2011-05-23 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / fold-const.c
blobd399c5376d2c341840f9044b5abbd10985fa5d2f
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide and size_binop.
32 fold takes a tree as argument and returns a simplified tree.
34 size_binop takes a tree code for an arithmetic operation
35 and two operands that are trees, and produces a tree for the
36 result, assuming the type comes from `sizetype'.
38 size_int takes an integer value, and creates a tree constant
39 with type from `sizetype'.
41 Note: Since the folders get called on non-gimple code as well as
42 gimple code, we need to handle GIMPLE tuples as well as their
43 corresponding tree equivalents. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "flags.h"
50 #include "tree.h"
51 #include "realmpfr.h"
52 #include "rtl.h"
53 #include "expr.h"
54 #include "tm_p.h"
55 #include "target.h"
56 #include "diagnostic-core.h"
57 #include "intl.h"
58 #include "ggc.h"
59 #include "hashtab.h"
60 #include "langhooks.h"
61 #include "md5.h"
62 #include "gimple.h"
63 #include "tree-flow.h"
65 /* Nonzero if we are folding constants inside an initializer; zero
66 otherwise. */
67 int folding_initializer = 0;
69 /* The following constants represent a bit based encoding of GCC's
70 comparison operators. This encoding simplifies transformations
71 on relational comparison operators, such as AND and OR. */
72 enum comparison_code {
73 COMPCODE_FALSE = 0,
74 COMPCODE_LT = 1,
75 COMPCODE_EQ = 2,
76 COMPCODE_LE = 3,
77 COMPCODE_GT = 4,
78 COMPCODE_LTGT = 5,
79 COMPCODE_GE = 6,
80 COMPCODE_ORD = 7,
81 COMPCODE_UNORD = 8,
82 COMPCODE_UNLT = 9,
83 COMPCODE_UNEQ = 10,
84 COMPCODE_UNLE = 11,
85 COMPCODE_UNGT = 12,
86 COMPCODE_NE = 13,
87 COMPCODE_UNGE = 14,
88 COMPCODE_TRUE = 15
91 static bool negate_mathfn_p (enum built_in_function);
92 static bool negate_expr_p (tree);
93 static tree negate_expr (tree);
94 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
95 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
96 static tree const_binop (enum tree_code, tree, tree);
97 static enum comparison_code comparison_to_compcode (enum tree_code);
98 static enum tree_code compcode_to_comparison (enum comparison_code);
99 static int operand_equal_for_comparison_p (tree, tree, tree);
100 static int twoval_comparison_p (tree, tree *, tree *, int *);
101 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
102 static tree pedantic_omit_one_operand_loc (location_t, tree, tree, tree);
103 static tree distribute_bit_expr (location_t, enum tree_code, tree, tree, tree);
104 static tree make_bit_field_ref (location_t, tree, tree,
105 HOST_WIDE_INT, HOST_WIDE_INT, int);
106 static tree optimize_bit_field_compare (location_t, enum tree_code,
107 tree, tree, tree);
108 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
109 HOST_WIDE_INT *,
110 enum machine_mode *, int *, int *,
111 tree *, tree *);
112 static int all_ones_mask_p (const_tree, int);
113 static tree sign_bit_p (tree, const_tree);
114 static int simple_operand_p (const_tree);
115 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
116 static tree range_predecessor (tree);
117 static tree range_successor (tree);
118 extern tree make_range (tree, int *, tree *, tree *, bool *);
119 extern bool merge_ranges (int *, tree *, tree *, int, tree, tree, int,
120 tree, tree);
121 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
122 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
123 static tree unextend (tree, int, int, tree);
124 static tree fold_truthop (location_t, enum tree_code, tree, tree, tree);
125 static tree optimize_minmax_comparison (location_t, enum tree_code,
126 tree, tree, tree);
127 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
128 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
129 static tree fold_binary_op_with_conditional_arg (location_t,
130 enum tree_code, tree,
131 tree, tree,
132 tree, tree, int);
133 static tree fold_mathfn_compare (location_t,
134 enum built_in_function, enum tree_code,
135 tree, tree, tree);
136 static tree fold_inf_compare (location_t, enum tree_code, tree, tree, tree);
137 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
138 static bool reorder_operands_p (const_tree, const_tree);
139 static tree fold_negate_const (tree, tree);
140 static tree fold_not_const (const_tree, tree);
141 static tree fold_relational_const (enum tree_code, tree, tree, tree);
142 static tree fold_convert_const (enum tree_code, tree, tree);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
147 static location_t
148 expr_location_or (tree t, location_t loc)
150 location_t tloc = EXPR_LOCATION (t);
151 return tloc != UNKNOWN_LOCATION ? tloc : loc;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
157 static inline tree
158 protected_set_expr_location_unshare (tree x, location_t loc)
160 if (CAN_HAVE_LOCATION_P (x)
161 && EXPR_LOCATION (x) != loc
162 && !(TREE_CODE (x) == SAVE_EXPR
163 || TREE_CODE (x) == TARGET_EXPR
164 || TREE_CODE (x) == BIND_EXPR))
166 x = copy_node (x);
167 SET_EXPR_LOCATION (x, loc);
169 return x;
173 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
174 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
175 and SUM1. Then this yields nonzero if overflow occurred during the
176 addition.
178 Overflow occurs if A and B have the same sign, but A and SUM differ in
179 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
180 sign. */
181 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
183 /* If ARG2 divides ARG1 with zero remainder, carries out the division
184 of type CODE and returns the quotient.
185 Otherwise returns NULL_TREE. */
187 tree
188 div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
190 double_int quo, rem;
191 int uns;
193 /* The sign of the division is according to operand two, that
194 does the correct thing for POINTER_PLUS_EXPR where we want
195 a signed division. */
196 uns = TYPE_UNSIGNED (TREE_TYPE (arg2));
197 if (TREE_CODE (TREE_TYPE (arg2)) == INTEGER_TYPE
198 && TYPE_IS_SIZETYPE (TREE_TYPE (arg2)))
199 uns = false;
201 quo = double_int_divmod (tree_to_double_int (arg1),
202 tree_to_double_int (arg2),
203 uns, code, &rem);
205 if (double_int_zero_p (rem))
206 return build_int_cst_wide (TREE_TYPE (arg1), quo.low, quo.high);
208 return NULL_TREE;
211 /* This is nonzero if we should defer warnings about undefined
212 overflow. This facility exists because these warnings are a
213 special case. The code to estimate loop iterations does not want
214 to issue any warnings, since it works with expressions which do not
215 occur in user code. Various bits of cleanup code call fold(), but
216 only use the result if it has certain characteristics (e.g., is a
217 constant); that code only wants to issue a warning if the result is
218 used. */
220 static int fold_deferring_overflow_warnings;
222 /* If a warning about undefined overflow is deferred, this is the
223 warning. Note that this may cause us to turn two warnings into
224 one, but that is fine since it is sufficient to only give one
225 warning per expression. */
227 static const char* fold_deferred_overflow_warning;
229 /* If a warning about undefined overflow is deferred, this is the
230 level at which the warning should be emitted. */
232 static enum warn_strict_overflow_code fold_deferred_overflow_code;
234 /* Start deferring overflow warnings. We could use a stack here to
235 permit nested calls, but at present it is not necessary. */
237 void
238 fold_defer_overflow_warnings (void)
240 ++fold_deferring_overflow_warnings;
243 /* Stop deferring overflow warnings. If there is a pending warning,
244 and ISSUE is true, then issue the warning if appropriate. STMT is
245 the statement with which the warning should be associated (used for
246 location information); STMT may be NULL. CODE is the level of the
247 warning--a warn_strict_overflow_code value. This function will use
248 the smaller of CODE and the deferred code when deciding whether to
249 issue the warning. CODE may be zero to mean to always use the
250 deferred code. */
252 void
253 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
255 const char *warnmsg;
256 location_t locus;
258 gcc_assert (fold_deferring_overflow_warnings > 0);
259 --fold_deferring_overflow_warnings;
260 if (fold_deferring_overflow_warnings > 0)
262 if (fold_deferred_overflow_warning != NULL
263 && code != 0
264 && code < (int) fold_deferred_overflow_code)
265 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
266 return;
269 warnmsg = fold_deferred_overflow_warning;
270 fold_deferred_overflow_warning = NULL;
272 if (!issue || warnmsg == NULL)
273 return;
275 if (gimple_no_warning_p (stmt))
276 return;
278 /* Use the smallest code level when deciding to issue the
279 warning. */
280 if (code == 0 || code > (int) fold_deferred_overflow_code)
281 code = fold_deferred_overflow_code;
283 if (!issue_strict_overflow_warning (code))
284 return;
286 if (stmt == NULL)
287 locus = input_location;
288 else
289 locus = gimple_location (stmt);
290 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
293 /* Stop deferring overflow warnings, ignoring any deferred
294 warnings. */
296 void
297 fold_undefer_and_ignore_overflow_warnings (void)
299 fold_undefer_overflow_warnings (false, NULL, 0);
302 /* Whether we are deferring overflow warnings. */
304 bool
305 fold_deferring_overflow_warnings_p (void)
307 return fold_deferring_overflow_warnings > 0;
310 /* This is called when we fold something based on the fact that signed
311 overflow is undefined. */
313 static void
314 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
316 if (fold_deferring_overflow_warnings > 0)
318 if (fold_deferred_overflow_warning == NULL
319 || wc < fold_deferred_overflow_code)
321 fold_deferred_overflow_warning = gmsgid;
322 fold_deferred_overflow_code = wc;
325 else if (issue_strict_overflow_warning (wc))
326 warning (OPT_Wstrict_overflow, gmsgid);
329 /* Return true if the built-in mathematical function specified by CODE
330 is odd, i.e. -f(x) == f(-x). */
332 static bool
333 negate_mathfn_p (enum built_in_function code)
335 switch (code)
337 CASE_FLT_FN (BUILT_IN_ASIN):
338 CASE_FLT_FN (BUILT_IN_ASINH):
339 CASE_FLT_FN (BUILT_IN_ATAN):
340 CASE_FLT_FN (BUILT_IN_ATANH):
341 CASE_FLT_FN (BUILT_IN_CASIN):
342 CASE_FLT_FN (BUILT_IN_CASINH):
343 CASE_FLT_FN (BUILT_IN_CATAN):
344 CASE_FLT_FN (BUILT_IN_CATANH):
345 CASE_FLT_FN (BUILT_IN_CBRT):
346 CASE_FLT_FN (BUILT_IN_CPROJ):
347 CASE_FLT_FN (BUILT_IN_CSIN):
348 CASE_FLT_FN (BUILT_IN_CSINH):
349 CASE_FLT_FN (BUILT_IN_CTAN):
350 CASE_FLT_FN (BUILT_IN_CTANH):
351 CASE_FLT_FN (BUILT_IN_ERF):
352 CASE_FLT_FN (BUILT_IN_LLROUND):
353 CASE_FLT_FN (BUILT_IN_LROUND):
354 CASE_FLT_FN (BUILT_IN_ROUND):
355 CASE_FLT_FN (BUILT_IN_SIN):
356 CASE_FLT_FN (BUILT_IN_SINH):
357 CASE_FLT_FN (BUILT_IN_TAN):
358 CASE_FLT_FN (BUILT_IN_TANH):
359 CASE_FLT_FN (BUILT_IN_TRUNC):
360 return true;
362 CASE_FLT_FN (BUILT_IN_LLRINT):
363 CASE_FLT_FN (BUILT_IN_LRINT):
364 CASE_FLT_FN (BUILT_IN_NEARBYINT):
365 CASE_FLT_FN (BUILT_IN_RINT):
366 return !flag_rounding_math;
368 default:
369 break;
371 return false;
374 /* Check whether we may negate an integer constant T without causing
375 overflow. */
377 bool
378 may_negate_without_overflow_p (const_tree t)
380 unsigned HOST_WIDE_INT val;
381 unsigned int prec;
382 tree type;
384 gcc_assert (TREE_CODE (t) == INTEGER_CST);
386 type = TREE_TYPE (t);
387 if (TYPE_UNSIGNED (type))
388 return false;
390 prec = TYPE_PRECISION (type);
391 if (prec > HOST_BITS_PER_WIDE_INT)
393 if (TREE_INT_CST_LOW (t) != 0)
394 return true;
395 prec -= HOST_BITS_PER_WIDE_INT;
396 val = TREE_INT_CST_HIGH (t);
398 else
399 val = TREE_INT_CST_LOW (t);
400 if (prec < HOST_BITS_PER_WIDE_INT)
401 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
402 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
405 /* Determine whether an expression T can be cheaply negated using
406 the function negate_expr without introducing undefined overflow. */
408 static bool
409 negate_expr_p (tree t)
411 tree type;
413 if (t == 0)
414 return false;
416 type = TREE_TYPE (t);
418 STRIP_SIGN_NOPS (t);
419 switch (TREE_CODE (t))
421 case INTEGER_CST:
422 if (TYPE_OVERFLOW_WRAPS (type))
423 return true;
425 /* Check that -CST will not overflow type. */
426 return may_negate_without_overflow_p (t);
427 case BIT_NOT_EXPR:
428 return (INTEGRAL_TYPE_P (type)
429 && TYPE_OVERFLOW_WRAPS (type));
431 case FIXED_CST:
432 case NEGATE_EXPR:
433 return true;
435 case REAL_CST:
436 /* We want to canonicalize to positive real constants. Pretend
437 that only negative ones can be easily negated. */
438 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
440 case COMPLEX_CST:
441 return negate_expr_p (TREE_REALPART (t))
442 && negate_expr_p (TREE_IMAGPART (t));
444 case COMPLEX_EXPR:
445 return negate_expr_p (TREE_OPERAND (t, 0))
446 && negate_expr_p (TREE_OPERAND (t, 1));
448 case CONJ_EXPR:
449 return negate_expr_p (TREE_OPERAND (t, 0));
451 case PLUS_EXPR:
452 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
453 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
454 return false;
455 /* -(A + B) -> (-B) - A. */
456 if (negate_expr_p (TREE_OPERAND (t, 1))
457 && reorder_operands_p (TREE_OPERAND (t, 0),
458 TREE_OPERAND (t, 1)))
459 return true;
460 /* -(A + B) -> (-A) - B. */
461 return negate_expr_p (TREE_OPERAND (t, 0));
463 case MINUS_EXPR:
464 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
465 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
466 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
467 && reorder_operands_p (TREE_OPERAND (t, 0),
468 TREE_OPERAND (t, 1));
470 case MULT_EXPR:
471 if (TYPE_UNSIGNED (TREE_TYPE (t)))
472 break;
474 /* Fall through. */
476 case RDIV_EXPR:
477 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
478 return negate_expr_p (TREE_OPERAND (t, 1))
479 || negate_expr_p (TREE_OPERAND (t, 0));
480 break;
482 case TRUNC_DIV_EXPR:
483 case ROUND_DIV_EXPR:
484 case FLOOR_DIV_EXPR:
485 case CEIL_DIV_EXPR:
486 case EXACT_DIV_EXPR:
487 /* In general we can't negate A / B, because if A is INT_MIN and
488 B is 1, we may turn this into INT_MIN / -1 which is undefined
489 and actually traps on some architectures. But if overflow is
490 undefined, we can negate, because - (INT_MIN / 1) is an
491 overflow. */
492 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
493 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
494 break;
495 return negate_expr_p (TREE_OPERAND (t, 1))
496 || negate_expr_p (TREE_OPERAND (t, 0));
498 case NOP_EXPR:
499 /* Negate -((double)float) as (double)(-float). */
500 if (TREE_CODE (type) == REAL_TYPE)
502 tree tem = strip_float_extensions (t);
503 if (tem != t)
504 return negate_expr_p (tem);
506 break;
508 case CALL_EXPR:
509 /* Negate -f(x) as f(-x). */
510 if (negate_mathfn_p (builtin_mathfn_code (t)))
511 return negate_expr_p (CALL_EXPR_ARG (t, 0));
512 break;
514 case RSHIFT_EXPR:
515 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
516 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
518 tree op1 = TREE_OPERAND (t, 1);
519 if (TREE_INT_CST_HIGH (op1) == 0
520 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
521 == TREE_INT_CST_LOW (op1))
522 return true;
524 break;
526 default:
527 break;
529 return false;
532 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
533 simplification is possible.
534 If negate_expr_p would return true for T, NULL_TREE will never be
535 returned. */
537 static tree
538 fold_negate_expr (location_t loc, tree t)
540 tree type = TREE_TYPE (t);
541 tree tem;
543 switch (TREE_CODE (t))
545 /* Convert - (~A) to A + 1. */
546 case BIT_NOT_EXPR:
547 if (INTEGRAL_TYPE_P (type))
548 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
549 build_int_cst (type, 1));
550 break;
552 case INTEGER_CST:
553 tem = fold_negate_const (t, type);
554 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
555 || !TYPE_OVERFLOW_TRAPS (type))
556 return tem;
557 break;
559 case REAL_CST:
560 tem = fold_negate_const (t, type);
561 /* Two's complement FP formats, such as c4x, may overflow. */
562 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
563 return tem;
564 break;
566 case FIXED_CST:
567 tem = fold_negate_const (t, type);
568 return tem;
570 case COMPLEX_CST:
572 tree rpart = negate_expr (TREE_REALPART (t));
573 tree ipart = negate_expr (TREE_IMAGPART (t));
575 if ((TREE_CODE (rpart) == REAL_CST
576 && TREE_CODE (ipart) == REAL_CST)
577 || (TREE_CODE (rpart) == INTEGER_CST
578 && TREE_CODE (ipart) == INTEGER_CST))
579 return build_complex (type, rpart, ipart);
581 break;
583 case COMPLEX_EXPR:
584 if (negate_expr_p (t))
585 return fold_build2_loc (loc, COMPLEX_EXPR, type,
586 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
587 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
588 break;
590 case CONJ_EXPR:
591 if (negate_expr_p (t))
592 return fold_build1_loc (loc, CONJ_EXPR, type,
593 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
594 break;
596 case NEGATE_EXPR:
597 return TREE_OPERAND (t, 0);
599 case PLUS_EXPR:
600 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
601 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
603 /* -(A + B) -> (-B) - A. */
604 if (negate_expr_p (TREE_OPERAND (t, 1))
605 && reorder_operands_p (TREE_OPERAND (t, 0),
606 TREE_OPERAND (t, 1)))
608 tem = negate_expr (TREE_OPERAND (t, 1));
609 return fold_build2_loc (loc, MINUS_EXPR, type,
610 tem, TREE_OPERAND (t, 0));
613 /* -(A + B) -> (-A) - B. */
614 if (negate_expr_p (TREE_OPERAND (t, 0)))
616 tem = negate_expr (TREE_OPERAND (t, 0));
617 return fold_build2_loc (loc, MINUS_EXPR, type,
618 tem, TREE_OPERAND (t, 1));
621 break;
623 case MINUS_EXPR:
624 /* - (A - B) -> B - A */
625 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
626 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
627 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
628 return fold_build2_loc (loc, MINUS_EXPR, type,
629 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
630 break;
632 case MULT_EXPR:
633 if (TYPE_UNSIGNED (type))
634 break;
636 /* Fall through. */
638 case RDIV_EXPR:
639 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
641 tem = TREE_OPERAND (t, 1);
642 if (negate_expr_p (tem))
643 return fold_build2_loc (loc, TREE_CODE (t), type,
644 TREE_OPERAND (t, 0), negate_expr (tem));
645 tem = TREE_OPERAND (t, 0);
646 if (negate_expr_p (tem))
647 return fold_build2_loc (loc, TREE_CODE (t), type,
648 negate_expr (tem), TREE_OPERAND (t, 1));
650 break;
652 case TRUNC_DIV_EXPR:
653 case ROUND_DIV_EXPR:
654 case FLOOR_DIV_EXPR:
655 case CEIL_DIV_EXPR:
656 case EXACT_DIV_EXPR:
657 /* In general we can't negate A / B, because if A is INT_MIN and
658 B is 1, we may turn this into INT_MIN / -1 which is undefined
659 and actually traps on some architectures. But if overflow is
660 undefined, we can negate, because - (INT_MIN / 1) is an
661 overflow. */
662 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
664 const char * const warnmsg = G_("assuming signed overflow does not "
665 "occur when negating a division");
666 tem = TREE_OPERAND (t, 1);
667 if (negate_expr_p (tem))
669 if (INTEGRAL_TYPE_P (type)
670 && (TREE_CODE (tem) != INTEGER_CST
671 || integer_onep (tem)))
672 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
673 return fold_build2_loc (loc, TREE_CODE (t), type,
674 TREE_OPERAND (t, 0), negate_expr (tem));
676 tem = TREE_OPERAND (t, 0);
677 if (negate_expr_p (tem))
679 if (INTEGRAL_TYPE_P (type)
680 && (TREE_CODE (tem) != INTEGER_CST
681 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
682 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
683 return fold_build2_loc (loc, TREE_CODE (t), type,
684 negate_expr (tem), TREE_OPERAND (t, 1));
687 break;
689 case NOP_EXPR:
690 /* Convert -((double)float) into (double)(-float). */
691 if (TREE_CODE (type) == REAL_TYPE)
693 tem = strip_float_extensions (t);
694 if (tem != t && negate_expr_p (tem))
695 return fold_convert_loc (loc, type, negate_expr (tem));
697 break;
699 case CALL_EXPR:
700 /* Negate -f(x) as f(-x). */
701 if (negate_mathfn_p (builtin_mathfn_code (t))
702 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
704 tree fndecl, arg;
706 fndecl = get_callee_fndecl (t);
707 arg = negate_expr (CALL_EXPR_ARG (t, 0));
708 return build_call_expr_loc (loc, fndecl, 1, arg);
710 break;
712 case RSHIFT_EXPR:
713 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
714 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
716 tree op1 = TREE_OPERAND (t, 1);
717 if (TREE_INT_CST_HIGH (op1) == 0
718 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
719 == TREE_INT_CST_LOW (op1))
721 tree ntype = TYPE_UNSIGNED (type)
722 ? signed_type_for (type)
723 : unsigned_type_for (type);
724 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
725 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
726 return fold_convert_loc (loc, type, temp);
729 break;
731 default:
732 break;
735 return NULL_TREE;
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
740 return NULL_TREE. */
742 static tree
743 negate_expr (tree t)
745 tree type, tem;
746 location_t loc;
748 if (t == NULL_TREE)
749 return NULL_TREE;
751 loc = EXPR_LOCATION (t);
752 type = TREE_TYPE (t);
753 STRIP_SIGN_NOPS (t);
755 tem = fold_negate_expr (loc, t);
756 if (!tem)
757 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
758 return fold_convert_loc (loc, type, tem);
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead.
776 If IN is itself a literal or constant, return it as appropriate.
778 Note that we do not guarantee that any of the three values will be the
779 same type as IN, but they will have the same signedness and mode. */
781 static tree
782 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
783 tree *minus_litp, int negate_p)
785 tree var = 0;
787 *conp = 0;
788 *litp = 0;
789 *minus_litp = 0;
791 /* Strip any conversions that don't change the machine mode or signedness. */
792 STRIP_SIGN_NOPS (in);
794 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
795 || TREE_CODE (in) == FIXED_CST)
796 *litp = in;
797 else if (TREE_CODE (in) == code
798 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
799 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
800 /* We can associate addition and subtraction together (even
801 though the C standard doesn't say so) for integers because
802 the value is not affected. For reals, the value might be
803 affected, so we can't. */
804 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
805 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
807 tree op0 = TREE_OPERAND (in, 0);
808 tree op1 = TREE_OPERAND (in, 1);
809 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
810 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
812 /* First see if either of the operands is a literal, then a constant. */
813 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
814 || TREE_CODE (op0) == FIXED_CST)
815 *litp = op0, op0 = 0;
816 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
817 || TREE_CODE (op1) == FIXED_CST)
818 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
820 if (op0 != 0 && TREE_CONSTANT (op0))
821 *conp = op0, op0 = 0;
822 else if (op1 != 0 && TREE_CONSTANT (op1))
823 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
825 /* If we haven't dealt with either operand, this is not a case we can
826 decompose. Otherwise, VAR is either of the ones remaining, if any. */
827 if (op0 != 0 && op1 != 0)
828 var = in;
829 else if (op0 != 0)
830 var = op0;
831 else
832 var = op1, neg_var_p = neg1_p;
834 /* Now do any needed negations. */
835 if (neg_litp_p)
836 *minus_litp = *litp, *litp = 0;
837 if (neg_conp_p)
838 *conp = negate_expr (*conp);
839 if (neg_var_p)
840 var = negate_expr (var);
842 else if (TREE_CONSTANT (in))
843 *conp = in;
844 else
845 var = in;
847 if (negate_p)
849 if (*litp)
850 *minus_litp = *litp, *litp = 0;
851 else if (*minus_litp)
852 *litp = *minus_litp, *minus_litp = 0;
853 *conp = negate_expr (*conp);
854 var = negate_expr (var);
857 return var;
860 /* Re-associate trees split by the above function. T1 and T2 are
861 either expressions to associate or null. Return the new
862 expression, if any. LOC is the location of the new expression. If
863 we build an operation, do it in TYPE and with CODE. */
865 static tree
866 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
868 if (t1 == 0)
869 return t2;
870 else if (t2 == 0)
871 return t1;
873 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
874 try to fold this since we will have infinite recursion. But do
875 deal with any NEGATE_EXPRs. */
876 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
877 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
879 if (code == PLUS_EXPR)
881 if (TREE_CODE (t1) == NEGATE_EXPR)
882 return build2_loc (loc, MINUS_EXPR, type,
883 fold_convert_loc (loc, type, t2),
884 fold_convert_loc (loc, type,
885 TREE_OPERAND (t1, 0)));
886 else if (TREE_CODE (t2) == NEGATE_EXPR)
887 return build2_loc (loc, MINUS_EXPR, type,
888 fold_convert_loc (loc, type, t1),
889 fold_convert_loc (loc, type,
890 TREE_OPERAND (t2, 0)));
891 else if (integer_zerop (t2))
892 return fold_convert_loc (loc, type, t1);
894 else if (code == MINUS_EXPR)
896 if (integer_zerop (t2))
897 return fold_convert_loc (loc, type, t1);
900 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
901 fold_convert_loc (loc, type, t2));
904 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
905 fold_convert_loc (loc, type, t2));
908 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
909 for use in int_const_binop, size_binop and size_diffop. */
911 static bool
912 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
914 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
915 return false;
916 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
917 return false;
919 switch (code)
921 case LSHIFT_EXPR:
922 case RSHIFT_EXPR:
923 case LROTATE_EXPR:
924 case RROTATE_EXPR:
925 return true;
927 default:
928 break;
931 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
932 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
933 && TYPE_MODE (type1) == TYPE_MODE (type2);
937 /* Combine two integer constants ARG1 and ARG2 under operation CODE
938 to produce a new constant. Return NULL_TREE if we don't know how
939 to evaluate CODE at compile-time. */
941 tree
942 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
944 double_int op1, op2, res, tmp;
945 tree t;
946 tree type = TREE_TYPE (arg1);
947 bool uns = TYPE_UNSIGNED (type);
948 bool is_sizetype
949 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
950 bool overflow = false;
952 op1 = tree_to_double_int (arg1);
953 op2 = tree_to_double_int (arg2);
955 switch (code)
957 case BIT_IOR_EXPR:
958 res = double_int_ior (op1, op2);
959 break;
961 case BIT_XOR_EXPR:
962 res = double_int_xor (op1, op2);
963 break;
965 case BIT_AND_EXPR:
966 res = double_int_and (op1, op2);
967 break;
969 case RSHIFT_EXPR:
970 res = double_int_rshift (op1, double_int_to_shwi (op2),
971 TYPE_PRECISION (type), !uns);
972 break;
974 case LSHIFT_EXPR:
975 /* It's unclear from the C standard whether shifts can overflow.
976 The following code ignores overflow; perhaps a C standard
977 interpretation ruling is needed. */
978 res = double_int_lshift (op1, double_int_to_shwi (op2),
979 TYPE_PRECISION (type), !uns);
980 break;
982 case RROTATE_EXPR:
983 res = double_int_rrotate (op1, double_int_to_shwi (op2),
984 TYPE_PRECISION (type));
985 break;
987 case LROTATE_EXPR:
988 res = double_int_lrotate (op1, double_int_to_shwi (op2),
989 TYPE_PRECISION (type));
990 break;
992 case PLUS_EXPR:
993 overflow = add_double (op1.low, op1.high, op2.low, op2.high,
994 &res.low, &res.high);
995 break;
997 case MINUS_EXPR:
998 neg_double (op2.low, op2.high, &res.low, &res.high);
999 add_double (op1.low, op1.high, res.low, res.high,
1000 &res.low, &res.high);
1001 overflow = OVERFLOW_SUM_SIGN (res.high, op2.high, op1.high);
1002 break;
1004 case MULT_EXPR:
1005 overflow = mul_double (op1.low, op1.high, op2.low, op2.high,
1006 &res.low, &res.high);
1007 break;
1009 case TRUNC_DIV_EXPR:
1010 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1011 case EXACT_DIV_EXPR:
1012 /* This is a shortcut for a common special case. */
1013 if (op2.high == 0 && (HOST_WIDE_INT) op2.low > 0
1014 && !TREE_OVERFLOW (arg1)
1015 && !TREE_OVERFLOW (arg2)
1016 && op1.high == 0 && (HOST_WIDE_INT) op1.low >= 0)
1018 if (code == CEIL_DIV_EXPR)
1019 op1.low += op2.low - 1;
1021 res.low = op1.low / op2.low, res.high = 0;
1022 break;
1025 /* ... fall through ... */
1027 case ROUND_DIV_EXPR:
1028 if (double_int_zero_p (op2))
1029 return NULL_TREE;
1030 if (double_int_one_p (op2))
1032 res = op1;
1033 break;
1035 if (double_int_equal_p (op1, op2)
1036 && ! double_int_zero_p (op1))
1038 res = double_int_one;
1039 break;
1041 overflow = div_and_round_double (code, uns,
1042 op1.low, op1.high, op2.low, op2.high,
1043 &res.low, &res.high,
1044 &tmp.low, &tmp.high);
1045 break;
1047 case TRUNC_MOD_EXPR:
1048 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1049 /* This is a shortcut for a common special case. */
1050 if (op2.high == 0 && (HOST_WIDE_INT) op2.low > 0
1051 && !TREE_OVERFLOW (arg1)
1052 && !TREE_OVERFLOW (arg2)
1053 && op1.high == 0 && (HOST_WIDE_INT) op1.low >= 0)
1055 if (code == CEIL_MOD_EXPR)
1056 op1.low += op2.low - 1;
1057 res.low = op1.low % op2.low, res.high = 0;
1058 break;
1061 /* ... fall through ... */
1063 case ROUND_MOD_EXPR:
1064 if (double_int_zero_p (op2))
1065 return NULL_TREE;
1066 overflow = div_and_round_double (code, uns,
1067 op1.low, op1.high, op2.low, op2.high,
1068 &tmp.low, &tmp.high,
1069 &res.low, &res.high);
1070 break;
1072 case MIN_EXPR:
1073 res = double_int_min (op1, op2, uns);
1074 break;
1076 case MAX_EXPR:
1077 res = double_int_max (op1, op2, uns);
1078 break;
1080 default:
1081 return NULL_TREE;
1084 t = force_fit_type_double (TREE_TYPE (arg1), res, 1,
1085 ((!uns || is_sizetype) && overflow)
1086 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1088 return t;
1091 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1092 constant. We assume ARG1 and ARG2 have the same data type, or at least
1093 are the same kind of constant and the same machine mode. Return zero if
1094 combining the constants is not allowed in the current operating mode. */
1096 static tree
1097 const_binop (enum tree_code code, tree arg1, tree arg2)
1099 /* Sanity check for the recursive cases. */
1100 if (!arg1 || !arg2)
1101 return NULL_TREE;
1103 STRIP_NOPS (arg1);
1104 STRIP_NOPS (arg2);
1106 if (TREE_CODE (arg1) == INTEGER_CST)
1107 return int_const_binop (code, arg1, arg2);
1109 if (TREE_CODE (arg1) == REAL_CST)
1111 enum machine_mode mode;
1112 REAL_VALUE_TYPE d1;
1113 REAL_VALUE_TYPE d2;
1114 REAL_VALUE_TYPE value;
1115 REAL_VALUE_TYPE result;
1116 bool inexact;
1117 tree t, type;
1119 /* The following codes are handled by real_arithmetic. */
1120 switch (code)
1122 case PLUS_EXPR:
1123 case MINUS_EXPR:
1124 case MULT_EXPR:
1125 case RDIV_EXPR:
1126 case MIN_EXPR:
1127 case MAX_EXPR:
1128 break;
1130 default:
1131 return NULL_TREE;
1134 d1 = TREE_REAL_CST (arg1);
1135 d2 = TREE_REAL_CST (arg2);
1137 type = TREE_TYPE (arg1);
1138 mode = TYPE_MODE (type);
1140 /* Don't perform operation if we honor signaling NaNs and
1141 either operand is a NaN. */
1142 if (HONOR_SNANS (mode)
1143 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1144 return NULL_TREE;
1146 /* Don't perform operation if it would raise a division
1147 by zero exception. */
1148 if (code == RDIV_EXPR
1149 && REAL_VALUES_EQUAL (d2, dconst0)
1150 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1151 return NULL_TREE;
1153 /* If either operand is a NaN, just return it. Otherwise, set up
1154 for floating-point trap; we return an overflow. */
1155 if (REAL_VALUE_ISNAN (d1))
1156 return arg1;
1157 else if (REAL_VALUE_ISNAN (d2))
1158 return arg2;
1160 inexact = real_arithmetic (&value, code, &d1, &d2);
1161 real_convert (&result, mode, &value);
1163 /* Don't constant fold this floating point operation if
1164 the result has overflowed and flag_trapping_math. */
1165 if (flag_trapping_math
1166 && MODE_HAS_INFINITIES (mode)
1167 && REAL_VALUE_ISINF (result)
1168 && !REAL_VALUE_ISINF (d1)
1169 && !REAL_VALUE_ISINF (d2))
1170 return NULL_TREE;
1172 /* Don't constant fold this floating point operation if the
1173 result may dependent upon the run-time rounding mode and
1174 flag_rounding_math is set, or if GCC's software emulation
1175 is unable to accurately represent the result. */
1176 if ((flag_rounding_math
1177 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1178 && (inexact || !real_identical (&result, &value)))
1179 return NULL_TREE;
1181 t = build_real (type, result);
1183 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1184 return t;
1187 if (TREE_CODE (arg1) == FIXED_CST)
1189 FIXED_VALUE_TYPE f1;
1190 FIXED_VALUE_TYPE f2;
1191 FIXED_VALUE_TYPE result;
1192 tree t, type;
1193 int sat_p;
1194 bool overflow_p;
1196 /* The following codes are handled by fixed_arithmetic. */
1197 switch (code)
1199 case PLUS_EXPR:
1200 case MINUS_EXPR:
1201 case MULT_EXPR:
1202 case TRUNC_DIV_EXPR:
1203 f2 = TREE_FIXED_CST (arg2);
1204 break;
1206 case LSHIFT_EXPR:
1207 case RSHIFT_EXPR:
1208 f2.data.high = TREE_INT_CST_HIGH (arg2);
1209 f2.data.low = TREE_INT_CST_LOW (arg2);
1210 f2.mode = SImode;
1211 break;
1213 default:
1214 return NULL_TREE;
1217 f1 = TREE_FIXED_CST (arg1);
1218 type = TREE_TYPE (arg1);
1219 sat_p = TYPE_SATURATING (type);
1220 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1221 t = build_fixed (type, result);
1222 /* Propagate overflow flags. */
1223 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1224 TREE_OVERFLOW (t) = 1;
1225 return t;
1228 if (TREE_CODE (arg1) == COMPLEX_CST)
1230 tree type = TREE_TYPE (arg1);
1231 tree r1 = TREE_REALPART (arg1);
1232 tree i1 = TREE_IMAGPART (arg1);
1233 tree r2 = TREE_REALPART (arg2);
1234 tree i2 = TREE_IMAGPART (arg2);
1235 tree real, imag;
1237 switch (code)
1239 case PLUS_EXPR:
1240 case MINUS_EXPR:
1241 real = const_binop (code, r1, r2);
1242 imag = const_binop (code, i1, i2);
1243 break;
1245 case MULT_EXPR:
1246 if (COMPLEX_FLOAT_TYPE_P (type))
1247 return do_mpc_arg2 (arg1, arg2, type,
1248 /* do_nonfinite= */ folding_initializer,
1249 mpc_mul);
1251 real = const_binop (MINUS_EXPR,
1252 const_binop (MULT_EXPR, r1, r2),
1253 const_binop (MULT_EXPR, i1, i2));
1254 imag = const_binop (PLUS_EXPR,
1255 const_binop (MULT_EXPR, r1, i2),
1256 const_binop (MULT_EXPR, i1, r2));
1257 break;
1259 case RDIV_EXPR:
1260 if (COMPLEX_FLOAT_TYPE_P (type))
1261 return do_mpc_arg2 (arg1, arg2, type,
1262 /* do_nonfinite= */ folding_initializer,
1263 mpc_div);
1264 /* Fallthru ... */
1265 case TRUNC_DIV_EXPR:
1266 case CEIL_DIV_EXPR:
1267 case FLOOR_DIV_EXPR:
1268 case ROUND_DIV_EXPR:
1269 if (flag_complex_method == 0)
1271 /* Keep this algorithm in sync with
1272 tree-complex.c:expand_complex_div_straight().
1274 Expand complex division to scalars, straightforward algorithm.
1275 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1276 t = br*br + bi*bi
1278 tree magsquared
1279 = const_binop (PLUS_EXPR,
1280 const_binop (MULT_EXPR, r2, r2),
1281 const_binop (MULT_EXPR, i2, i2));
1282 tree t1
1283 = const_binop (PLUS_EXPR,
1284 const_binop (MULT_EXPR, r1, r2),
1285 const_binop (MULT_EXPR, i1, i2));
1286 tree t2
1287 = const_binop (MINUS_EXPR,
1288 const_binop (MULT_EXPR, i1, r2),
1289 const_binop (MULT_EXPR, r1, i2));
1291 real = const_binop (code, t1, magsquared);
1292 imag = const_binop (code, t2, magsquared);
1294 else
1296 /* Keep this algorithm in sync with
1297 tree-complex.c:expand_complex_div_wide().
1299 Expand complex division to scalars, modified algorithm to minimize
1300 overflow with wide input ranges. */
1301 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1302 fold_abs_const (r2, TREE_TYPE (type)),
1303 fold_abs_const (i2, TREE_TYPE (type)));
1305 if (integer_nonzerop (compare))
1307 /* In the TRUE branch, we compute
1308 ratio = br/bi;
1309 div = (br * ratio) + bi;
1310 tr = (ar * ratio) + ai;
1311 ti = (ai * ratio) - ar;
1312 tr = tr / div;
1313 ti = ti / div; */
1314 tree ratio = const_binop (code, r2, i2);
1315 tree div = const_binop (PLUS_EXPR, i2,
1316 const_binop (MULT_EXPR, r2, ratio));
1317 real = const_binop (MULT_EXPR, r1, ratio);
1318 real = const_binop (PLUS_EXPR, real, i1);
1319 real = const_binop (code, real, div);
1321 imag = const_binop (MULT_EXPR, i1, ratio);
1322 imag = const_binop (MINUS_EXPR, imag, r1);
1323 imag = const_binop (code, imag, div);
1325 else
1327 /* In the FALSE branch, we compute
1328 ratio = d/c;
1329 divisor = (d * ratio) + c;
1330 tr = (b * ratio) + a;
1331 ti = b - (a * ratio);
1332 tr = tr / div;
1333 ti = ti / div; */
1334 tree ratio = const_binop (code, i2, r2);
1335 tree div = const_binop (PLUS_EXPR, r2,
1336 const_binop (MULT_EXPR, i2, ratio));
1338 real = const_binop (MULT_EXPR, i1, ratio);
1339 real = const_binop (PLUS_EXPR, real, r1);
1340 real = const_binop (code, real, div);
1342 imag = const_binop (MULT_EXPR, r1, ratio);
1343 imag = const_binop (MINUS_EXPR, i1, imag);
1344 imag = const_binop (code, imag, div);
1347 break;
1349 default:
1350 return NULL_TREE;
1353 if (real && imag)
1354 return build_complex (type, real, imag);
1357 if (TREE_CODE (arg1) == VECTOR_CST)
1359 tree type = TREE_TYPE(arg1);
1360 int count = TYPE_VECTOR_SUBPARTS (type), i;
1361 tree elements1, elements2, list = NULL_TREE;
1363 if(TREE_CODE(arg2) != VECTOR_CST)
1364 return NULL_TREE;
1366 elements1 = TREE_VECTOR_CST_ELTS (arg1);
1367 elements2 = TREE_VECTOR_CST_ELTS (arg2);
1369 for (i = 0; i < count; i++)
1371 tree elem1, elem2, elem;
1373 /* The trailing elements can be empty and should be treated as 0 */
1374 if(!elements1)
1375 elem1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1376 else
1378 elem1 = TREE_VALUE(elements1);
1379 elements1 = TREE_CHAIN (elements1);
1382 if(!elements2)
1383 elem2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1384 else
1386 elem2 = TREE_VALUE(elements2);
1387 elements2 = TREE_CHAIN (elements2);
1390 elem = const_binop (code, elem1, elem2);
1392 /* It is possible that const_binop cannot handle the given
1393 code and return NULL_TREE */
1394 if(elem == NULL_TREE)
1395 return NULL_TREE;
1397 list = tree_cons (NULL_TREE, elem, list);
1399 return build_vector(type, nreverse(list));
1401 return NULL_TREE;
1404 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1405 indicates which particular sizetype to create. */
1407 tree
1408 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1410 return build_int_cst (sizetype_tab[(int) kind], number);
1413 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1414 is a tree code. The type of the result is taken from the operands.
1415 Both must be equivalent integer types, ala int_binop_types_match_p.
1416 If the operands are constant, so is the result. */
1418 tree
1419 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1421 tree type = TREE_TYPE (arg0);
1423 if (arg0 == error_mark_node || arg1 == error_mark_node)
1424 return error_mark_node;
1426 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1427 TREE_TYPE (arg1)));
1429 /* Handle the special case of two integer constants faster. */
1430 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1432 /* And some specific cases even faster than that. */
1433 if (code == PLUS_EXPR)
1435 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1436 return arg1;
1437 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1438 return arg0;
1440 else if (code == MINUS_EXPR)
1442 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1443 return arg0;
1445 else if (code == MULT_EXPR)
1447 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1448 return arg1;
1451 /* Handle general case of two integer constants. */
1452 return int_const_binop (code, arg0, arg1);
1455 return fold_build2_loc (loc, code, type, arg0, arg1);
1458 /* Given two values, either both of sizetype or both of bitsizetype,
1459 compute the difference between the two values. Return the value
1460 in signed type corresponding to the type of the operands. */
1462 tree
1463 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1465 tree type = TREE_TYPE (arg0);
1466 tree ctype;
1468 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1469 TREE_TYPE (arg1)));
1471 /* If the type is already signed, just do the simple thing. */
1472 if (!TYPE_UNSIGNED (type))
1473 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1475 if (type == sizetype)
1476 ctype = ssizetype;
1477 else if (type == bitsizetype)
1478 ctype = sbitsizetype;
1479 else
1480 ctype = signed_type_for (type);
1482 /* If either operand is not a constant, do the conversions to the signed
1483 type and subtract. The hardware will do the right thing with any
1484 overflow in the subtraction. */
1485 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1486 return size_binop_loc (loc, MINUS_EXPR,
1487 fold_convert_loc (loc, ctype, arg0),
1488 fold_convert_loc (loc, ctype, arg1));
1490 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1491 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1492 overflow) and negate (which can't either). Special-case a result
1493 of zero while we're here. */
1494 if (tree_int_cst_equal (arg0, arg1))
1495 return build_int_cst (ctype, 0);
1496 else if (tree_int_cst_lt (arg1, arg0))
1497 return fold_convert_loc (loc, ctype,
1498 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1499 else
1500 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1501 fold_convert_loc (loc, ctype,
1502 size_binop_loc (loc,
1503 MINUS_EXPR,
1504 arg1, arg0)));
1507 /* A subroutine of fold_convert_const handling conversions of an
1508 INTEGER_CST to another integer type. */
1510 static tree
1511 fold_convert_const_int_from_int (tree type, const_tree arg1)
1513 tree t;
1515 /* Given an integer constant, make new constant with new type,
1516 appropriately sign-extended or truncated. */
1517 t = force_fit_type_double (type, tree_to_double_int (arg1),
1518 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1519 (TREE_INT_CST_HIGH (arg1) < 0
1520 && (TYPE_UNSIGNED (type)
1521 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1522 | TREE_OVERFLOW (arg1));
1524 return t;
1527 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1528 to an integer type. */
1530 static tree
1531 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1533 int overflow = 0;
1534 tree t;
1536 /* The following code implements the floating point to integer
1537 conversion rules required by the Java Language Specification,
1538 that IEEE NaNs are mapped to zero and values that overflow
1539 the target precision saturate, i.e. values greater than
1540 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1541 are mapped to INT_MIN. These semantics are allowed by the
1542 C and C++ standards that simply state that the behavior of
1543 FP-to-integer conversion is unspecified upon overflow. */
1545 double_int val;
1546 REAL_VALUE_TYPE r;
1547 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1549 switch (code)
1551 case FIX_TRUNC_EXPR:
1552 real_trunc (&r, VOIDmode, &x);
1553 break;
1555 default:
1556 gcc_unreachable ();
1559 /* If R is NaN, return zero and show we have an overflow. */
1560 if (REAL_VALUE_ISNAN (r))
1562 overflow = 1;
1563 val = double_int_zero;
1566 /* See if R is less than the lower bound or greater than the
1567 upper bound. */
1569 if (! overflow)
1571 tree lt = TYPE_MIN_VALUE (type);
1572 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1573 if (REAL_VALUES_LESS (r, l))
1575 overflow = 1;
1576 val = tree_to_double_int (lt);
1580 if (! overflow)
1582 tree ut = TYPE_MAX_VALUE (type);
1583 if (ut)
1585 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1586 if (REAL_VALUES_LESS (u, r))
1588 overflow = 1;
1589 val = tree_to_double_int (ut);
1594 if (! overflow)
1595 real_to_integer2 ((HOST_WIDE_INT *) &val.low, &val.high, &r);
1597 t = force_fit_type_double (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1598 return t;
1601 /* A subroutine of fold_convert_const handling conversions of a
1602 FIXED_CST to an integer type. */
1604 static tree
1605 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1607 tree t;
1608 double_int temp, temp_trunc;
1609 unsigned int mode;
1611 /* Right shift FIXED_CST to temp by fbit. */
1612 temp = TREE_FIXED_CST (arg1).data;
1613 mode = TREE_FIXED_CST (arg1).mode;
1614 if (GET_MODE_FBIT (mode) < 2 * HOST_BITS_PER_WIDE_INT)
1616 temp = double_int_rshift (temp, GET_MODE_FBIT (mode),
1617 HOST_BITS_PER_DOUBLE_INT,
1618 SIGNED_FIXED_POINT_MODE_P (mode));
1620 /* Left shift temp to temp_trunc by fbit. */
1621 temp_trunc = double_int_lshift (temp, GET_MODE_FBIT (mode),
1622 HOST_BITS_PER_DOUBLE_INT,
1623 SIGNED_FIXED_POINT_MODE_P (mode));
1625 else
1627 temp = double_int_zero;
1628 temp_trunc = double_int_zero;
1631 /* If FIXED_CST is negative, we need to round the value toward 0.
1632 By checking if the fractional bits are not zero to add 1 to temp. */
1633 if (SIGNED_FIXED_POINT_MODE_P (mode)
1634 && double_int_negative_p (temp_trunc)
1635 && !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
1636 temp = double_int_add (temp, double_int_one);
1638 /* Given a fixed-point constant, make new constant with new type,
1639 appropriately sign-extended or truncated. */
1640 t = force_fit_type_double (type, temp, -1,
1641 (double_int_negative_p (temp)
1642 && (TYPE_UNSIGNED (type)
1643 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1644 | TREE_OVERFLOW (arg1));
1646 return t;
1649 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1650 to another floating point type. */
1652 static tree
1653 fold_convert_const_real_from_real (tree type, const_tree arg1)
1655 REAL_VALUE_TYPE value;
1656 tree t;
1658 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1659 t = build_real (type, value);
1661 /* If converting an infinity or NAN to a representation that doesn't
1662 have one, set the overflow bit so that we can produce some kind of
1663 error message at the appropriate point if necessary. It's not the
1664 most user-friendly message, but it's better than nothing. */
1665 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1666 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1667 TREE_OVERFLOW (t) = 1;
1668 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1669 && !MODE_HAS_NANS (TYPE_MODE (type)))
1670 TREE_OVERFLOW (t) = 1;
1671 /* Regular overflow, conversion produced an infinity in a mode that
1672 can't represent them. */
1673 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1674 && REAL_VALUE_ISINF (value)
1675 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1676 TREE_OVERFLOW (t) = 1;
1677 else
1678 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1679 return t;
1682 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1683 to a floating point type. */
1685 static tree
1686 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1688 REAL_VALUE_TYPE value;
1689 tree t;
1691 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1692 t = build_real (type, value);
1694 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1695 return t;
1698 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1699 to another fixed-point type. */
1701 static tree
1702 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
1704 FIXED_VALUE_TYPE value;
1705 tree t;
1706 bool overflow_p;
1708 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
1709 TYPE_SATURATING (type));
1710 t = build_fixed (type, value);
1712 /* Propagate overflow flags. */
1713 if (overflow_p | TREE_OVERFLOW (arg1))
1714 TREE_OVERFLOW (t) = 1;
1715 return t;
1718 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
1719 to a fixed-point type. */
1721 static tree
1722 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
1724 FIXED_VALUE_TYPE value;
1725 tree t;
1726 bool overflow_p;
1728 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type),
1729 TREE_INT_CST (arg1),
1730 TYPE_UNSIGNED (TREE_TYPE (arg1)),
1731 TYPE_SATURATING (type));
1732 t = build_fixed (type, value);
1734 /* Propagate overflow flags. */
1735 if (overflow_p | TREE_OVERFLOW (arg1))
1736 TREE_OVERFLOW (t) = 1;
1737 return t;
1740 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1741 to a fixed-point type. */
1743 static tree
1744 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
1746 FIXED_VALUE_TYPE value;
1747 tree t;
1748 bool overflow_p;
1750 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
1751 &TREE_REAL_CST (arg1),
1752 TYPE_SATURATING (type));
1753 t = build_fixed (type, value);
1755 /* Propagate overflow flags. */
1756 if (overflow_p | TREE_OVERFLOW (arg1))
1757 TREE_OVERFLOW (t) = 1;
1758 return t;
1761 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1762 type TYPE. If no simplification can be done return NULL_TREE. */
1764 static tree
1765 fold_convert_const (enum tree_code code, tree type, tree arg1)
1767 if (TREE_TYPE (arg1) == type)
1768 return arg1;
1770 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
1771 || TREE_CODE (type) == OFFSET_TYPE)
1773 if (TREE_CODE (arg1) == INTEGER_CST)
1774 return fold_convert_const_int_from_int (type, arg1);
1775 else if (TREE_CODE (arg1) == REAL_CST)
1776 return fold_convert_const_int_from_real (code, type, arg1);
1777 else if (TREE_CODE (arg1) == FIXED_CST)
1778 return fold_convert_const_int_from_fixed (type, arg1);
1780 else if (TREE_CODE (type) == REAL_TYPE)
1782 if (TREE_CODE (arg1) == INTEGER_CST)
1783 return build_real_from_int_cst (type, arg1);
1784 else if (TREE_CODE (arg1) == REAL_CST)
1785 return fold_convert_const_real_from_real (type, arg1);
1786 else if (TREE_CODE (arg1) == FIXED_CST)
1787 return fold_convert_const_real_from_fixed (type, arg1);
1789 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
1791 if (TREE_CODE (arg1) == FIXED_CST)
1792 return fold_convert_const_fixed_from_fixed (type, arg1);
1793 else if (TREE_CODE (arg1) == INTEGER_CST)
1794 return fold_convert_const_fixed_from_int (type, arg1);
1795 else if (TREE_CODE (arg1) == REAL_CST)
1796 return fold_convert_const_fixed_from_real (type, arg1);
1798 return NULL_TREE;
1801 /* Construct a vector of zero elements of vector type TYPE. */
1803 static tree
1804 build_zero_vector (tree type)
1806 tree t;
1808 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1809 return build_vector_from_val (type, t);
1812 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
1814 bool
1815 fold_convertible_p (const_tree type, const_tree arg)
1817 tree orig = TREE_TYPE (arg);
1819 if (type == orig)
1820 return true;
1822 if (TREE_CODE (arg) == ERROR_MARK
1823 || TREE_CODE (type) == ERROR_MARK
1824 || TREE_CODE (orig) == ERROR_MARK)
1825 return false;
1827 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
1828 return true;
1830 switch (TREE_CODE (type))
1832 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1833 case POINTER_TYPE: case REFERENCE_TYPE:
1834 case OFFSET_TYPE:
1835 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1836 || TREE_CODE (orig) == OFFSET_TYPE)
1837 return true;
1838 return (TREE_CODE (orig) == VECTOR_TYPE
1839 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1841 case REAL_TYPE:
1842 case FIXED_POINT_TYPE:
1843 case COMPLEX_TYPE:
1844 case VECTOR_TYPE:
1845 case VOID_TYPE:
1846 return TREE_CODE (type) == TREE_CODE (orig);
1848 default:
1849 return false;
1853 /* Convert expression ARG to type TYPE. Used by the middle-end for
1854 simple conversions in preference to calling the front-end's convert. */
1856 tree
1857 fold_convert_loc (location_t loc, tree type, tree arg)
1859 tree orig = TREE_TYPE (arg);
1860 tree tem;
1862 if (type == orig)
1863 return arg;
1865 if (TREE_CODE (arg) == ERROR_MARK
1866 || TREE_CODE (type) == ERROR_MARK
1867 || TREE_CODE (orig) == ERROR_MARK)
1868 return error_mark_node;
1870 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
1871 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1873 switch (TREE_CODE (type))
1875 case POINTER_TYPE:
1876 case REFERENCE_TYPE:
1877 /* Handle conversions between pointers to different address spaces. */
1878 if (POINTER_TYPE_P (orig)
1879 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
1880 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
1881 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
1882 /* fall through */
1884 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1885 case OFFSET_TYPE:
1886 if (TREE_CODE (arg) == INTEGER_CST)
1888 tem = fold_convert_const (NOP_EXPR, type, arg);
1889 if (tem != NULL_TREE)
1890 return tem;
1892 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1893 || TREE_CODE (orig) == OFFSET_TYPE)
1894 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1895 if (TREE_CODE (orig) == COMPLEX_TYPE)
1896 return fold_convert_loc (loc, type,
1897 fold_build1_loc (loc, REALPART_EXPR,
1898 TREE_TYPE (orig), arg));
1899 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
1900 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1901 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1903 case REAL_TYPE:
1904 if (TREE_CODE (arg) == INTEGER_CST)
1906 tem = fold_convert_const (FLOAT_EXPR, type, arg);
1907 if (tem != NULL_TREE)
1908 return tem;
1910 else if (TREE_CODE (arg) == REAL_CST)
1912 tem = fold_convert_const (NOP_EXPR, type, arg);
1913 if (tem != NULL_TREE)
1914 return tem;
1916 else if (TREE_CODE (arg) == FIXED_CST)
1918 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
1919 if (tem != NULL_TREE)
1920 return tem;
1923 switch (TREE_CODE (orig))
1925 case INTEGER_TYPE:
1926 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1927 case POINTER_TYPE: case REFERENCE_TYPE:
1928 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
1930 case REAL_TYPE:
1931 return fold_build1_loc (loc, NOP_EXPR, type, arg);
1933 case FIXED_POINT_TYPE:
1934 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
1936 case COMPLEX_TYPE:
1937 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1938 return fold_convert_loc (loc, type, tem);
1940 default:
1941 gcc_unreachable ();
1944 case FIXED_POINT_TYPE:
1945 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
1946 || TREE_CODE (arg) == REAL_CST)
1948 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
1949 if (tem != NULL_TREE)
1950 goto fold_convert_exit;
1953 switch (TREE_CODE (orig))
1955 case FIXED_POINT_TYPE:
1956 case INTEGER_TYPE:
1957 case ENUMERAL_TYPE:
1958 case BOOLEAN_TYPE:
1959 case REAL_TYPE:
1960 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
1962 case COMPLEX_TYPE:
1963 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1964 return fold_convert_loc (loc, type, tem);
1966 default:
1967 gcc_unreachable ();
1970 case COMPLEX_TYPE:
1971 switch (TREE_CODE (orig))
1973 case INTEGER_TYPE:
1974 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1975 case POINTER_TYPE: case REFERENCE_TYPE:
1976 case REAL_TYPE:
1977 case FIXED_POINT_TYPE:
1978 return fold_build2_loc (loc, COMPLEX_EXPR, type,
1979 fold_convert_loc (loc, TREE_TYPE (type), arg),
1980 fold_convert_loc (loc, TREE_TYPE (type),
1981 integer_zero_node));
1982 case COMPLEX_TYPE:
1984 tree rpart, ipart;
1986 if (TREE_CODE (arg) == COMPLEX_EXPR)
1988 rpart = fold_convert_loc (loc, TREE_TYPE (type),
1989 TREE_OPERAND (arg, 0));
1990 ipart = fold_convert_loc (loc, TREE_TYPE (type),
1991 TREE_OPERAND (arg, 1));
1992 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
1995 arg = save_expr (arg);
1996 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
1997 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
1998 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
1999 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2000 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2003 default:
2004 gcc_unreachable ();
2007 case VECTOR_TYPE:
2008 if (integer_zerop (arg))
2009 return build_zero_vector (type);
2010 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2011 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2012 || TREE_CODE (orig) == VECTOR_TYPE);
2013 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2015 case VOID_TYPE:
2016 tem = fold_ignored_result (arg);
2017 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2019 default:
2020 gcc_unreachable ();
2022 fold_convert_exit:
2023 protected_set_expr_location_unshare (tem, loc);
2024 return tem;
2027 /* Return false if expr can be assumed not to be an lvalue, true
2028 otherwise. */
2030 static bool
2031 maybe_lvalue_p (const_tree x)
2033 /* We only need to wrap lvalue tree codes. */
2034 switch (TREE_CODE (x))
2036 case VAR_DECL:
2037 case PARM_DECL:
2038 case RESULT_DECL:
2039 case LABEL_DECL:
2040 case FUNCTION_DECL:
2041 case SSA_NAME:
2043 case COMPONENT_REF:
2044 case MEM_REF:
2045 case INDIRECT_REF:
2046 case ARRAY_REF:
2047 case ARRAY_RANGE_REF:
2048 case BIT_FIELD_REF:
2049 case OBJ_TYPE_REF:
2051 case REALPART_EXPR:
2052 case IMAGPART_EXPR:
2053 case PREINCREMENT_EXPR:
2054 case PREDECREMENT_EXPR:
2055 case SAVE_EXPR:
2056 case TRY_CATCH_EXPR:
2057 case WITH_CLEANUP_EXPR:
2058 case COMPOUND_EXPR:
2059 case MODIFY_EXPR:
2060 case TARGET_EXPR:
2061 case COND_EXPR:
2062 case BIND_EXPR:
2063 break;
2065 default:
2066 /* Assume the worst for front-end tree codes. */
2067 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2068 break;
2069 return false;
2072 return true;
2075 /* Return an expr equal to X but certainly not valid as an lvalue. */
2077 tree
2078 non_lvalue_loc (location_t loc, tree x)
2080 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2081 us. */
2082 if (in_gimple_form)
2083 return x;
2085 if (! maybe_lvalue_p (x))
2086 return x;
2087 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2090 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2091 Zero means allow extended lvalues. */
2093 int pedantic_lvalues;
2095 /* When pedantic, return an expr equal to X but certainly not valid as a
2096 pedantic lvalue. Otherwise, return X. */
2098 static tree
2099 pedantic_non_lvalue_loc (location_t loc, tree x)
2101 if (pedantic_lvalues)
2102 return non_lvalue_loc (loc, x);
2104 return protected_set_expr_location_unshare (x, loc);
2107 /* Given a tree comparison code, return the code that is the logical inverse
2108 of the given code. It is not safe to do this for floating-point
2109 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2110 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2112 enum tree_code
2113 invert_tree_comparison (enum tree_code code, bool honor_nans)
2115 if (honor_nans && flag_trapping_math)
2116 return ERROR_MARK;
2118 switch (code)
2120 case EQ_EXPR:
2121 return NE_EXPR;
2122 case NE_EXPR:
2123 return EQ_EXPR;
2124 case GT_EXPR:
2125 return honor_nans ? UNLE_EXPR : LE_EXPR;
2126 case GE_EXPR:
2127 return honor_nans ? UNLT_EXPR : LT_EXPR;
2128 case LT_EXPR:
2129 return honor_nans ? UNGE_EXPR : GE_EXPR;
2130 case LE_EXPR:
2131 return honor_nans ? UNGT_EXPR : GT_EXPR;
2132 case LTGT_EXPR:
2133 return UNEQ_EXPR;
2134 case UNEQ_EXPR:
2135 return LTGT_EXPR;
2136 case UNGT_EXPR:
2137 return LE_EXPR;
2138 case UNGE_EXPR:
2139 return LT_EXPR;
2140 case UNLT_EXPR:
2141 return GE_EXPR;
2142 case UNLE_EXPR:
2143 return GT_EXPR;
2144 case ORDERED_EXPR:
2145 return UNORDERED_EXPR;
2146 case UNORDERED_EXPR:
2147 return ORDERED_EXPR;
2148 default:
2149 gcc_unreachable ();
2153 /* Similar, but return the comparison that results if the operands are
2154 swapped. This is safe for floating-point. */
2156 enum tree_code
2157 swap_tree_comparison (enum tree_code code)
2159 switch (code)
2161 case EQ_EXPR:
2162 case NE_EXPR:
2163 case ORDERED_EXPR:
2164 case UNORDERED_EXPR:
2165 case LTGT_EXPR:
2166 case UNEQ_EXPR:
2167 return code;
2168 case GT_EXPR:
2169 return LT_EXPR;
2170 case GE_EXPR:
2171 return LE_EXPR;
2172 case LT_EXPR:
2173 return GT_EXPR;
2174 case LE_EXPR:
2175 return GE_EXPR;
2176 case UNGT_EXPR:
2177 return UNLT_EXPR;
2178 case UNGE_EXPR:
2179 return UNLE_EXPR;
2180 case UNLT_EXPR:
2181 return UNGT_EXPR;
2182 case UNLE_EXPR:
2183 return UNGE_EXPR;
2184 default:
2185 gcc_unreachable ();
2190 /* Convert a comparison tree code from an enum tree_code representation
2191 into a compcode bit-based encoding. This function is the inverse of
2192 compcode_to_comparison. */
2194 static enum comparison_code
2195 comparison_to_compcode (enum tree_code code)
2197 switch (code)
2199 case LT_EXPR:
2200 return COMPCODE_LT;
2201 case EQ_EXPR:
2202 return COMPCODE_EQ;
2203 case LE_EXPR:
2204 return COMPCODE_LE;
2205 case GT_EXPR:
2206 return COMPCODE_GT;
2207 case NE_EXPR:
2208 return COMPCODE_NE;
2209 case GE_EXPR:
2210 return COMPCODE_GE;
2211 case ORDERED_EXPR:
2212 return COMPCODE_ORD;
2213 case UNORDERED_EXPR:
2214 return COMPCODE_UNORD;
2215 case UNLT_EXPR:
2216 return COMPCODE_UNLT;
2217 case UNEQ_EXPR:
2218 return COMPCODE_UNEQ;
2219 case UNLE_EXPR:
2220 return COMPCODE_UNLE;
2221 case UNGT_EXPR:
2222 return COMPCODE_UNGT;
2223 case LTGT_EXPR:
2224 return COMPCODE_LTGT;
2225 case UNGE_EXPR:
2226 return COMPCODE_UNGE;
2227 default:
2228 gcc_unreachable ();
2232 /* Convert a compcode bit-based encoding of a comparison operator back
2233 to GCC's enum tree_code representation. This function is the
2234 inverse of comparison_to_compcode. */
2236 static enum tree_code
2237 compcode_to_comparison (enum comparison_code code)
2239 switch (code)
2241 case COMPCODE_LT:
2242 return LT_EXPR;
2243 case COMPCODE_EQ:
2244 return EQ_EXPR;
2245 case COMPCODE_LE:
2246 return LE_EXPR;
2247 case COMPCODE_GT:
2248 return GT_EXPR;
2249 case COMPCODE_NE:
2250 return NE_EXPR;
2251 case COMPCODE_GE:
2252 return GE_EXPR;
2253 case COMPCODE_ORD:
2254 return ORDERED_EXPR;
2255 case COMPCODE_UNORD:
2256 return UNORDERED_EXPR;
2257 case COMPCODE_UNLT:
2258 return UNLT_EXPR;
2259 case COMPCODE_UNEQ:
2260 return UNEQ_EXPR;
2261 case COMPCODE_UNLE:
2262 return UNLE_EXPR;
2263 case COMPCODE_UNGT:
2264 return UNGT_EXPR;
2265 case COMPCODE_LTGT:
2266 return LTGT_EXPR;
2267 case COMPCODE_UNGE:
2268 return UNGE_EXPR;
2269 default:
2270 gcc_unreachable ();
2274 /* Return a tree for the comparison which is the combination of
2275 doing the AND or OR (depending on CODE) of the two operations LCODE
2276 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2277 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2278 if this makes the transformation invalid. */
2280 tree
2281 combine_comparisons (location_t loc,
2282 enum tree_code code, enum tree_code lcode,
2283 enum tree_code rcode, tree truth_type,
2284 tree ll_arg, tree lr_arg)
2286 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2287 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2288 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2289 int compcode;
2291 switch (code)
2293 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2294 compcode = lcompcode & rcompcode;
2295 break;
2297 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2298 compcode = lcompcode | rcompcode;
2299 break;
2301 default:
2302 return NULL_TREE;
2305 if (!honor_nans)
2307 /* Eliminate unordered comparisons, as well as LTGT and ORD
2308 which are not used unless the mode has NaNs. */
2309 compcode &= ~COMPCODE_UNORD;
2310 if (compcode == COMPCODE_LTGT)
2311 compcode = COMPCODE_NE;
2312 else if (compcode == COMPCODE_ORD)
2313 compcode = COMPCODE_TRUE;
2315 else if (flag_trapping_math)
2317 /* Check that the original operation and the optimized ones will trap
2318 under the same condition. */
2319 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2320 && (lcompcode != COMPCODE_EQ)
2321 && (lcompcode != COMPCODE_ORD);
2322 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2323 && (rcompcode != COMPCODE_EQ)
2324 && (rcompcode != COMPCODE_ORD);
2325 bool trap = (compcode & COMPCODE_UNORD) == 0
2326 && (compcode != COMPCODE_EQ)
2327 && (compcode != COMPCODE_ORD);
2329 /* In a short-circuited boolean expression the LHS might be
2330 such that the RHS, if evaluated, will never trap. For
2331 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2332 if neither x nor y is NaN. (This is a mixed blessing: for
2333 example, the expression above will never trap, hence
2334 optimizing it to x < y would be invalid). */
2335 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2336 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2337 rtrap = false;
2339 /* If the comparison was short-circuited, and only the RHS
2340 trapped, we may now generate a spurious trap. */
2341 if (rtrap && !ltrap
2342 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2343 return NULL_TREE;
2345 /* If we changed the conditions that cause a trap, we lose. */
2346 if ((ltrap || rtrap) != trap)
2347 return NULL_TREE;
2350 if (compcode == COMPCODE_TRUE)
2351 return constant_boolean_node (true, truth_type);
2352 else if (compcode == COMPCODE_FALSE)
2353 return constant_boolean_node (false, truth_type);
2354 else
2356 enum tree_code tcode;
2358 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2359 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2363 /* Return nonzero if two operands (typically of the same tree node)
2364 are necessarily equal. If either argument has side-effects this
2365 function returns zero. FLAGS modifies behavior as follows:
2367 If OEP_ONLY_CONST is set, only return nonzero for constants.
2368 This function tests whether the operands are indistinguishable;
2369 it does not test whether they are equal using C's == operation.
2370 The distinction is important for IEEE floating point, because
2371 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2372 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2374 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2375 even though it may hold multiple values during a function.
2376 This is because a GCC tree node guarantees that nothing else is
2377 executed between the evaluation of its "operands" (which may often
2378 be evaluated in arbitrary order). Hence if the operands themselves
2379 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2380 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2381 unset means assuming isochronic (or instantaneous) tree equivalence.
2382 Unless comparing arbitrary expression trees, such as from different
2383 statements, this flag can usually be left unset.
2385 If OEP_PURE_SAME is set, then pure functions with identical arguments
2386 are considered the same. It is used when the caller has other ways
2387 to ensure that global memory is unchanged in between. */
2390 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2392 /* If either is ERROR_MARK, they aren't equal. */
2393 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2394 || TREE_TYPE (arg0) == error_mark_node
2395 || TREE_TYPE (arg1) == error_mark_node)
2396 return 0;
2398 /* Similar, if either does not have a type (like a released SSA name),
2399 they aren't equal. */
2400 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2401 return 0;
2403 /* Check equality of integer constants before bailing out due to
2404 precision differences. */
2405 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2406 return tree_int_cst_equal (arg0, arg1);
2408 /* If both types don't have the same signedness, then we can't consider
2409 them equal. We must check this before the STRIP_NOPS calls
2410 because they may change the signedness of the arguments. As pointers
2411 strictly don't have a signedness, require either two pointers or
2412 two non-pointers as well. */
2413 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2414 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2415 return 0;
2417 /* We cannot consider pointers to different address space equal. */
2418 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2419 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2420 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2421 return 0;
2423 /* If both types don't have the same precision, then it is not safe
2424 to strip NOPs. */
2425 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
2426 return 0;
2428 STRIP_NOPS (arg0);
2429 STRIP_NOPS (arg1);
2431 /* In case both args are comparisons but with different comparison
2432 code, try to swap the comparison operands of one arg to produce
2433 a match and compare that variant. */
2434 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2435 && COMPARISON_CLASS_P (arg0)
2436 && COMPARISON_CLASS_P (arg1))
2438 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2440 if (TREE_CODE (arg0) == swap_code)
2441 return operand_equal_p (TREE_OPERAND (arg0, 0),
2442 TREE_OPERAND (arg1, 1), flags)
2443 && operand_equal_p (TREE_OPERAND (arg0, 1),
2444 TREE_OPERAND (arg1, 0), flags);
2447 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2448 /* This is needed for conversions and for COMPONENT_REF.
2449 Might as well play it safe and always test this. */
2450 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2451 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2452 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2453 return 0;
2455 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2456 We don't care about side effects in that case because the SAVE_EXPR
2457 takes care of that for us. In all other cases, two expressions are
2458 equal if they have no side effects. If we have two identical
2459 expressions with side effects that should be treated the same due
2460 to the only side effects being identical SAVE_EXPR's, that will
2461 be detected in the recursive calls below.
2462 If we are taking an invariant address of two identical objects
2463 they are necessarily equal as well. */
2464 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2465 && (TREE_CODE (arg0) == SAVE_EXPR
2466 || (flags & OEP_CONSTANT_ADDRESS_OF)
2467 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2468 return 1;
2470 /* Next handle constant cases, those for which we can return 1 even
2471 if ONLY_CONST is set. */
2472 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2473 switch (TREE_CODE (arg0))
2475 case INTEGER_CST:
2476 return tree_int_cst_equal (arg0, arg1);
2478 case FIXED_CST:
2479 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2480 TREE_FIXED_CST (arg1));
2482 case REAL_CST:
2483 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2484 TREE_REAL_CST (arg1)))
2485 return 1;
2488 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
2490 /* If we do not distinguish between signed and unsigned zero,
2491 consider them equal. */
2492 if (real_zerop (arg0) && real_zerop (arg1))
2493 return 1;
2495 return 0;
2497 case VECTOR_CST:
2499 tree v1, v2;
2501 v1 = TREE_VECTOR_CST_ELTS (arg0);
2502 v2 = TREE_VECTOR_CST_ELTS (arg1);
2503 while (v1 && v2)
2505 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2506 flags))
2507 return 0;
2508 v1 = TREE_CHAIN (v1);
2509 v2 = TREE_CHAIN (v2);
2512 return v1 == v2;
2515 case COMPLEX_CST:
2516 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2517 flags)
2518 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2519 flags));
2521 case STRING_CST:
2522 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2523 && ! memcmp (TREE_STRING_POINTER (arg0),
2524 TREE_STRING_POINTER (arg1),
2525 TREE_STRING_LENGTH (arg0)));
2527 case ADDR_EXPR:
2528 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2529 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2530 ? OEP_CONSTANT_ADDRESS_OF : 0);
2531 default:
2532 break;
2535 if (flags & OEP_ONLY_CONST)
2536 return 0;
2538 /* Define macros to test an operand from arg0 and arg1 for equality and a
2539 variant that allows null and views null as being different from any
2540 non-null value. In the latter case, if either is null, the both
2541 must be; otherwise, do the normal comparison. */
2542 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2543 TREE_OPERAND (arg1, N), flags)
2545 #define OP_SAME_WITH_NULL(N) \
2546 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2547 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2549 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2551 case tcc_unary:
2552 /* Two conversions are equal only if signedness and modes match. */
2553 switch (TREE_CODE (arg0))
2555 CASE_CONVERT:
2556 case FIX_TRUNC_EXPR:
2557 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2558 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2559 return 0;
2560 break;
2561 default:
2562 break;
2565 return OP_SAME (0);
2568 case tcc_comparison:
2569 case tcc_binary:
2570 if (OP_SAME (0) && OP_SAME (1))
2571 return 1;
2573 /* For commutative ops, allow the other order. */
2574 return (commutative_tree_code (TREE_CODE (arg0))
2575 && operand_equal_p (TREE_OPERAND (arg0, 0),
2576 TREE_OPERAND (arg1, 1), flags)
2577 && operand_equal_p (TREE_OPERAND (arg0, 1),
2578 TREE_OPERAND (arg1, 0), flags));
2580 case tcc_reference:
2581 /* If either of the pointer (or reference) expressions we are
2582 dereferencing contain a side effect, these cannot be equal. */
2583 if (TREE_SIDE_EFFECTS (arg0)
2584 || TREE_SIDE_EFFECTS (arg1))
2585 return 0;
2587 switch (TREE_CODE (arg0))
2589 case INDIRECT_REF:
2590 case REALPART_EXPR:
2591 case IMAGPART_EXPR:
2592 return OP_SAME (0);
2594 case MEM_REF:
2595 /* Require equal access sizes, and similar pointer types.
2596 We can have incomplete types for array references of
2597 variable-sized arrays from the Fortran frontent
2598 though. */
2599 return ((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2600 || (TYPE_SIZE (TREE_TYPE (arg0))
2601 && TYPE_SIZE (TREE_TYPE (arg1))
2602 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2603 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2604 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg0, 1)))
2605 == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg1, 1))))
2606 && OP_SAME (0) && OP_SAME (1));
2608 case ARRAY_REF:
2609 case ARRAY_RANGE_REF:
2610 /* Operands 2 and 3 may be null.
2611 Compare the array index by value if it is constant first as we
2612 may have different types but same value here. */
2613 return (OP_SAME (0)
2614 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2615 TREE_OPERAND (arg1, 1))
2616 || OP_SAME (1))
2617 && OP_SAME_WITH_NULL (2)
2618 && OP_SAME_WITH_NULL (3));
2620 case COMPONENT_REF:
2621 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2622 may be NULL when we're called to compare MEM_EXPRs. */
2623 return OP_SAME_WITH_NULL (0)
2624 && OP_SAME (1)
2625 && OP_SAME_WITH_NULL (2);
2627 case BIT_FIELD_REF:
2628 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2630 default:
2631 return 0;
2634 case tcc_expression:
2635 switch (TREE_CODE (arg0))
2637 case ADDR_EXPR:
2638 case TRUTH_NOT_EXPR:
2639 return OP_SAME (0);
2641 case TRUTH_ANDIF_EXPR:
2642 case TRUTH_ORIF_EXPR:
2643 return OP_SAME (0) && OP_SAME (1);
2645 case FMA_EXPR:
2646 case WIDEN_MULT_PLUS_EXPR:
2647 case WIDEN_MULT_MINUS_EXPR:
2648 if (!OP_SAME (2))
2649 return 0;
2650 /* The multiplcation operands are commutative. */
2651 /* FALLTHRU */
2653 case TRUTH_AND_EXPR:
2654 case TRUTH_OR_EXPR:
2655 case TRUTH_XOR_EXPR:
2656 if (OP_SAME (0) && OP_SAME (1))
2657 return 1;
2659 /* Otherwise take into account this is a commutative operation. */
2660 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2661 TREE_OPERAND (arg1, 1), flags)
2662 && operand_equal_p (TREE_OPERAND (arg0, 1),
2663 TREE_OPERAND (arg1, 0), flags));
2665 case COND_EXPR:
2666 case VEC_COND_EXPR:
2667 case DOT_PROD_EXPR:
2668 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2670 default:
2671 return 0;
2674 case tcc_vl_exp:
2675 switch (TREE_CODE (arg0))
2677 case CALL_EXPR:
2678 /* If the CALL_EXPRs call different functions, then they
2679 clearly can not be equal. */
2680 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
2681 flags))
2682 return 0;
2685 unsigned int cef = call_expr_flags (arg0);
2686 if (flags & OEP_PURE_SAME)
2687 cef &= ECF_CONST | ECF_PURE;
2688 else
2689 cef &= ECF_CONST;
2690 if (!cef)
2691 return 0;
2694 /* Now see if all the arguments are the same. */
2696 const_call_expr_arg_iterator iter0, iter1;
2697 const_tree a0, a1;
2698 for (a0 = first_const_call_expr_arg (arg0, &iter0),
2699 a1 = first_const_call_expr_arg (arg1, &iter1);
2700 a0 && a1;
2701 a0 = next_const_call_expr_arg (&iter0),
2702 a1 = next_const_call_expr_arg (&iter1))
2703 if (! operand_equal_p (a0, a1, flags))
2704 return 0;
2706 /* If we get here and both argument lists are exhausted
2707 then the CALL_EXPRs are equal. */
2708 return ! (a0 || a1);
2710 default:
2711 return 0;
2714 case tcc_declaration:
2715 /* Consider __builtin_sqrt equal to sqrt. */
2716 return (TREE_CODE (arg0) == FUNCTION_DECL
2717 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2718 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2719 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2721 default:
2722 return 0;
2725 #undef OP_SAME
2726 #undef OP_SAME_WITH_NULL
2729 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2730 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2732 When in doubt, return 0. */
2734 static int
2735 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2737 int unsignedp1, unsignedpo;
2738 tree primarg0, primarg1, primother;
2739 unsigned int correct_width;
2741 if (operand_equal_p (arg0, arg1, 0))
2742 return 1;
2744 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2745 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2746 return 0;
2748 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2749 and see if the inner values are the same. This removes any
2750 signedness comparison, which doesn't matter here. */
2751 primarg0 = arg0, primarg1 = arg1;
2752 STRIP_NOPS (primarg0);
2753 STRIP_NOPS (primarg1);
2754 if (operand_equal_p (primarg0, primarg1, 0))
2755 return 1;
2757 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2758 actual comparison operand, ARG0.
2760 First throw away any conversions to wider types
2761 already present in the operands. */
2763 primarg1 = get_narrower (arg1, &unsignedp1);
2764 primother = get_narrower (other, &unsignedpo);
2766 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2767 if (unsignedp1 == unsignedpo
2768 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2769 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2771 tree type = TREE_TYPE (arg0);
2773 /* Make sure shorter operand is extended the right way
2774 to match the longer operand. */
2775 primarg1 = fold_convert (signed_or_unsigned_type_for
2776 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2778 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2779 return 1;
2782 return 0;
2785 /* See if ARG is an expression that is either a comparison or is performing
2786 arithmetic on comparisons. The comparisons must only be comparing
2787 two different values, which will be stored in *CVAL1 and *CVAL2; if
2788 they are nonzero it means that some operands have already been found.
2789 No variables may be used anywhere else in the expression except in the
2790 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2791 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2793 If this is true, return 1. Otherwise, return zero. */
2795 static int
2796 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2798 enum tree_code code = TREE_CODE (arg);
2799 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2801 /* We can handle some of the tcc_expression cases here. */
2802 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2803 tclass = tcc_unary;
2804 else if (tclass == tcc_expression
2805 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2806 || code == COMPOUND_EXPR))
2807 tclass = tcc_binary;
2809 else if (tclass == tcc_expression && code == SAVE_EXPR
2810 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2812 /* If we've already found a CVAL1 or CVAL2, this expression is
2813 two complex to handle. */
2814 if (*cval1 || *cval2)
2815 return 0;
2817 tclass = tcc_unary;
2818 *save_p = 1;
2821 switch (tclass)
2823 case tcc_unary:
2824 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2826 case tcc_binary:
2827 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2828 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2829 cval1, cval2, save_p));
2831 case tcc_constant:
2832 return 1;
2834 case tcc_expression:
2835 if (code == COND_EXPR)
2836 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2837 cval1, cval2, save_p)
2838 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2839 cval1, cval2, save_p)
2840 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2841 cval1, cval2, save_p));
2842 return 0;
2844 case tcc_comparison:
2845 /* First see if we can handle the first operand, then the second. For
2846 the second operand, we know *CVAL1 can't be zero. It must be that
2847 one side of the comparison is each of the values; test for the
2848 case where this isn't true by failing if the two operands
2849 are the same. */
2851 if (operand_equal_p (TREE_OPERAND (arg, 0),
2852 TREE_OPERAND (arg, 1), 0))
2853 return 0;
2855 if (*cval1 == 0)
2856 *cval1 = TREE_OPERAND (arg, 0);
2857 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2859 else if (*cval2 == 0)
2860 *cval2 = TREE_OPERAND (arg, 0);
2861 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2863 else
2864 return 0;
2866 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2868 else if (*cval2 == 0)
2869 *cval2 = TREE_OPERAND (arg, 1);
2870 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2872 else
2873 return 0;
2875 return 1;
2877 default:
2878 return 0;
2882 /* ARG is a tree that is known to contain just arithmetic operations and
2883 comparisons. Evaluate the operations in the tree substituting NEW0 for
2884 any occurrence of OLD0 as an operand of a comparison and likewise for
2885 NEW1 and OLD1. */
2887 static tree
2888 eval_subst (location_t loc, tree arg, tree old0, tree new0,
2889 tree old1, tree new1)
2891 tree type = TREE_TYPE (arg);
2892 enum tree_code code = TREE_CODE (arg);
2893 enum tree_code_class tclass = TREE_CODE_CLASS (code);
2895 /* We can handle some of the tcc_expression cases here. */
2896 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
2897 tclass = tcc_unary;
2898 else if (tclass == tcc_expression
2899 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2900 tclass = tcc_binary;
2902 switch (tclass)
2904 case tcc_unary:
2905 return fold_build1_loc (loc, code, type,
2906 eval_subst (loc, TREE_OPERAND (arg, 0),
2907 old0, new0, old1, new1));
2909 case tcc_binary:
2910 return fold_build2_loc (loc, code, type,
2911 eval_subst (loc, TREE_OPERAND (arg, 0),
2912 old0, new0, old1, new1),
2913 eval_subst (loc, TREE_OPERAND (arg, 1),
2914 old0, new0, old1, new1));
2916 case tcc_expression:
2917 switch (code)
2919 case SAVE_EXPR:
2920 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
2921 old1, new1);
2923 case COMPOUND_EXPR:
2924 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
2925 old1, new1);
2927 case COND_EXPR:
2928 return fold_build3_loc (loc, code, type,
2929 eval_subst (loc, TREE_OPERAND (arg, 0),
2930 old0, new0, old1, new1),
2931 eval_subst (loc, TREE_OPERAND (arg, 1),
2932 old0, new0, old1, new1),
2933 eval_subst (loc, TREE_OPERAND (arg, 2),
2934 old0, new0, old1, new1));
2935 default:
2936 break;
2938 /* Fall through - ??? */
2940 case tcc_comparison:
2942 tree arg0 = TREE_OPERAND (arg, 0);
2943 tree arg1 = TREE_OPERAND (arg, 1);
2945 /* We need to check both for exact equality and tree equality. The
2946 former will be true if the operand has a side-effect. In that
2947 case, we know the operand occurred exactly once. */
2949 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2950 arg0 = new0;
2951 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2952 arg0 = new1;
2954 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2955 arg1 = new0;
2956 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2957 arg1 = new1;
2959 return fold_build2_loc (loc, code, type, arg0, arg1);
2962 default:
2963 return arg;
2967 /* Return a tree for the case when the result of an expression is RESULT
2968 converted to TYPE and OMITTED was previously an operand of the expression
2969 but is now not needed (e.g., we folded OMITTED * 0).
2971 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2972 the conversion of RESULT to TYPE. */
2974 tree
2975 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
2977 tree t = fold_convert_loc (loc, type, result);
2979 /* If the resulting operand is an empty statement, just return the omitted
2980 statement casted to void. */
2981 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
2982 return build1_loc (loc, NOP_EXPR, void_type_node,
2983 fold_ignored_result (omitted));
2985 if (TREE_SIDE_EFFECTS (omitted))
2986 return build2_loc (loc, COMPOUND_EXPR, type,
2987 fold_ignored_result (omitted), t);
2989 return non_lvalue_loc (loc, t);
2992 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2994 static tree
2995 pedantic_omit_one_operand_loc (location_t loc, tree type, tree result,
2996 tree omitted)
2998 tree t = fold_convert_loc (loc, type, result);
3000 /* If the resulting operand is an empty statement, just return the omitted
3001 statement casted to void. */
3002 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3003 return build1_loc (loc, NOP_EXPR, void_type_node,
3004 fold_ignored_result (omitted));
3006 if (TREE_SIDE_EFFECTS (omitted))
3007 return build2_loc (loc, COMPOUND_EXPR, type,
3008 fold_ignored_result (omitted), t);
3010 return pedantic_non_lvalue_loc (loc, t);
3013 /* Return a tree for the case when the result of an expression is RESULT
3014 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3015 of the expression but are now not needed.
3017 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3018 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3019 evaluated before OMITTED2. Otherwise, if neither has side effects,
3020 just do the conversion of RESULT to TYPE. */
3022 tree
3023 omit_two_operands_loc (location_t loc, tree type, tree result,
3024 tree omitted1, tree omitted2)
3026 tree t = fold_convert_loc (loc, type, result);
3028 if (TREE_SIDE_EFFECTS (omitted2))
3029 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3030 if (TREE_SIDE_EFFECTS (omitted1))
3031 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3033 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3037 /* Return a simplified tree node for the truth-negation of ARG. This
3038 never alters ARG itself. We assume that ARG is an operation that
3039 returns a truth value (0 or 1).
3041 FIXME: one would think we would fold the result, but it causes
3042 problems with the dominator optimizer. */
3044 tree
3045 fold_truth_not_expr (location_t loc, tree arg)
3047 tree type = TREE_TYPE (arg);
3048 enum tree_code code = TREE_CODE (arg);
3049 location_t loc1, loc2;
3051 /* If this is a comparison, we can simply invert it, except for
3052 floating-point non-equality comparisons, in which case we just
3053 enclose a TRUTH_NOT_EXPR around what we have. */
3055 if (TREE_CODE_CLASS (code) == tcc_comparison)
3057 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3058 if (FLOAT_TYPE_P (op_type)
3059 && flag_trapping_math
3060 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3061 && code != NE_EXPR && code != EQ_EXPR)
3062 return NULL_TREE;
3064 code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (op_type)));
3065 if (code == ERROR_MARK)
3066 return NULL_TREE;
3068 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3069 TREE_OPERAND (arg, 1));
3072 switch (code)
3074 case INTEGER_CST:
3075 return constant_boolean_node (integer_zerop (arg), type);
3077 case TRUTH_AND_EXPR:
3078 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3079 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3080 return build2_loc (loc, TRUTH_OR_EXPR, type,
3081 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3082 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3084 case TRUTH_OR_EXPR:
3085 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3086 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3087 return build2_loc (loc, TRUTH_AND_EXPR, type,
3088 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3089 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3091 case TRUTH_XOR_EXPR:
3092 /* Here we can invert either operand. We invert the first operand
3093 unless the second operand is a TRUTH_NOT_EXPR in which case our
3094 result is the XOR of the first operand with the inside of the
3095 negation of the second operand. */
3097 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3098 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3099 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3100 else
3101 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3102 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3103 TREE_OPERAND (arg, 1));
3105 case TRUTH_ANDIF_EXPR:
3106 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3107 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3108 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3109 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3110 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3112 case TRUTH_ORIF_EXPR:
3113 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3114 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3115 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3116 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3117 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3119 case TRUTH_NOT_EXPR:
3120 return TREE_OPERAND (arg, 0);
3122 case COND_EXPR:
3124 tree arg1 = TREE_OPERAND (arg, 1);
3125 tree arg2 = TREE_OPERAND (arg, 2);
3127 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3128 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3130 /* A COND_EXPR may have a throw as one operand, which
3131 then has void type. Just leave void operands
3132 as they are. */
3133 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3134 VOID_TYPE_P (TREE_TYPE (arg1))
3135 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3136 VOID_TYPE_P (TREE_TYPE (arg2))
3137 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3140 case COMPOUND_EXPR:
3141 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3142 return build2_loc (loc, COMPOUND_EXPR, type,
3143 TREE_OPERAND (arg, 0),
3144 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3146 case NON_LVALUE_EXPR:
3147 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3148 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3150 CASE_CONVERT:
3151 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3152 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3154 /* ... fall through ... */
3156 case FLOAT_EXPR:
3157 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3158 return build1_loc (loc, TREE_CODE (arg), type,
3159 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3161 case BIT_AND_EXPR:
3162 if (!integer_onep (TREE_OPERAND (arg, 1)))
3163 return NULL_TREE;
3164 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3166 case SAVE_EXPR:
3167 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3169 case CLEANUP_POINT_EXPR:
3170 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3171 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3172 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3174 default:
3175 return NULL_TREE;
3179 /* Return a simplified tree node for the truth-negation of ARG. This
3180 never alters ARG itself. We assume that ARG is an operation that
3181 returns a truth value (0 or 1).
3183 FIXME: one would think we would fold the result, but it causes
3184 problems with the dominator optimizer. */
3186 tree
3187 invert_truthvalue_loc (location_t loc, tree arg)
3189 tree tem;
3191 if (TREE_CODE (arg) == ERROR_MARK)
3192 return arg;
3194 tem = fold_truth_not_expr (loc, arg);
3195 if (!tem)
3196 tem = build1_loc (loc, TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3198 return tem;
3201 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3202 operands are another bit-wise operation with a common input. If so,
3203 distribute the bit operations to save an operation and possibly two if
3204 constants are involved. For example, convert
3205 (A | B) & (A | C) into A | (B & C)
3206 Further simplification will occur if B and C are constants.
3208 If this optimization cannot be done, 0 will be returned. */
3210 static tree
3211 distribute_bit_expr (location_t loc, enum tree_code code, tree type,
3212 tree arg0, tree arg1)
3214 tree common;
3215 tree left, right;
3217 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3218 || TREE_CODE (arg0) == code
3219 || (TREE_CODE (arg0) != BIT_AND_EXPR
3220 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3221 return 0;
3223 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3225 common = TREE_OPERAND (arg0, 0);
3226 left = TREE_OPERAND (arg0, 1);
3227 right = TREE_OPERAND (arg1, 1);
3229 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3231 common = TREE_OPERAND (arg0, 0);
3232 left = TREE_OPERAND (arg0, 1);
3233 right = TREE_OPERAND (arg1, 0);
3235 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3237 common = TREE_OPERAND (arg0, 1);
3238 left = TREE_OPERAND (arg0, 0);
3239 right = TREE_OPERAND (arg1, 1);
3241 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3243 common = TREE_OPERAND (arg0, 1);
3244 left = TREE_OPERAND (arg0, 0);
3245 right = TREE_OPERAND (arg1, 0);
3247 else
3248 return 0;
3250 common = fold_convert_loc (loc, type, common);
3251 left = fold_convert_loc (loc, type, left);
3252 right = fold_convert_loc (loc, type, right);
3253 return fold_build2_loc (loc, TREE_CODE (arg0), type, common,
3254 fold_build2_loc (loc, code, type, left, right));
3257 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3258 with code CODE. This optimization is unsafe. */
3259 static tree
3260 distribute_real_division (location_t loc, enum tree_code code, tree type,
3261 tree arg0, tree arg1)
3263 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3264 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3266 /* (A / C) +- (B / C) -> (A +- B) / C. */
3267 if (mul0 == mul1
3268 && operand_equal_p (TREE_OPERAND (arg0, 1),
3269 TREE_OPERAND (arg1, 1), 0))
3270 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3271 fold_build2_loc (loc, code, type,
3272 TREE_OPERAND (arg0, 0),
3273 TREE_OPERAND (arg1, 0)),
3274 TREE_OPERAND (arg0, 1));
3276 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3277 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3278 TREE_OPERAND (arg1, 0), 0)
3279 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3280 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3282 REAL_VALUE_TYPE r0, r1;
3283 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3284 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3285 if (!mul0)
3286 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3287 if (!mul1)
3288 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3289 real_arithmetic (&r0, code, &r0, &r1);
3290 return fold_build2_loc (loc, MULT_EXPR, type,
3291 TREE_OPERAND (arg0, 0),
3292 build_real (type, r0));
3295 return NULL_TREE;
3298 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3299 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3301 static tree
3302 make_bit_field_ref (location_t loc, tree inner, tree type,
3303 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3305 tree result, bftype;
3307 if (bitpos == 0)
3309 tree size = TYPE_SIZE (TREE_TYPE (inner));
3310 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3311 || POINTER_TYPE_P (TREE_TYPE (inner)))
3312 && host_integerp (size, 0)
3313 && tree_low_cst (size, 0) == bitsize)
3314 return fold_convert_loc (loc, type, inner);
3317 bftype = type;
3318 if (TYPE_PRECISION (bftype) != bitsize
3319 || TYPE_UNSIGNED (bftype) == !unsignedp)
3320 bftype = build_nonstandard_integer_type (bitsize, 0);
3322 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3323 size_int (bitsize), bitsize_int (bitpos));
3325 if (bftype != type)
3326 result = fold_convert_loc (loc, type, result);
3328 return result;
3331 /* Optimize a bit-field compare.
3333 There are two cases: First is a compare against a constant and the
3334 second is a comparison of two items where the fields are at the same
3335 bit position relative to the start of a chunk (byte, halfword, word)
3336 large enough to contain it. In these cases we can avoid the shift
3337 implicit in bitfield extractions.
3339 For constants, we emit a compare of the shifted constant with the
3340 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3341 compared. For two fields at the same position, we do the ANDs with the
3342 similar mask and compare the result of the ANDs.
3344 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3345 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3346 are the left and right operands of the comparison, respectively.
3348 If the optimization described above can be done, we return the resulting
3349 tree. Otherwise we return zero. */
3351 static tree
3352 optimize_bit_field_compare (location_t loc, enum tree_code code,
3353 tree compare_type, tree lhs, tree rhs)
3355 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3356 tree type = TREE_TYPE (lhs);
3357 tree signed_type, unsigned_type;
3358 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3359 enum machine_mode lmode, rmode, nmode;
3360 int lunsignedp, runsignedp;
3361 int lvolatilep = 0, rvolatilep = 0;
3362 tree linner, rinner = NULL_TREE;
3363 tree mask;
3364 tree offset;
3366 /* Get all the information about the extractions being done. If the bit size
3367 if the same as the size of the underlying object, we aren't doing an
3368 extraction at all and so can do nothing. We also don't want to
3369 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3370 then will no longer be able to replace it. */
3371 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3372 &lunsignedp, &lvolatilep, false);
3373 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3374 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3375 return 0;
3377 if (!const_p)
3379 /* If this is not a constant, we can only do something if bit positions,
3380 sizes, and signedness are the same. */
3381 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3382 &runsignedp, &rvolatilep, false);
3384 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3385 || lunsignedp != runsignedp || offset != 0
3386 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3387 return 0;
3390 /* See if we can find a mode to refer to this field. We should be able to,
3391 but fail if we can't. */
3392 if (lvolatilep
3393 && GET_MODE_BITSIZE (lmode) > 0
3394 && flag_strict_volatile_bitfields > 0)
3395 nmode = lmode;
3396 else
3397 nmode = get_best_mode (lbitsize, lbitpos,
3398 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3399 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3400 TYPE_ALIGN (TREE_TYPE (rinner))),
3401 word_mode, lvolatilep || rvolatilep);
3402 if (nmode == VOIDmode)
3403 return 0;
3405 /* Set signed and unsigned types of the precision of this mode for the
3406 shifts below. */
3407 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3408 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3410 /* Compute the bit position and size for the new reference and our offset
3411 within it. If the new reference is the same size as the original, we
3412 won't optimize anything, so return zero. */
3413 nbitsize = GET_MODE_BITSIZE (nmode);
3414 nbitpos = lbitpos & ~ (nbitsize - 1);
3415 lbitpos -= nbitpos;
3416 if (nbitsize == lbitsize)
3417 return 0;
3419 if (BYTES_BIG_ENDIAN)
3420 lbitpos = nbitsize - lbitsize - lbitpos;
3422 /* Make the mask to be used against the extracted field. */
3423 mask = build_int_cst_type (unsigned_type, -1);
3424 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3425 mask = const_binop (RSHIFT_EXPR, mask,
3426 size_int (nbitsize - lbitsize - lbitpos));
3428 if (! const_p)
3429 /* If not comparing with constant, just rework the comparison
3430 and return. */
3431 return fold_build2_loc (loc, code, compare_type,
3432 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3433 make_bit_field_ref (loc, linner,
3434 unsigned_type,
3435 nbitsize, nbitpos,
3437 mask),
3438 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3439 make_bit_field_ref (loc, rinner,
3440 unsigned_type,
3441 nbitsize, nbitpos,
3443 mask));
3445 /* Otherwise, we are handling the constant case. See if the constant is too
3446 big for the field. Warn and return a tree of for 0 (false) if so. We do
3447 this not only for its own sake, but to avoid having to test for this
3448 error case below. If we didn't, we might generate wrong code.
3450 For unsigned fields, the constant shifted right by the field length should
3451 be all zero. For signed fields, the high-order bits should agree with
3452 the sign bit. */
3454 if (lunsignedp)
3456 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3457 fold_convert_loc (loc,
3458 unsigned_type, rhs),
3459 size_int (lbitsize))))
3461 warning (0, "comparison is always %d due to width of bit-field",
3462 code == NE_EXPR);
3463 return constant_boolean_node (code == NE_EXPR, compare_type);
3466 else
3468 tree tem = const_binop (RSHIFT_EXPR,
3469 fold_convert_loc (loc, signed_type, rhs),
3470 size_int (lbitsize - 1));
3471 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3473 warning (0, "comparison is always %d due to width of bit-field",
3474 code == NE_EXPR);
3475 return constant_boolean_node (code == NE_EXPR, compare_type);
3479 /* Single-bit compares should always be against zero. */
3480 if (lbitsize == 1 && ! integer_zerop (rhs))
3482 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3483 rhs = build_int_cst (type, 0);
3486 /* Make a new bitfield reference, shift the constant over the
3487 appropriate number of bits and mask it with the computed mask
3488 (in case this was a signed field). If we changed it, make a new one. */
3489 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3490 if (lvolatilep)
3492 TREE_SIDE_EFFECTS (lhs) = 1;
3493 TREE_THIS_VOLATILE (lhs) = 1;
3496 rhs = const_binop (BIT_AND_EXPR,
3497 const_binop (LSHIFT_EXPR,
3498 fold_convert_loc (loc, unsigned_type, rhs),
3499 size_int (lbitpos)),
3500 mask);
3502 lhs = build2_loc (loc, code, compare_type,
3503 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3504 return lhs;
3507 /* Subroutine for fold_truthop: decode a field reference.
3509 If EXP is a comparison reference, we return the innermost reference.
3511 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3512 set to the starting bit number.
3514 If the innermost field can be completely contained in a mode-sized
3515 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3517 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3518 otherwise it is not changed.
3520 *PUNSIGNEDP is set to the signedness of the field.
3522 *PMASK is set to the mask used. This is either contained in a
3523 BIT_AND_EXPR or derived from the width of the field.
3525 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3527 Return 0 if this is not a component reference or is one that we can't
3528 do anything with. */
3530 static tree
3531 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3532 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3533 int *punsignedp, int *pvolatilep,
3534 tree *pmask, tree *pand_mask)
3536 tree outer_type = 0;
3537 tree and_mask = 0;
3538 tree mask, inner, offset;
3539 tree unsigned_type;
3540 unsigned int precision;
3542 /* All the optimizations using this function assume integer fields.
3543 There are problems with FP fields since the type_for_size call
3544 below can fail for, e.g., XFmode. */
3545 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3546 return 0;
3548 /* We are interested in the bare arrangement of bits, so strip everything
3549 that doesn't affect the machine mode. However, record the type of the
3550 outermost expression if it may matter below. */
3551 if (CONVERT_EXPR_P (exp)
3552 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3553 outer_type = TREE_TYPE (exp);
3554 STRIP_NOPS (exp);
3556 if (TREE_CODE (exp) == BIT_AND_EXPR)
3558 and_mask = TREE_OPERAND (exp, 1);
3559 exp = TREE_OPERAND (exp, 0);
3560 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3561 if (TREE_CODE (and_mask) != INTEGER_CST)
3562 return 0;
3565 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3566 punsignedp, pvolatilep, false);
3567 if ((inner == exp && and_mask == 0)
3568 || *pbitsize < 0 || offset != 0
3569 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3570 return 0;
3572 /* If the number of bits in the reference is the same as the bitsize of
3573 the outer type, then the outer type gives the signedness. Otherwise
3574 (in case of a small bitfield) the signedness is unchanged. */
3575 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3576 *punsignedp = TYPE_UNSIGNED (outer_type);
3578 /* Compute the mask to access the bitfield. */
3579 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3580 precision = TYPE_PRECISION (unsigned_type);
3582 mask = build_int_cst_type (unsigned_type, -1);
3584 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3585 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3587 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3588 if (and_mask != 0)
3589 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3590 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3592 *pmask = mask;
3593 *pand_mask = and_mask;
3594 return inner;
3597 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3598 bit positions. */
3600 static int
3601 all_ones_mask_p (const_tree mask, int size)
3603 tree type = TREE_TYPE (mask);
3604 unsigned int precision = TYPE_PRECISION (type);
3605 tree tmask;
3607 tmask = build_int_cst_type (signed_type_for (type), -1);
3609 return
3610 tree_int_cst_equal (mask,
3611 const_binop (RSHIFT_EXPR,
3612 const_binop (LSHIFT_EXPR, tmask,
3613 size_int (precision - size)),
3614 size_int (precision - size)));
3617 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3618 represents the sign bit of EXP's type. If EXP represents a sign
3619 or zero extension, also test VAL against the unextended type.
3620 The return value is the (sub)expression whose sign bit is VAL,
3621 or NULL_TREE otherwise. */
3623 static tree
3624 sign_bit_p (tree exp, const_tree val)
3626 unsigned HOST_WIDE_INT mask_lo, lo;
3627 HOST_WIDE_INT mask_hi, hi;
3628 int width;
3629 tree t;
3631 /* Tree EXP must have an integral type. */
3632 t = TREE_TYPE (exp);
3633 if (! INTEGRAL_TYPE_P (t))
3634 return NULL_TREE;
3636 /* Tree VAL must be an integer constant. */
3637 if (TREE_CODE (val) != INTEGER_CST
3638 || TREE_OVERFLOW (val))
3639 return NULL_TREE;
3641 width = TYPE_PRECISION (t);
3642 if (width > HOST_BITS_PER_WIDE_INT)
3644 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3645 lo = 0;
3647 mask_hi = ((unsigned HOST_WIDE_INT) -1
3648 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3649 mask_lo = -1;
3651 else
3653 hi = 0;
3654 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3656 mask_hi = 0;
3657 mask_lo = ((unsigned HOST_WIDE_INT) -1
3658 >> (HOST_BITS_PER_WIDE_INT - width));
3661 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3662 treat VAL as if it were unsigned. */
3663 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3664 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3665 return exp;
3667 /* Handle extension from a narrower type. */
3668 if (TREE_CODE (exp) == NOP_EXPR
3669 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3670 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3672 return NULL_TREE;
3675 /* Subroutine for fold_truthop: determine if an operand is simple enough
3676 to be evaluated unconditionally. */
3678 static int
3679 simple_operand_p (const_tree exp)
3681 /* Strip any conversions that don't change the machine mode. */
3682 STRIP_NOPS (exp);
3684 return (CONSTANT_CLASS_P (exp)
3685 || TREE_CODE (exp) == SSA_NAME
3686 || (DECL_P (exp)
3687 && ! TREE_ADDRESSABLE (exp)
3688 && ! TREE_THIS_VOLATILE (exp)
3689 && ! DECL_NONLOCAL (exp)
3690 /* Don't regard global variables as simple. They may be
3691 allocated in ways unknown to the compiler (shared memory,
3692 #pragma weak, etc). */
3693 && ! TREE_PUBLIC (exp)
3694 && ! DECL_EXTERNAL (exp)
3695 /* Loading a static variable is unduly expensive, but global
3696 registers aren't expensive. */
3697 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3700 /* The following functions are subroutines to fold_range_test and allow it to
3701 try to change a logical combination of comparisons into a range test.
3703 For example, both
3704 X == 2 || X == 3 || X == 4 || X == 5
3706 X >= 2 && X <= 5
3707 are converted to
3708 (unsigned) (X - 2) <= 3
3710 We describe each set of comparisons as being either inside or outside
3711 a range, using a variable named like IN_P, and then describe the
3712 range with a lower and upper bound. If one of the bounds is omitted,
3713 it represents either the highest or lowest value of the type.
3715 In the comments below, we represent a range by two numbers in brackets
3716 preceded by a "+" to designate being inside that range, or a "-" to
3717 designate being outside that range, so the condition can be inverted by
3718 flipping the prefix. An omitted bound is represented by a "-". For
3719 example, "- [-, 10]" means being outside the range starting at the lowest
3720 possible value and ending at 10, in other words, being greater than 10.
3721 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3722 always false.
3724 We set up things so that the missing bounds are handled in a consistent
3725 manner so neither a missing bound nor "true" and "false" need to be
3726 handled using a special case. */
3728 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3729 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3730 and UPPER1_P are nonzero if the respective argument is an upper bound
3731 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3732 must be specified for a comparison. ARG1 will be converted to ARG0's
3733 type if both are specified. */
3735 static tree
3736 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3737 tree arg1, int upper1_p)
3739 tree tem;
3740 int result;
3741 int sgn0, sgn1;
3743 /* If neither arg represents infinity, do the normal operation.
3744 Else, if not a comparison, return infinity. Else handle the special
3745 comparison rules. Note that most of the cases below won't occur, but
3746 are handled for consistency. */
3748 if (arg0 != 0 && arg1 != 0)
3750 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3751 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3752 STRIP_NOPS (tem);
3753 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3756 if (TREE_CODE_CLASS (code) != tcc_comparison)
3757 return 0;
3759 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3760 for neither. In real maths, we cannot assume open ended ranges are
3761 the same. But, this is computer arithmetic, where numbers are finite.
3762 We can therefore make the transformation of any unbounded range with
3763 the value Z, Z being greater than any representable number. This permits
3764 us to treat unbounded ranges as equal. */
3765 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3766 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3767 switch (code)
3769 case EQ_EXPR:
3770 result = sgn0 == sgn1;
3771 break;
3772 case NE_EXPR:
3773 result = sgn0 != sgn1;
3774 break;
3775 case LT_EXPR:
3776 result = sgn0 < sgn1;
3777 break;
3778 case LE_EXPR:
3779 result = sgn0 <= sgn1;
3780 break;
3781 case GT_EXPR:
3782 result = sgn0 > sgn1;
3783 break;
3784 case GE_EXPR:
3785 result = sgn0 >= sgn1;
3786 break;
3787 default:
3788 gcc_unreachable ();
3791 return constant_boolean_node (result, type);
3794 /* Given EXP, a logical expression, set the range it is testing into
3795 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3796 actually being tested. *PLOW and *PHIGH will be made of the same
3797 type as the returned expression. If EXP is not a comparison, we
3798 will most likely not be returning a useful value and range. Set
3799 *STRICT_OVERFLOW_P to true if the return value is only valid
3800 because signed overflow is undefined; otherwise, do not change
3801 *STRICT_OVERFLOW_P. */
3803 tree
3804 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
3805 bool *strict_overflow_p)
3807 enum tree_code code;
3808 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3809 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3810 int in_p, n_in_p;
3811 tree low, high, n_low, n_high;
3812 location_t loc = EXPR_LOCATION (exp);
3814 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3815 and see if we can refine the range. Some of the cases below may not
3816 happen, but it doesn't seem worth worrying about this. We "continue"
3817 the outer loop when we've changed something; otherwise we "break"
3818 the switch, which will "break" the while. */
3820 in_p = 0;
3821 low = high = build_int_cst (TREE_TYPE (exp), 0);
3823 while (1)
3825 code = TREE_CODE (exp);
3826 exp_type = TREE_TYPE (exp);
3828 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3830 if (TREE_OPERAND_LENGTH (exp) > 0)
3831 arg0 = TREE_OPERAND (exp, 0);
3832 if (TREE_CODE_CLASS (code) == tcc_comparison
3833 || TREE_CODE_CLASS (code) == tcc_unary
3834 || TREE_CODE_CLASS (code) == tcc_binary)
3835 arg0_type = TREE_TYPE (arg0);
3836 if (TREE_CODE_CLASS (code) == tcc_binary
3837 || TREE_CODE_CLASS (code) == tcc_comparison
3838 || (TREE_CODE_CLASS (code) == tcc_expression
3839 && TREE_OPERAND_LENGTH (exp) > 1))
3840 arg1 = TREE_OPERAND (exp, 1);
3843 switch (code)
3845 case TRUTH_NOT_EXPR:
3846 in_p = ! in_p, exp = arg0;
3847 continue;
3849 case EQ_EXPR: case NE_EXPR:
3850 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3851 /* We can only do something if the range is testing for zero
3852 and if the second operand is an integer constant. Note that
3853 saying something is "in" the range we make is done by
3854 complementing IN_P since it will set in the initial case of
3855 being not equal to zero; "out" is leaving it alone. */
3856 if (low == 0 || high == 0
3857 || ! integer_zerop (low) || ! integer_zerop (high)
3858 || TREE_CODE (arg1) != INTEGER_CST)
3859 break;
3861 switch (code)
3863 case NE_EXPR: /* - [c, c] */
3864 low = high = arg1;
3865 break;
3866 case EQ_EXPR: /* + [c, c] */
3867 in_p = ! in_p, low = high = arg1;
3868 break;
3869 case GT_EXPR: /* - [-, c] */
3870 low = 0, high = arg1;
3871 break;
3872 case GE_EXPR: /* + [c, -] */
3873 in_p = ! in_p, low = arg1, high = 0;
3874 break;
3875 case LT_EXPR: /* - [c, -] */
3876 low = arg1, high = 0;
3877 break;
3878 case LE_EXPR: /* + [-, c] */
3879 in_p = ! in_p, low = 0, high = arg1;
3880 break;
3881 default:
3882 gcc_unreachable ();
3885 /* If this is an unsigned comparison, we also know that EXP is
3886 greater than or equal to zero. We base the range tests we make
3887 on that fact, so we record it here so we can parse existing
3888 range tests. We test arg0_type since often the return type
3889 of, e.g. EQ_EXPR, is boolean. */
3890 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3892 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3893 in_p, low, high, 1,
3894 build_int_cst (arg0_type, 0),
3895 NULL_TREE))
3896 break;
3898 in_p = n_in_p, low = n_low, high = n_high;
3900 /* If the high bound is missing, but we have a nonzero low
3901 bound, reverse the range so it goes from zero to the low bound
3902 minus 1. */
3903 if (high == 0 && low && ! integer_zerop (low))
3905 in_p = ! in_p;
3906 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3907 integer_one_node, 0);
3908 low = build_int_cst (arg0_type, 0);
3912 exp = arg0;
3913 continue;
3915 case NEGATE_EXPR:
3916 /* (-x) IN [a,b] -> x in [-b, -a] */
3917 n_low = range_binop (MINUS_EXPR, exp_type,
3918 build_int_cst (exp_type, 0),
3919 0, high, 1);
3920 n_high = range_binop (MINUS_EXPR, exp_type,
3921 build_int_cst (exp_type, 0),
3922 0, low, 0);
3923 if (n_high != 0 && TREE_OVERFLOW (n_high))
3924 break;
3925 goto normalize;
3927 case BIT_NOT_EXPR:
3928 /* ~ X -> -X - 1 */
3929 exp = build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
3930 build_int_cst (exp_type, 1));
3931 continue;
3933 case PLUS_EXPR: case MINUS_EXPR:
3934 if (TREE_CODE (arg1) != INTEGER_CST)
3935 break;
3937 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
3938 move a constant to the other side. */
3939 if (!TYPE_UNSIGNED (arg0_type)
3940 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
3941 break;
3943 /* If EXP is signed, any overflow in the computation is undefined,
3944 so we don't worry about it so long as our computations on
3945 the bounds don't overflow. For unsigned, overflow is defined
3946 and this is exactly the right thing. */
3947 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3948 arg0_type, low, 0, arg1, 0);
3949 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3950 arg0_type, high, 1, arg1, 0);
3951 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3952 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3953 break;
3955 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
3956 *strict_overflow_p = true;
3958 normalize:
3959 /* Check for an unsigned range which has wrapped around the maximum
3960 value thus making n_high < n_low, and normalize it. */
3961 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3963 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3964 integer_one_node, 0);
3965 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3966 integer_one_node, 0);
3968 /* If the range is of the form +/- [ x+1, x ], we won't
3969 be able to normalize it. But then, it represents the
3970 whole range or the empty set, so make it
3971 +/- [ -, - ]. */
3972 if (tree_int_cst_equal (n_low, low)
3973 && tree_int_cst_equal (n_high, high))
3974 low = high = 0;
3975 else
3976 in_p = ! in_p;
3978 else
3979 low = n_low, high = n_high;
3981 exp = arg0;
3982 continue;
3984 CASE_CONVERT: case NON_LVALUE_EXPR:
3985 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3986 break;
3988 if (! INTEGRAL_TYPE_P (arg0_type)
3989 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3990 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3991 break;
3993 n_low = low, n_high = high;
3995 if (n_low != 0)
3996 n_low = fold_convert_loc (loc, arg0_type, n_low);
3998 if (n_high != 0)
3999 n_high = fold_convert_loc (loc, arg0_type, n_high);
4002 /* If we're converting arg0 from an unsigned type, to exp,
4003 a signed type, we will be doing the comparison as unsigned.
4004 The tests above have already verified that LOW and HIGH
4005 are both positive.
4007 So we have to ensure that we will handle large unsigned
4008 values the same way that the current signed bounds treat
4009 negative values. */
4011 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4013 tree high_positive;
4014 tree equiv_type;
4015 /* For fixed-point modes, we need to pass the saturating flag
4016 as the 2nd parameter. */
4017 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4018 equiv_type = lang_hooks.types.type_for_mode
4019 (TYPE_MODE (arg0_type),
4020 TYPE_SATURATING (arg0_type));
4021 else
4022 equiv_type = lang_hooks.types.type_for_mode
4023 (TYPE_MODE (arg0_type), 1);
4025 /* A range without an upper bound is, naturally, unbounded.
4026 Since convert would have cropped a very large value, use
4027 the max value for the destination type. */
4028 high_positive
4029 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4030 : TYPE_MAX_VALUE (arg0_type);
4032 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4033 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4034 fold_convert_loc (loc, arg0_type,
4035 high_positive),
4036 build_int_cst (arg0_type, 1));
4038 /* If the low bound is specified, "and" the range with the
4039 range for which the original unsigned value will be
4040 positive. */
4041 if (low != 0)
4043 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4044 1, n_low, n_high, 1,
4045 fold_convert_loc (loc, arg0_type,
4046 integer_zero_node),
4047 high_positive))
4048 break;
4050 in_p = (n_in_p == in_p);
4052 else
4054 /* Otherwise, "or" the range with the range of the input
4055 that will be interpreted as negative. */
4056 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4057 0, n_low, n_high, 1,
4058 fold_convert_loc (loc, arg0_type,
4059 integer_zero_node),
4060 high_positive))
4061 break;
4063 in_p = (in_p != n_in_p);
4067 exp = arg0;
4068 low = n_low, high = n_high;
4069 continue;
4071 default:
4072 break;
4075 break;
4078 /* If EXP is a constant, we can evaluate whether this is true or false. */
4079 if (TREE_CODE (exp) == INTEGER_CST)
4081 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4082 exp, 0, low, 0))
4083 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4084 exp, 1, high, 1)));
4085 low = high = 0;
4086 exp = 0;
4089 *pin_p = in_p, *plow = low, *phigh = high;
4090 return exp;
4093 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4094 type, TYPE, return an expression to test if EXP is in (or out of, depending
4095 on IN_P) the range. Return 0 if the test couldn't be created. */
4097 tree
4098 build_range_check (location_t loc, tree type, tree exp, int in_p,
4099 tree low, tree high)
4101 tree etype = TREE_TYPE (exp), value;
4103 #ifdef HAVE_canonicalize_funcptr_for_compare
4104 /* Disable this optimization for function pointer expressions
4105 on targets that require function pointer canonicalization. */
4106 if (HAVE_canonicalize_funcptr_for_compare
4107 && TREE_CODE (etype) == POINTER_TYPE
4108 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4109 return NULL_TREE;
4110 #endif
4112 if (! in_p)
4114 value = build_range_check (loc, type, exp, 1, low, high);
4115 if (value != 0)
4116 return invert_truthvalue_loc (loc, value);
4118 return 0;
4121 if (low == 0 && high == 0)
4122 return build_int_cst (type, 1);
4124 if (low == 0)
4125 return fold_build2_loc (loc, LE_EXPR, type, exp,
4126 fold_convert_loc (loc, etype, high));
4128 if (high == 0)
4129 return fold_build2_loc (loc, GE_EXPR, type, exp,
4130 fold_convert_loc (loc, etype, low));
4132 if (operand_equal_p (low, high, 0))
4133 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4134 fold_convert_loc (loc, etype, low));
4136 if (integer_zerop (low))
4138 if (! TYPE_UNSIGNED (etype))
4140 etype = unsigned_type_for (etype);
4141 high = fold_convert_loc (loc, etype, high);
4142 exp = fold_convert_loc (loc, etype, exp);
4144 return build_range_check (loc, type, exp, 1, 0, high);
4147 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4148 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4150 unsigned HOST_WIDE_INT lo;
4151 HOST_WIDE_INT hi;
4152 int prec;
4154 prec = TYPE_PRECISION (etype);
4155 if (prec <= HOST_BITS_PER_WIDE_INT)
4157 hi = 0;
4158 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4160 else
4162 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4163 lo = (unsigned HOST_WIDE_INT) -1;
4166 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4168 if (TYPE_UNSIGNED (etype))
4170 tree signed_etype = signed_type_for (etype);
4171 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4172 etype
4173 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4174 else
4175 etype = signed_etype;
4176 exp = fold_convert_loc (loc, etype, exp);
4178 return fold_build2_loc (loc, GT_EXPR, type, exp,
4179 build_int_cst (etype, 0));
4183 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4184 This requires wrap-around arithmetics for the type of the expression.
4185 First make sure that arithmetics in this type is valid, then make sure
4186 that it wraps around. */
4187 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4188 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4189 TYPE_UNSIGNED (etype));
4191 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4193 tree utype, minv, maxv;
4195 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4196 for the type in question, as we rely on this here. */
4197 utype = unsigned_type_for (etype);
4198 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4199 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4200 integer_one_node, 1);
4201 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4203 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4204 minv, 1, maxv, 1)))
4205 etype = utype;
4206 else
4207 return 0;
4210 high = fold_convert_loc (loc, etype, high);
4211 low = fold_convert_loc (loc, etype, low);
4212 exp = fold_convert_loc (loc, etype, exp);
4214 value = const_binop (MINUS_EXPR, high, low);
4217 if (POINTER_TYPE_P (etype))
4219 if (value != 0 && !TREE_OVERFLOW (value))
4221 low = fold_convert_loc (loc, sizetype, low);
4222 low = fold_build1_loc (loc, NEGATE_EXPR, sizetype, low);
4223 return build_range_check (loc, type,
4224 fold_build2_loc (loc, POINTER_PLUS_EXPR,
4225 etype, exp, low),
4226 1, build_int_cst (etype, 0), value);
4228 return 0;
4231 if (value != 0 && !TREE_OVERFLOW (value))
4232 return build_range_check (loc, type,
4233 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4234 1, build_int_cst (etype, 0), value);
4236 return 0;
4239 /* Return the predecessor of VAL in its type, handling the infinite case. */
4241 static tree
4242 range_predecessor (tree val)
4244 tree type = TREE_TYPE (val);
4246 if (INTEGRAL_TYPE_P (type)
4247 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4248 return 0;
4249 else
4250 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4253 /* Return the successor of VAL in its type, handling the infinite case. */
4255 static tree
4256 range_successor (tree val)
4258 tree type = TREE_TYPE (val);
4260 if (INTEGRAL_TYPE_P (type)
4261 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4262 return 0;
4263 else
4264 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4267 /* Given two ranges, see if we can merge them into one. Return 1 if we
4268 can, 0 if we can't. Set the output range into the specified parameters. */
4270 bool
4271 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4272 tree high0, int in1_p, tree low1, tree high1)
4274 int no_overlap;
4275 int subset;
4276 int temp;
4277 tree tem;
4278 int in_p;
4279 tree low, high;
4280 int lowequal = ((low0 == 0 && low1 == 0)
4281 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4282 low0, 0, low1, 0)));
4283 int highequal = ((high0 == 0 && high1 == 0)
4284 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4285 high0, 1, high1, 1)));
4287 /* Make range 0 be the range that starts first, or ends last if they
4288 start at the same value. Swap them if it isn't. */
4289 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4290 low0, 0, low1, 0))
4291 || (lowequal
4292 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4293 high1, 1, high0, 1))))
4295 temp = in0_p, in0_p = in1_p, in1_p = temp;
4296 tem = low0, low0 = low1, low1 = tem;
4297 tem = high0, high0 = high1, high1 = tem;
4300 /* Now flag two cases, whether the ranges are disjoint or whether the
4301 second range is totally subsumed in the first. Note that the tests
4302 below are simplified by the ones above. */
4303 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4304 high0, 1, low1, 0));
4305 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4306 high1, 1, high0, 1));
4308 /* We now have four cases, depending on whether we are including or
4309 excluding the two ranges. */
4310 if (in0_p && in1_p)
4312 /* If they don't overlap, the result is false. If the second range
4313 is a subset it is the result. Otherwise, the range is from the start
4314 of the second to the end of the first. */
4315 if (no_overlap)
4316 in_p = 0, low = high = 0;
4317 else if (subset)
4318 in_p = 1, low = low1, high = high1;
4319 else
4320 in_p = 1, low = low1, high = high0;
4323 else if (in0_p && ! in1_p)
4325 /* If they don't overlap, the result is the first range. If they are
4326 equal, the result is false. If the second range is a subset of the
4327 first, and the ranges begin at the same place, we go from just after
4328 the end of the second range to the end of the first. If the second
4329 range is not a subset of the first, or if it is a subset and both
4330 ranges end at the same place, the range starts at the start of the
4331 first range and ends just before the second range.
4332 Otherwise, we can't describe this as a single range. */
4333 if (no_overlap)
4334 in_p = 1, low = low0, high = high0;
4335 else if (lowequal && highequal)
4336 in_p = 0, low = high = 0;
4337 else if (subset && lowequal)
4339 low = range_successor (high1);
4340 high = high0;
4341 in_p = 1;
4342 if (low == 0)
4344 /* We are in the weird situation where high0 > high1 but
4345 high1 has no successor. Punt. */
4346 return 0;
4349 else if (! subset || highequal)
4351 low = low0;
4352 high = range_predecessor (low1);
4353 in_p = 1;
4354 if (high == 0)
4356 /* low0 < low1 but low1 has no predecessor. Punt. */
4357 return 0;
4360 else
4361 return 0;
4364 else if (! in0_p && in1_p)
4366 /* If they don't overlap, the result is the second range. If the second
4367 is a subset of the first, the result is false. Otherwise,
4368 the range starts just after the first range and ends at the
4369 end of the second. */
4370 if (no_overlap)
4371 in_p = 1, low = low1, high = high1;
4372 else if (subset || highequal)
4373 in_p = 0, low = high = 0;
4374 else
4376 low = range_successor (high0);
4377 high = high1;
4378 in_p = 1;
4379 if (low == 0)
4381 /* high1 > high0 but high0 has no successor. Punt. */
4382 return 0;
4387 else
4389 /* The case where we are excluding both ranges. Here the complex case
4390 is if they don't overlap. In that case, the only time we have a
4391 range is if they are adjacent. If the second is a subset of the
4392 first, the result is the first. Otherwise, the range to exclude
4393 starts at the beginning of the first range and ends at the end of the
4394 second. */
4395 if (no_overlap)
4397 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4398 range_successor (high0),
4399 1, low1, 0)))
4400 in_p = 0, low = low0, high = high1;
4401 else
4403 /* Canonicalize - [min, x] into - [-, x]. */
4404 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4405 switch (TREE_CODE (TREE_TYPE (low0)))
4407 case ENUMERAL_TYPE:
4408 if (TYPE_PRECISION (TREE_TYPE (low0))
4409 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4410 break;
4411 /* FALLTHROUGH */
4412 case INTEGER_TYPE:
4413 if (tree_int_cst_equal (low0,
4414 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4415 low0 = 0;
4416 break;
4417 case POINTER_TYPE:
4418 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4419 && integer_zerop (low0))
4420 low0 = 0;
4421 break;
4422 default:
4423 break;
4426 /* Canonicalize - [x, max] into - [x, -]. */
4427 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4428 switch (TREE_CODE (TREE_TYPE (high1)))
4430 case ENUMERAL_TYPE:
4431 if (TYPE_PRECISION (TREE_TYPE (high1))
4432 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4433 break;
4434 /* FALLTHROUGH */
4435 case INTEGER_TYPE:
4436 if (tree_int_cst_equal (high1,
4437 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4438 high1 = 0;
4439 break;
4440 case POINTER_TYPE:
4441 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4442 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4443 high1, 1,
4444 integer_one_node, 1)))
4445 high1 = 0;
4446 break;
4447 default:
4448 break;
4451 /* The ranges might be also adjacent between the maximum and
4452 minimum values of the given type. For
4453 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4454 return + [x + 1, y - 1]. */
4455 if (low0 == 0 && high1 == 0)
4457 low = range_successor (high0);
4458 high = range_predecessor (low1);
4459 if (low == 0 || high == 0)
4460 return 0;
4462 in_p = 1;
4464 else
4465 return 0;
4468 else if (subset)
4469 in_p = 0, low = low0, high = high0;
4470 else
4471 in_p = 0, low = low0, high = high1;
4474 *pin_p = in_p, *plow = low, *phigh = high;
4475 return 1;
4479 /* Subroutine of fold, looking inside expressions of the form
4480 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4481 of the COND_EXPR. This function is being used also to optimize
4482 A op B ? C : A, by reversing the comparison first.
4484 Return a folded expression whose code is not a COND_EXPR
4485 anymore, or NULL_TREE if no folding opportunity is found. */
4487 static tree
4488 fold_cond_expr_with_comparison (location_t loc, tree type,
4489 tree arg0, tree arg1, tree arg2)
4491 enum tree_code comp_code = TREE_CODE (arg0);
4492 tree arg00 = TREE_OPERAND (arg0, 0);
4493 tree arg01 = TREE_OPERAND (arg0, 1);
4494 tree arg1_type = TREE_TYPE (arg1);
4495 tree tem;
4497 STRIP_NOPS (arg1);
4498 STRIP_NOPS (arg2);
4500 /* If we have A op 0 ? A : -A, consider applying the following
4501 transformations:
4503 A == 0? A : -A same as -A
4504 A != 0? A : -A same as A
4505 A >= 0? A : -A same as abs (A)
4506 A > 0? A : -A same as abs (A)
4507 A <= 0? A : -A same as -abs (A)
4508 A < 0? A : -A same as -abs (A)
4510 None of these transformations work for modes with signed
4511 zeros. If A is +/-0, the first two transformations will
4512 change the sign of the result (from +0 to -0, or vice
4513 versa). The last four will fix the sign of the result,
4514 even though the original expressions could be positive or
4515 negative, depending on the sign of A.
4517 Note that all these transformations are correct if A is
4518 NaN, since the two alternatives (A and -A) are also NaNs. */
4519 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4520 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4521 ? real_zerop (arg01)
4522 : integer_zerop (arg01))
4523 && ((TREE_CODE (arg2) == NEGATE_EXPR
4524 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4525 /* In the case that A is of the form X-Y, '-A' (arg2) may
4526 have already been folded to Y-X, check for that. */
4527 || (TREE_CODE (arg1) == MINUS_EXPR
4528 && TREE_CODE (arg2) == MINUS_EXPR
4529 && operand_equal_p (TREE_OPERAND (arg1, 0),
4530 TREE_OPERAND (arg2, 1), 0)
4531 && operand_equal_p (TREE_OPERAND (arg1, 1),
4532 TREE_OPERAND (arg2, 0), 0))))
4533 switch (comp_code)
4535 case EQ_EXPR:
4536 case UNEQ_EXPR:
4537 tem = fold_convert_loc (loc, arg1_type, arg1);
4538 return pedantic_non_lvalue_loc (loc,
4539 fold_convert_loc (loc, type,
4540 negate_expr (tem)));
4541 case NE_EXPR:
4542 case LTGT_EXPR:
4543 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4544 case UNGE_EXPR:
4545 case UNGT_EXPR:
4546 if (flag_trapping_math)
4547 break;
4548 /* Fall through. */
4549 case GE_EXPR:
4550 case GT_EXPR:
4551 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4552 arg1 = fold_convert_loc (loc, signed_type_for
4553 (TREE_TYPE (arg1)), arg1);
4554 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4555 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4556 case UNLE_EXPR:
4557 case UNLT_EXPR:
4558 if (flag_trapping_math)
4559 break;
4560 case LE_EXPR:
4561 case LT_EXPR:
4562 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4563 arg1 = fold_convert_loc (loc, signed_type_for
4564 (TREE_TYPE (arg1)), arg1);
4565 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4566 return negate_expr (fold_convert_loc (loc, type, tem));
4567 default:
4568 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4569 break;
4572 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4573 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4574 both transformations are correct when A is NaN: A != 0
4575 is then true, and A == 0 is false. */
4577 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4578 && integer_zerop (arg01) && integer_zerop (arg2))
4580 if (comp_code == NE_EXPR)
4581 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4582 else if (comp_code == EQ_EXPR)
4583 return build_int_cst (type, 0);
4586 /* Try some transformations of A op B ? A : B.
4588 A == B? A : B same as B
4589 A != B? A : B same as A
4590 A >= B? A : B same as max (A, B)
4591 A > B? A : B same as max (B, A)
4592 A <= B? A : B same as min (A, B)
4593 A < B? A : B same as min (B, A)
4595 As above, these transformations don't work in the presence
4596 of signed zeros. For example, if A and B are zeros of
4597 opposite sign, the first two transformations will change
4598 the sign of the result. In the last four, the original
4599 expressions give different results for (A=+0, B=-0) and
4600 (A=-0, B=+0), but the transformed expressions do not.
4602 The first two transformations are correct if either A or B
4603 is a NaN. In the first transformation, the condition will
4604 be false, and B will indeed be chosen. In the case of the
4605 second transformation, the condition A != B will be true,
4606 and A will be chosen.
4608 The conversions to max() and min() are not correct if B is
4609 a number and A is not. The conditions in the original
4610 expressions will be false, so all four give B. The min()
4611 and max() versions would give a NaN instead. */
4612 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
4613 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4614 /* Avoid these transformations if the COND_EXPR may be used
4615 as an lvalue in the C++ front-end. PR c++/19199. */
4616 && (in_gimple_form
4617 || (strcmp (lang_hooks.name, "GNU C++") != 0
4618 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4619 || ! maybe_lvalue_p (arg1)
4620 || ! maybe_lvalue_p (arg2)))
4622 tree comp_op0 = arg00;
4623 tree comp_op1 = arg01;
4624 tree comp_type = TREE_TYPE (comp_op0);
4626 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4627 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4629 comp_type = type;
4630 comp_op0 = arg1;
4631 comp_op1 = arg2;
4634 switch (comp_code)
4636 case EQ_EXPR:
4637 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4638 case NE_EXPR:
4639 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4640 case LE_EXPR:
4641 case LT_EXPR:
4642 case UNLE_EXPR:
4643 case UNLT_EXPR:
4644 /* In C++ a ?: expression can be an lvalue, so put the
4645 operand which will be used if they are equal first
4646 so that we can convert this back to the
4647 corresponding COND_EXPR. */
4648 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4650 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4651 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4652 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4653 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4654 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4655 comp_op1, comp_op0);
4656 return pedantic_non_lvalue_loc (loc,
4657 fold_convert_loc (loc, type, tem));
4659 break;
4660 case GE_EXPR:
4661 case GT_EXPR:
4662 case UNGE_EXPR:
4663 case UNGT_EXPR:
4664 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4666 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4667 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4668 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4669 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4670 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4671 comp_op1, comp_op0);
4672 return pedantic_non_lvalue_loc (loc,
4673 fold_convert_loc (loc, type, tem));
4675 break;
4676 case UNEQ_EXPR:
4677 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4678 return pedantic_non_lvalue_loc (loc,
4679 fold_convert_loc (loc, type, arg2));
4680 break;
4681 case LTGT_EXPR:
4682 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4683 return pedantic_non_lvalue_loc (loc,
4684 fold_convert_loc (loc, type, arg1));
4685 break;
4686 default:
4687 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4688 break;
4692 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4693 we might still be able to simplify this. For example,
4694 if C1 is one less or one more than C2, this might have started
4695 out as a MIN or MAX and been transformed by this function.
4696 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4698 if (INTEGRAL_TYPE_P (type)
4699 && TREE_CODE (arg01) == INTEGER_CST
4700 && TREE_CODE (arg2) == INTEGER_CST)
4701 switch (comp_code)
4703 case EQ_EXPR:
4704 if (TREE_CODE (arg1) == INTEGER_CST)
4705 break;
4706 /* We can replace A with C1 in this case. */
4707 arg1 = fold_convert_loc (loc, type, arg01);
4708 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
4710 case LT_EXPR:
4711 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
4712 MIN_EXPR, to preserve the signedness of the comparison. */
4713 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4714 OEP_ONLY_CONST)
4715 && operand_equal_p (arg01,
4716 const_binop (PLUS_EXPR, arg2,
4717 build_int_cst (type, 1)),
4718 OEP_ONLY_CONST))
4720 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4721 fold_convert_loc (loc, TREE_TYPE (arg00),
4722 arg2));
4723 return pedantic_non_lvalue_loc (loc,
4724 fold_convert_loc (loc, type, tem));
4726 break;
4728 case LE_EXPR:
4729 /* If C1 is C2 - 1, this is min(A, C2), with the same care
4730 as above. */
4731 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4732 OEP_ONLY_CONST)
4733 && operand_equal_p (arg01,
4734 const_binop (MINUS_EXPR, arg2,
4735 build_int_cst (type, 1)),
4736 OEP_ONLY_CONST))
4738 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
4739 fold_convert_loc (loc, TREE_TYPE (arg00),
4740 arg2));
4741 return pedantic_non_lvalue_loc (loc,
4742 fold_convert_loc (loc, type, tem));
4744 break;
4746 case GT_EXPR:
4747 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
4748 MAX_EXPR, to preserve the signedness of the comparison. */
4749 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4750 OEP_ONLY_CONST)
4751 && operand_equal_p (arg01,
4752 const_binop (MINUS_EXPR, arg2,
4753 build_int_cst (type, 1)),
4754 OEP_ONLY_CONST))
4756 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4757 fold_convert_loc (loc, TREE_TYPE (arg00),
4758 arg2));
4759 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4761 break;
4763 case GE_EXPR:
4764 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
4765 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4766 OEP_ONLY_CONST)
4767 && operand_equal_p (arg01,
4768 const_binop (PLUS_EXPR, arg2,
4769 build_int_cst (type, 1)),
4770 OEP_ONLY_CONST))
4772 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
4773 fold_convert_loc (loc, TREE_TYPE (arg00),
4774 arg2));
4775 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4777 break;
4778 case NE_EXPR:
4779 break;
4780 default:
4781 gcc_unreachable ();
4784 return NULL_TREE;
4789 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4790 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
4791 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
4792 false) >= 2)
4793 #endif
4795 /* EXP is some logical combination of boolean tests. See if we can
4796 merge it into some range test. Return the new tree if so. */
4798 static tree
4799 fold_range_test (location_t loc, enum tree_code code, tree type,
4800 tree op0, tree op1)
4802 int or_op = (code == TRUTH_ORIF_EXPR
4803 || code == TRUTH_OR_EXPR);
4804 int in0_p, in1_p, in_p;
4805 tree low0, low1, low, high0, high1, high;
4806 bool strict_overflow_p = false;
4807 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
4808 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
4809 tree tem;
4810 const char * const warnmsg = G_("assuming signed overflow does not occur "
4811 "when simplifying range test");
4813 /* If this is an OR operation, invert both sides; we will invert
4814 again at the end. */
4815 if (or_op)
4816 in0_p = ! in0_p, in1_p = ! in1_p;
4818 /* If both expressions are the same, if we can merge the ranges, and we
4819 can build the range test, return it or it inverted. If one of the
4820 ranges is always true or always false, consider it to be the same
4821 expression as the other. */
4822 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4823 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4824 in1_p, low1, high1)
4825 && 0 != (tem = (build_range_check (loc, type,
4826 lhs != 0 ? lhs
4827 : rhs != 0 ? rhs : integer_zero_node,
4828 in_p, low, high))))
4830 if (strict_overflow_p)
4831 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
4832 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
4835 /* On machines where the branch cost is expensive, if this is a
4836 short-circuited branch and the underlying object on both sides
4837 is the same, make a non-short-circuit operation. */
4838 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4839 && lhs != 0 && rhs != 0
4840 && (code == TRUTH_ANDIF_EXPR
4841 || code == TRUTH_ORIF_EXPR)
4842 && operand_equal_p (lhs, rhs, 0))
4844 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4845 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4846 which cases we can't do this. */
4847 if (simple_operand_p (lhs))
4848 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4849 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4850 type, op0, op1);
4852 else if (!lang_hooks.decls.global_bindings_p ()
4853 && !CONTAINS_PLACEHOLDER_P (lhs))
4855 tree common = save_expr (lhs);
4857 if (0 != (lhs = build_range_check (loc, type, common,
4858 or_op ? ! in0_p : in0_p,
4859 low0, high0))
4860 && (0 != (rhs = build_range_check (loc, type, common,
4861 or_op ? ! in1_p : in1_p,
4862 low1, high1))))
4864 if (strict_overflow_p)
4865 fold_overflow_warning (warnmsg,
4866 WARN_STRICT_OVERFLOW_COMPARISON);
4867 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
4868 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4869 type, lhs, rhs);
4874 return 0;
4877 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4878 bit value. Arrange things so the extra bits will be set to zero if and
4879 only if C is signed-extended to its full width. If MASK is nonzero,
4880 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4882 static tree
4883 unextend (tree c, int p, int unsignedp, tree mask)
4885 tree type = TREE_TYPE (c);
4886 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4887 tree temp;
4889 if (p == modesize || unsignedp)
4890 return c;
4892 /* We work by getting just the sign bit into the low-order bit, then
4893 into the high-order bit, then sign-extend. We then XOR that value
4894 with C. */
4895 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1));
4896 temp = const_binop (BIT_AND_EXPR, temp, size_int (1));
4898 /* We must use a signed type in order to get an arithmetic right shift.
4899 However, we must also avoid introducing accidental overflows, so that
4900 a subsequent call to integer_zerop will work. Hence we must
4901 do the type conversion here. At this point, the constant is either
4902 zero or one, and the conversion to a signed type can never overflow.
4903 We could get an overflow if this conversion is done anywhere else. */
4904 if (TYPE_UNSIGNED (type))
4905 temp = fold_convert (signed_type_for (type), temp);
4907 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
4908 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
4909 if (mask != 0)
4910 temp = const_binop (BIT_AND_EXPR, temp,
4911 fold_convert (TREE_TYPE (c), mask));
4912 /* If necessary, convert the type back to match the type of C. */
4913 if (TYPE_UNSIGNED (type))
4914 temp = fold_convert (type, temp);
4916 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
4919 /* For an expression that has the form
4920 (A && B) || ~B
4922 (A || B) && ~B,
4923 we can drop one of the inner expressions and simplify to
4924 A || ~B
4926 A && ~B
4927 LOC is the location of the resulting expression. OP is the inner
4928 logical operation; the left-hand side in the examples above, while CMPOP
4929 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
4930 removing a condition that guards another, as in
4931 (A != NULL && A->...) || A == NULL
4932 which we must not transform. If RHS_ONLY is true, only eliminate the
4933 right-most operand of the inner logical operation. */
4935 static tree
4936 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
4937 bool rhs_only)
4939 tree type = TREE_TYPE (cmpop);
4940 enum tree_code code = TREE_CODE (cmpop);
4941 enum tree_code truthop_code = TREE_CODE (op);
4942 tree lhs = TREE_OPERAND (op, 0);
4943 tree rhs = TREE_OPERAND (op, 1);
4944 tree orig_lhs = lhs, orig_rhs = rhs;
4945 enum tree_code rhs_code = TREE_CODE (rhs);
4946 enum tree_code lhs_code = TREE_CODE (lhs);
4947 enum tree_code inv_code;
4949 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
4950 return NULL_TREE;
4952 if (TREE_CODE_CLASS (code) != tcc_comparison)
4953 return NULL_TREE;
4955 if (rhs_code == truthop_code)
4957 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
4958 if (newrhs != NULL_TREE)
4960 rhs = newrhs;
4961 rhs_code = TREE_CODE (rhs);
4964 if (lhs_code == truthop_code && !rhs_only)
4966 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
4967 if (newlhs != NULL_TREE)
4969 lhs = newlhs;
4970 lhs_code = TREE_CODE (lhs);
4974 inv_code = invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
4975 if (inv_code == rhs_code
4976 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
4977 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
4978 return lhs;
4979 if (!rhs_only && inv_code == lhs_code
4980 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
4981 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
4982 return rhs;
4983 if (rhs != orig_rhs || lhs != orig_lhs)
4984 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
4985 lhs, rhs);
4986 return NULL_TREE;
4989 /* Find ways of folding logical expressions of LHS and RHS:
4990 Try to merge two comparisons to the same innermost item.
4991 Look for range tests like "ch >= '0' && ch <= '9'".
4992 Look for combinations of simple terms on machines with expensive branches
4993 and evaluate the RHS unconditionally.
4995 For example, if we have p->a == 2 && p->b == 4 and we can make an
4996 object large enough to span both A and B, we can do this with a comparison
4997 against the object ANDed with the a mask.
4999 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5000 operations to do this with one comparison.
5002 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5003 function and the one above.
5005 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5006 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5008 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5009 two operands.
5011 We return the simplified tree or 0 if no optimization is possible. */
5013 static tree
5014 fold_truthop (location_t loc, enum tree_code code, tree truth_type,
5015 tree lhs, tree rhs)
5017 /* If this is the "or" of two comparisons, we can do something if
5018 the comparisons are NE_EXPR. If this is the "and", we can do something
5019 if the comparisons are EQ_EXPR. I.e.,
5020 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5022 WANTED_CODE is this operation code. For single bit fields, we can
5023 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5024 comparison for one-bit fields. */
5026 enum tree_code wanted_code;
5027 enum tree_code lcode, rcode;
5028 tree ll_arg, lr_arg, rl_arg, rr_arg;
5029 tree ll_inner, lr_inner, rl_inner, rr_inner;
5030 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5031 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5032 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5033 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5034 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5035 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5036 enum machine_mode lnmode, rnmode;
5037 tree ll_mask, lr_mask, rl_mask, rr_mask;
5038 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5039 tree l_const, r_const;
5040 tree lntype, rntype, result;
5041 HOST_WIDE_INT first_bit, end_bit;
5042 int volatilep;
5043 tree orig_lhs = lhs, orig_rhs = rhs;
5044 enum tree_code orig_code = code;
5046 /* Start by getting the comparison codes. Fail if anything is volatile.
5047 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5048 it were surrounded with a NE_EXPR. */
5050 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5051 return 0;
5053 lcode = TREE_CODE (lhs);
5054 rcode = TREE_CODE (rhs);
5056 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5058 lhs = build2 (NE_EXPR, truth_type, lhs,
5059 build_int_cst (TREE_TYPE (lhs), 0));
5060 lcode = NE_EXPR;
5063 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5065 rhs = build2 (NE_EXPR, truth_type, rhs,
5066 build_int_cst (TREE_TYPE (rhs), 0));
5067 rcode = NE_EXPR;
5070 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5071 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5072 return 0;
5074 ll_arg = TREE_OPERAND (lhs, 0);
5075 lr_arg = TREE_OPERAND (lhs, 1);
5076 rl_arg = TREE_OPERAND (rhs, 0);
5077 rr_arg = TREE_OPERAND (rhs, 1);
5079 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5080 if (simple_operand_p (ll_arg)
5081 && simple_operand_p (lr_arg))
5083 if (operand_equal_p (ll_arg, rl_arg, 0)
5084 && operand_equal_p (lr_arg, rr_arg, 0))
5086 result = combine_comparisons (loc, code, lcode, rcode,
5087 truth_type, ll_arg, lr_arg);
5088 if (result)
5089 return result;
5091 else if (operand_equal_p (ll_arg, rr_arg, 0)
5092 && operand_equal_p (lr_arg, rl_arg, 0))
5094 result = combine_comparisons (loc, code, lcode,
5095 swap_tree_comparison (rcode),
5096 truth_type, ll_arg, lr_arg);
5097 if (result)
5098 return result;
5102 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5103 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5105 /* If the RHS can be evaluated unconditionally and its operands are
5106 simple, it wins to evaluate the RHS unconditionally on machines
5107 with expensive branches. In this case, this isn't a comparison
5108 that can be merged. Avoid doing this if the RHS is a floating-point
5109 comparison since those can trap. */
5111 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5112 false) >= 2
5113 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5114 && simple_operand_p (rl_arg)
5115 && simple_operand_p (rr_arg))
5117 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5118 if (code == TRUTH_OR_EXPR
5119 && lcode == NE_EXPR && integer_zerop (lr_arg)
5120 && rcode == NE_EXPR && integer_zerop (rr_arg)
5121 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5122 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5123 return build2_loc (loc, NE_EXPR, truth_type,
5124 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5125 ll_arg, rl_arg),
5126 build_int_cst (TREE_TYPE (ll_arg), 0));
5128 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5129 if (code == TRUTH_AND_EXPR
5130 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5131 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5132 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5133 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5134 return build2_loc (loc, EQ_EXPR, truth_type,
5135 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5136 ll_arg, rl_arg),
5137 build_int_cst (TREE_TYPE (ll_arg), 0));
5139 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
5141 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
5142 return build2_loc (loc, code, truth_type, lhs, rhs);
5143 return NULL_TREE;
5147 /* See if the comparisons can be merged. Then get all the parameters for
5148 each side. */
5150 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5151 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5152 return 0;
5154 volatilep = 0;
5155 ll_inner = decode_field_reference (loc, ll_arg,
5156 &ll_bitsize, &ll_bitpos, &ll_mode,
5157 &ll_unsignedp, &volatilep, &ll_mask,
5158 &ll_and_mask);
5159 lr_inner = decode_field_reference (loc, lr_arg,
5160 &lr_bitsize, &lr_bitpos, &lr_mode,
5161 &lr_unsignedp, &volatilep, &lr_mask,
5162 &lr_and_mask);
5163 rl_inner = decode_field_reference (loc, rl_arg,
5164 &rl_bitsize, &rl_bitpos, &rl_mode,
5165 &rl_unsignedp, &volatilep, &rl_mask,
5166 &rl_and_mask);
5167 rr_inner = decode_field_reference (loc, rr_arg,
5168 &rr_bitsize, &rr_bitpos, &rr_mode,
5169 &rr_unsignedp, &volatilep, &rr_mask,
5170 &rr_and_mask);
5172 /* It must be true that the inner operation on the lhs of each
5173 comparison must be the same if we are to be able to do anything.
5174 Then see if we have constants. If not, the same must be true for
5175 the rhs's. */
5176 if (volatilep || ll_inner == 0 || rl_inner == 0
5177 || ! operand_equal_p (ll_inner, rl_inner, 0))
5178 return 0;
5180 if (TREE_CODE (lr_arg) == INTEGER_CST
5181 && TREE_CODE (rr_arg) == INTEGER_CST)
5182 l_const = lr_arg, r_const = rr_arg;
5183 else if (lr_inner == 0 || rr_inner == 0
5184 || ! operand_equal_p (lr_inner, rr_inner, 0))
5185 return 0;
5186 else
5187 l_const = r_const = 0;
5189 /* If either comparison code is not correct for our logical operation,
5190 fail. However, we can convert a one-bit comparison against zero into
5191 the opposite comparison against that bit being set in the field. */
5193 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5194 if (lcode != wanted_code)
5196 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5198 /* Make the left operand unsigned, since we are only interested
5199 in the value of one bit. Otherwise we are doing the wrong
5200 thing below. */
5201 ll_unsignedp = 1;
5202 l_const = ll_mask;
5204 else
5205 return 0;
5208 /* This is analogous to the code for l_const above. */
5209 if (rcode != wanted_code)
5211 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5213 rl_unsignedp = 1;
5214 r_const = rl_mask;
5216 else
5217 return 0;
5220 /* See if we can find a mode that contains both fields being compared on
5221 the left. If we can't, fail. Otherwise, update all constants and masks
5222 to be relative to a field of that size. */
5223 first_bit = MIN (ll_bitpos, rl_bitpos);
5224 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5225 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5226 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5227 volatilep);
5228 if (lnmode == VOIDmode)
5229 return 0;
5231 lnbitsize = GET_MODE_BITSIZE (lnmode);
5232 lnbitpos = first_bit & ~ (lnbitsize - 1);
5233 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5234 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5236 if (BYTES_BIG_ENDIAN)
5238 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5239 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5242 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5243 size_int (xll_bitpos));
5244 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5245 size_int (xrl_bitpos));
5247 if (l_const)
5249 l_const = fold_convert_loc (loc, lntype, l_const);
5250 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5251 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5252 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5253 fold_build1_loc (loc, BIT_NOT_EXPR,
5254 lntype, ll_mask))))
5256 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5258 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5261 if (r_const)
5263 r_const = fold_convert_loc (loc, lntype, r_const);
5264 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5265 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5266 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5267 fold_build1_loc (loc, BIT_NOT_EXPR,
5268 lntype, rl_mask))))
5270 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5272 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5276 /* If the right sides are not constant, do the same for it. Also,
5277 disallow this optimization if a size or signedness mismatch occurs
5278 between the left and right sides. */
5279 if (l_const == 0)
5281 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5282 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5283 /* Make sure the two fields on the right
5284 correspond to the left without being swapped. */
5285 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5286 return 0;
5288 first_bit = MIN (lr_bitpos, rr_bitpos);
5289 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5290 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5291 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5292 volatilep);
5293 if (rnmode == VOIDmode)
5294 return 0;
5296 rnbitsize = GET_MODE_BITSIZE (rnmode);
5297 rnbitpos = first_bit & ~ (rnbitsize - 1);
5298 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5299 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5301 if (BYTES_BIG_ENDIAN)
5303 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5304 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5307 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5308 rntype, lr_mask),
5309 size_int (xlr_bitpos));
5310 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5311 rntype, rr_mask),
5312 size_int (xrr_bitpos));
5314 /* Make a mask that corresponds to both fields being compared.
5315 Do this for both items being compared. If the operands are the
5316 same size and the bits being compared are in the same position
5317 then we can do this by masking both and comparing the masked
5318 results. */
5319 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5320 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5321 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5323 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5324 ll_unsignedp || rl_unsignedp);
5325 if (! all_ones_mask_p (ll_mask, lnbitsize))
5326 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5328 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5329 lr_unsignedp || rr_unsignedp);
5330 if (! all_ones_mask_p (lr_mask, rnbitsize))
5331 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5333 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5336 /* There is still another way we can do something: If both pairs of
5337 fields being compared are adjacent, we may be able to make a wider
5338 field containing them both.
5340 Note that we still must mask the lhs/rhs expressions. Furthermore,
5341 the mask must be shifted to account for the shift done by
5342 make_bit_field_ref. */
5343 if ((ll_bitsize + ll_bitpos == rl_bitpos
5344 && lr_bitsize + lr_bitpos == rr_bitpos)
5345 || (ll_bitpos == rl_bitpos + rl_bitsize
5346 && lr_bitpos == rr_bitpos + rr_bitsize))
5348 tree type;
5350 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5351 ll_bitsize + rl_bitsize,
5352 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5353 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5354 lr_bitsize + rr_bitsize,
5355 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5357 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5358 size_int (MIN (xll_bitpos, xrl_bitpos)));
5359 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5360 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5362 /* Convert to the smaller type before masking out unwanted bits. */
5363 type = lntype;
5364 if (lntype != rntype)
5366 if (lnbitsize > rnbitsize)
5368 lhs = fold_convert_loc (loc, rntype, lhs);
5369 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5370 type = rntype;
5372 else if (lnbitsize < rnbitsize)
5374 rhs = fold_convert_loc (loc, lntype, rhs);
5375 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5376 type = lntype;
5380 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5381 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5383 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5384 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5386 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5389 return 0;
5392 /* Handle the case of comparisons with constants. If there is something in
5393 common between the masks, those bits of the constants must be the same.
5394 If not, the condition is always false. Test for this to avoid generating
5395 incorrect code below. */
5396 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5397 if (! integer_zerop (result)
5398 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5399 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5401 if (wanted_code == NE_EXPR)
5403 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5404 return constant_boolean_node (true, truth_type);
5406 else
5408 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5409 return constant_boolean_node (false, truth_type);
5413 /* Construct the expression we will return. First get the component
5414 reference we will make. Unless the mask is all ones the width of
5415 that field, perform the mask operation. Then compare with the
5416 merged constant. */
5417 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5418 ll_unsignedp || rl_unsignedp);
5420 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5421 if (! all_ones_mask_p (ll_mask, lnbitsize))
5422 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5424 return build2_loc (loc, wanted_code, truth_type, result,
5425 const_binop (BIT_IOR_EXPR, l_const, r_const));
5428 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5429 constant. */
5431 static tree
5432 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5433 tree op0, tree op1)
5435 tree arg0 = op0;
5436 enum tree_code op_code;
5437 tree comp_const;
5438 tree minmax_const;
5439 int consts_equal, consts_lt;
5440 tree inner;
5442 STRIP_SIGN_NOPS (arg0);
5444 op_code = TREE_CODE (arg0);
5445 minmax_const = TREE_OPERAND (arg0, 1);
5446 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5447 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5448 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5449 inner = TREE_OPERAND (arg0, 0);
5451 /* If something does not permit us to optimize, return the original tree. */
5452 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5453 || TREE_CODE (comp_const) != INTEGER_CST
5454 || TREE_OVERFLOW (comp_const)
5455 || TREE_CODE (minmax_const) != INTEGER_CST
5456 || TREE_OVERFLOW (minmax_const))
5457 return NULL_TREE;
5459 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5460 and GT_EXPR, doing the rest with recursive calls using logical
5461 simplifications. */
5462 switch (code)
5464 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5466 tree tem
5467 = optimize_minmax_comparison (loc,
5468 invert_tree_comparison (code, false),
5469 type, op0, op1);
5470 if (tem)
5471 return invert_truthvalue_loc (loc, tem);
5472 return NULL_TREE;
5475 case GE_EXPR:
5476 return
5477 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5478 optimize_minmax_comparison
5479 (loc, EQ_EXPR, type, arg0, comp_const),
5480 optimize_minmax_comparison
5481 (loc, GT_EXPR, type, arg0, comp_const));
5483 case EQ_EXPR:
5484 if (op_code == MAX_EXPR && consts_equal)
5485 /* MAX (X, 0) == 0 -> X <= 0 */
5486 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5488 else if (op_code == MAX_EXPR && consts_lt)
5489 /* MAX (X, 0) == 5 -> X == 5 */
5490 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5492 else if (op_code == MAX_EXPR)
5493 /* MAX (X, 0) == -1 -> false */
5494 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5496 else if (consts_equal)
5497 /* MIN (X, 0) == 0 -> X >= 0 */
5498 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5500 else if (consts_lt)
5501 /* MIN (X, 0) == 5 -> false */
5502 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5504 else
5505 /* MIN (X, 0) == -1 -> X == -1 */
5506 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5508 case GT_EXPR:
5509 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5510 /* MAX (X, 0) > 0 -> X > 0
5511 MAX (X, 0) > 5 -> X > 5 */
5512 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5514 else if (op_code == MAX_EXPR)
5515 /* MAX (X, 0) > -1 -> true */
5516 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5518 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5519 /* MIN (X, 0) > 0 -> false
5520 MIN (X, 0) > 5 -> false */
5521 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5523 else
5524 /* MIN (X, 0) > -1 -> X > -1 */
5525 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5527 default:
5528 return NULL_TREE;
5532 /* T is an integer expression that is being multiplied, divided, or taken a
5533 modulus (CODE says which and what kind of divide or modulus) by a
5534 constant C. See if we can eliminate that operation by folding it with
5535 other operations already in T. WIDE_TYPE, if non-null, is a type that
5536 should be used for the computation if wider than our type.
5538 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5539 (X * 2) + (Y * 4). We must, however, be assured that either the original
5540 expression would not overflow or that overflow is undefined for the type
5541 in the language in question.
5543 If we return a non-null expression, it is an equivalent form of the
5544 original computation, but need not be in the original type.
5546 We set *STRICT_OVERFLOW_P to true if the return values depends on
5547 signed overflow being undefined. Otherwise we do not change
5548 *STRICT_OVERFLOW_P. */
5550 static tree
5551 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5552 bool *strict_overflow_p)
5554 /* To avoid exponential search depth, refuse to allow recursion past
5555 three levels. Beyond that (1) it's highly unlikely that we'll find
5556 something interesting and (2) we've probably processed it before
5557 when we built the inner expression. */
5559 static int depth;
5560 tree ret;
5562 if (depth > 3)
5563 return NULL;
5565 depth++;
5566 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5567 depth--;
5569 return ret;
5572 static tree
5573 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5574 bool *strict_overflow_p)
5576 tree type = TREE_TYPE (t);
5577 enum tree_code tcode = TREE_CODE (t);
5578 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5579 > GET_MODE_SIZE (TYPE_MODE (type)))
5580 ? wide_type : type);
5581 tree t1, t2;
5582 int same_p = tcode == code;
5583 tree op0 = NULL_TREE, op1 = NULL_TREE;
5584 bool sub_strict_overflow_p;
5586 /* Don't deal with constants of zero here; they confuse the code below. */
5587 if (integer_zerop (c))
5588 return NULL_TREE;
5590 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5591 op0 = TREE_OPERAND (t, 0);
5593 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5594 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5596 /* Note that we need not handle conditional operations here since fold
5597 already handles those cases. So just do arithmetic here. */
5598 switch (tcode)
5600 case INTEGER_CST:
5601 /* For a constant, we can always simplify if we are a multiply
5602 or (for divide and modulus) if it is a multiple of our constant. */
5603 if (code == MULT_EXPR
5604 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c)))
5605 return const_binop (code, fold_convert (ctype, t),
5606 fold_convert (ctype, c));
5607 break;
5609 CASE_CONVERT: case NON_LVALUE_EXPR:
5610 /* If op0 is an expression ... */
5611 if ((COMPARISON_CLASS_P (op0)
5612 || UNARY_CLASS_P (op0)
5613 || BINARY_CLASS_P (op0)
5614 || VL_EXP_CLASS_P (op0)
5615 || EXPRESSION_CLASS_P (op0))
5616 /* ... and has wrapping overflow, and its type is smaller
5617 than ctype, then we cannot pass through as widening. */
5618 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
5619 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5620 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5621 && (TYPE_PRECISION (ctype)
5622 > TYPE_PRECISION (TREE_TYPE (op0))))
5623 /* ... or this is a truncation (t is narrower than op0),
5624 then we cannot pass through this narrowing. */
5625 || (TYPE_PRECISION (type)
5626 < TYPE_PRECISION (TREE_TYPE (op0)))
5627 /* ... or signedness changes for division or modulus,
5628 then we cannot pass through this conversion. */
5629 || (code != MULT_EXPR
5630 && (TYPE_UNSIGNED (ctype)
5631 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5632 /* ... or has undefined overflow while the converted to
5633 type has not, we cannot do the operation in the inner type
5634 as that would introduce undefined overflow. */
5635 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
5636 && !TYPE_OVERFLOW_UNDEFINED (type))))
5637 break;
5639 /* Pass the constant down and see if we can make a simplification. If
5640 we can, replace this expression with the inner simplification for
5641 possible later conversion to our or some other type. */
5642 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5643 && TREE_CODE (t2) == INTEGER_CST
5644 && !TREE_OVERFLOW (t2)
5645 && (0 != (t1 = extract_muldiv (op0, t2, code,
5646 code == MULT_EXPR
5647 ? ctype : NULL_TREE,
5648 strict_overflow_p))))
5649 return t1;
5650 break;
5652 case ABS_EXPR:
5653 /* If widening the type changes it from signed to unsigned, then we
5654 must avoid building ABS_EXPR itself as unsigned. */
5655 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5657 tree cstype = (*signed_type_for) (ctype);
5658 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5659 != 0)
5661 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5662 return fold_convert (ctype, t1);
5664 break;
5666 /* If the constant is negative, we cannot simplify this. */
5667 if (tree_int_cst_sgn (c) == -1)
5668 break;
5669 /* FALLTHROUGH */
5670 case NEGATE_EXPR:
5671 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5672 != 0)
5673 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5674 break;
5676 case MIN_EXPR: case MAX_EXPR:
5677 /* If widening the type changes the signedness, then we can't perform
5678 this optimization as that changes the result. */
5679 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5680 break;
5682 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5683 sub_strict_overflow_p = false;
5684 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5685 &sub_strict_overflow_p)) != 0
5686 && (t2 = extract_muldiv (op1, c, code, wide_type,
5687 &sub_strict_overflow_p)) != 0)
5689 if (tree_int_cst_sgn (c) < 0)
5690 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5691 if (sub_strict_overflow_p)
5692 *strict_overflow_p = true;
5693 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5694 fold_convert (ctype, t2));
5696 break;
5698 case LSHIFT_EXPR: case RSHIFT_EXPR:
5699 /* If the second operand is constant, this is a multiplication
5700 or floor division, by a power of two, so we can treat it that
5701 way unless the multiplier or divisor overflows. Signed
5702 left-shift overflow is implementation-defined rather than
5703 undefined in C90, so do not convert signed left shift into
5704 multiplication. */
5705 if (TREE_CODE (op1) == INTEGER_CST
5706 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5707 /* const_binop may not detect overflow correctly,
5708 so check for it explicitly here. */
5709 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5710 && TREE_INT_CST_HIGH (op1) == 0
5711 && 0 != (t1 = fold_convert (ctype,
5712 const_binop (LSHIFT_EXPR,
5713 size_one_node,
5714 op1)))
5715 && !TREE_OVERFLOW (t1))
5716 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5717 ? MULT_EXPR : FLOOR_DIV_EXPR,
5718 ctype,
5719 fold_convert (ctype, op0),
5720 t1),
5721 c, code, wide_type, strict_overflow_p);
5722 break;
5724 case PLUS_EXPR: case MINUS_EXPR:
5725 /* See if we can eliminate the operation on both sides. If we can, we
5726 can return a new PLUS or MINUS. If we can't, the only remaining
5727 cases where we can do anything are if the second operand is a
5728 constant. */
5729 sub_strict_overflow_p = false;
5730 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
5731 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
5732 if (t1 != 0 && t2 != 0
5733 && (code == MULT_EXPR
5734 /* If not multiplication, we can only do this if both operands
5735 are divisible by c. */
5736 || (multiple_of_p (ctype, op0, c)
5737 && multiple_of_p (ctype, op1, c))))
5739 if (sub_strict_overflow_p)
5740 *strict_overflow_p = true;
5741 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5742 fold_convert (ctype, t2));
5745 /* If this was a subtraction, negate OP1 and set it to be an addition.
5746 This simplifies the logic below. */
5747 if (tcode == MINUS_EXPR)
5749 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5750 /* If OP1 was not easily negatable, the constant may be OP0. */
5751 if (TREE_CODE (op0) == INTEGER_CST)
5753 tree tem = op0;
5754 op0 = op1;
5755 op1 = tem;
5756 tem = t1;
5757 t1 = t2;
5758 t2 = tem;
5762 if (TREE_CODE (op1) != INTEGER_CST)
5763 break;
5765 /* If either OP1 or C are negative, this optimization is not safe for
5766 some of the division and remainder types while for others we need
5767 to change the code. */
5768 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5770 if (code == CEIL_DIV_EXPR)
5771 code = FLOOR_DIV_EXPR;
5772 else if (code == FLOOR_DIV_EXPR)
5773 code = CEIL_DIV_EXPR;
5774 else if (code != MULT_EXPR
5775 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5776 break;
5779 /* If it's a multiply or a division/modulus operation of a multiple
5780 of our constant, do the operation and verify it doesn't overflow. */
5781 if (code == MULT_EXPR
5782 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5784 op1 = const_binop (code, fold_convert (ctype, op1),
5785 fold_convert (ctype, c));
5786 /* We allow the constant to overflow with wrapping semantics. */
5787 if (op1 == 0
5788 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
5789 break;
5791 else
5792 break;
5794 /* If we have an unsigned type is not a sizetype, we cannot widen
5795 the operation since it will change the result if the original
5796 computation overflowed. */
5797 if (TYPE_UNSIGNED (ctype)
5798 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5799 && ctype != type)
5800 break;
5802 /* If we were able to eliminate our operation from the first side,
5803 apply our operation to the second side and reform the PLUS. */
5804 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5805 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5807 /* The last case is if we are a multiply. In that case, we can
5808 apply the distributive law to commute the multiply and addition
5809 if the multiplication of the constants doesn't overflow. */
5810 if (code == MULT_EXPR)
5811 return fold_build2 (tcode, ctype,
5812 fold_build2 (code, ctype,
5813 fold_convert (ctype, op0),
5814 fold_convert (ctype, c)),
5815 op1);
5817 break;
5819 case MULT_EXPR:
5820 /* We have a special case here if we are doing something like
5821 (C * 8) % 4 since we know that's zero. */
5822 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5823 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5824 /* If the multiplication can overflow we cannot optimize this.
5825 ??? Until we can properly mark individual operations as
5826 not overflowing we need to treat sizetype special here as
5827 stor-layout relies on this opimization to make
5828 DECL_FIELD_BIT_OFFSET always a constant. */
5829 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
5830 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
5831 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
5832 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5833 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5835 *strict_overflow_p = true;
5836 return omit_one_operand (type, integer_zero_node, op0);
5839 /* ... fall through ... */
5841 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5842 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5843 /* If we can extract our operation from the LHS, do so and return a
5844 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5845 do something only if the second operand is a constant. */
5846 if (same_p
5847 && (t1 = extract_muldiv (op0, c, code, wide_type,
5848 strict_overflow_p)) != 0)
5849 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5850 fold_convert (ctype, op1));
5851 else if (tcode == MULT_EXPR && code == MULT_EXPR
5852 && (t1 = extract_muldiv (op1, c, code, wide_type,
5853 strict_overflow_p)) != 0)
5854 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5855 fold_convert (ctype, t1));
5856 else if (TREE_CODE (op1) != INTEGER_CST)
5857 return 0;
5859 /* If these are the same operation types, we can associate them
5860 assuming no overflow. */
5861 if (tcode == code)
5863 double_int mul;
5864 int overflow_p;
5865 mul = double_int_mul_with_sign
5866 (double_int_ext
5867 (tree_to_double_int (op1),
5868 TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
5869 double_int_ext
5870 (tree_to_double_int (c),
5871 TYPE_PRECISION (ctype), TYPE_UNSIGNED (ctype)),
5872 false, &overflow_p);
5873 overflow_p = (((!TYPE_UNSIGNED (ctype)
5874 || (TREE_CODE (ctype) == INTEGER_TYPE
5875 && TYPE_IS_SIZETYPE (ctype)))
5876 && overflow_p)
5877 | TREE_OVERFLOW (c) | TREE_OVERFLOW (op1));
5878 if (!double_int_fits_to_tree_p (ctype, mul)
5879 && ((TYPE_UNSIGNED (ctype) && tcode != MULT_EXPR)
5880 || !TYPE_UNSIGNED (ctype)
5881 || (TREE_CODE (ctype) == INTEGER_TYPE
5882 && TYPE_IS_SIZETYPE (ctype))))
5883 overflow_p = 1;
5884 if (!overflow_p)
5885 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5886 double_int_to_tree (ctype, mul));
5889 /* If these operations "cancel" each other, we have the main
5890 optimizations of this pass, which occur when either constant is a
5891 multiple of the other, in which case we replace this with either an
5892 operation or CODE or TCODE.
5894 If we have an unsigned type that is not a sizetype, we cannot do
5895 this since it will change the result if the original computation
5896 overflowed. */
5897 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
5898 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5899 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5900 || (tcode == MULT_EXPR
5901 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5902 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
5903 && code != MULT_EXPR)))
5905 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c)))
5907 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5908 *strict_overflow_p = true;
5909 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5910 fold_convert (ctype,
5911 const_binop (TRUNC_DIV_EXPR,
5912 op1, c)));
5914 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1)))
5916 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5917 *strict_overflow_p = true;
5918 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5919 fold_convert (ctype,
5920 const_binop (TRUNC_DIV_EXPR,
5921 c, op1)));
5924 break;
5926 default:
5927 break;
5930 return 0;
5933 /* Return a node which has the indicated constant VALUE (either 0 or
5934 1), and is of the indicated TYPE. */
5936 tree
5937 constant_boolean_node (int value, tree type)
5939 if (type == integer_type_node)
5940 return value ? integer_one_node : integer_zero_node;
5941 else if (type == boolean_type_node)
5942 return value ? boolean_true_node : boolean_false_node;
5943 else
5944 return build_int_cst (type, value);
5948 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5949 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5950 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5951 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5952 COND is the first argument to CODE; otherwise (as in the example
5953 given here), it is the second argument. TYPE is the type of the
5954 original expression. Return NULL_TREE if no simplification is
5955 possible. */
5957 static tree
5958 fold_binary_op_with_conditional_arg (location_t loc,
5959 enum tree_code code,
5960 tree type, tree op0, tree op1,
5961 tree cond, tree arg, int cond_first_p)
5963 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
5964 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
5965 tree test, true_value, false_value;
5966 tree lhs = NULL_TREE;
5967 tree rhs = NULL_TREE;
5969 if (TREE_CODE (cond) == COND_EXPR)
5971 test = TREE_OPERAND (cond, 0);
5972 true_value = TREE_OPERAND (cond, 1);
5973 false_value = TREE_OPERAND (cond, 2);
5974 /* If this operand throws an expression, then it does not make
5975 sense to try to perform a logical or arithmetic operation
5976 involving it. */
5977 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5978 lhs = true_value;
5979 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5980 rhs = false_value;
5982 else
5984 tree testtype = TREE_TYPE (cond);
5985 test = cond;
5986 true_value = constant_boolean_node (true, testtype);
5987 false_value = constant_boolean_node (false, testtype);
5990 /* This transformation is only worthwhile if we don't have to wrap ARG
5991 in a SAVE_EXPR and the operation can be simplified on at least one
5992 of the branches once its pushed inside the COND_EXPR. */
5993 if (!TREE_CONSTANT (arg)
5994 && (TREE_SIDE_EFFECTS (arg)
5995 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
5996 return NULL_TREE;
5998 arg = fold_convert_loc (loc, arg_type, arg);
5999 if (lhs == 0)
6001 true_value = fold_convert_loc (loc, cond_type, true_value);
6002 if (cond_first_p)
6003 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6004 else
6005 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6007 if (rhs == 0)
6009 false_value = fold_convert_loc (loc, cond_type, false_value);
6010 if (cond_first_p)
6011 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6012 else
6013 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6016 /* Check that we have simplified at least one of the branches. */
6017 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6018 return NULL_TREE;
6020 return fold_build3_loc (loc, COND_EXPR, type, test, lhs, rhs);
6024 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6026 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6027 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6028 ADDEND is the same as X.
6030 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6031 and finite. The problematic cases are when X is zero, and its mode
6032 has signed zeros. In the case of rounding towards -infinity,
6033 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6034 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6036 bool
6037 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6039 if (!real_zerop (addend))
6040 return false;
6042 /* Don't allow the fold with -fsignaling-nans. */
6043 if (HONOR_SNANS (TYPE_MODE (type)))
6044 return false;
6046 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6047 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6048 return true;
6050 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6051 if (TREE_CODE (addend) == REAL_CST
6052 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6053 negate = !negate;
6055 /* The mode has signed zeros, and we have to honor their sign.
6056 In this situation, there is only one case we can return true for.
6057 X - 0 is the same as X unless rounding towards -infinity is
6058 supported. */
6059 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6062 /* Subroutine of fold() that checks comparisons of built-in math
6063 functions against real constants.
6065 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6066 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6067 is the type of the result and ARG0 and ARG1 are the operands of the
6068 comparison. ARG1 must be a TREE_REAL_CST.
6070 The function returns the constant folded tree if a simplification
6071 can be made, and NULL_TREE otherwise. */
6073 static tree
6074 fold_mathfn_compare (location_t loc,
6075 enum built_in_function fcode, enum tree_code code,
6076 tree type, tree arg0, tree arg1)
6078 REAL_VALUE_TYPE c;
6080 if (BUILTIN_SQRT_P (fcode))
6082 tree arg = CALL_EXPR_ARG (arg0, 0);
6083 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6085 c = TREE_REAL_CST (arg1);
6086 if (REAL_VALUE_NEGATIVE (c))
6088 /* sqrt(x) < y is always false, if y is negative. */
6089 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6090 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6092 /* sqrt(x) > y is always true, if y is negative and we
6093 don't care about NaNs, i.e. negative values of x. */
6094 if (code == NE_EXPR || !HONOR_NANS (mode))
6095 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6097 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6098 return fold_build2_loc (loc, GE_EXPR, type, arg,
6099 build_real (TREE_TYPE (arg), dconst0));
6101 else if (code == GT_EXPR || code == GE_EXPR)
6103 REAL_VALUE_TYPE c2;
6105 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6106 real_convert (&c2, mode, &c2);
6108 if (REAL_VALUE_ISINF (c2))
6110 /* sqrt(x) > y is x == +Inf, when y is very large. */
6111 if (HONOR_INFINITIES (mode))
6112 return fold_build2_loc (loc, EQ_EXPR, type, arg,
6113 build_real (TREE_TYPE (arg), c2));
6115 /* sqrt(x) > y is always false, when y is very large
6116 and we don't care about infinities. */
6117 return omit_one_operand_loc (loc, type, integer_zero_node, arg);
6120 /* sqrt(x) > c is the same as x > c*c. */
6121 return fold_build2_loc (loc, code, type, arg,
6122 build_real (TREE_TYPE (arg), c2));
6124 else if (code == LT_EXPR || code == LE_EXPR)
6126 REAL_VALUE_TYPE c2;
6128 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6129 real_convert (&c2, mode, &c2);
6131 if (REAL_VALUE_ISINF (c2))
6133 /* sqrt(x) < y is always true, when y is a very large
6134 value and we don't care about NaNs or Infinities. */
6135 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6136 return omit_one_operand_loc (loc, type, integer_one_node, arg);
6138 /* sqrt(x) < y is x != +Inf when y is very large and we
6139 don't care about NaNs. */
6140 if (! HONOR_NANS (mode))
6141 return fold_build2_loc (loc, NE_EXPR, type, arg,
6142 build_real (TREE_TYPE (arg), c2));
6144 /* sqrt(x) < y is x >= 0 when y is very large and we
6145 don't care about Infinities. */
6146 if (! HONOR_INFINITIES (mode))
6147 return fold_build2_loc (loc, GE_EXPR, type, arg,
6148 build_real (TREE_TYPE (arg), dconst0));
6150 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6151 arg = save_expr (arg);
6152 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6153 fold_build2_loc (loc, GE_EXPR, type, arg,
6154 build_real (TREE_TYPE (arg),
6155 dconst0)),
6156 fold_build2_loc (loc, NE_EXPR, type, arg,
6157 build_real (TREE_TYPE (arg),
6158 c2)));
6161 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6162 if (! HONOR_NANS (mode))
6163 return fold_build2_loc (loc, code, type, arg,
6164 build_real (TREE_TYPE (arg), c2));
6166 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6167 arg = save_expr (arg);
6168 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
6169 fold_build2_loc (loc, GE_EXPR, type, arg,
6170 build_real (TREE_TYPE (arg),
6171 dconst0)),
6172 fold_build2_loc (loc, code, type, arg,
6173 build_real (TREE_TYPE (arg),
6174 c2)));
6178 return NULL_TREE;
6181 /* Subroutine of fold() that optimizes comparisons against Infinities,
6182 either +Inf or -Inf.
6184 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6185 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6186 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6188 The function returns the constant folded tree if a simplification
6189 can be made, and NULL_TREE otherwise. */
6191 static tree
6192 fold_inf_compare (location_t loc, enum tree_code code, tree type,
6193 tree arg0, tree arg1)
6195 enum machine_mode mode;
6196 REAL_VALUE_TYPE max;
6197 tree temp;
6198 bool neg;
6200 mode = TYPE_MODE (TREE_TYPE (arg0));
6202 /* For negative infinity swap the sense of the comparison. */
6203 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6204 if (neg)
6205 code = swap_tree_comparison (code);
6207 switch (code)
6209 case GT_EXPR:
6210 /* x > +Inf is always false, if with ignore sNANs. */
6211 if (HONOR_SNANS (mode))
6212 return NULL_TREE;
6213 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6215 case LE_EXPR:
6216 /* x <= +Inf is always true, if we don't case about NaNs. */
6217 if (! HONOR_NANS (mode))
6218 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6220 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6221 arg0 = save_expr (arg0);
6222 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg0);
6224 case EQ_EXPR:
6225 case GE_EXPR:
6226 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6227 real_maxval (&max, neg, mode);
6228 return fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6229 arg0, build_real (TREE_TYPE (arg0), max));
6231 case LT_EXPR:
6232 /* x < +Inf is always equal to x <= DBL_MAX. */
6233 real_maxval (&max, neg, mode);
6234 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6235 arg0, build_real (TREE_TYPE (arg0), max));
6237 case NE_EXPR:
6238 /* x != +Inf is always equal to !(x > DBL_MAX). */
6239 real_maxval (&max, neg, mode);
6240 if (! HONOR_NANS (mode))
6241 return fold_build2_loc (loc, neg ? GE_EXPR : LE_EXPR, type,
6242 arg0, build_real (TREE_TYPE (arg0), max));
6244 temp = fold_build2_loc (loc, neg ? LT_EXPR : GT_EXPR, type,
6245 arg0, build_real (TREE_TYPE (arg0), max));
6246 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type, temp);
6248 default:
6249 break;
6252 return NULL_TREE;
6255 /* Subroutine of fold() that optimizes comparisons of a division by
6256 a nonzero integer constant against an integer constant, i.e.
6257 X/C1 op C2.
6259 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6260 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6261 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6263 The function returns the constant folded tree if a simplification
6264 can be made, and NULL_TREE otherwise. */
6266 static tree
6267 fold_div_compare (location_t loc,
6268 enum tree_code code, tree type, tree arg0, tree arg1)
6270 tree prod, tmp, hi, lo;
6271 tree arg00 = TREE_OPERAND (arg0, 0);
6272 tree arg01 = TREE_OPERAND (arg0, 1);
6273 double_int val;
6274 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6275 bool neg_overflow;
6276 int overflow;
6278 /* We have to do this the hard way to detect unsigned overflow.
6279 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6280 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6281 TREE_INT_CST_HIGH (arg01),
6282 TREE_INT_CST_LOW (arg1),
6283 TREE_INT_CST_HIGH (arg1),
6284 &val.low, &val.high, unsigned_p);
6285 prod = force_fit_type_double (TREE_TYPE (arg00), val, -1, overflow);
6286 neg_overflow = false;
6288 if (unsigned_p)
6290 tmp = int_const_binop (MINUS_EXPR, arg01,
6291 build_int_cst (TREE_TYPE (arg01), 1));
6292 lo = prod;
6294 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6295 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6296 TREE_INT_CST_HIGH (prod),
6297 TREE_INT_CST_LOW (tmp),
6298 TREE_INT_CST_HIGH (tmp),
6299 &val.low, &val.high, unsigned_p);
6300 hi = force_fit_type_double (TREE_TYPE (arg00), val,
6301 -1, overflow | TREE_OVERFLOW (prod));
6303 else if (tree_int_cst_sgn (arg01) >= 0)
6305 tmp = int_const_binop (MINUS_EXPR, arg01,
6306 build_int_cst (TREE_TYPE (arg01), 1));
6307 switch (tree_int_cst_sgn (arg1))
6309 case -1:
6310 neg_overflow = true;
6311 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6312 hi = prod;
6313 break;
6315 case 0:
6316 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6317 hi = tmp;
6318 break;
6320 case 1:
6321 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6322 lo = prod;
6323 break;
6325 default:
6326 gcc_unreachable ();
6329 else
6331 /* A negative divisor reverses the relational operators. */
6332 code = swap_tree_comparison (code);
6334 tmp = int_const_binop (PLUS_EXPR, arg01,
6335 build_int_cst (TREE_TYPE (arg01), 1));
6336 switch (tree_int_cst_sgn (arg1))
6338 case -1:
6339 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6340 lo = prod;
6341 break;
6343 case 0:
6344 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6345 lo = tmp;
6346 break;
6348 case 1:
6349 neg_overflow = true;
6350 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6351 hi = prod;
6352 break;
6354 default:
6355 gcc_unreachable ();
6359 switch (code)
6361 case EQ_EXPR:
6362 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6363 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6364 if (TREE_OVERFLOW (hi))
6365 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6366 if (TREE_OVERFLOW (lo))
6367 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6368 return build_range_check (loc, type, arg00, 1, lo, hi);
6370 case NE_EXPR:
6371 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6372 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6373 if (TREE_OVERFLOW (hi))
6374 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6375 if (TREE_OVERFLOW (lo))
6376 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6377 return build_range_check (loc, type, arg00, 0, lo, hi);
6379 case LT_EXPR:
6380 if (TREE_OVERFLOW (lo))
6382 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6383 return omit_one_operand_loc (loc, type, tmp, arg00);
6385 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6387 case LE_EXPR:
6388 if (TREE_OVERFLOW (hi))
6390 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6391 return omit_one_operand_loc (loc, type, tmp, arg00);
6393 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6395 case GT_EXPR:
6396 if (TREE_OVERFLOW (hi))
6398 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6399 return omit_one_operand_loc (loc, type, tmp, arg00);
6401 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6403 case GE_EXPR:
6404 if (TREE_OVERFLOW (lo))
6406 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6407 return omit_one_operand_loc (loc, type, tmp, arg00);
6409 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6411 default:
6412 break;
6415 return NULL_TREE;
6419 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6420 equality/inequality test, then return a simplified form of the test
6421 using a sign testing. Otherwise return NULL. TYPE is the desired
6422 result type. */
6424 static tree
6425 fold_single_bit_test_into_sign_test (location_t loc,
6426 enum tree_code code, tree arg0, tree arg1,
6427 tree result_type)
6429 /* If this is testing a single bit, we can optimize the test. */
6430 if ((code == NE_EXPR || code == EQ_EXPR)
6431 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6432 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6434 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6435 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6436 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6438 if (arg00 != NULL_TREE
6439 /* This is only a win if casting to a signed type is cheap,
6440 i.e. when arg00's type is not a partial mode. */
6441 && TYPE_PRECISION (TREE_TYPE (arg00))
6442 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6444 tree stype = signed_type_for (TREE_TYPE (arg00));
6445 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6446 result_type,
6447 fold_convert_loc (loc, stype, arg00),
6448 build_int_cst (stype, 0));
6452 return NULL_TREE;
6455 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6456 equality/inequality test, then return a simplified form of
6457 the test using shifts and logical operations. Otherwise return
6458 NULL. TYPE is the desired result type. */
6460 tree
6461 fold_single_bit_test (location_t loc, enum tree_code code,
6462 tree arg0, tree arg1, tree result_type)
6464 /* If this is testing a single bit, we can optimize the test. */
6465 if ((code == NE_EXPR || code == EQ_EXPR)
6466 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6467 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6469 tree inner = TREE_OPERAND (arg0, 0);
6470 tree type = TREE_TYPE (arg0);
6471 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6472 enum machine_mode operand_mode = TYPE_MODE (type);
6473 int ops_unsigned;
6474 tree signed_type, unsigned_type, intermediate_type;
6475 tree tem, one;
6477 /* First, see if we can fold the single bit test into a sign-bit
6478 test. */
6479 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6480 result_type);
6481 if (tem)
6482 return tem;
6484 /* Otherwise we have (A & C) != 0 where C is a single bit,
6485 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6486 Similarly for (A & C) == 0. */
6488 /* If INNER is a right shift of a constant and it plus BITNUM does
6489 not overflow, adjust BITNUM and INNER. */
6490 if (TREE_CODE (inner) == RSHIFT_EXPR
6491 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6492 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6493 && bitnum < TYPE_PRECISION (type)
6494 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6495 bitnum - TYPE_PRECISION (type)))
6497 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6498 inner = TREE_OPERAND (inner, 0);
6501 /* If we are going to be able to omit the AND below, we must do our
6502 operations as unsigned. If we must use the AND, we have a choice.
6503 Normally unsigned is faster, but for some machines signed is. */
6504 #ifdef LOAD_EXTEND_OP
6505 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6506 && !flag_syntax_only) ? 0 : 1;
6507 #else
6508 ops_unsigned = 1;
6509 #endif
6511 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6512 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6513 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6514 inner = fold_convert_loc (loc, intermediate_type, inner);
6516 if (bitnum != 0)
6517 inner = build2 (RSHIFT_EXPR, intermediate_type,
6518 inner, size_int (bitnum));
6520 one = build_int_cst (intermediate_type, 1);
6522 if (code == EQ_EXPR)
6523 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6525 /* Put the AND last so it can combine with more things. */
6526 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6528 /* Make sure to return the proper type. */
6529 inner = fold_convert_loc (loc, result_type, inner);
6531 return inner;
6533 return NULL_TREE;
6536 /* Check whether we are allowed to reorder operands arg0 and arg1,
6537 such that the evaluation of arg1 occurs before arg0. */
6539 static bool
6540 reorder_operands_p (const_tree arg0, const_tree arg1)
6542 if (! flag_evaluation_order)
6543 return true;
6544 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6545 return true;
6546 return ! TREE_SIDE_EFFECTS (arg0)
6547 && ! TREE_SIDE_EFFECTS (arg1);
6550 /* Test whether it is preferable two swap two operands, ARG0 and
6551 ARG1, for example because ARG0 is an integer constant and ARG1
6552 isn't. If REORDER is true, only recommend swapping if we can
6553 evaluate the operands in reverse order. */
6555 bool
6556 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6558 STRIP_SIGN_NOPS (arg0);
6559 STRIP_SIGN_NOPS (arg1);
6561 if (TREE_CODE (arg1) == INTEGER_CST)
6562 return 0;
6563 if (TREE_CODE (arg0) == INTEGER_CST)
6564 return 1;
6566 if (TREE_CODE (arg1) == REAL_CST)
6567 return 0;
6568 if (TREE_CODE (arg0) == REAL_CST)
6569 return 1;
6571 if (TREE_CODE (arg1) == FIXED_CST)
6572 return 0;
6573 if (TREE_CODE (arg0) == FIXED_CST)
6574 return 1;
6576 if (TREE_CODE (arg1) == COMPLEX_CST)
6577 return 0;
6578 if (TREE_CODE (arg0) == COMPLEX_CST)
6579 return 1;
6581 if (TREE_CONSTANT (arg1))
6582 return 0;
6583 if (TREE_CONSTANT (arg0))
6584 return 1;
6586 if (optimize_function_for_size_p (cfun))
6587 return 0;
6589 if (reorder && flag_evaluation_order
6590 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6591 return 0;
6593 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6594 for commutative and comparison operators. Ensuring a canonical
6595 form allows the optimizers to find additional redundancies without
6596 having to explicitly check for both orderings. */
6597 if (TREE_CODE (arg0) == SSA_NAME
6598 && TREE_CODE (arg1) == SSA_NAME
6599 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6600 return 1;
6602 /* Put SSA_NAMEs last. */
6603 if (TREE_CODE (arg1) == SSA_NAME)
6604 return 0;
6605 if (TREE_CODE (arg0) == SSA_NAME)
6606 return 1;
6608 /* Put variables last. */
6609 if (DECL_P (arg1))
6610 return 0;
6611 if (DECL_P (arg0))
6612 return 1;
6614 return 0;
6617 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6618 ARG0 is extended to a wider type. */
6620 static tree
6621 fold_widened_comparison (location_t loc, enum tree_code code,
6622 tree type, tree arg0, tree arg1)
6624 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6625 tree arg1_unw;
6626 tree shorter_type, outer_type;
6627 tree min, max;
6628 bool above, below;
6630 if (arg0_unw == arg0)
6631 return NULL_TREE;
6632 shorter_type = TREE_TYPE (arg0_unw);
6634 #ifdef HAVE_canonicalize_funcptr_for_compare
6635 /* Disable this optimization if we're casting a function pointer
6636 type on targets that require function pointer canonicalization. */
6637 if (HAVE_canonicalize_funcptr_for_compare
6638 && TREE_CODE (shorter_type) == POINTER_TYPE
6639 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6640 return NULL_TREE;
6641 #endif
6643 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6644 return NULL_TREE;
6646 arg1_unw = get_unwidened (arg1, NULL_TREE);
6648 /* If possible, express the comparison in the shorter mode. */
6649 if ((code == EQ_EXPR || code == NE_EXPR
6650 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6651 && (TREE_TYPE (arg1_unw) == shorter_type
6652 || ((TYPE_PRECISION (shorter_type)
6653 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
6654 && (TYPE_UNSIGNED (shorter_type)
6655 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
6656 || (TREE_CODE (arg1_unw) == INTEGER_CST
6657 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6658 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6659 && int_fits_type_p (arg1_unw, shorter_type))))
6660 return fold_build2_loc (loc, code, type, arg0_unw,
6661 fold_convert_loc (loc, shorter_type, arg1_unw));
6663 if (TREE_CODE (arg1_unw) != INTEGER_CST
6664 || TREE_CODE (shorter_type) != INTEGER_TYPE
6665 || !int_fits_type_p (arg1_unw, shorter_type))
6666 return NULL_TREE;
6668 /* If we are comparing with the integer that does not fit into the range
6669 of the shorter type, the result is known. */
6670 outer_type = TREE_TYPE (arg1_unw);
6671 min = lower_bound_in_type (outer_type, shorter_type);
6672 max = upper_bound_in_type (outer_type, shorter_type);
6674 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6675 max, arg1_unw));
6676 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6677 arg1_unw, min));
6679 switch (code)
6681 case EQ_EXPR:
6682 if (above || below)
6683 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6684 break;
6686 case NE_EXPR:
6687 if (above || below)
6688 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6689 break;
6691 case LT_EXPR:
6692 case LE_EXPR:
6693 if (above)
6694 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6695 else if (below)
6696 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6698 case GT_EXPR:
6699 case GE_EXPR:
6700 if (above)
6701 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
6702 else if (below)
6703 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
6705 default:
6706 break;
6709 return NULL_TREE;
6712 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6713 ARG0 just the signedness is changed. */
6715 static tree
6716 fold_sign_changed_comparison (location_t loc, enum tree_code code, tree type,
6717 tree arg0, tree arg1)
6719 tree arg0_inner;
6720 tree inner_type, outer_type;
6722 if (!CONVERT_EXPR_P (arg0))
6723 return NULL_TREE;
6725 outer_type = TREE_TYPE (arg0);
6726 arg0_inner = TREE_OPERAND (arg0, 0);
6727 inner_type = TREE_TYPE (arg0_inner);
6729 #ifdef HAVE_canonicalize_funcptr_for_compare
6730 /* Disable this optimization if we're casting a function pointer
6731 type on targets that require function pointer canonicalization. */
6732 if (HAVE_canonicalize_funcptr_for_compare
6733 && TREE_CODE (inner_type) == POINTER_TYPE
6734 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6735 return NULL_TREE;
6736 #endif
6738 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6739 return NULL_TREE;
6741 if (TREE_CODE (arg1) != INTEGER_CST
6742 && !(CONVERT_EXPR_P (arg1)
6743 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6744 return NULL_TREE;
6746 if ((TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6747 || POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
6748 && code != NE_EXPR
6749 && code != EQ_EXPR)
6750 return NULL_TREE;
6752 if (TREE_CODE (arg1) == INTEGER_CST)
6753 arg1 = force_fit_type_double (inner_type, tree_to_double_int (arg1),
6754 0, TREE_OVERFLOW (arg1));
6755 else
6756 arg1 = fold_convert_loc (loc, inner_type, arg1);
6758 return fold_build2_loc (loc, code, type, arg0_inner, arg1);
6761 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
6762 step of the array. Reconstructs s and delta in the case of s *
6763 delta being an integer constant (and thus already folded). ADDR is
6764 the address. MULT is the multiplicative expression. If the
6765 function succeeds, the new address expression is returned.
6766 Otherwise NULL_TREE is returned. LOC is the location of the
6767 resulting expression. */
6769 static tree
6770 try_move_mult_to_index (location_t loc, tree addr, tree op1)
6772 tree s, delta, step;
6773 tree ref = TREE_OPERAND (addr, 0), pref;
6774 tree ret, pos;
6775 tree itype;
6776 bool mdim = false;
6778 /* Strip the nops that might be added when converting op1 to sizetype. */
6779 STRIP_NOPS (op1);
6781 /* Canonicalize op1 into a possibly non-constant delta
6782 and an INTEGER_CST s. */
6783 if (TREE_CODE (op1) == MULT_EXPR)
6785 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6787 STRIP_NOPS (arg0);
6788 STRIP_NOPS (arg1);
6790 if (TREE_CODE (arg0) == INTEGER_CST)
6792 s = arg0;
6793 delta = arg1;
6795 else if (TREE_CODE (arg1) == INTEGER_CST)
6797 s = arg1;
6798 delta = arg0;
6800 else
6801 return NULL_TREE;
6803 else if (TREE_CODE (op1) == INTEGER_CST)
6805 delta = op1;
6806 s = NULL_TREE;
6808 else
6810 /* Simulate we are delta * 1. */
6811 delta = op1;
6812 s = integer_one_node;
6815 for (;; ref = TREE_OPERAND (ref, 0))
6817 if (TREE_CODE (ref) == ARRAY_REF)
6819 tree domain;
6821 /* Remember if this was a multi-dimensional array. */
6822 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
6823 mdim = true;
6825 domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6826 if (! domain)
6827 continue;
6828 itype = TREE_TYPE (domain);
6830 step = array_ref_element_size (ref);
6831 if (TREE_CODE (step) != INTEGER_CST)
6832 continue;
6834 if (s)
6836 if (! tree_int_cst_equal (step, s))
6837 continue;
6839 else
6841 /* Try if delta is a multiple of step. */
6842 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, op1, step);
6843 if (! tmp)
6844 continue;
6845 delta = tmp;
6848 /* Only fold here if we can verify we do not overflow one
6849 dimension of a multi-dimensional array. */
6850 if (mdim)
6852 tree tmp;
6854 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
6855 || !TYPE_MAX_VALUE (domain)
6856 || TREE_CODE (TYPE_MAX_VALUE (domain)) != INTEGER_CST)
6857 continue;
6859 tmp = fold_binary_loc (loc, PLUS_EXPR, itype,
6860 fold_convert_loc (loc, itype,
6861 TREE_OPERAND (ref, 1)),
6862 fold_convert_loc (loc, itype, delta));
6863 if (!tmp
6864 || TREE_CODE (tmp) != INTEGER_CST
6865 || tree_int_cst_lt (TYPE_MAX_VALUE (domain), tmp))
6866 continue;
6869 break;
6871 else
6872 mdim = false;
6874 if (!handled_component_p (ref))
6875 return NULL_TREE;
6878 /* We found the suitable array reference. So copy everything up to it,
6879 and replace the index. */
6881 pref = TREE_OPERAND (addr, 0);
6882 ret = copy_node (pref);
6883 SET_EXPR_LOCATION (ret, loc);
6884 pos = ret;
6886 while (pref != ref)
6888 pref = TREE_OPERAND (pref, 0);
6889 TREE_OPERAND (pos, 0) = copy_node (pref);
6890 pos = TREE_OPERAND (pos, 0);
6893 TREE_OPERAND (pos, 1) = fold_build2_loc (loc, PLUS_EXPR, itype,
6894 fold_convert_loc (loc, itype,
6895 TREE_OPERAND (pos, 1)),
6896 fold_convert_loc (loc, itype, delta));
6898 return fold_build1_loc (loc, ADDR_EXPR, TREE_TYPE (addr), ret);
6902 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6903 means A >= Y && A != MAX, but in this case we know that
6904 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6906 static tree
6907 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6909 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6911 if (TREE_CODE (bound) == LT_EXPR)
6912 a = TREE_OPERAND (bound, 0);
6913 else if (TREE_CODE (bound) == GT_EXPR)
6914 a = TREE_OPERAND (bound, 1);
6915 else
6916 return NULL_TREE;
6918 typea = TREE_TYPE (a);
6919 if (!INTEGRAL_TYPE_P (typea)
6920 && !POINTER_TYPE_P (typea))
6921 return NULL_TREE;
6923 if (TREE_CODE (ineq) == LT_EXPR)
6925 a1 = TREE_OPERAND (ineq, 1);
6926 y = TREE_OPERAND (ineq, 0);
6928 else if (TREE_CODE (ineq) == GT_EXPR)
6930 a1 = TREE_OPERAND (ineq, 0);
6931 y = TREE_OPERAND (ineq, 1);
6933 else
6934 return NULL_TREE;
6936 if (TREE_TYPE (a1) != typea)
6937 return NULL_TREE;
6939 if (POINTER_TYPE_P (typea))
6941 /* Convert the pointer types into integer before taking the difference. */
6942 tree ta = fold_convert_loc (loc, ssizetype, a);
6943 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6944 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6946 else
6947 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6949 if (!diff || !integer_onep (diff))
6950 return NULL_TREE;
6952 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6955 /* Fold a sum or difference of at least one multiplication.
6956 Returns the folded tree or NULL if no simplification could be made. */
6958 static tree
6959 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6960 tree arg0, tree arg1)
6962 tree arg00, arg01, arg10, arg11;
6963 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6965 /* (A * C) +- (B * C) -> (A+-B) * C.
6966 (A * C) +- A -> A * (C+-1).
6967 We are most concerned about the case where C is a constant,
6968 but other combinations show up during loop reduction. Since
6969 it is not difficult, try all four possibilities. */
6971 if (TREE_CODE (arg0) == MULT_EXPR)
6973 arg00 = TREE_OPERAND (arg0, 0);
6974 arg01 = TREE_OPERAND (arg0, 1);
6976 else if (TREE_CODE (arg0) == INTEGER_CST)
6978 arg00 = build_one_cst (type);
6979 arg01 = arg0;
6981 else
6983 /* We cannot generate constant 1 for fract. */
6984 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6985 return NULL_TREE;
6986 arg00 = arg0;
6987 arg01 = build_one_cst (type);
6989 if (TREE_CODE (arg1) == MULT_EXPR)
6991 arg10 = TREE_OPERAND (arg1, 0);
6992 arg11 = TREE_OPERAND (arg1, 1);
6994 else if (TREE_CODE (arg1) == INTEGER_CST)
6996 arg10 = build_one_cst (type);
6997 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6998 the purpose of this canonicalization. */
6999 if (TREE_INT_CST_HIGH (arg1) == -1
7000 && negate_expr_p (arg1)
7001 && code == PLUS_EXPR)
7003 arg11 = negate_expr (arg1);
7004 code = MINUS_EXPR;
7006 else
7007 arg11 = arg1;
7009 else
7011 /* We cannot generate constant 1 for fract. */
7012 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7013 return NULL_TREE;
7014 arg10 = arg1;
7015 arg11 = build_one_cst (type);
7017 same = NULL_TREE;
7019 if (operand_equal_p (arg01, arg11, 0))
7020 same = arg01, alt0 = arg00, alt1 = arg10;
7021 else if (operand_equal_p (arg00, arg10, 0))
7022 same = arg00, alt0 = arg01, alt1 = arg11;
7023 else if (operand_equal_p (arg00, arg11, 0))
7024 same = arg00, alt0 = arg01, alt1 = arg10;
7025 else if (operand_equal_p (arg01, arg10, 0))
7026 same = arg01, alt0 = arg00, alt1 = arg11;
7028 /* No identical multiplicands; see if we can find a common
7029 power-of-two factor in non-power-of-two multiplies. This
7030 can help in multi-dimensional array access. */
7031 else if (host_integerp (arg01, 0)
7032 && host_integerp (arg11, 0))
7034 HOST_WIDE_INT int01, int11, tmp;
7035 bool swap = false;
7036 tree maybe_same;
7037 int01 = TREE_INT_CST_LOW (arg01);
7038 int11 = TREE_INT_CST_LOW (arg11);
7040 /* Move min of absolute values to int11. */
7041 if ((int01 >= 0 ? int01 : -int01)
7042 < (int11 >= 0 ? int11 : -int11))
7044 tmp = int01, int01 = int11, int11 = tmp;
7045 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7046 maybe_same = arg01;
7047 swap = true;
7049 else
7050 maybe_same = arg11;
7052 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0
7053 /* The remainder should not be a constant, otherwise we
7054 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7055 increased the number of multiplications necessary. */
7056 && TREE_CODE (arg10) != INTEGER_CST)
7058 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7059 build_int_cst (TREE_TYPE (arg00),
7060 int01 / int11));
7061 alt1 = arg10;
7062 same = maybe_same;
7063 if (swap)
7064 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7068 if (same)
7069 return fold_build2_loc (loc, MULT_EXPR, type,
7070 fold_build2_loc (loc, code, type,
7071 fold_convert_loc (loc, type, alt0),
7072 fold_convert_loc (loc, type, alt1)),
7073 fold_convert_loc (loc, type, same));
7075 return NULL_TREE;
7078 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7079 specified by EXPR into the buffer PTR of length LEN bytes.
7080 Return the number of bytes placed in the buffer, or zero
7081 upon failure. */
7083 static int
7084 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7086 tree type = TREE_TYPE (expr);
7087 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7088 int byte, offset, word, words;
7089 unsigned char value;
7091 if (total_bytes > len)
7092 return 0;
7093 words = total_bytes / UNITS_PER_WORD;
7095 for (byte = 0; byte < total_bytes; byte++)
7097 int bitpos = byte * BITS_PER_UNIT;
7098 if (bitpos < HOST_BITS_PER_WIDE_INT)
7099 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7100 else
7101 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7102 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7104 if (total_bytes > UNITS_PER_WORD)
7106 word = byte / UNITS_PER_WORD;
7107 if (WORDS_BIG_ENDIAN)
7108 word = (words - 1) - word;
7109 offset = word * UNITS_PER_WORD;
7110 if (BYTES_BIG_ENDIAN)
7111 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7112 else
7113 offset += byte % UNITS_PER_WORD;
7115 else
7116 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7117 ptr[offset] = value;
7119 return total_bytes;
7123 /* Subroutine of native_encode_expr. Encode the REAL_CST
7124 specified by EXPR into the buffer PTR of length LEN bytes.
7125 Return the number of bytes placed in the buffer, or zero
7126 upon failure. */
7128 static int
7129 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7131 tree type = TREE_TYPE (expr);
7132 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7133 int byte, offset, word, words, bitpos;
7134 unsigned char value;
7136 /* There are always 32 bits in each long, no matter the size of
7137 the hosts long. We handle floating point representations with
7138 up to 192 bits. */
7139 long tmp[6];
7141 if (total_bytes > len)
7142 return 0;
7143 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7145 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7147 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7148 bitpos += BITS_PER_UNIT)
7150 byte = (bitpos / BITS_PER_UNIT) & 3;
7151 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7153 if (UNITS_PER_WORD < 4)
7155 word = byte / UNITS_PER_WORD;
7156 if (WORDS_BIG_ENDIAN)
7157 word = (words - 1) - word;
7158 offset = word * UNITS_PER_WORD;
7159 if (BYTES_BIG_ENDIAN)
7160 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7161 else
7162 offset += byte % UNITS_PER_WORD;
7164 else
7165 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7166 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7168 return total_bytes;
7171 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7172 specified by EXPR into the buffer PTR of length LEN bytes.
7173 Return the number of bytes placed in the buffer, or zero
7174 upon failure. */
7176 static int
7177 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7179 int rsize, isize;
7180 tree part;
7182 part = TREE_REALPART (expr);
7183 rsize = native_encode_expr (part, ptr, len);
7184 if (rsize == 0)
7185 return 0;
7186 part = TREE_IMAGPART (expr);
7187 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7188 if (isize != rsize)
7189 return 0;
7190 return rsize + isize;
7194 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7195 specified by EXPR into the buffer PTR of length LEN bytes.
7196 Return the number of bytes placed in the buffer, or zero
7197 upon failure. */
7199 static int
7200 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7202 int i, size, offset, count;
7203 tree itype, elem, elements;
7205 offset = 0;
7206 elements = TREE_VECTOR_CST_ELTS (expr);
7207 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7208 itype = TREE_TYPE (TREE_TYPE (expr));
7209 size = GET_MODE_SIZE (TYPE_MODE (itype));
7210 for (i = 0; i < count; i++)
7212 if (elements)
7214 elem = TREE_VALUE (elements);
7215 elements = TREE_CHAIN (elements);
7217 else
7218 elem = NULL_TREE;
7220 if (elem)
7222 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7223 return 0;
7225 else
7227 if (offset + size > len)
7228 return 0;
7229 memset (ptr+offset, 0, size);
7231 offset += size;
7233 return offset;
7237 /* Subroutine of native_encode_expr. Encode the STRING_CST
7238 specified by EXPR into the buffer PTR of length LEN bytes.
7239 Return the number of bytes placed in the buffer, or zero
7240 upon failure. */
7242 static int
7243 native_encode_string (const_tree expr, unsigned char *ptr, int len)
7245 tree type = TREE_TYPE (expr);
7246 HOST_WIDE_INT total_bytes;
7248 if (TREE_CODE (type) != ARRAY_TYPE
7249 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7250 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7251 || !host_integerp (TYPE_SIZE_UNIT (type), 0))
7252 return 0;
7253 total_bytes = tree_low_cst (TYPE_SIZE_UNIT (type), 0);
7254 if (total_bytes > len)
7255 return 0;
7256 if (TREE_STRING_LENGTH (expr) < total_bytes)
7258 memcpy (ptr, TREE_STRING_POINTER (expr), TREE_STRING_LENGTH (expr));
7259 memset (ptr + TREE_STRING_LENGTH (expr), 0,
7260 total_bytes - TREE_STRING_LENGTH (expr));
7262 else
7263 memcpy (ptr, TREE_STRING_POINTER (expr), total_bytes);
7264 return total_bytes;
7268 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7269 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7270 buffer PTR of length LEN bytes. Return the number of bytes
7271 placed in the buffer, or zero upon failure. */
7274 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7276 switch (TREE_CODE (expr))
7278 case INTEGER_CST:
7279 return native_encode_int (expr, ptr, len);
7281 case REAL_CST:
7282 return native_encode_real (expr, ptr, len);
7284 case COMPLEX_CST:
7285 return native_encode_complex (expr, ptr, len);
7287 case VECTOR_CST:
7288 return native_encode_vector (expr, ptr, len);
7290 case STRING_CST:
7291 return native_encode_string (expr, ptr, len);
7293 default:
7294 return 0;
7299 /* Subroutine of native_interpret_expr. Interpret the contents of
7300 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7301 If the buffer cannot be interpreted, return NULL_TREE. */
7303 static tree
7304 native_interpret_int (tree type, const unsigned char *ptr, int len)
7306 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7307 int byte, offset, word, words;
7308 unsigned char value;
7309 double_int result;
7311 if (total_bytes > len)
7312 return NULL_TREE;
7313 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7314 return NULL_TREE;
7316 result = double_int_zero;
7317 words = total_bytes / UNITS_PER_WORD;
7319 for (byte = 0; byte < total_bytes; byte++)
7321 int bitpos = byte * BITS_PER_UNIT;
7322 if (total_bytes > UNITS_PER_WORD)
7324 word = byte / UNITS_PER_WORD;
7325 if (WORDS_BIG_ENDIAN)
7326 word = (words - 1) - word;
7327 offset = word * UNITS_PER_WORD;
7328 if (BYTES_BIG_ENDIAN)
7329 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7330 else
7331 offset += byte % UNITS_PER_WORD;
7333 else
7334 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7335 value = ptr[offset];
7337 if (bitpos < HOST_BITS_PER_WIDE_INT)
7338 result.low |= (unsigned HOST_WIDE_INT) value << bitpos;
7339 else
7340 result.high |= (unsigned HOST_WIDE_INT) value
7341 << (bitpos - HOST_BITS_PER_WIDE_INT);
7344 return double_int_to_tree (type, result);
7348 /* Subroutine of native_interpret_expr. Interpret the contents of
7349 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7350 If the buffer cannot be interpreted, return NULL_TREE. */
7352 static tree
7353 native_interpret_real (tree type, const unsigned char *ptr, int len)
7355 enum machine_mode mode = TYPE_MODE (type);
7356 int total_bytes = GET_MODE_SIZE (mode);
7357 int byte, offset, word, words, bitpos;
7358 unsigned char value;
7359 /* There are always 32 bits in each long, no matter the size of
7360 the hosts long. We handle floating point representations with
7361 up to 192 bits. */
7362 REAL_VALUE_TYPE r;
7363 long tmp[6];
7365 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7366 if (total_bytes > len || total_bytes > 24)
7367 return NULL_TREE;
7368 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7370 memset (tmp, 0, sizeof (tmp));
7371 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7372 bitpos += BITS_PER_UNIT)
7374 byte = (bitpos / BITS_PER_UNIT) & 3;
7375 if (UNITS_PER_WORD < 4)
7377 word = byte / UNITS_PER_WORD;
7378 if (WORDS_BIG_ENDIAN)
7379 word = (words - 1) - word;
7380 offset = word * UNITS_PER_WORD;
7381 if (BYTES_BIG_ENDIAN)
7382 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7383 else
7384 offset += byte % UNITS_PER_WORD;
7386 else
7387 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7388 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7390 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7393 real_from_target (&r, tmp, mode);
7394 return build_real (type, r);
7398 /* Subroutine of native_interpret_expr. Interpret the contents of
7399 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7400 If the buffer cannot be interpreted, return NULL_TREE. */
7402 static tree
7403 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7405 tree etype, rpart, ipart;
7406 int size;
7408 etype = TREE_TYPE (type);
7409 size = GET_MODE_SIZE (TYPE_MODE (etype));
7410 if (size * 2 > len)
7411 return NULL_TREE;
7412 rpart = native_interpret_expr (etype, ptr, size);
7413 if (!rpart)
7414 return NULL_TREE;
7415 ipart = native_interpret_expr (etype, ptr+size, size);
7416 if (!ipart)
7417 return NULL_TREE;
7418 return build_complex (type, rpart, ipart);
7422 /* Subroutine of native_interpret_expr. Interpret the contents of
7423 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7424 If the buffer cannot be interpreted, return NULL_TREE. */
7426 static tree
7427 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7429 tree etype, elem, elements;
7430 int i, size, count;
7432 etype = TREE_TYPE (type);
7433 size = GET_MODE_SIZE (TYPE_MODE (etype));
7434 count = TYPE_VECTOR_SUBPARTS (type);
7435 if (size * count > len)
7436 return NULL_TREE;
7438 elements = NULL_TREE;
7439 for (i = count - 1; i >= 0; i--)
7441 elem = native_interpret_expr (etype, ptr+(i*size), size);
7442 if (!elem)
7443 return NULL_TREE;
7444 elements = tree_cons (NULL_TREE, elem, elements);
7446 return build_vector (type, elements);
7450 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7451 the buffer PTR of length LEN as a constant of type TYPE. For
7452 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7453 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7454 return NULL_TREE. */
7456 tree
7457 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7459 switch (TREE_CODE (type))
7461 case INTEGER_TYPE:
7462 case ENUMERAL_TYPE:
7463 case BOOLEAN_TYPE:
7464 return native_interpret_int (type, ptr, len);
7466 case REAL_TYPE:
7467 return native_interpret_real (type, ptr, len);
7469 case COMPLEX_TYPE:
7470 return native_interpret_complex (type, ptr, len);
7472 case VECTOR_TYPE:
7473 return native_interpret_vector (type, ptr, len);
7475 default:
7476 return NULL_TREE;
7481 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7482 TYPE at compile-time. If we're unable to perform the conversion
7483 return NULL_TREE. */
7485 static tree
7486 fold_view_convert_expr (tree type, tree expr)
7488 /* We support up to 512-bit values (for V8DFmode). */
7489 unsigned char buffer[64];
7490 int len;
7492 /* Check that the host and target are sane. */
7493 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7494 return NULL_TREE;
7496 len = native_encode_expr (expr, buffer, sizeof (buffer));
7497 if (len == 0)
7498 return NULL_TREE;
7500 return native_interpret_expr (type, buffer, len);
7503 /* Build an expression for the address of T. Folds away INDIRECT_REF
7504 to avoid confusing the gimplify process. */
7506 tree
7507 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7509 /* The size of the object is not relevant when talking about its address. */
7510 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7511 t = TREE_OPERAND (t, 0);
7513 if (TREE_CODE (t) == INDIRECT_REF)
7515 t = TREE_OPERAND (t, 0);
7517 if (TREE_TYPE (t) != ptrtype)
7518 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7520 else if (TREE_CODE (t) == MEM_REF
7521 && integer_zerop (TREE_OPERAND (t, 1)))
7522 return TREE_OPERAND (t, 0);
7523 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7525 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7527 if (TREE_TYPE (t) != ptrtype)
7528 t = fold_convert_loc (loc, ptrtype, t);
7530 else
7531 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7533 return t;
7536 /* Build an expression for the address of T. */
7538 tree
7539 build_fold_addr_expr_loc (location_t loc, tree t)
7541 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7543 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7546 /* Fold a unary expression of code CODE and type TYPE with operand
7547 OP0. Return the folded expression if folding is successful.
7548 Otherwise, return NULL_TREE. */
7550 tree
7551 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7553 tree tem;
7554 tree arg0;
7555 enum tree_code_class kind = TREE_CODE_CLASS (code);
7557 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7558 && TREE_CODE_LENGTH (code) == 1);
7560 arg0 = op0;
7561 if (arg0)
7563 if (CONVERT_EXPR_CODE_P (code)
7564 || code == FLOAT_EXPR || code == ABS_EXPR)
7566 /* Don't use STRIP_NOPS, because signedness of argument type
7567 matters. */
7568 STRIP_SIGN_NOPS (arg0);
7570 else
7572 /* Strip any conversions that don't change the mode. This
7573 is safe for every expression, except for a comparison
7574 expression because its signedness is derived from its
7575 operands.
7577 Note that this is done as an internal manipulation within
7578 the constant folder, in order to find the simplest
7579 representation of the arguments so that their form can be
7580 studied. In any cases, the appropriate type conversions
7581 should be put back in the tree that will get out of the
7582 constant folder. */
7583 STRIP_NOPS (arg0);
7587 if (TREE_CODE_CLASS (code) == tcc_unary)
7589 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7590 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7591 fold_build1_loc (loc, code, type,
7592 fold_convert_loc (loc, TREE_TYPE (op0),
7593 TREE_OPERAND (arg0, 1))));
7594 else if (TREE_CODE (arg0) == COND_EXPR)
7596 tree arg01 = TREE_OPERAND (arg0, 1);
7597 tree arg02 = TREE_OPERAND (arg0, 2);
7598 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7599 arg01 = fold_build1_loc (loc, code, type,
7600 fold_convert_loc (loc,
7601 TREE_TYPE (op0), arg01));
7602 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7603 arg02 = fold_build1_loc (loc, code, type,
7604 fold_convert_loc (loc,
7605 TREE_TYPE (op0), arg02));
7606 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7607 arg01, arg02);
7609 /* If this was a conversion, and all we did was to move into
7610 inside the COND_EXPR, bring it back out. But leave it if
7611 it is a conversion from integer to integer and the
7612 result precision is no wider than a word since such a
7613 conversion is cheap and may be optimized away by combine,
7614 while it couldn't if it were outside the COND_EXPR. Then return
7615 so we don't get into an infinite recursion loop taking the
7616 conversion out and then back in. */
7618 if ((CONVERT_EXPR_CODE_P (code)
7619 || code == NON_LVALUE_EXPR)
7620 && TREE_CODE (tem) == COND_EXPR
7621 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7622 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7623 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7624 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7625 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7626 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7627 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7628 && (INTEGRAL_TYPE_P
7629 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7630 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7631 || flag_syntax_only))
7632 tem = build1_loc (loc, code, type,
7633 build3 (COND_EXPR,
7634 TREE_TYPE (TREE_OPERAND
7635 (TREE_OPERAND (tem, 1), 0)),
7636 TREE_OPERAND (tem, 0),
7637 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7638 TREE_OPERAND (TREE_OPERAND (tem, 2),
7639 0)));
7640 return tem;
7642 else if (COMPARISON_CLASS_P (arg0))
7644 if (TREE_CODE (type) == BOOLEAN_TYPE)
7646 arg0 = copy_node (arg0);
7647 TREE_TYPE (arg0) = type;
7648 return arg0;
7650 else if (TREE_CODE (type) != INTEGER_TYPE)
7651 return fold_build3_loc (loc, COND_EXPR, type, arg0,
7652 fold_build1_loc (loc, code, type,
7653 integer_one_node),
7654 fold_build1_loc (loc, code, type,
7655 integer_zero_node));
7659 switch (code)
7661 case PAREN_EXPR:
7662 /* Re-association barriers around constants and other re-association
7663 barriers can be removed. */
7664 if (CONSTANT_CLASS_P (op0)
7665 || TREE_CODE (op0) == PAREN_EXPR)
7666 return fold_convert_loc (loc, type, op0);
7667 return NULL_TREE;
7669 CASE_CONVERT:
7670 case FLOAT_EXPR:
7671 case FIX_TRUNC_EXPR:
7672 if (TREE_TYPE (op0) == type)
7673 return op0;
7675 /* If we have (type) (a CMP b) and type is an integral type, return
7676 new expression involving the new type. */
7677 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
7678 return fold_build2_loc (loc, TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
7679 TREE_OPERAND (op0, 1));
7681 /* Handle cases of two conversions in a row. */
7682 if (CONVERT_EXPR_P (op0))
7684 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
7685 tree inter_type = TREE_TYPE (op0);
7686 int inside_int = INTEGRAL_TYPE_P (inside_type);
7687 int inside_ptr = POINTER_TYPE_P (inside_type);
7688 int inside_float = FLOAT_TYPE_P (inside_type);
7689 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
7690 unsigned int inside_prec = TYPE_PRECISION (inside_type);
7691 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
7692 int inter_int = INTEGRAL_TYPE_P (inter_type);
7693 int inter_ptr = POINTER_TYPE_P (inter_type);
7694 int inter_float = FLOAT_TYPE_P (inter_type);
7695 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
7696 unsigned int inter_prec = TYPE_PRECISION (inter_type);
7697 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
7698 int final_int = INTEGRAL_TYPE_P (type);
7699 int final_ptr = POINTER_TYPE_P (type);
7700 int final_float = FLOAT_TYPE_P (type);
7701 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
7702 unsigned int final_prec = TYPE_PRECISION (type);
7703 int final_unsignedp = TYPE_UNSIGNED (type);
7705 /* In addition to the cases of two conversions in a row
7706 handled below, if we are converting something to its own
7707 type via an object of identical or wider precision, neither
7708 conversion is needed. */
7709 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
7710 && (((inter_int || inter_ptr) && final_int)
7711 || (inter_float && final_float))
7712 && inter_prec >= final_prec)
7713 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7715 /* Likewise, if the intermediate and initial types are either both
7716 float or both integer, we don't need the middle conversion if the
7717 former is wider than the latter and doesn't change the signedness
7718 (for integers). Avoid this if the final type is a pointer since
7719 then we sometimes need the middle conversion. Likewise if the
7720 final type has a precision not equal to the size of its mode. */
7721 if (((inter_int && inside_int)
7722 || (inter_float && inside_float)
7723 || (inter_vec && inside_vec))
7724 && inter_prec >= inside_prec
7725 && (inter_float || inter_vec
7726 || inter_unsignedp == inside_unsignedp)
7727 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7728 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7729 && ! final_ptr
7730 && (! final_vec || inter_prec == inside_prec))
7731 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7733 /* If we have a sign-extension of a zero-extended value, we can
7734 replace that by a single zero-extension. */
7735 if (inside_int && inter_int && final_int
7736 && inside_prec < inter_prec && inter_prec < final_prec
7737 && inside_unsignedp && !inter_unsignedp)
7738 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7740 /* Two conversions in a row are not needed unless:
7741 - some conversion is floating-point (overstrict for now), or
7742 - some conversion is a vector (overstrict for now), or
7743 - the intermediate type is narrower than both initial and
7744 final, or
7745 - the intermediate type and innermost type differ in signedness,
7746 and the outermost type is wider than the intermediate, or
7747 - the initial type is a pointer type and the precisions of the
7748 intermediate and final types differ, or
7749 - the final type is a pointer type and the precisions of the
7750 initial and intermediate types differ. */
7751 if (! inside_float && ! inter_float && ! final_float
7752 && ! inside_vec && ! inter_vec && ! final_vec
7753 && (inter_prec >= inside_prec || inter_prec >= final_prec)
7754 && ! (inside_int && inter_int
7755 && inter_unsignedp != inside_unsignedp
7756 && inter_prec < final_prec)
7757 && ((inter_unsignedp && inter_prec > inside_prec)
7758 == (final_unsignedp && final_prec > inter_prec))
7759 && ! (inside_ptr && inter_prec != final_prec)
7760 && ! (final_ptr && inside_prec != inter_prec)
7761 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7762 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
7763 return fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 0));
7766 /* Handle (T *)&A.B.C for A being of type T and B and C
7767 living at offset zero. This occurs frequently in
7768 C++ upcasting and then accessing the base. */
7769 if (TREE_CODE (op0) == ADDR_EXPR
7770 && POINTER_TYPE_P (type)
7771 && handled_component_p (TREE_OPERAND (op0, 0)))
7773 HOST_WIDE_INT bitsize, bitpos;
7774 tree offset;
7775 enum machine_mode mode;
7776 int unsignedp, volatilep;
7777 tree base = TREE_OPERAND (op0, 0);
7778 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7779 &mode, &unsignedp, &volatilep, false);
7780 /* If the reference was to a (constant) zero offset, we can use
7781 the address of the base if it has the same base type
7782 as the result type and the pointer type is unqualified. */
7783 if (! offset && bitpos == 0
7784 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7785 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7786 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7787 return fold_convert_loc (loc, type,
7788 build_fold_addr_expr_loc (loc, base));
7791 if (TREE_CODE (op0) == MODIFY_EXPR
7792 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7793 /* Detect assigning a bitfield. */
7794 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7795 && DECL_BIT_FIELD
7796 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7798 /* Don't leave an assignment inside a conversion
7799 unless assigning a bitfield. */
7800 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7801 /* First do the assignment, then return converted constant. */
7802 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7803 TREE_NO_WARNING (tem) = 1;
7804 TREE_USED (tem) = 1;
7805 return tem;
7808 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7809 constants (if x has signed type, the sign bit cannot be set
7810 in c). This folds extension into the BIT_AND_EXPR.
7811 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7812 very likely don't have maximal range for their precision and this
7813 transformation effectively doesn't preserve non-maximal ranges. */
7814 if (TREE_CODE (type) == INTEGER_TYPE
7815 && TREE_CODE (op0) == BIT_AND_EXPR
7816 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7818 tree and_expr = op0;
7819 tree and0 = TREE_OPERAND (and_expr, 0);
7820 tree and1 = TREE_OPERAND (and_expr, 1);
7821 int change = 0;
7823 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7824 || (TYPE_PRECISION (type)
7825 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7826 change = 1;
7827 else if (TYPE_PRECISION (TREE_TYPE (and1))
7828 <= HOST_BITS_PER_WIDE_INT
7829 && host_integerp (and1, 1))
7831 unsigned HOST_WIDE_INT cst;
7833 cst = tree_low_cst (and1, 1);
7834 cst &= (HOST_WIDE_INT) -1
7835 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7836 change = (cst == 0);
7837 #ifdef LOAD_EXTEND_OP
7838 if (change
7839 && !flag_syntax_only
7840 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7841 == ZERO_EXTEND))
7843 tree uns = unsigned_type_for (TREE_TYPE (and0));
7844 and0 = fold_convert_loc (loc, uns, and0);
7845 and1 = fold_convert_loc (loc, uns, and1);
7847 #endif
7849 if (change)
7851 tem = force_fit_type_double (type, tree_to_double_int (and1),
7852 0, TREE_OVERFLOW (and1));
7853 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7854 fold_convert_loc (loc, type, and0), tem);
7858 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7859 when one of the new casts will fold away. Conservatively we assume
7860 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7861 if (POINTER_TYPE_P (type)
7862 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7863 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7864 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7865 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7867 tree arg00 = TREE_OPERAND (arg0, 0);
7868 tree arg01 = TREE_OPERAND (arg0, 1);
7870 return fold_build2_loc (loc,
7871 TREE_CODE (arg0), type,
7872 fold_convert_loc (loc, type, arg00),
7873 fold_convert_loc (loc, sizetype, arg01));
7876 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7877 of the same precision, and X is an integer type not narrower than
7878 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7879 if (INTEGRAL_TYPE_P (type)
7880 && TREE_CODE (op0) == BIT_NOT_EXPR
7881 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7882 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7883 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7885 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7886 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7887 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7888 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7889 fold_convert_loc (loc, type, tem));
7892 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7893 type of X and Y (integer types only). */
7894 if (INTEGRAL_TYPE_P (type)
7895 && TREE_CODE (op0) == MULT_EXPR
7896 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7897 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7899 /* Be careful not to introduce new overflows. */
7900 tree mult_type;
7901 if (TYPE_OVERFLOW_WRAPS (type))
7902 mult_type = type;
7903 else
7904 mult_type = unsigned_type_for (type);
7906 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7908 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7909 fold_convert_loc (loc, mult_type,
7910 TREE_OPERAND (op0, 0)),
7911 fold_convert_loc (loc, mult_type,
7912 TREE_OPERAND (op0, 1)));
7913 return fold_convert_loc (loc, type, tem);
7917 tem = fold_convert_const (code, type, op0);
7918 return tem ? tem : NULL_TREE;
7920 case ADDR_SPACE_CONVERT_EXPR:
7921 if (integer_zerop (arg0))
7922 return fold_convert_const (code, type, arg0);
7923 return NULL_TREE;
7925 case FIXED_CONVERT_EXPR:
7926 tem = fold_convert_const (code, type, arg0);
7927 return tem ? tem : NULL_TREE;
7929 case VIEW_CONVERT_EXPR:
7930 if (TREE_TYPE (op0) == type)
7931 return op0;
7932 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
7933 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
7934 type, TREE_OPERAND (op0, 0));
7935 if (TREE_CODE (op0) == MEM_REF)
7936 return fold_build2_loc (loc, MEM_REF, type,
7937 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7939 /* For integral conversions with the same precision or pointer
7940 conversions use a NOP_EXPR instead. */
7941 if ((INTEGRAL_TYPE_P (type)
7942 || POINTER_TYPE_P (type))
7943 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
7944 || POINTER_TYPE_P (TREE_TYPE (op0)))
7945 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7946 return fold_convert_loc (loc, type, op0);
7948 /* Strip inner integral conversions that do not change the precision. */
7949 if (CONVERT_EXPR_P (op0)
7950 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
7951 || POINTER_TYPE_P (TREE_TYPE (op0)))
7952 && (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0)))
7953 || POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0))))
7954 && (TYPE_PRECISION (TREE_TYPE (op0))
7955 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
7956 return fold_build1_loc (loc, VIEW_CONVERT_EXPR,
7957 type, TREE_OPERAND (op0, 0));
7959 return fold_view_convert_expr (type, op0);
7961 case NEGATE_EXPR:
7962 tem = fold_negate_expr (loc, arg0);
7963 if (tem)
7964 return fold_convert_loc (loc, type, tem);
7965 return NULL_TREE;
7967 case ABS_EXPR:
7968 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
7969 return fold_abs_const (arg0, type);
7970 else if (TREE_CODE (arg0) == NEGATE_EXPR)
7971 return fold_build1_loc (loc, ABS_EXPR, type, TREE_OPERAND (arg0, 0));
7972 /* Convert fabs((double)float) into (double)fabsf(float). */
7973 else if (TREE_CODE (arg0) == NOP_EXPR
7974 && TREE_CODE (type) == REAL_TYPE)
7976 tree targ0 = strip_float_extensions (arg0);
7977 if (targ0 != arg0)
7978 return fold_convert_loc (loc, type,
7979 fold_build1_loc (loc, ABS_EXPR,
7980 TREE_TYPE (targ0),
7981 targ0));
7983 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
7984 else if (TREE_CODE (arg0) == ABS_EXPR)
7985 return arg0;
7986 else if (tree_expr_nonnegative_p (arg0))
7987 return arg0;
7989 /* Strip sign ops from argument. */
7990 if (TREE_CODE (type) == REAL_TYPE)
7992 tem = fold_strip_sign_ops (arg0);
7993 if (tem)
7994 return fold_build1_loc (loc, ABS_EXPR, type,
7995 fold_convert_loc (loc, type, tem));
7997 return NULL_TREE;
7999 case CONJ_EXPR:
8000 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8001 return fold_convert_loc (loc, type, arg0);
8002 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8004 tree itype = TREE_TYPE (type);
8005 tree rpart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 0));
8006 tree ipart = fold_convert_loc (loc, itype, TREE_OPERAND (arg0, 1));
8007 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart,
8008 negate_expr (ipart));
8010 if (TREE_CODE (arg0) == COMPLEX_CST)
8012 tree itype = TREE_TYPE (type);
8013 tree rpart = fold_convert_loc (loc, itype, TREE_REALPART (arg0));
8014 tree ipart = fold_convert_loc (loc, itype, TREE_IMAGPART (arg0));
8015 return build_complex (type, rpart, negate_expr (ipart));
8017 if (TREE_CODE (arg0) == CONJ_EXPR)
8018 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8019 return NULL_TREE;
8021 case BIT_NOT_EXPR:
8022 if (TREE_CODE (arg0) == INTEGER_CST)
8023 return fold_not_const (arg0, type);
8024 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8025 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
8026 /* Convert ~ (-A) to A - 1. */
8027 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8028 return fold_build2_loc (loc, MINUS_EXPR, type,
8029 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)),
8030 build_int_cst (type, 1));
8031 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8032 else if (INTEGRAL_TYPE_P (type)
8033 && ((TREE_CODE (arg0) == MINUS_EXPR
8034 && integer_onep (TREE_OPERAND (arg0, 1)))
8035 || (TREE_CODE (arg0) == PLUS_EXPR
8036 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8037 return fold_build1_loc (loc, NEGATE_EXPR, type,
8038 fold_convert_loc (loc, type,
8039 TREE_OPERAND (arg0, 0)));
8040 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8041 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8042 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8043 fold_convert_loc (loc, type,
8044 TREE_OPERAND (arg0, 0)))))
8045 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8046 fold_convert_loc (loc, type,
8047 TREE_OPERAND (arg0, 1)));
8048 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8049 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8050 fold_convert_loc (loc, type,
8051 TREE_OPERAND (arg0, 1)))))
8052 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8053 fold_convert_loc (loc, type,
8054 TREE_OPERAND (arg0, 0)), tem);
8055 /* Perform BIT_NOT_EXPR on each element individually. */
8056 else if (TREE_CODE (arg0) == VECTOR_CST)
8058 tree elements = TREE_VECTOR_CST_ELTS (arg0), elem, list = NULL_TREE;
8059 int count = TYPE_VECTOR_SUBPARTS (type), i;
8061 for (i = 0; i < count; i++)
8063 if (elements)
8065 elem = TREE_VALUE (elements);
8066 elem = fold_unary_loc (loc, BIT_NOT_EXPR, TREE_TYPE (type), elem);
8067 if (elem == NULL_TREE)
8068 break;
8069 elements = TREE_CHAIN (elements);
8071 else
8072 elem = build_int_cst (TREE_TYPE (type), -1);
8073 list = tree_cons (NULL_TREE, elem, list);
8075 if (i == count)
8076 return build_vector (type, nreverse (list));
8079 return NULL_TREE;
8081 case TRUTH_NOT_EXPR:
8082 /* The argument to invert_truthvalue must have Boolean type. */
8083 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8084 arg0 = fold_convert_loc (loc, boolean_type_node, arg0);
8086 /* Note that the operand of this must be an int
8087 and its values must be 0 or 1.
8088 ("true" is a fixed value perhaps depending on the language,
8089 but we don't handle values other than 1 correctly yet.) */
8090 tem = fold_truth_not_expr (loc, arg0);
8091 if (!tem)
8092 return NULL_TREE;
8093 return fold_convert_loc (loc, type, tem);
8095 case REALPART_EXPR:
8096 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8097 return fold_convert_loc (loc, type, arg0);
8098 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8099 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
8100 TREE_OPERAND (arg0, 1));
8101 if (TREE_CODE (arg0) == COMPLEX_CST)
8102 return fold_convert_loc (loc, type, TREE_REALPART (arg0));
8103 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8105 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8106 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8107 fold_build1_loc (loc, REALPART_EXPR, itype,
8108 TREE_OPERAND (arg0, 0)),
8109 fold_build1_loc (loc, REALPART_EXPR, itype,
8110 TREE_OPERAND (arg0, 1)));
8111 return fold_convert_loc (loc, type, tem);
8113 if (TREE_CODE (arg0) == CONJ_EXPR)
8115 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8116 tem = fold_build1_loc (loc, REALPART_EXPR, itype,
8117 TREE_OPERAND (arg0, 0));
8118 return fold_convert_loc (loc, type, tem);
8120 if (TREE_CODE (arg0) == CALL_EXPR)
8122 tree fn = get_callee_fndecl (arg0);
8123 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8124 switch (DECL_FUNCTION_CODE (fn))
8126 CASE_FLT_FN (BUILT_IN_CEXPI):
8127 fn = mathfn_built_in (type, BUILT_IN_COS);
8128 if (fn)
8129 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8130 break;
8132 default:
8133 break;
8136 return NULL_TREE;
8138 case IMAGPART_EXPR:
8139 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8140 return build_zero_cst (type);
8141 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8142 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 1),
8143 TREE_OPERAND (arg0, 0));
8144 if (TREE_CODE (arg0) == COMPLEX_CST)
8145 return fold_convert_loc (loc, type, TREE_IMAGPART (arg0));
8146 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8148 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8149 tem = fold_build2_loc (loc, TREE_CODE (arg0), itype,
8150 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8151 TREE_OPERAND (arg0, 0)),
8152 fold_build1_loc (loc, IMAGPART_EXPR, itype,
8153 TREE_OPERAND (arg0, 1)));
8154 return fold_convert_loc (loc, type, tem);
8156 if (TREE_CODE (arg0) == CONJ_EXPR)
8158 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8159 tem = fold_build1_loc (loc, IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8160 return fold_convert_loc (loc, type, negate_expr (tem));
8162 if (TREE_CODE (arg0) == CALL_EXPR)
8164 tree fn = get_callee_fndecl (arg0);
8165 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8166 switch (DECL_FUNCTION_CODE (fn))
8168 CASE_FLT_FN (BUILT_IN_CEXPI):
8169 fn = mathfn_built_in (type, BUILT_IN_SIN);
8170 if (fn)
8171 return build_call_expr_loc (loc, fn, 1, CALL_EXPR_ARG (arg0, 0));
8172 break;
8174 default:
8175 break;
8178 return NULL_TREE;
8180 case INDIRECT_REF:
8181 /* Fold *&X to X if X is an lvalue. */
8182 if (TREE_CODE (op0) == ADDR_EXPR)
8184 tree op00 = TREE_OPERAND (op0, 0);
8185 if ((TREE_CODE (op00) == VAR_DECL
8186 || TREE_CODE (op00) == PARM_DECL
8187 || TREE_CODE (op00) == RESULT_DECL)
8188 && !TREE_READONLY (op00))
8189 return op00;
8191 return NULL_TREE;
8193 default:
8194 return NULL_TREE;
8195 } /* switch (code) */
8199 /* If the operation was a conversion do _not_ mark a resulting constant
8200 with TREE_OVERFLOW if the original constant was not. These conversions
8201 have implementation defined behavior and retaining the TREE_OVERFLOW
8202 flag here would confuse later passes such as VRP. */
8203 tree
8204 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8205 tree type, tree op0)
8207 tree res = fold_unary_loc (loc, code, type, op0);
8208 if (res
8209 && TREE_CODE (res) == INTEGER_CST
8210 && TREE_CODE (op0) == INTEGER_CST
8211 && CONVERT_EXPR_CODE_P (code))
8212 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8214 return res;
8217 /* Fold a binary expression of code CODE and type TYPE with operands
8218 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8219 Return the folded expression if folding is successful. Otherwise,
8220 return NULL_TREE. */
8222 static tree
8223 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
8225 enum tree_code compl_code;
8227 if (code == MIN_EXPR)
8228 compl_code = MAX_EXPR;
8229 else if (code == MAX_EXPR)
8230 compl_code = MIN_EXPR;
8231 else
8232 gcc_unreachable ();
8234 /* MIN (MAX (a, b), b) == b. */
8235 if (TREE_CODE (op0) == compl_code
8236 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8237 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
8239 /* MIN (MAX (b, a), b) == b. */
8240 if (TREE_CODE (op0) == compl_code
8241 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8242 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8243 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
8245 /* MIN (a, MAX (a, b)) == a. */
8246 if (TREE_CODE (op1) == compl_code
8247 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8248 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8249 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
8251 /* MIN (a, MAX (b, a)) == a. */
8252 if (TREE_CODE (op1) == compl_code
8253 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8254 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8255 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
8257 return NULL_TREE;
8260 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8261 by changing CODE to reduce the magnitude of constants involved in
8262 ARG0 of the comparison.
8263 Returns a canonicalized comparison tree if a simplification was
8264 possible, otherwise returns NULL_TREE.
8265 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8266 valid if signed overflow is undefined. */
8268 static tree
8269 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8270 tree arg0, tree arg1,
8271 bool *strict_overflow_p)
8273 enum tree_code code0 = TREE_CODE (arg0);
8274 tree t, cst0 = NULL_TREE;
8275 int sgn0;
8276 bool swap = false;
8278 /* Match A +- CST code arg1 and CST code arg1. We can change the
8279 first form only if overflow is undefined. */
8280 if (!((TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8281 /* In principle pointers also have undefined overflow behavior,
8282 but that causes problems elsewhere. */
8283 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8284 && (code0 == MINUS_EXPR
8285 || code0 == PLUS_EXPR)
8286 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8287 || code0 == INTEGER_CST))
8288 return NULL_TREE;
8290 /* Identify the constant in arg0 and its sign. */
8291 if (code0 == INTEGER_CST)
8292 cst0 = arg0;
8293 else
8294 cst0 = TREE_OPERAND (arg0, 1);
8295 sgn0 = tree_int_cst_sgn (cst0);
8297 /* Overflowed constants and zero will cause problems. */
8298 if (integer_zerop (cst0)
8299 || TREE_OVERFLOW (cst0))
8300 return NULL_TREE;
8302 /* See if we can reduce the magnitude of the constant in
8303 arg0 by changing the comparison code. */
8304 if (code0 == INTEGER_CST)
8306 /* CST <= arg1 -> CST-1 < arg1. */
8307 if (code == LE_EXPR && sgn0 == 1)
8308 code = LT_EXPR;
8309 /* -CST < arg1 -> -CST-1 <= arg1. */
8310 else if (code == LT_EXPR && sgn0 == -1)
8311 code = LE_EXPR;
8312 /* CST > arg1 -> CST-1 >= arg1. */
8313 else if (code == GT_EXPR && sgn0 == 1)
8314 code = GE_EXPR;
8315 /* -CST >= arg1 -> -CST-1 > arg1. */
8316 else if (code == GE_EXPR && sgn0 == -1)
8317 code = GT_EXPR;
8318 else
8319 return NULL_TREE;
8320 /* arg1 code' CST' might be more canonical. */
8321 swap = true;
8323 else
8325 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8326 if (code == LT_EXPR
8327 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8328 code = LE_EXPR;
8329 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8330 else if (code == GT_EXPR
8331 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8332 code = GE_EXPR;
8333 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8334 else if (code == LE_EXPR
8335 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8336 code = LT_EXPR;
8337 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8338 else if (code == GE_EXPR
8339 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8340 code = GT_EXPR;
8341 else
8342 return NULL_TREE;
8343 *strict_overflow_p = true;
8346 /* Now build the constant reduced in magnitude. But not if that
8347 would produce one outside of its types range. */
8348 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8349 && ((sgn0 == 1
8350 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8351 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8352 || (sgn0 == -1
8353 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8354 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8355 /* We cannot swap the comparison here as that would cause us to
8356 endlessly recurse. */
8357 return NULL_TREE;
8359 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8360 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8361 if (code0 != INTEGER_CST)
8362 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8364 /* If swapping might yield to a more canonical form, do so. */
8365 if (swap)
8366 return fold_build2_loc (loc, swap_tree_comparison (code), type, arg1, t);
8367 else
8368 return fold_build2_loc (loc, code, type, t, arg1);
8371 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8372 overflow further. Try to decrease the magnitude of constants involved
8373 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8374 and put sole constants at the second argument position.
8375 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8377 static tree
8378 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8379 tree arg0, tree arg1)
8381 tree t;
8382 bool strict_overflow_p;
8383 const char * const warnmsg = G_("assuming signed overflow does not occur "
8384 "when reducing constant in comparison");
8386 /* Try canonicalization by simplifying arg0. */
8387 strict_overflow_p = false;
8388 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8389 &strict_overflow_p);
8390 if (t)
8392 if (strict_overflow_p)
8393 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8394 return t;
8397 /* Try canonicalization by simplifying arg1 using the swapped
8398 comparison. */
8399 code = swap_tree_comparison (code);
8400 strict_overflow_p = false;
8401 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8402 &strict_overflow_p);
8403 if (t && strict_overflow_p)
8404 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8405 return t;
8408 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8409 space. This is used to avoid issuing overflow warnings for
8410 expressions like &p->x which can not wrap. */
8412 static bool
8413 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8415 unsigned HOST_WIDE_INT offset_low, total_low;
8416 HOST_WIDE_INT size, offset_high, total_high;
8418 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8419 return true;
8421 if (bitpos < 0)
8422 return true;
8424 if (offset == NULL_TREE)
8426 offset_low = 0;
8427 offset_high = 0;
8429 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8430 return true;
8431 else
8433 offset_low = TREE_INT_CST_LOW (offset);
8434 offset_high = TREE_INT_CST_HIGH (offset);
8437 if (add_double_with_sign (offset_low, offset_high,
8438 bitpos / BITS_PER_UNIT, 0,
8439 &total_low, &total_high,
8440 true))
8441 return true;
8443 if (total_high != 0)
8444 return true;
8446 size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8447 if (size <= 0)
8448 return true;
8450 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8451 array. */
8452 if (TREE_CODE (base) == ADDR_EXPR)
8454 HOST_WIDE_INT base_size;
8456 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8457 if (base_size > 0 && size < base_size)
8458 size = base_size;
8461 return total_low > (unsigned HOST_WIDE_INT) size;
8464 /* Subroutine of fold_binary. This routine performs all of the
8465 transformations that are common to the equality/inequality
8466 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8467 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8468 fold_binary should call fold_binary. Fold a comparison with
8469 tree code CODE and type TYPE with operands OP0 and OP1. Return
8470 the folded comparison or NULL_TREE. */
8472 static tree
8473 fold_comparison (location_t loc, enum tree_code code, tree type,
8474 tree op0, tree op1)
8476 tree arg0, arg1, tem;
8478 arg0 = op0;
8479 arg1 = op1;
8481 STRIP_SIGN_NOPS (arg0);
8482 STRIP_SIGN_NOPS (arg1);
8484 tem = fold_relational_const (code, type, arg0, arg1);
8485 if (tem != NULL_TREE)
8486 return tem;
8488 /* If one arg is a real or integer constant, put it last. */
8489 if (tree_swap_operands_p (arg0, arg1, true))
8490 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
8492 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8493 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8494 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8495 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8496 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8497 && (TREE_CODE (arg1) == INTEGER_CST
8498 && !TREE_OVERFLOW (arg1)))
8500 tree const1 = TREE_OPERAND (arg0, 1);
8501 tree const2 = arg1;
8502 tree variable = TREE_OPERAND (arg0, 0);
8503 tree lhs;
8504 int lhs_add;
8505 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8507 lhs = fold_build2_loc (loc, lhs_add ? PLUS_EXPR : MINUS_EXPR,
8508 TREE_TYPE (arg1), const2, const1);
8510 /* If the constant operation overflowed this can be
8511 simplified as a comparison against INT_MAX/INT_MIN. */
8512 if (TREE_CODE (lhs) == INTEGER_CST
8513 && TREE_OVERFLOW (lhs))
8515 int const1_sgn = tree_int_cst_sgn (const1);
8516 enum tree_code code2 = code;
8518 /* Get the sign of the constant on the lhs if the
8519 operation were VARIABLE + CONST1. */
8520 if (TREE_CODE (arg0) == MINUS_EXPR)
8521 const1_sgn = -const1_sgn;
8523 /* The sign of the constant determines if we overflowed
8524 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8525 Canonicalize to the INT_MIN overflow by swapping the comparison
8526 if necessary. */
8527 if (const1_sgn == -1)
8528 code2 = swap_tree_comparison (code);
8530 /* We now can look at the canonicalized case
8531 VARIABLE + 1 CODE2 INT_MIN
8532 and decide on the result. */
8533 if (code2 == LT_EXPR
8534 || code2 == LE_EXPR
8535 || code2 == EQ_EXPR)
8536 return omit_one_operand_loc (loc, type, boolean_false_node, variable);
8537 else if (code2 == NE_EXPR
8538 || code2 == GE_EXPR
8539 || code2 == GT_EXPR)
8540 return omit_one_operand_loc (loc, type, boolean_true_node, variable);
8543 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8544 && (TREE_CODE (lhs) != INTEGER_CST
8545 || !TREE_OVERFLOW (lhs)))
8547 if (code != EQ_EXPR && code != NE_EXPR)
8548 fold_overflow_warning ("assuming signed overflow does not occur "
8549 "when changing X +- C1 cmp C2 to "
8550 "X cmp C1 +- C2",
8551 WARN_STRICT_OVERFLOW_COMPARISON);
8552 return fold_build2_loc (loc, code, type, variable, lhs);
8556 /* For comparisons of pointers we can decompose it to a compile time
8557 comparison of the base objects and the offsets into the object.
8558 This requires at least one operand being an ADDR_EXPR or a
8559 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8560 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8561 && (TREE_CODE (arg0) == ADDR_EXPR
8562 || TREE_CODE (arg1) == ADDR_EXPR
8563 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8564 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8566 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8567 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8568 enum machine_mode mode;
8569 int volatilep, unsignedp;
8570 bool indirect_base0 = false, indirect_base1 = false;
8572 /* Get base and offset for the access. Strip ADDR_EXPR for
8573 get_inner_reference, but put it back by stripping INDIRECT_REF
8574 off the base object if possible. indirect_baseN will be true
8575 if baseN is not an address but refers to the object itself. */
8576 base0 = arg0;
8577 if (TREE_CODE (arg0) == ADDR_EXPR)
8579 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8580 &bitsize, &bitpos0, &offset0, &mode,
8581 &unsignedp, &volatilep, false);
8582 if (TREE_CODE (base0) == INDIRECT_REF)
8583 base0 = TREE_OPERAND (base0, 0);
8584 else
8585 indirect_base0 = true;
8587 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8589 base0 = TREE_OPERAND (arg0, 0);
8590 STRIP_SIGN_NOPS (base0);
8591 if (TREE_CODE (base0) == ADDR_EXPR)
8593 base0 = TREE_OPERAND (base0, 0);
8594 indirect_base0 = true;
8596 offset0 = TREE_OPERAND (arg0, 1);
8599 base1 = arg1;
8600 if (TREE_CODE (arg1) == ADDR_EXPR)
8602 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8603 &bitsize, &bitpos1, &offset1, &mode,
8604 &unsignedp, &volatilep, false);
8605 if (TREE_CODE (base1) == INDIRECT_REF)
8606 base1 = TREE_OPERAND (base1, 0);
8607 else
8608 indirect_base1 = true;
8610 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8612 base1 = TREE_OPERAND (arg1, 0);
8613 STRIP_SIGN_NOPS (base1);
8614 if (TREE_CODE (base1) == ADDR_EXPR)
8616 base1 = TREE_OPERAND (base1, 0);
8617 indirect_base1 = true;
8619 offset1 = TREE_OPERAND (arg1, 1);
8622 /* A local variable can never be pointed to by
8623 the default SSA name of an incoming parameter. */
8624 if ((TREE_CODE (arg0) == ADDR_EXPR
8625 && indirect_base0
8626 && TREE_CODE (base0) == VAR_DECL
8627 && auto_var_in_fn_p (base0, current_function_decl)
8628 && !indirect_base1
8629 && TREE_CODE (base1) == SSA_NAME
8630 && TREE_CODE (SSA_NAME_VAR (base1)) == PARM_DECL
8631 && SSA_NAME_IS_DEFAULT_DEF (base1))
8632 || (TREE_CODE (arg1) == ADDR_EXPR
8633 && indirect_base1
8634 && TREE_CODE (base1) == VAR_DECL
8635 && auto_var_in_fn_p (base1, current_function_decl)
8636 && !indirect_base0
8637 && TREE_CODE (base0) == SSA_NAME
8638 && TREE_CODE (SSA_NAME_VAR (base0)) == PARM_DECL
8639 && SSA_NAME_IS_DEFAULT_DEF (base0)))
8641 if (code == NE_EXPR)
8642 return constant_boolean_node (1, type);
8643 else if (code == EQ_EXPR)
8644 return constant_boolean_node (0, type);
8646 /* If we have equivalent bases we might be able to simplify. */
8647 else if (indirect_base0 == indirect_base1
8648 && operand_equal_p (base0, base1, 0))
8650 /* We can fold this expression to a constant if the non-constant
8651 offset parts are equal. */
8652 if ((offset0 == offset1
8653 || (offset0 && offset1
8654 && operand_equal_p (offset0, offset1, 0)))
8655 && (code == EQ_EXPR
8656 || code == NE_EXPR
8657 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8660 if (code != EQ_EXPR
8661 && code != NE_EXPR
8662 && bitpos0 != bitpos1
8663 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8664 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8665 fold_overflow_warning (("assuming pointer wraparound does not "
8666 "occur when comparing P +- C1 with "
8667 "P +- C2"),
8668 WARN_STRICT_OVERFLOW_CONDITIONAL);
8670 switch (code)
8672 case EQ_EXPR:
8673 return constant_boolean_node (bitpos0 == bitpos1, type);
8674 case NE_EXPR:
8675 return constant_boolean_node (bitpos0 != bitpos1, type);
8676 case LT_EXPR:
8677 return constant_boolean_node (bitpos0 < bitpos1, type);
8678 case LE_EXPR:
8679 return constant_boolean_node (bitpos0 <= bitpos1, type);
8680 case GE_EXPR:
8681 return constant_boolean_node (bitpos0 >= bitpos1, type);
8682 case GT_EXPR:
8683 return constant_boolean_node (bitpos0 > bitpos1, type);
8684 default:;
8687 /* We can simplify the comparison to a comparison of the variable
8688 offset parts if the constant offset parts are equal.
8689 Be careful to use signed size type here because otherwise we
8690 mess with array offsets in the wrong way. This is possible
8691 because pointer arithmetic is restricted to retain within an
8692 object and overflow on pointer differences is undefined as of
8693 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8694 else if (bitpos0 == bitpos1
8695 && ((code == EQ_EXPR || code == NE_EXPR)
8696 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8698 /* By converting to signed size type we cover middle-end pointer
8699 arithmetic which operates on unsigned pointer types of size
8700 type size and ARRAY_REF offsets which are properly sign or
8701 zero extended from their type in case it is narrower than
8702 size type. */
8703 if (offset0 == NULL_TREE)
8704 offset0 = build_int_cst (ssizetype, 0);
8705 else
8706 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8707 if (offset1 == NULL_TREE)
8708 offset1 = build_int_cst (ssizetype, 0);
8709 else
8710 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8712 if (code != EQ_EXPR
8713 && code != NE_EXPR
8714 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8715 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8716 fold_overflow_warning (("assuming pointer wraparound does not "
8717 "occur when comparing P +- C1 with "
8718 "P +- C2"),
8719 WARN_STRICT_OVERFLOW_COMPARISON);
8721 return fold_build2_loc (loc, code, type, offset0, offset1);
8724 /* For non-equal bases we can simplify if they are addresses
8725 of local binding decls or constants. */
8726 else if (indirect_base0 && indirect_base1
8727 /* We know that !operand_equal_p (base0, base1, 0)
8728 because the if condition was false. But make
8729 sure two decls are not the same. */
8730 && base0 != base1
8731 && TREE_CODE (arg0) == ADDR_EXPR
8732 && TREE_CODE (arg1) == ADDR_EXPR
8733 && (((TREE_CODE (base0) == VAR_DECL
8734 || TREE_CODE (base0) == PARM_DECL)
8735 && (targetm.binds_local_p (base0)
8736 || CONSTANT_CLASS_P (base1)))
8737 || CONSTANT_CLASS_P (base0))
8738 && (((TREE_CODE (base1) == VAR_DECL
8739 || TREE_CODE (base1) == PARM_DECL)
8740 && (targetm.binds_local_p (base1)
8741 || CONSTANT_CLASS_P (base0)))
8742 || CONSTANT_CLASS_P (base1)))
8744 if (code == EQ_EXPR)
8745 return omit_two_operands_loc (loc, type, boolean_false_node,
8746 arg0, arg1);
8747 else if (code == NE_EXPR)
8748 return omit_two_operands_loc (loc, type, boolean_true_node,
8749 arg0, arg1);
8751 /* For equal offsets we can simplify to a comparison of the
8752 base addresses. */
8753 else if (bitpos0 == bitpos1
8754 && (indirect_base0
8755 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8756 && (indirect_base1
8757 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8758 && ((offset0 == offset1)
8759 || (offset0 && offset1
8760 && operand_equal_p (offset0, offset1, 0))))
8762 if (indirect_base0)
8763 base0 = build_fold_addr_expr_loc (loc, base0);
8764 if (indirect_base1)
8765 base1 = build_fold_addr_expr_loc (loc, base1);
8766 return fold_build2_loc (loc, code, type, base0, base1);
8770 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8771 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8772 the resulting offset is smaller in absolute value than the
8773 original one. */
8774 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8775 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8776 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8777 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8778 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8779 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8780 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8782 tree const1 = TREE_OPERAND (arg0, 1);
8783 tree const2 = TREE_OPERAND (arg1, 1);
8784 tree variable1 = TREE_OPERAND (arg0, 0);
8785 tree variable2 = TREE_OPERAND (arg1, 0);
8786 tree cst;
8787 const char * const warnmsg = G_("assuming signed overflow does not "
8788 "occur when combining constants around "
8789 "a comparison");
8791 /* Put the constant on the side where it doesn't overflow and is
8792 of lower absolute value than before. */
8793 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8794 ? MINUS_EXPR : PLUS_EXPR,
8795 const2, const1);
8796 if (!TREE_OVERFLOW (cst)
8797 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
8799 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8800 return fold_build2_loc (loc, code, type,
8801 variable1,
8802 fold_build2_loc (loc,
8803 TREE_CODE (arg1), TREE_TYPE (arg1),
8804 variable2, cst));
8807 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8808 ? MINUS_EXPR : PLUS_EXPR,
8809 const1, const2);
8810 if (!TREE_OVERFLOW (cst)
8811 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
8813 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8814 return fold_build2_loc (loc, code, type,
8815 fold_build2_loc (loc, TREE_CODE (arg0), TREE_TYPE (arg0),
8816 variable1, cst),
8817 variable2);
8821 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
8822 signed arithmetic case. That form is created by the compiler
8823 often enough for folding it to be of value. One example is in
8824 computing loop trip counts after Operator Strength Reduction. */
8825 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8826 && TREE_CODE (arg0) == MULT_EXPR
8827 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8828 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8829 && integer_zerop (arg1))
8831 tree const1 = TREE_OPERAND (arg0, 1);
8832 tree const2 = arg1; /* zero */
8833 tree variable1 = TREE_OPERAND (arg0, 0);
8834 enum tree_code cmp_code = code;
8836 /* Handle unfolded multiplication by zero. */
8837 if (integer_zerop (const1))
8838 return fold_build2_loc (loc, cmp_code, type, const1, const2);
8840 fold_overflow_warning (("assuming signed overflow does not occur when "
8841 "eliminating multiplication in comparison "
8842 "with zero"),
8843 WARN_STRICT_OVERFLOW_COMPARISON);
8845 /* If const1 is negative we swap the sense of the comparison. */
8846 if (tree_int_cst_sgn (const1) < 0)
8847 cmp_code = swap_tree_comparison (cmp_code);
8849 return fold_build2_loc (loc, cmp_code, type, variable1, const2);
8852 tem = maybe_canonicalize_comparison (loc, code, type, op0, op1);
8853 if (tem)
8854 return tem;
8856 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
8858 tree targ0 = strip_float_extensions (arg0);
8859 tree targ1 = strip_float_extensions (arg1);
8860 tree newtype = TREE_TYPE (targ0);
8862 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
8863 newtype = TREE_TYPE (targ1);
8865 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
8866 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
8867 return fold_build2_loc (loc, code, type,
8868 fold_convert_loc (loc, newtype, targ0),
8869 fold_convert_loc (loc, newtype, targ1));
8871 /* (-a) CMP (-b) -> b CMP a */
8872 if (TREE_CODE (arg0) == NEGATE_EXPR
8873 && TREE_CODE (arg1) == NEGATE_EXPR)
8874 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg1, 0),
8875 TREE_OPERAND (arg0, 0));
8877 if (TREE_CODE (arg1) == REAL_CST)
8879 REAL_VALUE_TYPE cst;
8880 cst = TREE_REAL_CST (arg1);
8882 /* (-a) CMP CST -> a swap(CMP) (-CST) */
8883 if (TREE_CODE (arg0) == NEGATE_EXPR)
8884 return fold_build2_loc (loc, swap_tree_comparison (code), type,
8885 TREE_OPERAND (arg0, 0),
8886 build_real (TREE_TYPE (arg1),
8887 real_value_negate (&cst)));
8889 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
8890 /* a CMP (-0) -> a CMP 0 */
8891 if (REAL_VALUE_MINUS_ZERO (cst))
8892 return fold_build2_loc (loc, code, type, arg0,
8893 build_real (TREE_TYPE (arg1), dconst0));
8895 /* x != NaN is always true, other ops are always false. */
8896 if (REAL_VALUE_ISNAN (cst)
8897 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
8899 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
8900 return omit_one_operand_loc (loc, type, tem, arg0);
8903 /* Fold comparisons against infinity. */
8904 if (REAL_VALUE_ISINF (cst)
8905 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))))
8907 tem = fold_inf_compare (loc, code, type, arg0, arg1);
8908 if (tem != NULL_TREE)
8909 return tem;
8913 /* If this is a comparison of a real constant with a PLUS_EXPR
8914 or a MINUS_EXPR of a real constant, we can convert it into a
8915 comparison with a revised real constant as long as no overflow
8916 occurs when unsafe_math_optimizations are enabled. */
8917 if (flag_unsafe_math_optimizations
8918 && TREE_CODE (arg1) == REAL_CST
8919 && (TREE_CODE (arg0) == PLUS_EXPR
8920 || TREE_CODE (arg0) == MINUS_EXPR)
8921 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
8922 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
8923 ? MINUS_EXPR : PLUS_EXPR,
8924 arg1, TREE_OPERAND (arg0, 1)))
8925 && !TREE_OVERFLOW (tem))
8926 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8928 /* Likewise, we can simplify a comparison of a real constant with
8929 a MINUS_EXPR whose first operand is also a real constant, i.e.
8930 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
8931 floating-point types only if -fassociative-math is set. */
8932 if (flag_associative_math
8933 && TREE_CODE (arg1) == REAL_CST
8934 && TREE_CODE (arg0) == MINUS_EXPR
8935 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
8936 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
8937 arg1))
8938 && !TREE_OVERFLOW (tem))
8939 return fold_build2_loc (loc, swap_tree_comparison (code), type,
8940 TREE_OPERAND (arg0, 1), tem);
8942 /* Fold comparisons against built-in math functions. */
8943 if (TREE_CODE (arg1) == REAL_CST
8944 && flag_unsafe_math_optimizations
8945 && ! flag_errno_math)
8947 enum built_in_function fcode = builtin_mathfn_code (arg0);
8949 if (fcode != END_BUILTINS)
8951 tem = fold_mathfn_compare (loc, fcode, code, type, arg0, arg1);
8952 if (tem != NULL_TREE)
8953 return tem;
8958 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8959 && CONVERT_EXPR_P (arg0))
8961 /* If we are widening one operand of an integer comparison,
8962 see if the other operand is similarly being widened. Perhaps we
8963 can do the comparison in the narrower type. */
8964 tem = fold_widened_comparison (loc, code, type, arg0, arg1);
8965 if (tem)
8966 return tem;
8968 /* Or if we are changing signedness. */
8969 tem = fold_sign_changed_comparison (loc, code, type, arg0, arg1);
8970 if (tem)
8971 return tem;
8974 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8975 constant, we can simplify it. */
8976 if (TREE_CODE (arg1) == INTEGER_CST
8977 && (TREE_CODE (arg0) == MIN_EXPR
8978 || TREE_CODE (arg0) == MAX_EXPR)
8979 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8981 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8982 if (tem)
8983 return tem;
8986 /* Simplify comparison of something with itself. (For IEEE
8987 floating-point, we can only do some of these simplifications.) */
8988 if (operand_equal_p (arg0, arg1, 0))
8990 switch (code)
8992 case EQ_EXPR:
8993 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8994 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8995 return constant_boolean_node (1, type);
8996 break;
8998 case GE_EXPR:
8999 case LE_EXPR:
9000 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9001 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9002 return constant_boolean_node (1, type);
9003 return fold_build2_loc (loc, EQ_EXPR, type, arg0, arg1);
9005 case NE_EXPR:
9006 /* For NE, we can only do this simplification if integer
9007 or we don't honor IEEE floating point NaNs. */
9008 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9009 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9010 break;
9011 /* ... fall through ... */
9012 case GT_EXPR:
9013 case LT_EXPR:
9014 return constant_boolean_node (0, type);
9015 default:
9016 gcc_unreachable ();
9020 /* If we are comparing an expression that just has comparisons
9021 of two integer values, arithmetic expressions of those comparisons,
9022 and constants, we can simplify it. There are only three cases
9023 to check: the two values can either be equal, the first can be
9024 greater, or the second can be greater. Fold the expression for
9025 those three values. Since each value must be 0 or 1, we have
9026 eight possibilities, each of which corresponds to the constant 0
9027 or 1 or one of the six possible comparisons.
9029 This handles common cases like (a > b) == 0 but also handles
9030 expressions like ((x > y) - (y > x)) > 0, which supposedly
9031 occur in macroized code. */
9033 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9035 tree cval1 = 0, cval2 = 0;
9036 int save_p = 0;
9038 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9039 /* Don't handle degenerate cases here; they should already
9040 have been handled anyway. */
9041 && cval1 != 0 && cval2 != 0
9042 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9043 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9044 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9045 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9046 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9047 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9048 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9050 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9051 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9053 /* We can't just pass T to eval_subst in case cval1 or cval2
9054 was the same as ARG1. */
9056 tree high_result
9057 = fold_build2_loc (loc, code, type,
9058 eval_subst (loc, arg0, cval1, maxval,
9059 cval2, minval),
9060 arg1);
9061 tree equal_result
9062 = fold_build2_loc (loc, code, type,
9063 eval_subst (loc, arg0, cval1, maxval,
9064 cval2, maxval),
9065 arg1);
9066 tree low_result
9067 = fold_build2_loc (loc, code, type,
9068 eval_subst (loc, arg0, cval1, minval,
9069 cval2, maxval),
9070 arg1);
9072 /* All three of these results should be 0 or 1. Confirm they are.
9073 Then use those values to select the proper code to use. */
9075 if (TREE_CODE (high_result) == INTEGER_CST
9076 && TREE_CODE (equal_result) == INTEGER_CST
9077 && TREE_CODE (low_result) == INTEGER_CST)
9079 /* Make a 3-bit mask with the high-order bit being the
9080 value for `>', the next for '=', and the low for '<'. */
9081 switch ((integer_onep (high_result) * 4)
9082 + (integer_onep (equal_result) * 2)
9083 + integer_onep (low_result))
9085 case 0:
9086 /* Always false. */
9087 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9088 case 1:
9089 code = LT_EXPR;
9090 break;
9091 case 2:
9092 code = EQ_EXPR;
9093 break;
9094 case 3:
9095 code = LE_EXPR;
9096 break;
9097 case 4:
9098 code = GT_EXPR;
9099 break;
9100 case 5:
9101 code = NE_EXPR;
9102 break;
9103 case 6:
9104 code = GE_EXPR;
9105 break;
9106 case 7:
9107 /* Always true. */
9108 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9111 if (save_p)
9113 tem = save_expr (build2 (code, type, cval1, cval2));
9114 SET_EXPR_LOCATION (tem, loc);
9115 return tem;
9117 return fold_build2_loc (loc, code, type, cval1, cval2);
9122 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9123 into a single range test. */
9124 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9125 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9126 && TREE_CODE (arg1) == INTEGER_CST
9127 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9128 && !integer_zerop (TREE_OPERAND (arg0, 1))
9129 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9130 && !TREE_OVERFLOW (arg1))
9132 tem = fold_div_compare (loc, code, type, arg0, arg1);
9133 if (tem != NULL_TREE)
9134 return tem;
9137 /* Fold ~X op ~Y as Y op X. */
9138 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9139 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9141 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9142 return fold_build2_loc (loc, code, type,
9143 fold_convert_loc (loc, cmp_type,
9144 TREE_OPERAND (arg1, 0)),
9145 TREE_OPERAND (arg0, 0));
9148 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9149 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9150 && TREE_CODE (arg1) == INTEGER_CST)
9152 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9153 return fold_build2_loc (loc, swap_tree_comparison (code), type,
9154 TREE_OPERAND (arg0, 0),
9155 fold_build1_loc (loc, BIT_NOT_EXPR, cmp_type,
9156 fold_convert_loc (loc, cmp_type, arg1)));
9159 return NULL_TREE;
9163 /* Subroutine of fold_binary. Optimize complex multiplications of the
9164 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9165 argument EXPR represents the expression "z" of type TYPE. */
9167 static tree
9168 fold_mult_zconjz (location_t loc, tree type, tree expr)
9170 tree itype = TREE_TYPE (type);
9171 tree rpart, ipart, tem;
9173 if (TREE_CODE (expr) == COMPLEX_EXPR)
9175 rpart = TREE_OPERAND (expr, 0);
9176 ipart = TREE_OPERAND (expr, 1);
9178 else if (TREE_CODE (expr) == COMPLEX_CST)
9180 rpart = TREE_REALPART (expr);
9181 ipart = TREE_IMAGPART (expr);
9183 else
9185 expr = save_expr (expr);
9186 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9187 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9190 rpart = save_expr (rpart);
9191 ipart = save_expr (ipart);
9192 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9193 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9194 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9195 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9196 build_zero_cst (itype));
9200 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9201 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9202 guarantees that P and N have the same least significant log2(M) bits.
9203 N is not otherwise constrained. In particular, N is not normalized to
9204 0 <= N < M as is common. In general, the precise value of P is unknown.
9205 M is chosen as large as possible such that constant N can be determined.
9207 Returns M and sets *RESIDUE to N.
9209 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9210 account. This is not always possible due to PR 35705.
9213 static unsigned HOST_WIDE_INT
9214 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue,
9215 bool allow_func_align)
9217 enum tree_code code;
9219 *residue = 0;
9221 code = TREE_CODE (expr);
9222 if (code == ADDR_EXPR)
9224 unsigned int bitalign;
9225 bitalign = get_object_alignment_1 (TREE_OPERAND (expr, 0), residue);
9226 *residue /= BITS_PER_UNIT;
9227 return bitalign / BITS_PER_UNIT;
9229 else if (code == POINTER_PLUS_EXPR)
9231 tree op0, op1;
9232 unsigned HOST_WIDE_INT modulus;
9233 enum tree_code inner_code;
9235 op0 = TREE_OPERAND (expr, 0);
9236 STRIP_NOPS (op0);
9237 modulus = get_pointer_modulus_and_residue (op0, residue,
9238 allow_func_align);
9240 op1 = TREE_OPERAND (expr, 1);
9241 STRIP_NOPS (op1);
9242 inner_code = TREE_CODE (op1);
9243 if (inner_code == INTEGER_CST)
9245 *residue += TREE_INT_CST_LOW (op1);
9246 return modulus;
9248 else if (inner_code == MULT_EXPR)
9250 op1 = TREE_OPERAND (op1, 1);
9251 if (TREE_CODE (op1) == INTEGER_CST)
9253 unsigned HOST_WIDE_INT align;
9255 /* Compute the greatest power-of-2 divisor of op1. */
9256 align = TREE_INT_CST_LOW (op1);
9257 align &= -align;
9259 /* If align is non-zero and less than *modulus, replace
9260 *modulus with align., If align is 0, then either op1 is 0
9261 or the greatest power-of-2 divisor of op1 doesn't fit in an
9262 unsigned HOST_WIDE_INT. In either case, no additional
9263 constraint is imposed. */
9264 if (align)
9265 modulus = MIN (modulus, align);
9267 return modulus;
9272 /* If we get here, we were unable to determine anything useful about the
9273 expression. */
9274 return 1;
9278 /* Fold a binary expression of code CODE and type TYPE with operands
9279 OP0 and OP1. LOC is the location of the resulting expression.
9280 Return the folded expression if folding is successful. Otherwise,
9281 return NULL_TREE. */
9283 tree
9284 fold_binary_loc (location_t loc,
9285 enum tree_code code, tree type, tree op0, tree op1)
9287 enum tree_code_class kind = TREE_CODE_CLASS (code);
9288 tree arg0, arg1, tem;
9289 tree t1 = NULL_TREE;
9290 bool strict_overflow_p;
9292 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9293 && TREE_CODE_LENGTH (code) == 2
9294 && op0 != NULL_TREE
9295 && op1 != NULL_TREE);
9297 arg0 = op0;
9298 arg1 = op1;
9300 /* Strip any conversions that don't change the mode. This is
9301 safe for every expression, except for a comparison expression
9302 because its signedness is derived from its operands. So, in
9303 the latter case, only strip conversions that don't change the
9304 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9305 preserved.
9307 Note that this is done as an internal manipulation within the
9308 constant folder, in order to find the simplest representation
9309 of the arguments so that their form can be studied. In any
9310 cases, the appropriate type conversions should be put back in
9311 the tree that will get out of the constant folder. */
9313 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9315 STRIP_SIGN_NOPS (arg0);
9316 STRIP_SIGN_NOPS (arg1);
9318 else
9320 STRIP_NOPS (arg0);
9321 STRIP_NOPS (arg1);
9324 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9325 constant but we can't do arithmetic on them. */
9326 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9327 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9328 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
9329 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
9330 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9331 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9333 if (kind == tcc_binary)
9335 /* Make sure type and arg0 have the same saturating flag. */
9336 gcc_assert (TYPE_SATURATING (type)
9337 == TYPE_SATURATING (TREE_TYPE (arg0)));
9338 tem = const_binop (code, arg0, arg1);
9340 else if (kind == tcc_comparison)
9341 tem = fold_relational_const (code, type, arg0, arg1);
9342 else
9343 tem = NULL_TREE;
9345 if (tem != NULL_TREE)
9347 if (TREE_TYPE (tem) != type)
9348 tem = fold_convert_loc (loc, type, tem);
9349 return tem;
9353 /* If this is a commutative operation, and ARG0 is a constant, move it
9354 to ARG1 to reduce the number of tests below. */
9355 if (commutative_tree_code (code)
9356 && tree_swap_operands_p (arg0, arg1, true))
9357 return fold_build2_loc (loc, code, type, op1, op0);
9359 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9361 First check for cases where an arithmetic operation is applied to a
9362 compound, conditional, or comparison operation. Push the arithmetic
9363 operation inside the compound or conditional to see if any folding
9364 can then be done. Convert comparison to conditional for this purpose.
9365 The also optimizes non-constant cases that used to be done in
9366 expand_expr.
9368 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9369 one of the operands is a comparison and the other is a comparison, a
9370 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9371 code below would make the expression more complex. Change it to a
9372 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9373 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9375 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9376 || code == EQ_EXPR || code == NE_EXPR)
9377 && ((truth_value_p (TREE_CODE (arg0))
9378 && (truth_value_p (TREE_CODE (arg1))
9379 || (TREE_CODE (arg1) == BIT_AND_EXPR
9380 && integer_onep (TREE_OPERAND (arg1, 1)))))
9381 || (truth_value_p (TREE_CODE (arg1))
9382 && (truth_value_p (TREE_CODE (arg0))
9383 || (TREE_CODE (arg0) == BIT_AND_EXPR
9384 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9386 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9387 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9388 : TRUTH_XOR_EXPR,
9389 boolean_type_node,
9390 fold_convert_loc (loc, boolean_type_node, arg0),
9391 fold_convert_loc (loc, boolean_type_node, arg1));
9393 if (code == EQ_EXPR)
9394 tem = invert_truthvalue_loc (loc, tem);
9396 return fold_convert_loc (loc, type, tem);
9399 if (TREE_CODE_CLASS (code) == tcc_binary
9400 || TREE_CODE_CLASS (code) == tcc_comparison)
9402 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9404 tem = fold_build2_loc (loc, code, type,
9405 fold_convert_loc (loc, TREE_TYPE (op0),
9406 TREE_OPERAND (arg0, 1)), op1);
9407 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9408 tem);
9410 if (TREE_CODE (arg1) == COMPOUND_EXPR
9411 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9413 tem = fold_build2_loc (loc, code, type, op0,
9414 fold_convert_loc (loc, TREE_TYPE (op1),
9415 TREE_OPERAND (arg1, 1)));
9416 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9417 tem);
9420 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9422 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9423 arg0, arg1,
9424 /*cond_first_p=*/1);
9425 if (tem != NULL_TREE)
9426 return tem;
9429 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9431 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9432 arg1, arg0,
9433 /*cond_first_p=*/0);
9434 if (tem != NULL_TREE)
9435 return tem;
9439 switch (code)
9441 case MEM_REF:
9442 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9443 if (TREE_CODE (arg0) == ADDR_EXPR
9444 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9446 tree iref = TREE_OPERAND (arg0, 0);
9447 return fold_build2 (MEM_REF, type,
9448 TREE_OPERAND (iref, 0),
9449 int_const_binop (PLUS_EXPR, arg1,
9450 TREE_OPERAND (iref, 1)));
9453 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9454 if (TREE_CODE (arg0) == ADDR_EXPR
9455 && handled_component_p (TREE_OPERAND (arg0, 0)))
9457 tree base;
9458 HOST_WIDE_INT coffset;
9459 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9460 &coffset);
9461 if (!base)
9462 return NULL_TREE;
9463 return fold_build2 (MEM_REF, type,
9464 build_fold_addr_expr (base),
9465 int_const_binop (PLUS_EXPR, arg1,
9466 size_int (coffset)));
9469 return NULL_TREE;
9471 case POINTER_PLUS_EXPR:
9472 /* 0 +p index -> (type)index */
9473 if (integer_zerop (arg0))
9474 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
9476 /* PTR +p 0 -> PTR */
9477 if (integer_zerop (arg1))
9478 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9480 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9481 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9482 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9483 return fold_convert_loc (loc, type,
9484 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9485 fold_convert_loc (loc, sizetype,
9486 arg1),
9487 fold_convert_loc (loc, sizetype,
9488 arg0)));
9490 /* index +p PTR -> PTR +p index */
9491 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9492 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9493 return fold_build2_loc (loc, POINTER_PLUS_EXPR, type,
9494 fold_convert_loc (loc, type, arg1),
9495 fold_convert_loc (loc, sizetype, arg0));
9497 /* (PTR +p B) +p A -> PTR +p (B + A) */
9498 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9500 tree inner;
9501 tree arg01 = fold_convert_loc (loc, sizetype, TREE_OPERAND (arg0, 1));
9502 tree arg00 = TREE_OPERAND (arg0, 0);
9503 inner = fold_build2_loc (loc, PLUS_EXPR, sizetype,
9504 arg01, fold_convert_loc (loc, sizetype, arg1));
9505 return fold_convert_loc (loc, type,
9506 fold_build2_loc (loc, POINTER_PLUS_EXPR,
9507 TREE_TYPE (arg00),
9508 arg00, inner));
9511 /* PTR_CST +p CST -> CST1 */
9512 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9513 return fold_build2_loc (loc, PLUS_EXPR, type, arg0,
9514 fold_convert_loc (loc, type, arg1));
9516 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9517 of the array. Loop optimizer sometimes produce this type of
9518 expressions. */
9519 if (TREE_CODE (arg0) == ADDR_EXPR)
9521 tem = try_move_mult_to_index (loc, arg0,
9522 fold_convert_loc (loc, sizetype, arg1));
9523 if (tem)
9524 return fold_convert_loc (loc, type, tem);
9527 return NULL_TREE;
9529 case PLUS_EXPR:
9530 /* A + (-B) -> A - B */
9531 if (TREE_CODE (arg1) == NEGATE_EXPR)
9532 return fold_build2_loc (loc, MINUS_EXPR, type,
9533 fold_convert_loc (loc, type, arg0),
9534 fold_convert_loc (loc, type,
9535 TREE_OPERAND (arg1, 0)));
9536 /* (-A) + B -> B - A */
9537 if (TREE_CODE (arg0) == NEGATE_EXPR
9538 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9539 return fold_build2_loc (loc, MINUS_EXPR, type,
9540 fold_convert_loc (loc, type, arg1),
9541 fold_convert_loc (loc, type,
9542 TREE_OPERAND (arg0, 0)));
9544 if (INTEGRAL_TYPE_P (type))
9546 /* Convert ~A + 1 to -A. */
9547 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9548 && integer_onep (arg1))
9549 return fold_build1_loc (loc, NEGATE_EXPR, type,
9550 fold_convert_loc (loc, type,
9551 TREE_OPERAND (arg0, 0)));
9553 /* ~X + X is -1. */
9554 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9555 && !TYPE_OVERFLOW_TRAPS (type))
9557 tree tem = TREE_OPERAND (arg0, 0);
9559 STRIP_NOPS (tem);
9560 if (operand_equal_p (tem, arg1, 0))
9562 t1 = build_int_cst_type (type, -1);
9563 return omit_one_operand_loc (loc, type, t1, arg1);
9567 /* X + ~X is -1. */
9568 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9569 && !TYPE_OVERFLOW_TRAPS (type))
9571 tree tem = TREE_OPERAND (arg1, 0);
9573 STRIP_NOPS (tem);
9574 if (operand_equal_p (arg0, tem, 0))
9576 t1 = build_int_cst_type (type, -1);
9577 return omit_one_operand_loc (loc, type, t1, arg0);
9581 /* X + (X / CST) * -CST is X % CST. */
9582 if (TREE_CODE (arg1) == MULT_EXPR
9583 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9584 && operand_equal_p (arg0,
9585 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9587 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9588 tree cst1 = TREE_OPERAND (arg1, 1);
9589 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9590 cst1, cst0);
9591 if (sum && integer_zerop (sum))
9592 return fold_convert_loc (loc, type,
9593 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9594 TREE_TYPE (arg0), arg0,
9595 cst0));
9599 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9600 same or one. Make sure type is not saturating.
9601 fold_plusminus_mult_expr will re-associate. */
9602 if ((TREE_CODE (arg0) == MULT_EXPR
9603 || TREE_CODE (arg1) == MULT_EXPR)
9604 && !TYPE_SATURATING (type)
9605 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9607 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9608 if (tem)
9609 return tem;
9612 if (! FLOAT_TYPE_P (type))
9614 if (integer_zerop (arg1))
9615 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9617 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9618 with a constant, and the two constants have no bits in common,
9619 we should treat this as a BIT_IOR_EXPR since this may produce more
9620 simplifications. */
9621 if (TREE_CODE (arg0) == BIT_AND_EXPR
9622 && TREE_CODE (arg1) == BIT_AND_EXPR
9623 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9624 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9625 && integer_zerop (const_binop (BIT_AND_EXPR,
9626 TREE_OPERAND (arg0, 1),
9627 TREE_OPERAND (arg1, 1))))
9629 code = BIT_IOR_EXPR;
9630 goto bit_ior;
9633 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9634 (plus (plus (mult) (mult)) (foo)) so that we can
9635 take advantage of the factoring cases below. */
9636 if (((TREE_CODE (arg0) == PLUS_EXPR
9637 || TREE_CODE (arg0) == MINUS_EXPR)
9638 && TREE_CODE (arg1) == MULT_EXPR)
9639 || ((TREE_CODE (arg1) == PLUS_EXPR
9640 || TREE_CODE (arg1) == MINUS_EXPR)
9641 && TREE_CODE (arg0) == MULT_EXPR))
9643 tree parg0, parg1, parg, marg;
9644 enum tree_code pcode;
9646 if (TREE_CODE (arg1) == MULT_EXPR)
9647 parg = arg0, marg = arg1;
9648 else
9649 parg = arg1, marg = arg0;
9650 pcode = TREE_CODE (parg);
9651 parg0 = TREE_OPERAND (parg, 0);
9652 parg1 = TREE_OPERAND (parg, 1);
9653 STRIP_NOPS (parg0);
9654 STRIP_NOPS (parg1);
9656 if (TREE_CODE (parg0) == MULT_EXPR
9657 && TREE_CODE (parg1) != MULT_EXPR)
9658 return fold_build2_loc (loc, pcode, type,
9659 fold_build2_loc (loc, PLUS_EXPR, type,
9660 fold_convert_loc (loc, type,
9661 parg0),
9662 fold_convert_loc (loc, type,
9663 marg)),
9664 fold_convert_loc (loc, type, parg1));
9665 if (TREE_CODE (parg0) != MULT_EXPR
9666 && TREE_CODE (parg1) == MULT_EXPR)
9667 return
9668 fold_build2_loc (loc, PLUS_EXPR, type,
9669 fold_convert_loc (loc, type, parg0),
9670 fold_build2_loc (loc, pcode, type,
9671 fold_convert_loc (loc, type, marg),
9672 fold_convert_loc (loc, type,
9673 parg1)));
9676 else
9678 /* See if ARG1 is zero and X + ARG1 reduces to X. */
9679 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
9680 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
9682 /* Likewise if the operands are reversed. */
9683 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
9684 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
9686 /* Convert X + -C into X - C. */
9687 if (TREE_CODE (arg1) == REAL_CST
9688 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
9690 tem = fold_negate_const (arg1, type);
9691 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
9692 return fold_build2_loc (loc, MINUS_EXPR, type,
9693 fold_convert_loc (loc, type, arg0),
9694 fold_convert_loc (loc, type, tem));
9697 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9698 to __complex__ ( x, y ). This is not the same for SNaNs or
9699 if signed zeros are involved. */
9700 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9701 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9702 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9704 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9705 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9706 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9707 bool arg0rz = false, arg0iz = false;
9708 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9709 || (arg0i && (arg0iz = real_zerop (arg0i))))
9711 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9712 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9713 if (arg0rz && arg1i && real_zerop (arg1i))
9715 tree rp = arg1r ? arg1r
9716 : build1 (REALPART_EXPR, rtype, arg1);
9717 tree ip = arg0i ? arg0i
9718 : build1 (IMAGPART_EXPR, rtype, arg0);
9719 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9721 else if (arg0iz && arg1r && real_zerop (arg1r))
9723 tree rp = arg0r ? arg0r
9724 : build1 (REALPART_EXPR, rtype, arg0);
9725 tree ip = arg1i ? arg1i
9726 : build1 (IMAGPART_EXPR, rtype, arg1);
9727 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9732 if (flag_unsafe_math_optimizations
9733 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9734 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9735 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9736 return tem;
9738 /* Convert x+x into x*2.0. */
9739 if (operand_equal_p (arg0, arg1, 0)
9740 && SCALAR_FLOAT_TYPE_P (type))
9741 return fold_build2_loc (loc, MULT_EXPR, type, arg0,
9742 build_real (type, dconst2));
9744 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9745 We associate floats only if the user has specified
9746 -fassociative-math. */
9747 if (flag_associative_math
9748 && TREE_CODE (arg1) == PLUS_EXPR
9749 && TREE_CODE (arg0) != MULT_EXPR)
9751 tree tree10 = TREE_OPERAND (arg1, 0);
9752 tree tree11 = TREE_OPERAND (arg1, 1);
9753 if (TREE_CODE (tree11) == MULT_EXPR
9754 && TREE_CODE (tree10) == MULT_EXPR)
9756 tree tree0;
9757 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9758 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9761 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9762 We associate floats only if the user has specified
9763 -fassociative-math. */
9764 if (flag_associative_math
9765 && TREE_CODE (arg0) == PLUS_EXPR
9766 && TREE_CODE (arg1) != MULT_EXPR)
9768 tree tree00 = TREE_OPERAND (arg0, 0);
9769 tree tree01 = TREE_OPERAND (arg0, 1);
9770 if (TREE_CODE (tree01) == MULT_EXPR
9771 && TREE_CODE (tree00) == MULT_EXPR)
9773 tree tree0;
9774 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9775 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9780 bit_rotate:
9781 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9782 is a rotate of A by C1 bits. */
9783 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9784 is a rotate of A by B bits. */
9786 enum tree_code code0, code1;
9787 tree rtype;
9788 code0 = TREE_CODE (arg0);
9789 code1 = TREE_CODE (arg1);
9790 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9791 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9792 && operand_equal_p (TREE_OPERAND (arg0, 0),
9793 TREE_OPERAND (arg1, 0), 0)
9794 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9795 TYPE_UNSIGNED (rtype))
9796 /* Only create rotates in complete modes. Other cases are not
9797 expanded properly. */
9798 && TYPE_PRECISION (rtype) == GET_MODE_PRECISION (TYPE_MODE (rtype)))
9800 tree tree01, tree11;
9801 enum tree_code code01, code11;
9803 tree01 = TREE_OPERAND (arg0, 1);
9804 tree11 = TREE_OPERAND (arg1, 1);
9805 STRIP_NOPS (tree01);
9806 STRIP_NOPS (tree11);
9807 code01 = TREE_CODE (tree01);
9808 code11 = TREE_CODE (tree11);
9809 if (code01 == INTEGER_CST
9810 && code11 == INTEGER_CST
9811 && TREE_INT_CST_HIGH (tree01) == 0
9812 && TREE_INT_CST_HIGH (tree11) == 0
9813 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
9814 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9816 tem = build2_loc (loc, LROTATE_EXPR,
9817 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9818 TREE_OPERAND (arg0, 0),
9819 code0 == LSHIFT_EXPR ? tree01 : tree11);
9820 return fold_convert_loc (loc, type, tem);
9822 else if (code11 == MINUS_EXPR)
9824 tree tree110, tree111;
9825 tree110 = TREE_OPERAND (tree11, 0);
9826 tree111 = TREE_OPERAND (tree11, 1);
9827 STRIP_NOPS (tree110);
9828 STRIP_NOPS (tree111);
9829 if (TREE_CODE (tree110) == INTEGER_CST
9830 && 0 == compare_tree_int (tree110,
9831 TYPE_PRECISION
9832 (TREE_TYPE (TREE_OPERAND
9833 (arg0, 0))))
9834 && operand_equal_p (tree01, tree111, 0))
9835 return
9836 fold_convert_loc (loc, type,
9837 build2 ((code0 == LSHIFT_EXPR
9838 ? LROTATE_EXPR
9839 : RROTATE_EXPR),
9840 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9841 TREE_OPERAND (arg0, 0), tree01));
9843 else if (code01 == MINUS_EXPR)
9845 tree tree010, tree011;
9846 tree010 = TREE_OPERAND (tree01, 0);
9847 tree011 = TREE_OPERAND (tree01, 1);
9848 STRIP_NOPS (tree010);
9849 STRIP_NOPS (tree011);
9850 if (TREE_CODE (tree010) == INTEGER_CST
9851 && 0 == compare_tree_int (tree010,
9852 TYPE_PRECISION
9853 (TREE_TYPE (TREE_OPERAND
9854 (arg0, 0))))
9855 && operand_equal_p (tree11, tree011, 0))
9856 return fold_convert_loc
9857 (loc, type,
9858 build2 ((code0 != LSHIFT_EXPR
9859 ? LROTATE_EXPR
9860 : RROTATE_EXPR),
9861 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9862 TREE_OPERAND (arg0, 0), tree11));
9867 associate:
9868 /* In most languages, can't associate operations on floats through
9869 parentheses. Rather than remember where the parentheses were, we
9870 don't associate floats at all, unless the user has specified
9871 -fassociative-math.
9872 And, we need to make sure type is not saturating. */
9874 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9875 && !TYPE_SATURATING (type))
9877 tree var0, con0, lit0, minus_lit0;
9878 tree var1, con1, lit1, minus_lit1;
9879 bool ok = true;
9881 /* Split both trees into variables, constants, and literals. Then
9882 associate each group together, the constants with literals,
9883 then the result with variables. This increases the chances of
9884 literals being recombined later and of generating relocatable
9885 expressions for the sum of a constant and literal. */
9886 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9887 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9888 code == MINUS_EXPR);
9890 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9891 if (code == MINUS_EXPR)
9892 code = PLUS_EXPR;
9894 /* With undefined overflow we can only associate constants with one
9895 variable, and constants whose association doesn't overflow. */
9896 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9897 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9899 if (var0 && var1)
9901 tree tmp0 = var0;
9902 tree tmp1 = var1;
9904 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9905 tmp0 = TREE_OPERAND (tmp0, 0);
9906 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9907 tmp1 = TREE_OPERAND (tmp1, 0);
9908 /* The only case we can still associate with two variables
9909 is if they are the same, modulo negation. */
9910 if (!operand_equal_p (tmp0, tmp1, 0))
9911 ok = false;
9914 if (ok && lit0 && lit1)
9916 tree tmp0 = fold_convert (type, lit0);
9917 tree tmp1 = fold_convert (type, lit1);
9919 if (!TREE_OVERFLOW (tmp0) && !TREE_OVERFLOW (tmp1)
9920 && TREE_OVERFLOW (fold_build2 (code, type, tmp0, tmp1)))
9921 ok = false;
9925 /* Only do something if we found more than two objects. Otherwise,
9926 nothing has changed and we risk infinite recursion. */
9927 if (ok
9928 && (2 < ((var0 != 0) + (var1 != 0)
9929 + (con0 != 0) + (con1 != 0)
9930 + (lit0 != 0) + (lit1 != 0)
9931 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9933 var0 = associate_trees (loc, var0, var1, code, type);
9934 con0 = associate_trees (loc, con0, con1, code, type);
9935 lit0 = associate_trees (loc, lit0, lit1, code, type);
9936 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1, code, type);
9938 /* Preserve the MINUS_EXPR if the negative part of the literal is
9939 greater than the positive part. Otherwise, the multiplicative
9940 folding code (i.e extract_muldiv) may be fooled in case
9941 unsigned constants are subtracted, like in the following
9942 example: ((X*2 + 4) - 8U)/2. */
9943 if (minus_lit0 && lit0)
9945 if (TREE_CODE (lit0) == INTEGER_CST
9946 && TREE_CODE (minus_lit0) == INTEGER_CST
9947 && tree_int_cst_lt (lit0, minus_lit0))
9949 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9950 MINUS_EXPR, type);
9951 lit0 = 0;
9953 else
9955 lit0 = associate_trees (loc, lit0, minus_lit0,
9956 MINUS_EXPR, type);
9957 minus_lit0 = 0;
9960 if (minus_lit0)
9962 if (con0 == 0)
9963 return
9964 fold_convert_loc (loc, type,
9965 associate_trees (loc, var0, minus_lit0,
9966 MINUS_EXPR, type));
9967 else
9969 con0 = associate_trees (loc, con0, minus_lit0,
9970 MINUS_EXPR, type);
9971 return
9972 fold_convert_loc (loc, type,
9973 associate_trees (loc, var0, con0,
9974 PLUS_EXPR, type));
9978 con0 = associate_trees (loc, con0, lit0, code, type);
9979 return
9980 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9981 code, type));
9985 return NULL_TREE;
9987 case MINUS_EXPR:
9988 /* Pointer simplifications for subtraction, simple reassociations. */
9989 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
9991 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9992 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
9993 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9995 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9996 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9997 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9998 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9999 return fold_build2_loc (loc, PLUS_EXPR, type,
10000 fold_build2_loc (loc, MINUS_EXPR, type,
10001 arg00, arg10),
10002 fold_build2_loc (loc, MINUS_EXPR, type,
10003 arg01, arg11));
10005 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10006 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10008 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10009 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10010 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
10011 fold_convert_loc (loc, type, arg1));
10012 if (tmp)
10013 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
10016 /* A - (-B) -> A + B */
10017 if (TREE_CODE (arg1) == NEGATE_EXPR)
10018 return fold_build2_loc (loc, PLUS_EXPR, type, op0,
10019 fold_convert_loc (loc, type,
10020 TREE_OPERAND (arg1, 0)));
10021 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10022 if (TREE_CODE (arg0) == NEGATE_EXPR
10023 && (FLOAT_TYPE_P (type)
10024 || INTEGRAL_TYPE_P (type))
10025 && negate_expr_p (arg1)
10026 && reorder_operands_p (arg0, arg1))
10027 return fold_build2_loc (loc, MINUS_EXPR, type,
10028 fold_convert_loc (loc, type,
10029 negate_expr (arg1)),
10030 fold_convert_loc (loc, type,
10031 TREE_OPERAND (arg0, 0)));
10032 /* Convert -A - 1 to ~A. */
10033 if (INTEGRAL_TYPE_P (type)
10034 && TREE_CODE (arg0) == NEGATE_EXPR
10035 && integer_onep (arg1)
10036 && !TYPE_OVERFLOW_TRAPS (type))
10037 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
10038 fold_convert_loc (loc, type,
10039 TREE_OPERAND (arg0, 0)));
10041 /* Convert -1 - A to ~A. */
10042 if (INTEGRAL_TYPE_P (type)
10043 && integer_all_onesp (arg0))
10044 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op1);
10047 /* X - (X / CST) * CST is X % CST. */
10048 if (INTEGRAL_TYPE_P (type)
10049 && TREE_CODE (arg1) == MULT_EXPR
10050 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10051 && operand_equal_p (arg0,
10052 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)
10053 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1, 0), 1),
10054 TREE_OPERAND (arg1, 1), 0))
10055 return
10056 fold_convert_loc (loc, type,
10057 fold_build2_loc (loc, TRUNC_MOD_EXPR, TREE_TYPE (arg0),
10058 arg0, TREE_OPERAND (arg1, 1)));
10060 if (! FLOAT_TYPE_P (type))
10062 if (integer_zerop (arg0))
10063 return negate_expr (fold_convert_loc (loc, type, arg1));
10064 if (integer_zerop (arg1))
10065 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10067 /* Fold A - (A & B) into ~B & A. */
10068 if (!TREE_SIDE_EFFECTS (arg0)
10069 && TREE_CODE (arg1) == BIT_AND_EXPR)
10071 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10073 tree arg10 = fold_convert_loc (loc, type,
10074 TREE_OPERAND (arg1, 0));
10075 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10076 fold_build1_loc (loc, BIT_NOT_EXPR,
10077 type, arg10),
10078 fold_convert_loc (loc, type, arg0));
10080 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10082 tree arg11 = fold_convert_loc (loc,
10083 type, TREE_OPERAND (arg1, 1));
10084 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10085 fold_build1_loc (loc, BIT_NOT_EXPR,
10086 type, arg11),
10087 fold_convert_loc (loc, type, arg0));
10091 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10092 any power of 2 minus 1. */
10093 if (TREE_CODE (arg0) == BIT_AND_EXPR
10094 && TREE_CODE (arg1) == BIT_AND_EXPR
10095 && operand_equal_p (TREE_OPERAND (arg0, 0),
10096 TREE_OPERAND (arg1, 0), 0))
10098 tree mask0 = TREE_OPERAND (arg0, 1);
10099 tree mask1 = TREE_OPERAND (arg1, 1);
10100 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
10102 if (operand_equal_p (tem, mask1, 0))
10104 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
10105 TREE_OPERAND (arg0, 0), mask1);
10106 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
10111 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10112 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10113 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10115 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10116 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10117 (-ARG1 + ARG0) reduces to -ARG1. */
10118 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10119 return negate_expr (fold_convert_loc (loc, type, arg1));
10121 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10122 __complex__ ( x, -y ). This is not the same for SNaNs or if
10123 signed zeros are involved. */
10124 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10125 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10126 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10128 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10129 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10130 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10131 bool arg0rz = false, arg0iz = false;
10132 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10133 || (arg0i && (arg0iz = real_zerop (arg0i))))
10135 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10136 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10137 if (arg0rz && arg1i && real_zerop (arg1i))
10139 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10140 arg1r ? arg1r
10141 : build1 (REALPART_EXPR, rtype, arg1));
10142 tree ip = arg0i ? arg0i
10143 : build1 (IMAGPART_EXPR, rtype, arg0);
10144 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10146 else if (arg0iz && arg1r && real_zerop (arg1r))
10148 tree rp = arg0r ? arg0r
10149 : build1 (REALPART_EXPR, rtype, arg0);
10150 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10151 arg1i ? arg1i
10152 : build1 (IMAGPART_EXPR, rtype, arg1));
10153 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10158 /* Fold &x - &x. This can happen from &x.foo - &x.
10159 This is unsafe for certain floats even in non-IEEE formats.
10160 In IEEE, it is unsafe because it does wrong for NaNs.
10161 Also note that operand_equal_p is always false if an operand
10162 is volatile. */
10164 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10165 && operand_equal_p (arg0, arg1, 0))
10166 return build_zero_cst (type);
10168 /* A - B -> A + (-B) if B is easily negatable. */
10169 if (negate_expr_p (arg1)
10170 && ((FLOAT_TYPE_P (type)
10171 /* Avoid this transformation if B is a positive REAL_CST. */
10172 && (TREE_CODE (arg1) != REAL_CST
10173 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10174 || INTEGRAL_TYPE_P (type)))
10175 return fold_build2_loc (loc, PLUS_EXPR, type,
10176 fold_convert_loc (loc, type, arg0),
10177 fold_convert_loc (loc, type,
10178 negate_expr (arg1)));
10180 /* Try folding difference of addresses. */
10182 HOST_WIDE_INT diff;
10184 if ((TREE_CODE (arg0) == ADDR_EXPR
10185 || TREE_CODE (arg1) == ADDR_EXPR)
10186 && ptr_difference_const (arg0, arg1, &diff))
10187 return build_int_cst_type (type, diff);
10190 /* Fold &a[i] - &a[j] to i-j. */
10191 if (TREE_CODE (arg0) == ADDR_EXPR
10192 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10193 && TREE_CODE (arg1) == ADDR_EXPR
10194 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10196 tree aref0 = TREE_OPERAND (arg0, 0);
10197 tree aref1 = TREE_OPERAND (arg1, 0);
10198 if (operand_equal_p (TREE_OPERAND (aref0, 0),
10199 TREE_OPERAND (aref1, 0), 0))
10201 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
10202 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
10203 tree esz = array_ref_element_size (aref0);
10204 tree diff = build2 (MINUS_EXPR, type, op0, op1);
10205 return fold_build2_loc (loc, MULT_EXPR, type, diff,
10206 fold_convert_loc (loc, type, esz));
10211 if (FLOAT_TYPE_P (type)
10212 && flag_unsafe_math_optimizations
10213 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10214 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10215 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
10216 return tem;
10218 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10219 same or one. Make sure type is not saturating.
10220 fold_plusminus_mult_expr will re-associate. */
10221 if ((TREE_CODE (arg0) == MULT_EXPR
10222 || TREE_CODE (arg1) == MULT_EXPR)
10223 && !TYPE_SATURATING (type)
10224 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10226 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10227 if (tem)
10228 return tem;
10231 goto associate;
10233 case MULT_EXPR:
10234 /* (-A) * (-B) -> A * B */
10235 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10236 return fold_build2_loc (loc, MULT_EXPR, type,
10237 fold_convert_loc (loc, type,
10238 TREE_OPERAND (arg0, 0)),
10239 fold_convert_loc (loc, type,
10240 negate_expr (arg1)));
10241 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10242 return fold_build2_loc (loc, MULT_EXPR, type,
10243 fold_convert_loc (loc, type,
10244 negate_expr (arg0)),
10245 fold_convert_loc (loc, type,
10246 TREE_OPERAND (arg1, 0)));
10248 if (! FLOAT_TYPE_P (type))
10250 if (integer_zerop (arg1))
10251 return omit_one_operand_loc (loc, type, arg1, arg0);
10252 if (integer_onep (arg1))
10253 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10254 /* Transform x * -1 into -x. Make sure to do the negation
10255 on the original operand with conversions not stripped
10256 because we can only strip non-sign-changing conversions. */
10257 if (integer_all_onesp (arg1))
10258 return fold_convert_loc (loc, type, negate_expr (op0));
10259 /* Transform x * -C into -x * C if x is easily negatable. */
10260 if (TREE_CODE (arg1) == INTEGER_CST
10261 && tree_int_cst_sgn (arg1) == -1
10262 && negate_expr_p (arg0)
10263 && (tem = negate_expr (arg1)) != arg1
10264 && !TREE_OVERFLOW (tem))
10265 return fold_build2_loc (loc, MULT_EXPR, type,
10266 fold_convert_loc (loc, type,
10267 negate_expr (arg0)),
10268 tem);
10270 /* (a * (1 << b)) is (a << b) */
10271 if (TREE_CODE (arg1) == LSHIFT_EXPR
10272 && integer_onep (TREE_OPERAND (arg1, 0)))
10273 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
10274 TREE_OPERAND (arg1, 1));
10275 if (TREE_CODE (arg0) == LSHIFT_EXPR
10276 && integer_onep (TREE_OPERAND (arg0, 0)))
10277 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
10278 TREE_OPERAND (arg0, 1));
10280 /* (A + A) * C -> A * 2 * C */
10281 if (TREE_CODE (arg0) == PLUS_EXPR
10282 && TREE_CODE (arg1) == INTEGER_CST
10283 && operand_equal_p (TREE_OPERAND (arg0, 0),
10284 TREE_OPERAND (arg0, 1), 0))
10285 return fold_build2_loc (loc, MULT_EXPR, type,
10286 omit_one_operand_loc (loc, type,
10287 TREE_OPERAND (arg0, 0),
10288 TREE_OPERAND (arg0, 1)),
10289 fold_build2_loc (loc, MULT_EXPR, type,
10290 build_int_cst (type, 2) , arg1));
10292 strict_overflow_p = false;
10293 if (TREE_CODE (arg1) == INTEGER_CST
10294 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10295 &strict_overflow_p)))
10297 if (strict_overflow_p)
10298 fold_overflow_warning (("assuming signed overflow does not "
10299 "occur when simplifying "
10300 "multiplication"),
10301 WARN_STRICT_OVERFLOW_MISC);
10302 return fold_convert_loc (loc, type, tem);
10305 /* Optimize z * conj(z) for integer complex numbers. */
10306 if (TREE_CODE (arg0) == CONJ_EXPR
10307 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10308 return fold_mult_zconjz (loc, type, arg1);
10309 if (TREE_CODE (arg1) == CONJ_EXPR
10310 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10311 return fold_mult_zconjz (loc, type, arg0);
10313 else
10315 /* Maybe fold x * 0 to 0. The expressions aren't the same
10316 when x is NaN, since x * 0 is also NaN. Nor are they the
10317 same in modes with signed zeros, since multiplying a
10318 negative value by 0 gives -0, not +0. */
10319 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10320 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10321 && real_zerop (arg1))
10322 return omit_one_operand_loc (loc, type, arg1, arg0);
10323 /* In IEEE floating point, x*1 is not equivalent to x for snans.
10324 Likewise for complex arithmetic with signed zeros. */
10325 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10326 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10327 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10328 && real_onep (arg1))
10329 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10331 /* Transform x * -1.0 into -x. */
10332 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10333 && (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10334 || !COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10335 && real_minus_onep (arg1))
10336 return fold_convert_loc (loc, type, negate_expr (arg0));
10338 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10339 the result for floating point types due to rounding so it is applied
10340 only if -fassociative-math was specify. */
10341 if (flag_associative_math
10342 && TREE_CODE (arg0) == RDIV_EXPR
10343 && TREE_CODE (arg1) == REAL_CST
10344 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10346 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10347 arg1);
10348 if (tem)
10349 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10350 TREE_OPERAND (arg0, 1));
10353 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10354 if (operand_equal_p (arg0, arg1, 0))
10356 tree tem = fold_strip_sign_ops (arg0);
10357 if (tem != NULL_TREE)
10359 tem = fold_convert_loc (loc, type, tem);
10360 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
10364 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10365 This is not the same for NaNs or if signed zeros are
10366 involved. */
10367 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10368 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10369 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10370 && TREE_CODE (arg1) == COMPLEX_CST
10371 && real_zerop (TREE_REALPART (arg1)))
10373 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10374 if (real_onep (TREE_IMAGPART (arg1)))
10375 return
10376 fold_build2_loc (loc, COMPLEX_EXPR, type,
10377 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10378 rtype, arg0)),
10379 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10380 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10381 return
10382 fold_build2_loc (loc, COMPLEX_EXPR, type,
10383 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10384 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10385 rtype, arg0)));
10388 /* Optimize z * conj(z) for floating point complex numbers.
10389 Guarded by flag_unsafe_math_optimizations as non-finite
10390 imaginary components don't produce scalar results. */
10391 if (flag_unsafe_math_optimizations
10392 && TREE_CODE (arg0) == CONJ_EXPR
10393 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10394 return fold_mult_zconjz (loc, type, arg1);
10395 if (flag_unsafe_math_optimizations
10396 && TREE_CODE (arg1) == CONJ_EXPR
10397 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10398 return fold_mult_zconjz (loc, type, arg0);
10400 if (flag_unsafe_math_optimizations)
10402 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10403 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10405 /* Optimizations of root(...)*root(...). */
10406 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10408 tree rootfn, arg;
10409 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10410 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10412 /* Optimize sqrt(x)*sqrt(x) as x. */
10413 if (BUILTIN_SQRT_P (fcode0)
10414 && operand_equal_p (arg00, arg10, 0)
10415 && ! HONOR_SNANS (TYPE_MODE (type)))
10416 return arg00;
10418 /* Optimize root(x)*root(y) as root(x*y). */
10419 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10420 arg = fold_build2_loc (loc, MULT_EXPR, type, arg00, arg10);
10421 return build_call_expr_loc (loc, rootfn, 1, arg);
10424 /* Optimize expN(x)*expN(y) as expN(x+y). */
10425 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10427 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10428 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10429 CALL_EXPR_ARG (arg0, 0),
10430 CALL_EXPR_ARG (arg1, 0));
10431 return build_call_expr_loc (loc, expfn, 1, arg);
10434 /* Optimizations of pow(...)*pow(...). */
10435 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10436 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10437 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10439 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10440 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10441 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10442 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10444 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10445 if (operand_equal_p (arg01, arg11, 0))
10447 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10448 tree arg = fold_build2_loc (loc, MULT_EXPR, type,
10449 arg00, arg10);
10450 return build_call_expr_loc (loc, powfn, 2, arg, arg01);
10453 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10454 if (operand_equal_p (arg00, arg10, 0))
10456 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10457 tree arg = fold_build2_loc (loc, PLUS_EXPR, type,
10458 arg01, arg11);
10459 return build_call_expr_loc (loc, powfn, 2, arg00, arg);
10463 /* Optimize tan(x)*cos(x) as sin(x). */
10464 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10465 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10466 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10467 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10468 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10469 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10470 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10471 CALL_EXPR_ARG (arg1, 0), 0))
10473 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10475 if (sinfn != NULL_TREE)
10476 return build_call_expr_loc (loc, sinfn, 1,
10477 CALL_EXPR_ARG (arg0, 0));
10480 /* Optimize x*pow(x,c) as pow(x,c+1). */
10481 if (fcode1 == BUILT_IN_POW
10482 || fcode1 == BUILT_IN_POWF
10483 || fcode1 == BUILT_IN_POWL)
10485 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10486 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10487 if (TREE_CODE (arg11) == REAL_CST
10488 && !TREE_OVERFLOW (arg11)
10489 && operand_equal_p (arg0, arg10, 0))
10491 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10492 REAL_VALUE_TYPE c;
10493 tree arg;
10495 c = TREE_REAL_CST (arg11);
10496 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10497 arg = build_real (type, c);
10498 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10502 /* Optimize pow(x,c)*x as pow(x,c+1). */
10503 if (fcode0 == BUILT_IN_POW
10504 || fcode0 == BUILT_IN_POWF
10505 || fcode0 == BUILT_IN_POWL)
10507 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10508 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10509 if (TREE_CODE (arg01) == REAL_CST
10510 && !TREE_OVERFLOW (arg01)
10511 && operand_equal_p (arg1, arg00, 0))
10513 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10514 REAL_VALUE_TYPE c;
10515 tree arg;
10517 c = TREE_REAL_CST (arg01);
10518 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10519 arg = build_real (type, c);
10520 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
10524 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
10525 if (optimize_function_for_speed_p (cfun)
10526 && operand_equal_p (arg0, arg1, 0))
10528 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10530 if (powfn)
10532 tree arg = build_real (type, dconst2);
10533 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
10538 goto associate;
10540 case BIT_IOR_EXPR:
10541 bit_ior:
10542 if (integer_all_onesp (arg1))
10543 return omit_one_operand_loc (loc, type, arg1, arg0);
10544 if (integer_zerop (arg1))
10545 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10546 if (operand_equal_p (arg0, arg1, 0))
10547 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10549 /* ~X | X is -1. */
10550 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10551 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10553 t1 = build_zero_cst (type);
10554 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10555 return omit_one_operand_loc (loc, type, t1, arg1);
10558 /* X | ~X is -1. */
10559 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10560 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10562 t1 = build_zero_cst (type);
10563 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10564 return omit_one_operand_loc (loc, type, t1, arg0);
10567 /* Canonicalize (X & C1) | C2. */
10568 if (TREE_CODE (arg0) == BIT_AND_EXPR
10569 && TREE_CODE (arg1) == INTEGER_CST
10570 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10572 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, hi3, lo3, mlo, mhi;
10573 int width = TYPE_PRECISION (type), w;
10574 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10575 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10576 hi2 = TREE_INT_CST_HIGH (arg1);
10577 lo2 = TREE_INT_CST_LOW (arg1);
10579 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10580 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10581 return omit_one_operand_loc (loc, type, arg1,
10582 TREE_OPERAND (arg0, 0));
10584 if (width > HOST_BITS_PER_WIDE_INT)
10586 mhi = (unsigned HOST_WIDE_INT) -1
10587 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10588 mlo = -1;
10590 else
10592 mhi = 0;
10593 mlo = (unsigned HOST_WIDE_INT) -1
10594 >> (HOST_BITS_PER_WIDE_INT - width);
10597 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10598 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10599 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10600 TREE_OPERAND (arg0, 0), arg1);
10602 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10603 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10604 mode which allows further optimizations. */
10605 hi1 &= mhi;
10606 lo1 &= mlo;
10607 hi2 &= mhi;
10608 lo2 &= mlo;
10609 hi3 = hi1 & ~hi2;
10610 lo3 = lo1 & ~lo2;
10611 for (w = BITS_PER_UNIT;
10612 w <= width && w <= HOST_BITS_PER_WIDE_INT;
10613 w <<= 1)
10615 unsigned HOST_WIDE_INT mask
10616 = (unsigned HOST_WIDE_INT) -1 >> (HOST_BITS_PER_WIDE_INT - w);
10617 if (((lo1 | lo2) & mask) == mask
10618 && (lo1 & ~mask) == 0 && hi1 == 0)
10620 hi3 = 0;
10621 lo3 = mask;
10622 break;
10625 if (hi3 != hi1 || lo3 != lo1)
10626 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
10627 fold_build2_loc (loc, BIT_AND_EXPR, type,
10628 TREE_OPERAND (arg0, 0),
10629 build_int_cst_wide (type,
10630 lo3, hi3)),
10631 arg1);
10634 /* (X & Y) | Y is (X, Y). */
10635 if (TREE_CODE (arg0) == BIT_AND_EXPR
10636 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10637 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
10638 /* (X & Y) | X is (Y, X). */
10639 if (TREE_CODE (arg0) == BIT_AND_EXPR
10640 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10641 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10642 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
10643 /* X | (X & Y) is (Y, X). */
10644 if (TREE_CODE (arg1) == BIT_AND_EXPR
10645 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10646 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10647 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
10648 /* X | (Y & X) is (Y, X). */
10649 if (TREE_CODE (arg1) == BIT_AND_EXPR
10650 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10651 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10652 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
10654 /* (X & ~Y) | (~X & Y) is X ^ Y */
10655 if (TREE_CODE (arg0) == BIT_AND_EXPR
10656 && TREE_CODE (arg1) == BIT_AND_EXPR)
10658 tree a0, a1, l0, l1, n0, n1;
10660 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10661 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10663 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10664 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10666 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
10667 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
10669 if ((operand_equal_p (n0, a0, 0)
10670 && operand_equal_p (n1, a1, 0))
10671 || (operand_equal_p (n0, a1, 0)
10672 && operand_equal_p (n1, a0, 0)))
10673 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
10676 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
10677 if (t1 != NULL_TREE)
10678 return t1;
10680 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10682 This results in more efficient code for machines without a NAND
10683 instruction. Combine will canonicalize to the first form
10684 which will allow use of NAND instructions provided by the
10685 backend if they exist. */
10686 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10687 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10689 return
10690 fold_build1_loc (loc, BIT_NOT_EXPR, type,
10691 build2 (BIT_AND_EXPR, type,
10692 fold_convert_loc (loc, type,
10693 TREE_OPERAND (arg0, 0)),
10694 fold_convert_loc (loc, type,
10695 TREE_OPERAND (arg1, 0))));
10698 /* See if this can be simplified into a rotate first. If that
10699 is unsuccessful continue in the association code. */
10700 goto bit_rotate;
10702 case BIT_XOR_EXPR:
10703 if (integer_zerop (arg1))
10704 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10705 if (integer_all_onesp (arg1))
10706 return fold_build1_loc (loc, BIT_NOT_EXPR, type, op0);
10707 if (operand_equal_p (arg0, arg1, 0))
10708 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10710 /* ~X ^ X is -1. */
10711 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10712 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10714 t1 = build_zero_cst (type);
10715 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10716 return omit_one_operand_loc (loc, type, t1, arg1);
10719 /* X ^ ~X is -1. */
10720 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10721 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10723 t1 = build_zero_cst (type);
10724 t1 = fold_unary_loc (loc, BIT_NOT_EXPR, type, t1);
10725 return omit_one_operand_loc (loc, type, t1, arg0);
10728 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10729 with a constant, and the two constants have no bits in common,
10730 we should treat this as a BIT_IOR_EXPR since this may produce more
10731 simplifications. */
10732 if (TREE_CODE (arg0) == BIT_AND_EXPR
10733 && TREE_CODE (arg1) == BIT_AND_EXPR
10734 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10735 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10736 && integer_zerop (const_binop (BIT_AND_EXPR,
10737 TREE_OPERAND (arg0, 1),
10738 TREE_OPERAND (arg1, 1))))
10740 code = BIT_IOR_EXPR;
10741 goto bit_ior;
10744 /* (X | Y) ^ X -> Y & ~ X*/
10745 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10746 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10748 tree t2 = TREE_OPERAND (arg0, 1);
10749 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
10750 arg1);
10751 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10752 fold_convert_loc (loc, type, t2),
10753 fold_convert_loc (loc, type, t1));
10754 return t1;
10757 /* (Y | X) ^ X -> Y & ~ X*/
10758 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10759 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10761 tree t2 = TREE_OPERAND (arg0, 0);
10762 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1),
10763 arg1);
10764 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10765 fold_convert_loc (loc, type, t2),
10766 fold_convert_loc (loc, type, t1));
10767 return t1;
10770 /* X ^ (X | Y) -> Y & ~ X*/
10771 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10772 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
10774 tree t2 = TREE_OPERAND (arg1, 1);
10775 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
10776 arg0);
10777 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10778 fold_convert_loc (loc, type, t2),
10779 fold_convert_loc (loc, type, t1));
10780 return t1;
10783 /* X ^ (Y | X) -> Y & ~ X*/
10784 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10785 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
10787 tree t2 = TREE_OPERAND (arg1, 0);
10788 t1 = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg0),
10789 arg0);
10790 t1 = fold_build2_loc (loc, BIT_AND_EXPR, type,
10791 fold_convert_loc (loc, type, t2),
10792 fold_convert_loc (loc, type, t1));
10793 return t1;
10796 /* Convert ~X ^ ~Y to X ^ Y. */
10797 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10798 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10799 return fold_build2_loc (loc, code, type,
10800 fold_convert_loc (loc, type,
10801 TREE_OPERAND (arg0, 0)),
10802 fold_convert_loc (loc, type,
10803 TREE_OPERAND (arg1, 0)));
10805 /* Convert ~X ^ C to X ^ ~C. */
10806 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10807 && TREE_CODE (arg1) == INTEGER_CST)
10808 return fold_build2_loc (loc, code, type,
10809 fold_convert_loc (loc, type,
10810 TREE_OPERAND (arg0, 0)),
10811 fold_build1_loc (loc, BIT_NOT_EXPR, type, arg1));
10813 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10814 if (TREE_CODE (arg0) == BIT_AND_EXPR
10815 && integer_onep (TREE_OPERAND (arg0, 1))
10816 && integer_onep (arg1))
10817 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10818 build_int_cst (TREE_TYPE (arg0), 0));
10820 /* Fold (X & Y) ^ Y as ~X & Y. */
10821 if (TREE_CODE (arg0) == BIT_AND_EXPR
10822 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10824 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10825 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10826 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10827 fold_convert_loc (loc, type, arg1));
10829 /* Fold (X & Y) ^ X as ~Y & X. */
10830 if (TREE_CODE (arg0) == BIT_AND_EXPR
10831 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10832 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10834 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10835 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10836 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10837 fold_convert_loc (loc, type, arg1));
10839 /* Fold X ^ (X & Y) as X & ~Y. */
10840 if (TREE_CODE (arg1) == BIT_AND_EXPR
10841 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10843 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10844 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10845 fold_convert_loc (loc, type, arg0),
10846 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10848 /* Fold X ^ (Y & X) as ~Y & X. */
10849 if (TREE_CODE (arg1) == BIT_AND_EXPR
10850 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10851 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10853 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10854 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10855 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10856 fold_convert_loc (loc, type, arg0));
10859 /* See if this can be simplified into a rotate first. If that
10860 is unsuccessful continue in the association code. */
10861 goto bit_rotate;
10863 case BIT_AND_EXPR:
10864 if (integer_all_onesp (arg1))
10865 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10866 if (integer_zerop (arg1))
10867 return omit_one_operand_loc (loc, type, arg1, arg0);
10868 if (operand_equal_p (arg0, arg1, 0))
10869 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10871 /* ~X & X is always zero. */
10872 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10873 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10874 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10876 /* X & ~X is always zero. */
10877 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10878 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10879 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10881 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
10882 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10883 && TREE_CODE (arg1) == INTEGER_CST
10884 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10886 tree tmp1 = fold_convert_loc (loc, type, arg1);
10887 tree tmp2 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10888 tree tmp3 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10889 tmp2 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp2, tmp1);
10890 tmp3 = fold_build2_loc (loc, BIT_AND_EXPR, type, tmp3, tmp1);
10891 return
10892 fold_convert_loc (loc, type,
10893 fold_build2_loc (loc, BIT_IOR_EXPR,
10894 type, tmp2, tmp3));
10897 /* (X | Y) & Y is (X, Y). */
10898 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10899 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10900 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 0));
10901 /* (X | Y) & X is (Y, X). */
10902 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10903 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10904 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10905 return omit_one_operand_loc (loc, type, arg1, TREE_OPERAND (arg0, 1));
10906 /* X & (X | Y) is (Y, X). */
10907 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10908 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10909 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10910 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 1));
10911 /* X & (Y | X) is (Y, X). */
10912 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10913 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10914 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10915 return omit_one_operand_loc (loc, type, arg0, TREE_OPERAND (arg1, 0));
10917 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10918 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10919 && integer_onep (TREE_OPERAND (arg0, 1))
10920 && integer_onep (arg1))
10922 tem = TREE_OPERAND (arg0, 0);
10923 return fold_build2_loc (loc, EQ_EXPR, type,
10924 fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), tem,
10925 build_int_cst (TREE_TYPE (tem), 1)),
10926 build_int_cst (TREE_TYPE (tem), 0));
10928 /* Fold ~X & 1 as (X & 1) == 0. */
10929 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10930 && integer_onep (arg1))
10932 tem = TREE_OPERAND (arg0, 0);
10933 return fold_build2_loc (loc, EQ_EXPR, type,
10934 fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), tem,
10935 build_int_cst (TREE_TYPE (tem), 1)),
10936 build_int_cst (TREE_TYPE (tem), 0));
10939 /* Fold (X ^ Y) & Y as ~X & Y. */
10940 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10941 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10943 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10944 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10945 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10946 fold_convert_loc (loc, type, arg1));
10948 /* Fold (X ^ Y) & X as ~Y & X. */
10949 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10950 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10951 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10953 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10954 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10955 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10956 fold_convert_loc (loc, type, arg1));
10958 /* Fold X & (X ^ Y) as X & ~Y. */
10959 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10960 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10962 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10963 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10964 fold_convert_loc (loc, type, arg0),
10965 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10967 /* Fold X & (Y ^ X) as ~Y & X. */
10968 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10969 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10970 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10972 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10973 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10974 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10975 fold_convert_loc (loc, type, arg0));
10978 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10979 ((A & N) + B) & M -> (A + B) & M
10980 Similarly if (N & M) == 0,
10981 ((A | N) + B) & M -> (A + B) & M
10982 and for - instead of + (or unary - instead of +)
10983 and/or ^ instead of |.
10984 If B is constant and (B & M) == 0, fold into A & M. */
10985 if (host_integerp (arg1, 1))
10987 unsigned HOST_WIDE_INT cst1 = tree_low_cst (arg1, 1);
10988 if (~cst1 && (cst1 & (cst1 + 1)) == 0
10989 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10990 && (TREE_CODE (arg0) == PLUS_EXPR
10991 || TREE_CODE (arg0) == MINUS_EXPR
10992 || TREE_CODE (arg0) == NEGATE_EXPR)
10993 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10994 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10996 tree pmop[2];
10997 int which = 0;
10998 unsigned HOST_WIDE_INT cst0;
11000 /* Now we know that arg0 is (C + D) or (C - D) or
11001 -C and arg1 (M) is == (1LL << cst) - 1.
11002 Store C into PMOP[0] and D into PMOP[1]. */
11003 pmop[0] = TREE_OPERAND (arg0, 0);
11004 pmop[1] = NULL;
11005 if (TREE_CODE (arg0) != NEGATE_EXPR)
11007 pmop[1] = TREE_OPERAND (arg0, 1);
11008 which = 1;
11011 if (!host_integerp (TYPE_MAX_VALUE (TREE_TYPE (arg0)), 1)
11012 || (tree_low_cst (TYPE_MAX_VALUE (TREE_TYPE (arg0)), 1)
11013 & cst1) != cst1)
11014 which = -1;
11016 for (; which >= 0; which--)
11017 switch (TREE_CODE (pmop[which]))
11019 case BIT_AND_EXPR:
11020 case BIT_IOR_EXPR:
11021 case BIT_XOR_EXPR:
11022 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
11023 != INTEGER_CST)
11024 break;
11025 /* tree_low_cst not used, because we don't care about
11026 the upper bits. */
11027 cst0 = TREE_INT_CST_LOW (TREE_OPERAND (pmop[which], 1));
11028 cst0 &= cst1;
11029 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
11031 if (cst0 != cst1)
11032 break;
11034 else if (cst0 != 0)
11035 break;
11036 /* If C or D is of the form (A & N) where
11037 (N & M) == M, or of the form (A | N) or
11038 (A ^ N) where (N & M) == 0, replace it with A. */
11039 pmop[which] = TREE_OPERAND (pmop[which], 0);
11040 break;
11041 case INTEGER_CST:
11042 /* If C or D is a N where (N & M) == 0, it can be
11043 omitted (assumed 0). */
11044 if ((TREE_CODE (arg0) == PLUS_EXPR
11045 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
11046 && (TREE_INT_CST_LOW (pmop[which]) & cst1) == 0)
11047 pmop[which] = NULL;
11048 break;
11049 default:
11050 break;
11053 /* Only build anything new if we optimized one or both arguments
11054 above. */
11055 if (pmop[0] != TREE_OPERAND (arg0, 0)
11056 || (TREE_CODE (arg0) != NEGATE_EXPR
11057 && pmop[1] != TREE_OPERAND (arg0, 1)))
11059 tree utype = TREE_TYPE (arg0);
11060 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11062 /* Perform the operations in a type that has defined
11063 overflow behavior. */
11064 utype = unsigned_type_for (TREE_TYPE (arg0));
11065 if (pmop[0] != NULL)
11066 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
11067 if (pmop[1] != NULL)
11068 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
11071 if (TREE_CODE (arg0) == NEGATE_EXPR)
11072 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
11073 else if (TREE_CODE (arg0) == PLUS_EXPR)
11075 if (pmop[0] != NULL && pmop[1] != NULL)
11076 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
11077 pmop[0], pmop[1]);
11078 else if (pmop[0] != NULL)
11079 tem = pmop[0];
11080 else if (pmop[1] != NULL)
11081 tem = pmop[1];
11082 else
11083 return build_int_cst (type, 0);
11085 else if (pmop[0] == NULL)
11086 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
11087 else
11088 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
11089 pmop[0], pmop[1]);
11090 /* TEM is now the new binary +, - or unary - replacement. */
11091 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
11092 fold_convert_loc (loc, utype, arg1));
11093 return fold_convert_loc (loc, type, tem);
11098 t1 = distribute_bit_expr (loc, code, type, arg0, arg1);
11099 if (t1 != NULL_TREE)
11100 return t1;
11101 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11102 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11103 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11105 unsigned int prec
11106 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11108 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
11109 && (~TREE_INT_CST_LOW (arg1)
11110 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
11111 return
11112 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11115 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11117 This results in more efficient code for machines without a NOR
11118 instruction. Combine will canonicalize to the first form
11119 which will allow use of NOR instructions provided by the
11120 backend if they exist. */
11121 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11122 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11124 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
11125 build2 (BIT_IOR_EXPR, type,
11126 fold_convert_loc (loc, type,
11127 TREE_OPERAND (arg0, 0)),
11128 fold_convert_loc (loc, type,
11129 TREE_OPERAND (arg1, 0))));
11132 /* If arg0 is derived from the address of an object or function, we may
11133 be able to fold this expression using the object or function's
11134 alignment. */
11135 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && host_integerp (arg1, 1))
11137 unsigned HOST_WIDE_INT modulus, residue;
11138 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (arg1);
11140 modulus = get_pointer_modulus_and_residue (arg0, &residue,
11141 integer_onep (arg1));
11143 /* This works because modulus is a power of 2. If this weren't the
11144 case, we'd have to replace it by its greatest power-of-2
11145 divisor: modulus & -modulus. */
11146 if (low < modulus)
11147 return build_int_cst (type, residue & low);
11150 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11151 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11152 if the new mask might be further optimized. */
11153 if ((TREE_CODE (arg0) == LSHIFT_EXPR
11154 || TREE_CODE (arg0) == RSHIFT_EXPR)
11155 && host_integerp (TREE_OPERAND (arg0, 1), 1)
11156 && host_integerp (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)))
11157 && tree_low_cst (TREE_OPERAND (arg0, 1), 1)
11158 < TYPE_PRECISION (TREE_TYPE (arg0))
11159 && TYPE_PRECISION (TREE_TYPE (arg0)) <= HOST_BITS_PER_WIDE_INT
11160 && tree_low_cst (TREE_OPERAND (arg0, 1), 1) > 0)
11162 unsigned int shiftc = tree_low_cst (TREE_OPERAND (arg0, 1), 1);
11163 unsigned HOST_WIDE_INT mask
11164 = tree_low_cst (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)));
11165 unsigned HOST_WIDE_INT newmask, zerobits = 0;
11166 tree shift_type = TREE_TYPE (arg0);
11168 if (TREE_CODE (arg0) == LSHIFT_EXPR)
11169 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
11170 else if (TREE_CODE (arg0) == RSHIFT_EXPR
11171 && TYPE_PRECISION (TREE_TYPE (arg0))
11172 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg0))))
11174 unsigned int prec = TYPE_PRECISION (TREE_TYPE (arg0));
11175 tree arg00 = TREE_OPERAND (arg0, 0);
11176 /* See if more bits can be proven as zero because of
11177 zero extension. */
11178 if (TREE_CODE (arg00) == NOP_EXPR
11179 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00, 0))))
11181 tree inner_type = TREE_TYPE (TREE_OPERAND (arg00, 0));
11182 if (TYPE_PRECISION (inner_type)
11183 == GET_MODE_BITSIZE (TYPE_MODE (inner_type))
11184 && TYPE_PRECISION (inner_type) < prec)
11186 prec = TYPE_PRECISION (inner_type);
11187 /* See if we can shorten the right shift. */
11188 if (shiftc < prec)
11189 shift_type = inner_type;
11192 zerobits = ~(unsigned HOST_WIDE_INT) 0;
11193 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
11194 zerobits <<= prec - shiftc;
11195 /* For arithmetic shift if sign bit could be set, zerobits
11196 can contain actually sign bits, so no transformation is
11197 possible, unless MASK masks them all away. In that
11198 case the shift needs to be converted into logical shift. */
11199 if (!TYPE_UNSIGNED (TREE_TYPE (arg0))
11200 && prec == TYPE_PRECISION (TREE_TYPE (arg0)))
11202 if ((mask & zerobits) == 0)
11203 shift_type = unsigned_type_for (TREE_TYPE (arg0));
11204 else
11205 zerobits = 0;
11209 /* ((X << 16) & 0xff00) is (X, 0). */
11210 if ((mask & zerobits) == mask)
11211 return omit_one_operand_loc (loc, type,
11212 build_int_cst (type, 0), arg0);
11214 newmask = mask | zerobits;
11215 if (newmask != mask && (newmask & (newmask + 1)) == 0)
11217 unsigned int prec;
11219 /* Only do the transformation if NEWMASK is some integer
11220 mode's mask. */
11221 for (prec = BITS_PER_UNIT;
11222 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
11223 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
11224 break;
11225 if (prec < HOST_BITS_PER_WIDE_INT
11226 || newmask == ~(unsigned HOST_WIDE_INT) 0)
11228 tree newmaskt;
11230 if (shift_type != TREE_TYPE (arg0))
11232 tem = fold_build2_loc (loc, TREE_CODE (arg0), shift_type,
11233 fold_convert_loc (loc, shift_type,
11234 TREE_OPERAND (arg0, 0)),
11235 TREE_OPERAND (arg0, 1));
11236 tem = fold_convert_loc (loc, type, tem);
11238 else
11239 tem = op0;
11240 newmaskt = build_int_cst_type (TREE_TYPE (op1), newmask);
11241 if (!tree_int_cst_equal (newmaskt, arg1))
11242 return fold_build2_loc (loc, BIT_AND_EXPR, type, tem, newmaskt);
11247 goto associate;
11249 case RDIV_EXPR:
11250 /* Don't touch a floating-point divide by zero unless the mode
11251 of the constant can represent infinity. */
11252 if (TREE_CODE (arg1) == REAL_CST
11253 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11254 && real_zerop (arg1))
11255 return NULL_TREE;
11257 /* Optimize A / A to 1.0 if we don't care about
11258 NaNs or Infinities. Skip the transformation
11259 for non-real operands. */
11260 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
11261 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11262 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
11263 && operand_equal_p (arg0, arg1, 0))
11265 tree r = build_real (TREE_TYPE (arg0), dconst1);
11267 return omit_two_operands_loc (loc, type, r, arg0, arg1);
11270 /* The complex version of the above A / A optimization. */
11271 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11272 && operand_equal_p (arg0, arg1, 0))
11274 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
11275 if (! HONOR_NANS (TYPE_MODE (elem_type))
11276 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
11278 tree r = build_real (elem_type, dconst1);
11279 /* omit_two_operands will call fold_convert for us. */
11280 return omit_two_operands_loc (loc, type, r, arg0, arg1);
11284 /* (-A) / (-B) -> A / B */
11285 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11286 return fold_build2_loc (loc, RDIV_EXPR, type,
11287 TREE_OPERAND (arg0, 0),
11288 negate_expr (arg1));
11289 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11290 return fold_build2_loc (loc, RDIV_EXPR, type,
11291 negate_expr (arg0),
11292 TREE_OPERAND (arg1, 0));
11294 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
11295 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11296 && real_onep (arg1))
11297 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11299 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
11300 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11301 && real_minus_onep (arg1))
11302 return non_lvalue_loc (loc, fold_convert_loc (loc, type,
11303 negate_expr (arg0)));
11305 /* If ARG1 is a constant, we can convert this to a multiply by the
11306 reciprocal. This does not have the same rounding properties,
11307 so only do this if -freciprocal-math. We can actually
11308 always safely do it if ARG1 is a power of two, but it's hard to
11309 tell if it is or not in a portable manner. */
11310 if (TREE_CODE (arg1) == REAL_CST)
11312 if (flag_reciprocal_math
11313 && 0 != (tem = const_binop (code, build_real (type, dconst1),
11314 arg1)))
11315 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tem);
11316 /* Find the reciprocal if optimizing and the result is exact. */
11317 if (optimize)
11319 REAL_VALUE_TYPE r;
11320 r = TREE_REAL_CST (arg1);
11321 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
11323 tem = build_real (type, r);
11324 return fold_build2_loc (loc, MULT_EXPR, type,
11325 fold_convert_loc (loc, type, arg0), tem);
11329 /* Convert A/B/C to A/(B*C). */
11330 if (flag_reciprocal_math
11331 && TREE_CODE (arg0) == RDIV_EXPR)
11332 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11333 fold_build2_loc (loc, MULT_EXPR, type,
11334 TREE_OPERAND (arg0, 1), arg1));
11336 /* Convert A/(B/C) to (A/B)*C. */
11337 if (flag_reciprocal_math
11338 && TREE_CODE (arg1) == RDIV_EXPR)
11339 return fold_build2_loc (loc, MULT_EXPR, type,
11340 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
11341 TREE_OPERAND (arg1, 0)),
11342 TREE_OPERAND (arg1, 1));
11344 /* Convert C1/(X*C2) into (C1/C2)/X. */
11345 if (flag_reciprocal_math
11346 && TREE_CODE (arg1) == MULT_EXPR
11347 && TREE_CODE (arg0) == REAL_CST
11348 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11350 tree tem = const_binop (RDIV_EXPR, arg0,
11351 TREE_OPERAND (arg1, 1));
11352 if (tem)
11353 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
11354 TREE_OPERAND (arg1, 0));
11357 if (flag_unsafe_math_optimizations)
11359 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11360 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11362 /* Optimize sin(x)/cos(x) as tan(x). */
11363 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11364 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11365 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11366 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11367 CALL_EXPR_ARG (arg1, 0), 0))
11369 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11371 if (tanfn != NULL_TREE)
11372 return build_call_expr_loc (loc, tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11375 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11376 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11377 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11378 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11379 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11380 CALL_EXPR_ARG (arg1, 0), 0))
11382 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11384 if (tanfn != NULL_TREE)
11386 tree tmp = build_call_expr_loc (loc, tanfn, 1,
11387 CALL_EXPR_ARG (arg0, 0));
11388 return fold_build2_loc (loc, RDIV_EXPR, type,
11389 build_real (type, dconst1), tmp);
11393 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11394 NaNs or Infinities. */
11395 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11396 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11397 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11399 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11400 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11402 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11403 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11404 && operand_equal_p (arg00, arg01, 0))
11406 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11408 if (cosfn != NULL_TREE)
11409 return build_call_expr_loc (loc, cosfn, 1, arg00);
11413 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11414 NaNs or Infinities. */
11415 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11416 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11417 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11419 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11420 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11422 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11423 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11424 && operand_equal_p (arg00, arg01, 0))
11426 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11428 if (cosfn != NULL_TREE)
11430 tree tmp = build_call_expr_loc (loc, cosfn, 1, arg00);
11431 return fold_build2_loc (loc, RDIV_EXPR, type,
11432 build_real (type, dconst1),
11433 tmp);
11438 /* Optimize pow(x,c)/x as pow(x,c-1). */
11439 if (fcode0 == BUILT_IN_POW
11440 || fcode0 == BUILT_IN_POWF
11441 || fcode0 == BUILT_IN_POWL)
11443 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11444 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11445 if (TREE_CODE (arg01) == REAL_CST
11446 && !TREE_OVERFLOW (arg01)
11447 && operand_equal_p (arg1, arg00, 0))
11449 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11450 REAL_VALUE_TYPE c;
11451 tree arg;
11453 c = TREE_REAL_CST (arg01);
11454 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11455 arg = build_real (type, c);
11456 return build_call_expr_loc (loc, powfn, 2, arg1, arg);
11460 /* Optimize a/root(b/c) into a*root(c/b). */
11461 if (BUILTIN_ROOT_P (fcode1))
11463 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11465 if (TREE_CODE (rootarg) == RDIV_EXPR)
11467 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11468 tree b = TREE_OPERAND (rootarg, 0);
11469 tree c = TREE_OPERAND (rootarg, 1);
11471 tree tmp = fold_build2_loc (loc, RDIV_EXPR, type, c, b);
11473 tmp = build_call_expr_loc (loc, rootfn, 1, tmp);
11474 return fold_build2_loc (loc, MULT_EXPR, type, arg0, tmp);
11478 /* Optimize x/expN(y) into x*expN(-y). */
11479 if (BUILTIN_EXPONENT_P (fcode1))
11481 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11482 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11483 arg1 = build_call_expr_loc (loc,
11484 expfn, 1,
11485 fold_convert_loc (loc, type, arg));
11486 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11489 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11490 if (fcode1 == BUILT_IN_POW
11491 || fcode1 == BUILT_IN_POWF
11492 || fcode1 == BUILT_IN_POWL)
11494 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11495 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11496 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11497 tree neg11 = fold_convert_loc (loc, type,
11498 negate_expr (arg11));
11499 arg1 = build_call_expr_loc (loc, powfn, 2, arg10, neg11);
11500 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11503 return NULL_TREE;
11505 case TRUNC_DIV_EXPR:
11506 /* Optimize (X & (-A)) / A where A is a power of 2,
11507 to X >> log2(A) */
11508 if (TREE_CODE (arg0) == BIT_AND_EXPR
11509 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
11510 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
11512 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
11513 arg1, TREE_OPERAND (arg0, 1));
11514 if (sum && integer_zerop (sum)) {
11515 unsigned long pow2;
11517 if (TREE_INT_CST_LOW (arg1))
11518 pow2 = exact_log2 (TREE_INT_CST_LOW (arg1));
11519 else
11520 pow2 = exact_log2 (TREE_INT_CST_HIGH (arg1))
11521 + HOST_BITS_PER_WIDE_INT;
11523 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11524 TREE_OPERAND (arg0, 0),
11525 build_int_cst (integer_type_node, pow2));
11529 /* Fall thru */
11531 case FLOOR_DIV_EXPR:
11532 /* Simplify A / (B << N) where A and B are positive and B is
11533 a power of 2, to A >> (N + log2(B)). */
11534 strict_overflow_p = false;
11535 if (TREE_CODE (arg1) == LSHIFT_EXPR
11536 && (TYPE_UNSIGNED (type)
11537 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11539 tree sval = TREE_OPERAND (arg1, 0);
11540 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11542 tree sh_cnt = TREE_OPERAND (arg1, 1);
11543 unsigned long pow2;
11545 if (TREE_INT_CST_LOW (sval))
11546 pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
11547 else
11548 pow2 = exact_log2 (TREE_INT_CST_HIGH (sval))
11549 + HOST_BITS_PER_WIDE_INT;
11551 if (strict_overflow_p)
11552 fold_overflow_warning (("assuming signed overflow does not "
11553 "occur when simplifying A / (B << N)"),
11554 WARN_STRICT_OVERFLOW_MISC);
11556 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
11557 sh_cnt,
11558 build_int_cst (TREE_TYPE (sh_cnt),
11559 pow2));
11560 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11561 fold_convert_loc (loc, type, arg0), sh_cnt);
11565 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
11566 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
11567 if (INTEGRAL_TYPE_P (type)
11568 && TYPE_UNSIGNED (type)
11569 && code == FLOOR_DIV_EXPR)
11570 return fold_build2_loc (loc, TRUNC_DIV_EXPR, type, op0, op1);
11572 /* Fall thru */
11574 case ROUND_DIV_EXPR:
11575 case CEIL_DIV_EXPR:
11576 case EXACT_DIV_EXPR:
11577 if (integer_onep (arg1))
11578 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11579 if (integer_zerop (arg1))
11580 return NULL_TREE;
11581 /* X / -1 is -X. */
11582 if (!TYPE_UNSIGNED (type)
11583 && TREE_CODE (arg1) == INTEGER_CST
11584 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11585 && TREE_INT_CST_HIGH (arg1) == -1)
11586 return fold_convert_loc (loc, type, negate_expr (arg0));
11588 /* Convert -A / -B to A / B when the type is signed and overflow is
11589 undefined. */
11590 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11591 && TREE_CODE (arg0) == NEGATE_EXPR
11592 && negate_expr_p (arg1))
11594 if (INTEGRAL_TYPE_P (type))
11595 fold_overflow_warning (("assuming signed overflow does not occur "
11596 "when distributing negation across "
11597 "division"),
11598 WARN_STRICT_OVERFLOW_MISC);
11599 return fold_build2_loc (loc, code, type,
11600 fold_convert_loc (loc, type,
11601 TREE_OPERAND (arg0, 0)),
11602 fold_convert_loc (loc, type,
11603 negate_expr (arg1)));
11605 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11606 && TREE_CODE (arg1) == NEGATE_EXPR
11607 && negate_expr_p (arg0))
11609 if (INTEGRAL_TYPE_P (type))
11610 fold_overflow_warning (("assuming signed overflow does not occur "
11611 "when distributing negation across "
11612 "division"),
11613 WARN_STRICT_OVERFLOW_MISC);
11614 return fold_build2_loc (loc, code, type,
11615 fold_convert_loc (loc, type,
11616 negate_expr (arg0)),
11617 fold_convert_loc (loc, type,
11618 TREE_OPERAND (arg1, 0)));
11621 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11622 operation, EXACT_DIV_EXPR.
11624 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11625 At one time others generated faster code, it's not clear if they do
11626 after the last round to changes to the DIV code in expmed.c. */
11627 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11628 && multiple_of_p (type, arg0, arg1))
11629 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, arg0, arg1);
11631 strict_overflow_p = false;
11632 if (TREE_CODE (arg1) == INTEGER_CST
11633 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11634 &strict_overflow_p)))
11636 if (strict_overflow_p)
11637 fold_overflow_warning (("assuming signed overflow does not occur "
11638 "when simplifying division"),
11639 WARN_STRICT_OVERFLOW_MISC);
11640 return fold_convert_loc (loc, type, tem);
11643 return NULL_TREE;
11645 case CEIL_MOD_EXPR:
11646 case FLOOR_MOD_EXPR:
11647 case ROUND_MOD_EXPR:
11648 case TRUNC_MOD_EXPR:
11649 /* X % 1 is always zero, but be sure to preserve any side
11650 effects in X. */
11651 if (integer_onep (arg1))
11652 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11654 /* X % 0, return X % 0 unchanged so that we can get the
11655 proper warnings and errors. */
11656 if (integer_zerop (arg1))
11657 return NULL_TREE;
11659 /* 0 % X is always zero, but be sure to preserve any side
11660 effects in X. Place this after checking for X == 0. */
11661 if (integer_zerop (arg0))
11662 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11664 /* X % -1 is zero. */
11665 if (!TYPE_UNSIGNED (type)
11666 && TREE_CODE (arg1) == INTEGER_CST
11667 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11668 && TREE_INT_CST_HIGH (arg1) == -1)
11669 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11671 /* X % -C is the same as X % C. */
11672 if (code == TRUNC_MOD_EXPR
11673 && !TYPE_UNSIGNED (type)
11674 && TREE_CODE (arg1) == INTEGER_CST
11675 && !TREE_OVERFLOW (arg1)
11676 && TREE_INT_CST_HIGH (arg1) < 0
11677 && !TYPE_OVERFLOW_TRAPS (type)
11678 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11679 && !sign_bit_p (arg1, arg1))
11680 return fold_build2_loc (loc, code, type,
11681 fold_convert_loc (loc, type, arg0),
11682 fold_convert_loc (loc, type,
11683 negate_expr (arg1)));
11685 /* X % -Y is the same as X % Y. */
11686 if (code == TRUNC_MOD_EXPR
11687 && !TYPE_UNSIGNED (type)
11688 && TREE_CODE (arg1) == NEGATE_EXPR
11689 && !TYPE_OVERFLOW_TRAPS (type))
11690 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, arg0),
11691 fold_convert_loc (loc, type,
11692 TREE_OPERAND (arg1, 0)));
11694 strict_overflow_p = false;
11695 if (TREE_CODE (arg1) == INTEGER_CST
11696 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11697 &strict_overflow_p)))
11699 if (strict_overflow_p)
11700 fold_overflow_warning (("assuming signed overflow does not occur "
11701 "when simplifying modulus"),
11702 WARN_STRICT_OVERFLOW_MISC);
11703 return fold_convert_loc (loc, type, tem);
11706 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11707 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11708 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
11709 && (TYPE_UNSIGNED (type)
11710 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11712 tree c = arg1;
11713 /* Also optimize A % (C << N) where C is a power of 2,
11714 to A & ((C << N) - 1). */
11715 if (TREE_CODE (arg1) == LSHIFT_EXPR)
11716 c = TREE_OPERAND (arg1, 0);
11718 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
11720 tree mask
11721 = fold_build2_loc (loc, MINUS_EXPR, TREE_TYPE (arg1), arg1,
11722 build_int_cst (TREE_TYPE (arg1), 1));
11723 if (strict_overflow_p)
11724 fold_overflow_warning (("assuming signed overflow does not "
11725 "occur when simplifying "
11726 "X % (power of two)"),
11727 WARN_STRICT_OVERFLOW_MISC);
11728 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11729 fold_convert_loc (loc, type, arg0),
11730 fold_convert_loc (loc, type, mask));
11734 return NULL_TREE;
11736 case LROTATE_EXPR:
11737 case RROTATE_EXPR:
11738 if (integer_all_onesp (arg0))
11739 return omit_one_operand_loc (loc, type, arg0, arg1);
11740 goto shift;
11742 case RSHIFT_EXPR:
11743 /* Optimize -1 >> x for arithmetic right shifts. */
11744 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type)
11745 && tree_expr_nonnegative_p (arg1))
11746 return omit_one_operand_loc (loc, type, arg0, arg1);
11747 /* ... fall through ... */
11749 case LSHIFT_EXPR:
11750 shift:
11751 if (integer_zerop (arg1))
11752 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11753 if (integer_zerop (arg0))
11754 return omit_one_operand_loc (loc, type, arg0, arg1);
11756 /* Since negative shift count is not well-defined,
11757 don't try to compute it in the compiler. */
11758 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11759 return NULL_TREE;
11761 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11762 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
11763 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11764 && host_integerp (TREE_OPERAND (arg0, 1), false)
11765 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11767 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
11768 + TREE_INT_CST_LOW (arg1));
11770 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11771 being well defined. */
11772 if (low >= TYPE_PRECISION (type))
11774 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11775 low = low % TYPE_PRECISION (type);
11776 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11777 return omit_one_operand_loc (loc, type, build_int_cst (type, 0),
11778 TREE_OPERAND (arg0, 0));
11779 else
11780 low = TYPE_PRECISION (type) - 1;
11783 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
11784 build_int_cst (type, low));
11787 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11788 into x & ((unsigned)-1 >> c) for unsigned types. */
11789 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11790 || (TYPE_UNSIGNED (type)
11791 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11792 && host_integerp (arg1, false)
11793 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11794 && host_integerp (TREE_OPERAND (arg0, 1), false)
11795 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11797 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
11798 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
11799 tree lshift;
11800 tree arg00;
11802 if (low0 == low1)
11804 arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11806 lshift = build_int_cst (type, -1);
11807 lshift = int_const_binop (code, lshift, arg1);
11809 return fold_build2_loc (loc, BIT_AND_EXPR, type, arg00, lshift);
11813 /* Rewrite an LROTATE_EXPR by a constant into an
11814 RROTATE_EXPR by a new constant. */
11815 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
11817 tree tem = build_int_cst (TREE_TYPE (arg1),
11818 TYPE_PRECISION (type));
11819 tem = const_binop (MINUS_EXPR, tem, arg1);
11820 return fold_build2_loc (loc, RROTATE_EXPR, type, op0, tem);
11823 /* If we have a rotate of a bit operation with the rotate count and
11824 the second operand of the bit operation both constant,
11825 permute the two operations. */
11826 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11827 && (TREE_CODE (arg0) == BIT_AND_EXPR
11828 || TREE_CODE (arg0) == BIT_IOR_EXPR
11829 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11830 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11831 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11832 fold_build2_loc (loc, code, type,
11833 TREE_OPERAND (arg0, 0), arg1),
11834 fold_build2_loc (loc, code, type,
11835 TREE_OPERAND (arg0, 1), arg1));
11837 /* Two consecutive rotates adding up to the precision of the
11838 type can be ignored. */
11839 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11840 && TREE_CODE (arg0) == RROTATE_EXPR
11841 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11842 && TREE_INT_CST_HIGH (arg1) == 0
11843 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
11844 && ((TREE_INT_CST_LOW (arg1)
11845 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
11846 == (unsigned int) TYPE_PRECISION (type)))
11847 return TREE_OPERAND (arg0, 0);
11849 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
11850 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
11851 if the latter can be further optimized. */
11852 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
11853 && TREE_CODE (arg0) == BIT_AND_EXPR
11854 && TREE_CODE (arg1) == INTEGER_CST
11855 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11857 tree mask = fold_build2_loc (loc, code, type,
11858 fold_convert_loc (loc, type,
11859 TREE_OPERAND (arg0, 1)),
11860 arg1);
11861 tree shift = fold_build2_loc (loc, code, type,
11862 fold_convert_loc (loc, type,
11863 TREE_OPERAND (arg0, 0)),
11864 arg1);
11865 tem = fold_binary_loc (loc, BIT_AND_EXPR, type, shift, mask);
11866 if (tem)
11867 return tem;
11870 return NULL_TREE;
11872 case MIN_EXPR:
11873 if (operand_equal_p (arg0, arg1, 0))
11874 return omit_one_operand_loc (loc, type, arg0, arg1);
11875 if (INTEGRAL_TYPE_P (type)
11876 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
11877 return omit_one_operand_loc (loc, type, arg1, arg0);
11878 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
11879 if (tem)
11880 return tem;
11881 goto associate;
11883 case MAX_EXPR:
11884 if (operand_equal_p (arg0, arg1, 0))
11885 return omit_one_operand_loc (loc, type, arg0, arg1);
11886 if (INTEGRAL_TYPE_P (type)
11887 && TYPE_MAX_VALUE (type)
11888 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
11889 return omit_one_operand_loc (loc, type, arg1, arg0);
11890 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
11891 if (tem)
11892 return tem;
11893 goto associate;
11895 case TRUTH_ANDIF_EXPR:
11896 /* Note that the operands of this must be ints
11897 and their values must be 0 or 1.
11898 ("true" is a fixed value perhaps depending on the language.) */
11899 /* If first arg is constant zero, return it. */
11900 if (integer_zerop (arg0))
11901 return fold_convert_loc (loc, type, arg0);
11902 case TRUTH_AND_EXPR:
11903 /* If either arg is constant true, drop it. */
11904 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11905 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11906 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11907 /* Preserve sequence points. */
11908 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11909 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11910 /* If second arg is constant zero, result is zero, but first arg
11911 must be evaluated. */
11912 if (integer_zerop (arg1))
11913 return omit_one_operand_loc (loc, type, arg1, arg0);
11914 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11915 case will be handled here. */
11916 if (integer_zerop (arg0))
11917 return omit_one_operand_loc (loc, type, arg0, arg1);
11919 /* !X && X is always false. */
11920 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11921 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11922 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11923 /* X && !X is always false. */
11924 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11925 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11926 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11928 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11929 means A >= Y && A != MAX, but in this case we know that
11930 A < X <= MAX. */
11932 if (!TREE_SIDE_EFFECTS (arg0)
11933 && !TREE_SIDE_EFFECTS (arg1))
11935 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
11936 if (tem && !operand_equal_p (tem, arg0, 0))
11937 return fold_build2_loc (loc, code, type, tem, arg1);
11939 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
11940 if (tem && !operand_equal_p (tem, arg1, 0))
11941 return fold_build2_loc (loc, code, type, arg0, tem);
11944 truth_andor:
11945 /* We only do these simplifications if we are optimizing. */
11946 if (!optimize)
11947 return NULL_TREE;
11949 /* Check for things like (A || B) && (A || C). We can convert this
11950 to A || (B && C). Note that either operator can be any of the four
11951 truth and/or operations and the transformation will still be
11952 valid. Also note that we only care about order for the
11953 ANDIF and ORIF operators. If B contains side effects, this
11954 might change the truth-value of A. */
11955 if (TREE_CODE (arg0) == TREE_CODE (arg1)
11956 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
11957 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
11958 || TREE_CODE (arg0) == TRUTH_AND_EXPR
11959 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
11960 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
11962 tree a00 = TREE_OPERAND (arg0, 0);
11963 tree a01 = TREE_OPERAND (arg0, 1);
11964 tree a10 = TREE_OPERAND (arg1, 0);
11965 tree a11 = TREE_OPERAND (arg1, 1);
11966 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
11967 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
11968 && (code == TRUTH_AND_EXPR
11969 || code == TRUTH_OR_EXPR));
11971 if (operand_equal_p (a00, a10, 0))
11972 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
11973 fold_build2_loc (loc, code, type, a01, a11));
11974 else if (commutative && operand_equal_p (a00, a11, 0))
11975 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
11976 fold_build2_loc (loc, code, type, a01, a10));
11977 else if (commutative && operand_equal_p (a01, a10, 0))
11978 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
11979 fold_build2_loc (loc, code, type, a00, a11));
11981 /* This case if tricky because we must either have commutative
11982 operators or else A10 must not have side-effects. */
11984 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
11985 && operand_equal_p (a01, a11, 0))
11986 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11987 fold_build2_loc (loc, code, type, a00, a10),
11988 a01);
11991 /* See if we can build a range comparison. */
11992 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
11993 return tem;
11995 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
11996 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
11998 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
11999 if (tem)
12000 return fold_build2_loc (loc, code, type, tem, arg1);
12003 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
12004 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
12006 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
12007 if (tem)
12008 return fold_build2_loc (loc, code, type, arg0, tem);
12011 /* Check for the possibility of merging component references. If our
12012 lhs is another similar operation, try to merge its rhs with our
12013 rhs. Then try to merge our lhs and rhs. */
12014 if (TREE_CODE (arg0) == code
12015 && 0 != (tem = fold_truthop (loc, code, type,
12016 TREE_OPERAND (arg0, 1), arg1)))
12017 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12019 if ((tem = fold_truthop (loc, code, type, arg0, arg1)) != 0)
12020 return tem;
12022 return NULL_TREE;
12024 case TRUTH_ORIF_EXPR:
12025 /* Note that the operands of this must be ints
12026 and their values must be 0 or true.
12027 ("true" is a fixed value perhaps depending on the language.) */
12028 /* If first arg is constant true, return it. */
12029 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12030 return fold_convert_loc (loc, type, arg0);
12031 case TRUTH_OR_EXPR:
12032 /* If either arg is constant zero, drop it. */
12033 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12034 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12035 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12036 /* Preserve sequence points. */
12037 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12038 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12039 /* If second arg is constant true, result is true, but we must
12040 evaluate first arg. */
12041 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12042 return omit_one_operand_loc (loc, type, arg1, arg0);
12043 /* Likewise for first arg, but note this only occurs here for
12044 TRUTH_OR_EXPR. */
12045 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12046 return omit_one_operand_loc (loc, type, arg0, arg1);
12048 /* !X || X is always true. */
12049 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12050 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12051 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12052 /* X || !X is always true. */
12053 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12054 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12055 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12057 /* (X && !Y) || (!X && Y) is X ^ Y */
12058 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12059 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12061 tree a0, a1, l0, l1, n0, n1;
12063 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12064 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12066 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12067 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12069 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12070 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12072 if ((operand_equal_p (n0, a0, 0)
12073 && operand_equal_p (n1, a1, 0))
12074 || (operand_equal_p (n0, a1, 0)
12075 && operand_equal_p (n1, a0, 0)))
12076 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12078 goto truth_andor;
12080 case TRUTH_XOR_EXPR:
12081 /* If the second arg is constant zero, drop it. */
12082 if (integer_zerop (arg1))
12083 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12084 /* If the second arg is constant true, this is a logical inversion. */
12085 if (integer_onep (arg1))
12087 /* Only call invert_truthvalue if operand is a truth value. */
12088 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
12089 tem = fold_build1_loc (loc, TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
12090 else
12091 tem = invert_truthvalue_loc (loc, arg0);
12092 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
12094 /* Identical arguments cancel to zero. */
12095 if (operand_equal_p (arg0, arg1, 0))
12096 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12098 /* !X ^ X is always true. */
12099 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12100 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12101 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12103 /* X ^ !X is always true. */
12104 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12105 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12106 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12108 return NULL_TREE;
12110 case EQ_EXPR:
12111 case NE_EXPR:
12112 STRIP_NOPS (arg0);
12113 STRIP_NOPS (arg1);
12115 tem = fold_comparison (loc, code, type, op0, op1);
12116 if (tem != NULL_TREE)
12117 return tem;
12119 /* bool_var != 0 becomes bool_var. */
12120 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12121 && code == NE_EXPR)
12122 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12124 /* bool_var == 1 becomes bool_var. */
12125 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12126 && code == EQ_EXPR)
12127 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12129 /* bool_var != 1 becomes !bool_var. */
12130 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12131 && code == NE_EXPR)
12132 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type,
12133 fold_convert_loc (loc, type, arg0));
12135 /* bool_var == 0 becomes !bool_var. */
12136 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12137 && code == EQ_EXPR)
12138 return fold_build1_loc (loc, TRUTH_NOT_EXPR, type,
12139 fold_convert_loc (loc, type, arg0));
12141 /* !exp != 0 becomes !exp */
12142 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12143 && code == NE_EXPR)
12144 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12146 /* If this is an equality comparison of the address of two non-weak,
12147 unaliased symbols neither of which are extern (since we do not
12148 have access to attributes for externs), then we know the result. */
12149 if (TREE_CODE (arg0) == ADDR_EXPR
12150 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
12151 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
12152 && ! lookup_attribute ("alias",
12153 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
12154 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
12155 && TREE_CODE (arg1) == ADDR_EXPR
12156 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
12157 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
12158 && ! lookup_attribute ("alias",
12159 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
12160 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
12162 /* We know that we're looking at the address of two
12163 non-weak, unaliased, static _DECL nodes.
12165 It is both wasteful and incorrect to call operand_equal_p
12166 to compare the two ADDR_EXPR nodes. It is wasteful in that
12167 all we need to do is test pointer equality for the arguments
12168 to the two ADDR_EXPR nodes. It is incorrect to use
12169 operand_equal_p as that function is NOT equivalent to a
12170 C equality test. It can in fact return false for two
12171 objects which would test as equal using the C equality
12172 operator. */
12173 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12174 return constant_boolean_node (equal
12175 ? code == EQ_EXPR : code != EQ_EXPR,
12176 type);
12179 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
12180 a MINUS_EXPR of a constant, we can convert it into a comparison with
12181 a revised constant as long as no overflow occurs. */
12182 if (TREE_CODE (arg1) == INTEGER_CST
12183 && (TREE_CODE (arg0) == PLUS_EXPR
12184 || TREE_CODE (arg0) == MINUS_EXPR)
12185 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12186 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
12187 ? MINUS_EXPR : PLUS_EXPR,
12188 fold_convert_loc (loc, TREE_TYPE (arg0),
12189 arg1),
12190 TREE_OPERAND (arg0, 1)))
12191 && !TREE_OVERFLOW (tem))
12192 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12194 /* Similarly for a NEGATE_EXPR. */
12195 if (TREE_CODE (arg0) == NEGATE_EXPR
12196 && TREE_CODE (arg1) == INTEGER_CST
12197 && 0 != (tem = negate_expr (fold_convert_loc (loc, TREE_TYPE (arg0),
12198 arg1)))
12199 && TREE_CODE (tem) == INTEGER_CST
12200 && !TREE_OVERFLOW (tem))
12201 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
12203 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12204 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12205 && TREE_CODE (arg1) == INTEGER_CST
12206 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12207 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12208 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg0),
12209 fold_convert_loc (loc,
12210 TREE_TYPE (arg0),
12211 arg1),
12212 TREE_OPERAND (arg0, 1)));
12214 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12215 if ((TREE_CODE (arg0) == PLUS_EXPR
12216 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
12217 || TREE_CODE (arg0) == MINUS_EXPR)
12218 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12219 0)),
12220 arg1, 0)
12221 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12222 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12224 tree val = TREE_OPERAND (arg0, 1);
12225 return omit_two_operands_loc (loc, type,
12226 fold_build2_loc (loc, code, type,
12227 val,
12228 build_int_cst (TREE_TYPE (val),
12229 0)),
12230 TREE_OPERAND (arg0, 0), arg1);
12233 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12234 if (TREE_CODE (arg0) == MINUS_EXPR
12235 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
12236 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
12237 1)),
12238 arg1, 0)
12239 && (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 0)) & 1) == 1)
12241 return omit_two_operands_loc (loc, type,
12242 code == NE_EXPR
12243 ? boolean_true_node : boolean_false_node,
12244 TREE_OPERAND (arg0, 1), arg1);
12247 /* If we have X - Y == 0, we can convert that to X == Y and similarly
12248 for !=. Don't do this for ordered comparisons due to overflow. */
12249 if (TREE_CODE (arg0) == MINUS_EXPR
12250 && integer_zerop (arg1))
12251 return fold_build2_loc (loc, code, type,
12252 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
12254 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12255 if (TREE_CODE (arg0) == ABS_EXPR
12256 && (integer_zerop (arg1) || real_zerop (arg1)))
12257 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), arg1);
12259 /* If this is an EQ or NE comparison with zero and ARG0 is
12260 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12261 two operations, but the latter can be done in one less insn
12262 on machines that have only two-operand insns or on which a
12263 constant cannot be the first operand. */
12264 if (TREE_CODE (arg0) == BIT_AND_EXPR
12265 && integer_zerop (arg1))
12267 tree arg00 = TREE_OPERAND (arg0, 0);
12268 tree arg01 = TREE_OPERAND (arg0, 1);
12269 if (TREE_CODE (arg00) == LSHIFT_EXPR
12270 && integer_onep (TREE_OPERAND (arg00, 0)))
12272 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12273 arg01, TREE_OPERAND (arg00, 1));
12274 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12275 build_int_cst (TREE_TYPE (arg0), 1));
12276 return fold_build2_loc (loc, code, type,
12277 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12278 arg1);
12280 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12281 && integer_onep (TREE_OPERAND (arg01, 0)))
12283 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12284 arg00, TREE_OPERAND (arg01, 1));
12285 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12286 build_int_cst (TREE_TYPE (arg0), 1));
12287 return fold_build2_loc (loc, code, type,
12288 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
12289 arg1);
12293 /* If this is an NE or EQ comparison of zero against the result of a
12294 signed MOD operation whose second operand is a power of 2, make
12295 the MOD operation unsigned since it is simpler and equivalent. */
12296 if (integer_zerop (arg1)
12297 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
12298 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
12299 || TREE_CODE (arg0) == CEIL_MOD_EXPR
12300 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
12301 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
12302 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12304 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
12305 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
12306 fold_convert_loc (loc, newtype,
12307 TREE_OPERAND (arg0, 0)),
12308 fold_convert_loc (loc, newtype,
12309 TREE_OPERAND (arg0, 1)));
12311 return fold_build2_loc (loc, code, type, newmod,
12312 fold_convert_loc (loc, newtype, arg1));
12315 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12316 C1 is a valid shift constant, and C2 is a power of two, i.e.
12317 a single bit. */
12318 if (TREE_CODE (arg0) == BIT_AND_EXPR
12319 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
12320 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
12321 == INTEGER_CST
12322 && integer_pow2p (TREE_OPERAND (arg0, 1))
12323 && integer_zerop (arg1))
12325 tree itype = TREE_TYPE (arg0);
12326 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
12327 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
12329 /* Check for a valid shift count. */
12330 if (TREE_INT_CST_HIGH (arg001) == 0
12331 && TREE_INT_CST_LOW (arg001) < prec)
12333 tree arg01 = TREE_OPERAND (arg0, 1);
12334 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12335 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12336 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12337 can be rewritten as (X & (C2 << C1)) != 0. */
12338 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12340 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
12341 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
12342 return fold_build2_loc (loc, code, type, tem,
12343 fold_convert_loc (loc, itype, arg1));
12345 /* Otherwise, for signed (arithmetic) shifts,
12346 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12347 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12348 else if (!TYPE_UNSIGNED (itype))
12349 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
12350 arg000, build_int_cst (itype, 0));
12351 /* Otherwise, of unsigned (logical) shifts,
12352 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12353 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12354 else
12355 return omit_one_operand_loc (loc, type,
12356 code == EQ_EXPR ? integer_one_node
12357 : integer_zero_node,
12358 arg000);
12362 /* If this is an NE comparison of zero with an AND of one, remove the
12363 comparison since the AND will give the correct value. */
12364 if (code == NE_EXPR
12365 && integer_zerop (arg1)
12366 && TREE_CODE (arg0) == BIT_AND_EXPR
12367 && integer_onep (TREE_OPERAND (arg0, 1)))
12368 return fold_convert_loc (loc, type, arg0);
12370 /* If we have (A & C) == C where C is a power of 2, convert this into
12371 (A & C) != 0. Similarly for NE_EXPR. */
12372 if (TREE_CODE (arg0) == BIT_AND_EXPR
12373 && integer_pow2p (TREE_OPERAND (arg0, 1))
12374 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12375 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12376 arg0, fold_convert_loc (loc, TREE_TYPE (arg0),
12377 integer_zero_node));
12379 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12380 bit, then fold the expression into A < 0 or A >= 0. */
12381 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, type);
12382 if (tem)
12383 return tem;
12385 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12386 Similarly for NE_EXPR. */
12387 if (TREE_CODE (arg0) == BIT_AND_EXPR
12388 && TREE_CODE (arg1) == INTEGER_CST
12389 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12391 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
12392 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12393 TREE_OPERAND (arg0, 1));
12394 tree dandnotc
12395 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12396 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
12397 notc);
12398 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12399 if (integer_nonzerop (dandnotc))
12400 return omit_one_operand_loc (loc, type, rslt, arg0);
12403 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12404 Similarly for NE_EXPR. */
12405 if (TREE_CODE (arg0) == BIT_IOR_EXPR
12406 && TREE_CODE (arg1) == INTEGER_CST
12407 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12409 tree notd = fold_build1_loc (loc, BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
12410 tree candnotd
12411 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12412 TREE_OPERAND (arg0, 1),
12413 fold_convert_loc (loc, TREE_TYPE (arg0), notd));
12414 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12415 if (integer_nonzerop (candnotd))
12416 return omit_one_operand_loc (loc, type, rslt, arg0);
12419 /* If this is a comparison of a field, we may be able to simplify it. */
12420 if ((TREE_CODE (arg0) == COMPONENT_REF
12421 || TREE_CODE (arg0) == BIT_FIELD_REF)
12422 /* Handle the constant case even without -O
12423 to make sure the warnings are given. */
12424 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12426 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
12427 if (t1)
12428 return t1;
12431 /* Optimize comparisons of strlen vs zero to a compare of the
12432 first character of the string vs zero. To wit,
12433 strlen(ptr) == 0 => *ptr == 0
12434 strlen(ptr) != 0 => *ptr != 0
12435 Other cases should reduce to one of these two (or a constant)
12436 due to the return value of strlen being unsigned. */
12437 if (TREE_CODE (arg0) == CALL_EXPR
12438 && integer_zerop (arg1))
12440 tree fndecl = get_callee_fndecl (arg0);
12442 if (fndecl
12443 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12444 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12445 && call_expr_nargs (arg0) == 1
12446 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12448 tree iref = build_fold_indirect_ref_loc (loc,
12449 CALL_EXPR_ARG (arg0, 0));
12450 return fold_build2_loc (loc, code, type, iref,
12451 build_int_cst (TREE_TYPE (iref), 0));
12455 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12456 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12457 if (TREE_CODE (arg0) == RSHIFT_EXPR
12458 && integer_zerop (arg1)
12459 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12461 tree arg00 = TREE_OPERAND (arg0, 0);
12462 tree arg01 = TREE_OPERAND (arg0, 1);
12463 tree itype = TREE_TYPE (arg00);
12464 if (TREE_INT_CST_HIGH (arg01) == 0
12465 && TREE_INT_CST_LOW (arg01)
12466 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
12468 if (TYPE_UNSIGNED (itype))
12470 itype = signed_type_for (itype);
12471 arg00 = fold_convert_loc (loc, itype, arg00);
12473 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12474 type, arg00, build_int_cst (itype, 0));
12478 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12479 if (integer_zerop (arg1)
12480 && TREE_CODE (arg0) == BIT_XOR_EXPR)
12481 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12482 TREE_OPERAND (arg0, 1));
12484 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12485 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12486 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12487 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12488 build_int_cst (TREE_TYPE (arg0), 0));
12489 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12490 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12491 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12492 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12493 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 1),
12494 build_int_cst (TREE_TYPE (arg0), 0));
12496 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12497 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12498 && TREE_CODE (arg1) == INTEGER_CST
12499 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12500 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0),
12501 fold_build2_loc (loc, BIT_XOR_EXPR, TREE_TYPE (arg1),
12502 TREE_OPERAND (arg0, 1), arg1));
12504 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12505 (X & C) == 0 when C is a single bit. */
12506 if (TREE_CODE (arg0) == BIT_AND_EXPR
12507 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12508 && integer_zerop (arg1)
12509 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12511 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12512 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12513 TREE_OPERAND (arg0, 1));
12514 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12515 type, tem,
12516 fold_convert_loc (loc, TREE_TYPE (arg0),
12517 arg1));
12520 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12521 constant C is a power of two, i.e. a single bit. */
12522 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12523 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12524 && integer_zerop (arg1)
12525 && integer_pow2p (TREE_OPERAND (arg0, 1))
12526 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12527 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12529 tree arg00 = TREE_OPERAND (arg0, 0);
12530 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12531 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12534 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12535 when is C is a power of two, i.e. a single bit. */
12536 if (TREE_CODE (arg0) == BIT_AND_EXPR
12537 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12538 && integer_zerop (arg1)
12539 && integer_pow2p (TREE_OPERAND (arg0, 1))
12540 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12541 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12543 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12544 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
12545 arg000, TREE_OPERAND (arg0, 1));
12546 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12547 tem, build_int_cst (TREE_TYPE (tem), 0));
12550 if (integer_zerop (arg1)
12551 && tree_expr_nonzero_p (arg0))
12553 tree res = constant_boolean_node (code==NE_EXPR, type);
12554 return omit_one_operand_loc (loc, type, res, arg0);
12557 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12558 if (TREE_CODE (arg0) == NEGATE_EXPR
12559 && TREE_CODE (arg1) == NEGATE_EXPR)
12560 return fold_build2_loc (loc, code, type,
12561 TREE_OPERAND (arg0, 0),
12562 fold_convert_loc (loc, TREE_TYPE (arg0),
12563 TREE_OPERAND (arg1, 0)));
12565 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12566 if (TREE_CODE (arg0) == BIT_AND_EXPR
12567 && TREE_CODE (arg1) == BIT_AND_EXPR)
12569 tree arg00 = TREE_OPERAND (arg0, 0);
12570 tree arg01 = TREE_OPERAND (arg0, 1);
12571 tree arg10 = TREE_OPERAND (arg1, 0);
12572 tree arg11 = TREE_OPERAND (arg1, 1);
12573 tree itype = TREE_TYPE (arg0);
12575 if (operand_equal_p (arg01, arg11, 0))
12576 return fold_build2_loc (loc, code, type,
12577 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12578 fold_build2_loc (loc,
12579 BIT_XOR_EXPR, itype,
12580 arg00, arg10),
12581 arg01),
12582 build_int_cst (itype, 0));
12584 if (operand_equal_p (arg01, arg10, 0))
12585 return fold_build2_loc (loc, code, type,
12586 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12587 fold_build2_loc (loc,
12588 BIT_XOR_EXPR, itype,
12589 arg00, arg11),
12590 arg01),
12591 build_int_cst (itype, 0));
12593 if (operand_equal_p (arg00, arg11, 0))
12594 return fold_build2_loc (loc, code, type,
12595 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12596 fold_build2_loc (loc,
12597 BIT_XOR_EXPR, itype,
12598 arg01, arg10),
12599 arg00),
12600 build_int_cst (itype, 0));
12602 if (operand_equal_p (arg00, arg10, 0))
12603 return fold_build2_loc (loc, code, type,
12604 fold_build2_loc (loc, BIT_AND_EXPR, itype,
12605 fold_build2_loc (loc,
12606 BIT_XOR_EXPR, itype,
12607 arg01, arg11),
12608 arg00),
12609 build_int_cst (itype, 0));
12612 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12613 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12615 tree arg00 = TREE_OPERAND (arg0, 0);
12616 tree arg01 = TREE_OPERAND (arg0, 1);
12617 tree arg10 = TREE_OPERAND (arg1, 0);
12618 tree arg11 = TREE_OPERAND (arg1, 1);
12619 tree itype = TREE_TYPE (arg0);
12621 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12622 operand_equal_p guarantees no side-effects so we don't need
12623 to use omit_one_operand on Z. */
12624 if (operand_equal_p (arg01, arg11, 0))
12625 return fold_build2_loc (loc, code, type, arg00,
12626 fold_convert_loc (loc, TREE_TYPE (arg00),
12627 arg10));
12628 if (operand_equal_p (arg01, arg10, 0))
12629 return fold_build2_loc (loc, code, type, arg00,
12630 fold_convert_loc (loc, TREE_TYPE (arg00),
12631 arg11));
12632 if (operand_equal_p (arg00, arg11, 0))
12633 return fold_build2_loc (loc, code, type, arg01,
12634 fold_convert_loc (loc, TREE_TYPE (arg01),
12635 arg10));
12636 if (operand_equal_p (arg00, arg10, 0))
12637 return fold_build2_loc (loc, code, type, arg01,
12638 fold_convert_loc (loc, TREE_TYPE (arg01),
12639 arg11));
12641 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12642 if (TREE_CODE (arg01) == INTEGER_CST
12643 && TREE_CODE (arg11) == INTEGER_CST)
12645 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
12646 fold_convert_loc (loc, itype, arg11));
12647 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
12648 return fold_build2_loc (loc, code, type, tem,
12649 fold_convert_loc (loc, itype, arg10));
12653 /* Attempt to simplify equality/inequality comparisons of complex
12654 values. Only lower the comparison if the result is known or
12655 can be simplified to a single scalar comparison. */
12656 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12657 || TREE_CODE (arg0) == COMPLEX_CST)
12658 && (TREE_CODE (arg1) == COMPLEX_EXPR
12659 || TREE_CODE (arg1) == COMPLEX_CST))
12661 tree real0, imag0, real1, imag1;
12662 tree rcond, icond;
12664 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12666 real0 = TREE_OPERAND (arg0, 0);
12667 imag0 = TREE_OPERAND (arg0, 1);
12669 else
12671 real0 = TREE_REALPART (arg0);
12672 imag0 = TREE_IMAGPART (arg0);
12675 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12677 real1 = TREE_OPERAND (arg1, 0);
12678 imag1 = TREE_OPERAND (arg1, 1);
12680 else
12682 real1 = TREE_REALPART (arg1);
12683 imag1 = TREE_IMAGPART (arg1);
12686 rcond = fold_binary_loc (loc, code, type, real0, real1);
12687 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12689 if (integer_zerop (rcond))
12691 if (code == EQ_EXPR)
12692 return omit_two_operands_loc (loc, type, boolean_false_node,
12693 imag0, imag1);
12694 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
12696 else
12698 if (code == NE_EXPR)
12699 return omit_two_operands_loc (loc, type, boolean_true_node,
12700 imag0, imag1);
12701 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
12705 icond = fold_binary_loc (loc, code, type, imag0, imag1);
12706 if (icond && TREE_CODE (icond) == INTEGER_CST)
12708 if (integer_zerop (icond))
12710 if (code == EQ_EXPR)
12711 return omit_two_operands_loc (loc, type, boolean_false_node,
12712 real0, real1);
12713 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
12715 else
12717 if (code == NE_EXPR)
12718 return omit_two_operands_loc (loc, type, boolean_true_node,
12719 real0, real1);
12720 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
12725 return NULL_TREE;
12727 case LT_EXPR:
12728 case GT_EXPR:
12729 case LE_EXPR:
12730 case GE_EXPR:
12731 tem = fold_comparison (loc, code, type, op0, op1);
12732 if (tem != NULL_TREE)
12733 return tem;
12735 /* Transform comparisons of the form X +- C CMP X. */
12736 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12737 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12738 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12739 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
12740 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12741 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12743 tree arg01 = TREE_OPERAND (arg0, 1);
12744 enum tree_code code0 = TREE_CODE (arg0);
12745 int is_positive;
12747 if (TREE_CODE (arg01) == REAL_CST)
12748 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12749 else
12750 is_positive = tree_int_cst_sgn (arg01);
12752 /* (X - c) > X becomes false. */
12753 if (code == GT_EXPR
12754 && ((code0 == MINUS_EXPR && is_positive >= 0)
12755 || (code0 == PLUS_EXPR && is_positive <= 0)))
12757 if (TREE_CODE (arg01) == INTEGER_CST
12758 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12759 fold_overflow_warning (("assuming signed overflow does not "
12760 "occur when assuming that (X - c) > X "
12761 "is always false"),
12762 WARN_STRICT_OVERFLOW_ALL);
12763 return constant_boolean_node (0, type);
12766 /* Likewise (X + c) < X becomes false. */
12767 if (code == LT_EXPR
12768 && ((code0 == PLUS_EXPR && is_positive >= 0)
12769 || (code0 == MINUS_EXPR && is_positive <= 0)))
12771 if (TREE_CODE (arg01) == INTEGER_CST
12772 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12773 fold_overflow_warning (("assuming signed overflow does not "
12774 "occur when assuming that "
12775 "(X + c) < X is always false"),
12776 WARN_STRICT_OVERFLOW_ALL);
12777 return constant_boolean_node (0, type);
12780 /* Convert (X - c) <= X to true. */
12781 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12782 && code == LE_EXPR
12783 && ((code0 == MINUS_EXPR && is_positive >= 0)
12784 || (code0 == PLUS_EXPR && is_positive <= 0)))
12786 if (TREE_CODE (arg01) == INTEGER_CST
12787 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12788 fold_overflow_warning (("assuming signed overflow does not "
12789 "occur when assuming that "
12790 "(X - c) <= X is always true"),
12791 WARN_STRICT_OVERFLOW_ALL);
12792 return constant_boolean_node (1, type);
12795 /* Convert (X + c) >= X to true. */
12796 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12797 && code == GE_EXPR
12798 && ((code0 == PLUS_EXPR && is_positive >= 0)
12799 || (code0 == MINUS_EXPR && is_positive <= 0)))
12801 if (TREE_CODE (arg01) == INTEGER_CST
12802 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12803 fold_overflow_warning (("assuming signed overflow does not "
12804 "occur when assuming that "
12805 "(X + c) >= X is always true"),
12806 WARN_STRICT_OVERFLOW_ALL);
12807 return constant_boolean_node (1, type);
12810 if (TREE_CODE (arg01) == INTEGER_CST)
12812 /* Convert X + c > X and X - c < X to true for integers. */
12813 if (code == GT_EXPR
12814 && ((code0 == PLUS_EXPR && is_positive > 0)
12815 || (code0 == MINUS_EXPR && is_positive < 0)))
12817 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12818 fold_overflow_warning (("assuming signed overflow does "
12819 "not occur when assuming that "
12820 "(X + c) > X is always true"),
12821 WARN_STRICT_OVERFLOW_ALL);
12822 return constant_boolean_node (1, type);
12825 if (code == LT_EXPR
12826 && ((code0 == MINUS_EXPR && is_positive > 0)
12827 || (code0 == PLUS_EXPR && is_positive < 0)))
12829 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12830 fold_overflow_warning (("assuming signed overflow does "
12831 "not occur when assuming that "
12832 "(X - c) < X is always true"),
12833 WARN_STRICT_OVERFLOW_ALL);
12834 return constant_boolean_node (1, type);
12837 /* Convert X + c <= X and X - c >= X to false for integers. */
12838 if (code == LE_EXPR
12839 && ((code0 == PLUS_EXPR && is_positive > 0)
12840 || (code0 == MINUS_EXPR && is_positive < 0)))
12842 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12843 fold_overflow_warning (("assuming signed overflow does "
12844 "not occur when assuming that "
12845 "(X + c) <= X is always false"),
12846 WARN_STRICT_OVERFLOW_ALL);
12847 return constant_boolean_node (0, type);
12850 if (code == GE_EXPR
12851 && ((code0 == MINUS_EXPR && is_positive > 0)
12852 || (code0 == PLUS_EXPR && is_positive < 0)))
12854 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12855 fold_overflow_warning (("assuming signed overflow does "
12856 "not occur when assuming that "
12857 "(X - c) >= X is always false"),
12858 WARN_STRICT_OVERFLOW_ALL);
12859 return constant_boolean_node (0, type);
12864 /* Comparisons with the highest or lowest possible integer of
12865 the specified precision will have known values. */
12867 tree arg1_type = TREE_TYPE (arg1);
12868 unsigned int width = TYPE_PRECISION (arg1_type);
12870 if (TREE_CODE (arg1) == INTEGER_CST
12871 && width <= 2 * HOST_BITS_PER_WIDE_INT
12872 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12874 HOST_WIDE_INT signed_max_hi;
12875 unsigned HOST_WIDE_INT signed_max_lo;
12876 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
12878 if (width <= HOST_BITS_PER_WIDE_INT)
12880 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12881 - 1;
12882 signed_max_hi = 0;
12883 max_hi = 0;
12885 if (TYPE_UNSIGNED (arg1_type))
12887 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12888 min_lo = 0;
12889 min_hi = 0;
12891 else
12893 max_lo = signed_max_lo;
12894 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12895 min_hi = -1;
12898 else
12900 width -= HOST_BITS_PER_WIDE_INT;
12901 signed_max_lo = -1;
12902 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12903 - 1;
12904 max_lo = -1;
12905 min_lo = 0;
12907 if (TYPE_UNSIGNED (arg1_type))
12909 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12910 min_hi = 0;
12912 else
12914 max_hi = signed_max_hi;
12915 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12919 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
12920 && TREE_INT_CST_LOW (arg1) == max_lo)
12921 switch (code)
12923 case GT_EXPR:
12924 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12926 case GE_EXPR:
12927 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12929 case LE_EXPR:
12930 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12932 case LT_EXPR:
12933 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
12935 /* The GE_EXPR and LT_EXPR cases above are not normally
12936 reached because of previous transformations. */
12938 default:
12939 break;
12941 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12942 == max_hi
12943 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
12944 switch (code)
12946 case GT_EXPR:
12947 arg1 = const_binop (PLUS_EXPR, arg1,
12948 build_int_cst (TREE_TYPE (arg1), 1));
12949 return fold_build2_loc (loc, EQ_EXPR, type,
12950 fold_convert_loc (loc,
12951 TREE_TYPE (arg1), arg0),
12952 arg1);
12953 case LE_EXPR:
12954 arg1 = const_binop (PLUS_EXPR, arg1,
12955 build_int_cst (TREE_TYPE (arg1), 1));
12956 return fold_build2_loc (loc, NE_EXPR, type,
12957 fold_convert_loc (loc, TREE_TYPE (arg1),
12958 arg0),
12959 arg1);
12960 default:
12961 break;
12963 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12964 == min_hi
12965 && TREE_INT_CST_LOW (arg1) == min_lo)
12966 switch (code)
12968 case LT_EXPR:
12969 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12971 case LE_EXPR:
12972 return fold_build2_loc (loc, EQ_EXPR, type, op0, op1);
12974 case GE_EXPR:
12975 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12977 case GT_EXPR:
12978 return fold_build2_loc (loc, NE_EXPR, type, op0, op1);
12980 default:
12981 break;
12983 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12984 == min_hi
12985 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
12986 switch (code)
12988 case GE_EXPR:
12989 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node);
12990 return fold_build2_loc (loc, NE_EXPR, type,
12991 fold_convert_loc (loc,
12992 TREE_TYPE (arg1), arg0),
12993 arg1);
12994 case LT_EXPR:
12995 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node);
12996 return fold_build2_loc (loc, EQ_EXPR, type,
12997 fold_convert_loc (loc, TREE_TYPE (arg1),
12998 arg0),
12999 arg1);
13000 default:
13001 break;
13004 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
13005 && TREE_INT_CST_LOW (arg1) == signed_max_lo
13006 && TYPE_UNSIGNED (arg1_type)
13007 /* We will flip the signedness of the comparison operator
13008 associated with the mode of arg1, so the sign bit is
13009 specified by this mode. Check that arg1 is the signed
13010 max associated with this sign bit. */
13011 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
13012 /* signed_type does not work on pointer types. */
13013 && INTEGRAL_TYPE_P (arg1_type))
13015 /* The following case also applies to X < signed_max+1
13016 and X >= signed_max+1 because previous transformations. */
13017 if (code == LE_EXPR || code == GT_EXPR)
13019 tree st;
13020 st = signed_type_for (TREE_TYPE (arg1));
13021 return fold_build2_loc (loc,
13022 code == LE_EXPR ? GE_EXPR : LT_EXPR,
13023 type, fold_convert_loc (loc, st, arg0),
13024 build_int_cst (st, 0));
13030 /* If we are comparing an ABS_EXPR with a constant, we can
13031 convert all the cases into explicit comparisons, but they may
13032 well not be faster than doing the ABS and one comparison.
13033 But ABS (X) <= C is a range comparison, which becomes a subtraction
13034 and a comparison, and is probably faster. */
13035 if (code == LE_EXPR
13036 && TREE_CODE (arg1) == INTEGER_CST
13037 && TREE_CODE (arg0) == ABS_EXPR
13038 && ! TREE_SIDE_EFFECTS (arg0)
13039 && (0 != (tem = negate_expr (arg1)))
13040 && TREE_CODE (tem) == INTEGER_CST
13041 && !TREE_OVERFLOW (tem))
13042 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13043 build2 (GE_EXPR, type,
13044 TREE_OPERAND (arg0, 0), tem),
13045 build2 (LE_EXPR, type,
13046 TREE_OPERAND (arg0, 0), arg1));
13048 /* Convert ABS_EXPR<x> >= 0 to true. */
13049 strict_overflow_p = false;
13050 if (code == GE_EXPR
13051 && (integer_zerop (arg1)
13052 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
13053 && real_zerop (arg1)))
13054 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13056 if (strict_overflow_p)
13057 fold_overflow_warning (("assuming signed overflow does not occur "
13058 "when simplifying comparison of "
13059 "absolute value and zero"),
13060 WARN_STRICT_OVERFLOW_CONDITIONAL);
13061 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
13064 /* Convert ABS_EXPR<x> < 0 to false. */
13065 strict_overflow_p = false;
13066 if (code == LT_EXPR
13067 && (integer_zerop (arg1) || real_zerop (arg1))
13068 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13070 if (strict_overflow_p)
13071 fold_overflow_warning (("assuming signed overflow does not occur "
13072 "when simplifying comparison of "
13073 "absolute value and zero"),
13074 WARN_STRICT_OVERFLOW_CONDITIONAL);
13075 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
13078 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13079 and similarly for >= into !=. */
13080 if ((code == LT_EXPR || code == GE_EXPR)
13081 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13082 && TREE_CODE (arg1) == LSHIFT_EXPR
13083 && integer_onep (TREE_OPERAND (arg1, 0)))
13084 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13085 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13086 TREE_OPERAND (arg1, 1)),
13087 build_int_cst (TREE_TYPE (arg0), 0));
13089 if ((code == LT_EXPR || code == GE_EXPR)
13090 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13091 && CONVERT_EXPR_P (arg1)
13092 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
13093 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
13095 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13096 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
13097 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13098 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
13099 build_int_cst (TREE_TYPE (arg0), 0));
13102 return NULL_TREE;
13104 case UNORDERED_EXPR:
13105 case ORDERED_EXPR:
13106 case UNLT_EXPR:
13107 case UNLE_EXPR:
13108 case UNGT_EXPR:
13109 case UNGE_EXPR:
13110 case UNEQ_EXPR:
13111 case LTGT_EXPR:
13112 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
13114 t1 = fold_relational_const (code, type, arg0, arg1);
13115 if (t1 != NULL_TREE)
13116 return t1;
13119 /* If the first operand is NaN, the result is constant. */
13120 if (TREE_CODE (arg0) == REAL_CST
13121 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
13122 && (code != LTGT_EXPR || ! flag_trapping_math))
13124 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13125 ? integer_zero_node
13126 : integer_one_node;
13127 return omit_one_operand_loc (loc, type, t1, arg1);
13130 /* If the second operand is NaN, the result is constant. */
13131 if (TREE_CODE (arg1) == REAL_CST
13132 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
13133 && (code != LTGT_EXPR || ! flag_trapping_math))
13135 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13136 ? integer_zero_node
13137 : integer_one_node;
13138 return omit_one_operand_loc (loc, type, t1, arg0);
13141 /* Simplify unordered comparison of something with itself. */
13142 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
13143 && operand_equal_p (arg0, arg1, 0))
13144 return constant_boolean_node (1, type);
13146 if (code == LTGT_EXPR
13147 && !flag_trapping_math
13148 && operand_equal_p (arg0, arg1, 0))
13149 return constant_boolean_node (0, type);
13151 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13153 tree targ0 = strip_float_extensions (arg0);
13154 tree targ1 = strip_float_extensions (arg1);
13155 tree newtype = TREE_TYPE (targ0);
13157 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
13158 newtype = TREE_TYPE (targ1);
13160 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
13161 return fold_build2_loc (loc, code, type,
13162 fold_convert_loc (loc, newtype, targ0),
13163 fold_convert_loc (loc, newtype, targ1));
13166 return NULL_TREE;
13168 case COMPOUND_EXPR:
13169 /* When pedantic, a compound expression can be neither an lvalue
13170 nor an integer constant expression. */
13171 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
13172 return NULL_TREE;
13173 /* Don't let (0, 0) be null pointer constant. */
13174 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
13175 : fold_convert_loc (loc, type, arg1);
13176 return pedantic_non_lvalue_loc (loc, tem);
13178 case COMPLEX_EXPR:
13179 if ((TREE_CODE (arg0) == REAL_CST
13180 && TREE_CODE (arg1) == REAL_CST)
13181 || (TREE_CODE (arg0) == INTEGER_CST
13182 && TREE_CODE (arg1) == INTEGER_CST))
13183 return build_complex (type, arg0, arg1);
13184 if (TREE_CODE (arg0) == REALPART_EXPR
13185 && TREE_CODE (arg1) == IMAGPART_EXPR
13186 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (arg0, 0)))
13187 == TYPE_MAIN_VARIANT (type))
13188 && operand_equal_p (TREE_OPERAND (arg0, 0),
13189 TREE_OPERAND (arg1, 0), 0))
13190 return omit_one_operand_loc (loc, type, TREE_OPERAND (arg0, 0),
13191 TREE_OPERAND (arg1, 0));
13192 return NULL_TREE;
13194 case ASSERT_EXPR:
13195 /* An ASSERT_EXPR should never be passed to fold_binary. */
13196 gcc_unreachable ();
13198 default:
13199 return NULL_TREE;
13200 } /* switch (code) */
13203 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
13204 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
13205 of GOTO_EXPR. */
13207 static tree
13208 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
13210 switch (TREE_CODE (*tp))
13212 case LABEL_EXPR:
13213 return *tp;
13215 case GOTO_EXPR:
13216 *walk_subtrees = 0;
13218 /* ... fall through ... */
13220 default:
13221 return NULL_TREE;
13225 /* Return whether the sub-tree ST contains a label which is accessible from
13226 outside the sub-tree. */
13228 static bool
13229 contains_label_p (tree st)
13231 return
13232 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
13235 /* Fold a ternary expression of code CODE and type TYPE with operands
13236 OP0, OP1, and OP2. Return the folded expression if folding is
13237 successful. Otherwise, return NULL_TREE. */
13239 tree
13240 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
13241 tree op0, tree op1, tree op2)
13243 tree tem;
13244 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
13245 enum tree_code_class kind = TREE_CODE_CLASS (code);
13247 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13248 && TREE_CODE_LENGTH (code) == 3);
13250 /* Strip any conversions that don't change the mode. This is safe
13251 for every expression, except for a comparison expression because
13252 its signedness is derived from its operands. So, in the latter
13253 case, only strip conversions that don't change the signedness.
13255 Note that this is done as an internal manipulation within the
13256 constant folder, in order to find the simplest representation of
13257 the arguments so that their form can be studied. In any cases,
13258 the appropriate type conversions should be put back in the tree
13259 that will get out of the constant folder. */
13260 if (op0)
13262 arg0 = op0;
13263 STRIP_NOPS (arg0);
13266 if (op1)
13268 arg1 = op1;
13269 STRIP_NOPS (arg1);
13272 if (op2)
13274 arg2 = op2;
13275 STRIP_NOPS (arg2);
13278 switch (code)
13280 case COMPONENT_REF:
13281 if (TREE_CODE (arg0) == CONSTRUCTOR
13282 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13284 unsigned HOST_WIDE_INT idx;
13285 tree field, value;
13286 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13287 if (field == arg1)
13288 return value;
13290 return NULL_TREE;
13292 case COND_EXPR:
13293 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13294 so all simple results must be passed through pedantic_non_lvalue. */
13295 if (TREE_CODE (arg0) == INTEGER_CST)
13297 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13298 tem = integer_zerop (arg0) ? op2 : op1;
13299 /* Only optimize constant conditions when the selected branch
13300 has the same type as the COND_EXPR. This avoids optimizing
13301 away "c ? x : throw", where the throw has a void type.
13302 Avoid throwing away that operand which contains label. */
13303 if ((!TREE_SIDE_EFFECTS (unused_op)
13304 || !contains_label_p (unused_op))
13305 && (! VOID_TYPE_P (TREE_TYPE (tem))
13306 || VOID_TYPE_P (type)))
13307 return pedantic_non_lvalue_loc (loc, tem);
13308 return NULL_TREE;
13310 if (operand_equal_p (arg1, op2, 0))
13311 return pedantic_omit_one_operand_loc (loc, type, arg1, arg0);
13313 /* If we have A op B ? A : C, we may be able to convert this to a
13314 simpler expression, depending on the operation and the values
13315 of B and C. Signed zeros prevent all of these transformations,
13316 for reasons given above each one.
13318 Also try swapping the arguments and inverting the conditional. */
13319 if (COMPARISON_CLASS_P (arg0)
13320 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13321 arg1, TREE_OPERAND (arg0, 1))
13322 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
13324 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
13325 if (tem)
13326 return tem;
13329 if (COMPARISON_CLASS_P (arg0)
13330 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13331 op2,
13332 TREE_OPERAND (arg0, 1))
13333 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
13335 location_t loc0 = expr_location_or (arg0, loc);
13336 tem = fold_truth_not_expr (loc0, arg0);
13337 if (tem && COMPARISON_CLASS_P (tem))
13339 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
13340 if (tem)
13341 return tem;
13345 /* If the second operand is simpler than the third, swap them
13346 since that produces better jump optimization results. */
13347 if (truth_value_p (TREE_CODE (arg0))
13348 && tree_swap_operands_p (op1, op2, false))
13350 location_t loc0 = expr_location_or (arg0, loc);
13351 /* See if this can be inverted. If it can't, possibly because
13352 it was a floating-point inequality comparison, don't do
13353 anything. */
13354 tem = fold_truth_not_expr (loc0, arg0);
13355 if (tem)
13356 return fold_build3_loc (loc, code, type, tem, op2, op1);
13359 /* Convert A ? 1 : 0 to simply A. */
13360 if (integer_onep (op1)
13361 && integer_zerop (op2)
13362 /* If we try to convert OP0 to our type, the
13363 call to fold will try to move the conversion inside
13364 a COND, which will recurse. In that case, the COND_EXPR
13365 is probably the best choice, so leave it alone. */
13366 && type == TREE_TYPE (arg0))
13367 return pedantic_non_lvalue_loc (loc, arg0);
13369 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13370 over COND_EXPR in cases such as floating point comparisons. */
13371 if (integer_zerop (op1)
13372 && integer_onep (op2)
13373 && truth_value_p (TREE_CODE (arg0)))
13374 return pedantic_non_lvalue_loc (loc,
13375 fold_convert_loc (loc, type,
13376 invert_truthvalue_loc (loc,
13377 arg0)));
13379 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13380 if (TREE_CODE (arg0) == LT_EXPR
13381 && integer_zerop (TREE_OPERAND (arg0, 1))
13382 && integer_zerop (op2)
13383 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
13385 /* sign_bit_p only checks ARG1 bits within A's precision.
13386 If <sign bit of A> has wider type than A, bits outside
13387 of A's precision in <sign bit of A> need to be checked.
13388 If they are all 0, this optimization needs to be done
13389 in unsigned A's type, if they are all 1 in signed A's type,
13390 otherwise this can't be done. */
13391 if (TYPE_PRECISION (TREE_TYPE (tem))
13392 < TYPE_PRECISION (TREE_TYPE (arg1))
13393 && TYPE_PRECISION (TREE_TYPE (tem))
13394 < TYPE_PRECISION (type))
13396 unsigned HOST_WIDE_INT mask_lo;
13397 HOST_WIDE_INT mask_hi;
13398 int inner_width, outer_width;
13399 tree tem_type;
13401 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13402 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13403 if (outer_width > TYPE_PRECISION (type))
13404 outer_width = TYPE_PRECISION (type);
13406 if (outer_width > HOST_BITS_PER_WIDE_INT)
13408 mask_hi = ((unsigned HOST_WIDE_INT) -1
13409 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
13410 mask_lo = -1;
13412 else
13414 mask_hi = 0;
13415 mask_lo = ((unsigned HOST_WIDE_INT) -1
13416 >> (HOST_BITS_PER_WIDE_INT - outer_width));
13418 if (inner_width > HOST_BITS_PER_WIDE_INT)
13420 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
13421 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13422 mask_lo = 0;
13424 else
13425 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
13426 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13428 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
13429 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
13431 tem_type = signed_type_for (TREE_TYPE (tem));
13432 tem = fold_convert_loc (loc, tem_type, tem);
13434 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
13435 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
13437 tem_type = unsigned_type_for (TREE_TYPE (tem));
13438 tem = fold_convert_loc (loc, tem_type, tem);
13440 else
13441 tem = NULL;
13444 if (tem)
13445 return
13446 fold_convert_loc (loc, type,
13447 fold_build2_loc (loc, BIT_AND_EXPR,
13448 TREE_TYPE (tem), tem,
13449 fold_convert_loc (loc,
13450 TREE_TYPE (tem),
13451 arg1)));
13454 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13455 already handled above. */
13456 if (TREE_CODE (arg0) == BIT_AND_EXPR
13457 && integer_onep (TREE_OPERAND (arg0, 1))
13458 && integer_zerop (op2)
13459 && integer_pow2p (arg1))
13461 tree tem = TREE_OPERAND (arg0, 0);
13462 STRIP_NOPS (tem);
13463 if (TREE_CODE (tem) == RSHIFT_EXPR
13464 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
13465 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13466 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
13467 return fold_build2_loc (loc, BIT_AND_EXPR, type,
13468 TREE_OPERAND (tem, 0), arg1);
13471 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13472 is probably obsolete because the first operand should be a
13473 truth value (that's why we have the two cases above), but let's
13474 leave it in until we can confirm this for all front-ends. */
13475 if (integer_zerop (op2)
13476 && TREE_CODE (arg0) == NE_EXPR
13477 && integer_zerop (TREE_OPERAND (arg0, 1))
13478 && integer_pow2p (arg1)
13479 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13480 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13481 arg1, OEP_ONLY_CONST))
13482 return pedantic_non_lvalue_loc (loc,
13483 fold_convert_loc (loc, type,
13484 TREE_OPERAND (arg0, 0)));
13486 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13487 if (integer_zerop (op2)
13488 && truth_value_p (TREE_CODE (arg0))
13489 && truth_value_p (TREE_CODE (arg1)))
13490 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13491 fold_convert_loc (loc, type, arg0),
13492 arg1);
13494 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13495 if (integer_onep (op2)
13496 && truth_value_p (TREE_CODE (arg0))
13497 && truth_value_p (TREE_CODE (arg1)))
13499 location_t loc0 = expr_location_or (arg0, loc);
13500 /* Only perform transformation if ARG0 is easily inverted. */
13501 tem = fold_truth_not_expr (loc0, arg0);
13502 if (tem)
13503 return fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
13504 fold_convert_loc (loc, type, tem),
13505 arg1);
13508 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13509 if (integer_zerop (arg1)
13510 && truth_value_p (TREE_CODE (arg0))
13511 && truth_value_p (TREE_CODE (op2)))
13513 location_t loc0 = expr_location_or (arg0, loc);
13514 /* Only perform transformation if ARG0 is easily inverted. */
13515 tem = fold_truth_not_expr (loc0, arg0);
13516 if (tem)
13517 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
13518 fold_convert_loc (loc, type, tem),
13519 op2);
13522 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13523 if (integer_onep (arg1)
13524 && truth_value_p (TREE_CODE (arg0))
13525 && truth_value_p (TREE_CODE (op2)))
13526 return fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
13527 fold_convert_loc (loc, type, arg0),
13528 op2);
13530 return NULL_TREE;
13532 case CALL_EXPR:
13533 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13534 of fold_ternary on them. */
13535 gcc_unreachable ();
13537 case BIT_FIELD_REF:
13538 if ((TREE_CODE (arg0) == VECTOR_CST
13539 || (TREE_CODE (arg0) == CONSTRUCTOR && TREE_CONSTANT (arg0)))
13540 && type == TREE_TYPE (TREE_TYPE (arg0)))
13542 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
13543 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
13545 if (width != 0
13546 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
13547 && (idx % width) == 0
13548 && (idx = idx / width)
13549 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13551 tree elements = NULL_TREE;
13553 if (TREE_CODE (arg0) == VECTOR_CST)
13554 elements = TREE_VECTOR_CST_ELTS (arg0);
13555 else
13557 unsigned HOST_WIDE_INT idx;
13558 tree value;
13560 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0), idx, value)
13561 elements = tree_cons (NULL_TREE, value, elements);
13563 while (idx-- > 0 && elements)
13564 elements = TREE_CHAIN (elements);
13565 if (elements)
13566 return TREE_VALUE (elements);
13567 else
13568 return build_zero_cst (type);
13572 /* A bit-field-ref that referenced the full argument can be stripped. */
13573 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
13574 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_low_cst (arg1, 1)
13575 && integer_zerop (op2))
13576 return fold_convert_loc (loc, type, arg0);
13578 return NULL_TREE;
13580 case FMA_EXPR:
13581 /* For integers we can decompose the FMA if possible. */
13582 if (TREE_CODE (arg0) == INTEGER_CST
13583 && TREE_CODE (arg1) == INTEGER_CST)
13584 return fold_build2_loc (loc, PLUS_EXPR, type,
13585 const_binop (MULT_EXPR, arg0, arg1), arg2);
13586 if (integer_zerop (arg2))
13587 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
13589 return fold_fma (loc, type, arg0, arg1, arg2);
13591 default:
13592 return NULL_TREE;
13593 } /* switch (code) */
13596 /* Perform constant folding and related simplification of EXPR.
13597 The related simplifications include x*1 => x, x*0 => 0, etc.,
13598 and application of the associative law.
13599 NOP_EXPR conversions may be removed freely (as long as we
13600 are careful not to change the type of the overall expression).
13601 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13602 but we can constant-fold them if they have constant operands. */
13604 #ifdef ENABLE_FOLD_CHECKING
13605 # define fold(x) fold_1 (x)
13606 static tree fold_1 (tree);
13607 static
13608 #endif
13609 tree
13610 fold (tree expr)
13612 const tree t = expr;
13613 enum tree_code code = TREE_CODE (t);
13614 enum tree_code_class kind = TREE_CODE_CLASS (code);
13615 tree tem;
13616 location_t loc = EXPR_LOCATION (expr);
13618 /* Return right away if a constant. */
13619 if (kind == tcc_constant)
13620 return t;
13622 /* CALL_EXPR-like objects with variable numbers of operands are
13623 treated specially. */
13624 if (kind == tcc_vl_exp)
13626 if (code == CALL_EXPR)
13628 tem = fold_call_expr (loc, expr, false);
13629 return tem ? tem : expr;
13631 return expr;
13634 if (IS_EXPR_CODE_CLASS (kind))
13636 tree type = TREE_TYPE (t);
13637 tree op0, op1, op2;
13639 switch (TREE_CODE_LENGTH (code))
13641 case 1:
13642 op0 = TREE_OPERAND (t, 0);
13643 tem = fold_unary_loc (loc, code, type, op0);
13644 return tem ? tem : expr;
13645 case 2:
13646 op0 = TREE_OPERAND (t, 0);
13647 op1 = TREE_OPERAND (t, 1);
13648 tem = fold_binary_loc (loc, code, type, op0, op1);
13649 return tem ? tem : expr;
13650 case 3:
13651 op0 = TREE_OPERAND (t, 0);
13652 op1 = TREE_OPERAND (t, 1);
13653 op2 = TREE_OPERAND (t, 2);
13654 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13655 return tem ? tem : expr;
13656 default:
13657 break;
13661 switch (code)
13663 case ARRAY_REF:
13665 tree op0 = TREE_OPERAND (t, 0);
13666 tree op1 = TREE_OPERAND (t, 1);
13668 if (TREE_CODE (op1) == INTEGER_CST
13669 && TREE_CODE (op0) == CONSTRUCTOR
13670 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13672 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (op0);
13673 unsigned HOST_WIDE_INT end = VEC_length (constructor_elt, elts);
13674 unsigned HOST_WIDE_INT begin = 0;
13676 /* Find a matching index by means of a binary search. */
13677 while (begin != end)
13679 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
13680 tree index = VEC_index (constructor_elt, elts, middle)->index;
13682 if (TREE_CODE (index) == INTEGER_CST
13683 && tree_int_cst_lt (index, op1))
13684 begin = middle + 1;
13685 else if (TREE_CODE (index) == INTEGER_CST
13686 && tree_int_cst_lt (op1, index))
13687 end = middle;
13688 else if (TREE_CODE (index) == RANGE_EXPR
13689 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
13690 begin = middle + 1;
13691 else if (TREE_CODE (index) == RANGE_EXPR
13692 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
13693 end = middle;
13694 else
13695 return VEC_index (constructor_elt, elts, middle)->value;
13699 return t;
13702 case CONST_DECL:
13703 return fold (DECL_INITIAL (t));
13705 default:
13706 return t;
13707 } /* switch (code) */
13710 #ifdef ENABLE_FOLD_CHECKING
13711 #undef fold
13713 static void fold_checksum_tree (const_tree, struct md5_ctx *, htab_t);
13714 static void fold_check_failed (const_tree, const_tree);
13715 void print_fold_checksum (const_tree);
13717 /* When --enable-checking=fold, compute a digest of expr before
13718 and after actual fold call to see if fold did not accidentally
13719 change original expr. */
13721 tree
13722 fold (tree expr)
13724 tree ret;
13725 struct md5_ctx ctx;
13726 unsigned char checksum_before[16], checksum_after[16];
13727 htab_t ht;
13729 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13730 md5_init_ctx (&ctx);
13731 fold_checksum_tree (expr, &ctx, ht);
13732 md5_finish_ctx (&ctx, checksum_before);
13733 htab_empty (ht);
13735 ret = fold_1 (expr);
13737 md5_init_ctx (&ctx);
13738 fold_checksum_tree (expr, &ctx, ht);
13739 md5_finish_ctx (&ctx, checksum_after);
13740 htab_delete (ht);
13742 if (memcmp (checksum_before, checksum_after, 16))
13743 fold_check_failed (expr, ret);
13745 return ret;
13748 void
13749 print_fold_checksum (const_tree expr)
13751 struct md5_ctx ctx;
13752 unsigned char checksum[16], cnt;
13753 htab_t ht;
13755 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13756 md5_init_ctx (&ctx);
13757 fold_checksum_tree (expr, &ctx, ht);
13758 md5_finish_ctx (&ctx, checksum);
13759 htab_delete (ht);
13760 for (cnt = 0; cnt < 16; ++cnt)
13761 fprintf (stderr, "%02x", checksum[cnt]);
13762 putc ('\n', stderr);
13765 static void
13766 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13768 internal_error ("fold check: original tree changed by fold");
13771 static void
13772 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, htab_t ht)
13774 void **slot;
13775 enum tree_code code;
13776 union tree_node buf;
13777 int i, len;
13779 recursive_label:
13781 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
13782 <= sizeof (struct tree_function_decl))
13783 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
13784 if (expr == NULL)
13785 return;
13786 slot = (void **) htab_find_slot (ht, expr, INSERT);
13787 if (*slot != NULL)
13788 return;
13789 *slot = CONST_CAST_TREE (expr);
13790 code = TREE_CODE (expr);
13791 if (TREE_CODE_CLASS (code) == tcc_declaration
13792 && DECL_ASSEMBLER_NAME_SET_P (expr))
13794 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13795 memcpy ((char *) &buf, expr, tree_size (expr));
13796 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13797 expr = (tree) &buf;
13799 else if (TREE_CODE_CLASS (code) == tcc_type
13800 && (TYPE_POINTER_TO (expr)
13801 || TYPE_REFERENCE_TO (expr)
13802 || TYPE_CACHED_VALUES_P (expr)
13803 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13804 || TYPE_NEXT_VARIANT (expr)))
13806 /* Allow these fields to be modified. */
13807 tree tmp;
13808 memcpy ((char *) &buf, expr, tree_size (expr));
13809 expr = tmp = (tree) &buf;
13810 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13811 TYPE_POINTER_TO (tmp) = NULL;
13812 TYPE_REFERENCE_TO (tmp) = NULL;
13813 TYPE_NEXT_VARIANT (tmp) = NULL;
13814 if (TYPE_CACHED_VALUES_P (tmp))
13816 TYPE_CACHED_VALUES_P (tmp) = 0;
13817 TYPE_CACHED_VALUES (tmp) = NULL;
13820 md5_process_bytes (expr, tree_size (expr), ctx);
13821 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13822 if (TREE_CODE_CLASS (code) != tcc_type
13823 && TREE_CODE_CLASS (code) != tcc_declaration
13824 && code != TREE_LIST
13825 && code != SSA_NAME
13826 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
13827 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13828 switch (TREE_CODE_CLASS (code))
13830 case tcc_constant:
13831 switch (code)
13833 case STRING_CST:
13834 md5_process_bytes (TREE_STRING_POINTER (expr),
13835 TREE_STRING_LENGTH (expr), ctx);
13836 break;
13837 case COMPLEX_CST:
13838 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13839 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13840 break;
13841 case VECTOR_CST:
13842 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
13843 break;
13844 default:
13845 break;
13847 break;
13848 case tcc_exceptional:
13849 switch (code)
13851 case TREE_LIST:
13852 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13853 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13854 expr = TREE_CHAIN (expr);
13855 goto recursive_label;
13856 break;
13857 case TREE_VEC:
13858 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13859 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13860 break;
13861 default:
13862 break;
13864 break;
13865 case tcc_expression:
13866 case tcc_reference:
13867 case tcc_comparison:
13868 case tcc_unary:
13869 case tcc_binary:
13870 case tcc_statement:
13871 case tcc_vl_exp:
13872 len = TREE_OPERAND_LENGTH (expr);
13873 for (i = 0; i < len; ++i)
13874 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13875 break;
13876 case tcc_declaration:
13877 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13878 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13879 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13881 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13882 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13883 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13884 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13885 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13887 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
13888 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
13890 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13892 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13893 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13894 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
13896 break;
13897 case tcc_type:
13898 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13899 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13900 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13901 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13902 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13903 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13904 if (INTEGRAL_TYPE_P (expr)
13905 || SCALAR_FLOAT_TYPE_P (expr))
13907 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13908 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13910 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13911 if (TREE_CODE (expr) == RECORD_TYPE
13912 || TREE_CODE (expr) == UNION_TYPE
13913 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13914 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13915 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13916 break;
13917 default:
13918 break;
13922 /* Helper function for outputting the checksum of a tree T. When
13923 debugging with gdb, you can "define mynext" to be "next" followed
13924 by "call debug_fold_checksum (op0)", then just trace down till the
13925 outputs differ. */
13927 DEBUG_FUNCTION void
13928 debug_fold_checksum (const_tree t)
13930 int i;
13931 unsigned char checksum[16];
13932 struct md5_ctx ctx;
13933 htab_t ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13935 md5_init_ctx (&ctx);
13936 fold_checksum_tree (t, &ctx, ht);
13937 md5_finish_ctx (&ctx, checksum);
13938 htab_empty (ht);
13940 for (i = 0; i < 16; i++)
13941 fprintf (stderr, "%d ", checksum[i]);
13943 fprintf (stderr, "\n");
13946 #endif
13948 /* Fold a unary tree expression with code CODE of type TYPE with an
13949 operand OP0. LOC is the location of the resulting expression.
13950 Return a folded expression if successful. Otherwise, return a tree
13951 expression with code CODE of type TYPE with an operand OP0. */
13953 tree
13954 fold_build1_stat_loc (location_t loc,
13955 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13957 tree tem;
13958 #ifdef ENABLE_FOLD_CHECKING
13959 unsigned char checksum_before[16], checksum_after[16];
13960 struct md5_ctx ctx;
13961 htab_t ht;
13963 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13964 md5_init_ctx (&ctx);
13965 fold_checksum_tree (op0, &ctx, ht);
13966 md5_finish_ctx (&ctx, checksum_before);
13967 htab_empty (ht);
13968 #endif
13970 tem = fold_unary_loc (loc, code, type, op0);
13971 if (!tem)
13972 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
13974 #ifdef ENABLE_FOLD_CHECKING
13975 md5_init_ctx (&ctx);
13976 fold_checksum_tree (op0, &ctx, ht);
13977 md5_finish_ctx (&ctx, checksum_after);
13978 htab_delete (ht);
13980 if (memcmp (checksum_before, checksum_after, 16))
13981 fold_check_failed (op0, tem);
13982 #endif
13983 return tem;
13986 /* Fold a binary tree expression with code CODE of type TYPE with
13987 operands OP0 and OP1. LOC is the location of the resulting
13988 expression. Return a folded expression if successful. Otherwise,
13989 return a tree expression with code CODE of type TYPE with operands
13990 OP0 and OP1. */
13992 tree
13993 fold_build2_stat_loc (location_t loc,
13994 enum tree_code code, tree type, tree op0, tree op1
13995 MEM_STAT_DECL)
13997 tree tem;
13998 #ifdef ENABLE_FOLD_CHECKING
13999 unsigned char checksum_before_op0[16],
14000 checksum_before_op1[16],
14001 checksum_after_op0[16],
14002 checksum_after_op1[16];
14003 struct md5_ctx ctx;
14004 htab_t ht;
14006 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14007 md5_init_ctx (&ctx);
14008 fold_checksum_tree (op0, &ctx, ht);
14009 md5_finish_ctx (&ctx, checksum_before_op0);
14010 htab_empty (ht);
14012 md5_init_ctx (&ctx);
14013 fold_checksum_tree (op1, &ctx, ht);
14014 md5_finish_ctx (&ctx, checksum_before_op1);
14015 htab_empty (ht);
14016 #endif
14018 tem = fold_binary_loc (loc, code, type, op0, op1);
14019 if (!tem)
14020 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
14022 #ifdef ENABLE_FOLD_CHECKING
14023 md5_init_ctx (&ctx);
14024 fold_checksum_tree (op0, &ctx, ht);
14025 md5_finish_ctx (&ctx, checksum_after_op0);
14026 htab_empty (ht);
14028 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14029 fold_check_failed (op0, tem);
14031 md5_init_ctx (&ctx);
14032 fold_checksum_tree (op1, &ctx, ht);
14033 md5_finish_ctx (&ctx, checksum_after_op1);
14034 htab_delete (ht);
14036 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14037 fold_check_failed (op1, tem);
14038 #endif
14039 return tem;
14042 /* Fold a ternary tree expression with code CODE of type TYPE with
14043 operands OP0, OP1, and OP2. Return a folded expression if
14044 successful. Otherwise, return a tree expression with code CODE of
14045 type TYPE with operands OP0, OP1, and OP2. */
14047 tree
14048 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
14049 tree op0, tree op1, tree op2 MEM_STAT_DECL)
14051 tree tem;
14052 #ifdef ENABLE_FOLD_CHECKING
14053 unsigned char checksum_before_op0[16],
14054 checksum_before_op1[16],
14055 checksum_before_op2[16],
14056 checksum_after_op0[16],
14057 checksum_after_op1[16],
14058 checksum_after_op2[16];
14059 struct md5_ctx ctx;
14060 htab_t ht;
14062 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14063 md5_init_ctx (&ctx);
14064 fold_checksum_tree (op0, &ctx, ht);
14065 md5_finish_ctx (&ctx, checksum_before_op0);
14066 htab_empty (ht);
14068 md5_init_ctx (&ctx);
14069 fold_checksum_tree (op1, &ctx, ht);
14070 md5_finish_ctx (&ctx, checksum_before_op1);
14071 htab_empty (ht);
14073 md5_init_ctx (&ctx);
14074 fold_checksum_tree (op2, &ctx, ht);
14075 md5_finish_ctx (&ctx, checksum_before_op2);
14076 htab_empty (ht);
14077 #endif
14079 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14080 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
14081 if (!tem)
14082 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
14084 #ifdef ENABLE_FOLD_CHECKING
14085 md5_init_ctx (&ctx);
14086 fold_checksum_tree (op0, &ctx, ht);
14087 md5_finish_ctx (&ctx, checksum_after_op0);
14088 htab_empty (ht);
14090 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14091 fold_check_failed (op0, tem);
14093 md5_init_ctx (&ctx);
14094 fold_checksum_tree (op1, &ctx, ht);
14095 md5_finish_ctx (&ctx, checksum_after_op1);
14096 htab_empty (ht);
14098 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14099 fold_check_failed (op1, tem);
14101 md5_init_ctx (&ctx);
14102 fold_checksum_tree (op2, &ctx, ht);
14103 md5_finish_ctx (&ctx, checksum_after_op2);
14104 htab_delete (ht);
14106 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14107 fold_check_failed (op2, tem);
14108 #endif
14109 return tem;
14112 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14113 arguments in ARGARRAY, and a null static chain.
14114 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14115 of type TYPE from the given operands as constructed by build_call_array. */
14117 tree
14118 fold_build_call_array_loc (location_t loc, tree type, tree fn,
14119 int nargs, tree *argarray)
14121 tree tem;
14122 #ifdef ENABLE_FOLD_CHECKING
14123 unsigned char checksum_before_fn[16],
14124 checksum_before_arglist[16],
14125 checksum_after_fn[16],
14126 checksum_after_arglist[16];
14127 struct md5_ctx ctx;
14128 htab_t ht;
14129 int i;
14131 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14132 md5_init_ctx (&ctx);
14133 fold_checksum_tree (fn, &ctx, ht);
14134 md5_finish_ctx (&ctx, checksum_before_fn);
14135 htab_empty (ht);
14137 md5_init_ctx (&ctx);
14138 for (i = 0; i < nargs; i++)
14139 fold_checksum_tree (argarray[i], &ctx, ht);
14140 md5_finish_ctx (&ctx, checksum_before_arglist);
14141 htab_empty (ht);
14142 #endif
14144 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
14146 #ifdef ENABLE_FOLD_CHECKING
14147 md5_init_ctx (&ctx);
14148 fold_checksum_tree (fn, &ctx, ht);
14149 md5_finish_ctx (&ctx, checksum_after_fn);
14150 htab_empty (ht);
14152 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14153 fold_check_failed (fn, tem);
14155 md5_init_ctx (&ctx);
14156 for (i = 0; i < nargs; i++)
14157 fold_checksum_tree (argarray[i], &ctx, ht);
14158 md5_finish_ctx (&ctx, checksum_after_arglist);
14159 htab_delete (ht);
14161 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14162 fold_check_failed (NULL_TREE, tem);
14163 #endif
14164 return tem;
14167 /* Perform constant folding and related simplification of initializer
14168 expression EXPR. These behave identically to "fold_buildN" but ignore
14169 potential run-time traps and exceptions that fold must preserve. */
14171 #define START_FOLD_INIT \
14172 int saved_signaling_nans = flag_signaling_nans;\
14173 int saved_trapping_math = flag_trapping_math;\
14174 int saved_rounding_math = flag_rounding_math;\
14175 int saved_trapv = flag_trapv;\
14176 int saved_folding_initializer = folding_initializer;\
14177 flag_signaling_nans = 0;\
14178 flag_trapping_math = 0;\
14179 flag_rounding_math = 0;\
14180 flag_trapv = 0;\
14181 folding_initializer = 1;
14183 #define END_FOLD_INIT \
14184 flag_signaling_nans = saved_signaling_nans;\
14185 flag_trapping_math = saved_trapping_math;\
14186 flag_rounding_math = saved_rounding_math;\
14187 flag_trapv = saved_trapv;\
14188 folding_initializer = saved_folding_initializer;
14190 tree
14191 fold_build1_initializer_loc (location_t loc, enum tree_code code,
14192 tree type, tree op)
14194 tree result;
14195 START_FOLD_INIT;
14197 result = fold_build1_loc (loc, code, type, op);
14199 END_FOLD_INIT;
14200 return result;
14203 tree
14204 fold_build2_initializer_loc (location_t loc, enum tree_code code,
14205 tree type, tree op0, tree op1)
14207 tree result;
14208 START_FOLD_INIT;
14210 result = fold_build2_loc (loc, code, type, op0, op1);
14212 END_FOLD_INIT;
14213 return result;
14216 tree
14217 fold_build3_initializer_loc (location_t loc, enum tree_code code,
14218 tree type, tree op0, tree op1, tree op2)
14220 tree result;
14221 START_FOLD_INIT;
14223 result = fold_build3_loc (loc, code, type, op0, op1, op2);
14225 END_FOLD_INIT;
14226 return result;
14229 tree
14230 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
14231 int nargs, tree *argarray)
14233 tree result;
14234 START_FOLD_INIT;
14236 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
14238 END_FOLD_INIT;
14239 return result;
14242 #undef START_FOLD_INIT
14243 #undef END_FOLD_INIT
14245 /* Determine if first argument is a multiple of second argument. Return 0 if
14246 it is not, or we cannot easily determined it to be.
14248 An example of the sort of thing we care about (at this point; this routine
14249 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14250 fold cases do now) is discovering that
14252 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14254 is a multiple of
14256 SAVE_EXPR (J * 8)
14258 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14260 This code also handles discovering that
14262 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14264 is a multiple of 8 so we don't have to worry about dealing with a
14265 possible remainder.
14267 Note that we *look* inside a SAVE_EXPR only to determine how it was
14268 calculated; it is not safe for fold to do much of anything else with the
14269 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14270 at run time. For example, the latter example above *cannot* be implemented
14271 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14272 evaluation time of the original SAVE_EXPR is not necessarily the same at
14273 the time the new expression is evaluated. The only optimization of this
14274 sort that would be valid is changing
14276 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14278 divided by 8 to
14280 SAVE_EXPR (I) * SAVE_EXPR (J)
14282 (where the same SAVE_EXPR (J) is used in the original and the
14283 transformed version). */
14286 multiple_of_p (tree type, const_tree top, const_tree bottom)
14288 if (operand_equal_p (top, bottom, 0))
14289 return 1;
14291 if (TREE_CODE (type) != INTEGER_TYPE)
14292 return 0;
14294 switch (TREE_CODE (top))
14296 case BIT_AND_EXPR:
14297 /* Bitwise and provides a power of two multiple. If the mask is
14298 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14299 if (!integer_pow2p (bottom))
14300 return 0;
14301 /* FALLTHRU */
14303 case MULT_EXPR:
14304 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14305 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14307 case PLUS_EXPR:
14308 case MINUS_EXPR:
14309 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14310 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14312 case LSHIFT_EXPR:
14313 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14315 tree op1, t1;
14317 op1 = TREE_OPERAND (top, 1);
14318 /* const_binop may not detect overflow correctly,
14319 so check for it explicitly here. */
14320 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
14321 > TREE_INT_CST_LOW (op1)
14322 && TREE_INT_CST_HIGH (op1) == 0
14323 && 0 != (t1 = fold_convert (type,
14324 const_binop (LSHIFT_EXPR,
14325 size_one_node,
14326 op1)))
14327 && !TREE_OVERFLOW (t1))
14328 return multiple_of_p (type, t1, bottom);
14330 return 0;
14332 case NOP_EXPR:
14333 /* Can't handle conversions from non-integral or wider integral type. */
14334 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14335 || (TYPE_PRECISION (type)
14336 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14337 return 0;
14339 /* .. fall through ... */
14341 case SAVE_EXPR:
14342 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
14344 case COND_EXPR:
14345 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
14346 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
14348 case INTEGER_CST:
14349 if (TREE_CODE (bottom) != INTEGER_CST
14350 || integer_zerop (bottom)
14351 || (TYPE_UNSIGNED (type)
14352 && (tree_int_cst_sgn (top) < 0
14353 || tree_int_cst_sgn (bottom) < 0)))
14354 return 0;
14355 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
14356 top, bottom));
14358 default:
14359 return 0;
14363 /* Return true if CODE or TYPE is known to be non-negative. */
14365 static bool
14366 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14368 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14369 && truth_value_p (code))
14370 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14371 have a signed:1 type (where the value is -1 and 0). */
14372 return true;
14373 return false;
14376 /* Return true if (CODE OP0) is known to be non-negative. If the return
14377 value is based on the assumption that signed overflow is undefined,
14378 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14379 *STRICT_OVERFLOW_P. */
14381 bool
14382 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14383 bool *strict_overflow_p)
14385 if (TYPE_UNSIGNED (type))
14386 return true;
14388 switch (code)
14390 case ABS_EXPR:
14391 /* We can't return 1 if flag_wrapv is set because
14392 ABS_EXPR<INT_MIN> = INT_MIN. */
14393 if (!INTEGRAL_TYPE_P (type))
14394 return true;
14395 if (TYPE_OVERFLOW_UNDEFINED (type))
14397 *strict_overflow_p = true;
14398 return true;
14400 break;
14402 case NON_LVALUE_EXPR:
14403 case FLOAT_EXPR:
14404 case FIX_TRUNC_EXPR:
14405 return tree_expr_nonnegative_warnv_p (op0,
14406 strict_overflow_p);
14408 case NOP_EXPR:
14410 tree inner_type = TREE_TYPE (op0);
14411 tree outer_type = type;
14413 if (TREE_CODE (outer_type) == REAL_TYPE)
14415 if (TREE_CODE (inner_type) == REAL_TYPE)
14416 return tree_expr_nonnegative_warnv_p (op0,
14417 strict_overflow_p);
14418 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14420 if (TYPE_UNSIGNED (inner_type))
14421 return true;
14422 return tree_expr_nonnegative_warnv_p (op0,
14423 strict_overflow_p);
14426 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
14428 if (TREE_CODE (inner_type) == REAL_TYPE)
14429 return tree_expr_nonnegative_warnv_p (op0,
14430 strict_overflow_p);
14431 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14432 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14433 && TYPE_UNSIGNED (inner_type);
14436 break;
14438 default:
14439 return tree_simple_nonnegative_warnv_p (code, type);
14442 /* We don't know sign of `t', so be conservative and return false. */
14443 return false;
14446 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14447 value is based on the assumption that signed overflow is undefined,
14448 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14449 *STRICT_OVERFLOW_P. */
14451 bool
14452 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14453 tree op1, bool *strict_overflow_p)
14455 if (TYPE_UNSIGNED (type))
14456 return true;
14458 switch (code)
14460 case POINTER_PLUS_EXPR:
14461 case PLUS_EXPR:
14462 if (FLOAT_TYPE_P (type))
14463 return (tree_expr_nonnegative_warnv_p (op0,
14464 strict_overflow_p)
14465 && tree_expr_nonnegative_warnv_p (op1,
14466 strict_overflow_p));
14468 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14469 both unsigned and at least 2 bits shorter than the result. */
14470 if (TREE_CODE (type) == INTEGER_TYPE
14471 && TREE_CODE (op0) == NOP_EXPR
14472 && TREE_CODE (op1) == NOP_EXPR)
14474 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14475 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14476 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14477 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14479 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14480 TYPE_PRECISION (inner2)) + 1;
14481 return prec < TYPE_PRECISION (type);
14484 break;
14486 case MULT_EXPR:
14487 if (FLOAT_TYPE_P (type))
14489 /* x * x for floating point x is always non-negative. */
14490 if (operand_equal_p (op0, op1, 0))
14491 return true;
14492 return (tree_expr_nonnegative_warnv_p (op0,
14493 strict_overflow_p)
14494 && tree_expr_nonnegative_warnv_p (op1,
14495 strict_overflow_p));
14498 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14499 both unsigned and their total bits is shorter than the result. */
14500 if (TREE_CODE (type) == INTEGER_TYPE
14501 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14502 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14504 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14505 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14506 : TREE_TYPE (op0);
14507 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14508 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14509 : TREE_TYPE (op1);
14511 bool unsigned0 = TYPE_UNSIGNED (inner0);
14512 bool unsigned1 = TYPE_UNSIGNED (inner1);
14514 if (TREE_CODE (op0) == INTEGER_CST)
14515 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14517 if (TREE_CODE (op1) == INTEGER_CST)
14518 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14520 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14521 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14523 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14524 ? tree_int_cst_min_precision (op0, /*unsignedp=*/true)
14525 : TYPE_PRECISION (inner0);
14527 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14528 ? tree_int_cst_min_precision (op1, /*unsignedp=*/true)
14529 : TYPE_PRECISION (inner1);
14531 return precision0 + precision1 < TYPE_PRECISION (type);
14534 return false;
14536 case BIT_AND_EXPR:
14537 case MAX_EXPR:
14538 return (tree_expr_nonnegative_warnv_p (op0,
14539 strict_overflow_p)
14540 || tree_expr_nonnegative_warnv_p (op1,
14541 strict_overflow_p));
14543 case BIT_IOR_EXPR:
14544 case BIT_XOR_EXPR:
14545 case MIN_EXPR:
14546 case RDIV_EXPR:
14547 case TRUNC_DIV_EXPR:
14548 case CEIL_DIV_EXPR:
14549 case FLOOR_DIV_EXPR:
14550 case ROUND_DIV_EXPR:
14551 return (tree_expr_nonnegative_warnv_p (op0,
14552 strict_overflow_p)
14553 && tree_expr_nonnegative_warnv_p (op1,
14554 strict_overflow_p));
14556 case TRUNC_MOD_EXPR:
14557 case CEIL_MOD_EXPR:
14558 case FLOOR_MOD_EXPR:
14559 case ROUND_MOD_EXPR:
14560 return tree_expr_nonnegative_warnv_p (op0,
14561 strict_overflow_p);
14562 default:
14563 return tree_simple_nonnegative_warnv_p (code, type);
14566 /* We don't know sign of `t', so be conservative and return false. */
14567 return false;
14570 /* Return true if T is known to be non-negative. If the return
14571 value is based on the assumption that signed overflow is undefined,
14572 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14573 *STRICT_OVERFLOW_P. */
14575 bool
14576 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14578 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14579 return true;
14581 switch (TREE_CODE (t))
14583 case INTEGER_CST:
14584 return tree_int_cst_sgn (t) >= 0;
14586 case REAL_CST:
14587 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14589 case FIXED_CST:
14590 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14592 case COND_EXPR:
14593 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14594 strict_overflow_p)
14595 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14596 strict_overflow_p));
14597 default:
14598 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14599 TREE_TYPE (t));
14601 /* We don't know sign of `t', so be conservative and return false. */
14602 return false;
14605 /* Return true if T is known to be non-negative. If the return
14606 value is based on the assumption that signed overflow is undefined,
14607 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14608 *STRICT_OVERFLOW_P. */
14610 bool
14611 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
14612 tree arg0, tree arg1, bool *strict_overflow_p)
14614 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14615 switch (DECL_FUNCTION_CODE (fndecl))
14617 CASE_FLT_FN (BUILT_IN_ACOS):
14618 CASE_FLT_FN (BUILT_IN_ACOSH):
14619 CASE_FLT_FN (BUILT_IN_CABS):
14620 CASE_FLT_FN (BUILT_IN_COSH):
14621 CASE_FLT_FN (BUILT_IN_ERFC):
14622 CASE_FLT_FN (BUILT_IN_EXP):
14623 CASE_FLT_FN (BUILT_IN_EXP10):
14624 CASE_FLT_FN (BUILT_IN_EXP2):
14625 CASE_FLT_FN (BUILT_IN_FABS):
14626 CASE_FLT_FN (BUILT_IN_FDIM):
14627 CASE_FLT_FN (BUILT_IN_HYPOT):
14628 CASE_FLT_FN (BUILT_IN_POW10):
14629 CASE_INT_FN (BUILT_IN_FFS):
14630 CASE_INT_FN (BUILT_IN_PARITY):
14631 CASE_INT_FN (BUILT_IN_POPCOUNT):
14632 case BUILT_IN_BSWAP32:
14633 case BUILT_IN_BSWAP64:
14634 /* Always true. */
14635 return true;
14637 CASE_FLT_FN (BUILT_IN_SQRT):
14638 /* sqrt(-0.0) is -0.0. */
14639 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
14640 return true;
14641 return tree_expr_nonnegative_warnv_p (arg0,
14642 strict_overflow_p);
14644 CASE_FLT_FN (BUILT_IN_ASINH):
14645 CASE_FLT_FN (BUILT_IN_ATAN):
14646 CASE_FLT_FN (BUILT_IN_ATANH):
14647 CASE_FLT_FN (BUILT_IN_CBRT):
14648 CASE_FLT_FN (BUILT_IN_CEIL):
14649 CASE_FLT_FN (BUILT_IN_ERF):
14650 CASE_FLT_FN (BUILT_IN_EXPM1):
14651 CASE_FLT_FN (BUILT_IN_FLOOR):
14652 CASE_FLT_FN (BUILT_IN_FMOD):
14653 CASE_FLT_FN (BUILT_IN_FREXP):
14654 CASE_FLT_FN (BUILT_IN_LCEIL):
14655 CASE_FLT_FN (BUILT_IN_LDEXP):
14656 CASE_FLT_FN (BUILT_IN_LFLOOR):
14657 CASE_FLT_FN (BUILT_IN_LLCEIL):
14658 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14659 CASE_FLT_FN (BUILT_IN_LLRINT):
14660 CASE_FLT_FN (BUILT_IN_LLROUND):
14661 CASE_FLT_FN (BUILT_IN_LRINT):
14662 CASE_FLT_FN (BUILT_IN_LROUND):
14663 CASE_FLT_FN (BUILT_IN_MODF):
14664 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14665 CASE_FLT_FN (BUILT_IN_RINT):
14666 CASE_FLT_FN (BUILT_IN_ROUND):
14667 CASE_FLT_FN (BUILT_IN_SCALB):
14668 CASE_FLT_FN (BUILT_IN_SCALBLN):
14669 CASE_FLT_FN (BUILT_IN_SCALBN):
14670 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14671 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14672 CASE_FLT_FN (BUILT_IN_SINH):
14673 CASE_FLT_FN (BUILT_IN_TANH):
14674 CASE_FLT_FN (BUILT_IN_TRUNC):
14675 /* True if the 1st argument is nonnegative. */
14676 return tree_expr_nonnegative_warnv_p (arg0,
14677 strict_overflow_p);
14679 CASE_FLT_FN (BUILT_IN_FMAX):
14680 /* True if the 1st OR 2nd arguments are nonnegative. */
14681 return (tree_expr_nonnegative_warnv_p (arg0,
14682 strict_overflow_p)
14683 || (tree_expr_nonnegative_warnv_p (arg1,
14684 strict_overflow_p)));
14686 CASE_FLT_FN (BUILT_IN_FMIN):
14687 /* True if the 1st AND 2nd arguments are nonnegative. */
14688 return (tree_expr_nonnegative_warnv_p (arg0,
14689 strict_overflow_p)
14690 && (tree_expr_nonnegative_warnv_p (arg1,
14691 strict_overflow_p)));
14693 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14694 /* True if the 2nd argument is nonnegative. */
14695 return tree_expr_nonnegative_warnv_p (arg1,
14696 strict_overflow_p);
14698 CASE_FLT_FN (BUILT_IN_POWI):
14699 /* True if the 1st argument is nonnegative or the second
14700 argument is an even integer. */
14701 if (TREE_CODE (arg1) == INTEGER_CST
14702 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14703 return true;
14704 return tree_expr_nonnegative_warnv_p (arg0,
14705 strict_overflow_p);
14707 CASE_FLT_FN (BUILT_IN_POW):
14708 /* True if the 1st argument is nonnegative or the second
14709 argument is an even integer valued real. */
14710 if (TREE_CODE (arg1) == REAL_CST)
14712 REAL_VALUE_TYPE c;
14713 HOST_WIDE_INT n;
14715 c = TREE_REAL_CST (arg1);
14716 n = real_to_integer (&c);
14717 if ((n & 1) == 0)
14719 REAL_VALUE_TYPE cint;
14720 real_from_integer (&cint, VOIDmode, n,
14721 n < 0 ? -1 : 0, 0);
14722 if (real_identical (&c, &cint))
14723 return true;
14726 return tree_expr_nonnegative_warnv_p (arg0,
14727 strict_overflow_p);
14729 default:
14730 break;
14732 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
14733 type);
14736 /* Return true if T is known to be non-negative. If the return
14737 value is based on the assumption that signed overflow is undefined,
14738 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14739 *STRICT_OVERFLOW_P. */
14741 bool
14742 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14744 enum tree_code code = TREE_CODE (t);
14745 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14746 return true;
14748 switch (code)
14750 case TARGET_EXPR:
14752 tree temp = TARGET_EXPR_SLOT (t);
14753 t = TARGET_EXPR_INITIAL (t);
14755 /* If the initializer is non-void, then it's a normal expression
14756 that will be assigned to the slot. */
14757 if (!VOID_TYPE_P (t))
14758 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
14760 /* Otherwise, the initializer sets the slot in some way. One common
14761 way is an assignment statement at the end of the initializer. */
14762 while (1)
14764 if (TREE_CODE (t) == BIND_EXPR)
14765 t = expr_last (BIND_EXPR_BODY (t));
14766 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
14767 || TREE_CODE (t) == TRY_CATCH_EXPR)
14768 t = expr_last (TREE_OPERAND (t, 0));
14769 else if (TREE_CODE (t) == STATEMENT_LIST)
14770 t = expr_last (t);
14771 else
14772 break;
14774 if (TREE_CODE (t) == MODIFY_EXPR
14775 && TREE_OPERAND (t, 0) == temp)
14776 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14777 strict_overflow_p);
14779 return false;
14782 case CALL_EXPR:
14784 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
14785 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
14787 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
14788 get_callee_fndecl (t),
14789 arg0,
14790 arg1,
14791 strict_overflow_p);
14793 case COMPOUND_EXPR:
14794 case MODIFY_EXPR:
14795 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14796 strict_overflow_p);
14797 case BIND_EXPR:
14798 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14799 strict_overflow_p);
14800 case SAVE_EXPR:
14801 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14802 strict_overflow_p);
14804 default:
14805 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14806 TREE_TYPE (t));
14809 /* We don't know sign of `t', so be conservative and return false. */
14810 return false;
14813 /* Return true if T is known to be non-negative. If the return
14814 value is based on the assumption that signed overflow is undefined,
14815 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14816 *STRICT_OVERFLOW_P. */
14818 bool
14819 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14821 enum tree_code code;
14822 if (t == error_mark_node)
14823 return false;
14825 code = TREE_CODE (t);
14826 switch (TREE_CODE_CLASS (code))
14828 case tcc_binary:
14829 case tcc_comparison:
14830 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14831 TREE_TYPE (t),
14832 TREE_OPERAND (t, 0),
14833 TREE_OPERAND (t, 1),
14834 strict_overflow_p);
14836 case tcc_unary:
14837 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14838 TREE_TYPE (t),
14839 TREE_OPERAND (t, 0),
14840 strict_overflow_p);
14842 case tcc_constant:
14843 case tcc_declaration:
14844 case tcc_reference:
14845 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14847 default:
14848 break;
14851 switch (code)
14853 case TRUTH_AND_EXPR:
14854 case TRUTH_OR_EXPR:
14855 case TRUTH_XOR_EXPR:
14856 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14857 TREE_TYPE (t),
14858 TREE_OPERAND (t, 0),
14859 TREE_OPERAND (t, 1),
14860 strict_overflow_p);
14861 case TRUTH_NOT_EXPR:
14862 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14863 TREE_TYPE (t),
14864 TREE_OPERAND (t, 0),
14865 strict_overflow_p);
14867 case COND_EXPR:
14868 case CONSTRUCTOR:
14869 case OBJ_TYPE_REF:
14870 case ASSERT_EXPR:
14871 case ADDR_EXPR:
14872 case WITH_SIZE_EXPR:
14873 case SSA_NAME:
14874 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14876 default:
14877 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
14881 /* Return true if `t' is known to be non-negative. Handle warnings
14882 about undefined signed overflow. */
14884 bool
14885 tree_expr_nonnegative_p (tree t)
14887 bool ret, strict_overflow_p;
14889 strict_overflow_p = false;
14890 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14891 if (strict_overflow_p)
14892 fold_overflow_warning (("assuming signed overflow does not occur when "
14893 "determining that expression is always "
14894 "non-negative"),
14895 WARN_STRICT_OVERFLOW_MISC);
14896 return ret;
14900 /* Return true when (CODE OP0) is an address and is known to be nonzero.
14901 For floating point we further ensure that T is not denormal.
14902 Similar logic is present in nonzero_address in rtlanal.h.
14904 If the return value is based on the assumption that signed overflow
14905 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14906 change *STRICT_OVERFLOW_P. */
14908 bool
14909 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
14910 bool *strict_overflow_p)
14912 switch (code)
14914 case ABS_EXPR:
14915 return tree_expr_nonzero_warnv_p (op0,
14916 strict_overflow_p);
14918 case NOP_EXPR:
14920 tree inner_type = TREE_TYPE (op0);
14921 tree outer_type = type;
14923 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14924 && tree_expr_nonzero_warnv_p (op0,
14925 strict_overflow_p));
14927 break;
14929 case NON_LVALUE_EXPR:
14930 return tree_expr_nonzero_warnv_p (op0,
14931 strict_overflow_p);
14933 default:
14934 break;
14937 return false;
14940 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
14941 For floating point we further ensure that T is not denormal.
14942 Similar logic is present in nonzero_address in rtlanal.h.
14944 If the return value is based on the assumption that signed overflow
14945 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14946 change *STRICT_OVERFLOW_P. */
14948 bool
14949 tree_binary_nonzero_warnv_p (enum tree_code code,
14950 tree type,
14951 tree op0,
14952 tree op1, bool *strict_overflow_p)
14954 bool sub_strict_overflow_p;
14955 switch (code)
14957 case POINTER_PLUS_EXPR:
14958 case PLUS_EXPR:
14959 if (TYPE_OVERFLOW_UNDEFINED (type))
14961 /* With the presence of negative values it is hard
14962 to say something. */
14963 sub_strict_overflow_p = false;
14964 if (!tree_expr_nonnegative_warnv_p (op0,
14965 &sub_strict_overflow_p)
14966 || !tree_expr_nonnegative_warnv_p (op1,
14967 &sub_strict_overflow_p))
14968 return false;
14969 /* One of operands must be positive and the other non-negative. */
14970 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14971 overflows, on a twos-complement machine the sum of two
14972 nonnegative numbers can never be zero. */
14973 return (tree_expr_nonzero_warnv_p (op0,
14974 strict_overflow_p)
14975 || tree_expr_nonzero_warnv_p (op1,
14976 strict_overflow_p));
14978 break;
14980 case MULT_EXPR:
14981 if (TYPE_OVERFLOW_UNDEFINED (type))
14983 if (tree_expr_nonzero_warnv_p (op0,
14984 strict_overflow_p)
14985 && tree_expr_nonzero_warnv_p (op1,
14986 strict_overflow_p))
14988 *strict_overflow_p = true;
14989 return true;
14992 break;
14994 case MIN_EXPR:
14995 sub_strict_overflow_p = false;
14996 if (tree_expr_nonzero_warnv_p (op0,
14997 &sub_strict_overflow_p)
14998 && tree_expr_nonzero_warnv_p (op1,
14999 &sub_strict_overflow_p))
15001 if (sub_strict_overflow_p)
15002 *strict_overflow_p = true;
15004 break;
15006 case MAX_EXPR:
15007 sub_strict_overflow_p = false;
15008 if (tree_expr_nonzero_warnv_p (op0,
15009 &sub_strict_overflow_p))
15011 if (sub_strict_overflow_p)
15012 *strict_overflow_p = true;
15014 /* When both operands are nonzero, then MAX must be too. */
15015 if (tree_expr_nonzero_warnv_p (op1,
15016 strict_overflow_p))
15017 return true;
15019 /* MAX where operand 0 is positive is positive. */
15020 return tree_expr_nonnegative_warnv_p (op0,
15021 strict_overflow_p);
15023 /* MAX where operand 1 is positive is positive. */
15024 else if (tree_expr_nonzero_warnv_p (op1,
15025 &sub_strict_overflow_p)
15026 && tree_expr_nonnegative_warnv_p (op1,
15027 &sub_strict_overflow_p))
15029 if (sub_strict_overflow_p)
15030 *strict_overflow_p = true;
15031 return true;
15033 break;
15035 case BIT_IOR_EXPR:
15036 return (tree_expr_nonzero_warnv_p (op1,
15037 strict_overflow_p)
15038 || tree_expr_nonzero_warnv_p (op0,
15039 strict_overflow_p));
15041 default:
15042 break;
15045 return false;
15048 /* Return true when T is an address and is known to be nonzero.
15049 For floating point we further ensure that T is not denormal.
15050 Similar logic is present in nonzero_address in rtlanal.h.
15052 If the return value is based on the assumption that signed overflow
15053 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15054 change *STRICT_OVERFLOW_P. */
15056 bool
15057 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15059 bool sub_strict_overflow_p;
15060 switch (TREE_CODE (t))
15062 case INTEGER_CST:
15063 return !integer_zerop (t);
15065 case ADDR_EXPR:
15067 tree base = TREE_OPERAND (t, 0);
15068 if (!DECL_P (base))
15069 base = get_base_address (base);
15071 if (!base)
15072 return false;
15074 /* Weak declarations may link to NULL. Other things may also be NULL
15075 so protect with -fdelete-null-pointer-checks; but not variables
15076 allocated on the stack. */
15077 if (DECL_P (base)
15078 && (flag_delete_null_pointer_checks
15079 || (DECL_CONTEXT (base)
15080 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
15081 && auto_var_in_fn_p (base, DECL_CONTEXT (base)))))
15082 return !VAR_OR_FUNCTION_DECL_P (base) || !DECL_WEAK (base);
15084 /* Constants are never weak. */
15085 if (CONSTANT_CLASS_P (base))
15086 return true;
15088 return false;
15091 case COND_EXPR:
15092 sub_strict_overflow_p = false;
15093 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15094 &sub_strict_overflow_p)
15095 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15096 &sub_strict_overflow_p))
15098 if (sub_strict_overflow_p)
15099 *strict_overflow_p = true;
15100 return true;
15102 break;
15104 default:
15105 break;
15107 return false;
15110 /* Return true when T is an address and is known to be nonzero.
15111 For floating point we further ensure that T is not denormal.
15112 Similar logic is present in nonzero_address in rtlanal.h.
15114 If the return value is based on the assumption that signed overflow
15115 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15116 change *STRICT_OVERFLOW_P. */
15118 bool
15119 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15121 tree type = TREE_TYPE (t);
15122 enum tree_code code;
15124 /* Doing something useful for floating point would need more work. */
15125 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
15126 return false;
15128 code = TREE_CODE (t);
15129 switch (TREE_CODE_CLASS (code))
15131 case tcc_unary:
15132 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15133 strict_overflow_p);
15134 case tcc_binary:
15135 case tcc_comparison:
15136 return tree_binary_nonzero_warnv_p (code, type,
15137 TREE_OPERAND (t, 0),
15138 TREE_OPERAND (t, 1),
15139 strict_overflow_p);
15140 case tcc_constant:
15141 case tcc_declaration:
15142 case tcc_reference:
15143 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15145 default:
15146 break;
15149 switch (code)
15151 case TRUTH_NOT_EXPR:
15152 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15153 strict_overflow_p);
15155 case TRUTH_AND_EXPR:
15156 case TRUTH_OR_EXPR:
15157 case TRUTH_XOR_EXPR:
15158 return tree_binary_nonzero_warnv_p (code, type,
15159 TREE_OPERAND (t, 0),
15160 TREE_OPERAND (t, 1),
15161 strict_overflow_p);
15163 case COND_EXPR:
15164 case CONSTRUCTOR:
15165 case OBJ_TYPE_REF:
15166 case ASSERT_EXPR:
15167 case ADDR_EXPR:
15168 case WITH_SIZE_EXPR:
15169 case SSA_NAME:
15170 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15172 case COMPOUND_EXPR:
15173 case MODIFY_EXPR:
15174 case BIND_EXPR:
15175 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15176 strict_overflow_p);
15178 case SAVE_EXPR:
15179 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
15180 strict_overflow_p);
15182 case CALL_EXPR:
15183 return alloca_call_p (t);
15185 default:
15186 break;
15188 return false;
15191 /* Return true when T is an address and is known to be nonzero.
15192 Handle warnings about undefined signed overflow. */
15194 bool
15195 tree_expr_nonzero_p (tree t)
15197 bool ret, strict_overflow_p;
15199 strict_overflow_p = false;
15200 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
15201 if (strict_overflow_p)
15202 fold_overflow_warning (("assuming signed overflow does not occur when "
15203 "determining that expression is always "
15204 "non-zero"),
15205 WARN_STRICT_OVERFLOW_MISC);
15206 return ret;
15209 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15210 attempt to fold the expression to a constant without modifying TYPE,
15211 OP0 or OP1.
15213 If the expression could be simplified to a constant, then return
15214 the constant. If the expression would not be simplified to a
15215 constant, then return NULL_TREE. */
15217 tree
15218 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15220 tree tem = fold_binary (code, type, op0, op1);
15221 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15224 /* Given the components of a unary expression CODE, TYPE and OP0,
15225 attempt to fold the expression to a constant without modifying
15226 TYPE or OP0.
15228 If the expression could be simplified to a constant, then return
15229 the constant. If the expression would not be simplified to a
15230 constant, then return NULL_TREE. */
15232 tree
15233 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15235 tree tem = fold_unary (code, type, op0);
15236 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15239 /* If EXP represents referencing an element in a constant string
15240 (either via pointer arithmetic or array indexing), return the
15241 tree representing the value accessed, otherwise return NULL. */
15243 tree
15244 fold_read_from_constant_string (tree exp)
15246 if ((TREE_CODE (exp) == INDIRECT_REF
15247 || TREE_CODE (exp) == ARRAY_REF)
15248 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15250 tree exp1 = TREE_OPERAND (exp, 0);
15251 tree index;
15252 tree string;
15253 location_t loc = EXPR_LOCATION (exp);
15255 if (TREE_CODE (exp) == INDIRECT_REF)
15256 string = string_constant (exp1, &index);
15257 else
15259 tree low_bound = array_ref_low_bound (exp);
15260 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
15262 /* Optimize the special-case of a zero lower bound.
15264 We convert the low_bound to sizetype to avoid some problems
15265 with constant folding. (E.g. suppose the lower bound is 1,
15266 and its mode is QI. Without the conversion,l (ARRAY
15267 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15268 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15269 if (! integer_zerop (low_bound))
15270 index = size_diffop_loc (loc, index,
15271 fold_convert_loc (loc, sizetype, low_bound));
15273 string = exp1;
15276 if (string
15277 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15278 && TREE_CODE (string) == STRING_CST
15279 && TREE_CODE (index) == INTEGER_CST
15280 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15281 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
15282 == MODE_INT)
15283 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
15284 return build_int_cst_type (TREE_TYPE (exp),
15285 (TREE_STRING_POINTER (string)
15286 [TREE_INT_CST_LOW (index)]));
15288 return NULL;
15291 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15292 an integer constant, real, or fixed-point constant.
15294 TYPE is the type of the result. */
15296 static tree
15297 fold_negate_const (tree arg0, tree type)
15299 tree t = NULL_TREE;
15301 switch (TREE_CODE (arg0))
15303 case INTEGER_CST:
15305 double_int val = tree_to_double_int (arg0);
15306 int overflow = neg_double (val.low, val.high, &val.low, &val.high);
15308 t = force_fit_type_double (type, val, 1,
15309 (overflow | TREE_OVERFLOW (arg0))
15310 && !TYPE_UNSIGNED (type));
15311 break;
15314 case REAL_CST:
15315 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15316 break;
15318 case FIXED_CST:
15320 FIXED_VALUE_TYPE f;
15321 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15322 &(TREE_FIXED_CST (arg0)), NULL,
15323 TYPE_SATURATING (type));
15324 t = build_fixed (type, f);
15325 /* Propagate overflow flags. */
15326 if (overflow_p | TREE_OVERFLOW (arg0))
15327 TREE_OVERFLOW (t) = 1;
15328 break;
15331 default:
15332 gcc_unreachable ();
15335 return t;
15338 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15339 an integer constant or real constant.
15341 TYPE is the type of the result. */
15343 tree
15344 fold_abs_const (tree arg0, tree type)
15346 tree t = NULL_TREE;
15348 switch (TREE_CODE (arg0))
15350 case INTEGER_CST:
15352 double_int val = tree_to_double_int (arg0);
15354 /* If the value is unsigned or non-negative, then the absolute value
15355 is the same as the ordinary value. */
15356 if (TYPE_UNSIGNED (type)
15357 || !double_int_negative_p (val))
15358 t = arg0;
15360 /* If the value is negative, then the absolute value is
15361 its negation. */
15362 else
15364 int overflow;
15366 overflow = neg_double (val.low, val.high, &val.low, &val.high);
15367 t = force_fit_type_double (type, val, -1,
15368 overflow | TREE_OVERFLOW (arg0));
15371 break;
15373 case REAL_CST:
15374 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15375 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15376 else
15377 t = arg0;
15378 break;
15380 default:
15381 gcc_unreachable ();
15384 return t;
15387 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15388 constant. TYPE is the type of the result. */
15390 static tree
15391 fold_not_const (const_tree arg0, tree type)
15393 double_int val;
15395 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15397 val = double_int_not (tree_to_double_int (arg0));
15398 return force_fit_type_double (type, val, 0, TREE_OVERFLOW (arg0));
15401 /* Given CODE, a relational operator, the target type, TYPE and two
15402 constant operands OP0 and OP1, return the result of the
15403 relational operation. If the result is not a compile time
15404 constant, then return NULL_TREE. */
15406 static tree
15407 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15409 int result, invert;
15411 /* From here on, the only cases we handle are when the result is
15412 known to be a constant. */
15414 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15416 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15417 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15419 /* Handle the cases where either operand is a NaN. */
15420 if (real_isnan (c0) || real_isnan (c1))
15422 switch (code)
15424 case EQ_EXPR:
15425 case ORDERED_EXPR:
15426 result = 0;
15427 break;
15429 case NE_EXPR:
15430 case UNORDERED_EXPR:
15431 case UNLT_EXPR:
15432 case UNLE_EXPR:
15433 case UNGT_EXPR:
15434 case UNGE_EXPR:
15435 case UNEQ_EXPR:
15436 result = 1;
15437 break;
15439 case LT_EXPR:
15440 case LE_EXPR:
15441 case GT_EXPR:
15442 case GE_EXPR:
15443 case LTGT_EXPR:
15444 if (flag_trapping_math)
15445 return NULL_TREE;
15446 result = 0;
15447 break;
15449 default:
15450 gcc_unreachable ();
15453 return constant_boolean_node (result, type);
15456 return constant_boolean_node (real_compare (code, c0, c1), type);
15459 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15461 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15462 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15463 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15466 /* Handle equality/inequality of complex constants. */
15467 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15469 tree rcond = fold_relational_const (code, type,
15470 TREE_REALPART (op0),
15471 TREE_REALPART (op1));
15472 tree icond = fold_relational_const (code, type,
15473 TREE_IMAGPART (op0),
15474 TREE_IMAGPART (op1));
15475 if (code == EQ_EXPR)
15476 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15477 else if (code == NE_EXPR)
15478 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15479 else
15480 return NULL_TREE;
15483 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15485 To compute GT, swap the arguments and do LT.
15486 To compute GE, do LT and invert the result.
15487 To compute LE, swap the arguments, do LT and invert the result.
15488 To compute NE, do EQ and invert the result.
15490 Therefore, the code below must handle only EQ and LT. */
15492 if (code == LE_EXPR || code == GT_EXPR)
15494 tree tem = op0;
15495 op0 = op1;
15496 op1 = tem;
15497 code = swap_tree_comparison (code);
15500 /* Note that it is safe to invert for real values here because we
15501 have already handled the one case that it matters. */
15503 invert = 0;
15504 if (code == NE_EXPR || code == GE_EXPR)
15506 invert = 1;
15507 code = invert_tree_comparison (code, false);
15510 /* Compute a result for LT or EQ if args permit;
15511 Otherwise return T. */
15512 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15514 if (code == EQ_EXPR)
15515 result = tree_int_cst_equal (op0, op1);
15516 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
15517 result = INT_CST_LT_UNSIGNED (op0, op1);
15518 else
15519 result = INT_CST_LT (op0, op1);
15521 else
15522 return NULL_TREE;
15524 if (invert)
15525 result ^= 1;
15526 return constant_boolean_node (result, type);
15529 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15530 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15531 itself. */
15533 tree
15534 fold_build_cleanup_point_expr (tree type, tree expr)
15536 /* If the expression does not have side effects then we don't have to wrap
15537 it with a cleanup point expression. */
15538 if (!TREE_SIDE_EFFECTS (expr))
15539 return expr;
15541 /* If the expression is a return, check to see if the expression inside the
15542 return has no side effects or the right hand side of the modify expression
15543 inside the return. If either don't have side effects set we don't need to
15544 wrap the expression in a cleanup point expression. Note we don't check the
15545 left hand side of the modify because it should always be a return decl. */
15546 if (TREE_CODE (expr) == RETURN_EXPR)
15548 tree op = TREE_OPERAND (expr, 0);
15549 if (!op || !TREE_SIDE_EFFECTS (op))
15550 return expr;
15551 op = TREE_OPERAND (op, 1);
15552 if (!TREE_SIDE_EFFECTS (op))
15553 return expr;
15556 return build1 (CLEANUP_POINT_EXPR, type, expr);
15559 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15560 of an indirection through OP0, or NULL_TREE if no simplification is
15561 possible. */
15563 tree
15564 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
15566 tree sub = op0;
15567 tree subtype;
15569 STRIP_NOPS (sub);
15570 subtype = TREE_TYPE (sub);
15571 if (!POINTER_TYPE_P (subtype))
15572 return NULL_TREE;
15574 if (TREE_CODE (sub) == ADDR_EXPR)
15576 tree op = TREE_OPERAND (sub, 0);
15577 tree optype = TREE_TYPE (op);
15578 /* *&CONST_DECL -> to the value of the const decl. */
15579 if (TREE_CODE (op) == CONST_DECL)
15580 return DECL_INITIAL (op);
15581 /* *&p => p; make sure to handle *&"str"[cst] here. */
15582 if (type == optype)
15584 tree fop = fold_read_from_constant_string (op);
15585 if (fop)
15586 return fop;
15587 else
15588 return op;
15590 /* *(foo *)&fooarray => fooarray[0] */
15591 else if (TREE_CODE (optype) == ARRAY_TYPE
15592 && type == TREE_TYPE (optype)
15593 && (!in_gimple_form
15594 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15596 tree type_domain = TYPE_DOMAIN (optype);
15597 tree min_val = size_zero_node;
15598 if (type_domain && TYPE_MIN_VALUE (type_domain))
15599 min_val = TYPE_MIN_VALUE (type_domain);
15600 if (in_gimple_form
15601 && TREE_CODE (min_val) != INTEGER_CST)
15602 return NULL_TREE;
15603 return build4_loc (loc, ARRAY_REF, type, op, min_val,
15604 NULL_TREE, NULL_TREE);
15606 /* *(foo *)&complexfoo => __real__ complexfoo */
15607 else if (TREE_CODE (optype) == COMPLEX_TYPE
15608 && type == TREE_TYPE (optype))
15609 return fold_build1_loc (loc, REALPART_EXPR, type, op);
15610 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15611 else if (TREE_CODE (optype) == VECTOR_TYPE
15612 && type == TREE_TYPE (optype))
15614 tree part_width = TYPE_SIZE (type);
15615 tree index = bitsize_int (0);
15616 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
15620 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15621 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15623 tree op00 = TREE_OPERAND (sub, 0);
15624 tree op01 = TREE_OPERAND (sub, 1);
15626 STRIP_NOPS (op00);
15627 if (TREE_CODE (op00) == ADDR_EXPR)
15629 tree op00type;
15630 op00 = TREE_OPERAND (op00, 0);
15631 op00type = TREE_TYPE (op00);
15633 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15634 if (TREE_CODE (op00type) == VECTOR_TYPE
15635 && type == TREE_TYPE (op00type))
15637 HOST_WIDE_INT offset = tree_low_cst (op01, 0);
15638 tree part_width = TYPE_SIZE (type);
15639 unsigned HOST_WIDE_INT part_widthi = tree_low_cst (part_width, 0)/BITS_PER_UNIT;
15640 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
15641 tree index = bitsize_int (indexi);
15643 if (offset/part_widthi <= TYPE_VECTOR_SUBPARTS (op00type))
15644 return fold_build3_loc (loc,
15645 BIT_FIELD_REF, type, op00,
15646 part_width, index);
15649 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15650 else if (TREE_CODE (op00type) == COMPLEX_TYPE
15651 && type == TREE_TYPE (op00type))
15653 tree size = TYPE_SIZE_UNIT (type);
15654 if (tree_int_cst_equal (size, op01))
15655 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
15657 /* ((foo *)&fooarray)[1] => fooarray[1] */
15658 else if (TREE_CODE (op00type) == ARRAY_TYPE
15659 && type == TREE_TYPE (op00type))
15661 tree type_domain = TYPE_DOMAIN (op00type);
15662 tree min_val = size_zero_node;
15663 if (type_domain && TYPE_MIN_VALUE (type_domain))
15664 min_val = TYPE_MIN_VALUE (type_domain);
15665 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
15666 TYPE_SIZE_UNIT (type));
15667 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
15668 return build4_loc (loc, ARRAY_REF, type, op00, op01,
15669 NULL_TREE, NULL_TREE);
15674 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15675 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15676 && type == TREE_TYPE (TREE_TYPE (subtype))
15677 && (!in_gimple_form
15678 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
15680 tree type_domain;
15681 tree min_val = size_zero_node;
15682 sub = build_fold_indirect_ref_loc (loc, sub);
15683 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15684 if (type_domain && TYPE_MIN_VALUE (type_domain))
15685 min_val = TYPE_MIN_VALUE (type_domain);
15686 if (in_gimple_form
15687 && TREE_CODE (min_val) != INTEGER_CST)
15688 return NULL_TREE;
15689 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
15690 NULL_TREE);
15693 return NULL_TREE;
15696 /* Builds an expression for an indirection through T, simplifying some
15697 cases. */
15699 tree
15700 build_fold_indirect_ref_loc (location_t loc, tree t)
15702 tree type = TREE_TYPE (TREE_TYPE (t));
15703 tree sub = fold_indirect_ref_1 (loc, type, t);
15705 if (sub)
15706 return sub;
15708 return build1_loc (loc, INDIRECT_REF, type, t);
15711 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15713 tree
15714 fold_indirect_ref_loc (location_t loc, tree t)
15716 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
15718 if (sub)
15719 return sub;
15720 else
15721 return t;
15724 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15725 whose result is ignored. The type of the returned tree need not be
15726 the same as the original expression. */
15728 tree
15729 fold_ignored_result (tree t)
15731 if (!TREE_SIDE_EFFECTS (t))
15732 return integer_zero_node;
15734 for (;;)
15735 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15737 case tcc_unary:
15738 t = TREE_OPERAND (t, 0);
15739 break;
15741 case tcc_binary:
15742 case tcc_comparison:
15743 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15744 t = TREE_OPERAND (t, 0);
15745 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15746 t = TREE_OPERAND (t, 1);
15747 else
15748 return t;
15749 break;
15751 case tcc_expression:
15752 switch (TREE_CODE (t))
15754 case COMPOUND_EXPR:
15755 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15756 return t;
15757 t = TREE_OPERAND (t, 0);
15758 break;
15760 case COND_EXPR:
15761 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15762 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15763 return t;
15764 t = TREE_OPERAND (t, 0);
15765 break;
15767 default:
15768 return t;
15770 break;
15772 default:
15773 return t;
15777 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
15778 This can only be applied to objects of a sizetype. */
15780 tree
15781 round_up_loc (location_t loc, tree value, int divisor)
15783 tree div = NULL_TREE;
15785 gcc_assert (divisor > 0);
15786 if (divisor == 1)
15787 return value;
15789 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15790 have to do anything. Only do this when we are not given a const,
15791 because in that case, this check is more expensive than just
15792 doing it. */
15793 if (TREE_CODE (value) != INTEGER_CST)
15795 div = build_int_cst (TREE_TYPE (value), divisor);
15797 if (multiple_of_p (TREE_TYPE (value), value, div))
15798 return value;
15801 /* If divisor is a power of two, simplify this to bit manipulation. */
15802 if (divisor == (divisor & -divisor))
15804 if (TREE_CODE (value) == INTEGER_CST)
15806 double_int val = tree_to_double_int (value);
15807 bool overflow_p;
15809 if ((val.low & (divisor - 1)) == 0)
15810 return value;
15812 overflow_p = TREE_OVERFLOW (value);
15813 val.low &= ~(divisor - 1);
15814 val.low += divisor;
15815 if (val.low == 0)
15817 val.high++;
15818 if (val.high == 0)
15819 overflow_p = true;
15822 return force_fit_type_double (TREE_TYPE (value), val,
15823 -1, overflow_p);
15825 else
15827 tree t;
15829 t = build_int_cst (TREE_TYPE (value), divisor - 1);
15830 value = size_binop_loc (loc, PLUS_EXPR, value, t);
15831 t = build_int_cst (TREE_TYPE (value), -divisor);
15832 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15835 else
15837 if (!div)
15838 div = build_int_cst (TREE_TYPE (value), divisor);
15839 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
15840 value = size_binop_loc (loc, MULT_EXPR, value, div);
15843 return value;
15846 /* Likewise, but round down. */
15848 tree
15849 round_down_loc (location_t loc, tree value, int divisor)
15851 tree div = NULL_TREE;
15853 gcc_assert (divisor > 0);
15854 if (divisor == 1)
15855 return value;
15857 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15858 have to do anything. Only do this when we are not given a const,
15859 because in that case, this check is more expensive than just
15860 doing it. */
15861 if (TREE_CODE (value) != INTEGER_CST)
15863 div = build_int_cst (TREE_TYPE (value), divisor);
15865 if (multiple_of_p (TREE_TYPE (value), value, div))
15866 return value;
15869 /* If divisor is a power of two, simplify this to bit manipulation. */
15870 if (divisor == (divisor & -divisor))
15872 tree t;
15874 t = build_int_cst (TREE_TYPE (value), -divisor);
15875 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15877 else
15879 if (!div)
15880 div = build_int_cst (TREE_TYPE (value), divisor);
15881 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
15882 value = size_binop_loc (loc, MULT_EXPR, value, div);
15885 return value;
15888 /* Returns the pointer to the base of the object addressed by EXP and
15889 extracts the information about the offset of the access, storing it
15890 to PBITPOS and POFFSET. */
15892 static tree
15893 split_address_to_core_and_offset (tree exp,
15894 HOST_WIDE_INT *pbitpos, tree *poffset)
15896 tree core;
15897 enum machine_mode mode;
15898 int unsignedp, volatilep;
15899 HOST_WIDE_INT bitsize;
15900 location_t loc = EXPR_LOCATION (exp);
15902 if (TREE_CODE (exp) == ADDR_EXPR)
15904 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15905 poffset, &mode, &unsignedp, &volatilep,
15906 false);
15907 core = build_fold_addr_expr_loc (loc, core);
15909 else
15911 core = exp;
15912 *pbitpos = 0;
15913 *poffset = NULL_TREE;
15916 return core;
15919 /* Returns true if addresses of E1 and E2 differ by a constant, false
15920 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15922 bool
15923 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15925 tree core1, core2;
15926 HOST_WIDE_INT bitpos1, bitpos2;
15927 tree toffset1, toffset2, tdiff, type;
15929 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15930 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15932 if (bitpos1 % BITS_PER_UNIT != 0
15933 || bitpos2 % BITS_PER_UNIT != 0
15934 || !operand_equal_p (core1, core2, 0))
15935 return false;
15937 if (toffset1 && toffset2)
15939 type = TREE_TYPE (toffset1);
15940 if (type != TREE_TYPE (toffset2))
15941 toffset2 = fold_convert (type, toffset2);
15943 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15944 if (!cst_and_fits_in_hwi (tdiff))
15945 return false;
15947 *diff = int_cst_value (tdiff);
15949 else if (toffset1 || toffset2)
15951 /* If only one of the offsets is non-constant, the difference cannot
15952 be a constant. */
15953 return false;
15955 else
15956 *diff = 0;
15958 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15959 return true;
15962 /* Simplify the floating point expression EXP when the sign of the
15963 result is not significant. Return NULL_TREE if no simplification
15964 is possible. */
15966 tree
15967 fold_strip_sign_ops (tree exp)
15969 tree arg0, arg1;
15970 location_t loc = EXPR_LOCATION (exp);
15972 switch (TREE_CODE (exp))
15974 case ABS_EXPR:
15975 case NEGATE_EXPR:
15976 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15977 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15979 case MULT_EXPR:
15980 case RDIV_EXPR:
15981 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
15982 return NULL_TREE;
15983 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15984 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15985 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15986 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
15987 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15988 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15989 break;
15991 case COMPOUND_EXPR:
15992 arg0 = TREE_OPERAND (exp, 0);
15993 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15994 if (arg1)
15995 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15996 break;
15998 case COND_EXPR:
15999 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
16000 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
16001 if (arg0 || arg1)
16002 return fold_build3_loc (loc,
16003 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
16004 arg0 ? arg0 : TREE_OPERAND (exp, 1),
16005 arg1 ? arg1 : TREE_OPERAND (exp, 2));
16006 break;
16008 case CALL_EXPR:
16010 const enum built_in_function fcode = builtin_mathfn_code (exp);
16011 switch (fcode)
16013 CASE_FLT_FN (BUILT_IN_COPYSIGN):
16014 /* Strip copysign function call, return the 1st argument. */
16015 arg0 = CALL_EXPR_ARG (exp, 0);
16016 arg1 = CALL_EXPR_ARG (exp, 1);
16017 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
16019 default:
16020 /* Strip sign ops from the argument of "odd" math functions. */
16021 if (negate_mathfn_p (fcode))
16023 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
16024 if (arg0)
16025 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
16027 break;
16030 break;
16032 default:
16033 break;
16035 return NULL_TREE;