
);
2301 /* Ordinary insn: recognize it, get the operands via insn_extract
2302 and get the constraints. */
2304 icode
= recog_memoized (insn
);
2306 fatal_insn_not_found (insn
);
2308 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2309 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2310 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2312 insn_extract (insn
);
2314 for (i
= 0; i
< noperands
; i
++)
2316 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2317 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2318 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2319 /* VOIDmode match_operands gets mode from their real operand. */
2320 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2321 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2324 for (i
= 0; i
< noperands
; i
++)
2325 recog_data
.operand_type
[i
]
2326 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2327 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2330 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2332 recog_data
.insn
= NULL
;
2333 which_alternative
= -1;
2336 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2337 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2338 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2339 has N_OPERANDS entries. */
2342 preprocess_constraints (int n_operands
, int n_alternatives
,
2343 const char **constraints
,
2344 operand_alternative
*op_alt_base
)
2346 for (int i
= 0; i
< n_operands
; i
++)
2349 struct operand_alternative
*op_alt
;
2350 const char *p
= constraints
[i
];
2352 op_alt
= op_alt_base
;
2354 for (j
= 0; j
< n_alternatives
; j
++, op_alt
+= n_operands
)
2356 op_alt
[i
].cl
= NO_REGS
;
2357 op_alt
[i
].constraint
= p
;
2358 op_alt
[i
].matches
= -1;
2359 op_alt
[i
].matched
= -1;
2361 if (*p
== '\0' || *p
== ',')
2363 op_alt
[i
].anything_ok
= 1;
2373 while (c
!= ',' && c
!= '\0');
2374 if (c
== ',' || c
== '\0')
2383 op_alt
[i
].reject
+= 6;
2386 op_alt
[i
].reject
+= 600;
2389 op_alt
[i
].earlyclobber
= 1;
2392 case '0': case '1': case '2': case '3': case '4':
2393 case '5': case '6': case '7': case '8': case '9':
2396 op_alt
[i
].matches
= strtoul (p
, &end
, 10);
2397 op_alt
[op_alt
[i
].matches
].matched
= i
;
2403 op_alt
[i
].anything_ok
= 1;
2408 reg_class_subunion
[(int) op_alt
[i
].cl
][(int) GENERAL_REGS
];
2412 enum constraint_num cn
= lookup_constraint (p
);
2414 switch (get_constraint_type (cn
))
2417 cl
= reg_class_for_constraint (cn
);
2419 op_alt
[i
].cl
= reg_class_subunion
[op_alt
[i
].cl
][cl
];
2426 case CT_SPECIAL_MEMORY
:
2427 op_alt
[i
].memory_ok
= 1;
2431 op_alt
[i
].is_address
= 1;
2433 = (reg_class_subunion
2434 [(int) op_alt
[i
].cl
]
2435 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2436 ADDRESS
, SCRATCH
)]);
2444 p
+= CONSTRAINT_LEN (c
, p
);
2450 /* Return an array of operand_alternative instructions for
2451 instruction ICODE. */
2453 const operand_alternative
*
2454 preprocess_insn_constraints (unsigned int icode
)
2456 gcc_checking_assert (IN_RANGE (icode
, 0, NUM_INSN_CODES
- 1));
2457 if (this_target_recog
->x_op_alt
[icode
])
2458 return this_target_recog
->x_op_alt
[icode
];
2460 int n_operands
= insn_data
[icode
].n_operands
;
2461 if (n_operands
== 0)
2463 /* Always provide at least one alternative so that which_op_alt ()
2464 works correctly. If the instruction has 0 alternatives (i.e. all
2465 constraint strings are empty) then each operand in this alternative
2466 will have anything_ok set. */
2467 int n_alternatives
= MAX (insn_data
[icode
].n_alternatives
, 1);
2468 int n_entries
= n_operands
* n_alternatives
;
2470 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
, n_entries
);
2471 const char **constraints
= XALLOCAVEC (const char *, n_operands
);
2473 for (int i
= 0; i
< n_operands
; ++i
)
2474 constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2475 preprocess_constraints (n_operands
, n_alternatives
, constraints
, op_alt
);
2477 this_target_recog
->x_op_alt
[icode
] = op_alt
;
2481 /* After calling extract_insn, you can use this function to extract some
2482 information from the constraint strings into a more usable form.
2483 The collected data is stored in recog_op_alt. */
2486 preprocess_constraints (rtx_insn
*insn
)
2488 int icode
= INSN_CODE (insn
);
2490 recog_op_alt
= preprocess_insn_constraints (icode
);
2493 int n_operands
= recog_data
.n_operands
;
2494 int n_alternatives
= recog_data
.n_alternatives
;
2495 int n_entries
= n_operands
* n_alternatives
;
2496 memset (asm_op_alt
, 0, n_entries
* sizeof (operand_alternative
));
2497 preprocess_constraints (n_operands
, n_alternatives
,
2498 recog_data
.constraints
, asm_op_alt
);
2499 recog_op_alt
= asm_op_alt
;
2503 /* Check the operands of an insn against the insn's operand constraints
2504 and return 1 if they match any of the alternatives in ALTERNATIVES.
2506 The information about the insn's operands, constraints, operand modes
2507 etc. is obtained from the global variables set up by extract_insn.
2509 WHICH_ALTERNATIVE is set to a number which indicates which
2510 alternative of constraints was matched: 0 for the first alternative,
2511 1 for the next, etc.
2513 In addition, when two operands are required to match
2514 and it happens that the output operand is (reg) while the
2515 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2516 make the output operand look like the input.
2517 This is because the output operand is the one the template will print.
2519 This is used in final, just before printing the assembler code and by
2520 the routines that determine an insn's attribute.
2522 If STRICT is a positive nonzero value, it means that we have been
2523 called after reload has been completed. In that case, we must
2524 do all checks strictly. If it is zero, it means that we have been called
2525 before reload has completed. In that case, we first try to see if we can
2526 find an alternative that matches strictly. If not, we try again, this
2527 time assuming that reload will fix up the insn. This provides a "best
2528 guess" for the alternative and is used to compute attributes of insns prior
2529 to reload. A negative value of STRICT is used for this internal call. */
2537 constrain_operands (int strict
, alternative_mask alternatives
)
2539 const char *constraints
[MAX_RECOG_OPERANDS
];
2540 int matching_operands
[MAX_RECOG_OPERANDS
];
2541 int earlyclobber
[MAX_RECOG_OPERANDS
];
2544 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2545 int funny_match_index
;
2547 which_alternative
= 0;
2548 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2551 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2553 constraints
[c
] = recog_data
.constraints
[c
];
2554 matching_operands
[c
] = -1;
2559 int seen_earlyclobber_at
= -1;
2562 funny_match_index
= 0;
2564 if (!TEST_BIT (alternatives
, which_alternative
))
2568 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2569 constraints
[i
] = skip_alternative (constraints
[i
]);
2571 which_alternative
++;
2575 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2577 rtx op
= recog_data
.operand
[opno
];
2578 machine_mode mode
= GET_MODE (op
);
2579 const char *p
= constraints
[opno
];
2585 earlyclobber
[opno
] = 0;
2587 /* A unary operator may be accepted by the predicate, but it
2588 is irrelevant for matching constraints. */
2592 if (GET_CODE (op
) == SUBREG
)
2594 if (REG_P (SUBREG_REG (op
))
2595 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2596 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2597 GET_MODE (SUBREG_REG (op
)),
2600 op
= SUBREG_REG (op
);
2603 /* An empty constraint or empty alternative
2604 allows anything which matched the pattern. */
2605 if (*p
== 0 || *p
== ',')
2609 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2619 /* Ignore rest of this alternative as far as
2620 constraint checking is concerned. */
2623 while (*p
&& *p
!= ',');
2628 earlyclobber
[opno
] = 1;
2629 if (seen_earlyclobber_at
< 0)
2630 seen_earlyclobber_at
= opno
;
2633 case '0': case '1': case '2': case '3': case '4':
2634 case '5': case '6': case '7': case '8': case '9':
2636 /* This operand must be the same as a previous one.
2637 This kind of constraint is used for instructions such
2638 as add when they take only two operands.
2640 Note that the lower-numbered operand is passed first.
2642 If we are not testing strictly, assume that this
2643 constraint will be satisfied. */
2648 match
= strtoul (p
, &end
, 10);
2655 rtx op1
= recog_data
.operand
[match
];
2656 rtx op2
= recog_data
.operand
[opno
];
2658 /* A unary operator may be accepted by the predicate,
2659 but it is irrelevant for matching constraints. */
2661 op1
= XEXP (op1
, 0);
2663 op2
= XEXP (op2
, 0);
2665 val
= operands_match_p (op1
, op2
);
2668 matching_operands
[opno
] = match
;
2669 matching_operands
[match
] = opno
;
2674 /* If output is *x and input is *--x, arrange later
2675 to change the output to *--x as well, since the
2676 output op is the one that will be printed. */
2677 if (val
== 2 && strict
> 0)
2679 funny_match
[funny_match_index
].this_op
= opno
;
2680 funny_match
[funny_match_index
++].other
= match
;
2687 /* p is used for address_operands. When we are called by
2688 gen_reload, no one will have checked that the address is
2689 strictly valid, i.e., that all pseudos requiring hard regs
2690 have gotten them. */
2692 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2697 /* No need to check general_operand again;
2698 it was done in insn-recog.c. Well, except that reload
2699 doesn't check the validity of its replacements, but
2700 that should only matter when there's a bug. */
2702 /* Anything goes unless it is a REG and really has a hard reg
2703 but the hard reg is not in the class GENERAL_REGS. */
2707 || GENERAL_REGS
== ALL_REGS
2708 || (reload_in_progress
2709 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2710 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2713 else if (strict
< 0 || general_operand (op
, mode
))
2719 enum constraint_num cn
= lookup_constraint (p
);
2720 enum reg_class cl
= reg_class_for_constraint (cn
);
2726 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2727 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2729 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2733 else if (constraint_satisfied_p (op
, cn
))
2736 else if (insn_extra_memory_constraint (cn
)
2737 /* Every memory operand can be reloaded to fit. */
2738 && ((strict
< 0 && MEM_P (op
))
2739 /* Before reload, accept what reload can turn
2741 || (strict
< 0 && CONSTANT_P (op
))
2742 /* Before reload, accept a pseudo,
2743 since LRA can turn it into a mem. */
2744 || (strict
< 0 && targetm
.lra_p () && REG_P (op
)
2745 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2746 /* During reload, accept a pseudo */
2747 || (reload_in_progress
&& REG_P (op
)
2748 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2750 else if (insn_extra_address_constraint (cn
)
2751 /* Every address operand can be reloaded to fit. */
2754 /* Cater to architectures like IA-64 that define extra memory
2755 constraints without using define_memory_constraint. */
2756 else if (reload_in_progress
2758 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
2759 && reg_renumber
[REGNO (op
)] < 0
2760 && reg_equiv_mem (REGNO (op
)) != 0
2761 && constraint_satisfied_p
2762 (reg_equiv_mem (REGNO (op
)), cn
))
2767 while (p
+= len
, c
);
2769 constraints
[opno
] = p
;
2770 /* If this operand did not win somehow,
2771 this alternative loses. */
2775 /* This alternative won; the operands are ok.
2776 Change whichever operands this alternative says to change. */
2781 /* See if any earlyclobber operand conflicts with some other
2784 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2785 for (eopno
= seen_earlyclobber_at
;
2786 eopno
< recog_data
.n_operands
;
2788 /* Ignore earlyclobber operands now in memory,
2789 because we would often report failure when we have
2790 two memory operands, one of which was formerly a REG. */
2791 if (earlyclobber
[eopno
]
2792 && REG_P (recog_data
.operand
[eopno
]))
2793 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2794 if ((MEM_P (recog_data
.operand
[opno
])
2795 || recog_data
.operand_type
[opno
] != OP_OUT
)
2797 /* Ignore things like match_operator operands. */
2798 && *recog_data
.constraints
[opno
] != 0
2799 && ! (matching_operands
[opno
] == eopno
2800 && operands_match_p (recog_data
.operand
[opno
],
2801 recog_data
.operand
[eopno
]))
2802 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2803 recog_data
.operand
[eopno
]))
2808 while (--funny_match_index
>= 0)
2810 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2811 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2814 /* For operands without < or > constraints reject side-effects. */
2815 if (AUTO_INC_DEC
&& recog_data
.is_asm
)
2817 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2818 if (MEM_P (recog_data
.operand
[opno
]))
2819 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2827 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2828 && strchr (recog_data
.constraints
[opno
], '>')
2841 which_alternative
++;
2843 while (which_alternative
< recog_data
.n_alternatives
);
2845 which_alternative
= -1;
2846 /* If we are about to reject this, but we are not to test strictly,
2847 try a very loose test. Only return failure if it fails also. */
2849 return constrain_operands (-1, alternatives
);
2854 /* Return true iff OPERAND (assumed to be a REG rtx)
2855 is a hard reg in class CLASS when its regno is offset by OFFSET
2856 and changed to mode MODE.
2857 If REG occupies multiple hard regs, all of them must be in CLASS. */
2860 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2863 unsigned int regno
= REGNO (operand
);
2868 /* Regno must not be a pseudo register. Offset may be negative. */
2869 return (HARD_REGISTER_NUM_P (regno
)
2870 && HARD_REGISTER_NUM_P (regno
+ offset
)
2871 && in_hard_reg_set_p (reg_class_contents
[(int) cl
], mode
,
2875 /* Split single instruction. Helper function for split_all_insns and
2876 split_all_insns_noflow. Return last insn in the sequence if successful,
2877 or NULL if unsuccessful. */
2880 split_insn (rtx_insn
*insn
)
2882 /* Split insns here to get max fine-grain parallelism. */
2883 rtx_insn
*first
= PREV_INSN (insn
);
2884 rtx_insn
*last
= try_split (PATTERN (insn
), insn
, 1);
2885 rtx insn_set
, last_set
, note
;
2890 /* If the original instruction was a single set that was known to be
2891 equivalent to a constant, see if we can say the same about the last
2892 instruction in the split sequence. The two instructions must set
2893 the same destination. */
2894 insn_set
= single_set (insn
);
2897 last_set
= single_set (last
);
2898 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2900 note
= find_reg_equal_equiv_note (insn
);
2901 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2902 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2903 else if (CONSTANT_P (SET_SRC (insn_set
)))
2904 set_unique_reg_note (last
, REG_EQUAL
,
2905 copy_rtx (SET_SRC (insn_set
)));
2909 /* try_split returns the NOTE that INSN became. */
2910 SET_INSN_DELETED (insn
);
2912 /* ??? Coddle to md files that generate subregs in post-reload
2913 splitters instead of computing the proper hard register. */
2914 if (reload_completed
&& first
!= last
)
2916 first
= NEXT_INSN (first
);
2920 cleanup_subreg_operands (first
);
2923 first
= NEXT_INSN (first
);
2930 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2933 split_all_insns (void)
2938 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
2939 bitmap_clear (blocks
);
2942 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2944 rtx_insn
*insn
, *next
;
2945 bool finish
= false;
2947 rtl_profile_for_bb (bb
);
2948 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2950 /* Can't use `next_real_insn' because that might go across
2951 CODE_LABELS and short-out basic blocks. */
2952 next
= NEXT_INSN (insn
);
2953 finish
= (insn
== BB_END (bb
));
2956 rtx set
= single_set (insn
);
2958 /* Don't split no-op move insns. These should silently
2959 disappear later in final. Splitting such insns would
2960 break the code that handles LIBCALL blocks. */
2961 if (set
&& set_noop_p (set
))
2963 /* Nops get in the way while scheduling, so delete them
2964 now if register allocation has already been done. It
2965 is too risky to try to do this before register
2966 allocation, and there are unlikely to be very many
2967 nops then anyways. */
2968 if (reload_completed
)
2969 delete_insn_and_edges (insn
);
2973 if (split_insn (insn
))
2975 bitmap_set_bit (blocks
, bb
->index
);
2983 default_rtl_profile ();
2985 find_many_sub_basic_blocks (blocks
);
2987 checking_verify_flow_info ();
2990 /* Same as split_all_insns, but do not expect CFG to be available.
2991 Used by machine dependent reorg passes. */
2994 split_all_insns_noflow (void)
2996 rtx_insn
*next
, *insn
;
2998 for (insn
= get_insns (); insn
; insn
= next
)
3000 next
= NEXT_INSN (insn
);
3003 /* Don't split no-op move insns. These should silently
3004 disappear later in final. Splitting such insns would
3005 break the code that handles LIBCALL blocks. */
3006 rtx set
= single_set (insn
);
3007 if (set
&& set_noop_p (set
))
3009 /* Nops get in the way while scheduling, so delete them
3010 now if register allocation has already been done. It
3011 is too risky to try to do this before register
3012 allocation, and there are unlikely to be very many
3015 ??? Should we use delete_insn when the CFG isn't valid? */
3016 if (reload_completed
)
3017 delete_insn_and_edges (insn
);
3026 struct peep2_insn_data
3032 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
3033 static int peep2_current
;
3035 static bool peep2_do_rebuild_jump_labels
;
3036 static bool peep2_do_cleanup_cfg
;
3038 /* The number of instructions available to match a peep2. */
3039 int peep2_current_count
;
3041 /* A marker indicating the last insn of the block. The live_before regset
3042 for this element is correct, indicating DF_LIVE_OUT for the block. */
3043 #define PEEP2_EOB invalid_insn_rtx
3045 /* Wrap N to fit into the peep2_insn_data buffer. */
3048 peep2_buf_position (int n
)
3050 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
3051 n
-= MAX_INSNS_PER_PEEP2
+ 1;
3055 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3056 does not exist. Used by the recognizer to find the next insn to match
3057 in a multi-insn pattern. */
3060 peep2_next_insn (int n
)
3062 gcc_assert (n
<= peep2_current_count
);
3064 n
= peep2_buf_position (peep2_current
+ n
);
3066 return peep2_insn_data
[n
].insn
;
3069 /* Return true if REGNO is dead before the Nth non-note insn
3073 peep2_regno_dead_p (int ofs
, int regno
)
3075 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3077 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3079 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3081 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
3084 /* Similarly for a REG. */
3087 peep2_reg_dead_p (int ofs
, rtx reg
)
3089 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3091 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3093 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3095 unsigned int end_regno
= END_REGNO (reg
);
3096 for (unsigned int regno
= REGNO (reg
); regno
< end_regno
; ++regno
)
3097 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
))
3102 /* Regno offset to be used in the register search. */
3103 static int search_ofs
;
3105 /* Try to find a hard register of mode MODE, matching the register class in
3106 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3107 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3108 in which case the only condition is that the register must be available
3109 before CURRENT_INSN.
3110 Registers that already have bits set in REG_SET will not be considered.
3112 If an appropriate register is available, it will be returned and the
3113 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3117 peep2_find_free_register (int from
, int to
, const char *class_str
,
3118 machine_mode mode
, HARD_REG_SET
*reg_set
)
3125 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3126 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3128 from
= peep2_buf_position (peep2_current
+ from
);
3129 to
= peep2_buf_position (peep2_current
+ to
);
3131 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3132 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3136 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3138 /* Don't use registers set or clobbered by the insn. */
3139 FOR_EACH_INSN_DEF (def
, peep2_insn_data
[from
].insn
)
3140 SET_HARD_REG_BIT (live
, DF_REF_REGNO (def
));
3142 from
= peep2_buf_position (from
+ 1);
3145 cl
= reg_class_for_constraint (lookup_constraint (class_str
));
3147 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3149 int raw_regno
, regno
, success
, j
;
3151 /* Distribute the free registers as much as possible. */
3152 raw_regno
= search_ofs
+ i
;
3153 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3154 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3155 #ifdef REG_ALLOC_ORDER
3156 regno
= reg_alloc_order
[raw_regno
];
3161 /* Can it support the mode we need? */
3162 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
3166 for (j
= 0; success
&& j
< hard_regno_nregs (regno
, mode
); j
++)
3168 /* Don't allocate fixed registers. */
3169 if (fixed_regs
[regno
+ j
])
3174 /* Don't allocate global registers. */
3175 if (global_regs
[regno
+ j
])
3180 /* Make sure the register is of the right class. */
3181 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
+ j
))
3186 /* And that we don't create an extra save/restore. */
3187 if (! call_used_regs
[regno
+ j
] && ! df_regs_ever_live_p (regno
+ j
))
3193 if (! targetm
.hard_regno_scratch_ok (regno
+ j
))
3199 /* And we don't clobber traceback for noreturn functions. */
3200 if ((regno
+ j
== FRAME_POINTER_REGNUM
3201 || regno
+ j
== HARD_FRAME_POINTER_REGNUM
)
3202 && (! reload_completed
|| frame_pointer_needed
))
3208 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3209 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3218 add_to_hard_reg_set (reg_set
, mode
, regno
);
3220 /* Start the next search with the next register. */
3221 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3223 search_ofs
= raw_regno
;
3225 return gen_rtx_REG (mode
, regno
);
3233 /* Forget all currently tracked instructions, only remember current
3237 peep2_reinit_state (regset live
)
3241 /* Indicate that all slots except the last holds invalid data. */
3242 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3243 peep2_insn_data
[i
].insn
= NULL
;
3244 peep2_current_count
= 0;
3246 /* Indicate that the last slot contains live_after data. */
3247 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3248 peep2_current
= MAX_INSNS_PER_PEEP2
;
3250 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3253 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3254 starting at INSN. Perform the replacement, removing the old insns and
3255 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3256 if the replacement is rejected. */
3259 peep2_attempt (basic_block bb
, rtx_insn
*insn
, int match_len
, rtx_insn
*attempt
)
3262 rtx_insn
*last
, *before_try
, *x
;
3263 rtx eh_note
, as_note
;
3266 bool was_call
= false;
3268 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3269 match more than one insn, or to be split into more than one insn. */
3270 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3271 if (RTX_FRAME_RELATED_P (old_insn
))
3273 bool any_note
= false;
3279 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3280 may be in the stream for the purpose of register allocation. */
3281 if (active_insn_p (attempt
))
3284 new_insn
= next_active_insn (attempt
);
3285 if (next_active_insn (new_insn
))
3288 /* We have a 1-1 replacement. Copy over any frame-related info. */
3289 RTX_FRAME_RELATED_P (new_insn
) = 1;
3291 /* Allow the backend to fill in a note during the split. */
3292 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3293 switch (REG_NOTE_KIND (note
))
3295 case REG_FRAME_RELATED_EXPR
:
3296 case REG_CFA_DEF_CFA
:
3297 case REG_CFA_ADJUST_CFA
:
3298 case REG_CFA_OFFSET
:
3299 case REG_CFA_REGISTER
:
3300 case REG_CFA_EXPRESSION
:
3301 case REG_CFA_RESTORE
:
3302 case REG_CFA_SET_VDRAP
:
3309 /* If the backend didn't supply a note, copy one over. */
3311 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3312 switch (REG_NOTE_KIND (note
))
3314 case REG_FRAME_RELATED_EXPR
:
3315 case REG_CFA_DEF_CFA
:
3316 case REG_CFA_ADJUST_CFA
:
3317 case REG_CFA_OFFSET
:
3318 case REG_CFA_REGISTER
:
3319 case REG_CFA_EXPRESSION
:
3320 case REG_CFA_RESTORE
:
3321 case REG_CFA_SET_VDRAP
:
3322 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3329 /* If there still isn't a note, make sure the unwind info sees the
3330 same expression as before the split. */
3333 rtx old_set
, new_set
;
3335 /* The old insn had better have been simple, or annotated. */
3336 old_set
= single_set (old_insn
);
3337 gcc_assert (old_set
!= NULL
);
3339 new_set
= single_set (new_insn
);
3340 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3341 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3344 /* Copy prologue/epilogue status. This is required in order to keep
3345 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3346 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3349 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3350 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3351 cfg-related call notes. */
3352 for (i
= 0; i
<= match_len
; ++i
)
3357 j
= peep2_buf_position (peep2_current
+ i
);
3358 old_insn
= peep2_insn_data
[j
].insn
;
3359 if (!CALL_P (old_insn
))
3364 while (new_insn
!= NULL_RTX
)
3366 if (CALL_P (new_insn
))
3368 new_insn
= NEXT_INSN (new_insn
);
3371 gcc_assert (new_insn
!= NULL_RTX
);
3373 CALL_INSN_FUNCTION_USAGE (new_insn
)
3374 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3375 SIBLING_CALL_P (new_insn
) = SIBLING_CALL_P (old_insn
);
3377 for (note
= REG_NOTES (old_insn
);
3379 note
= XEXP (note
, 1))
3380 switch (REG_NOTE_KIND (note
))
3385 case REG_CALL_NOCF_CHECK
:
3386 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3390 /* Discard all other reg notes. */
3394 /* Croak if there is another call in the sequence. */
3395 while (++i
<= match_len
)
3397 j
= peep2_buf_position (peep2_current
+ i
);
3398 old_insn
= peep2_insn_data
[j
].insn
;
3399 gcc_assert (!CALL_P (old_insn
));
3404 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3405 move those notes over to the new sequence. */
3407 for (i
= match_len
; i
>= 0; --i
)
3409 int j
= peep2_buf_position (peep2_current
+ i
);
3410 old_insn
= peep2_insn_data
[j
].insn
;
3412 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3417 i
= peep2_buf_position (peep2_current
+ match_len
);
3418 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3420 /* Replace the old sequence with the new. */
3421 rtx_insn
*peepinsn
= peep2_insn_data
[i
].insn
;
3422 last
= emit_insn_after_setloc (attempt
,
3423 peep2_insn_data
[i
].insn
,
3424 INSN_LOCATION (peepinsn
));
3425 before_try
= PREV_INSN (insn
);
3426 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3428 /* Re-insert the EH_REGION notes. */
3429 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3434 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3435 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3439 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
3442 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3443 if (x
!= BB_END (bb
)
3444 && (can_throw_internal (x
)
3445 || can_nonlocal_goto (x
)))
3450 nfte
= split_block (bb
, x
);
3451 flags
= (eh_edge
->flags
3452 & (EDGE_EH
| EDGE_ABNORMAL
));
3454 flags
|= EDGE_ABNORMAL_CALL
;
3455 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3458 nehe
->probability
= eh_edge
->probability
;
3459 nfte
->probability
= nehe
->probability
.invert ();
3461 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3466 /* Converting possibly trapping insn to non-trapping is
3467 possible. Zap dummy outgoing edges. */
3468 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3471 /* Re-insert the ARGS_SIZE notes. */
3473 fixup_args_size_notes (before_try
, last
, INTVAL (XEXP (as_note
, 0)));
3475 /* If we generated a jump instruction, it won't have
3476 JUMP_LABEL set. Recompute after we're done. */
3477 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3480 peep2_do_rebuild_jump_labels
= true;
3487 /* After performing a replacement in basic block BB, fix up the life
3488 information in our buffer. LAST is the last of the insns that we
3489 emitted as a replacement. PREV is the insn before the start of
3490 the replacement. MATCH_LEN is the number of instructions that were
3491 matched, and which now need to be replaced in the buffer. */
3494 peep2_update_life (basic_block bb
, int match_len
, rtx_insn
*last
,
3497 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3501 INIT_REG_SET (&live
);
3502 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3504 gcc_assert (peep2_current_count
>= match_len
+ 1);
3505 peep2_current_count
-= match_len
+ 1;
3513 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3515 peep2_current_count
++;
3517 i
= MAX_INSNS_PER_PEEP2
;
3518 peep2_insn_data
[i
].insn
= x
;
3519 df_simulate_one_insn_backwards (bb
, x
, &live
);
3520 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3526 CLEAR_REG_SET (&live
);
3531 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3532 Return true if we added it, false otherwise. The caller will try to match
3533 peepholes against the buffer if we return false; otherwise it will try to
3534 add more instructions to the buffer. */
3537 peep2_fill_buffer (basic_block bb
, rtx_insn
*insn
, regset live
)
3541 /* Once we have filled the maximum number of insns the buffer can hold,
3542 allow the caller to match the insns against peepholes. We wait until
3543 the buffer is full in case the target has similar peepholes of different
3544 length; we always want to match the longest if possible. */
3545 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3548 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3549 any other pattern, lest it change the semantics of the frame info. */
3550 if (RTX_FRAME_RELATED_P (insn
))
3552 /* Let the buffer drain first. */
3553 if (peep2_current_count
> 0)
3555 /* Now the insn will be the only thing in the buffer. */
3558 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3559 peep2_insn_data
[pos
].insn
= insn
;
3560 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3561 peep2_current_count
++;
3563 df_simulate_one_insn_forwards (bb
, insn
, live
);
3567 /* Perform the peephole2 optimization pass. */
3570 peephole2_optimize (void)
3577 peep2_do_cleanup_cfg
= false;
3578 peep2_do_rebuild_jump_labels
= false;
3580 df_set_flags (DF_LR_RUN_DCE
);
3581 df_note_add_problem ();
3584 /* Initialize the regsets we're going to use. */
3585 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3586 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3588 live
= BITMAP_ALLOC (®_obstack
);
3590 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
3592 bool past_end
= false;
3595 rtl_profile_for_bb (bb
);
3597 /* Start up propagation. */
3598 bitmap_copy (live
, DF_LR_IN (bb
));
3599 df_simulate_initialize_forwards (bb
, live
);
3600 peep2_reinit_state (live
);
3602 insn
= BB_HEAD (bb
);
3605 rtx_insn
*attempt
, *head
;
3608 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3611 insn
= NEXT_INSN (insn
);
3612 if (insn
== NEXT_INSN (BB_END (bb
)))
3616 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3619 /* If we did not fill an empty buffer, it signals the end of the
3621 if (peep2_current_count
== 0)
3624 /* The buffer filled to the current maximum, so try to match. */
3626 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3627 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3628 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3630 /* Match the peephole. */
3631 head
= peep2_insn_data
[peep2_current
].insn
;
3632 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3633 if (attempt
!= NULL
)
3635 rtx_insn
*last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3638 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3643 /* No match: advance the buffer by one insn. */
3644 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3645 peep2_current_count
--;
3649 default_rtl_profile ();
3650 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3651 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3653 if (peep2_do_rebuild_jump_labels
)
3654 rebuild_jump_labels (get_insns ());
3655 if (peep2_do_cleanup_cfg
)
3656 cleanup_cfg (CLEANUP_CFG_CHANGED
);
3659 /* Common predicates for use with define_bypass. */
3661 /* Helper function for store_data_bypass_p, handle just a single SET
3665 store_data_bypass_p_1 (rtx_insn
*out_insn
, rtx in_set
)
3667 if (!MEM_P (SET_DEST (in_set
)))
3670 rtx out_set
= single_set (out_insn
);
3672 return !reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
));
3674 rtx out_pat
= PATTERN (out_insn
);
3675 if (GET_CODE (out_pat
) != PARALLEL
)
3678 for (int i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3680 rtx out_exp
= XVECEXP (out_pat
, 0, i
);
3682 if (GET_CODE (out_exp
) == CLOBBER
|| GET_CODE (out_exp
) == USE
)
3685 gcc_assert (GET_CODE (out_exp
) == SET
);
3687 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3694 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3695 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3696 must be either a single_set or a PARALLEL with SETs inside. */
3699 store_data_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3701 rtx in_set
= single_set (in_insn
);
3703 return store_data_bypass_p_1 (out_insn
, in_set
);
3705 rtx in_pat
= PATTERN (in_insn
);
3706 if (GET_CODE (in_pat
) != PARALLEL
)
3709 for (int i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3711 rtx in_exp
= XVECEXP (in_pat
, 0, i
);
3713 if (GET_CODE (in_exp
) == CLOBBER
|| GET_CODE (in_exp
) == USE
)
3716 gcc_assert (GET_CODE (in_exp
) == SET
);
3718 if (!store_data_bypass_p_1 (out_insn
, in_exp
))
3725 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3726 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3727 or multiple set; IN_INSN should be single_set for truth, but for convenience
3728 of insn categorization may be any JUMP or CALL insn. */
3731 if_test_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
3733 rtx out_set
, in_set
;
3735 in_set
= single_set (in_insn
);
3738 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3742 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3744 in_set
= SET_SRC (in_set
);
3746 out_set
= single_set (out_insn
);
3749 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3750 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3758 out_pat
= PATTERN (out_insn
);
3759 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3761 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3763 rtx exp
= XVECEXP (out_pat
, 0, i
);
3765 if (GET_CODE (exp
) == CLOBBER
)
3768 gcc_assert (GET_CODE (exp
) == SET
);
3770 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3771 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3780 rest_of_handle_peephole2 (void)
3783 peephole2_optimize ();
3790 const pass_data pass_data_peephole2
=
3792 RTL_PASS
, /* type */
3793 "peephole2", /* name */
3794 OPTGROUP_NONE
, /* optinfo_flags */
3795 TV_PEEPHOLE2
, /* tv_id */
3796 0, /* properties_required */
3797 0, /* properties_provided */
3798 0, /* properties_destroyed */
3799 0, /* todo_flags_start */
3800 TODO_df_finish
, /* todo_flags_finish */
3803 class pass_peephole2
: public rtl_opt_pass
3806 pass_peephole2 (gcc::context
*ctxt
)
3807 : rtl_opt_pass (pass_data_peephole2
, ctxt
)
3810 /* opt_pass methods: */
3811 /* The epiphany backend creates a second instance of this pass, so we need
3813 opt_pass
* clone () { return new pass_peephole2 (m_ctxt
); }
3814 virtual bool gate (function
*) { return (optimize
> 0 && flag_peephole2
); }
3815 virtual unsigned int execute (function
*)
3817 return rest_of_handle_peephole2 ();
3820 }; // class pass_peephole2
3825 make_pass_peephole2 (gcc::context
*ctxt
)
3827 return new pass_peephole2 (ctxt
);
3832 const pass_data pass_data_split_all_insns
=
3834 RTL_PASS
, /* type */
3835 "split1", /* name */
3836 OPTGROUP_NONE
, /* optinfo_flags */
3837 TV_NONE
, /* tv_id */
3838 0, /* properties_required */
3839 PROP_rtl_split_insns
, /* properties_provided */
3840 0, /* properties_destroyed */
3841 0, /* todo_flags_start */
3842 0, /* todo_flags_finish */
3845 class pass_split_all_insns
: public rtl_opt_pass
3848 pass_split_all_insns (gcc::context
*ctxt
)
3849 : rtl_opt_pass (pass_data_split_all_insns
, ctxt
)
3852 /* opt_pass methods: */
3853 /* The epiphany backend creates a second instance of this pass, so
3854 we need a clone method. */
3855 opt_pass
* clone () { return new pass_split_all_insns (m_ctxt
); }
3856 virtual unsigned int execute (function
*)
3862 }; // class pass_split_all_insns
3867 make_pass_split_all_insns (gcc::context
*ctxt
)
3869 return new pass_split_all_insns (ctxt
);
3874 const pass_data pass_data_split_after_reload
=
3876 RTL_PASS
, /* type */
3877 "split2", /* name */
3878 OPTGROUP_NONE
, /* optinfo_flags */
3879 TV_NONE
, /* tv_id */
3880 0, /* properties_required */
3881 0, /* properties_provided */
3882 0, /* properties_destroyed */
3883 0, /* todo_flags_start */
3884 0, /* todo_flags_finish */
3887 class pass_split_after_reload
: public rtl_opt_pass
3890 pass_split_after_reload (gcc::context
*ctxt
)
3891 : rtl_opt_pass (pass_data_split_after_reload
, ctxt
)
3894 /* opt_pass methods: */
3895 virtual bool gate (function
*)
3897 /* If optimizing, then go ahead and split insns now. */
3908 virtual unsigned int execute (function
*)
3914 }; // class pass_split_after_reload
3919 make_pass_split_after_reload (gcc::context
*ctxt
)
3921 return new pass_split_after_reload (ctxt
);
3926 const pass_data pass_data_split_before_regstack
=
3928 RTL_PASS
, /* type */
3929 "split3", /* name */
3930 OPTGROUP_NONE
, /* optinfo_flags */
3931 TV_NONE
, /* tv_id */
3932 0, /* properties_required */
3933 0, /* properties_provided */
3934 0, /* properties_destroyed */
3935 0, /* todo_flags_start */
3936 0, /* todo_flags_finish */
3939 class pass_split_before_regstack
: public rtl_opt_pass
3942 pass_split_before_regstack (gcc::context
*ctxt
)
3943 : rtl_opt_pass (pass_data_split_before_regstack
, ctxt
)
3946 /* opt_pass methods: */
3947 virtual bool gate (function
*);
3948 virtual unsigned int execute (function
*)
3954 }; // class pass_split_before_regstack
3957 pass_split_before_regstack::gate (function
*)
3959 #if HAVE_ATTR_length && defined (STACK_REGS)
3960 /* If flow2 creates new instructions which need splitting
3961 and scheduling after reload is not done, they might not be
3962 split until final which doesn't allow splitting
3963 if HAVE_ATTR_length. */
3964 # ifdef INSN_SCHEDULING
3965 return (optimize
&& !flag_schedule_insns_after_reload
);
3977 make_pass_split_before_regstack (gcc::context
*ctxt
)
3979 return new pass_split_before_regstack (ctxt
);
3983 rest_of_handle_split_before_sched2 (void)
3985 #ifdef INSN_SCHEDULING
3993 const pass_data pass_data_split_before_sched2
=
3995 RTL_PASS
, /* type */
3996 "split4", /* name */
3997 OPTGROUP_NONE
, /* optinfo_flags */
3998 TV_NONE
, /* tv_id */
3999 0, /* properties_required */
4000 0, /* properties_provided */
4001 0, /* properties_destroyed */
4002 0, /* todo_flags_start */
4003 0, /* todo_flags_finish */
4006 class pass_split_before_sched2
: public rtl_opt_pass
4009 pass_split_before_sched2 (gcc::context
*ctxt
)
4010 : rtl_opt_pass (pass_data_split_before_sched2
, ctxt
)
4013 /* opt_pass methods: */
4014 virtual bool gate (function
*)
4016 #ifdef INSN_SCHEDULING
4017 return optimize
> 0 && flag_schedule_insns_after_reload
;
4023 virtual unsigned int execute (function
*)
4025 return rest_of_handle_split_before_sched2 ();
4028 }; // class pass_split_before_sched2
4033 make_pass_split_before_sched2 (gcc::context
*ctxt
)
4035 return new pass_split_before_sched2 (ctxt
);
4040 const pass_data pass_data_split_for_shorten_branches
=
4042 RTL_PASS
, /* type */
4043 "split5", /* name */
4044 OPTGROUP_NONE
, /* optinfo_flags */
4045 TV_NONE
, /* tv_id */
4046 0, /* properties_required */
4047 0, /* properties_provided */
4048 0, /* properties_destroyed */
4049 0, /* todo_flags_start */
4050 0, /* todo_flags_finish */
4053 class pass_split_for_shorten_branches
: public rtl_opt_pass
4056 pass_split_for_shorten_branches (gcc::context
*ctxt
)
4057 : rtl_opt_pass (pass_data_split_for_shorten_branches
, ctxt
)
4060 /* opt_pass methods: */
4061 virtual bool gate (function
*)
4063 /* The placement of the splitting that we do for shorten_branches
4064 depends on whether regstack is used by the target or not. */
4065 #if HAVE_ATTR_length && !defined (STACK_REGS)
4072 virtual unsigned int execute (function
*)
4074 return split_all_insns_noflow ();
4077 }; // class pass_split_for_shorten_branches
4082 make_pass_split_for_shorten_branches (gcc::context
*ctxt
)
4084 return new pass_split_for_shorten_branches (ctxt
);
4087 /* (Re)initialize the target information after a change in target. */
4092 /* The information is zero-initialized, so we don't need to do anything
4093 first time round. */
4094 if (!this_target_recog
->x_initialized
)
4096 this_target_recog
->x_initialized
= true;
4099 memset (this_target_recog
->x_bool_attr_masks
, 0,
4100 sizeof (this_target_recog
->x_bool_attr_masks
));
4101 for (unsigned int i
= 0; i
< NUM_INSN_CODES
; ++i
)
4102 if (this_target_recog
->x_op_alt
[i
])
4104 free (this_target_recog
->x_op_alt
[i
]);
4105 this_target_recog
->x_op_alt
[i
] = 0;