1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "double-int.h"
35 #include "fold-const.h"
36 #include "stringpool.h"
37 #include "stor-layout.h"
42 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
48 #include "statistics.h"
50 #include "fixed-value.h"
57 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
59 #include "insn-codes.h"
64 #include "typeclass.h"
66 #include "langhooks.h"
69 #include "tree-iterator.h"
71 #include "dominance.h"
73 #include "basic-block.h"
74 #include "tree-ssa-alias.h"
75 #include "internal-fn.h"
76 #include "gimple-expr.h"
79 #include "gimple-ssa.h"
81 #include "plugin-api.h"
84 #include "tree-ssanames.h"
86 #include "common/common-target.h"
89 #include "diagnostic.h"
90 #include "tree-ssa-live.h"
91 #include "tree-outof-ssa.h"
92 #include "target-globals.h"
94 #include "tree-ssa-address.h"
95 #include "cfgexpand.h"
97 #include "tree-chkp.h"
101 #ifndef STACK_PUSH_CODE
102 #ifdef STACK_GROWS_DOWNWARD
103 #define STACK_PUSH_CODE PRE_DEC
105 #define STACK_PUSH_CODE PRE_INC
110 /* If this is nonzero, we do not bother generating VOLATILE
111 around volatile memory references, and we are willing to
112 output indirect addresses. If cse is to follow, we reject
113 indirect addresses so a useful potential cse is generated;
114 if it is used only once, instruction combination will produce
115 the same indirect address eventually. */
116 int cse_not_expected
;
118 /* This structure is used by move_by_pieces to describe the move to
120 struct move_by_pieces_d
129 int explicit_inc_from
;
130 unsigned HOST_WIDE_INT len
;
131 HOST_WIDE_INT offset
;
135 /* This structure is used by store_by_pieces to describe the clear to
138 struct store_by_pieces_d
144 unsigned HOST_WIDE_INT len
;
145 HOST_WIDE_INT offset
;
146 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
);
151 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
152 struct move_by_pieces_d
*);
153 static bool block_move_libcall_safe_for_call_parm (void);
154 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
155 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
156 unsigned HOST_WIDE_INT
);
157 static tree
emit_block_move_libcall_fn (int);
158 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
159 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, machine_mode
);
160 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
161 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
162 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
163 struct store_by_pieces_d
*);
164 static tree
clear_storage_libcall_fn (int);
165 static rtx_insn
*compress_float_constant (rtx
, rtx
);
166 static rtx
get_subtarget (rtx
);
167 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
168 HOST_WIDE_INT
, machine_mode
,
169 tree
, int, alias_set_type
);
170 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
171 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
172 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
173 machine_mode
, tree
, alias_set_type
, bool);
175 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
177 static int is_aligning_offset (const_tree
, const_tree
);
178 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
179 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
181 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
183 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
, int);
184 static rtx
const_vector_from_tree (tree
);
185 static tree
tree_expr_size (const_tree
);
186 static HOST_WIDE_INT
int_expr_size (tree
);
189 /* This is run to set up which modes can be used
190 directly in memory and to initialize the block move optab. It is run
191 at the beginning of compilation and when the target is reinitialized. */
194 init_expr_target (void)
202 /* Try indexing by frame ptr and try by stack ptr.
203 It is known that on the Convex the stack ptr isn't a valid index.
204 With luck, one or the other is valid on any machine. */
205 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
206 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
208 /* A scratch register we can modify in-place below to avoid
209 useless RTL allocations. */
210 reg
= gen_rtx_REG (VOIDmode
, -1);
212 insn
= rtx_alloc (INSN
);
213 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
214 PATTERN (insn
) = pat
;
216 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
217 mode
= (machine_mode
) ((int) mode
+ 1))
221 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
222 PUT_MODE (mem
, mode
);
223 PUT_MODE (mem1
, mode
);
224 PUT_MODE (reg
, mode
);
226 /* See if there is some register that can be used in this mode and
227 directly loaded or stored from memory. */
229 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
230 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
231 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
234 if (! HARD_REGNO_MODE_OK (regno
, mode
))
237 SET_REGNO (reg
, regno
);
240 SET_DEST (pat
) = reg
;
241 if (recog (pat
, insn
, &num_clobbers
) >= 0)
242 direct_load
[(int) mode
] = 1;
244 SET_SRC (pat
) = mem1
;
245 SET_DEST (pat
) = reg
;
246 if (recog (pat
, insn
, &num_clobbers
) >= 0)
247 direct_load
[(int) mode
] = 1;
250 SET_DEST (pat
) = mem
;
251 if (recog (pat
, insn
, &num_clobbers
) >= 0)
252 direct_store
[(int) mode
] = 1;
255 SET_DEST (pat
) = mem1
;
256 if (recog (pat
, insn
, &num_clobbers
) >= 0)
257 direct_store
[(int) mode
] = 1;
261 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
263 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
264 mode
= GET_MODE_WIDER_MODE (mode
))
266 machine_mode srcmode
;
267 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
268 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
272 ic
= can_extend_p (mode
, srcmode
, 0);
273 if (ic
== CODE_FOR_nothing
)
276 PUT_MODE (mem
, srcmode
);
278 if (insn_operand_matches (ic
, 1, mem
))
279 float_extend_from_mem
[mode
][srcmode
] = true;
284 /* This is run at the start of compiling a function. */
289 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
292 /* Copy data from FROM to TO, where the machine modes are not the same.
293 Both modes may be integer, or both may be floating, or both may be
295 UNSIGNEDP should be nonzero if FROM is an unsigned type.
296 This causes zero-extension instead of sign-extension. */
299 convert_move (rtx to
, rtx from
, int unsignedp
)
301 machine_mode to_mode
= GET_MODE (to
);
302 machine_mode from_mode
= GET_MODE (from
);
303 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
304 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
308 /* rtx code for making an equivalent value. */
309 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
310 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
313 gcc_assert (to_real
== from_real
);
314 gcc_assert (to_mode
!= BLKmode
);
315 gcc_assert (from_mode
!= BLKmode
);
317 /* If the source and destination are already the same, then there's
322 /* If FROM is a SUBREG that indicates that we have already done at least
323 the required extension, strip it. We don't handle such SUBREGs as
326 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
327 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
328 >= GET_MODE_PRECISION (to_mode
))
329 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
330 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
332 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
334 if (to_mode
== from_mode
335 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
337 emit_move_insn (to
, from
);
341 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
343 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
345 if (VECTOR_MODE_P (to_mode
))
346 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
348 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
350 emit_move_insn (to
, from
);
354 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
356 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
357 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
367 gcc_assert ((GET_MODE_PRECISION (from_mode
)
368 != GET_MODE_PRECISION (to_mode
))
369 || (DECIMAL_FLOAT_MODE_P (from_mode
)
370 != DECIMAL_FLOAT_MODE_P (to_mode
)));
372 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
373 /* Conversion between decimal float and binary float, same size. */
374 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
375 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
380 /* Try converting directly if the insn is supported. */
382 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
383 if (code
!= CODE_FOR_nothing
)
385 emit_unop_insn (code
, to
, from
,
386 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
390 /* Otherwise use a libcall. */
391 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
393 /* Is this conversion implemented yet? */
394 gcc_assert (libcall
);
397 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
399 insns
= get_insns ();
401 emit_libcall_block (insns
, to
, value
,
402 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
404 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
408 /* Handle pointer conversion. */ /* SPEE 900220. */
409 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
413 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
420 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
423 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
429 /* Targets are expected to provide conversion insns between PxImode and
430 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
431 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
433 machine_mode full_mode
434 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
436 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
437 != CODE_FOR_nothing
);
439 if (full_mode
!= from_mode
)
440 from
= convert_to_mode (full_mode
, from
, unsignedp
);
441 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
445 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
448 machine_mode full_mode
449 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
450 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
451 enum insn_code icode
;
453 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
454 gcc_assert (icode
!= CODE_FOR_nothing
);
456 if (to_mode
== full_mode
)
458 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
462 new_from
= gen_reg_rtx (full_mode
);
463 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
465 /* else proceed to integer conversions below. */
466 from_mode
= full_mode
;
470 /* Make sure both are fixed-point modes or both are not. */
471 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
472 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
473 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
475 /* If we widen from_mode to to_mode and they are in the same class,
476 we won't saturate the result.
477 Otherwise, always saturate the result to play safe. */
478 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
479 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
480 expand_fixed_convert (to
, from
, 0, 0);
482 expand_fixed_convert (to
, from
, 0, 1);
486 /* Now both modes are integers. */
488 /* Handle expanding beyond a word. */
489 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
490 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
497 machine_mode lowpart_mode
;
498 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
500 /* Try converting directly if the insn is supported. */
501 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
504 /* If FROM is a SUBREG, put it into a register. Do this
505 so that we always generate the same set of insns for
506 better cse'ing; if an intermediate assignment occurred,
507 we won't be doing the operation directly on the SUBREG. */
508 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
509 from
= force_reg (from_mode
, from
);
510 emit_unop_insn (code
, to
, from
, equiv_code
);
513 /* Next, try converting via full word. */
514 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
515 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
516 != CODE_FOR_nothing
))
518 rtx word_to
= gen_reg_rtx (word_mode
);
521 if (reg_overlap_mentioned_p (to
, from
))
522 from
= force_reg (from_mode
, from
);
525 convert_move (word_to
, from
, unsignedp
);
526 emit_unop_insn (code
, to
, word_to
, equiv_code
);
530 /* No special multiword conversion insn; do it by hand. */
533 /* Since we will turn this into a no conflict block, we must ensure the
534 the source does not overlap the target so force it into an isolated
535 register when maybe so. Likewise for any MEM input, since the
536 conversion sequence might require several references to it and we
537 must ensure we're getting the same value every time. */
539 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
540 from
= force_reg (from_mode
, from
);
542 /* Get a copy of FROM widened to a word, if necessary. */
543 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
544 lowpart_mode
= word_mode
;
546 lowpart_mode
= from_mode
;
548 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
550 lowpart
= gen_lowpart (lowpart_mode
, to
);
551 emit_move_insn (lowpart
, lowfrom
);
553 /* Compute the value to put in each remaining word. */
555 fill_value
= const0_rtx
;
557 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
558 LT
, lowfrom
, const0_rtx
,
559 lowpart_mode
, 0, -1);
561 /* Fill the remaining words. */
562 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
564 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
565 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
567 gcc_assert (subword
);
569 if (fill_value
!= subword
)
570 emit_move_insn (subword
, fill_value
);
573 insns
= get_insns ();
580 /* Truncating multi-word to a word or less. */
581 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
582 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
585 && ! MEM_VOLATILE_P (from
)
586 && direct_load
[(int) to_mode
]
587 && ! mode_dependent_address_p (XEXP (from
, 0),
588 MEM_ADDR_SPACE (from
)))
590 || GET_CODE (from
) == SUBREG
))
591 from
= force_reg (from_mode
, from
);
592 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
596 /* Now follow all the conversions between integers
597 no more than a word long. */
599 /* For truncation, usually we can just refer to FROM in a narrower mode. */
600 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
601 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
604 && ! MEM_VOLATILE_P (from
)
605 && direct_load
[(int) to_mode
]
606 && ! mode_dependent_address_p (XEXP (from
, 0),
607 MEM_ADDR_SPACE (from
)))
609 || GET_CODE (from
) == SUBREG
))
610 from
= force_reg (from_mode
, from
);
611 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
612 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
613 from
= copy_to_reg (from
);
614 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
618 /* Handle extension. */
619 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
621 /* Convert directly if that works. */
622 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
625 emit_unop_insn (code
, to
, from
, equiv_code
);
630 machine_mode intermediate
;
634 /* Search for a mode to convert via. */
635 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
636 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
637 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
639 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
640 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
641 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
642 != CODE_FOR_nothing
))
644 convert_move (to
, convert_to_mode (intermediate
, from
,
645 unsignedp
), unsignedp
);
649 /* No suitable intermediate mode.
650 Generate what we need with shifts. */
651 shift_amount
= (GET_MODE_PRECISION (to_mode
)
652 - GET_MODE_PRECISION (from_mode
));
653 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
654 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
656 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
659 emit_move_insn (to
, tmp
);
664 /* Support special truncate insns for certain modes. */
665 if (convert_optab_handler (trunc_optab
, to_mode
,
666 from_mode
) != CODE_FOR_nothing
)
668 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
673 /* Handle truncation of volatile memrefs, and so on;
674 the things that couldn't be truncated directly,
675 and for which there was no special instruction.
677 ??? Code above formerly short-circuited this, for most integer
678 mode pairs, with a force_reg in from_mode followed by a recursive
679 call to this routine. Appears always to have been wrong. */
680 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
682 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
683 emit_move_insn (to
, temp
);
687 /* Mode combination is not recognized. */
691 /* Return an rtx for a value that would result
692 from converting X to mode MODE.
693 Both X and MODE may be floating, or both integer.
694 UNSIGNEDP is nonzero if X is an unsigned value.
695 This can be done by referring to a part of X in place
696 or by copying to a new temporary with conversion. */
699 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
701 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
704 /* Return an rtx for a value that would result
705 from converting X from mode OLDMODE to mode MODE.
706 Both modes may be floating, or both integer.
707 UNSIGNEDP is nonzero if X is an unsigned value.
709 This can be done by referring to a part of X in place
710 or by copying to a new temporary with conversion.
712 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
715 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
719 /* If FROM is a SUBREG that indicates that we have already done at least
720 the required extension, strip it. */
722 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
723 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
724 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
725 x
= gen_lowpart (mode
, SUBREG_REG (x
));
727 if (GET_MODE (x
) != VOIDmode
)
728 oldmode
= GET_MODE (x
);
733 if (CONST_SCALAR_INT_P (x
) && GET_MODE_CLASS (mode
) == MODE_INT
)
735 /* If the caller did not tell us the old mode, then there is not
736 much to do with respect to canonicalization. We have to
737 assume that all the bits are significant. */
738 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
739 oldmode
= MAX_MODE_INT
;
740 wide_int w
= wide_int::from (std::make_pair (x
, oldmode
),
741 GET_MODE_PRECISION (mode
),
742 unsignedp
? UNSIGNED
: SIGNED
);
743 return immed_wide_int_const (w
, mode
);
746 /* We can do this with a gen_lowpart if both desired and current modes
747 are integer, and this is either a constant integer, a register, or a
749 if (GET_MODE_CLASS (mode
) == MODE_INT
750 && GET_MODE_CLASS (oldmode
) == MODE_INT
751 && GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
752 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) mode
])
754 && (!HARD_REGISTER_P (x
)
755 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
756 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
)))))
758 return gen_lowpart (mode
, x
);
760 /* Converting from integer constant into mode is always equivalent to an
762 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
764 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
765 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
768 temp
= gen_reg_rtx (mode
);
769 convert_move (temp
, x
, unsignedp
);
773 /* Return the largest alignment we can use for doing a move (or store)
774 of MAX_PIECES. ALIGN is the largest alignment we could use. */
777 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
781 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
782 if (align
>= GET_MODE_ALIGNMENT (tmode
))
783 align
= GET_MODE_ALIGNMENT (tmode
);
786 machine_mode tmode
, xmode
;
788 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
790 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
791 if (GET_MODE_SIZE (tmode
) > max_pieces
792 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
795 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
801 /* Return the widest integer mode no wider than SIZE. If no such mode
802 can be found, return VOIDmode. */
805 widest_int_mode_for_size (unsigned int size
)
807 machine_mode tmode
, mode
= VOIDmode
;
809 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
810 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
811 if (GET_MODE_SIZE (tmode
) < size
)
817 /* Determine whether the LEN bytes can be moved by using several move
818 instructions. Return nonzero if a call to move_by_pieces should
822 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
825 return targetm
.use_by_pieces_infrastructure_p (len
, align
, MOVE_BY_PIECES
,
826 optimize_insn_for_speed_p ());
829 /* Generate several move instructions to copy LEN bytes from block FROM to
830 block TO. (These are MEM rtx's with BLKmode).
832 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
833 used to push FROM to the stack.
835 ALIGN is maximum stack alignment we can assume.
837 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
838 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
842 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
843 unsigned int align
, int endp
)
845 struct move_by_pieces_d data
;
846 machine_mode to_addr_mode
;
847 machine_mode from_addr_mode
= get_address_mode (from
);
848 rtx to_addr
, from_addr
= XEXP (from
, 0);
849 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
850 enum insn_code icode
;
852 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
855 data
.from_addr
= from_addr
;
858 to_addr_mode
= get_address_mode (to
);
859 to_addr
= XEXP (to
, 0);
862 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
863 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
865 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
869 to_addr_mode
= VOIDmode
;
873 #ifdef STACK_GROWS_DOWNWARD
879 data
.to_addr
= to_addr
;
882 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
883 || GET_CODE (from_addr
) == POST_INC
884 || GET_CODE (from_addr
) == POST_DEC
);
886 data
.explicit_inc_from
= 0;
887 data
.explicit_inc_to
= 0;
888 if (data
.reverse
) data
.offset
= len
;
891 /* If copying requires more than two move insns,
892 copy addresses to registers (to make displacements shorter)
893 and use post-increment if available. */
894 if (!(data
.autinc_from
&& data
.autinc_to
)
895 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
897 /* Find the mode of the largest move...
898 MODE might not be used depending on the definitions of the
899 USE_* macros below. */
900 machine_mode mode ATTRIBUTE_UNUSED
901 = widest_int_mode_for_size (max_size
);
903 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
905 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
906 plus_constant (from_addr_mode
,
908 data
.autinc_from
= 1;
909 data
.explicit_inc_from
= -1;
911 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
913 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
914 data
.autinc_from
= 1;
915 data
.explicit_inc_from
= 1;
917 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
918 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
919 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
921 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
922 plus_constant (to_addr_mode
,
925 data
.explicit_inc_to
= -1;
927 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
929 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
931 data
.explicit_inc_to
= 1;
933 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
934 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
937 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
939 /* First move what we can in the largest integer mode, then go to
940 successively smaller modes. */
942 while (max_size
> 1 && data
.len
> 0)
944 machine_mode mode
= widest_int_mode_for_size (max_size
);
946 if (mode
== VOIDmode
)
949 icode
= optab_handler (mov_optab
, mode
);
950 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
951 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
953 max_size
= GET_MODE_SIZE (mode
);
956 /* The code above should have handled everything. */
957 gcc_assert (!data
.len
);
963 gcc_assert (!data
.reverse
);
968 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
969 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
971 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
972 plus_constant (to_addr_mode
,
976 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
983 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
994 unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
996 unsigned int max_size
)
998 unsigned HOST_WIDE_INT n_insns
= 0;
1000 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1002 while (max_size
> 1 && l
> 0)
1005 enum insn_code icode
;
1007 mode
= widest_int_mode_for_size (max_size
);
1009 if (mode
== VOIDmode
)
1012 icode
= optab_handler (mov_optab
, mode
);
1013 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1014 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1016 max_size
= GET_MODE_SIZE (mode
);
1023 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1024 with move instructions for mode MODE. GENFUN is the gen_... function
1025 to make a move insn for that mode. DATA has all the other info. */
1028 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1029 struct move_by_pieces_d
*data
)
1031 unsigned int size
= GET_MODE_SIZE (mode
);
1032 rtx to1
= NULL_RTX
, from1
;
1034 while (data
->len
>= size
)
1037 data
->offset
-= size
;
1041 if (data
->autinc_to
)
1042 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1045 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1048 if (data
->autinc_from
)
1049 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1052 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1054 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1055 emit_insn (gen_add2_insn (data
->to_addr
,
1056 gen_int_mode (-(HOST_WIDE_INT
) size
,
1057 GET_MODE (data
->to_addr
))));
1058 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1059 emit_insn (gen_add2_insn (data
->from_addr
,
1060 gen_int_mode (-(HOST_WIDE_INT
) size
,
1061 GET_MODE (data
->from_addr
))));
1064 emit_insn ((*genfun
) (to1
, from1
));
1067 #ifdef PUSH_ROUNDING
1068 emit_single_push_insn (mode
, from1
, NULL
);
1074 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1075 emit_insn (gen_add2_insn (data
->to_addr
,
1077 GET_MODE (data
->to_addr
))));
1078 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1079 emit_insn (gen_add2_insn (data
->from_addr
,
1081 GET_MODE (data
->from_addr
))));
1083 if (! data
->reverse
)
1084 data
->offset
+= size
;
1090 /* Emit code to move a block Y to a block X. This may be done with
1091 string-move instructions, with multiple scalar move instructions,
1092 or with a library call.
1094 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1095 SIZE is an rtx that says how long they are.
1096 ALIGN is the maximum alignment we can assume they have.
1097 METHOD describes what kind of copy this is, and what mechanisms may be used.
1098 MIN_SIZE is the minimal size of block to move
1099 MAX_SIZE is the maximal size of block to move, if it can not be represented
1100 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1102 Return the address of the new block, if memcpy is called and returns it,
1106 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1107 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1108 unsigned HOST_WIDE_INT min_size
,
1109 unsigned HOST_WIDE_INT max_size
,
1110 unsigned HOST_WIDE_INT probable_max_size
)
1117 if (CONST_INT_P (size
)
1118 && INTVAL (size
) == 0)
1123 case BLOCK_OP_NORMAL
:
1124 case BLOCK_OP_TAILCALL
:
1125 may_use_call
= true;
1128 case BLOCK_OP_CALL_PARM
:
1129 may_use_call
= block_move_libcall_safe_for_call_parm ();
1131 /* Make inhibit_defer_pop nonzero around the library call
1132 to force it to pop the arguments right away. */
1136 case BLOCK_OP_NO_LIBCALL
:
1137 may_use_call
= false;
1144 gcc_assert (MEM_P (x
) && MEM_P (y
));
1145 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1146 gcc_assert (align
>= BITS_PER_UNIT
);
1148 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1149 block copy is more efficient for other large modes, e.g. DCmode. */
1150 x
= adjust_address (x
, BLKmode
, 0);
1151 y
= adjust_address (y
, BLKmode
, 0);
1153 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1154 can be incorrect is coming from __builtin_memcpy. */
1155 if (CONST_INT_P (size
))
1157 x
= shallow_copy_rtx (x
);
1158 y
= shallow_copy_rtx (y
);
1159 set_mem_size (x
, INTVAL (size
));
1160 set_mem_size (y
, INTVAL (size
));
1163 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1164 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1165 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1166 expected_align
, expected_size
,
1167 min_size
, max_size
, probable_max_size
))
1169 else if (may_use_call
1170 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1171 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1173 /* Since x and y are passed to a libcall, mark the corresponding
1174 tree EXPR as addressable. */
1175 tree y_expr
= MEM_EXPR (y
);
1176 tree x_expr
= MEM_EXPR (x
);
1178 mark_addressable (y_expr
);
1180 mark_addressable (x_expr
);
1181 retval
= emit_block_move_via_libcall (x
, y
, size
,
1182 method
== BLOCK_OP_TAILCALL
);
1186 emit_block_move_via_loop (x
, y
, size
, align
);
1188 if (method
== BLOCK_OP_CALL_PARM
)
1195 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1197 unsigned HOST_WIDE_INT max
, min
= 0;
1198 if (GET_CODE (size
) == CONST_INT
)
1199 min
= max
= UINTVAL (size
);
1201 max
= GET_MODE_MASK (GET_MODE (size
));
1202 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1206 /* A subroutine of emit_block_move. Returns true if calling the
1207 block move libcall will not clobber any parameters which may have
1208 already been placed on the stack. */
1211 block_move_libcall_safe_for_call_parm (void)
1213 #if defined (REG_PARM_STACK_SPACE)
1217 /* If arguments are pushed on the stack, then they're safe. */
1221 /* If registers go on the stack anyway, any argument is sure to clobber
1222 an outgoing argument. */
1223 #if defined (REG_PARM_STACK_SPACE)
1224 fn
= emit_block_move_libcall_fn (false);
1225 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1226 depend on its argument. */
1228 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1229 && REG_PARM_STACK_SPACE (fn
) != 0)
1233 /* If any argument goes in memory, then it might clobber an outgoing
1236 CUMULATIVE_ARGS args_so_far_v
;
1237 cumulative_args_t args_so_far
;
1240 fn
= emit_block_move_libcall_fn (false);
1241 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1242 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1244 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1245 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1247 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1248 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1250 if (!tmp
|| !REG_P (tmp
))
1252 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1254 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1261 /* A subroutine of emit_block_move. Expand a movmem pattern;
1262 return true if successful. */
1265 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1266 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1267 unsigned HOST_WIDE_INT min_size
,
1268 unsigned HOST_WIDE_INT max_size
,
1269 unsigned HOST_WIDE_INT probable_max_size
)
1271 int save_volatile_ok
= volatile_ok
;
1274 if (expected_align
< align
)
1275 expected_align
= align
;
1276 if (expected_size
!= -1)
1278 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1279 expected_size
= probable_max_size
;
1280 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1281 expected_size
= min_size
;
1284 /* Since this is a move insn, we don't care about volatility. */
1287 /* Try the most limited insn first, because there's no point
1288 including more than one in the machine description unless
1289 the more limited one has some advantage. */
1291 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1292 mode
= GET_MODE_WIDER_MODE (mode
))
1294 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1296 if (code
!= CODE_FOR_nothing
1297 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1298 here because if SIZE is less than the mode mask, as it is
1299 returned by the macro, it will definitely be less than the
1300 actual mode mask. Since SIZE is within the Pmode address
1301 space, we limit MODE to Pmode. */
1302 && ((CONST_INT_P (size
)
1303 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1304 <= (GET_MODE_MASK (mode
) >> 1)))
1305 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1306 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1308 struct expand_operand ops
[9];
1311 /* ??? When called via emit_block_move_for_call, it'd be
1312 nice if there were some way to inform the backend, so
1313 that it doesn't fail the expansion because it thinks
1314 emitting the libcall would be more efficient. */
1315 nops
= insn_data
[(int) code
].n_generator_args
;
1316 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1318 create_fixed_operand (&ops
[0], x
);
1319 create_fixed_operand (&ops
[1], y
);
1320 /* The check above guarantees that this size conversion is valid. */
1321 create_convert_operand_to (&ops
[2], size
, mode
, true);
1322 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1325 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1326 create_integer_operand (&ops
[5], expected_size
);
1330 create_integer_operand (&ops
[6], min_size
);
1331 /* If we can not represent the maximal size,
1332 make parameter NULL. */
1333 if ((HOST_WIDE_INT
) max_size
!= -1)
1334 create_integer_operand (&ops
[7], max_size
);
1336 create_fixed_operand (&ops
[7], NULL
);
1340 /* If we can not represent the maximal size,
1341 make parameter NULL. */
1342 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1343 create_integer_operand (&ops
[8], probable_max_size
);
1345 create_fixed_operand (&ops
[8], NULL
);
1347 if (maybe_expand_insn (code
, nops
, ops
))
1349 volatile_ok
= save_volatile_ok
;
1355 volatile_ok
= save_volatile_ok
;
1359 /* A subroutine of emit_block_move. Expand a call to memcpy.
1360 Return the return value from memcpy, 0 otherwise. */
1363 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1365 rtx dst_addr
, src_addr
;
1366 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1367 machine_mode size_mode
;
1370 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1371 pseudos. We can then place those new pseudos into a VAR_DECL and
1374 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1375 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1377 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1378 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1380 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1381 src_tree
= make_tree (ptr_type_node
, src_addr
);
1383 size_mode
= TYPE_MODE (sizetype
);
1385 size
= convert_to_mode (size_mode
, size
, 1);
1386 size
= copy_to_mode_reg (size_mode
, size
);
1388 /* It is incorrect to use the libcall calling conventions to call
1389 memcpy in this context. This could be a user call to memcpy and
1390 the user may wish to examine the return value from memcpy. For
1391 targets where libcalls and normal calls have different conventions
1392 for returning pointers, we could end up generating incorrect code. */
1394 size_tree
= make_tree (sizetype
, size
);
1396 fn
= emit_block_move_libcall_fn (true);
1397 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1398 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1400 retval
= expand_normal (call_expr
);
1405 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1406 for the function we use for block copies. */
1408 static GTY(()) tree block_move_fn
;
1411 init_block_move_fn (const char *asmspec
)
1415 tree args
, fn
, attrs
, attr_args
;
1417 fn
= get_identifier ("memcpy");
1418 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1419 const_ptr_type_node
, sizetype
,
1422 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1423 DECL_EXTERNAL (fn
) = 1;
1424 TREE_PUBLIC (fn
) = 1;
1425 DECL_ARTIFICIAL (fn
) = 1;
1426 TREE_NOTHROW (fn
) = 1;
1427 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1428 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1430 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1431 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1433 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1439 set_user_assembler_name (block_move_fn
, asmspec
);
1443 emit_block_move_libcall_fn (int for_call
)
1445 static bool emitted_extern
;
1448 init_block_move_fn (NULL
);
1450 if (for_call
&& !emitted_extern
)
1452 emitted_extern
= true;
1453 make_decl_rtl (block_move_fn
);
1456 return block_move_fn
;
1459 /* A subroutine of emit_block_move. Copy the data via an explicit
1460 loop. This is used only when libcalls are forbidden. */
1461 /* ??? It'd be nice to copy in hunks larger than QImode. */
1464 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1465 unsigned int align ATTRIBUTE_UNUSED
)
1467 rtx_code_label
*cmp_label
, *top_label
;
1468 rtx iter
, x_addr
, y_addr
, tmp
;
1469 machine_mode x_addr_mode
= get_address_mode (x
);
1470 machine_mode y_addr_mode
= get_address_mode (y
);
1471 machine_mode iter_mode
;
1473 iter_mode
= GET_MODE (size
);
1474 if (iter_mode
== VOIDmode
)
1475 iter_mode
= word_mode
;
1477 top_label
= gen_label_rtx ();
1478 cmp_label
= gen_label_rtx ();
1479 iter
= gen_reg_rtx (iter_mode
);
1481 emit_move_insn (iter
, const0_rtx
);
1483 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1484 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1485 do_pending_stack_adjust ();
1487 emit_jump (cmp_label
);
1488 emit_label (top_label
);
1490 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1491 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1493 if (x_addr_mode
!= y_addr_mode
)
1494 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1495 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1497 x
= change_address (x
, QImode
, x_addr
);
1498 y
= change_address (y
, QImode
, y_addr
);
1500 emit_move_insn (x
, y
);
1502 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1503 true, OPTAB_LIB_WIDEN
);
1505 emit_move_insn (iter
, tmp
);
1507 emit_label (cmp_label
);
1509 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1510 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1513 /* Copy all or part of a value X into registers starting at REGNO.
1514 The number of registers to be filled is NREGS. */
1517 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
1520 #ifdef HAVE_load_multiple
1528 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1529 x
= validize_mem (force_const_mem (mode
, x
));
1531 /* See if the machine can do this with a load multiple insn. */
1532 #ifdef HAVE_load_multiple
1533 if (HAVE_load_multiple
)
1535 last
= get_last_insn ();
1536 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1544 delete_insns_since (last
);
1548 for (i
= 0; i
< nregs
; i
++)
1549 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1550 operand_subword_force (x
, i
, mode
));
1553 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1554 The number of registers to be filled is NREGS. */
1557 move_block_from_reg (int regno
, rtx x
, int nregs
)
1564 /* See if the machine can do this with a store multiple insn. */
1565 #ifdef HAVE_store_multiple
1566 if (HAVE_store_multiple
)
1568 rtx_insn
*last
= get_last_insn ();
1569 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1577 delete_insns_since (last
);
1581 for (i
= 0; i
< nregs
; i
++)
1583 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1587 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1591 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1592 ORIG, where ORIG is a non-consecutive group of registers represented by
1593 a PARALLEL. The clone is identical to the original except in that the
1594 original set of registers is replaced by a new set of pseudo registers.
1595 The new set has the same modes as the original set. */
1598 gen_group_rtx (rtx orig
)
1603 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1605 length
= XVECLEN (orig
, 0);
1606 tmps
= XALLOCAVEC (rtx
, length
);
1608 /* Skip a NULL entry in first slot. */
1609 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1614 for (; i
< length
; i
++)
1616 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1617 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1619 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1622 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1625 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1626 except that values are placed in TMPS[i], and must later be moved
1627 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1630 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1634 machine_mode m
= GET_MODE (orig_src
);
1636 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1639 && !SCALAR_INT_MODE_P (m
)
1640 && !MEM_P (orig_src
)
1641 && GET_CODE (orig_src
) != CONCAT
)
1643 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1644 if (imode
== BLKmode
)
1645 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1647 src
= gen_reg_rtx (imode
);
1648 if (imode
!= BLKmode
)
1649 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1650 emit_move_insn (src
, orig_src
);
1651 /* ...and back again. */
1652 if (imode
!= BLKmode
)
1653 src
= gen_lowpart (imode
, src
);
1654 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1658 /* Check for a NULL entry, used to indicate that the parameter goes
1659 both on the stack and in registers. */
1660 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1665 /* Process the pieces. */
1666 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1668 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1669 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1670 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1673 /* Handle trailing fragments that run over the size of the struct. */
1674 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1676 /* Arrange to shift the fragment to where it belongs.
1677 extract_bit_field loads to the lsb of the reg. */
1679 #ifdef BLOCK_REG_PADDING
1680 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1681 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1686 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1687 bytelen
= ssize
- bytepos
;
1688 gcc_assert (bytelen
> 0);
1691 /* If we won't be loading directly from memory, protect the real source
1692 from strange tricks we might play; but make sure that the source can
1693 be loaded directly into the destination. */
1695 if (!MEM_P (orig_src
)
1696 && (!CONSTANT_P (orig_src
)
1697 || (GET_MODE (orig_src
) != mode
1698 && GET_MODE (orig_src
) != VOIDmode
)))
1700 if (GET_MODE (orig_src
) == VOIDmode
)
1701 src
= gen_reg_rtx (mode
);
1703 src
= gen_reg_rtx (GET_MODE (orig_src
));
1705 emit_move_insn (src
, orig_src
);
1708 /* Optimize the access just a bit. */
1710 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1711 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1712 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1713 && bytelen
== GET_MODE_SIZE (mode
))
1715 tmps
[i
] = gen_reg_rtx (mode
);
1716 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1718 else if (COMPLEX_MODE_P (mode
)
1719 && GET_MODE (src
) == mode
1720 && bytelen
== GET_MODE_SIZE (mode
))
1721 /* Let emit_move_complex do the bulk of the work. */
1723 else if (GET_CODE (src
) == CONCAT
)
1725 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1726 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1728 if ((bytepos
== 0 && bytelen
== slen0
)
1729 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1731 /* The following assumes that the concatenated objects all
1732 have the same size. In this case, a simple calculation
1733 can be used to determine the object and the bit field
1735 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1736 if (! CONSTANT_P (tmps
[i
])
1737 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1738 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1739 (bytepos
% slen0
) * BITS_PER_UNIT
,
1740 1, NULL_RTX
, mode
, mode
);
1746 gcc_assert (!bytepos
);
1747 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1748 emit_move_insn (mem
, src
);
1749 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1750 0, 1, NULL_RTX
, mode
, mode
);
1753 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1754 SIMD register, which is currently broken. While we get GCC
1755 to emit proper RTL for these cases, let's dump to memory. */
1756 else if (VECTOR_MODE_P (GET_MODE (dst
))
1759 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1762 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1763 emit_move_insn (mem
, src
);
1764 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1766 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1767 && XVECLEN (dst
, 0) > 1)
1768 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1769 else if (CONSTANT_P (src
))
1771 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1779 /* TODO: const_wide_int can have sizes other than this... */
1780 gcc_assert (2 * len
== ssize
);
1781 split_double (src
, &first
, &second
);
1788 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1791 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1792 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1796 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1801 /* Emit code to move a block SRC of type TYPE to a block DST,
1802 where DST is non-consecutive registers represented by a PARALLEL.
1803 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1807 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1812 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1813 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1815 /* Copy the extracted pieces into the proper (probable) hard regs. */
1816 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1818 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1821 emit_move_insn (d
, tmps
[i
]);
1825 /* Similar, but load SRC into new pseudos in a format that looks like
1826 PARALLEL. This can later be fed to emit_group_move to get things
1827 in the right place. */
1830 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1835 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1836 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1838 /* Convert the vector to look just like the original PARALLEL, except
1839 with the computed values. */
1840 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1842 rtx e
= XVECEXP (parallel
, 0, i
);
1843 rtx d
= XEXP (e
, 0);
1847 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1848 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1850 RTVEC_ELT (vec
, i
) = e
;
1853 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1856 /* Emit code to move a block SRC to block DST, where SRC and DST are
1857 non-consecutive groups of registers, each represented by a PARALLEL. */
1860 emit_group_move (rtx dst
, rtx src
)
1864 gcc_assert (GET_CODE (src
) == PARALLEL
1865 && GET_CODE (dst
) == PARALLEL
1866 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1868 /* Skip first entry if NULL. */
1869 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1870 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1871 XEXP (XVECEXP (src
, 0, i
), 0));
1874 /* Move a group of registers represented by a PARALLEL into pseudos. */
1877 emit_group_move_into_temps (rtx src
)
1879 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1882 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1884 rtx e
= XVECEXP (src
, 0, i
);
1885 rtx d
= XEXP (e
, 0);
1888 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1889 RTVEC_ELT (vec
, i
) = e
;
1892 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1895 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1896 where SRC is non-consecutive registers represented by a PARALLEL.
1897 SSIZE represents the total size of block ORIG_DST, or -1 if not
1901 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1904 int start
, finish
, i
;
1905 machine_mode m
= GET_MODE (orig_dst
);
1907 gcc_assert (GET_CODE (src
) == PARALLEL
);
1909 if (!SCALAR_INT_MODE_P (m
)
1910 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1912 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1913 if (imode
== BLKmode
)
1914 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1916 dst
= gen_reg_rtx (imode
);
1917 emit_group_store (dst
, src
, type
, ssize
);
1918 if (imode
!= BLKmode
)
1919 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1920 emit_move_insn (orig_dst
, dst
);
1924 /* Check for a NULL entry, used to indicate that the parameter goes
1925 both on the stack and in registers. */
1926 if (XEXP (XVECEXP (src
, 0, 0), 0))
1930 finish
= XVECLEN (src
, 0);
1932 tmps
= XALLOCAVEC (rtx
, finish
);
1934 /* Copy the (probable) hard regs into pseudos. */
1935 for (i
= start
; i
< finish
; i
++)
1937 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1938 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1940 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1941 emit_move_insn (tmps
[i
], reg
);
1947 /* If we won't be storing directly into memory, protect the real destination
1948 from strange tricks we might play. */
1950 if (GET_CODE (dst
) == PARALLEL
)
1954 /* We can get a PARALLEL dst if there is a conditional expression in
1955 a return statement. In that case, the dst and src are the same,
1956 so no action is necessary. */
1957 if (rtx_equal_p (dst
, src
))
1960 /* It is unclear if we can ever reach here, but we may as well handle
1961 it. Allocate a temporary, and split this into a store/load to/from
1963 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1964 emit_group_store (temp
, src
, type
, ssize
);
1965 emit_group_load (dst
, temp
, type
, ssize
);
1968 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1970 machine_mode outer
= GET_MODE (dst
);
1972 HOST_WIDE_INT bytepos
;
1976 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1977 dst
= gen_reg_rtx (outer
);
1979 /* Make life a bit easier for combine. */
1980 /* If the first element of the vector is the low part
1981 of the destination mode, use a paradoxical subreg to
1982 initialize the destination. */
1985 inner
= GET_MODE (tmps
[start
]);
1986 bytepos
= subreg_lowpart_offset (inner
, outer
);
1987 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1989 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1993 emit_move_insn (dst
, temp
);
2000 /* If the first element wasn't the low part, try the last. */
2002 && start
< finish
- 1)
2004 inner
= GET_MODE (tmps
[finish
- 1]);
2005 bytepos
= subreg_lowpart_offset (inner
, outer
);
2006 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2008 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2012 emit_move_insn (dst
, temp
);
2019 /* Otherwise, simply initialize the result to zero. */
2021 emit_move_insn (dst
, CONST0_RTX (outer
));
2024 /* Process the pieces. */
2025 for (i
= start
; i
< finish
; i
++)
2027 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2028 machine_mode mode
= GET_MODE (tmps
[i
]);
2029 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2030 unsigned int adj_bytelen
;
2033 /* Handle trailing fragments that run over the size of the struct. */
2034 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2035 adj_bytelen
= ssize
- bytepos
;
2037 adj_bytelen
= bytelen
;
2039 if (GET_CODE (dst
) == CONCAT
)
2041 if (bytepos
+ adj_bytelen
2042 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2043 dest
= XEXP (dst
, 0);
2044 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2046 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2047 dest
= XEXP (dst
, 1);
2051 machine_mode dest_mode
= GET_MODE (dest
);
2052 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2054 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2056 if (GET_MODE_ALIGNMENT (dest_mode
)
2057 >= GET_MODE_ALIGNMENT (tmp_mode
))
2059 dest
= assign_stack_temp (dest_mode
,
2060 GET_MODE_SIZE (dest_mode
));
2061 emit_move_insn (adjust_address (dest
,
2069 dest
= assign_stack_temp (tmp_mode
,
2070 GET_MODE_SIZE (tmp_mode
));
2071 emit_move_insn (dest
, tmps
[i
]);
2072 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2078 /* Handle trailing fragments that run over the size of the struct. */
2079 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2081 /* store_bit_field always takes its value from the lsb.
2082 Move the fragment to the lsb if it's not already there. */
2084 #ifdef BLOCK_REG_PADDING
2085 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2086 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2092 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2093 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2097 /* Make sure not to write past the end of the struct. */
2098 store_bit_field (dest
,
2099 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2100 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2104 /* Optimize the access just a bit. */
2105 else if (MEM_P (dest
)
2106 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2107 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2108 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2109 && bytelen
== GET_MODE_SIZE (mode
))
2110 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2113 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2114 0, 0, mode
, tmps
[i
]);
2117 /* Copy from the pseudo into the (probable) hard reg. */
2118 if (orig_dst
!= dst
)
2119 emit_move_insn (orig_dst
, dst
);
2122 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2123 of the value stored in X. */
2126 maybe_emit_group_store (rtx x
, tree type
)
2128 machine_mode mode
= TYPE_MODE (type
);
2129 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2130 if (GET_CODE (x
) == PARALLEL
)
2132 rtx result
= gen_reg_rtx (mode
);
2133 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2139 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2141 This is used on targets that return BLKmode values in registers. */
2144 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2146 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2147 rtx src
= NULL
, dst
= NULL
;
2148 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2149 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2150 machine_mode mode
= GET_MODE (srcreg
);
2151 machine_mode tmode
= GET_MODE (target
);
2152 machine_mode copy_mode
;
2154 /* BLKmode registers created in the back-end shouldn't have survived. */
2155 gcc_assert (mode
!= BLKmode
);
2157 /* If the structure doesn't take up a whole number of words, see whether
2158 SRCREG is padded on the left or on the right. If it's on the left,
2159 set PADDING_CORRECTION to the number of bits to skip.
2161 In most ABIs, the structure will be returned at the least end of
2162 the register, which translates to right padding on little-endian
2163 targets and left padding on big-endian targets. The opposite
2164 holds if the structure is returned at the most significant
2165 end of the register. */
2166 if (bytes
% UNITS_PER_WORD
!= 0
2167 && (targetm
.calls
.return_in_msb (type
)
2169 : BYTES_BIG_ENDIAN
))
2171 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2173 /* We can use a single move if we have an exact mode for the size. */
2174 else if (MEM_P (target
)
2175 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2176 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2177 && bytes
== GET_MODE_SIZE (mode
))
2179 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2183 /* And if we additionally have the same mode for a register. */
2184 else if (REG_P (target
)
2185 && GET_MODE (target
) == mode
2186 && bytes
== GET_MODE_SIZE (mode
))
2188 emit_move_insn (target
, srcreg
);
2192 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2193 into a new pseudo which is a full word. */
2194 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2196 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2200 /* Copy the structure BITSIZE bits at a time. If the target lives in
2201 memory, take care of not reading/writing past its end by selecting
2202 a copy mode suited to BITSIZE. This should always be possible given
2205 If the target lives in register, make sure not to select a copy mode
2206 larger than the mode of the register.
2208 We could probably emit more efficient code for machines which do not use
2209 strict alignment, but it doesn't seem worth the effort at the current
2212 copy_mode
= word_mode
;
2215 machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2216 if (mem_mode
!= BLKmode
)
2217 copy_mode
= mem_mode
;
2219 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2222 for (bitpos
= 0, xbitpos
= padding_correction
;
2223 bitpos
< bytes
* BITS_PER_UNIT
;
2224 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2226 /* We need a new source operand each time xbitpos is on a
2227 word boundary and when xbitpos == padding_correction
2228 (the first time through). */
2229 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2230 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2232 /* We need a new destination operand each time bitpos is on
2234 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2236 else if (bitpos
% BITS_PER_WORD
== 0)
2237 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2239 /* Use xbitpos for the source extraction (right justified) and
2240 bitpos for the destination store (left justified). */
2241 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2242 extract_bit_field (src
, bitsize
,
2243 xbitpos
% BITS_PER_WORD
, 1,
2244 NULL_RTX
, copy_mode
, copy_mode
));
2248 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2249 register if it contains any data, otherwise return null.
2251 This is used on targets that return BLKmode values in registers. */
2254 copy_blkmode_to_reg (machine_mode mode
, tree src
)
2257 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2258 unsigned int bitsize
;
2259 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2260 machine_mode dst_mode
;
2262 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2264 x
= expand_normal (src
);
2266 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2270 /* If the structure doesn't take up a whole number of words, see
2271 whether the register value should be padded on the left or on
2272 the right. Set PADDING_CORRECTION to the number of padding
2273 bits needed on the left side.
2275 In most ABIs, the structure will be returned at the least end of
2276 the register, which translates to right padding on little-endian
2277 targets and left padding on big-endian targets. The opposite
2278 holds if the structure is returned at the most significant
2279 end of the register. */
2280 if (bytes
% UNITS_PER_WORD
!= 0
2281 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2283 : BYTES_BIG_ENDIAN
))
2284 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2287 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2288 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2289 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2291 /* Copy the structure BITSIZE bits at a time. */
2292 for (bitpos
= 0, xbitpos
= padding_correction
;
2293 bitpos
< bytes
* BITS_PER_UNIT
;
2294 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2296 /* We need a new destination pseudo each time xbitpos is
2297 on a word boundary and when xbitpos == padding_correction
2298 (the first time through). */
2299 if (xbitpos
% BITS_PER_WORD
== 0
2300 || xbitpos
== padding_correction
)
2302 /* Generate an appropriate register. */
2303 dst_word
= gen_reg_rtx (word_mode
);
2304 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2306 /* Clear the destination before we move anything into it. */
2307 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2310 /* We need a new source operand each time bitpos is on a word
2312 if (bitpos
% BITS_PER_WORD
== 0)
2313 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2315 /* Use bitpos for the source extraction (left justified) and
2316 xbitpos for the destination store (right justified). */
2317 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2319 extract_bit_field (src_word
, bitsize
,
2320 bitpos
% BITS_PER_WORD
, 1,
2321 NULL_RTX
, word_mode
, word_mode
));
2324 if (mode
== BLKmode
)
2326 /* Find the smallest integer mode large enough to hold the
2327 entire structure. */
2328 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2330 mode
= GET_MODE_WIDER_MODE (mode
))
2331 /* Have we found a large enough mode? */
2332 if (GET_MODE_SIZE (mode
) >= bytes
)
2335 /* A suitable mode should have been found. */
2336 gcc_assert (mode
!= VOIDmode
);
2339 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2340 dst_mode
= word_mode
;
2343 dst
= gen_reg_rtx (dst_mode
);
2345 for (i
= 0; i
< n_regs
; i
++)
2346 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2348 if (mode
!= dst_mode
)
2349 dst
= gen_lowpart (mode
, dst
);
2354 /* Add a USE expression for REG to the (possibly empty) list pointed
2355 to by CALL_FUSAGE. REG must denote a hard register. */
2358 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2360 gcc_assert (REG_P (reg
));
2362 if (!HARD_REGISTER_P (reg
))
2366 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2369 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2370 to by CALL_FUSAGE. REG must denote a hard register. */
2373 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2375 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2378 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2381 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2382 starting at REGNO. All of these registers must be hard registers. */
2385 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2389 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2391 for (i
= 0; i
< nregs
; i
++)
2392 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2395 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2396 PARALLEL REGS. This is for calls that pass values in multiple
2397 non-contiguous locations. The Irix 6 ABI has examples of this. */
2400 use_group_regs (rtx
*call_fusage
, rtx regs
)
2404 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2406 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2408 /* A NULL entry means the parameter goes both on the stack and in
2409 registers. This can also be a MEM for targets that pass values
2410 partially on the stack and partially in registers. */
2411 if (reg
!= 0 && REG_P (reg
))
2412 use_reg (call_fusage
, reg
);
2416 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2417 assigment and the code of the expresion on the RHS is CODE. Return
2421 get_def_for_expr (tree name
, enum tree_code code
)
2425 if (TREE_CODE (name
) != SSA_NAME
)
2428 def_stmt
= get_gimple_for_ssa_name (name
);
2430 || gimple_assign_rhs_code (def_stmt
) != code
)
2436 #ifdef HAVE_conditional_move
2437 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2438 assigment and the class of the expresion on the RHS is CLASS. Return
2442 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2446 if (TREE_CODE (name
) != SSA_NAME
)
2449 def_stmt
= get_gimple_for_ssa_name (name
);
2451 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2459 /* Determine whether the LEN bytes generated by CONSTFUN can be
2460 stored to memory using several move instructions. CONSTFUNDATA is
2461 a pointer which will be passed as argument in every CONSTFUN call.
2462 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2463 a memset operation and false if it's a copy of a constant string.
2464 Return nonzero if a call to store_by_pieces should succeed. */
2467 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2468 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2469 void *constfundata
, unsigned int align
, bool memsetp
)
2471 unsigned HOST_WIDE_INT l
;
2472 unsigned int max_size
;
2473 HOST_WIDE_INT offset
= 0;
2475 enum insn_code icode
;
2477 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2478 rtx cst ATTRIBUTE_UNUSED
;
2483 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
2487 optimize_insn_for_speed_p ()))
2490 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2492 /* We would first store what we can in the largest integer mode, then go to
2493 successively smaller modes. */
2496 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2500 max_size
= STORE_MAX_PIECES
+ 1;
2501 while (max_size
> 1 && l
> 0)
2503 mode
= widest_int_mode_for_size (max_size
);
2505 if (mode
== VOIDmode
)
2508 icode
= optab_handler (mov_optab
, mode
);
2509 if (icode
!= CODE_FOR_nothing
2510 && align
>= GET_MODE_ALIGNMENT (mode
))
2512 unsigned int size
= GET_MODE_SIZE (mode
);
2519 cst
= (*constfun
) (constfundata
, offset
, mode
);
2520 if (!targetm
.legitimate_constant_p (mode
, cst
))
2530 max_size
= GET_MODE_SIZE (mode
);
2533 /* The code above should have handled everything. */
2540 /* Generate several move instructions to store LEN bytes generated by
2541 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2542 pointer which will be passed as argument in every CONSTFUN call.
2543 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2544 a memset operation and false if it's a copy of a constant string.
2545 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2546 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2550 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2551 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2552 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2554 machine_mode to_addr_mode
= get_address_mode (to
);
2555 struct store_by_pieces_d data
;
2559 gcc_assert (endp
!= 2);
2563 gcc_assert (targetm
.use_by_pieces_infrastructure_p
2568 optimize_insn_for_speed_p ()));
2570 data
.constfun
= constfun
;
2571 data
.constfundata
= constfundata
;
2574 store_by_pieces_1 (&data
, align
);
2579 gcc_assert (!data
.reverse
);
2584 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2585 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2587 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2588 plus_constant (to_addr_mode
,
2592 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2599 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2607 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2608 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2611 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2613 struct store_by_pieces_d data
;
2618 data
.constfun
= clear_by_pieces_1
;
2619 data
.constfundata
= NULL
;
2622 store_by_pieces_1 (&data
, align
);
2625 /* Callback routine for clear_by_pieces.
2626 Return const0_rtx unconditionally. */
2629 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2630 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2631 machine_mode mode ATTRIBUTE_UNUSED
)
2636 /* Subroutine of clear_by_pieces and store_by_pieces.
2637 Generate several move instructions to store LEN bytes of block TO. (A MEM
2638 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2641 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2642 unsigned int align ATTRIBUTE_UNUSED
)
2644 machine_mode to_addr_mode
= get_address_mode (data
->to
);
2645 rtx to_addr
= XEXP (data
->to
, 0);
2646 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2647 enum insn_code icode
;
2650 data
->to_addr
= to_addr
;
2652 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2653 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2655 data
->explicit_inc_to
= 0;
2657 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2659 data
->offset
= data
->len
;
2661 /* If storing requires more than two move insns,
2662 copy addresses to registers (to make displacements shorter)
2663 and use post-increment if available. */
2664 if (!data
->autinc_to
2665 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2667 /* Determine the main mode we'll be using.
2668 MODE might not be used depending on the definitions of the
2669 USE_* macros below. */
2670 machine_mode mode ATTRIBUTE_UNUSED
2671 = widest_int_mode_for_size (max_size
);
2673 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2675 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2676 plus_constant (to_addr_mode
,
2679 data
->autinc_to
= 1;
2680 data
->explicit_inc_to
= -1;
2683 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2684 && ! data
->autinc_to
)
2686 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2687 data
->autinc_to
= 1;
2688 data
->explicit_inc_to
= 1;
2691 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2692 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2695 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2697 /* First store what we can in the largest integer mode, then go to
2698 successively smaller modes. */
2700 while (max_size
> 1 && data
->len
> 0)
2702 machine_mode mode
= widest_int_mode_for_size (max_size
);
2704 if (mode
== VOIDmode
)
2707 icode
= optab_handler (mov_optab
, mode
);
2708 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2709 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2711 max_size
= GET_MODE_SIZE (mode
);
2714 /* The code above should have handled everything. */
2715 gcc_assert (!data
->len
);
2718 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2719 with move instructions for mode MODE. GENFUN is the gen_... function
2720 to make a move insn for that mode. DATA has all the other info. */
2723 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2724 struct store_by_pieces_d
*data
)
2726 unsigned int size
= GET_MODE_SIZE (mode
);
2729 while (data
->len
>= size
)
2732 data
->offset
-= size
;
2734 if (data
->autinc_to
)
2735 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2738 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2740 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2741 emit_insn (gen_add2_insn (data
->to_addr
,
2742 gen_int_mode (-(HOST_WIDE_INT
) size
,
2743 GET_MODE (data
->to_addr
))));
2745 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2746 emit_insn ((*genfun
) (to1
, cst
));
2748 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2749 emit_insn (gen_add2_insn (data
->to_addr
,
2751 GET_MODE (data
->to_addr
))));
2753 if (! data
->reverse
)
2754 data
->offset
+= size
;
2760 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2761 its length in bytes. */
2764 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2765 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2766 unsigned HOST_WIDE_INT min_size
,
2767 unsigned HOST_WIDE_INT max_size
,
2768 unsigned HOST_WIDE_INT probable_max_size
)
2770 machine_mode mode
= GET_MODE (object
);
2773 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2775 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2776 just move a zero. Otherwise, do this a piece at a time. */
2778 && CONST_INT_P (size
)
2779 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2781 rtx zero
= CONST0_RTX (mode
);
2784 emit_move_insn (object
, zero
);
2788 if (COMPLEX_MODE_P (mode
))
2790 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2793 write_complex_part (object
, zero
, 0);
2794 write_complex_part (object
, zero
, 1);
2800 if (size
== const0_rtx
)
2803 align
= MEM_ALIGN (object
);
2805 if (CONST_INT_P (size
)
2806 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
2808 optimize_insn_for_speed_p ()))
2809 clear_by_pieces (object
, INTVAL (size
), align
);
2810 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2811 expected_align
, expected_size
,
2812 min_size
, max_size
, probable_max_size
))
2814 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2815 return set_storage_via_libcall (object
, size
, const0_rtx
,
2816 method
== BLOCK_OP_TAILCALL
);
2824 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2826 unsigned HOST_WIDE_INT max
, min
= 0;
2827 if (GET_CODE (size
) == CONST_INT
)
2828 min
= max
= UINTVAL (size
);
2830 max
= GET_MODE_MASK (GET_MODE (size
));
2831 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2835 /* A subroutine of clear_storage. Expand a call to memset.
2836 Return the return value of memset, 0 otherwise. */
2839 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2841 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2842 machine_mode size_mode
;
2845 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2846 place those into new pseudos into a VAR_DECL and use them later. */
2848 object
= copy_addr_to_reg (XEXP (object
, 0));
2850 size_mode
= TYPE_MODE (sizetype
);
2851 size
= convert_to_mode (size_mode
, size
, 1);
2852 size
= copy_to_mode_reg (size_mode
, size
);
2854 /* It is incorrect to use the libcall calling conventions to call
2855 memset in this context. This could be a user call to memset and
2856 the user may wish to examine the return value from memset. For
2857 targets where libcalls and normal calls have different conventions
2858 for returning pointers, we could end up generating incorrect code. */
2860 object_tree
= make_tree (ptr_type_node
, object
);
2861 if (!CONST_INT_P (val
))
2862 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2863 size_tree
= make_tree (sizetype
, size
);
2864 val_tree
= make_tree (integer_type_node
, val
);
2866 fn
= clear_storage_libcall_fn (true);
2867 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2868 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2870 retval
= expand_normal (call_expr
);
2875 /* A subroutine of set_storage_via_libcall. Create the tree node
2876 for the function we use for block clears. */
2878 tree block_clear_fn
;
2881 init_block_clear_fn (const char *asmspec
)
2883 if (!block_clear_fn
)
2887 fn
= get_identifier ("memset");
2888 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2889 integer_type_node
, sizetype
,
2892 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2893 DECL_EXTERNAL (fn
) = 1;
2894 TREE_PUBLIC (fn
) = 1;
2895 DECL_ARTIFICIAL (fn
) = 1;
2896 TREE_NOTHROW (fn
) = 1;
2897 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2898 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2900 block_clear_fn
= fn
;
2904 set_user_assembler_name (block_clear_fn
, asmspec
);
2908 clear_storage_libcall_fn (int for_call
)
2910 static bool emitted_extern
;
2912 if (!block_clear_fn
)
2913 init_block_clear_fn (NULL
);
2915 if (for_call
&& !emitted_extern
)
2917 emitted_extern
= true;
2918 make_decl_rtl (block_clear_fn
);
2921 return block_clear_fn
;
2924 /* Expand a setmem pattern; return true if successful. */
2927 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2928 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2929 unsigned HOST_WIDE_INT min_size
,
2930 unsigned HOST_WIDE_INT max_size
,
2931 unsigned HOST_WIDE_INT probable_max_size
)
2933 /* Try the most limited insn first, because there's no point
2934 including more than one in the machine description unless
2935 the more limited one has some advantage. */
2939 if (expected_align
< align
)
2940 expected_align
= align
;
2941 if (expected_size
!= -1)
2943 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2944 expected_size
= max_size
;
2945 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2946 expected_size
= min_size
;
2949 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2950 mode
= GET_MODE_WIDER_MODE (mode
))
2952 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2954 if (code
!= CODE_FOR_nothing
2955 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2956 here because if SIZE is less than the mode mask, as it is
2957 returned by the macro, it will definitely be less than the
2958 actual mode mask. Since SIZE is within the Pmode address
2959 space, we limit MODE to Pmode. */
2960 && ((CONST_INT_P (size
)
2961 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2962 <= (GET_MODE_MASK (mode
) >> 1)))
2963 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2964 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2966 struct expand_operand ops
[9];
2969 nops
= insn_data
[(int) code
].n_generator_args
;
2970 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2972 create_fixed_operand (&ops
[0], object
);
2973 /* The check above guarantees that this size conversion is valid. */
2974 create_convert_operand_to (&ops
[1], size
, mode
, true);
2975 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2976 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2979 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2980 create_integer_operand (&ops
[5], expected_size
);
2984 create_integer_operand (&ops
[6], min_size
);
2985 /* If we can not represent the maximal size,
2986 make parameter NULL. */
2987 if ((HOST_WIDE_INT
) max_size
!= -1)
2988 create_integer_operand (&ops
[7], max_size
);
2990 create_fixed_operand (&ops
[7], NULL
);
2994 /* If we can not represent the maximal size,
2995 make parameter NULL. */
2996 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2997 create_integer_operand (&ops
[8], probable_max_size
);
2999 create_fixed_operand (&ops
[8], NULL
);
3001 if (maybe_expand_insn (code
, nops
, ops
))
3010 /* Write to one of the components of the complex value CPLX. Write VAL to
3011 the real part if IMAG_P is false, and the imaginary part if its true. */
3014 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3020 if (GET_CODE (cplx
) == CONCAT
)
3022 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3026 cmode
= GET_MODE (cplx
);
3027 imode
= GET_MODE_INNER (cmode
);
3028 ibitsize
= GET_MODE_BITSIZE (imode
);
3030 /* For MEMs simplify_gen_subreg may generate an invalid new address
3031 because, e.g., the original address is considered mode-dependent
3032 by the target, which restricts simplify_subreg from invoking
3033 adjust_address_nv. Instead of preparing fallback support for an
3034 invalid address, we call adjust_address_nv directly. */
3037 emit_move_insn (adjust_address_nv (cplx
, imode
,
3038 imag_p
? GET_MODE_SIZE (imode
) : 0),
3043 /* If the sub-object is at least word sized, then we know that subregging
3044 will work. This special case is important, since store_bit_field
3045 wants to operate on integer modes, and there's rarely an OImode to
3046 correspond to TCmode. */
3047 if (ibitsize
>= BITS_PER_WORD
3048 /* For hard regs we have exact predicates. Assume we can split
3049 the original object if it spans an even number of hard regs.
3050 This special case is important for SCmode on 64-bit platforms
3051 where the natural size of floating-point regs is 32-bit. */
3053 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3054 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3056 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3057 imag_p
? GET_MODE_SIZE (imode
) : 0);
3060 emit_move_insn (part
, val
);
3064 /* simplify_gen_subreg may fail for sub-word MEMs. */
3065 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3068 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3071 /* Extract one of the components of the complex value CPLX. Extract the
3072 real part if IMAG_P is false, and the imaginary part if it's true. */
3075 read_complex_part (rtx cplx
, bool imag_p
)
3077 machine_mode cmode
, imode
;
3080 if (GET_CODE (cplx
) == CONCAT
)
3081 return XEXP (cplx
, imag_p
);
3083 cmode
= GET_MODE (cplx
);
3084 imode
= GET_MODE_INNER (cmode
);
3085 ibitsize
= GET_MODE_BITSIZE (imode
);
3087 /* Special case reads from complex constants that got spilled to memory. */
3088 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3090 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3091 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3093 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3094 if (CONSTANT_CLASS_P (part
))
3095 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3099 /* For MEMs simplify_gen_subreg may generate an invalid new address
3100 because, e.g., the original address is considered mode-dependent
3101 by the target, which restricts simplify_subreg from invoking
3102 adjust_address_nv. Instead of preparing fallback support for an
3103 invalid address, we call adjust_address_nv directly. */
3105 return adjust_address_nv (cplx
, imode
,
3106 imag_p
? GET_MODE_SIZE (imode
) : 0);
3108 /* If the sub-object is at least word sized, then we know that subregging
3109 will work. This special case is important, since extract_bit_field
3110 wants to operate on integer modes, and there's rarely an OImode to
3111 correspond to TCmode. */
3112 if (ibitsize
>= BITS_PER_WORD
3113 /* For hard regs we have exact predicates. Assume we can split
3114 the original object if it spans an even number of hard regs.
3115 This special case is important for SCmode on 64-bit platforms
3116 where the natural size of floating-point regs is 32-bit. */
3118 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3119 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3121 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3122 imag_p
? GET_MODE_SIZE (imode
) : 0);
3126 /* simplify_gen_subreg may fail for sub-word MEMs. */
3127 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3130 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3131 true, NULL_RTX
, imode
, imode
);
3134 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3135 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3136 represented in NEW_MODE. If FORCE is true, this will never happen, as
3137 we'll force-create a SUBREG if needed. */
3140 emit_move_change_mode (machine_mode new_mode
,
3141 machine_mode old_mode
, rtx x
, bool force
)
3145 if (push_operand (x
, GET_MODE (x
)))
3147 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3148 MEM_COPY_ATTRIBUTES (ret
, x
);
3152 /* We don't have to worry about changing the address since the
3153 size in bytes is supposed to be the same. */
3154 if (reload_in_progress
)
3156 /* Copy the MEM to change the mode and move any
3157 substitutions from the old MEM to the new one. */
3158 ret
= adjust_address_nv (x
, new_mode
, 0);
3159 copy_replacements (x
, ret
);
3162 ret
= adjust_address (x
, new_mode
, 0);
3166 /* Note that we do want simplify_subreg's behavior of validating
3167 that the new mode is ok for a hard register. If we were to use
3168 simplify_gen_subreg, we would create the subreg, but would
3169 probably run into the target not being able to implement it. */
3170 /* Except, of course, when FORCE is true, when this is exactly what
3171 we want. Which is needed for CCmodes on some targets. */
3173 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3175 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3181 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3182 an integer mode of the same size as MODE. Returns the instruction
3183 emitted, or NULL if such a move could not be generated. */
3186 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3189 enum insn_code code
;
3191 /* There must exist a mode of the exact size we require. */
3192 imode
= int_mode_for_mode (mode
);
3193 if (imode
== BLKmode
)
3196 /* The target must support moves in this mode. */
3197 code
= optab_handler (mov_optab
, imode
);
3198 if (code
== CODE_FOR_nothing
)
3201 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3204 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3207 return emit_insn (GEN_FCN (code
) (x
, y
));
3210 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3211 Return an equivalent MEM that does not use an auto-increment. */
3214 emit_move_resolve_push (machine_mode mode
, rtx x
)
3216 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3217 HOST_WIDE_INT adjust
;
3220 adjust
= GET_MODE_SIZE (mode
);
3221 #ifdef PUSH_ROUNDING
3222 adjust
= PUSH_ROUNDING (adjust
);
3224 if (code
== PRE_DEC
|| code
== POST_DEC
)
3226 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3228 rtx expr
= XEXP (XEXP (x
, 0), 1);
3231 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3232 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3233 val
= INTVAL (XEXP (expr
, 1));
3234 if (GET_CODE (expr
) == MINUS
)
3236 gcc_assert (adjust
== val
|| adjust
== -val
);
3240 /* Do not use anti_adjust_stack, since we don't want to update
3241 stack_pointer_delta. */
3242 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3243 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3244 0, OPTAB_LIB_WIDEN
);
3245 if (temp
!= stack_pointer_rtx
)
3246 emit_move_insn (stack_pointer_rtx
, temp
);
3253 temp
= stack_pointer_rtx
;
3258 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3264 return replace_equiv_address (x
, temp
);
3267 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3268 X is known to satisfy push_operand, and MODE is known to be complex.
3269 Returns the last instruction emitted. */
3272 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3274 machine_mode submode
= GET_MODE_INNER (mode
);
3277 #ifdef PUSH_ROUNDING
3278 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3280 /* In case we output to the stack, but the size is smaller than the
3281 machine can push exactly, we need to use move instructions. */
3282 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3284 x
= emit_move_resolve_push (mode
, x
);
3285 return emit_move_insn (x
, y
);
3289 /* Note that the real part always precedes the imag part in memory
3290 regardless of machine's endianness. */
3291 switch (GET_CODE (XEXP (x
, 0)))
3305 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3306 read_complex_part (y
, imag_first
));
3307 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3308 read_complex_part (y
, !imag_first
));
3311 /* A subroutine of emit_move_complex. Perform the move from Y to X
3312 via two moves of the parts. Returns the last instruction emitted. */
3315 emit_move_complex_parts (rtx x
, rtx y
)
3317 /* Show the output dies here. This is necessary for SUBREGs
3318 of pseudos since we cannot track their lifetimes correctly;
3319 hard regs shouldn't appear here except as return values. */
3320 if (!reload_completed
&& !reload_in_progress
3321 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3324 write_complex_part (x
, read_complex_part (y
, false), false);
3325 write_complex_part (x
, read_complex_part (y
, true), true);
3327 return get_last_insn ();
3330 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3331 MODE is known to be complex. Returns the last instruction emitted. */
3334 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3338 /* Need to take special care for pushes, to maintain proper ordering
3339 of the data, and possibly extra padding. */
3340 if (push_operand (x
, mode
))
3341 return emit_move_complex_push (mode
, x
, y
);
3343 /* See if we can coerce the target into moving both values at once, except
3344 for floating point where we favor moving as parts if this is easy. */
3345 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3346 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3348 && HARD_REGISTER_P (x
)
3349 && hard_regno_nregs
[REGNO (x
)][mode
] == 1)
3351 && HARD_REGISTER_P (y
)
3352 && hard_regno_nregs
[REGNO (y
)][mode
] == 1))
3354 /* Not possible if the values are inherently not adjacent. */
3355 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3357 /* Is possible if both are registers (or subregs of registers). */
3358 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3360 /* If one of the operands is a memory, and alignment constraints
3361 are friendly enough, we may be able to do combined memory operations.
3362 We do not attempt this if Y is a constant because that combination is
3363 usually better with the by-parts thing below. */
3364 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3365 && (!STRICT_ALIGNMENT
3366 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3375 /* For memory to memory moves, optimal behavior can be had with the
3376 existing block move logic. */
3377 if (MEM_P (x
) && MEM_P (y
))
3379 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3380 BLOCK_OP_NO_LIBCALL
);
3381 return get_last_insn ();
3384 ret
= emit_move_via_integer (mode
, x
, y
, true);
3389 return emit_move_complex_parts (x
, y
);
3392 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3393 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3396 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3400 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3403 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3404 if (code
!= CODE_FOR_nothing
)
3406 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3407 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3408 return emit_insn (GEN_FCN (code
) (x
, y
));
3412 /* Otherwise, find the MODE_INT mode of the same width. */
3413 ret
= emit_move_via_integer (mode
, x
, y
, false);
3414 gcc_assert (ret
!= NULL
);
3418 /* Return true if word I of OP lies entirely in the
3419 undefined bits of a paradoxical subreg. */
3422 undefined_operand_subword_p (const_rtx op
, int i
)
3424 machine_mode innermode
, innermostmode
;
3426 if (GET_CODE (op
) != SUBREG
)
3428 innermode
= GET_MODE (op
);
3429 innermostmode
= GET_MODE (SUBREG_REG (op
));
3430 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3431 /* The SUBREG_BYTE represents offset, as if the value were stored in
3432 memory, except for a paradoxical subreg where we define
3433 SUBREG_BYTE to be 0; undo this exception as in
3435 if (SUBREG_BYTE (op
) == 0
3436 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3438 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3439 if (WORDS_BIG_ENDIAN
)
3440 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3441 if (BYTES_BIG_ENDIAN
)
3442 offset
+= difference
% UNITS_PER_WORD
;
3444 if (offset
>= GET_MODE_SIZE (innermostmode
)
3445 || offset
<= -GET_MODE_SIZE (word_mode
))
3450 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3451 MODE is any multi-word or full-word mode that lacks a move_insn
3452 pattern. Note that you will get better code if you define such
3453 patterns, even if they must turn into multiple assembler instructions. */
3456 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3458 rtx_insn
*last_insn
= 0;
3464 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3466 /* If X is a push on the stack, do the push now and replace
3467 X with a reference to the stack pointer. */
3468 if (push_operand (x
, mode
))
3469 x
= emit_move_resolve_push (mode
, x
);
3471 /* If we are in reload, see if either operand is a MEM whose address
3472 is scheduled for replacement. */
3473 if (reload_in_progress
&& MEM_P (x
)
3474 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3475 x
= replace_equiv_address_nv (x
, inner
);
3476 if (reload_in_progress
&& MEM_P (y
)
3477 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3478 y
= replace_equiv_address_nv (y
, inner
);
3482 need_clobber
= false;
3484 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3487 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3490 /* Do not generate code for a move if it would come entirely
3491 from the undefined bits of a paradoxical subreg. */
3492 if (undefined_operand_subword_p (y
, i
))
3495 ypart
= operand_subword (y
, i
, 1, mode
);
3497 /* If we can't get a part of Y, put Y into memory if it is a
3498 constant. Otherwise, force it into a register. Then we must
3499 be able to get a part of Y. */
3500 if (ypart
== 0 && CONSTANT_P (y
))
3502 y
= use_anchored_address (force_const_mem (mode
, y
));
3503 ypart
= operand_subword (y
, i
, 1, mode
);
3505 else if (ypart
== 0)
3506 ypart
= operand_subword_force (y
, i
, mode
);
3508 gcc_assert (xpart
&& ypart
);
3510 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3512 last_insn
= emit_move_insn (xpart
, ypart
);
3518 /* Show the output dies here. This is necessary for SUBREGs
3519 of pseudos since we cannot track their lifetimes correctly;
3520 hard regs shouldn't appear here except as return values.
3521 We never want to emit such a clobber after reload. */
3523 && ! (reload_in_progress
|| reload_completed
)
3524 && need_clobber
!= 0)
3532 /* Low level part of emit_move_insn.
3533 Called just like emit_move_insn, but assumes X and Y
3534 are basically valid. */
3537 emit_move_insn_1 (rtx x
, rtx y
)
3539 machine_mode mode
= GET_MODE (x
);
3540 enum insn_code code
;
3542 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3544 code
= optab_handler (mov_optab
, mode
);
3545 if (code
!= CODE_FOR_nothing
)
3546 return emit_insn (GEN_FCN (code
) (x
, y
));
3548 /* Expand complex moves by moving real part and imag part. */
3549 if (COMPLEX_MODE_P (mode
))
3550 return emit_move_complex (mode
, x
, y
);
3552 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3553 || ALL_FIXED_POINT_MODE_P (mode
))
3555 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3557 /* If we can't find an integer mode, use multi words. */
3561 return emit_move_multi_word (mode
, x
, y
);
3564 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3565 return emit_move_ccmode (mode
, x
, y
);
3567 /* Try using a move pattern for the corresponding integer mode. This is
3568 only safe when simplify_subreg can convert MODE constants into integer
3569 constants. At present, it can only do this reliably if the value
3570 fits within a HOST_WIDE_INT. */
3571 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3573 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3577 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3582 return emit_move_multi_word (mode
, x
, y
);
3585 /* Generate code to copy Y into X.
3586 Both Y and X must have the same mode, except that
3587 Y can be a constant with VOIDmode.
3588 This mode cannot be BLKmode; use emit_block_move for that.
3590 Return the last instruction emitted. */
3593 emit_move_insn (rtx x
, rtx y
)
3595 machine_mode mode
= GET_MODE (x
);
3596 rtx y_cst
= NULL_RTX
;
3597 rtx_insn
*last_insn
;
3600 gcc_assert (mode
!= BLKmode
3601 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3606 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3607 && (last_insn
= compress_float_constant (x
, y
)))
3612 if (!targetm
.legitimate_constant_p (mode
, y
))
3614 y
= force_const_mem (mode
, y
);
3616 /* If the target's cannot_force_const_mem prevented the spill,
3617 assume that the target's move expanders will also take care
3618 of the non-legitimate constant. */
3622 y
= use_anchored_address (y
);
3626 /* If X or Y are memory references, verify that their addresses are valid
3629 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3631 && ! push_operand (x
, GET_MODE (x
))))
3632 x
= validize_mem (x
);
3635 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3636 MEM_ADDR_SPACE (y
)))
3637 y
= validize_mem (y
);
3639 gcc_assert (mode
!= BLKmode
);
3641 last_insn
= emit_move_insn_1 (x
, y
);
3643 if (y_cst
&& REG_P (x
)
3644 && (set
= single_set (last_insn
)) != NULL_RTX
3645 && SET_DEST (set
) == x
3646 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3647 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3652 /* Generate the body of an instruction to copy Y into X.
3653 It may be a list of insns, if one insn isn't enough. */
3656 gen_move_insn (rtx x
, rtx y
)
3661 emit_move_insn_1 (x
, y
);
3667 /* If Y is representable exactly in a narrower mode, and the target can
3668 perform the extension directly from constant or memory, then emit the
3669 move as an extension. */
3672 compress_float_constant (rtx x
, rtx y
)
3674 machine_mode dstmode
= GET_MODE (x
);
3675 machine_mode orig_srcmode
= GET_MODE (y
);
3676 machine_mode srcmode
;
3678 int oldcost
, newcost
;
3679 bool speed
= optimize_insn_for_speed_p ();
3681 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3683 if (targetm
.legitimate_constant_p (dstmode
, y
))
3684 oldcost
= set_src_cost (y
, speed
);
3686 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3688 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3689 srcmode
!= orig_srcmode
;
3690 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3694 rtx_insn
*last_insn
;
3696 /* Skip if the target can't extend this way. */
3697 ic
= can_extend_p (dstmode
, srcmode
, 0);
3698 if (ic
== CODE_FOR_nothing
)
3701 /* Skip if the narrowed value isn't exact. */
3702 if (! exact_real_truncate (srcmode
, &r
))
3705 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3707 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3709 /* Skip if the target needs extra instructions to perform
3711 if (!insn_operand_matches (ic
, 1, trunc_y
))
3713 /* This is valid, but may not be cheaper than the original. */
3714 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3716 if (oldcost
< newcost
)
3719 else if (float_extend_from_mem
[dstmode
][srcmode
])
3721 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3722 /* This is valid, but may not be cheaper than the original. */
3723 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3725 if (oldcost
< newcost
)
3727 trunc_y
= validize_mem (trunc_y
);
3732 /* For CSE's benefit, force the compressed constant pool entry
3733 into a new pseudo. This constant may be used in different modes,
3734 and if not, combine will put things back together for us. */
3735 trunc_y
= force_reg (srcmode
, trunc_y
);
3737 /* If x is a hard register, perform the extension into a pseudo,
3738 so that e.g. stack realignment code is aware of it. */
3740 if (REG_P (x
) && HARD_REGISTER_P (x
))
3741 target
= gen_reg_rtx (dstmode
);
3743 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3744 last_insn
= get_last_insn ();
3747 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3750 return emit_move_insn (x
, target
);
3757 /* Pushing data onto the stack. */
3759 /* Push a block of length SIZE (perhaps variable)
3760 and return an rtx to address the beginning of the block.
3761 The value may be virtual_outgoing_args_rtx.
3763 EXTRA is the number of bytes of padding to push in addition to SIZE.
3764 BELOW nonzero means this padding comes at low addresses;
3765 otherwise, the padding comes at high addresses. */
3768 push_block (rtx size
, int extra
, int below
)
3772 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3773 if (CONSTANT_P (size
))
3774 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3775 else if (REG_P (size
) && extra
== 0)
3776 anti_adjust_stack (size
);
3779 temp
= copy_to_mode_reg (Pmode
, size
);
3781 temp
= expand_binop (Pmode
, add_optab
, temp
,
3782 gen_int_mode (extra
, Pmode
),
3783 temp
, 0, OPTAB_LIB_WIDEN
);
3784 anti_adjust_stack (temp
);
3787 #ifndef STACK_GROWS_DOWNWARD
3793 temp
= virtual_outgoing_args_rtx
;
3794 if (extra
!= 0 && below
)
3795 temp
= plus_constant (Pmode
, temp
, extra
);
3799 if (CONST_INT_P (size
))
3800 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3801 -INTVAL (size
) - (below
? 0 : extra
));
3802 else if (extra
!= 0 && !below
)
3803 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3804 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3807 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3808 negate_rtx (Pmode
, size
));
3811 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3814 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3817 mem_autoinc_base (rtx mem
)
3821 rtx addr
= XEXP (mem
, 0);
3822 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3823 return XEXP (addr
, 0);
3828 /* A utility routine used here, in reload, and in try_split. The insns
3829 after PREV up to and including LAST are known to adjust the stack,
3830 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3831 placing notes as appropriate. PREV may be NULL, indicating the
3832 entire insn sequence prior to LAST should be scanned.
3834 The set of allowed stack pointer modifications is small:
3835 (1) One or more auto-inc style memory references (aka pushes),
3836 (2) One or more addition/subtraction with the SP as destination,
3837 (3) A single move insn with the SP as destination,
3838 (4) A call_pop insn,
3839 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3841 Insns in the sequence that do not modify the SP are ignored,
3842 except for noreturn calls.
3844 The return value is the amount of adjustment that can be trivially
3845 verified, via immediate operand or auto-inc. If the adjustment
3846 cannot be trivially extracted, the return value is INT_MIN. */
3849 find_args_size_adjust (rtx_insn
*insn
)
3854 pat
= PATTERN (insn
);
3857 /* Look for a call_pop pattern. */
3860 /* We have to allow non-call_pop patterns for the case
3861 of emit_single_push_insn of a TLS address. */
3862 if (GET_CODE (pat
) != PARALLEL
)
3865 /* All call_pop have a stack pointer adjust in the parallel.
3866 The call itself is always first, and the stack adjust is
3867 usually last, so search from the end. */
3868 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3870 set
= XVECEXP (pat
, 0, i
);
3871 if (GET_CODE (set
) != SET
)
3873 dest
= SET_DEST (set
);
3874 if (dest
== stack_pointer_rtx
)
3877 /* We'd better have found the stack pointer adjust. */
3880 /* Fall through to process the extracted SET and DEST
3881 as if it was a standalone insn. */
3883 else if (GET_CODE (pat
) == SET
)
3885 else if ((set
= single_set (insn
)) != NULL
)
3887 else if (GET_CODE (pat
) == PARALLEL
)
3889 /* ??? Some older ports use a parallel with a stack adjust
3890 and a store for a PUSH_ROUNDING pattern, rather than a
3891 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3892 /* ??? See h8300 and m68k, pushqi1. */
3893 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3895 set
= XVECEXP (pat
, 0, i
);
3896 if (GET_CODE (set
) != SET
)
3898 dest
= SET_DEST (set
);
3899 if (dest
== stack_pointer_rtx
)
3902 /* We do not expect an auto-inc of the sp in the parallel. */
3903 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3904 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3905 != stack_pointer_rtx
);
3913 dest
= SET_DEST (set
);
3915 /* Look for direct modifications of the stack pointer. */
3916 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3918 /* Look for a trivial adjustment, otherwise assume nothing. */
3919 /* Note that the SPU restore_stack_block pattern refers to
3920 the stack pointer in V4SImode. Consider that non-trivial. */
3921 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3922 && GET_CODE (SET_SRC (set
)) == PLUS
3923 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3924 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3925 return INTVAL (XEXP (SET_SRC (set
), 1));
3926 /* ??? Reload can generate no-op moves, which will be cleaned
3927 up later. Recognize it and continue searching. */
3928 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3931 return HOST_WIDE_INT_MIN
;
3937 /* Otherwise only think about autoinc patterns. */
3938 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3941 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3942 != stack_pointer_rtx
);
3944 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3945 mem
= SET_SRC (set
);
3949 addr
= XEXP (mem
, 0);
3950 switch (GET_CODE (addr
))
3954 return GET_MODE_SIZE (GET_MODE (mem
));
3957 return -GET_MODE_SIZE (GET_MODE (mem
));
3960 addr
= XEXP (addr
, 1);
3961 gcc_assert (GET_CODE (addr
) == PLUS
);
3962 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3963 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3964 return INTVAL (XEXP (addr
, 1));
3972 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
, int end_args_size
)
3974 int args_size
= end_args_size
;
3975 bool saw_unknown
= false;
3978 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3980 HOST_WIDE_INT this_delta
;
3982 if (!NONDEBUG_INSN_P (insn
))
3985 this_delta
= find_args_size_adjust (insn
);
3986 if (this_delta
== 0)
3989 || ACCUMULATE_OUTGOING_ARGS
3990 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3994 gcc_assert (!saw_unknown
);
3995 if (this_delta
== HOST_WIDE_INT_MIN
)
3998 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3999 #ifdef STACK_GROWS_DOWNWARD
4000 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
4002 args_size
-= this_delta
;
4005 return saw_unknown
? INT_MIN
: args_size
;
4008 #ifdef PUSH_ROUNDING
4009 /* Emit single push insn. */
4012 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4015 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4017 enum insn_code icode
;
4019 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4020 /* If there is push pattern, use it. Otherwise try old way of throwing
4021 MEM representing push operation to move expander. */
4022 icode
= optab_handler (push_optab
, mode
);
4023 if (icode
!= CODE_FOR_nothing
)
4025 struct expand_operand ops
[1];
4027 create_input_operand (&ops
[0], x
, mode
);
4028 if (maybe_expand_insn (icode
, 1, ops
))
4031 if (GET_MODE_SIZE (mode
) == rounded_size
)
4032 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4033 /* If we are to pad downward, adjust the stack pointer first and
4034 then store X into the stack location using an offset. This is
4035 because emit_move_insn does not know how to pad; it does not have
4037 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4039 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4040 HOST_WIDE_INT offset
;
4042 emit_move_insn (stack_pointer_rtx
,
4043 expand_binop (Pmode
,
4044 #ifdef STACK_GROWS_DOWNWARD
4050 gen_int_mode (rounded_size
, Pmode
),
4051 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4053 offset
= (HOST_WIDE_INT
) padding_size
;
4054 #ifdef STACK_GROWS_DOWNWARD
4055 if (STACK_PUSH_CODE
== POST_DEC
)
4056 /* We have already decremented the stack pointer, so get the
4058 offset
+= (HOST_WIDE_INT
) rounded_size
;
4060 if (STACK_PUSH_CODE
== POST_INC
)
4061 /* We have already incremented the stack pointer, so get the
4063 offset
-= (HOST_WIDE_INT
) rounded_size
;
4065 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4066 gen_int_mode (offset
, Pmode
));
4070 #ifdef STACK_GROWS_DOWNWARD
4071 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4072 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4073 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4076 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4077 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4078 gen_int_mode (rounded_size
, Pmode
));
4080 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4083 dest
= gen_rtx_MEM (mode
, dest_addr
);
4087 set_mem_attributes (dest
, type
, 1);
4089 if (cfun
->tail_call_marked
)
4090 /* Function incoming arguments may overlap with sibling call
4091 outgoing arguments and we cannot allow reordering of reads
4092 from function arguments with stores to outgoing arguments
4093 of sibling calls. */
4094 set_mem_alias_set (dest
, 0);
4096 emit_move_insn (dest
, x
);
4099 /* Emit and annotate a single push insn. */
4102 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4104 int delta
, old_delta
= stack_pointer_delta
;
4105 rtx_insn
*prev
= get_last_insn ();
4108 emit_single_push_insn_1 (mode
, x
, type
);
4110 last
= get_last_insn ();
4112 /* Notice the common case where we emitted exactly one insn. */
4113 if (PREV_INSN (last
) == prev
)
4115 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4119 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4120 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4124 /* Generate code to push X onto the stack, assuming it has mode MODE and
4126 MODE is redundant except when X is a CONST_INT (since they don't
4128 SIZE is an rtx for the size of data to be copied (in bytes),
4129 needed only if X is BLKmode.
4131 ALIGN (in bits) is maximum alignment we can assume.
4133 If PARTIAL and REG are both nonzero, then copy that many of the first
4134 bytes of X into registers starting with REG, and push the rest of X.
4135 The amount of space pushed is decreased by PARTIAL bytes.
4136 REG must be a hard register in this case.
4137 If REG is zero but PARTIAL is not, take any all others actions for an
4138 argument partially in registers, but do not actually load any
4141 EXTRA is the amount in bytes of extra space to leave next to this arg.
4142 This is ignored if an argument block has already been allocated.
4144 On a machine that lacks real push insns, ARGS_ADDR is the address of
4145 the bottom of the argument block for this call. We use indexing off there
4146 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4147 argument block has not been preallocated.
4149 ARGS_SO_FAR is the size of args previously pushed for this call.
4151 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4152 for arguments passed in registers. If nonzero, it will be the number
4153 of bytes required. */
4156 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4157 unsigned int align
, int partial
, rtx reg
, int extra
,
4158 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4162 enum direction stack_direction
4163 #ifdef STACK_GROWS_DOWNWARD
4169 /* Decide where to pad the argument: `downward' for below,
4170 `upward' for above, or `none' for don't pad it.
4171 Default is below for small data on big-endian machines; else above. */
4172 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4174 /* Invert direction if stack is post-decrement.
4176 if (STACK_PUSH_CODE
== POST_DEC
)
4177 if (where_pad
!= none
)
4178 where_pad
= (where_pad
== downward
? upward
: downward
);
4183 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4185 /* Copy a block into the stack, entirely or partially. */
4192 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4193 used
= partial
- offset
;
4195 if (mode
!= BLKmode
)
4197 /* A value is to be stored in an insufficiently aligned
4198 stack slot; copy via a suitably aligned slot if
4200 size
= GEN_INT (GET_MODE_SIZE (mode
));
4201 if (!MEM_P (xinner
))
4203 temp
= assign_temp (type
, 1, 1);
4204 emit_move_insn (temp
, xinner
);
4211 /* USED is now the # of bytes we need not copy to the stack
4212 because registers will take care of them. */
4215 xinner
= adjust_address (xinner
, BLKmode
, used
);
4217 /* If the partial register-part of the arg counts in its stack size,
4218 skip the part of stack space corresponding to the registers.
4219 Otherwise, start copying to the beginning of the stack space,
4220 by setting SKIP to 0. */
4221 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4223 #ifdef PUSH_ROUNDING
4224 /* Do it with several push insns if that doesn't take lots of insns
4225 and if there is no difficulty with push insns that skip bytes
4226 on the stack for alignment purposes. */
4229 && CONST_INT_P (size
)
4231 && MEM_ALIGN (xinner
) >= align
4232 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4233 /* Here we avoid the case of a structure whose weak alignment
4234 forces many pushes of a small amount of data,
4235 and such small pushes do rounding that causes trouble. */
4236 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4237 || align
>= BIGGEST_ALIGNMENT
4238 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4239 == (align
/ BITS_PER_UNIT
)))
4240 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4242 /* Push padding now if padding above and stack grows down,
4243 or if padding below and stack grows up.
4244 But if space already allocated, this has already been done. */
4245 if (extra
&& args_addr
== 0
4246 && where_pad
!= none
&& where_pad
!= stack_direction
)
4247 anti_adjust_stack (GEN_INT (extra
));
4249 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4252 #endif /* PUSH_ROUNDING */
4256 /* Otherwise make space on the stack and copy the data
4257 to the address of that space. */
4259 /* Deduct words put into registers from the size we must copy. */
4262 if (CONST_INT_P (size
))
4263 size
= GEN_INT (INTVAL (size
) - used
);
4265 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4266 gen_int_mode (used
, GET_MODE (size
)),
4267 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4270 /* Get the address of the stack space.
4271 In this case, we do not deal with EXTRA separately.
4272 A single stack adjust will do. */
4275 temp
= push_block (size
, extra
, where_pad
== downward
);
4278 else if (CONST_INT_P (args_so_far
))
4279 temp
= memory_address (BLKmode
,
4280 plus_constant (Pmode
, args_addr
,
4281 skip
+ INTVAL (args_so_far
)));
4283 temp
= memory_address (BLKmode
,
4284 plus_constant (Pmode
,
4285 gen_rtx_PLUS (Pmode
,
4290 if (!ACCUMULATE_OUTGOING_ARGS
)
4292 /* If the source is referenced relative to the stack pointer,
4293 copy it to another register to stabilize it. We do not need
4294 to do this if we know that we won't be changing sp. */
4296 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4297 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4298 temp
= copy_to_reg (temp
);
4301 target
= gen_rtx_MEM (BLKmode
, temp
);
4303 /* We do *not* set_mem_attributes here, because incoming arguments
4304 may overlap with sibling call outgoing arguments and we cannot
4305 allow reordering of reads from function arguments with stores
4306 to outgoing arguments of sibling calls. We do, however, want
4307 to record the alignment of the stack slot. */
4308 /* ALIGN may well be better aligned than TYPE, e.g. due to
4309 PARM_BOUNDARY. Assume the caller isn't lying. */
4310 set_mem_align (target
, align
);
4312 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4315 else if (partial
> 0)
4317 /* Scalar partly in registers. */
4319 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4322 /* # bytes of start of argument
4323 that we must make space for but need not store. */
4324 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4325 int args_offset
= INTVAL (args_so_far
);
4328 /* Push padding now if padding above and stack grows down,
4329 or if padding below and stack grows up.
4330 But if space already allocated, this has already been done. */
4331 if (extra
&& args_addr
== 0
4332 && where_pad
!= none
&& where_pad
!= stack_direction
)
4333 anti_adjust_stack (GEN_INT (extra
));
4335 /* If we make space by pushing it, we might as well push
4336 the real data. Otherwise, we can leave OFFSET nonzero
4337 and leave the space uninitialized. */
4341 /* Now NOT_STACK gets the number of words that we don't need to
4342 allocate on the stack. Convert OFFSET to words too. */
4343 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4344 offset
/= UNITS_PER_WORD
;
4346 /* If the partial register-part of the arg counts in its stack size,
4347 skip the part of stack space corresponding to the registers.
4348 Otherwise, start copying to the beginning of the stack space,
4349 by setting SKIP to 0. */
4350 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4352 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4353 x
= validize_mem (force_const_mem (mode
, x
));
4355 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4356 SUBREGs of such registers are not allowed. */
4357 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4358 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4359 x
= copy_to_reg (x
);
4361 /* Loop over all the words allocated on the stack for this arg. */
4362 /* We can do it by words, because any scalar bigger than a word
4363 has a size a multiple of a word. */
4364 for (i
= size
- 1; i
>= not_stack
; i
--)
4365 if (i
>= not_stack
+ offset
)
4366 emit_push_insn (operand_subword_force (x
, i
, mode
),
4367 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4369 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4371 reg_parm_stack_space
, alignment_pad
);
4378 /* Push padding now if padding above and stack grows down,
4379 or if padding below and stack grows up.
4380 But if space already allocated, this has already been done. */
4381 if (extra
&& args_addr
== 0
4382 && where_pad
!= none
&& where_pad
!= stack_direction
)
4383 anti_adjust_stack (GEN_INT (extra
));
4385 #ifdef PUSH_ROUNDING
4386 if (args_addr
== 0 && PUSH_ARGS
)
4387 emit_single_push_insn (mode
, x
, type
);
4391 if (CONST_INT_P (args_so_far
))
4393 = memory_address (mode
,
4394 plus_constant (Pmode
, args_addr
,
4395 INTVAL (args_so_far
)));
4397 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4399 dest
= gen_rtx_MEM (mode
, addr
);
4401 /* We do *not* set_mem_attributes here, because incoming arguments
4402 may overlap with sibling call outgoing arguments and we cannot
4403 allow reordering of reads from function arguments with stores
4404 to outgoing arguments of sibling calls. We do, however, want
4405 to record the alignment of the stack slot. */
4406 /* ALIGN may well be better aligned than TYPE, e.g. due to
4407 PARM_BOUNDARY. Assume the caller isn't lying. */
4408 set_mem_align (dest
, align
);
4410 emit_move_insn (dest
, x
);
4414 /* If part should go in registers, copy that part
4415 into the appropriate registers. Do this now, at the end,
4416 since mem-to-mem copies above may do function calls. */
4417 if (partial
> 0 && reg
!= 0)
4419 /* Handle calls that pass values in multiple non-contiguous locations.
4420 The Irix 6 ABI has examples of this. */
4421 if (GET_CODE (reg
) == PARALLEL
)
4422 emit_group_load (reg
, x
, type
, -1);
4425 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4426 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4430 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4431 anti_adjust_stack (GEN_INT (extra
));
4433 if (alignment_pad
&& args_addr
== 0)
4434 anti_adjust_stack (alignment_pad
);
4437 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4441 get_subtarget (rtx x
)
4445 /* Only registers can be subtargets. */
4447 /* Don't use hard regs to avoid extending their life. */
4448 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4452 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4453 FIELD is a bitfield. Returns true if the optimization was successful,
4454 and there's nothing else to do. */
4457 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4458 unsigned HOST_WIDE_INT bitpos
,
4459 unsigned HOST_WIDE_INT bitregion_start
,
4460 unsigned HOST_WIDE_INT bitregion_end
,
4461 machine_mode mode1
, rtx str_rtx
,
4464 machine_mode str_mode
= GET_MODE (str_rtx
);
4465 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4470 enum tree_code code
;
4472 if (mode1
!= VOIDmode
4473 || bitsize
>= BITS_PER_WORD
4474 || str_bitsize
> BITS_PER_WORD
4475 || TREE_SIDE_EFFECTS (to
)
4476 || TREE_THIS_VOLATILE (to
))
4480 if (TREE_CODE (src
) != SSA_NAME
)
4482 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4485 srcstmt
= get_gimple_for_ssa_name (src
);
4487 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4490 code
= gimple_assign_rhs_code (srcstmt
);
4492 op0
= gimple_assign_rhs1 (srcstmt
);
4494 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4495 to find its initialization. Hopefully the initialization will
4496 be from a bitfield load. */
4497 if (TREE_CODE (op0
) == SSA_NAME
)
4499 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4501 /* We want to eventually have OP0 be the same as TO, which
4502 should be a bitfield. */
4504 || !is_gimple_assign (op0stmt
)
4505 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4507 op0
= gimple_assign_rhs1 (op0stmt
);
4510 op1
= gimple_assign_rhs2 (srcstmt
);
4512 if (!operand_equal_p (to
, op0
, 0))
4515 if (MEM_P (str_rtx
))
4517 unsigned HOST_WIDE_INT offset1
;
4519 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4520 str_mode
= word_mode
;
4521 str_mode
= get_best_mode (bitsize
, bitpos
,
4522 bitregion_start
, bitregion_end
,
4523 MEM_ALIGN (str_rtx
), str_mode
, 0);
4524 if (str_mode
== VOIDmode
)
4526 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4529 bitpos
%= str_bitsize
;
4530 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4531 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4533 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4536 /* If the bit field covers the whole REG/MEM, store_field
4537 will likely generate better code. */
4538 if (bitsize
>= str_bitsize
)
4541 /* We can't handle fields split across multiple entities. */
4542 if (bitpos
+ bitsize
> str_bitsize
)
4545 if (BYTES_BIG_ENDIAN
)
4546 bitpos
= str_bitsize
- bitpos
- bitsize
;
4552 /* For now, just optimize the case of the topmost bitfield
4553 where we don't need to do any masking and also
4554 1 bit bitfields where xor can be used.
4555 We might win by one instruction for the other bitfields
4556 too if insv/extv instructions aren't used, so that
4557 can be added later. */
4558 if (bitpos
+ bitsize
!= str_bitsize
4559 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4562 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4563 value
= convert_modes (str_mode
,
4564 TYPE_MODE (TREE_TYPE (op1
)), value
,
4565 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4567 /* We may be accessing data outside the field, which means
4568 we can alias adjacent data. */
4569 if (MEM_P (str_rtx
))
4571 str_rtx
= shallow_copy_rtx (str_rtx
);
4572 set_mem_alias_set (str_rtx
, 0);
4573 set_mem_expr (str_rtx
, 0);
4576 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4577 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4579 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4582 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4583 result
= expand_binop (str_mode
, binop
, str_rtx
,
4584 value
, str_rtx
, 1, OPTAB_WIDEN
);
4585 if (result
!= str_rtx
)
4586 emit_move_insn (str_rtx
, result
);
4591 if (TREE_CODE (op1
) != INTEGER_CST
)
4593 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4594 value
= convert_modes (str_mode
,
4595 TYPE_MODE (TREE_TYPE (op1
)), value
,
4596 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4598 /* We may be accessing data outside the field, which means
4599 we can alias adjacent data. */
4600 if (MEM_P (str_rtx
))
4602 str_rtx
= shallow_copy_rtx (str_rtx
);
4603 set_mem_alias_set (str_rtx
, 0);
4604 set_mem_expr (str_rtx
, 0);
4607 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4608 if (bitpos
+ bitsize
!= str_bitsize
)
4610 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4612 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4614 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4615 result
= expand_binop (str_mode
, binop
, str_rtx
,
4616 value
, str_rtx
, 1, OPTAB_WIDEN
);
4617 if (result
!= str_rtx
)
4618 emit_move_insn (str_rtx
, result
);
4628 /* In the C++ memory model, consecutive bit fields in a structure are
4629 considered one memory location.
4631 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4632 returns the bit range of consecutive bits in which this COMPONENT_REF
4633 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4634 and *OFFSET may be adjusted in the process.
4636 If the access does not need to be restricted, 0 is returned in both
4637 *BITSTART and *BITEND. */
4640 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4641 unsigned HOST_WIDE_INT
*bitend
,
4643 HOST_WIDE_INT
*bitpos
,
4646 HOST_WIDE_INT bitoffset
;
4649 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4651 field
= TREE_OPERAND (exp
, 1);
4652 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4653 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4654 need to limit the range we can access. */
4657 *bitstart
= *bitend
= 0;
4661 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4662 part of a larger bit field, then the representative does not serve any
4663 useful purpose. This can occur in Ada. */
4664 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4667 HOST_WIDE_INT rbitsize
, rbitpos
;
4671 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4672 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4673 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4675 *bitstart
= *bitend
= 0;
4680 /* Compute the adjustment to bitpos from the offset of the field
4681 relative to the representative. DECL_FIELD_OFFSET of field and
4682 repr are the same by construction if they are not constants,
4683 see finish_bitfield_layout. */
4684 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4685 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4686 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4687 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4690 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4691 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4693 /* If the adjustment is larger than bitpos, we would have a negative bit
4694 position for the lower bound and this may wreak havoc later. Adjust
4695 offset and bitpos to make the lower bound non-negative in that case. */
4696 if (bitoffset
> *bitpos
)
4698 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4699 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4702 if (*offset
== NULL_TREE
)
4703 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4706 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4710 *bitstart
= *bitpos
- bitoffset
;
4712 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4715 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4716 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4717 DECL_RTL was not set yet, return NORTL. */
4720 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4722 if (TREE_CODE (addr
) != ADDR_EXPR
)
4725 tree base
= TREE_OPERAND (addr
, 0);
4728 || TREE_ADDRESSABLE (base
)
4729 || DECL_MODE (base
) == BLKmode
)
4732 if (!DECL_RTL_SET_P (base
))
4735 return (!MEM_P (DECL_RTL (base
)));
4738 /* Returns true if the MEM_REF REF refers to an object that does not
4739 reside in memory and has non-BLKmode. */
4742 mem_ref_refers_to_non_mem_p (tree ref
)
4744 tree base
= TREE_OPERAND (ref
, 0);
4745 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4748 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4749 is true, try generating a nontemporal store. */
4752 expand_assignment (tree to
, tree from
, bool nontemporal
)
4758 enum insn_code icode
;
4760 /* Don't crash if the lhs of the assignment was erroneous. */
4761 if (TREE_CODE (to
) == ERROR_MARK
)
4763 expand_normal (from
);
4767 /* Optimize away no-op moves without side-effects. */
4768 if (operand_equal_p (to
, from
, 0))
4771 /* Handle misaligned stores. */
4772 mode
= TYPE_MODE (TREE_TYPE (to
));
4773 if ((TREE_CODE (to
) == MEM_REF
4774 || TREE_CODE (to
) == TARGET_MEM_REF
)
4776 && !mem_ref_refers_to_non_mem_p (to
)
4777 && ((align
= get_object_alignment (to
))
4778 < GET_MODE_ALIGNMENT (mode
))
4779 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4780 != CODE_FOR_nothing
)
4781 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4785 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4786 reg
= force_not_mem (reg
);
4787 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4789 if (icode
!= CODE_FOR_nothing
)
4791 struct expand_operand ops
[2];
4793 create_fixed_operand (&ops
[0], mem
);
4794 create_input_operand (&ops
[1], reg
, mode
);
4795 /* The movmisalign<mode> pattern cannot fail, else the assignment
4796 would silently be omitted. */
4797 expand_insn (icode
, 2, ops
);
4800 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4804 /* Assignment of a structure component needs special treatment
4805 if the structure component's rtx is not simply a MEM.
4806 Assignment of an array element at a constant index, and assignment of
4807 an array element in an unaligned packed structure field, has the same
4808 problem. Same for (partially) storing into a non-memory object. */
4809 if (handled_component_p (to
)
4810 || (TREE_CODE (to
) == MEM_REF
4811 && mem_ref_refers_to_non_mem_p (to
))
4812 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4815 HOST_WIDE_INT bitsize
, bitpos
;
4816 unsigned HOST_WIDE_INT bitregion_start
= 0;
4817 unsigned HOST_WIDE_INT bitregion_end
= 0;
4824 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4825 &unsignedp
, &volatilep
, true);
4827 /* Make sure bitpos is not negative, it can wreak havoc later. */
4830 gcc_assert (offset
== NULL_TREE
);
4831 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4832 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4833 bitpos
&= BITS_PER_UNIT
- 1;
4836 if (TREE_CODE (to
) == COMPONENT_REF
4837 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4838 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4839 /* The C++ memory model naturally applies to byte-aligned fields.
4840 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4841 BITSIZE are not byte-aligned, there is no need to limit the range
4842 we can access. This can occur with packed structures in Ada. */
4843 else if (bitsize
> 0
4844 && bitsize
% BITS_PER_UNIT
== 0
4845 && bitpos
% BITS_PER_UNIT
== 0)
4847 bitregion_start
= bitpos
;
4848 bitregion_end
= bitpos
+ bitsize
- 1;
4851 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4853 /* If the field has a mode, we want to access it in the
4854 field's mode, not the computed mode.
4855 If a MEM has VOIDmode (external with incomplete type),
4856 use BLKmode for it instead. */
4859 if (mode1
!= VOIDmode
)
4860 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4861 else if (GET_MODE (to_rtx
) == VOIDmode
)
4862 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4867 machine_mode address_mode
;
4870 if (!MEM_P (to_rtx
))
4872 /* We can get constant negative offsets into arrays with broken
4873 user code. Translate this to a trap instead of ICEing. */
4874 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4875 expand_builtin_trap ();
4876 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4879 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4880 address_mode
= get_address_mode (to_rtx
);
4881 if (GET_MODE (offset_rtx
) != address_mode
)
4882 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4884 /* If we have an expression in OFFSET_RTX and a non-zero
4885 byte offset in BITPOS, adding the byte offset before the
4886 OFFSET_RTX results in better intermediate code, which makes
4887 later rtl optimization passes perform better.
4889 We prefer intermediate code like this:
4891 r124:DI=r123:DI+0x18
4896 r124:DI=r123:DI+0x10
4897 [r124:DI+0x8]=r121:DI
4899 This is only done for aligned data values, as these can
4900 be expected to result in single move instructions. */
4901 if (mode1
!= VOIDmode
4904 && (bitpos
% bitsize
) == 0
4905 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4906 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
4908 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4909 bitregion_start
= 0;
4910 if (bitregion_end
>= (unsigned HOST_WIDE_INT
) bitpos
)
4911 bitregion_end
-= bitpos
;
4915 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4916 highest_pow2_factor_for_target (to
,
4920 /* No action is needed if the target is not a memory and the field
4921 lies completely outside that target. This can occur if the source
4922 code contains an out-of-bounds access to a small array. */
4924 && GET_MODE (to_rtx
) != BLKmode
4925 && (unsigned HOST_WIDE_INT
) bitpos
4926 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4928 expand_normal (from
);
4931 /* Handle expand_expr of a complex value returning a CONCAT. */
4932 else if (GET_CODE (to_rtx
) == CONCAT
)
4934 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4935 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4937 && bitsize
== mode_bitsize
)
4938 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4939 else if (bitsize
== mode_bitsize
/ 2
4940 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4941 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4943 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4944 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4945 bitregion_start
, bitregion_end
,
4947 get_alias_set (to
), nontemporal
);
4948 else if (bitpos
>= mode_bitsize
/ 2)
4949 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4950 bitpos
- mode_bitsize
/ 2,
4951 bitregion_start
, bitregion_end
,
4953 get_alias_set (to
), nontemporal
);
4954 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4957 result
= expand_normal (from
);
4958 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4959 TYPE_MODE (TREE_TYPE (from
)), 0);
4960 emit_move_insn (XEXP (to_rtx
, 0),
4961 read_complex_part (from_rtx
, false));
4962 emit_move_insn (XEXP (to_rtx
, 1),
4963 read_complex_part (from_rtx
, true));
4967 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4968 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4969 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4970 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4971 result
= store_field (temp
, bitsize
, bitpos
,
4972 bitregion_start
, bitregion_end
,
4974 get_alias_set (to
), nontemporal
);
4975 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4976 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4983 /* If the field is at offset zero, we could have been given the
4984 DECL_RTX of the parent struct. Don't munge it. */
4985 to_rtx
= shallow_copy_rtx (to_rtx
);
4986 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4988 MEM_VOLATILE_P (to_rtx
) = 1;
4991 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4992 bitregion_start
, bitregion_end
,
4997 result
= store_field (to_rtx
, bitsize
, bitpos
,
4998 bitregion_start
, bitregion_end
,
5000 get_alias_set (to
), nontemporal
);
5004 preserve_temp_slots (result
);
5009 /* If the rhs is a function call and its value is not an aggregate,
5010 call the function before we start to compute the lhs.
5011 This is needed for correct code for cases such as
5012 val = setjmp (buf) on machines where reference to val
5013 requires loading up part of an address in a separate insn.
5015 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5016 since it might be a promoted variable where the zero- or sign- extension
5017 needs to be done. Handling this in the normal way is safe because no
5018 computation is done before the call. The same is true for SSA names. */
5019 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5020 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5021 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5022 && ! (((TREE_CODE (to
) == VAR_DECL
5023 || TREE_CODE (to
) == PARM_DECL
5024 || TREE_CODE (to
) == RESULT_DECL
)
5025 && REG_P (DECL_RTL (to
)))
5026 || TREE_CODE (to
) == SSA_NAME
))
5032 value
= expand_normal (from
);
5034 /* Split value and bounds to store them separately. */
5035 chkp_split_slot (value
, &value
, &bounds
);
5038 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5040 /* Handle calls that return values in multiple non-contiguous locations.
5041 The Irix 6 ABI has examples of this. */
5042 if (GET_CODE (to_rtx
) == PARALLEL
)
5044 if (GET_CODE (value
) == PARALLEL
)
5045 emit_group_move (to_rtx
, value
);
5047 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5048 int_size_in_bytes (TREE_TYPE (from
)));
5050 else if (GET_CODE (value
) == PARALLEL
)
5051 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5052 int_size_in_bytes (TREE_TYPE (from
)));
5053 else if (GET_MODE (to_rtx
) == BLKmode
)
5055 /* Handle calls that return BLKmode values in registers. */
5057 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5059 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5063 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5064 value
= convert_memory_address_addr_space
5065 (GET_MODE (to_rtx
), value
,
5066 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5068 emit_move_insn (to_rtx
, value
);
5071 /* Store bounds if required. */
5073 && (BOUNDED_P (to
) || chkp_type_has_pointer (TREE_TYPE (to
))))
5075 gcc_assert (MEM_P (to_rtx
));
5076 chkp_emit_bounds_store (bounds
, value
, to_rtx
);
5079 preserve_temp_slots (to_rtx
);
5084 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5085 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5087 /* Don't move directly into a return register. */
5088 if (TREE_CODE (to
) == RESULT_DECL
5089 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5095 /* If the source is itself a return value, it still is in a pseudo at
5096 this point so we can move it back to the return register directly. */
5098 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5099 && TREE_CODE (from
) != CALL_EXPR
)
5100 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5102 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5104 /* Handle calls that return values in multiple non-contiguous locations.
5105 The Irix 6 ABI has examples of this. */
5106 if (GET_CODE (to_rtx
) == PARALLEL
)
5108 if (GET_CODE (temp
) == PARALLEL
)
5109 emit_group_move (to_rtx
, temp
);
5111 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5112 int_size_in_bytes (TREE_TYPE (from
)));
5115 emit_move_insn (to_rtx
, temp
);
5117 preserve_temp_slots (to_rtx
);
5122 /* In case we are returning the contents of an object which overlaps
5123 the place the value is being stored, use a safe function when copying
5124 a value through a pointer into a structure value return block. */
5125 if (TREE_CODE (to
) == RESULT_DECL
5126 && TREE_CODE (from
) == INDIRECT_REF
5127 && ADDR_SPACE_GENERIC_P
5128 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5129 && refs_may_alias_p (to
, from
)
5130 && cfun
->returns_struct
5131 && !cfun
->returns_pcc_struct
)
5136 size
= expr_size (from
);
5137 from_rtx
= expand_normal (from
);
5139 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5140 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5141 XEXP (from_rtx
, 0), Pmode
,
5142 convert_to_mode (TYPE_MODE (sizetype
),
5143 size
, TYPE_UNSIGNED (sizetype
)),
5144 TYPE_MODE (sizetype
));
5146 preserve_temp_slots (to_rtx
);
5151 /* Compute FROM and store the value in the rtx we got. */
5154 result
= store_expr_with_bounds (from
, to_rtx
, 0, nontemporal
, to
);
5155 preserve_temp_slots (result
);
5160 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5161 succeeded, false otherwise. */
5164 emit_storent_insn (rtx to
, rtx from
)
5166 struct expand_operand ops
[2];
5167 machine_mode mode
= GET_MODE (to
);
5168 enum insn_code code
= optab_handler (storent_optab
, mode
);
5170 if (code
== CODE_FOR_nothing
)
5173 create_fixed_operand (&ops
[0], to
);
5174 create_input_operand (&ops
[1], from
, mode
);
5175 return maybe_expand_insn (code
, 2, ops
);
5178 /* Generate code for computing expression EXP,
5179 and storing the value into TARGET.
5181 If the mode is BLKmode then we may return TARGET itself.
5182 It turns out that in BLKmode it doesn't cause a problem.
5183 because C has no operators that could combine two different
5184 assignments into the same BLKmode object with different values
5185 with no sequence point. Will other languages need this to
5188 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5189 stack, and block moves may need to be treated specially.
5191 If NONTEMPORAL is true, try using a nontemporal store instruction.
5193 If BTARGET is not NULL then computed bounds of EXP are
5194 associated with BTARGET. */
5197 store_expr_with_bounds (tree exp
, rtx target
, int call_param_p
,
5198 bool nontemporal
, tree btarget
)
5201 rtx alt_rtl
= NULL_RTX
;
5202 location_t loc
= curr_insn_location ();
5204 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5206 /* C++ can generate ?: expressions with a throw expression in one
5207 branch and an rvalue in the other. Here, we resolve attempts to
5208 store the throw expression's nonexistent result. */
5209 gcc_assert (!call_param_p
);
5210 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5213 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5215 /* Perform first part of compound expression, then assign from second
5217 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5218 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5219 return store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
,
5220 call_param_p
, nontemporal
, btarget
);
5222 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5224 /* For conditional expression, get safe form of the target. Then
5225 test the condition, doing the appropriate assignment on either
5226 side. This avoids the creation of unnecessary temporaries.
5227 For non-BLKmode, it is more efficient not to do this. */
5229 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5231 do_pending_stack_adjust ();
5233 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5234 store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5235 nontemporal
, btarget
);
5236 emit_jump_insn (gen_jump (lab2
));
5239 store_expr_with_bounds (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5240 nontemporal
, btarget
);
5246 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5247 /* If this is a scalar in a register that is stored in a wider mode
5248 than the declared mode, compute the result into its declared mode
5249 and then convert to the wider mode. Our value is the computed
5252 rtx inner_target
= 0;
5254 /* We can do the conversion inside EXP, which will often result
5255 in some optimizations. Do the conversion in two steps: first
5256 change the signedness, if needed, then the extend. But don't
5257 do this if the type of EXP is a subtype of something else
5258 since then the conversion might involve more than just
5259 converting modes. */
5260 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5261 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5262 && GET_MODE_PRECISION (GET_MODE (target
))
5263 == TYPE_PRECISION (TREE_TYPE (exp
)))
5265 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5266 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5268 /* Some types, e.g. Fortran's logical*4, won't have a signed
5269 version, so use the mode instead. */
5271 = (signed_or_unsigned_type_for
5272 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5274 ntype
= lang_hooks
.types
.type_for_mode
5275 (TYPE_MODE (TREE_TYPE (exp
)),
5276 SUBREG_PROMOTED_SIGN (target
));
5278 exp
= fold_convert_loc (loc
, ntype
, exp
);
5281 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5282 (GET_MODE (SUBREG_REG (target
)),
5283 SUBREG_PROMOTED_SIGN (target
)),
5286 inner_target
= SUBREG_REG (target
);
5289 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5290 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5292 /* Handle bounds returned by call. */
5293 if (TREE_CODE (exp
) == CALL_EXPR
)
5296 chkp_split_slot (temp
, &temp
, &bounds
);
5297 if (bounds
&& btarget
)
5299 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5300 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5301 chkp_set_rtl_bounds (btarget
, tmp
);
5305 /* If TEMP is a VOIDmode constant, use convert_modes to make
5306 sure that we properly convert it. */
5307 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5309 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5310 temp
, SUBREG_PROMOTED_SIGN (target
));
5311 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5312 GET_MODE (target
), temp
,
5313 SUBREG_PROMOTED_SIGN (target
));
5316 convert_move (SUBREG_REG (target
), temp
,
5317 SUBREG_PROMOTED_SIGN (target
));
5321 else if ((TREE_CODE (exp
) == STRING_CST
5322 || (TREE_CODE (exp
) == MEM_REF
5323 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5324 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5326 && integer_zerop (TREE_OPERAND (exp
, 1))))
5327 && !nontemporal
&& !call_param_p
5330 /* Optimize initialization of an array with a STRING_CST. */
5331 HOST_WIDE_INT exp_len
, str_copy_len
;
5333 tree str
= TREE_CODE (exp
) == STRING_CST
5334 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5336 exp_len
= int_expr_size (exp
);
5340 if (TREE_STRING_LENGTH (str
) <= 0)
5343 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5344 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5347 str_copy_len
= TREE_STRING_LENGTH (str
);
5348 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5349 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5351 str_copy_len
+= STORE_MAX_PIECES
- 1;
5352 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5354 str_copy_len
= MIN (str_copy_len
, exp_len
);
5355 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5356 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5357 MEM_ALIGN (target
), false))
5362 dest_mem
= store_by_pieces (dest_mem
,
5363 str_copy_len
, builtin_strncpy_read_str
,
5365 TREE_STRING_POINTER (str
)),
5366 MEM_ALIGN (target
), false,
5367 exp_len
> str_copy_len
? 1 : 0);
5368 if (exp_len
> str_copy_len
)
5369 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5370 GEN_INT (exp_len
- str_copy_len
),
5379 /* If we want to use a nontemporal store, force the value to
5381 tmp_target
= nontemporal
? NULL_RTX
: target
;
5382 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5384 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5387 /* Handle bounds returned by call. */
5388 if (TREE_CODE (exp
) == CALL_EXPR
)
5391 chkp_split_slot (temp
, &temp
, &bounds
);
5392 if (bounds
&& btarget
)
5394 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5395 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5396 chkp_set_rtl_bounds (btarget
, tmp
);
5401 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5402 the same as that of TARGET, adjust the constant. This is needed, for
5403 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5404 only a word-sized value. */
5405 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5406 && TREE_CODE (exp
) != ERROR_MARK
5407 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5408 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5409 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5411 /* If value was not generated in the target, store it there.
5412 Convert the value to TARGET's type first if necessary and emit the
5413 pending incrementations that have been queued when expanding EXP.
5414 Note that we cannot emit the whole queue blindly because this will
5415 effectively disable the POST_INC optimization later.
5417 If TEMP and TARGET compare equal according to rtx_equal_p, but
5418 one or both of them are volatile memory refs, we have to distinguish
5420 - expand_expr has used TARGET. In this case, we must not generate
5421 another copy. This can be detected by TARGET being equal according
5423 - expand_expr has not used TARGET - that means that the source just
5424 happens to have the same RTX form. Since temp will have been created
5425 by expand_expr, it will compare unequal according to == .
5426 We must generate a copy in this case, to reach the correct number
5427 of volatile memory references. */
5429 if ((! rtx_equal_p (temp
, target
)
5430 || (temp
!= target
&& (side_effects_p (temp
)
5431 || side_effects_p (target
))))
5432 && TREE_CODE (exp
) != ERROR_MARK
5433 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5434 but TARGET is not valid memory reference, TEMP will differ
5435 from TARGET although it is really the same location. */
5437 && rtx_equal_p (alt_rtl
, target
)
5438 && !side_effects_p (alt_rtl
)
5439 && !side_effects_p (target
))
5440 /* If there's nothing to copy, don't bother. Don't call
5441 expr_size unless necessary, because some front-ends (C++)
5442 expr_size-hook must not be given objects that are not
5443 supposed to be bit-copied or bit-initialized. */
5444 && expr_size (exp
) != const0_rtx
)
5446 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5448 if (GET_MODE (target
) == BLKmode
)
5450 /* Handle calls that return BLKmode values in registers. */
5451 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5452 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5454 store_bit_field (target
,
5455 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5456 0, 0, 0, GET_MODE (temp
), temp
);
5459 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5462 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5464 /* Handle copying a string constant into an array. The string
5465 constant may be shorter than the array. So copy just the string's
5466 actual length, and clear the rest. First get the size of the data
5467 type of the string, which is actually the size of the target. */
5468 rtx size
= expr_size (exp
);
5470 if (CONST_INT_P (size
)
5471 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5472 emit_block_move (target
, temp
, size
,
5474 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5477 machine_mode pointer_mode
5478 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5479 machine_mode address_mode
= get_address_mode (target
);
5481 /* Compute the size of the data to copy from the string. */
5483 = size_binop_loc (loc
, MIN_EXPR
,
5484 make_tree (sizetype
, size
),
5485 size_int (TREE_STRING_LENGTH (exp
)));
5487 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5489 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5490 rtx_code_label
*label
= 0;
5492 /* Copy that much. */
5493 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5494 TYPE_UNSIGNED (sizetype
));
5495 emit_block_move (target
, temp
, copy_size_rtx
,
5497 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5499 /* Figure out how much is left in TARGET that we have to clear.
5500 Do all calculations in pointer_mode. */
5501 if (CONST_INT_P (copy_size_rtx
))
5503 size
= plus_constant (address_mode
, size
,
5504 -INTVAL (copy_size_rtx
));
5505 target
= adjust_address (target
, BLKmode
,
5506 INTVAL (copy_size_rtx
));
5510 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5511 copy_size_rtx
, NULL_RTX
, 0,
5514 if (GET_MODE (copy_size_rtx
) != address_mode
)
5515 copy_size_rtx
= convert_to_mode (address_mode
,
5517 TYPE_UNSIGNED (sizetype
));
5519 target
= offset_address (target
, copy_size_rtx
,
5520 highest_pow2_factor (copy_size
));
5521 label
= gen_label_rtx ();
5522 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5523 GET_MODE (size
), 0, label
);
5526 if (size
!= const0_rtx
)
5527 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5533 /* Handle calls that return values in multiple non-contiguous locations.
5534 The Irix 6 ABI has examples of this. */
5535 else if (GET_CODE (target
) == PARALLEL
)
5537 if (GET_CODE (temp
) == PARALLEL
)
5538 emit_group_move (target
, temp
);
5540 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5541 int_size_in_bytes (TREE_TYPE (exp
)));
5543 else if (GET_CODE (temp
) == PARALLEL
)
5544 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5545 int_size_in_bytes (TREE_TYPE (exp
)));
5546 else if (GET_MODE (temp
) == BLKmode
)
5547 emit_block_move (target
, temp
, expr_size (exp
),
5549 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5550 /* If we emit a nontemporal store, there is nothing else to do. */
5551 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5555 temp
= force_operand (temp
, target
);
5557 emit_move_insn (target
, temp
);
5564 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5566 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5568 return store_expr_with_bounds (exp
, target
, call_param_p
, nontemporal
, NULL
);
5571 /* Return true if field F of structure TYPE is a flexible array. */
5574 flexible_array_member_p (const_tree f
, const_tree type
)
5579 return (DECL_CHAIN (f
) == NULL
5580 && TREE_CODE (tf
) == ARRAY_TYPE
5582 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5583 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5584 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5585 && int_size_in_bytes (type
) >= 0);
5588 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5589 must have in order for it to completely initialize a value of type TYPE.
5590 Return -1 if the number isn't known.
5592 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5594 static HOST_WIDE_INT
5595 count_type_elements (const_tree type
, bool for_ctor_p
)
5597 switch (TREE_CODE (type
))
5603 nelts
= array_type_nelts (type
);
5604 if (nelts
&& tree_fits_uhwi_p (nelts
))
5606 unsigned HOST_WIDE_INT n
;
5608 n
= tree_to_uhwi (nelts
) + 1;
5609 if (n
== 0 || for_ctor_p
)
5612 return n
* count_type_elements (TREE_TYPE (type
), false);
5614 return for_ctor_p
? -1 : 1;
5619 unsigned HOST_WIDE_INT n
;
5623 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5624 if (TREE_CODE (f
) == FIELD_DECL
)
5627 n
+= count_type_elements (TREE_TYPE (f
), false);
5628 else if (!flexible_array_member_p (f
, type
))
5629 /* Don't count flexible arrays, which are not supposed
5630 to be initialized. */
5638 case QUAL_UNION_TYPE
:
5643 gcc_assert (!for_ctor_p
);
5644 /* Estimate the number of scalars in each field and pick the
5645 maximum. Other estimates would do instead; the idea is simply
5646 to make sure that the estimate is not sensitive to the ordering
5649 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5650 if (TREE_CODE (f
) == FIELD_DECL
)
5652 m
= count_type_elements (TREE_TYPE (f
), false);
5653 /* If the field doesn't span the whole union, add an extra
5654 scalar for the rest. */
5655 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5656 TYPE_SIZE (type
)) != 1)
5668 return TYPE_VECTOR_SUBPARTS (type
);
5672 case FIXED_POINT_TYPE
:
5677 case REFERENCE_TYPE
:
5693 /* Helper for categorize_ctor_elements. Identical interface. */
5696 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5697 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5699 unsigned HOST_WIDE_INT idx
;
5700 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5701 tree value
, purpose
, elt_type
;
5703 /* Whether CTOR is a valid constant initializer, in accordance with what
5704 initializer_constant_valid_p does. If inferred from the constructor
5705 elements, true until proven otherwise. */
5706 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5707 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5712 elt_type
= NULL_TREE
;
5714 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5716 HOST_WIDE_INT mult
= 1;
5718 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5720 tree lo_index
= TREE_OPERAND (purpose
, 0);
5721 tree hi_index
= TREE_OPERAND (purpose
, 1);
5723 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5724 mult
= (tree_to_uhwi (hi_index
)
5725 - tree_to_uhwi (lo_index
) + 1);
5728 elt_type
= TREE_TYPE (value
);
5730 switch (TREE_CODE (value
))
5734 HOST_WIDE_INT nz
= 0, ic
= 0;
5736 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5739 nz_elts
+= mult
* nz
;
5740 init_elts
+= mult
* ic
;
5742 if (const_from_elts_p
&& const_p
)
5743 const_p
= const_elt_p
;
5750 if (!initializer_zerop (value
))
5756 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5757 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5761 if (!initializer_zerop (TREE_REALPART (value
)))
5763 if (!initializer_zerop (TREE_IMAGPART (value
)))
5771 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5773 tree v
= VECTOR_CST_ELT (value
, i
);
5774 if (!initializer_zerop (v
))
5783 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5784 nz_elts
+= mult
* tc
;
5785 init_elts
+= mult
* tc
;
5787 if (const_from_elts_p
&& const_p
)
5788 const_p
= initializer_constant_valid_p (value
, elt_type
)
5795 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5796 num_fields
, elt_type
))
5797 *p_complete
= false;
5799 *p_nz_elts
+= nz_elts
;
5800 *p_init_elts
+= init_elts
;
5805 /* Examine CTOR to discover:
5806 * how many scalar fields are set to nonzero values,
5807 and place it in *P_NZ_ELTS;
5808 * how many scalar fields in total are in CTOR,
5809 and place it in *P_ELT_COUNT.
5810 * whether the constructor is complete -- in the sense that every
5811 meaningful byte is explicitly given a value --
5812 and place it in *P_COMPLETE.
5814 Return whether or not CTOR is a valid static constant initializer, the same
5815 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5818 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5819 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5825 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5828 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5829 of which had type LAST_TYPE. Each element was itself a complete
5830 initializer, in the sense that every meaningful byte was explicitly
5831 given a value. Return true if the same is true for the constructor
5835 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5836 const_tree last_type
)
5838 if (TREE_CODE (type
) == UNION_TYPE
5839 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5844 gcc_assert (num_elts
== 1 && last_type
);
5846 /* ??? We could look at each element of the union, and find the
5847 largest element. Which would avoid comparing the size of the
5848 initialized element against any tail padding in the union.
5849 Doesn't seem worth the effort... */
5850 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5853 return count_type_elements (type
, true) == num_elts
;
5856 /* Return 1 if EXP contains mostly (3/4) zeros. */
5859 mostly_zeros_p (const_tree exp
)
5861 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5863 HOST_WIDE_INT nz_elts
, init_elts
;
5866 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5867 return !complete_p
|| nz_elts
< init_elts
/ 4;
5870 return initializer_zerop (exp
);
5873 /* Return 1 if EXP contains all zeros. */
5876 all_zeros_p (const_tree exp
)
5878 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5880 HOST_WIDE_INT nz_elts
, init_elts
;
5883 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5884 return nz_elts
== 0;
5887 return initializer_zerop (exp
);
5890 /* Helper function for store_constructor.
5891 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5892 CLEARED is as for store_constructor.
5893 ALIAS_SET is the alias set to use for any stores.
5895 This provides a recursive shortcut back to store_constructor when it isn't
5896 necessary to go through store_field. This is so that we can pass through
5897 the cleared field to let store_constructor know that we may not have to
5898 clear a substructure if the outer structure has already been cleared. */
5901 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5902 HOST_WIDE_INT bitpos
, machine_mode mode
,
5903 tree exp
, int cleared
, alias_set_type alias_set
)
5905 if (TREE_CODE (exp
) == CONSTRUCTOR
5906 /* We can only call store_constructor recursively if the size and
5907 bit position are on a byte boundary. */
5908 && bitpos
% BITS_PER_UNIT
== 0
5909 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5910 /* If we have a nonzero bitpos for a register target, then we just
5911 let store_field do the bitfield handling. This is unlikely to
5912 generate unnecessary clear instructions anyways. */
5913 && (bitpos
== 0 || MEM_P (target
)))
5917 = adjust_address (target
,
5918 GET_MODE (target
) == BLKmode
5920 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5921 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5924 /* Update the alias set, if required. */
5925 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5926 && MEM_ALIAS_SET (target
) != 0)
5928 target
= copy_rtx (target
);
5929 set_mem_alias_set (target
, alias_set
);
5932 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5935 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5939 /* Returns the number of FIELD_DECLs in TYPE. */
5942 fields_length (const_tree type
)
5944 tree t
= TYPE_FIELDS (type
);
5947 for (; t
; t
= DECL_CHAIN (t
))
5948 if (TREE_CODE (t
) == FIELD_DECL
)
5955 /* Store the value of constructor EXP into the rtx TARGET.
5956 TARGET is either a REG or a MEM; we know it cannot conflict, since
5957 safe_from_p has been called.
5958 CLEARED is true if TARGET is known to have been zero'd.
5959 SIZE is the number of bytes of TARGET we are allowed to modify: this
5960 may not be the same as the size of EXP if we are assigning to a field
5961 which has been packed to exclude padding bits. */
5964 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5966 tree type
= TREE_TYPE (exp
);
5967 #ifdef WORD_REGISTER_OPERATIONS
5968 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5971 switch (TREE_CODE (type
))
5975 case QUAL_UNION_TYPE
:
5977 unsigned HOST_WIDE_INT idx
;
5980 /* If size is zero or the target is already cleared, do nothing. */
5981 if (size
== 0 || cleared
)
5983 /* We either clear the aggregate or indicate the value is dead. */
5984 else if ((TREE_CODE (type
) == UNION_TYPE
5985 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5986 && ! CONSTRUCTOR_ELTS (exp
))
5987 /* If the constructor is empty, clear the union. */
5989 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5993 /* If we are building a static constructor into a register,
5994 set the initial value as zero so we can fold the value into
5995 a constant. But if more than one register is involved,
5996 this probably loses. */
5997 else if (REG_P (target
) && TREE_STATIC (exp
)
5998 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
6000 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6004 /* If the constructor has fewer fields than the structure or
6005 if we are initializing the structure to mostly zeros, clear
6006 the whole structure first. Don't do this if TARGET is a
6007 register whose mode size isn't equal to SIZE since
6008 clear_storage can't handle this case. */
6010 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
6011 != fields_length (type
))
6012 || mostly_zeros_p (exp
))
6014 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
6017 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6021 if (REG_P (target
) && !cleared
)
6022 emit_clobber (target
);
6024 /* Store each element of the constructor into the
6025 corresponding field of TARGET. */
6026 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6029 HOST_WIDE_INT bitsize
;
6030 HOST_WIDE_INT bitpos
= 0;
6032 rtx to_rtx
= target
;
6034 /* Just ignore missing fields. We cleared the whole
6035 structure, above, if any fields are missing. */
6039 if (cleared
&& initializer_zerop (value
))
6042 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6043 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6047 mode
= DECL_MODE (field
);
6048 if (DECL_BIT_FIELD (field
))
6051 offset
= DECL_FIELD_OFFSET (field
);
6052 if (tree_fits_shwi_p (offset
)
6053 && tree_fits_shwi_p (bit_position (field
)))
6055 bitpos
= int_bit_position (field
);
6059 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
6063 machine_mode address_mode
;
6067 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
6068 make_tree (TREE_TYPE (exp
),
6071 offset_rtx
= expand_normal (offset
);
6072 gcc_assert (MEM_P (to_rtx
));
6074 address_mode
= get_address_mode (to_rtx
);
6075 if (GET_MODE (offset_rtx
) != address_mode
)
6076 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
6078 to_rtx
= offset_address (to_rtx
, offset_rtx
,
6079 highest_pow2_factor (offset
));
6082 #ifdef WORD_REGISTER_OPERATIONS
6083 /* If this initializes a field that is smaller than a
6084 word, at the start of a word, try to widen it to a full
6085 word. This special case allows us to output C++ member
6086 function initializations in a form that the optimizers
6089 && bitsize
< BITS_PER_WORD
6090 && bitpos
% BITS_PER_WORD
== 0
6091 && GET_MODE_CLASS (mode
) == MODE_INT
6092 && TREE_CODE (value
) == INTEGER_CST
6094 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6096 tree type
= TREE_TYPE (value
);
6098 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6100 type
= lang_hooks
.types
.type_for_mode
6101 (word_mode
, TYPE_UNSIGNED (type
));
6102 value
= fold_convert (type
, value
);
6105 if (BYTES_BIG_ENDIAN
)
6107 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6108 build_int_cst (type
,
6109 BITS_PER_WORD
- bitsize
));
6110 bitsize
= BITS_PER_WORD
;
6115 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6116 && DECL_NONADDRESSABLE_P (field
))
6118 to_rtx
= copy_rtx (to_rtx
);
6119 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6122 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6124 get_alias_set (TREE_TYPE (field
)));
6131 unsigned HOST_WIDE_INT i
;
6134 tree elttype
= TREE_TYPE (type
);
6136 HOST_WIDE_INT minelt
= 0;
6137 HOST_WIDE_INT maxelt
= 0;
6139 domain
= TYPE_DOMAIN (type
);
6140 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6141 && TYPE_MAX_VALUE (domain
)
6142 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6143 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6145 /* If we have constant bounds for the range of the type, get them. */
6148 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6149 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6152 /* If the constructor has fewer elements than the array, clear
6153 the whole array first. Similarly if this is static
6154 constructor of a non-BLKmode object. */
6157 else if (REG_P (target
) && TREE_STATIC (exp
))
6161 unsigned HOST_WIDE_INT idx
;
6163 HOST_WIDE_INT count
= 0, zero_count
= 0;
6164 need_to_clear
= ! const_bounds_p
;
6166 /* This loop is a more accurate version of the loop in
6167 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6168 is also needed to check for missing elements. */
6169 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6171 HOST_WIDE_INT this_node_count
;
6176 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6178 tree lo_index
= TREE_OPERAND (index
, 0);
6179 tree hi_index
= TREE_OPERAND (index
, 1);
6181 if (! tree_fits_uhwi_p (lo_index
)
6182 || ! tree_fits_uhwi_p (hi_index
))
6188 this_node_count
= (tree_to_uhwi (hi_index
)
6189 - tree_to_uhwi (lo_index
) + 1);
6192 this_node_count
= 1;
6194 count
+= this_node_count
;
6195 if (mostly_zeros_p (value
))
6196 zero_count
+= this_node_count
;
6199 /* Clear the entire array first if there are any missing
6200 elements, or if the incidence of zero elements is >=
6203 && (count
< maxelt
- minelt
+ 1
6204 || 4 * zero_count
>= 3 * count
))
6208 if (need_to_clear
&& size
> 0)
6211 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6213 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6217 if (!cleared
&& REG_P (target
))
6218 /* Inform later passes that the old value is dead. */
6219 emit_clobber (target
);
6221 /* Store each element of the constructor into the
6222 corresponding element of TARGET, determined by counting the
6224 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6227 HOST_WIDE_INT bitsize
;
6228 HOST_WIDE_INT bitpos
;
6229 rtx xtarget
= target
;
6231 if (cleared
&& initializer_zerop (value
))
6234 mode
= TYPE_MODE (elttype
);
6235 if (mode
== BLKmode
)
6236 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6237 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6240 bitsize
= GET_MODE_BITSIZE (mode
);
6242 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6244 tree lo_index
= TREE_OPERAND (index
, 0);
6245 tree hi_index
= TREE_OPERAND (index
, 1);
6246 rtx index_r
, pos_rtx
;
6247 HOST_WIDE_INT lo
, hi
, count
;
6250 /* If the range is constant and "small", unroll the loop. */
6252 && tree_fits_shwi_p (lo_index
)
6253 && tree_fits_shwi_p (hi_index
)
6254 && (lo
= tree_to_shwi (lo_index
),
6255 hi
= tree_to_shwi (hi_index
),
6256 count
= hi
- lo
+ 1,
6259 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6260 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6263 lo
-= minelt
; hi
-= minelt
;
6264 for (; lo
<= hi
; lo
++)
6266 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6269 && !MEM_KEEP_ALIAS_SET_P (target
)
6270 && TREE_CODE (type
) == ARRAY_TYPE
6271 && TYPE_NONALIASED_COMPONENT (type
))
6273 target
= copy_rtx (target
);
6274 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6277 store_constructor_field
6278 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6279 get_alias_set (elttype
));
6284 rtx_code_label
*loop_start
= gen_label_rtx ();
6285 rtx_code_label
*loop_end
= gen_label_rtx ();
6288 expand_normal (hi_index
);
6290 index
= build_decl (EXPR_LOCATION (exp
),
6291 VAR_DECL
, NULL_TREE
, domain
);
6292 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6293 SET_DECL_RTL (index
, index_r
);
6294 store_expr (lo_index
, index_r
, 0, false);
6296 /* Build the head of the loop. */
6297 do_pending_stack_adjust ();
6298 emit_label (loop_start
);
6300 /* Assign value to element index. */
6302 fold_convert (ssizetype
,
6303 fold_build2 (MINUS_EXPR
,
6306 TYPE_MIN_VALUE (domain
)));
6309 size_binop (MULT_EXPR
, position
,
6310 fold_convert (ssizetype
,
6311 TYPE_SIZE_UNIT (elttype
)));
6313 pos_rtx
= expand_normal (position
);
6314 xtarget
= offset_address (target
, pos_rtx
,
6315 highest_pow2_factor (position
));
6316 xtarget
= adjust_address (xtarget
, mode
, 0);
6317 if (TREE_CODE (value
) == CONSTRUCTOR
)
6318 store_constructor (value
, xtarget
, cleared
,
6319 bitsize
/ BITS_PER_UNIT
);
6321 store_expr (value
, xtarget
, 0, false);
6323 /* Generate a conditional jump to exit the loop. */
6324 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6326 jumpif (exit_cond
, loop_end
, -1);
6328 /* Update the loop counter, and jump to the head of
6330 expand_assignment (index
,
6331 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6332 index
, integer_one_node
),
6335 emit_jump (loop_start
);
6337 /* Build the end of the loop. */
6338 emit_label (loop_end
);
6341 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6342 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6347 index
= ssize_int (1);
6350 index
= fold_convert (ssizetype
,
6351 fold_build2 (MINUS_EXPR
,
6354 TYPE_MIN_VALUE (domain
)));
6357 size_binop (MULT_EXPR
, index
,
6358 fold_convert (ssizetype
,
6359 TYPE_SIZE_UNIT (elttype
)));
6360 xtarget
= offset_address (target
,
6361 expand_normal (position
),
6362 highest_pow2_factor (position
));
6363 xtarget
= adjust_address (xtarget
, mode
, 0);
6364 store_expr (value
, xtarget
, 0, false);
6369 bitpos
= ((tree_to_shwi (index
) - minelt
)
6370 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6372 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6374 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6375 && TREE_CODE (type
) == ARRAY_TYPE
6376 && TYPE_NONALIASED_COMPONENT (type
))
6378 target
= copy_rtx (target
);
6379 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6381 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6382 cleared
, get_alias_set (elttype
));
6390 unsigned HOST_WIDE_INT idx
;
6391 constructor_elt
*ce
;
6394 int icode
= CODE_FOR_nothing
;
6395 tree elttype
= TREE_TYPE (type
);
6396 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6397 machine_mode eltmode
= TYPE_MODE (elttype
);
6398 HOST_WIDE_INT bitsize
;
6399 HOST_WIDE_INT bitpos
;
6400 rtvec vector
= NULL
;
6402 alias_set_type alias
;
6404 gcc_assert (eltmode
!= BLKmode
);
6406 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6407 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6409 machine_mode mode
= GET_MODE (target
);
6411 icode
= (int) optab_handler (vec_init_optab
, mode
);
6412 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6413 if (icode
!= CODE_FOR_nothing
)
6417 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6418 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6420 icode
= CODE_FOR_nothing
;
6424 if (icode
!= CODE_FOR_nothing
)
6428 vector
= rtvec_alloc (n_elts
);
6429 for (i
= 0; i
< n_elts
; i
++)
6430 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6434 /* If the constructor has fewer elements than the vector,
6435 clear the whole array first. Similarly if this is static
6436 constructor of a non-BLKmode object. */
6439 else if (REG_P (target
) && TREE_STATIC (exp
))
6443 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6446 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6448 int n_elts_here
= tree_to_uhwi
6449 (int_const_binop (TRUNC_DIV_EXPR
,
6450 TYPE_SIZE (TREE_TYPE (value
)),
6451 TYPE_SIZE (elttype
)));
6453 count
+= n_elts_here
;
6454 if (mostly_zeros_p (value
))
6455 zero_count
+= n_elts_here
;
6458 /* Clear the entire vector first if there are any missing elements,
6459 or if the incidence of zero elements is >= 75%. */
6460 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6463 if (need_to_clear
&& size
> 0 && !vector
)
6466 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6468 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6472 /* Inform later passes that the old value is dead. */
6473 if (!cleared
&& !vector
&& REG_P (target
))
6474 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6477 alias
= MEM_ALIAS_SET (target
);
6479 alias
= get_alias_set (elttype
);
6481 /* Store each element of the constructor into the corresponding
6482 element of TARGET, determined by counting the elements. */
6483 for (idx
= 0, i
= 0;
6484 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6485 idx
++, i
+= bitsize
/ elt_size
)
6487 HOST_WIDE_INT eltpos
;
6488 tree value
= ce
->value
;
6490 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6491 if (cleared
&& initializer_zerop (value
))
6495 eltpos
= tree_to_uhwi (ce
->index
);
6501 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6503 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6504 RTVEC_ELT (vector
, eltpos
)
6505 = expand_normal (value
);
6509 machine_mode value_mode
=
6510 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6511 ? TYPE_MODE (TREE_TYPE (value
))
6513 bitpos
= eltpos
* elt_size
;
6514 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6515 value
, cleared
, alias
);
6520 emit_insn (GEN_FCN (icode
)
6522 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6531 /* Store the value of EXP (an expression tree)
6532 into a subfield of TARGET which has mode MODE and occupies
6533 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6534 If MODE is VOIDmode, it means that we are storing into a bit-field.
6536 BITREGION_START is bitpos of the first bitfield in this region.
6537 BITREGION_END is the bitpos of the ending bitfield in this region.
6538 These two fields are 0, if the C++ memory model does not apply,
6539 or we are not interested in keeping track of bitfield regions.
6541 Always return const0_rtx unless we have something particular to
6544 ALIAS_SET is the alias set for the destination. This value will
6545 (in general) be different from that for TARGET, since TARGET is a
6546 reference to the containing structure.
6548 If NONTEMPORAL is true, try generating a nontemporal store. */
6551 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6552 unsigned HOST_WIDE_INT bitregion_start
,
6553 unsigned HOST_WIDE_INT bitregion_end
,
6554 machine_mode mode
, tree exp
,
6555 alias_set_type alias_set
, bool nontemporal
)
6557 if (TREE_CODE (exp
) == ERROR_MARK
)
6560 /* If we have nothing to store, do nothing unless the expression has
6563 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6565 if (GET_CODE (target
) == CONCAT
)
6567 /* We're storing into a struct containing a single __complex. */
6569 gcc_assert (!bitpos
);
6570 return store_expr (exp
, target
, 0, nontemporal
);
6573 /* If the structure is in a register or if the component
6574 is a bit field, we cannot use addressing to access it.
6575 Use bit-field techniques or SUBREG to store in it. */
6577 if (mode
== VOIDmode
6578 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6579 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6580 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6582 || GET_CODE (target
) == SUBREG
6583 /* If the field isn't aligned enough to store as an ordinary memref,
6584 store it as a bit field. */
6586 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6587 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6588 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6589 || (bitpos
% BITS_PER_UNIT
!= 0)))
6590 || (bitsize
>= 0 && mode
!= BLKmode
6591 && GET_MODE_BITSIZE (mode
) > bitsize
)
6592 /* If the RHS and field are a constant size and the size of the
6593 RHS isn't the same size as the bitfield, we must use bitfield
6596 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6597 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6598 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6599 decl we must use bitfield operations. */
6601 && TREE_CODE (exp
) == MEM_REF
6602 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6603 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6604 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6605 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6610 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6611 implies a mask operation. If the precision is the same size as
6612 the field we're storing into, that mask is redundant. This is
6613 particularly common with bit field assignments generated by the
6615 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6618 tree type
= TREE_TYPE (exp
);
6619 if (INTEGRAL_TYPE_P (type
)
6620 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6621 && bitsize
== TYPE_PRECISION (type
))
6623 tree op
= gimple_assign_rhs1 (nop_def
);
6624 type
= TREE_TYPE (op
);
6625 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6630 temp
= expand_normal (exp
);
6632 /* If BITSIZE is narrower than the size of the type of EXP
6633 we will be narrowing TEMP. Normally, what's wanted are the
6634 low-order bits. However, if EXP's type is a record and this is
6635 big-endian machine, we want the upper BITSIZE bits. */
6636 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6637 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6638 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6639 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6640 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6643 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6644 if (mode
!= VOIDmode
&& mode
!= BLKmode
6645 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6646 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6648 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6649 are both BLKmode, both must be in memory and BITPOS must be aligned
6650 on a byte boundary. If so, we simply do a block copy. Likewise for
6651 a BLKmode-like TARGET. */
6652 if (GET_CODE (temp
) != PARALLEL
6653 && GET_MODE (temp
) == BLKmode
6654 && (GET_MODE (target
) == BLKmode
6656 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6657 && (bitpos
% BITS_PER_UNIT
) == 0
6658 && (bitsize
% BITS_PER_UNIT
) == 0)))
6660 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6661 && (bitpos
% BITS_PER_UNIT
) == 0);
6663 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6664 emit_block_move (target
, temp
,
6665 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6672 /* Handle calls that return values in multiple non-contiguous locations.
6673 The Irix 6 ABI has examples of this. */
6674 if (GET_CODE (temp
) == PARALLEL
)
6676 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6678 if (mode
== BLKmode
|| mode
== VOIDmode
)
6679 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6680 temp_target
= gen_reg_rtx (mode
);
6681 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6684 else if (mode
== BLKmode
)
6686 /* Handle calls that return BLKmode values in registers. */
6687 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6689 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6690 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6695 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6697 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6698 temp_target
= gen_reg_rtx (mode
);
6700 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6701 temp_target
, mode
, mode
);
6706 /* Store the value in the bitfield. */
6707 store_bit_field (target
, bitsize
, bitpos
,
6708 bitregion_start
, bitregion_end
,
6715 /* Now build a reference to just the desired component. */
6716 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6718 if (to_rtx
== target
)
6719 to_rtx
= copy_rtx (to_rtx
);
6721 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6722 set_mem_alias_set (to_rtx
, alias_set
);
6724 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6728 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6729 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6730 codes and find the ultimate containing object, which we return.
6732 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6733 bit position, and *PUNSIGNEDP to the signedness of the field.
6734 If the position of the field is variable, we store a tree
6735 giving the variable offset (in units) in *POFFSET.
6736 This offset is in addition to the bit position.
6737 If the position is not variable, we store 0 in *POFFSET.
6739 If any of the extraction expressions is volatile,
6740 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6742 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6743 Otherwise, it is a mode that can be used to access the field.
6745 If the field describes a variable-sized object, *PMODE is set to
6746 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6747 this case, but the address of the object can be found.
6749 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6750 look through nodes that serve as markers of a greater alignment than
6751 the one that can be deduced from the expression. These nodes make it
6752 possible for front-ends to prevent temporaries from being created by
6753 the middle-end on alignment considerations. For that purpose, the
6754 normal operating mode at high-level is to always pass FALSE so that
6755 the ultimate containing object is really returned; moreover, the
6756 associated predicate handled_component_p will always return TRUE
6757 on these nodes, thus indicating that they are essentially handled
6758 by get_inner_reference. TRUE should only be passed when the caller
6759 is scanning the expression in order to build another representation
6760 and specifically knows how to handle these nodes; as such, this is
6761 the normal operating mode in the RTL expanders. */
6764 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6765 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6766 machine_mode
*pmode
, int *punsignedp
,
6767 int *pvolatilep
, bool keep_aligning
)
6770 machine_mode mode
= VOIDmode
;
6771 bool blkmode_bitfield
= false;
6772 tree offset
= size_zero_node
;
6773 offset_int bit_offset
= 0;
6775 /* First get the mode, signedness, and size. We do this from just the
6776 outermost expression. */
6778 if (TREE_CODE (exp
) == COMPONENT_REF
)
6780 tree field
= TREE_OPERAND (exp
, 1);
6781 size_tree
= DECL_SIZE (field
);
6782 if (flag_strict_volatile_bitfields
> 0
6783 && TREE_THIS_VOLATILE (exp
)
6784 && DECL_BIT_FIELD_TYPE (field
)
6785 && DECL_MODE (field
) != BLKmode
)
6786 /* Volatile bitfields should be accessed in the mode of the
6787 field's type, not the mode computed based on the bit
6789 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6790 else if (!DECL_BIT_FIELD (field
))
6791 mode
= DECL_MODE (field
);
6792 else if (DECL_MODE (field
) == BLKmode
)
6793 blkmode_bitfield
= true;
6795 *punsignedp
= DECL_UNSIGNED (field
);
6797 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6799 size_tree
= TREE_OPERAND (exp
, 1);
6800 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6801 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6803 /* For vector types, with the correct size of access, use the mode of
6805 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6806 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6807 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6808 mode
= TYPE_MODE (TREE_TYPE (exp
));
6812 mode
= TYPE_MODE (TREE_TYPE (exp
));
6813 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6815 if (mode
== BLKmode
)
6816 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6818 *pbitsize
= GET_MODE_BITSIZE (mode
);
6823 if (! tree_fits_uhwi_p (size_tree
))
6824 mode
= BLKmode
, *pbitsize
= -1;
6826 *pbitsize
= tree_to_uhwi (size_tree
);
6829 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6830 and find the ultimate containing object. */
6833 switch (TREE_CODE (exp
))
6836 bit_offset
+= wi::to_offset (TREE_OPERAND (exp
, 2));
6841 tree field
= TREE_OPERAND (exp
, 1);
6842 tree this_offset
= component_ref_field_offset (exp
);
6844 /* If this field hasn't been filled in yet, don't go past it.
6845 This should only happen when folding expressions made during
6846 type construction. */
6847 if (this_offset
== 0)
6850 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6851 bit_offset
+= wi::to_offset (DECL_FIELD_BIT_OFFSET (field
));
6853 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6858 case ARRAY_RANGE_REF
:
6860 tree index
= TREE_OPERAND (exp
, 1);
6861 tree low_bound
= array_ref_low_bound (exp
);
6862 tree unit_size
= array_ref_element_size (exp
);
6864 /* We assume all arrays have sizes that are a multiple of a byte.
6865 First subtract the lower bound, if any, in the type of the
6866 index, then convert to sizetype and multiply by the size of
6867 the array element. */
6868 if (! integer_zerop (low_bound
))
6869 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6872 offset
= size_binop (PLUS_EXPR
, offset
,
6873 size_binop (MULT_EXPR
,
6874 fold_convert (sizetype
, index
),
6883 bit_offset
+= *pbitsize
;
6886 case VIEW_CONVERT_EXPR
:
6887 if (keep_aligning
&& STRICT_ALIGNMENT
6888 && (TYPE_ALIGN (TREE_TYPE (exp
))
6889 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6890 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6891 < BIGGEST_ALIGNMENT
)
6892 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6893 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6898 /* Hand back the decl for MEM[&decl, off]. */
6899 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6901 tree off
= TREE_OPERAND (exp
, 1);
6902 if (!integer_zerop (off
))
6904 offset_int boff
, coff
= mem_ref_offset (exp
);
6905 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
6908 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6916 /* If any reference in the chain is volatile, the effect is volatile. */
6917 if (TREE_THIS_VOLATILE (exp
))
6920 exp
= TREE_OPERAND (exp
, 0);
6924 /* If OFFSET is constant, see if we can return the whole thing as a
6925 constant bit position. Make sure to handle overflow during
6927 if (TREE_CODE (offset
) == INTEGER_CST
)
6929 offset_int tem
= wi::sext (wi::to_offset (offset
),
6930 TYPE_PRECISION (sizetype
));
6931 tem
= wi::lshift (tem
, LOG2_BITS_PER_UNIT
);
6933 if (wi::fits_shwi_p (tem
))
6935 *pbitpos
= tem
.to_shwi ();
6936 *poffset
= offset
= NULL_TREE
;
6940 /* Otherwise, split it up. */
6943 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6944 if (wi::neg_p (bit_offset
))
6946 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
6947 offset_int tem
= bit_offset
.and_not (mask
);
6948 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6949 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6951 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
6952 offset
= size_binop (PLUS_EXPR
, offset
,
6953 wide_int_to_tree (sizetype
, tem
));
6956 *pbitpos
= bit_offset
.to_shwi ();
6960 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6961 if (mode
== VOIDmode
6963 && (*pbitpos
% BITS_PER_UNIT
) == 0
6964 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6972 /* Return a tree of sizetype representing the size, in bytes, of the element
6973 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6976 array_ref_element_size (tree exp
)
6978 tree aligned_size
= TREE_OPERAND (exp
, 3);
6979 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6980 location_t loc
= EXPR_LOCATION (exp
);
6982 /* If a size was specified in the ARRAY_REF, it's the size measured
6983 in alignment units of the element type. So multiply by that value. */
6986 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6987 sizetype from another type of the same width and signedness. */
6988 if (TREE_TYPE (aligned_size
) != sizetype
)
6989 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6990 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6991 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6994 /* Otherwise, take the size from that of the element type. Substitute
6995 any PLACEHOLDER_EXPR that we have. */
6997 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
7000 /* Return a tree representing the lower bound of the array mentioned in
7001 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7004 array_ref_low_bound (tree exp
)
7006 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7008 /* If a lower bound is specified in EXP, use it. */
7009 if (TREE_OPERAND (exp
, 2))
7010 return TREE_OPERAND (exp
, 2);
7012 /* Otherwise, if there is a domain type and it has a lower bound, use it,
7013 substituting for a PLACEHOLDER_EXPR as needed. */
7014 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
7015 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
7017 /* Otherwise, return a zero of the appropriate type. */
7018 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
7021 /* Returns true if REF is an array reference to an array at the end of
7022 a structure. If this is the case, the array may be allocated larger
7023 than its upper bound implies. */
7026 array_at_struct_end_p (tree ref
)
7028 if (TREE_CODE (ref
) != ARRAY_REF
7029 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
7032 while (handled_component_p (ref
))
7034 /* If the reference chain contains a component reference to a
7035 non-union type and there follows another field the reference
7036 is not at the end of a structure. */
7037 if (TREE_CODE (ref
) == COMPONENT_REF
7038 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
7040 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
7041 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
7042 nextf
= DECL_CHAIN (nextf
);
7047 ref
= TREE_OPERAND (ref
, 0);
7050 /* If the reference is based on a declared entity, the size of the array
7051 is constrained by its given domain. */
7058 /* Return a tree representing the upper bound of the array mentioned in
7059 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7062 array_ref_up_bound (tree exp
)
7064 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7066 /* If there is a domain type and it has an upper bound, use it, substituting
7067 for a PLACEHOLDER_EXPR as needed. */
7068 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
7069 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
7071 /* Otherwise fail. */
7075 /* Return a tree representing the offset, in bytes, of the field referenced
7076 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7079 component_ref_field_offset (tree exp
)
7081 tree aligned_offset
= TREE_OPERAND (exp
, 2);
7082 tree field
= TREE_OPERAND (exp
, 1);
7083 location_t loc
= EXPR_LOCATION (exp
);
7085 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7086 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7090 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7091 sizetype from another type of the same width and signedness. */
7092 if (TREE_TYPE (aligned_offset
) != sizetype
)
7093 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7094 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7095 size_int (DECL_OFFSET_ALIGN (field
)
7099 /* Otherwise, take the offset from that of the field. Substitute
7100 any PLACEHOLDER_EXPR that we have. */
7102 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7105 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7107 static unsigned HOST_WIDE_INT
7108 target_align (const_tree target
)
7110 /* We might have a chain of nested references with intermediate misaligning
7111 bitfields components, so need to recurse to find out. */
7113 unsigned HOST_WIDE_INT this_align
, outer_align
;
7115 switch (TREE_CODE (target
))
7121 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7122 outer_align
= target_align (TREE_OPERAND (target
, 0));
7123 return MIN (this_align
, outer_align
);
7126 case ARRAY_RANGE_REF
:
7127 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7128 outer_align
= target_align (TREE_OPERAND (target
, 0));
7129 return MIN (this_align
, outer_align
);
7132 case NON_LVALUE_EXPR
:
7133 case VIEW_CONVERT_EXPR
:
7134 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7135 outer_align
= target_align (TREE_OPERAND (target
, 0));
7136 return MAX (this_align
, outer_align
);
7139 return TYPE_ALIGN (TREE_TYPE (target
));
7144 /* Given an rtx VALUE that may contain additions and multiplications, return
7145 an equivalent value that just refers to a register, memory, or constant.
7146 This is done by generating instructions to perform the arithmetic and
7147 returning a pseudo-register containing the value.
7149 The returned value may be a REG, SUBREG, MEM or constant. */
7152 force_operand (rtx value
, rtx target
)
7155 /* Use subtarget as the target for operand 0 of a binary operation. */
7156 rtx subtarget
= get_subtarget (target
);
7157 enum rtx_code code
= GET_CODE (value
);
7159 /* Check for subreg applied to an expression produced by loop optimizer. */
7161 && !REG_P (SUBREG_REG (value
))
7162 && !MEM_P (SUBREG_REG (value
)))
7165 = simplify_gen_subreg (GET_MODE (value
),
7166 force_reg (GET_MODE (SUBREG_REG (value
)),
7167 force_operand (SUBREG_REG (value
),
7169 GET_MODE (SUBREG_REG (value
)),
7170 SUBREG_BYTE (value
));
7171 code
= GET_CODE (value
);
7174 /* Check for a PIC address load. */
7175 if ((code
== PLUS
|| code
== MINUS
)
7176 && XEXP (value
, 0) == pic_offset_table_rtx
7177 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7178 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7179 || GET_CODE (XEXP (value
, 1)) == CONST
))
7182 subtarget
= gen_reg_rtx (GET_MODE (value
));
7183 emit_move_insn (subtarget
, value
);
7187 if (ARITHMETIC_P (value
))
7189 op2
= XEXP (value
, 1);
7190 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7192 if (code
== MINUS
&& CONST_INT_P (op2
))
7195 op2
= negate_rtx (GET_MODE (value
), op2
);
7198 /* Check for an addition with OP2 a constant integer and our first
7199 operand a PLUS of a virtual register and something else. In that
7200 case, we want to emit the sum of the virtual register and the
7201 constant first and then add the other value. This allows virtual
7202 register instantiation to simply modify the constant rather than
7203 creating another one around this addition. */
7204 if (code
== PLUS
&& CONST_INT_P (op2
)
7205 && GET_CODE (XEXP (value
, 0)) == PLUS
7206 && REG_P (XEXP (XEXP (value
, 0), 0))
7207 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7208 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7210 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7211 XEXP (XEXP (value
, 0), 0), op2
,
7212 subtarget
, 0, OPTAB_LIB_WIDEN
);
7213 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7214 force_operand (XEXP (XEXP (value
,
7216 target
, 0, OPTAB_LIB_WIDEN
);
7219 op1
= force_operand (XEXP (value
, 0), subtarget
);
7220 op2
= force_operand (op2
, NULL_RTX
);
7224 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7226 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7227 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7228 target
, 1, OPTAB_LIB_WIDEN
);
7230 return expand_divmod (0,
7231 FLOAT_MODE_P (GET_MODE (value
))
7232 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7233 GET_MODE (value
), op1
, op2
, target
, 0);
7235 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7238 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7241 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7244 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7245 target
, 0, OPTAB_LIB_WIDEN
);
7247 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7248 target
, 1, OPTAB_LIB_WIDEN
);
7251 if (UNARY_P (value
))
7254 target
= gen_reg_rtx (GET_MODE (value
));
7255 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7262 case FLOAT_TRUNCATE
:
7263 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7268 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7272 case UNSIGNED_FLOAT
:
7273 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7277 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7281 #ifdef INSN_SCHEDULING
7282 /* On machines that have insn scheduling, we want all memory reference to be
7283 explicit, so we need to deal with such paradoxical SUBREGs. */
7284 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7286 = simplify_gen_subreg (GET_MODE (value
),
7287 force_reg (GET_MODE (SUBREG_REG (value
)),
7288 force_operand (SUBREG_REG (value
),
7290 GET_MODE (SUBREG_REG (value
)),
7291 SUBREG_BYTE (value
));
7297 /* Subroutine of expand_expr: return nonzero iff there is no way that
7298 EXP can reference X, which is being modified. TOP_P is nonzero if this
7299 call is going to be used to determine whether we need a temporary
7300 for EXP, as opposed to a recursive call to this function.
7302 It is always safe for this routine to return zero since it merely
7303 searches for optimization opportunities. */
7306 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7312 /* If EXP has varying size, we MUST use a target since we currently
7313 have no way of allocating temporaries of variable size
7314 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7315 So we assume here that something at a higher level has prevented a
7316 clash. This is somewhat bogus, but the best we can do. Only
7317 do this when X is BLKmode and when we are at the top level. */
7318 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7319 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7320 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7321 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7322 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7324 && GET_MODE (x
) == BLKmode
)
7325 /* If X is in the outgoing argument area, it is always safe. */
7327 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7328 || (GET_CODE (XEXP (x
, 0)) == PLUS
7329 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7332 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7333 find the underlying pseudo. */
7334 if (GET_CODE (x
) == SUBREG
)
7337 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7341 /* Now look at our tree code and possibly recurse. */
7342 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7344 case tcc_declaration
:
7345 exp_rtl
= DECL_RTL_IF_SET (exp
);
7351 case tcc_exceptional
:
7352 if (TREE_CODE (exp
) == TREE_LIST
)
7356 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7358 exp
= TREE_CHAIN (exp
);
7361 if (TREE_CODE (exp
) != TREE_LIST
)
7362 return safe_from_p (x
, exp
, 0);
7365 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7367 constructor_elt
*ce
;
7368 unsigned HOST_WIDE_INT idx
;
7370 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7371 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7372 || !safe_from_p (x
, ce
->value
, 0))
7376 else if (TREE_CODE (exp
) == ERROR_MARK
)
7377 return 1; /* An already-visited SAVE_EXPR? */
7382 /* The only case we look at here is the DECL_INITIAL inside a
7384 return (TREE_CODE (exp
) != DECL_EXPR
7385 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7386 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7387 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7390 case tcc_comparison
:
7391 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7396 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7398 case tcc_expression
:
7401 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7402 the expression. If it is set, we conflict iff we are that rtx or
7403 both are in memory. Otherwise, we check all operands of the
7404 expression recursively. */
7406 switch (TREE_CODE (exp
))
7409 /* If the operand is static or we are static, we can't conflict.
7410 Likewise if we don't conflict with the operand at all. */
7411 if (staticp (TREE_OPERAND (exp
, 0))
7412 || TREE_STATIC (exp
)
7413 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7416 /* Otherwise, the only way this can conflict is if we are taking
7417 the address of a DECL a that address if part of X, which is
7419 exp
= TREE_OPERAND (exp
, 0);
7422 if (!DECL_RTL_SET_P (exp
)
7423 || !MEM_P (DECL_RTL (exp
)))
7426 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7432 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7433 get_alias_set (exp
)))
7438 /* Assume that the call will clobber all hard registers and
7440 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7445 case WITH_CLEANUP_EXPR
:
7446 case CLEANUP_POINT_EXPR
:
7447 /* Lowered by gimplify.c. */
7451 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7457 /* If we have an rtx, we do not need to scan our operands. */
7461 nops
= TREE_OPERAND_LENGTH (exp
);
7462 for (i
= 0; i
< nops
; i
++)
7463 if (TREE_OPERAND (exp
, i
) != 0
7464 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7470 /* Should never get a type here. */
7474 /* If we have an rtl, find any enclosed object. Then see if we conflict
7478 if (GET_CODE (exp_rtl
) == SUBREG
)
7480 exp_rtl
= SUBREG_REG (exp_rtl
);
7482 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7486 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7487 are memory and they conflict. */
7488 return ! (rtx_equal_p (x
, exp_rtl
)
7489 || (MEM_P (x
) && MEM_P (exp_rtl
)
7490 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7493 /* If we reach here, it is safe. */
7498 /* Return the highest power of two that EXP is known to be a multiple of.
7499 This is used in updating alignment of MEMs in array references. */
7501 unsigned HOST_WIDE_INT
7502 highest_pow2_factor (const_tree exp
)
7504 unsigned HOST_WIDE_INT ret
;
7505 int trailing_zeros
= tree_ctz (exp
);
7506 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7507 return BIGGEST_ALIGNMENT
;
7508 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7509 if (ret
> BIGGEST_ALIGNMENT
)
7510 return BIGGEST_ALIGNMENT
;
7514 /* Similar, except that the alignment requirements of TARGET are
7515 taken into account. Assume it is at least as aligned as its
7516 type, unless it is a COMPONENT_REF in which case the layout of
7517 the structure gives the alignment. */
7519 static unsigned HOST_WIDE_INT
7520 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7522 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7523 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7525 return MAX (factor
, talign
);
7528 #ifdef HAVE_conditional_move
7529 /* Convert the tree comparison code TCODE to the rtl one where the
7530 signedness is UNSIGNEDP. */
7532 static enum rtx_code
7533 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7545 code
= unsignedp
? LTU
: LT
;
7548 code
= unsignedp
? LEU
: LE
;
7551 code
= unsignedp
? GTU
: GT
;
7554 code
= unsignedp
? GEU
: GE
;
7556 case UNORDERED_EXPR
:
7588 /* Subroutine of expand_expr. Expand the two operands of a binary
7589 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7590 The value may be stored in TARGET if TARGET is nonzero. The
7591 MODIFIER argument is as documented by expand_expr. */
7594 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7595 enum expand_modifier modifier
)
7597 if (! safe_from_p (target
, exp1
, 1))
7599 if (operand_equal_p (exp0
, exp1
, 0))
7601 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7602 *op1
= copy_rtx (*op0
);
7606 /* If we need to preserve evaluation order, copy exp0 into its own
7607 temporary variable so that it can't be clobbered by exp1. */
7608 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7609 exp0
= save_expr (exp0
);
7610 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7611 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7616 /* Return a MEM that contains constant EXP. DEFER is as for
7617 output_constant_def and MODIFIER is as for expand_expr. */
7620 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7624 mem
= output_constant_def (exp
, defer
);
7625 if (modifier
!= EXPAND_INITIALIZER
)
7626 mem
= use_anchored_address (mem
);
7630 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7631 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7634 expand_expr_addr_expr_1 (tree exp
, rtx target
, machine_mode tmode
,
7635 enum expand_modifier modifier
, addr_space_t as
)
7637 rtx result
, subtarget
;
7639 HOST_WIDE_INT bitsize
, bitpos
;
7640 int volatilep
, unsignedp
;
7643 /* If we are taking the address of a constant and are at the top level,
7644 we have to use output_constant_def since we can't call force_const_mem
7646 /* ??? This should be considered a front-end bug. We should not be
7647 generating ADDR_EXPR of something that isn't an LVALUE. The only
7648 exception here is STRING_CST. */
7649 if (CONSTANT_CLASS_P (exp
))
7651 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7652 if (modifier
< EXPAND_SUM
)
7653 result
= force_operand (result
, target
);
7657 /* Everything must be something allowed by is_gimple_addressable. */
7658 switch (TREE_CODE (exp
))
7661 /* This case will happen via recursion for &a->b. */
7662 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7666 tree tem
= TREE_OPERAND (exp
, 0);
7667 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7668 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7669 return expand_expr (tem
, target
, tmode
, modifier
);
7673 /* Expand the initializer like constants above. */
7674 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7676 if (modifier
< EXPAND_SUM
)
7677 result
= force_operand (result
, target
);
7681 /* The real part of the complex number is always first, therefore
7682 the address is the same as the address of the parent object. */
7685 inner
= TREE_OPERAND (exp
, 0);
7689 /* The imaginary part of the complex number is always second.
7690 The expression is therefore always offset by the size of the
7693 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7694 inner
= TREE_OPERAND (exp
, 0);
7697 case COMPOUND_LITERAL_EXPR
:
7698 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7699 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7700 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7701 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7702 the initializers aren't gimplified. */
7703 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
7704 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
7705 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7706 target
, tmode
, modifier
, as
);
7709 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7710 expand_expr, as that can have various side effects; LABEL_DECLs for
7711 example, may not have their DECL_RTL set yet. Expand the rtl of
7712 CONSTRUCTORs too, which should yield a memory reference for the
7713 constructor's contents. Assume language specific tree nodes can
7714 be expanded in some interesting way. */
7715 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7717 || TREE_CODE (exp
) == CONSTRUCTOR
7718 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7720 result
= expand_expr (exp
, target
, tmode
,
7721 modifier
== EXPAND_INITIALIZER
7722 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7724 /* If the DECL isn't in memory, then the DECL wasn't properly
7725 marked TREE_ADDRESSABLE, which will be either a front-end
7726 or a tree optimizer bug. */
7728 if (TREE_ADDRESSABLE (exp
)
7730 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7732 error ("local frame unavailable (naked function?)");
7736 gcc_assert (MEM_P (result
));
7737 result
= XEXP (result
, 0);
7739 /* ??? Is this needed anymore? */
7741 TREE_USED (exp
) = 1;
7743 if (modifier
!= EXPAND_INITIALIZER
7744 && modifier
!= EXPAND_CONST_ADDRESS
7745 && modifier
!= EXPAND_SUM
)
7746 result
= force_operand (result
, target
);
7750 /* Pass FALSE as the last argument to get_inner_reference although
7751 we are expanding to RTL. The rationale is that we know how to
7752 handle "aligning nodes" here: we can just bypass them because
7753 they won't change the final object whose address will be returned
7754 (they actually exist only for that purpose). */
7755 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7756 &mode1
, &unsignedp
, &volatilep
, false);
7760 /* We must have made progress. */
7761 gcc_assert (inner
!= exp
);
7763 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7764 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7765 inner alignment, force the inner to be sufficiently aligned. */
7766 if (CONSTANT_CLASS_P (inner
)
7767 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7769 inner
= copy_node (inner
);
7770 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7771 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7772 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7774 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7780 if (modifier
!= EXPAND_NORMAL
)
7781 result
= force_operand (result
, NULL
);
7782 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7783 modifier
== EXPAND_INITIALIZER
7784 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7786 /* expand_expr is allowed to return an object in a mode other
7787 than TMODE. If it did, we need to convert. */
7788 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7789 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7790 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7791 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7792 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7794 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7795 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7798 subtarget
= bitpos
? NULL_RTX
: target
;
7799 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7800 1, OPTAB_LIB_WIDEN
);
7806 /* Someone beforehand should have rejected taking the address
7807 of such an object. */
7808 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7810 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7811 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7812 if (modifier
< EXPAND_SUM
)
7813 result
= force_operand (result
, target
);
7819 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7820 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7823 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
7824 enum expand_modifier modifier
)
7826 addr_space_t as
= ADDR_SPACE_GENERIC
;
7827 machine_mode address_mode
= Pmode
;
7828 machine_mode pointer_mode
= ptr_mode
;
7832 /* Target mode of VOIDmode says "whatever's natural". */
7833 if (tmode
== VOIDmode
)
7834 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7836 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7838 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7839 address_mode
= targetm
.addr_space
.address_mode (as
);
7840 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7843 /* We can get called with some Weird Things if the user does silliness
7844 like "(short) &a". In that case, convert_memory_address won't do
7845 the right thing, so ignore the given target mode. */
7846 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7847 tmode
= address_mode
;
7849 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7850 tmode
, modifier
, as
);
7852 /* Despite expand_expr claims concerning ignoring TMODE when not
7853 strictly convenient, stuff breaks if we don't honor it. Note
7854 that combined with the above, we only do this for pointer modes. */
7855 rmode
= GET_MODE (result
);
7856 if (rmode
== VOIDmode
)
7859 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7864 /* Generate code for computing CONSTRUCTOR EXP.
7865 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7866 is TRUE, instead of creating a temporary variable in memory
7867 NULL is returned and the caller needs to handle it differently. */
7870 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7871 bool avoid_temp_mem
)
7873 tree type
= TREE_TYPE (exp
);
7874 machine_mode mode
= TYPE_MODE (type
);
7876 /* Try to avoid creating a temporary at all. This is possible
7877 if all of the initializer is zero.
7878 FIXME: try to handle all [0..255] initializers we can handle
7880 if (TREE_STATIC (exp
)
7881 && !TREE_ADDRESSABLE (exp
)
7882 && target
!= 0 && mode
== BLKmode
7883 && all_zeros_p (exp
))
7885 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7889 /* All elts simple constants => refer to a constant in memory. But
7890 if this is a non-BLKmode mode, let it store a field at a time
7891 since that should make a CONST_INT, CONST_WIDE_INT or
7892 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7893 use, it is best to store directly into the target unless the type
7894 is large enough that memcpy will be used. If we are making an
7895 initializer and all operands are constant, put it in memory as
7898 FIXME: Avoid trying to fill vector constructors piece-meal.
7899 Output them with output_constant_def below unless we're sure
7900 they're zeros. This should go away when vector initializers
7901 are treated like VECTOR_CST instead of arrays. */
7902 if ((TREE_STATIC (exp
)
7903 && ((mode
== BLKmode
7904 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7905 || TREE_ADDRESSABLE (exp
)
7906 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7907 && (! can_move_by_pieces
7908 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7910 && ! mostly_zeros_p (exp
))))
7911 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7912 && TREE_CONSTANT (exp
)))
7919 constructor
= expand_expr_constant (exp
, 1, modifier
);
7921 if (modifier
!= EXPAND_CONST_ADDRESS
7922 && modifier
!= EXPAND_INITIALIZER
7923 && modifier
!= EXPAND_SUM
)
7924 constructor
= validize_mem (constructor
);
7929 /* Handle calls that pass values in multiple non-contiguous
7930 locations. The Irix 6 ABI has examples of this. */
7931 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7932 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7937 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
7940 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7945 /* expand_expr: generate code for computing expression EXP.
7946 An rtx for the computed value is returned. The value is never null.
7947 In the case of a void EXP, const0_rtx is returned.
7949 The value may be stored in TARGET if TARGET is nonzero.
7950 TARGET is just a suggestion; callers must assume that
7951 the rtx returned may not be the same as TARGET.
7953 If TARGET is CONST0_RTX, it means that the value will be ignored.
7955 If TMODE is not VOIDmode, it suggests generating the
7956 result in mode TMODE. But this is done only when convenient.
7957 Otherwise, TMODE is ignored and the value generated in its natural mode.
7958 TMODE is just a suggestion; callers must assume that
7959 the rtx returned may not have mode TMODE.
7961 Note that TARGET may have neither TMODE nor MODE. In that case, it
7962 probably will not be used.
7964 If MODIFIER is EXPAND_SUM then when EXP is an addition
7965 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7966 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7967 products as above, or REG or MEM, or constant.
7968 Ordinarily in such cases we would output mul or add instructions
7969 and then return a pseudo reg containing the sum.
7971 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7972 it also marks a label as absolutely required (it can't be dead).
7973 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7974 This is used for outputting expressions used in initializers.
7976 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7977 with a constant address even if that address is not normally legitimate.
7978 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7980 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7981 a call parameter. Such targets require special care as we haven't yet
7982 marked TARGET so that it's safe from being trashed by libcalls. We
7983 don't want to use TARGET for anything but the final result;
7984 Intermediate values must go elsewhere. Additionally, calls to
7985 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7987 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7988 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7989 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7990 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7993 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7994 In this case, we don't adjust a returned MEM rtx that wouldn't be
7995 sufficiently aligned for its mode; instead, it's up to the caller
7996 to deal with it afterwards. This is used to make sure that unaligned
7997 base objects for which out-of-bounds accesses are supported, for
7998 example record types with trailing arrays, aren't realigned behind
7999 the back of the caller.
8000 The normal operating mode is to pass FALSE for this parameter. */
8003 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
8004 enum expand_modifier modifier
, rtx
*alt_rtl
,
8005 bool inner_reference_p
)
8009 /* Handle ERROR_MARK before anybody tries to access its type. */
8010 if (TREE_CODE (exp
) == ERROR_MARK
8011 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
8013 ret
= CONST0_RTX (tmode
);
8014 return ret
? ret
: const0_rtx
;
8017 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8022 /* Try to expand the conditional expression which is represented by
8023 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
8024 return the rtl reg which repsents the result. Otherwise return
8028 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8029 tree treeop1 ATTRIBUTE_UNUSED
,
8030 tree treeop2 ATTRIBUTE_UNUSED
)
8032 #ifdef HAVE_conditional_move
8034 rtx op00
, op01
, op1
, op2
;
8035 enum rtx_code comparison_code
;
8036 machine_mode comparison_mode
;
8039 tree type
= TREE_TYPE (treeop1
);
8040 int unsignedp
= TYPE_UNSIGNED (type
);
8041 machine_mode mode
= TYPE_MODE (type
);
8042 machine_mode orig_mode
= mode
;
8044 /* If we cannot do a conditional move on the mode, try doing it
8045 with the promoted mode. */
8046 if (!can_conditionally_move_p (mode
))
8048 mode
= promote_mode (type
, mode
, &unsignedp
);
8049 if (!can_conditionally_move_p (mode
))
8051 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8054 temp
= assign_temp (type
, 0, 1);
8057 expand_operands (treeop1
, treeop2
,
8058 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8060 if (TREE_CODE (treeop0
) == SSA_NAME
8061 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8063 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8064 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8065 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8066 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8067 comparison_mode
= TYPE_MODE (type
);
8068 unsignedp
= TYPE_UNSIGNED (type
);
8069 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8071 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
8073 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8074 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8075 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8076 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8077 unsignedp
= TYPE_UNSIGNED (type
);
8078 comparison_mode
= TYPE_MODE (type
);
8079 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8083 op00
= expand_normal (treeop0
);
8085 comparison_code
= NE
;
8086 comparison_mode
= GET_MODE (op00
);
8087 if (comparison_mode
== VOIDmode
)
8088 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8091 if (GET_MODE (op1
) != mode
)
8092 op1
= gen_lowpart (mode
, op1
);
8094 if (GET_MODE (op2
) != mode
)
8095 op2
= gen_lowpart (mode
, op2
);
8097 /* Try to emit the conditional move. */
8098 insn
= emit_conditional_move (temp
, comparison_code
,
8099 op00
, op01
, comparison_mode
,
8103 /* If we could do the conditional move, emit the sequence,
8107 rtx_insn
*seq
= get_insns ();
8110 return convert_modes (orig_mode
, mode
, temp
, 0);
8113 /* Otherwise discard the sequence and fall back to code with
8121 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8122 enum expand_modifier modifier
)
8124 rtx op0
, op1
, op2
, temp
;
8128 enum tree_code code
= ops
->code
;
8130 rtx subtarget
, original_target
;
8132 bool reduce_bit_field
;
8133 location_t loc
= ops
->location
;
8134 tree treeop0
, treeop1
, treeop2
;
8135 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8136 ? reduce_to_bit_field_precision ((expr), \
8142 mode
= TYPE_MODE (type
);
8143 unsignedp
= TYPE_UNSIGNED (type
);
8149 /* We should be called only on simple (binary or unary) expressions,
8150 exactly those that are valid in gimple expressions that aren't
8151 GIMPLE_SINGLE_RHS (or invalid). */
8152 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8153 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8154 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8156 ignore
= (target
== const0_rtx
8157 || ((CONVERT_EXPR_CODE_P (code
)
8158 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8159 && TREE_CODE (type
) == VOID_TYPE
));
8161 /* We should be called only if we need the result. */
8162 gcc_assert (!ignore
);
8164 /* An operation in what may be a bit-field type needs the
8165 result to be reduced to the precision of the bit-field type,
8166 which is narrower than that of the type's mode. */
8167 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8168 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8170 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8173 /* Use subtarget as the target for operand 0 of a binary operation. */
8174 subtarget
= get_subtarget (target
);
8175 original_target
= target
;
8179 case NON_LVALUE_EXPR
:
8182 if (treeop0
== error_mark_node
)
8185 if (TREE_CODE (type
) == UNION_TYPE
)
8187 tree valtype
= TREE_TYPE (treeop0
);
8189 /* If both input and output are BLKmode, this conversion isn't doing
8190 anything except possibly changing memory attribute. */
8191 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8193 rtx result
= expand_expr (treeop0
, target
, tmode
,
8196 result
= copy_rtx (result
);
8197 set_mem_attributes (result
, type
, 0);
8203 if (TYPE_MODE (type
) != BLKmode
)
8204 target
= gen_reg_rtx (TYPE_MODE (type
));
8206 target
= assign_temp (type
, 1, 1);
8210 /* Store data into beginning of memory target. */
8211 store_expr (treeop0
,
8212 adjust_address (target
, TYPE_MODE (valtype
), 0),
8213 modifier
== EXPAND_STACK_PARM
,
8218 gcc_assert (REG_P (target
));
8220 /* Store this field into a union of the proper type. */
8221 store_field (target
,
8222 MIN ((int_size_in_bytes (TREE_TYPE
8225 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8226 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8229 /* Return the entire union. */
8233 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8235 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8238 /* If the signedness of the conversion differs and OP0 is
8239 a promoted SUBREG, clear that indication since we now
8240 have to do the proper extension. */
8241 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8242 && GET_CODE (op0
) == SUBREG
)
8243 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8245 return REDUCE_BIT_FIELD (op0
);
8248 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8249 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8250 if (GET_MODE (op0
) == mode
)
8253 /* If OP0 is a constant, just convert it into the proper mode. */
8254 else if (CONSTANT_P (op0
))
8256 tree inner_type
= TREE_TYPE (treeop0
);
8257 machine_mode inner_mode
= GET_MODE (op0
);
8259 if (inner_mode
== VOIDmode
)
8260 inner_mode
= TYPE_MODE (inner_type
);
8262 if (modifier
== EXPAND_INITIALIZER
)
8263 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8264 subreg_lowpart_offset (mode
,
8267 op0
= convert_modes (mode
, inner_mode
, op0
,
8268 TYPE_UNSIGNED (inner_type
));
8271 else if (modifier
== EXPAND_INITIALIZER
)
8272 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8274 else if (target
== 0)
8275 op0
= convert_to_mode (mode
, op0
,
8276 TYPE_UNSIGNED (TREE_TYPE
8280 convert_move (target
, op0
,
8281 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8285 return REDUCE_BIT_FIELD (op0
);
8287 case ADDR_SPACE_CONVERT_EXPR
:
8289 tree treeop0_type
= TREE_TYPE (treeop0
);
8291 addr_space_t as_from
;
8293 gcc_assert (POINTER_TYPE_P (type
));
8294 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8296 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8297 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8299 /* Conversions between pointers to the same address space should
8300 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8301 gcc_assert (as_to
!= as_from
);
8303 /* Ask target code to handle conversion between pointers
8304 to overlapping address spaces. */
8305 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8306 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8308 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8309 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8314 /* For disjoint address spaces, converting anything but
8315 a null pointer invokes undefined behaviour. We simply
8316 always return a null pointer here. */
8317 return CONST0_RTX (mode
);
8320 case POINTER_PLUS_EXPR
:
8321 /* Even though the sizetype mode and the pointer's mode can be different
8322 expand is able to handle this correctly and get the correct result out
8323 of the PLUS_EXPR code. */
8324 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8325 if sizetype precision is smaller than pointer precision. */
8326 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8327 treeop1
= fold_convert_loc (loc
, type
,
8328 fold_convert_loc (loc
, ssizetype
,
8330 /* If sizetype precision is larger than pointer precision, truncate the
8331 offset to have matching modes. */
8332 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8333 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8336 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8337 something else, make sure we add the register to the constant and
8338 then to the other thing. This case can occur during strength
8339 reduction and doing it this way will produce better code if the
8340 frame pointer or argument pointer is eliminated.
8342 fold-const.c will ensure that the constant is always in the inner
8343 PLUS_EXPR, so the only case we need to do anything about is if
8344 sp, ap, or fp is our second argument, in which case we must swap
8345 the innermost first argument and our second argument. */
8347 if (TREE_CODE (treeop0
) == PLUS_EXPR
8348 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8349 && TREE_CODE (treeop1
) == VAR_DECL
8350 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8351 || DECL_RTL (treeop1
) == stack_pointer_rtx
8352 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8357 /* If the result is to be ptr_mode and we are adding an integer to
8358 something, we might be forming a constant. So try to use
8359 plus_constant. If it produces a sum and we can't accept it,
8360 use force_operand. This allows P = &ARR[const] to generate
8361 efficient code on machines where a SYMBOL_REF is not a valid
8364 If this is an EXPAND_SUM call, always return the sum. */
8365 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8366 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8368 if (modifier
== EXPAND_STACK_PARM
)
8370 if (TREE_CODE (treeop0
) == INTEGER_CST
8371 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8372 && TREE_CONSTANT (treeop1
))
8376 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8378 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8380 /* Use wi::shwi to ensure that the constant is
8381 truncated according to the mode of OP1, then sign extended
8382 to a HOST_WIDE_INT. Using the constant directly can result
8383 in non-canonical RTL in a 64x32 cross compile. */
8384 wc
= TREE_INT_CST_LOW (treeop0
);
8386 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8387 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8388 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8389 op1
= force_operand (op1
, target
);
8390 return REDUCE_BIT_FIELD (op1
);
8393 else if (TREE_CODE (treeop1
) == INTEGER_CST
8394 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8395 && TREE_CONSTANT (treeop0
))
8399 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8401 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8402 (modifier
== EXPAND_INITIALIZER
8403 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8404 if (! CONSTANT_P (op0
))
8406 op1
= expand_expr (treeop1
, NULL_RTX
,
8407 VOIDmode
, modifier
);
8408 /* Return a PLUS if modifier says it's OK. */
8409 if (modifier
== EXPAND_SUM
8410 || modifier
== EXPAND_INITIALIZER
)
8411 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8414 /* Use wi::shwi to ensure that the constant is
8415 truncated according to the mode of OP1, then sign extended
8416 to a HOST_WIDE_INT. Using the constant directly can result
8417 in non-canonical RTL in a 64x32 cross compile. */
8418 wc
= TREE_INT_CST_LOW (treeop1
);
8420 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8421 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8422 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8423 op0
= force_operand (op0
, target
);
8424 return REDUCE_BIT_FIELD (op0
);
8428 /* Use TER to expand pointer addition of a negated value
8429 as pointer subtraction. */
8430 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8431 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8432 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8433 && TREE_CODE (treeop1
) == SSA_NAME
8434 && TYPE_MODE (TREE_TYPE (treeop0
))
8435 == TYPE_MODE (TREE_TYPE (treeop1
)))
8437 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8440 treeop1
= gimple_assign_rhs1 (def
);
8446 /* No sense saving up arithmetic to be done
8447 if it's all in the wrong mode to form part of an address.
8448 And force_operand won't know whether to sign-extend or
8450 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8451 || mode
!= ptr_mode
)
8453 expand_operands (treeop0
, treeop1
,
8454 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8455 if (op0
== const0_rtx
)
8457 if (op1
== const0_rtx
)
8462 expand_operands (treeop0
, treeop1
,
8463 subtarget
, &op0
, &op1
, modifier
);
8464 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8468 /* For initializers, we are allowed to return a MINUS of two
8469 symbolic constants. Here we handle all cases when both operands
8471 /* Handle difference of two symbolic constants,
8472 for the sake of an initializer. */
8473 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8474 && really_constant_p (treeop0
)
8475 && really_constant_p (treeop1
))
8477 expand_operands (treeop0
, treeop1
,
8478 NULL_RTX
, &op0
, &op1
, modifier
);
8480 /* If the last operand is a CONST_INT, use plus_constant of
8481 the negated constant. Else make the MINUS. */
8482 if (CONST_INT_P (op1
))
8483 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8486 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8489 /* No sense saving up arithmetic to be done
8490 if it's all in the wrong mode to form part of an address.
8491 And force_operand won't know whether to sign-extend or
8493 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8494 || mode
!= ptr_mode
)
8497 expand_operands (treeop0
, treeop1
,
8498 subtarget
, &op0
, &op1
, modifier
);
8500 /* Convert A - const to A + (-const). */
8501 if (CONST_INT_P (op1
))
8503 op1
= negate_rtx (mode
, op1
);
8504 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8509 case WIDEN_MULT_PLUS_EXPR
:
8510 case WIDEN_MULT_MINUS_EXPR
:
8511 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8512 op2
= expand_normal (treeop2
);
8513 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8517 case WIDEN_MULT_EXPR
:
8518 /* If first operand is constant, swap them.
8519 Thus the following special case checks need only
8520 check the second operand. */
8521 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8528 /* First, check if we have a multiplication of one signed and one
8529 unsigned operand. */
8530 if (TREE_CODE (treeop1
) != INTEGER_CST
8531 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8532 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8534 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8535 this_optab
= usmul_widen_optab
;
8536 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8537 != CODE_FOR_nothing
)
8539 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8540 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8543 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8545 /* op0 and op1 might still be constant, despite the above
8546 != INTEGER_CST check. Handle it. */
8547 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8549 op0
= convert_modes (innermode
, mode
, op0
, true);
8550 op1
= convert_modes (innermode
, mode
, op1
, false);
8551 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8552 target
, unsignedp
));
8557 /* Check for a multiplication with matching signedness. */
8558 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8559 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8560 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8561 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8563 tree op0type
= TREE_TYPE (treeop0
);
8564 machine_mode innermode
= TYPE_MODE (op0type
);
8565 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8566 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8567 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8569 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8571 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8572 != CODE_FOR_nothing
)
8574 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8576 /* op0 and op1 might still be constant, despite the above
8577 != INTEGER_CST check. Handle it. */
8578 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8581 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8583 = convert_modes (innermode
, mode
, op1
,
8584 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8585 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8589 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8590 unsignedp
, this_optab
);
8591 return REDUCE_BIT_FIELD (temp
);
8593 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8595 && innermode
== word_mode
)
8598 op0
= expand_normal (treeop0
);
8599 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8600 op1
= convert_modes (innermode
, mode
,
8601 expand_normal (treeop1
),
8602 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8604 op1
= expand_normal (treeop1
);
8605 /* op0 and op1 might still be constant, despite the above
8606 != INTEGER_CST check. Handle it. */
8607 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8608 goto widen_mult_const
;
8609 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8610 unsignedp
, OPTAB_LIB_WIDEN
);
8611 hipart
= gen_highpart (innermode
, temp
);
8612 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8616 emit_move_insn (hipart
, htem
);
8617 return REDUCE_BIT_FIELD (temp
);
8621 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8622 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8623 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8624 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8628 optab opt
= fma_optab
;
8631 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8633 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8635 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8638 gcc_assert (fn
!= NULL_TREE
);
8639 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8640 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8643 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8644 /* The multiplication is commutative - look at its 2nd operand
8645 if the first isn't fed by a negate. */
8648 def0
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8649 /* Swap operands if the 2nd operand is fed by a negate. */
8657 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8662 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8665 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8666 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8669 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8672 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8675 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8678 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8682 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8684 op2
= expand_normal (treeop2
);
8685 op1
= expand_normal (treeop1
);
8687 return expand_ternary_op (TYPE_MODE (type
), opt
,
8688 op0
, op1
, op2
, target
, 0);
8692 /* If this is a fixed-point operation, then we cannot use the code
8693 below because "expand_mult" doesn't support sat/no-sat fixed-point
8695 if (ALL_FIXED_POINT_MODE_P (mode
))
8698 /* If first operand is constant, swap them.
8699 Thus the following special case checks need only
8700 check the second operand. */
8701 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8708 /* Attempt to return something suitable for generating an
8709 indexed address, for machines that support that. */
8711 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8712 && tree_fits_shwi_p (treeop1
))
8714 tree exp1
= treeop1
;
8716 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8720 op0
= force_operand (op0
, NULL_RTX
);
8722 op0
= copy_to_mode_reg (mode
, op0
);
8724 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8725 gen_int_mode (tree_to_shwi (exp1
),
8726 TYPE_MODE (TREE_TYPE (exp1
)))));
8729 if (modifier
== EXPAND_STACK_PARM
)
8732 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8733 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8735 case TRUNC_DIV_EXPR
:
8736 case FLOOR_DIV_EXPR
:
8738 case ROUND_DIV_EXPR
:
8739 case EXACT_DIV_EXPR
:
8740 /* If this is a fixed-point operation, then we cannot use the code
8741 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8743 if (ALL_FIXED_POINT_MODE_P (mode
))
8746 if (modifier
== EXPAND_STACK_PARM
)
8748 /* Possible optimization: compute the dividend with EXPAND_SUM
8749 then if the divisor is constant can optimize the case
8750 where some terms of the dividend have coeffs divisible by it. */
8751 expand_operands (treeop0
, treeop1
,
8752 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8753 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8758 case MULT_HIGHPART_EXPR
:
8759 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8760 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8764 case TRUNC_MOD_EXPR
:
8765 case FLOOR_MOD_EXPR
:
8767 case ROUND_MOD_EXPR
:
8768 if (modifier
== EXPAND_STACK_PARM
)
8770 expand_operands (treeop0
, treeop1
,
8771 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8772 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8774 case FIXED_CONVERT_EXPR
:
8775 op0
= expand_normal (treeop0
);
8776 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8777 target
= gen_reg_rtx (mode
);
8779 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8780 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8781 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8782 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8784 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8787 case FIX_TRUNC_EXPR
:
8788 op0
= expand_normal (treeop0
);
8789 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8790 target
= gen_reg_rtx (mode
);
8791 expand_fix (target
, op0
, unsignedp
);
8795 op0
= expand_normal (treeop0
);
8796 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8797 target
= gen_reg_rtx (mode
);
8798 /* expand_float can't figure out what to do if FROM has VOIDmode.
8799 So give it the correct mode. With -O, cse will optimize this. */
8800 if (GET_MODE (op0
) == VOIDmode
)
8801 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8803 expand_float (target
, op0
,
8804 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8808 op0
= expand_expr (treeop0
, subtarget
,
8809 VOIDmode
, EXPAND_NORMAL
);
8810 if (modifier
== EXPAND_STACK_PARM
)
8812 temp
= expand_unop (mode
,
8813 optab_for_tree_code (NEGATE_EXPR
, type
,
8817 return REDUCE_BIT_FIELD (temp
);
8820 op0
= expand_expr (treeop0
, subtarget
,
8821 VOIDmode
, EXPAND_NORMAL
);
8822 if (modifier
== EXPAND_STACK_PARM
)
8825 /* ABS_EXPR is not valid for complex arguments. */
8826 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8827 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8829 /* Unsigned abs is simply the operand. Testing here means we don't
8830 risk generating incorrect code below. */
8831 if (TYPE_UNSIGNED (type
))
8834 return expand_abs (mode
, op0
, target
, unsignedp
,
8835 safe_from_p (target
, treeop0
, 1));
8839 target
= original_target
;
8841 || modifier
== EXPAND_STACK_PARM
8842 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8843 || GET_MODE (target
) != mode
8845 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8846 target
= gen_reg_rtx (mode
);
8847 expand_operands (treeop0
, treeop1
,
8848 target
, &op0
, &op1
, EXPAND_NORMAL
);
8850 /* First try to do it with a special MIN or MAX instruction.
8851 If that does not win, use a conditional jump to select the proper
8853 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8854 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8859 /* At this point, a MEM target is no longer useful; we will get better
8862 if (! REG_P (target
))
8863 target
= gen_reg_rtx (mode
);
8865 /* If op1 was placed in target, swap op0 and op1. */
8866 if (target
!= op0
&& target
== op1
)
8873 /* We generate better code and avoid problems with op1 mentioning
8874 target by forcing op1 into a pseudo if it isn't a constant. */
8875 if (! CONSTANT_P (op1
))
8876 op1
= force_reg (mode
, op1
);
8879 enum rtx_code comparison_code
;
8882 if (code
== MAX_EXPR
)
8883 comparison_code
= unsignedp
? GEU
: GE
;
8885 comparison_code
= unsignedp
? LEU
: LE
;
8887 /* Canonicalize to comparisons against 0. */
8888 if (op1
== const1_rtx
)
8890 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8891 or (a != 0 ? a : 1) for unsigned.
8892 For MIN we are safe converting (a <= 1 ? a : 1)
8893 into (a <= 0 ? a : 1) */
8894 cmpop1
= const0_rtx
;
8895 if (code
== MAX_EXPR
)
8896 comparison_code
= unsignedp
? NE
: GT
;
8898 if (op1
== constm1_rtx
&& !unsignedp
)
8900 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8901 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8902 cmpop1
= const0_rtx
;
8903 if (code
== MIN_EXPR
)
8904 comparison_code
= LT
;
8906 #ifdef HAVE_conditional_move
8907 /* Use a conditional move if possible. */
8908 if (can_conditionally_move_p (mode
))
8914 /* Try to emit the conditional move. */
8915 insn
= emit_conditional_move (target
, comparison_code
,
8920 /* If we could do the conditional move, emit the sequence,
8924 rtx_insn
*seq
= get_insns ();
8930 /* Otherwise discard the sequence and fall back to code with
8936 emit_move_insn (target
, op0
);
8938 temp
= gen_label_rtx ();
8939 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8940 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8943 emit_move_insn (target
, op1
);
8948 op0
= expand_expr (treeop0
, subtarget
,
8949 VOIDmode
, EXPAND_NORMAL
);
8950 if (modifier
== EXPAND_STACK_PARM
)
8952 /* In case we have to reduce the result to bitfield precision
8953 for unsigned bitfield expand this as XOR with a proper constant
8955 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8957 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
8958 false, GET_MODE_PRECISION (mode
));
8960 temp
= expand_binop (mode
, xor_optab
, op0
,
8961 immed_wide_int_const (mask
, mode
),
8962 target
, 1, OPTAB_LIB_WIDEN
);
8965 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8969 /* ??? Can optimize bitwise operations with one arg constant.
8970 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8971 and (a bitwise1 b) bitwise2 b (etc)
8972 but that is probably not worth while. */
8981 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8982 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8983 == TYPE_PRECISION (type
)));
8988 /* If this is a fixed-point operation, then we cannot use the code
8989 below because "expand_shift" doesn't support sat/no-sat fixed-point
8991 if (ALL_FIXED_POINT_MODE_P (mode
))
8994 if (! safe_from_p (subtarget
, treeop1
, 1))
8996 if (modifier
== EXPAND_STACK_PARM
)
8998 op0
= expand_expr (treeop0
, subtarget
,
8999 VOIDmode
, EXPAND_NORMAL
);
9000 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
9002 if (code
== LSHIFT_EXPR
)
9003 temp
= REDUCE_BIT_FIELD (temp
);
9006 /* Could determine the answer when only additive constants differ. Also,
9007 the addition of one can be handled by changing the condition. */
9014 case UNORDERED_EXPR
:
9022 temp
= do_store_flag (ops
,
9023 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9024 tmode
!= VOIDmode
? tmode
: mode
);
9028 /* Use a compare and a jump for BLKmode comparisons, or for function
9029 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9032 || modifier
== EXPAND_STACK_PARM
9033 || ! safe_from_p (target
, treeop0
, 1)
9034 || ! safe_from_p (target
, treeop1
, 1)
9035 /* Make sure we don't have a hard reg (such as function's return
9036 value) live across basic blocks, if not optimizing. */
9037 || (!optimize
&& REG_P (target
)
9038 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9039 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9041 emit_move_insn (target
, const0_rtx
);
9043 op1
= gen_label_rtx ();
9044 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
9046 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9047 emit_move_insn (target
, constm1_rtx
);
9049 emit_move_insn (target
, const1_rtx
);
9055 /* Get the rtx code of the operands. */
9056 op0
= expand_normal (treeop0
);
9057 op1
= expand_normal (treeop1
);
9060 target
= gen_reg_rtx (TYPE_MODE (type
));
9062 /* If target overlaps with op1, then either we need to force
9063 op1 into a pseudo (if target also overlaps with op0),
9064 or write the complex parts in reverse order. */
9065 switch (GET_CODE (target
))
9068 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9070 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9072 complex_expr_force_op1
:
9073 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9074 emit_move_insn (temp
, op1
);
9078 complex_expr_swap_order
:
9079 /* Move the imaginary (op1) and real (op0) parts to their
9081 write_complex_part (target
, op1
, true);
9082 write_complex_part (target
, op0
, false);
9088 temp
= adjust_address_nv (target
,
9089 GET_MODE_INNER (GET_MODE (target
)), 0);
9090 if (reg_overlap_mentioned_p (temp
, op1
))
9092 machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9093 temp
= adjust_address_nv (target
, imode
,
9094 GET_MODE_SIZE (imode
));
9095 if (reg_overlap_mentioned_p (temp
, op0
))
9096 goto complex_expr_force_op1
;
9097 goto complex_expr_swap_order
;
9101 if (reg_overlap_mentioned_p (target
, op1
))
9103 if (reg_overlap_mentioned_p (target
, op0
))
9104 goto complex_expr_force_op1
;
9105 goto complex_expr_swap_order
;
9110 /* Move the real (op0) and imaginary (op1) parts to their location. */
9111 write_complex_part (target
, op0
, false);
9112 write_complex_part (target
, op1
, true);
9116 case WIDEN_SUM_EXPR
:
9118 tree oprnd0
= treeop0
;
9119 tree oprnd1
= treeop1
;
9121 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9122 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9127 case REDUC_MAX_EXPR
:
9128 case REDUC_MIN_EXPR
:
9129 case REDUC_PLUS_EXPR
:
9131 op0
= expand_normal (treeop0
);
9132 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9133 machine_mode vec_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9135 if (optab_handler (this_optab
, vec_mode
) != CODE_FOR_nothing
)
9137 struct expand_operand ops
[2];
9138 enum insn_code icode
= optab_handler (this_optab
, vec_mode
);
9140 create_output_operand (&ops
[0], target
, mode
);
9141 create_input_operand (&ops
[1], op0
, vec_mode
);
9142 if (maybe_expand_insn (icode
, 2, ops
))
9144 target
= ops
[0].value
;
9145 if (GET_MODE (target
) != mode
)
9146 return gen_lowpart (tmode
, target
);
9150 /* Fall back to optab with vector result, and then extract scalar. */
9151 this_optab
= scalar_reduc_to_vector (this_optab
, type
);
9152 temp
= expand_unop (vec_mode
, this_optab
, op0
, NULL_RTX
, unsignedp
);
9154 /* The tree code produces a scalar result, but (somewhat by convention)
9155 the optab produces a vector with the result in element 0 if
9156 little-endian, or element N-1 if big-endian. So pull the scalar
9157 result out of that element. */
9158 int index
= BYTES_BIG_ENDIAN
? GET_MODE_NUNITS (vec_mode
) - 1 : 0;
9159 int bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode
));
9160 temp
= extract_bit_field (temp
, bitsize
, bitsize
* index
, unsignedp
,
9161 target
, mode
, mode
);
9166 case VEC_UNPACK_HI_EXPR
:
9167 case VEC_UNPACK_LO_EXPR
:
9169 op0
= expand_normal (treeop0
);
9170 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9176 case VEC_UNPACK_FLOAT_HI_EXPR
:
9177 case VEC_UNPACK_FLOAT_LO_EXPR
:
9179 op0
= expand_normal (treeop0
);
9180 /* The signedness is determined from input operand. */
9181 temp
= expand_widen_pattern_expr
9182 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9183 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9189 case VEC_WIDEN_MULT_HI_EXPR
:
9190 case VEC_WIDEN_MULT_LO_EXPR
:
9191 case VEC_WIDEN_MULT_EVEN_EXPR
:
9192 case VEC_WIDEN_MULT_ODD_EXPR
:
9193 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9194 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9195 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9196 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9198 gcc_assert (target
);
9201 case VEC_PACK_TRUNC_EXPR
:
9202 case VEC_PACK_SAT_EXPR
:
9203 case VEC_PACK_FIX_TRUNC_EXPR
:
9204 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9208 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9209 op2
= expand_normal (treeop2
);
9211 /* Careful here: if the target doesn't support integral vector modes,
9212 a constant selection vector could wind up smooshed into a normal
9213 integral constant. */
9214 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9216 tree sel_type
= TREE_TYPE (treeop2
);
9218 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9219 TYPE_VECTOR_SUBPARTS (sel_type
));
9220 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9221 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9222 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9225 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9227 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9233 tree oprnd0
= treeop0
;
9234 tree oprnd1
= treeop1
;
9235 tree oprnd2
= treeop2
;
9238 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9239 op2
= expand_normal (oprnd2
);
9240 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9247 tree oprnd0
= treeop0
;
9248 tree oprnd1
= treeop1
;
9249 tree oprnd2
= treeop2
;
9252 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9253 op2
= expand_normal (oprnd2
);
9254 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9259 case REALIGN_LOAD_EXPR
:
9261 tree oprnd0
= treeop0
;
9262 tree oprnd1
= treeop1
;
9263 tree oprnd2
= treeop2
;
9266 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9267 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9268 op2
= expand_normal (oprnd2
);
9269 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9276 /* A COND_EXPR with its type being VOID_TYPE represents a
9277 conditional jump and is handled in
9278 expand_gimple_cond_expr. */
9279 gcc_assert (!VOID_TYPE_P (type
));
9281 /* Note that COND_EXPRs whose type is a structure or union
9282 are required to be constructed to contain assignments of
9283 a temporary variable, so that we can evaluate them here
9284 for side effect only. If type is void, we must do likewise. */
9286 gcc_assert (!TREE_ADDRESSABLE (type
)
9288 && TREE_TYPE (treeop1
) != void_type_node
9289 && TREE_TYPE (treeop2
) != void_type_node
);
9291 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9295 /* If we are not to produce a result, we have no target. Otherwise,
9296 if a target was specified use it; it will not be used as an
9297 intermediate target unless it is safe. If no target, use a
9300 if (modifier
!= EXPAND_STACK_PARM
9302 && safe_from_p (original_target
, treeop0
, 1)
9303 && GET_MODE (original_target
) == mode
9304 && !MEM_P (original_target
))
9305 temp
= original_target
;
9307 temp
= assign_temp (type
, 0, 1);
9309 do_pending_stack_adjust ();
9311 op0
= gen_label_rtx ();
9312 op1
= gen_label_rtx ();
9313 jumpifnot (treeop0
, op0
, -1);
9314 store_expr (treeop1
, temp
,
9315 modifier
== EXPAND_STACK_PARM
,
9318 emit_jump_insn (gen_jump (op1
));
9321 store_expr (treeop2
, temp
,
9322 modifier
== EXPAND_STACK_PARM
,
9330 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9337 /* Here to do an ordinary binary operator. */
9339 expand_operands (treeop0
, treeop1
,
9340 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9342 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9344 if (modifier
== EXPAND_STACK_PARM
)
9346 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9347 unsignedp
, OPTAB_LIB_WIDEN
);
9349 /* Bitwise operations do not need bitfield reduction as we expect their
9350 operands being properly truncated. */
9351 if (code
== BIT_XOR_EXPR
9352 || code
== BIT_AND_EXPR
9353 || code
== BIT_IOR_EXPR
)
9355 return REDUCE_BIT_FIELD (temp
);
9357 #undef REDUCE_BIT_FIELD
9360 /* Return TRUE if expression STMT is suitable for replacement.
9361 Never consider memory loads as replaceable, because those don't ever lead
9362 into constant expressions. */
9365 stmt_is_replaceable_p (gimple stmt
)
9367 if (ssa_is_replaceable_p (stmt
))
9369 /* Don't move around loads. */
9370 if (!gimple_assign_single_p (stmt
)
9371 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9378 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9379 enum expand_modifier modifier
, rtx
*alt_rtl
,
9380 bool inner_reference_p
)
9382 rtx op0
, op1
, temp
, decl_rtl
;
9386 enum tree_code code
= TREE_CODE (exp
);
9387 rtx subtarget
, original_target
;
9390 bool reduce_bit_field
;
9391 location_t loc
= EXPR_LOCATION (exp
);
9392 struct separate_ops ops
;
9393 tree treeop0
, treeop1
, treeop2
;
9394 tree ssa_name
= NULL_TREE
;
9397 type
= TREE_TYPE (exp
);
9398 mode
= TYPE_MODE (type
);
9399 unsignedp
= TYPE_UNSIGNED (type
);
9401 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9402 if (!VL_EXP_CLASS_P (exp
))
9403 switch (TREE_CODE_LENGTH (code
))
9406 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9407 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9408 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9418 ignore
= (target
== const0_rtx
9419 || ((CONVERT_EXPR_CODE_P (code
)
9420 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9421 && TREE_CODE (type
) == VOID_TYPE
));
9423 /* An operation in what may be a bit-field type needs the
9424 result to be reduced to the precision of the bit-field type,
9425 which is narrower than that of the type's mode. */
9426 reduce_bit_field
= (!ignore
9427 && INTEGRAL_TYPE_P (type
)
9428 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9430 /* If we are going to ignore this result, we need only do something
9431 if there is a side-effect somewhere in the expression. If there
9432 is, short-circuit the most common cases here. Note that we must
9433 not call expand_expr with anything but const0_rtx in case this
9434 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9438 if (! TREE_SIDE_EFFECTS (exp
))
9441 /* Ensure we reference a volatile object even if value is ignored, but
9442 don't do this if all we are doing is taking its address. */
9443 if (TREE_THIS_VOLATILE (exp
)
9444 && TREE_CODE (exp
) != FUNCTION_DECL
9445 && mode
!= VOIDmode
&& mode
!= BLKmode
9446 && modifier
!= EXPAND_CONST_ADDRESS
)
9448 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9454 if (TREE_CODE_CLASS (code
) == tcc_unary
9455 || code
== BIT_FIELD_REF
9456 || code
== COMPONENT_REF
9457 || code
== INDIRECT_REF
)
9458 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9461 else if (TREE_CODE_CLASS (code
) == tcc_binary
9462 || TREE_CODE_CLASS (code
) == tcc_comparison
9463 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9465 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9466 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9473 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9476 /* Use subtarget as the target for operand 0 of a binary operation. */
9477 subtarget
= get_subtarget (target
);
9478 original_target
= target
;
9484 tree function
= decl_function_context (exp
);
9486 temp
= label_rtx (exp
);
9487 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9489 if (function
!= current_function_decl
9491 LABEL_REF_NONLOCAL_P (temp
) = 1;
9493 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9498 /* ??? ivopts calls expander, without any preparation from
9499 out-of-ssa. So fake instructions as if this was an access to the
9500 base variable. This unnecessarily allocates a pseudo, see how we can
9501 reuse it, if partition base vars have it set already. */
9502 if (!currently_expanding_to_rtl
)
9504 tree var
= SSA_NAME_VAR (exp
);
9505 if (var
&& DECL_RTL_SET_P (var
))
9506 return DECL_RTL (var
);
9507 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9508 LAST_VIRTUAL_REGISTER
+ 1);
9511 g
= get_gimple_for_ssa_name (exp
);
9512 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9514 && modifier
== EXPAND_INITIALIZER
9515 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9516 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9517 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9518 g
= SSA_NAME_DEF_STMT (exp
);
9522 ops
.code
= gimple_assign_rhs_code (g
);
9523 switch (get_gimple_rhs_class (ops
.code
))
9525 case GIMPLE_TERNARY_RHS
:
9526 ops
.op2
= gimple_assign_rhs3 (g
);
9528 case GIMPLE_BINARY_RHS
:
9529 ops
.op1
= gimple_assign_rhs2 (g
);
9531 /* Try to expand conditonal compare. */
9532 if (targetm
.gen_ccmp_first
)
9534 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
9535 r
= expand_ccmp_expr (g
);
9540 case GIMPLE_UNARY_RHS
:
9541 ops
.op0
= gimple_assign_rhs1 (g
);
9542 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9543 ops
.location
= gimple_location (g
);
9544 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9546 case GIMPLE_SINGLE_RHS
:
9548 location_t saved_loc
= curr_insn_location ();
9549 set_curr_insn_location (gimple_location (g
));
9550 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9551 tmode
, modifier
, NULL
, inner_reference_p
);
9552 set_curr_insn_location (saved_loc
);
9558 if (REG_P (r
) && !REG_EXPR (r
))
9559 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9564 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9565 exp
= SSA_NAME_VAR (ssa_name
);
9566 goto expand_decl_rtl
;
9570 /* If a static var's type was incomplete when the decl was written,
9571 but the type is complete now, lay out the decl now. */
9572 if (DECL_SIZE (exp
) == 0
9573 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9574 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9575 layout_decl (exp
, 0);
9577 /* ... fall through ... */
9581 decl_rtl
= DECL_RTL (exp
);
9583 gcc_assert (decl_rtl
);
9584 decl_rtl
= copy_rtx (decl_rtl
);
9585 /* Record writes to register variables. */
9586 if (modifier
== EXPAND_WRITE
9588 && HARD_REGISTER_P (decl_rtl
))
9589 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9590 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9592 /* Ensure variable marked as used even if it doesn't go through
9593 a parser. If it hasn't be used yet, write out an external
9595 TREE_USED (exp
) = 1;
9597 /* Show we haven't gotten RTL for this yet. */
9600 /* Variables inherited from containing functions should have
9601 been lowered by this point. */
9602 context
= decl_function_context (exp
);
9603 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9604 || context
== current_function_decl
9605 || TREE_STATIC (exp
)
9606 || DECL_EXTERNAL (exp
)
9607 /* ??? C++ creates functions that are not TREE_STATIC. */
9608 || TREE_CODE (exp
) == FUNCTION_DECL
);
9610 /* This is the case of an array whose size is to be determined
9611 from its initializer, while the initializer is still being parsed.
9612 ??? We aren't parsing while expanding anymore. */
9614 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9615 temp
= validize_mem (decl_rtl
);
9617 /* If DECL_RTL is memory, we are in the normal case and the
9618 address is not valid, get the address into a register. */
9620 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9623 *alt_rtl
= decl_rtl
;
9624 decl_rtl
= use_anchored_address (decl_rtl
);
9625 if (modifier
!= EXPAND_CONST_ADDRESS
9626 && modifier
!= EXPAND_SUM
9627 && !memory_address_addr_space_p (DECL_MODE (exp
),
9629 MEM_ADDR_SPACE (decl_rtl
)))
9630 temp
= replace_equiv_address (decl_rtl
,
9631 copy_rtx (XEXP (decl_rtl
, 0)));
9634 /* If we got something, return it. But first, set the alignment
9635 if the address is a register. */
9638 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9639 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9644 /* If the mode of DECL_RTL does not match that of the decl,
9645 there are two cases: we are dealing with a BLKmode value
9646 that is returned in a register, or we are dealing with
9647 a promoted value. In the latter case, return a SUBREG
9648 of the wanted mode, but mark it so that we know that it
9649 was already extended. */
9650 if (REG_P (decl_rtl
)
9651 && DECL_MODE (exp
) != BLKmode
9652 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9656 /* Get the signedness to be used for this variable. Ensure we get
9657 the same mode we got when the variable was declared. */
9658 if (code
== SSA_NAME
9659 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9660 && gimple_code (g
) == GIMPLE_CALL
9661 && !gimple_call_internal_p (g
))
9662 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9663 gimple_call_fntype (g
),
9666 pmode
= promote_decl_mode (exp
, &unsignedp
);
9667 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9669 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9670 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9671 SUBREG_PROMOTED_SET (temp
, unsignedp
);
9678 /* Given that TYPE_PRECISION (type) is not always equal to
9679 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9680 the former to the latter according to the signedness of the
9682 temp
= immed_wide_int_const (wide_int::from
9684 GET_MODE_PRECISION (TYPE_MODE (type
)),
9691 tree tmp
= NULL_TREE
;
9692 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9693 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9694 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9695 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9696 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9697 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9698 return const_vector_from_tree (exp
);
9699 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9701 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9703 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9707 vec
<constructor_elt
, va_gc
> *v
;
9709 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9710 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9711 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9712 tmp
= build_constructor (type
, v
);
9714 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9719 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9722 /* If optimized, generate immediate CONST_DOUBLE
9723 which will be turned into memory by reload if necessary.
9725 We used to force a register so that loop.c could see it. But
9726 this does not allow gen_* patterns to perform optimizations with
9727 the constants. It also produces two insns in cases like "x = 1.0;".
9728 On most machines, floating-point constants are not permitted in
9729 many insns, so we'd end up copying it to a register in any case.
9731 Now, we do the copying in expand_binop, if appropriate. */
9732 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9733 TYPE_MODE (TREE_TYPE (exp
)));
9736 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9737 TYPE_MODE (TREE_TYPE (exp
)));
9740 /* Handle evaluating a complex constant in a CONCAT target. */
9741 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9743 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9746 rtarg
= XEXP (original_target
, 0);
9747 itarg
= XEXP (original_target
, 1);
9749 /* Move the real and imaginary parts separately. */
9750 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9751 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9754 emit_move_insn (rtarg
, op0
);
9756 emit_move_insn (itarg
, op1
);
9758 return original_target
;
9761 /* ... fall through ... */
9764 temp
= expand_expr_constant (exp
, 1, modifier
);
9766 /* temp contains a constant address.
9767 On RISC machines where a constant address isn't valid,
9768 make some insns to get that address into a register. */
9769 if (modifier
!= EXPAND_CONST_ADDRESS
9770 && modifier
!= EXPAND_INITIALIZER
9771 && modifier
!= EXPAND_SUM
9772 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9773 MEM_ADDR_SPACE (temp
)))
9774 return replace_equiv_address (temp
,
9775 copy_rtx (XEXP (temp
, 0)));
9781 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
9784 if (!SAVE_EXPR_RESOLVED_P (exp
))
9786 /* We can indeed still hit this case, typically via builtin
9787 expanders calling save_expr immediately before expanding
9788 something. Assume this means that we only have to deal
9789 with non-BLKmode values. */
9790 gcc_assert (GET_MODE (ret
) != BLKmode
);
9792 val
= build_decl (curr_insn_location (),
9793 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9794 DECL_ARTIFICIAL (val
) = 1;
9795 DECL_IGNORED_P (val
) = 1;
9797 TREE_OPERAND (exp
, 0) = treeop0
;
9798 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9800 if (!CONSTANT_P (ret
))
9801 ret
= copy_to_reg (ret
);
9802 SET_DECL_RTL (val
, ret
);
9810 /* If we don't need the result, just ensure we evaluate any
9814 unsigned HOST_WIDE_INT idx
;
9817 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9818 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9823 return expand_constructor (exp
, target
, modifier
, false);
9825 case TARGET_MEM_REF
:
9828 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9829 enum insn_code icode
;
9832 op0
= addr_for_mem_ref (exp
, as
, true);
9833 op0
= memory_address_addr_space (mode
, op0
, as
);
9834 temp
= gen_rtx_MEM (mode
, op0
);
9835 set_mem_attributes (temp
, exp
, 0);
9836 set_mem_addr_space (temp
, as
);
9837 align
= get_object_alignment (exp
);
9838 if (modifier
!= EXPAND_WRITE
9839 && modifier
!= EXPAND_MEMORY
9841 && align
< GET_MODE_ALIGNMENT (mode
)
9842 /* If the target does not have special handling for unaligned
9843 loads of mode then it can use regular moves for them. */
9844 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9845 != CODE_FOR_nothing
))
9847 struct expand_operand ops
[2];
9849 /* We've already validated the memory, and we're creating a
9850 new pseudo destination. The predicates really can't fail,
9851 nor can the generator. */
9852 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9853 create_fixed_operand (&ops
[1], temp
);
9854 expand_insn (icode
, 2, ops
);
9855 temp
= ops
[0].value
;
9863 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9864 machine_mode address_mode
;
9865 tree base
= TREE_OPERAND (exp
, 0);
9867 enum insn_code icode
;
9869 /* Handle expansion of non-aliased memory with non-BLKmode. That
9870 might end up in a register. */
9871 if (mem_ref_refers_to_non_mem_p (exp
))
9873 HOST_WIDE_INT offset
= mem_ref_offset (exp
).to_short_addr ();
9874 base
= TREE_OPERAND (base
, 0);
9876 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9877 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9878 == tree_to_uhwi (TYPE_SIZE (type
))))
9879 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9880 target
, tmode
, modifier
);
9881 if (TYPE_MODE (type
) == BLKmode
)
9883 temp
= assign_stack_temp (DECL_MODE (base
),
9884 GET_MODE_SIZE (DECL_MODE (base
)));
9885 store_expr (base
, temp
, 0, false);
9886 temp
= adjust_address (temp
, BLKmode
, offset
);
9887 set_mem_size (temp
, int_size_in_bytes (type
));
9890 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9891 bitsize_int (offset
* BITS_PER_UNIT
));
9892 return expand_expr (exp
, target
, tmode
, modifier
);
9894 address_mode
= targetm
.addr_space
.address_mode (as
);
9895 base
= TREE_OPERAND (exp
, 0);
9896 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9898 tree mask
= gimple_assign_rhs2 (def_stmt
);
9899 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9900 gimple_assign_rhs1 (def_stmt
), mask
);
9901 TREE_OPERAND (exp
, 0) = base
;
9903 align
= get_object_alignment (exp
);
9904 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9905 op0
= memory_address_addr_space (mode
, op0
, as
);
9906 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9908 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
9909 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9910 op0
= memory_address_addr_space (mode
, op0
, as
);
9912 temp
= gen_rtx_MEM (mode
, op0
);
9913 set_mem_attributes (temp
, exp
, 0);
9914 set_mem_addr_space (temp
, as
);
9915 if (TREE_THIS_VOLATILE (exp
))
9916 MEM_VOLATILE_P (temp
) = 1;
9917 if (modifier
!= EXPAND_WRITE
9918 && modifier
!= EXPAND_MEMORY
9919 && !inner_reference_p
9921 && align
< GET_MODE_ALIGNMENT (mode
))
9923 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9924 != CODE_FOR_nothing
)
9926 struct expand_operand ops
[2];
9928 /* We've already validated the memory, and we're creating a
9929 new pseudo destination. The predicates really can't fail,
9930 nor can the generator. */
9931 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9932 create_fixed_operand (&ops
[1], temp
);
9933 expand_insn (icode
, 2, ops
);
9934 temp
= ops
[0].value
;
9936 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9937 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9938 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9939 (modifier
== EXPAND_STACK_PARM
9940 ? NULL_RTX
: target
),
9949 tree array
= treeop0
;
9950 tree index
= treeop1
;
9953 /* Fold an expression like: "foo"[2].
9954 This is not done in fold so it won't happen inside &.
9955 Don't fold if this is for wide characters since it's too
9956 difficult to do correctly and this is a very rare case. */
9958 if (modifier
!= EXPAND_CONST_ADDRESS
9959 && modifier
!= EXPAND_INITIALIZER
9960 && modifier
!= EXPAND_MEMORY
)
9962 tree t
= fold_read_from_constant_string (exp
);
9965 return expand_expr (t
, target
, tmode
, modifier
);
9968 /* If this is a constant index into a constant array,
9969 just get the value from the array. Handle both the cases when
9970 we have an explicit constructor and when our operand is a variable
9971 that was declared const. */
9973 if (modifier
!= EXPAND_CONST_ADDRESS
9974 && modifier
!= EXPAND_INITIALIZER
9975 && modifier
!= EXPAND_MEMORY
9976 && TREE_CODE (array
) == CONSTRUCTOR
9977 && ! TREE_SIDE_EFFECTS (array
)
9978 && TREE_CODE (index
) == INTEGER_CST
)
9980 unsigned HOST_WIDE_INT ix
;
9983 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9985 if (tree_int_cst_equal (field
, index
))
9987 if (!TREE_SIDE_EFFECTS (value
))
9988 return expand_expr (fold (value
), target
, tmode
, modifier
);
9993 else if (optimize
>= 1
9994 && modifier
!= EXPAND_CONST_ADDRESS
9995 && modifier
!= EXPAND_INITIALIZER
9996 && modifier
!= EXPAND_MEMORY
9997 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9998 && TREE_CODE (index
) == INTEGER_CST
9999 && (TREE_CODE (array
) == VAR_DECL
10000 || TREE_CODE (array
) == CONST_DECL
)
10001 && (init
= ctor_for_folding (array
)) != error_mark_node
)
10003 if (init
== NULL_TREE
)
10005 tree value
= build_zero_cst (type
);
10006 if (TREE_CODE (value
) == CONSTRUCTOR
)
10008 /* If VALUE is a CONSTRUCTOR, this optimization is only
10009 useful if this doesn't store the CONSTRUCTOR into
10010 memory. If it does, it is more efficient to just
10011 load the data from the array directly. */
10012 rtx ret
= expand_constructor (value
, target
,
10014 if (ret
== NULL_RTX
)
10019 return expand_expr (value
, target
, tmode
, modifier
);
10021 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10023 unsigned HOST_WIDE_INT ix
;
10026 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10028 if (tree_int_cst_equal (field
, index
))
10030 if (TREE_SIDE_EFFECTS (value
))
10033 if (TREE_CODE (value
) == CONSTRUCTOR
)
10035 /* If VALUE is a CONSTRUCTOR, this
10036 optimization is only useful if
10037 this doesn't store the CONSTRUCTOR
10038 into memory. If it does, it is more
10039 efficient to just load the data from
10040 the array directly. */
10041 rtx ret
= expand_constructor (value
, target
,
10043 if (ret
== NULL_RTX
)
10048 expand_expr (fold (value
), target
, tmode
, modifier
);
10051 else if (TREE_CODE (init
) == STRING_CST
)
10053 tree low_bound
= array_ref_low_bound (exp
);
10054 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10056 /* Optimize the special case of a zero lower bound.
10058 We convert the lower bound to sizetype to avoid problems
10059 with constant folding. E.g. suppose the lower bound is
10060 1 and its mode is QI. Without the conversion
10061 (ARRAY + (INDEX - (unsigned char)1))
10063 (ARRAY + (-(unsigned char)1) + INDEX)
10065 (ARRAY + 255 + INDEX). Oops! */
10066 if (!integer_zerop (low_bound
))
10067 index1
= size_diffop_loc (loc
, index1
,
10068 fold_convert_loc (loc
, sizetype
,
10071 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10073 tree type
= TREE_TYPE (TREE_TYPE (init
));
10074 machine_mode mode
= TYPE_MODE (type
);
10076 if (GET_MODE_CLASS (mode
) == MODE_INT
10077 && GET_MODE_SIZE (mode
) == 1)
10078 return gen_int_mode (TREE_STRING_POINTER (init
)
10079 [TREE_INT_CST_LOW (index1
)],
10085 goto normal_inner_ref
;
10087 case COMPONENT_REF
:
10088 /* If the operand is a CONSTRUCTOR, we can just extract the
10089 appropriate field if it is present. */
10090 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10092 unsigned HOST_WIDE_INT idx
;
10095 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10097 if (field
== treeop1
10098 /* We can normally use the value of the field in the
10099 CONSTRUCTOR. However, if this is a bitfield in
10100 an integral mode that we can fit in a HOST_WIDE_INT,
10101 we must mask only the number of bits in the bitfield,
10102 since this is done implicitly by the constructor. If
10103 the bitfield does not meet either of those conditions,
10104 we can't do this optimization. */
10105 && (! DECL_BIT_FIELD (field
)
10106 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
10107 && (GET_MODE_PRECISION (DECL_MODE (field
))
10108 <= HOST_BITS_PER_WIDE_INT
))))
10110 if (DECL_BIT_FIELD (field
)
10111 && modifier
== EXPAND_STACK_PARM
)
10113 op0
= expand_expr (value
, target
, tmode
, modifier
);
10114 if (DECL_BIT_FIELD (field
))
10116 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10117 machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
10119 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10121 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
10123 op0
= expand_and (imode
, op0
, op1
, target
);
10127 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10129 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10131 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10139 goto normal_inner_ref
;
10141 case BIT_FIELD_REF
:
10142 case ARRAY_RANGE_REF
:
10145 machine_mode mode1
, mode2
;
10146 HOST_WIDE_INT bitsize
, bitpos
;
10148 int volatilep
= 0, must_force_mem
;
10149 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
10150 &mode1
, &unsignedp
, &volatilep
, true);
10151 rtx orig_op0
, memloc
;
10152 bool clear_mem_expr
= false;
10154 /* If we got back the original object, something is wrong. Perhaps
10155 we are evaluating an expression too early. In any event, don't
10156 infinitely recurse. */
10157 gcc_assert (tem
!= exp
);
10159 /* If TEM's type is a union of variable size, pass TARGET to the inner
10160 computation, since it will need a temporary and TARGET is known
10161 to have to do. This occurs in unchecked conversion in Ada. */
10163 = expand_expr_real (tem
,
10164 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10165 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10166 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10168 && modifier
!= EXPAND_STACK_PARM
10169 ? target
: NULL_RTX
),
10171 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10174 /* If the field has a mode, we want to access it in the
10175 field's mode, not the computed mode.
10176 If a MEM has VOIDmode (external with incomplete type),
10177 use BLKmode for it instead. */
10180 if (mode1
!= VOIDmode
)
10181 op0
= adjust_address (op0
, mode1
, 0);
10182 else if (GET_MODE (op0
) == VOIDmode
)
10183 op0
= adjust_address (op0
, BLKmode
, 0);
10187 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10189 /* If we have either an offset, a BLKmode result, or a reference
10190 outside the underlying object, we must force it to memory.
10191 Such a case can occur in Ada if we have unchecked conversion
10192 of an expression from a scalar type to an aggregate type or
10193 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10194 passed a partially uninitialized object or a view-conversion
10195 to a larger size. */
10196 must_force_mem
= (offset
10197 || mode1
== BLKmode
10198 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
10200 /* Handle CONCAT first. */
10201 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10204 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10207 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10210 op0
= XEXP (op0
, 0);
10211 mode2
= GET_MODE (op0
);
10213 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10214 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10218 op0
= XEXP (op0
, 1);
10220 mode2
= GET_MODE (op0
);
10223 /* Otherwise force into memory. */
10224 must_force_mem
= 1;
10227 /* If this is a constant, put it in a register if it is a legitimate
10228 constant and we don't need a memory reference. */
10229 if (CONSTANT_P (op0
)
10230 && mode2
!= BLKmode
10231 && targetm
.legitimate_constant_p (mode2
, op0
)
10232 && !must_force_mem
)
10233 op0
= force_reg (mode2
, op0
);
10235 /* Otherwise, if this is a constant, try to force it to the constant
10236 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10237 is a legitimate constant. */
10238 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10239 op0
= validize_mem (memloc
);
10241 /* Otherwise, if this is a constant or the object is not in memory
10242 and need be, put it there. */
10243 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10245 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10246 emit_move_insn (memloc
, op0
);
10248 clear_mem_expr
= true;
10253 machine_mode address_mode
;
10254 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10257 gcc_assert (MEM_P (op0
));
10259 address_mode
= get_address_mode (op0
);
10260 if (GET_MODE (offset_rtx
) != address_mode
)
10261 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10263 /* See the comment in expand_assignment for the rationale. */
10264 if (mode1
!= VOIDmode
10267 && (bitpos
% bitsize
) == 0
10268 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10269 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10271 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10275 op0
= offset_address (op0
, offset_rtx
,
10276 highest_pow2_factor (offset
));
10279 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10280 record its alignment as BIGGEST_ALIGNMENT. */
10281 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10282 && is_aligning_offset (offset
, tem
))
10283 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10285 /* Don't forget about volatility even if this is a bitfield. */
10286 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10288 if (op0
== orig_op0
)
10289 op0
= copy_rtx (op0
);
10291 MEM_VOLATILE_P (op0
) = 1;
10294 /* In cases where an aligned union has an unaligned object
10295 as a field, we might be extracting a BLKmode value from
10296 an integer-mode (e.g., SImode) object. Handle this case
10297 by doing the extract into an object as wide as the field
10298 (which we know to be the width of a basic mode), then
10299 storing into memory, and changing the mode to BLKmode. */
10300 if (mode1
== VOIDmode
10301 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10302 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10303 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10304 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10305 && modifier
!= EXPAND_CONST_ADDRESS
10306 && modifier
!= EXPAND_INITIALIZER
10307 && modifier
!= EXPAND_MEMORY
)
10308 /* If the bitfield is volatile and the bitsize
10309 is narrower than the access size of the bitfield,
10310 we need to extract bitfields from the access. */
10311 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10312 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10313 && mode1
!= BLKmode
10314 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)
10315 /* If the field isn't aligned enough to fetch as a memref,
10316 fetch it as a bit field. */
10317 || (mode1
!= BLKmode
10318 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10319 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10321 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10322 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10323 && modifier
!= EXPAND_MEMORY
10324 && ((modifier
== EXPAND_CONST_ADDRESS
10325 || modifier
== EXPAND_INITIALIZER
)
10327 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10328 || (bitpos
% BITS_PER_UNIT
!= 0)))
10329 /* If the type and the field are a constant size and the
10330 size of the type isn't the same size as the bitfield,
10331 we must use bitfield operations. */
10333 && TYPE_SIZE (TREE_TYPE (exp
))
10334 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10335 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10338 machine_mode ext_mode
= mode
;
10340 if (ext_mode
== BLKmode
10341 && ! (target
!= 0 && MEM_P (op0
)
10343 && bitpos
% BITS_PER_UNIT
== 0))
10344 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10346 if (ext_mode
== BLKmode
)
10349 target
= assign_temp (type
, 1, 1);
10351 /* ??? Unlike the similar test a few lines below, this one is
10352 very likely obsolete. */
10356 /* In this case, BITPOS must start at a byte boundary and
10357 TARGET, if specified, must be a MEM. */
10358 gcc_assert (MEM_P (op0
)
10359 && (!target
|| MEM_P (target
))
10360 && !(bitpos
% BITS_PER_UNIT
));
10362 emit_block_move (target
,
10363 adjust_address (op0
, VOIDmode
,
10364 bitpos
/ BITS_PER_UNIT
),
10365 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10367 (modifier
== EXPAND_STACK_PARM
10368 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10373 /* If we have nothing to extract, the result will be 0 for targets
10374 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10375 return 0 for the sake of consistency, as reading a zero-sized
10376 bitfield is valid in Ada and the value is fully specified. */
10380 op0
= validize_mem (op0
);
10382 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10383 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10385 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10386 (modifier
== EXPAND_STACK_PARM
10387 ? NULL_RTX
: target
),
10388 ext_mode
, ext_mode
);
10390 /* If the result is a record type and BITSIZE is narrower than
10391 the mode of OP0, an integral mode, and this is a big endian
10392 machine, we must put the field into the high-order bits. */
10393 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10394 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10395 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10396 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10397 GET_MODE_BITSIZE (GET_MODE (op0
))
10398 - bitsize
, op0
, 1);
10400 /* If the result type is BLKmode, store the data into a temporary
10401 of the appropriate type, but with the mode corresponding to the
10402 mode for the data we have (op0's mode). */
10403 if (mode
== BLKmode
)
10406 = assign_stack_temp_for_type (ext_mode
,
10407 GET_MODE_BITSIZE (ext_mode
),
10409 emit_move_insn (new_rtx
, op0
);
10410 op0
= copy_rtx (new_rtx
);
10411 PUT_MODE (op0
, BLKmode
);
10417 /* If the result is BLKmode, use that to access the object
10419 if (mode
== BLKmode
)
10422 /* Get a reference to just this component. */
10423 if (modifier
== EXPAND_CONST_ADDRESS
10424 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10425 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10427 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10429 if (op0
== orig_op0
)
10430 op0
= copy_rtx (op0
);
10432 set_mem_attributes (op0
, exp
, 0);
10434 if (REG_P (XEXP (op0
, 0)))
10435 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10437 /* If op0 is a temporary because the original expressions was forced
10438 to memory, clear MEM_EXPR so that the original expression cannot
10439 be marked as addressable through MEM_EXPR of the temporary. */
10440 if (clear_mem_expr
)
10441 set_mem_expr (op0
, NULL_TREE
);
10443 MEM_VOLATILE_P (op0
) |= volatilep
;
10444 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10445 || modifier
== EXPAND_CONST_ADDRESS
10446 || modifier
== EXPAND_INITIALIZER
)
10450 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10452 convert_move (target
, op0
, unsignedp
);
10457 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10460 /* All valid uses of __builtin_va_arg_pack () are removed during
10462 if (CALL_EXPR_VA_ARG_PACK (exp
))
10463 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10465 tree fndecl
= get_callee_fndecl (exp
), attr
;
10468 && (attr
= lookup_attribute ("error",
10469 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10470 error ("%Kcall to %qs declared with attribute error: %s",
10471 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10472 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10474 && (attr
= lookup_attribute ("warning",
10475 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10476 warning_at (tree_nonartificial_location (exp
),
10477 0, "%Kcall to %qs declared with attribute warning: %s",
10478 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10479 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10481 /* Check for a built-in function. */
10482 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10484 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10485 if (CALL_WITH_BOUNDS_P (exp
))
10486 return expand_builtin_with_bounds (exp
, target
, subtarget
,
10489 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10492 return expand_call (exp
, target
, ignore
);
10494 case VIEW_CONVERT_EXPR
:
10497 /* If we are converting to BLKmode, try to avoid an intermediate
10498 temporary by fetching an inner memory reference. */
10499 if (mode
== BLKmode
10500 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10501 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10502 && handled_component_p (treeop0
))
10504 machine_mode mode1
;
10505 HOST_WIDE_INT bitsize
, bitpos
;
10510 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10511 &offset
, &mode1
, &unsignedp
, &volatilep
,
10515 /* ??? We should work harder and deal with non-zero offsets. */
10517 && (bitpos
% BITS_PER_UNIT
) == 0
10519 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10521 /* See the normal_inner_ref case for the rationale. */
10523 = expand_expr_real (tem
,
10524 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10525 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10527 && modifier
!= EXPAND_STACK_PARM
10528 ? target
: NULL_RTX
),
10530 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10533 if (MEM_P (orig_op0
))
10537 /* Get a reference to just this component. */
10538 if (modifier
== EXPAND_CONST_ADDRESS
10539 || modifier
== EXPAND_SUM
10540 || modifier
== EXPAND_INITIALIZER
)
10541 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10543 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10545 if (op0
== orig_op0
)
10546 op0
= copy_rtx (op0
);
10548 set_mem_attributes (op0
, treeop0
, 0);
10549 if (REG_P (XEXP (op0
, 0)))
10550 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10552 MEM_VOLATILE_P (op0
) |= volatilep
;
10558 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
10559 NULL
, inner_reference_p
);
10561 /* If the input and output modes are both the same, we are done. */
10562 if (mode
== GET_MODE (op0
))
10564 /* If neither mode is BLKmode, and both modes are the same size
10565 then we can use gen_lowpart. */
10566 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10567 && (GET_MODE_PRECISION (mode
)
10568 == GET_MODE_PRECISION (GET_MODE (op0
)))
10569 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10571 if (GET_CODE (op0
) == SUBREG
)
10572 op0
= force_reg (GET_MODE (op0
), op0
);
10573 temp
= gen_lowpart_common (mode
, op0
);
10578 if (!REG_P (op0
) && !MEM_P (op0
))
10579 op0
= force_reg (GET_MODE (op0
), op0
);
10580 op0
= gen_lowpart (mode
, op0
);
10583 /* If both types are integral, convert from one mode to the other. */
10584 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10585 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10586 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10587 /* If the output type is a bit-field type, do an extraction. */
10588 else if (reduce_bit_field
)
10589 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
10590 TYPE_UNSIGNED (type
), NULL_RTX
,
10592 /* As a last resort, spill op0 to memory, and reload it in a
10594 else if (!MEM_P (op0
))
10596 /* If the operand is not a MEM, force it into memory. Since we
10597 are going to be changing the mode of the MEM, don't call
10598 force_const_mem for constants because we don't allow pool
10599 constants to change mode. */
10600 tree inner_type
= TREE_TYPE (treeop0
);
10602 gcc_assert (!TREE_ADDRESSABLE (exp
));
10604 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10606 = assign_stack_temp_for_type
10607 (TYPE_MODE (inner_type
),
10608 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10610 emit_move_insn (target
, op0
);
10614 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10615 output type is such that the operand is known to be aligned, indicate
10616 that it is. Otherwise, we need only be concerned about alignment for
10617 non-BLKmode results. */
10620 enum insn_code icode
;
10622 if (TYPE_ALIGN_OK (type
))
10624 /* ??? Copying the MEM without substantially changing it might
10625 run afoul of the code handling volatile memory references in
10626 store_expr, which assumes that TARGET is returned unmodified
10627 if it has been used. */
10628 op0
= copy_rtx (op0
);
10629 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10631 else if (modifier
!= EXPAND_WRITE
10632 && modifier
!= EXPAND_MEMORY
10633 && !inner_reference_p
10635 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10637 /* If the target does have special handling for unaligned
10638 loads of mode then use them. */
10639 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10640 != CODE_FOR_nothing
)
10644 op0
= adjust_address (op0
, mode
, 0);
10645 /* We've already validated the memory, and we're creating a
10646 new pseudo destination. The predicates really can't
10648 reg
= gen_reg_rtx (mode
);
10650 /* Nor can the insn generator. */
10651 insn
= GEN_FCN (icode
) (reg
, op0
);
10655 else if (STRICT_ALIGNMENT
)
10657 tree inner_type
= TREE_TYPE (treeop0
);
10658 HOST_WIDE_INT temp_size
10659 = MAX (int_size_in_bytes (inner_type
),
10660 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10662 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10663 rtx new_with_op0_mode
10664 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10666 gcc_assert (!TREE_ADDRESSABLE (exp
));
10668 if (GET_MODE (op0
) == BLKmode
)
10669 emit_block_move (new_with_op0_mode
, op0
,
10670 GEN_INT (GET_MODE_SIZE (mode
)),
10671 (modifier
== EXPAND_STACK_PARM
10672 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10674 emit_move_insn (new_with_op0_mode
, op0
);
10680 op0
= adjust_address (op0
, mode
, 0);
10687 tree lhs
= treeop0
;
10688 tree rhs
= treeop1
;
10689 gcc_assert (ignore
);
10691 /* Check for |= or &= of a bitfield of size one into another bitfield
10692 of size 1. In this case, (unless we need the result of the
10693 assignment) we can do this more efficiently with a
10694 test followed by an assignment, if necessary.
10696 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10697 things change so we do, this code should be enhanced to
10699 if (TREE_CODE (lhs
) == COMPONENT_REF
10700 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10701 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10702 && TREE_OPERAND (rhs
, 0) == lhs
10703 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10704 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10705 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10707 rtx_code_label
*label
= gen_label_rtx ();
10708 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10709 do_jump (TREE_OPERAND (rhs
, 1),
10711 value
? 0 : label
, -1);
10712 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10714 do_pending_stack_adjust ();
10715 emit_label (label
);
10719 expand_assignment (lhs
, rhs
, false);
10724 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10726 case REALPART_EXPR
:
10727 op0
= expand_normal (treeop0
);
10728 return read_complex_part (op0
, false);
10730 case IMAGPART_EXPR
:
10731 op0
= expand_normal (treeop0
);
10732 return read_complex_part (op0
, true);
10739 /* Expanded in cfgexpand.c. */
10740 gcc_unreachable ();
10742 case TRY_CATCH_EXPR
:
10744 case EH_FILTER_EXPR
:
10745 case TRY_FINALLY_EXPR
:
10746 /* Lowered by tree-eh.c. */
10747 gcc_unreachable ();
10749 case WITH_CLEANUP_EXPR
:
10750 case CLEANUP_POINT_EXPR
:
10752 case CASE_LABEL_EXPR
:
10757 case COMPOUND_EXPR
:
10758 case PREINCREMENT_EXPR
:
10759 case PREDECREMENT_EXPR
:
10760 case POSTINCREMENT_EXPR
:
10761 case POSTDECREMENT_EXPR
:
10764 case COMPOUND_LITERAL_EXPR
:
10765 /* Lowered by gimplify.c. */
10766 gcc_unreachable ();
10769 /* Function descriptors are not valid except for as
10770 initialization constants, and should not be expanded. */
10771 gcc_unreachable ();
10773 case WITH_SIZE_EXPR
:
10774 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10775 have pulled out the size to use in whatever context it needed. */
10776 return expand_expr_real (treeop0
, original_target
, tmode
,
10777 modifier
, alt_rtl
, inner_reference_p
);
10780 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10784 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10785 signedness of TYPE), possibly returning the result in TARGET. */
10787 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10789 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10790 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10792 /* For constant values, reduce using build_int_cst_type. */
10793 if (CONST_INT_P (exp
))
10795 HOST_WIDE_INT value
= INTVAL (exp
);
10796 tree t
= build_int_cst_type (type
, value
);
10797 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10799 else if (TYPE_UNSIGNED (type
))
10801 machine_mode mode
= GET_MODE (exp
);
10802 rtx mask
= immed_wide_int_const
10803 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
10804 return expand_and (mode
, exp
, mask
, target
);
10808 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10809 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10810 exp
, count
, target
, 0);
10811 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10812 exp
, count
, target
, 0);
10816 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10817 when applied to the address of EXP produces an address known to be
10818 aligned more than BIGGEST_ALIGNMENT. */
10821 is_aligning_offset (const_tree offset
, const_tree exp
)
10823 /* Strip off any conversions. */
10824 while (CONVERT_EXPR_P (offset
))
10825 offset
= TREE_OPERAND (offset
, 0);
10827 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10828 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10829 if (TREE_CODE (offset
) != BIT_AND_EXPR
10830 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10831 || compare_tree_int (TREE_OPERAND (offset
, 1),
10832 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10833 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10836 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10837 It must be NEGATE_EXPR. Then strip any more conversions. */
10838 offset
= TREE_OPERAND (offset
, 0);
10839 while (CONVERT_EXPR_P (offset
))
10840 offset
= TREE_OPERAND (offset
, 0);
10842 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10845 offset
= TREE_OPERAND (offset
, 0);
10846 while (CONVERT_EXPR_P (offset
))
10847 offset
= TREE_OPERAND (offset
, 0);
10849 /* This must now be the address of EXP. */
10850 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10853 /* Return the tree node if an ARG corresponds to a string constant or zero
10854 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10855 in bytes within the string that ARG is accessing. The type of the
10856 offset will be `sizetype'. */
10859 string_constant (tree arg
, tree
*ptr_offset
)
10861 tree array
, offset
, lower_bound
;
10864 if (TREE_CODE (arg
) == ADDR_EXPR
)
10866 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10868 *ptr_offset
= size_zero_node
;
10869 return TREE_OPERAND (arg
, 0);
10871 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10873 array
= TREE_OPERAND (arg
, 0);
10874 offset
= size_zero_node
;
10876 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10878 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10879 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10880 if (TREE_CODE (array
) != STRING_CST
10881 && TREE_CODE (array
) != VAR_DECL
)
10884 /* Check if the array has a nonzero lower bound. */
10885 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10886 if (!integer_zerop (lower_bound
))
10888 /* If the offset and base aren't both constants, return 0. */
10889 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10891 if (TREE_CODE (offset
) != INTEGER_CST
)
10893 /* Adjust offset by the lower bound. */
10894 offset
= size_diffop (fold_convert (sizetype
, offset
),
10895 fold_convert (sizetype
, lower_bound
));
10898 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10900 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10901 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10902 if (TREE_CODE (array
) != ADDR_EXPR
)
10904 array
= TREE_OPERAND (array
, 0);
10905 if (TREE_CODE (array
) != STRING_CST
10906 && TREE_CODE (array
) != VAR_DECL
)
10912 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10914 tree arg0
= TREE_OPERAND (arg
, 0);
10915 tree arg1
= TREE_OPERAND (arg
, 1);
10920 if (TREE_CODE (arg0
) == ADDR_EXPR
10921 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10922 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10924 array
= TREE_OPERAND (arg0
, 0);
10927 else if (TREE_CODE (arg1
) == ADDR_EXPR
10928 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10929 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10931 array
= TREE_OPERAND (arg1
, 0);
10940 if (TREE_CODE (array
) == STRING_CST
)
10942 *ptr_offset
= fold_convert (sizetype
, offset
);
10945 else if (TREE_CODE (array
) == VAR_DECL
10946 || TREE_CODE (array
) == CONST_DECL
)
10949 tree init
= ctor_for_folding (array
);
10951 /* Variables initialized to string literals can be handled too. */
10952 if (init
== error_mark_node
10954 || TREE_CODE (init
) != STRING_CST
)
10957 /* Avoid const char foo[4] = "abcde"; */
10958 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10959 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10960 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10961 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10964 /* If variable is bigger than the string literal, OFFSET must be constant
10965 and inside of the bounds of the string literal. */
10966 offset
= fold_convert (sizetype
, offset
);
10967 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10968 && (! tree_fits_uhwi_p (offset
)
10969 || compare_tree_int (offset
, length
) >= 0))
10972 *ptr_offset
= offset
;
10979 /* Generate code to calculate OPS, and exploded expression
10980 using a store-flag instruction and return an rtx for the result.
10981 OPS reflects a comparison.
10983 If TARGET is nonzero, store the result there if convenient.
10985 Return zero if there is no suitable set-flag instruction
10986 available on this machine.
10988 Once expand_expr has been called on the arguments of the comparison,
10989 we are committed to doing the store flag, since it is not safe to
10990 re-evaluate the expression. We emit the store-flag insn by calling
10991 emit_store_flag, but only expand the arguments if we have a reason
10992 to believe that emit_store_flag will be successful. If we think that
10993 it will, but it isn't, we have to simulate the store-flag with a
10994 set/jump/set sequence. */
10997 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
10999 enum rtx_code code
;
11000 tree arg0
, arg1
, type
;
11002 machine_mode operand_mode
;
11005 rtx subtarget
= target
;
11006 location_t loc
= ops
->location
;
11011 /* Don't crash if the comparison was erroneous. */
11012 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
11015 type
= TREE_TYPE (arg0
);
11016 operand_mode
= TYPE_MODE (type
);
11017 unsignedp
= TYPE_UNSIGNED (type
);
11019 /* We won't bother with BLKmode store-flag operations because it would mean
11020 passing a lot of information to emit_store_flag. */
11021 if (operand_mode
== BLKmode
)
11024 /* We won't bother with store-flag operations involving function pointers
11025 when function pointers must be canonicalized before comparisons. */
11026 #ifdef HAVE_canonicalize_funcptr_for_compare
11027 if (HAVE_canonicalize_funcptr_for_compare
11028 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
11029 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
11031 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
11032 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
11033 == FUNCTION_TYPE
))))
11040 /* For vector typed comparisons emit code to generate the desired
11041 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11042 expander for this. */
11043 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
11045 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
11046 tree if_true
= constant_boolean_node (true, ops
->type
);
11047 tree if_false
= constant_boolean_node (false, ops
->type
);
11048 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
11051 /* Get the rtx comparison code to use. We know that EXP is a comparison
11052 operation of some type. Some comparisons against 1 and -1 can be
11053 converted to comparisons with zero. Do so here so that the tests
11054 below will be aware that we have a comparison with zero. These
11055 tests will not catch constants in the first operand, but constants
11056 are rarely passed as the first operand. */
11067 if (integer_onep (arg1
))
11068 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
11070 code
= unsignedp
? LTU
: LT
;
11073 if (! unsignedp
&& integer_all_onesp (arg1
))
11074 arg1
= integer_zero_node
, code
= LT
;
11076 code
= unsignedp
? LEU
: LE
;
11079 if (! unsignedp
&& integer_all_onesp (arg1
))
11080 arg1
= integer_zero_node
, code
= GE
;
11082 code
= unsignedp
? GTU
: GT
;
11085 if (integer_onep (arg1
))
11086 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
11088 code
= unsignedp
? GEU
: GE
;
11091 case UNORDERED_EXPR
:
11117 gcc_unreachable ();
11120 /* Put a constant second. */
11121 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
11122 || TREE_CODE (arg0
) == FIXED_CST
)
11124 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
11125 code
= swap_condition (code
);
11128 /* If this is an equality or inequality test of a single bit, we can
11129 do this by shifting the bit being tested to the low-order bit and
11130 masking the result with the constant 1. If the condition was EQ,
11131 we xor it with 1. This does not require an scc insn and is faster
11132 than an scc insn even if we have it.
11134 The code to make this transformation was moved into fold_single_bit_test,
11135 so we just call into the folder and expand its result. */
11137 if ((code
== NE
|| code
== EQ
)
11138 && integer_zerop (arg1
)
11139 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
11141 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
11143 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
11145 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
11146 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
11147 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
11148 gimple_assign_rhs1 (srcstmt
),
11149 gimple_assign_rhs2 (srcstmt
));
11150 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11152 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11156 if (! get_subtarget (target
)
11157 || GET_MODE (subtarget
) != operand_mode
)
11160 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11163 target
= gen_reg_rtx (mode
);
11165 /* Try a cstore if possible. */
11166 return emit_store_flag_force (target
, code
, op0
, op1
,
11167 operand_mode
, unsignedp
,
11168 (TYPE_PRECISION (ops
->type
) == 1
11169 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11173 /* Stubs in case we haven't got a casesi insn. */
11174 #ifndef HAVE_casesi
11175 # define HAVE_casesi 0
11176 # define gen_casesi(a, b, c, d, e) (0)
11177 # define CODE_FOR_casesi CODE_FOR_nothing
11180 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11181 0 otherwise (i.e. if there is no casesi instruction).
11183 DEFAULT_PROBABILITY is the probability of jumping to the default
11186 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11187 rtx table_label
, rtx default_label
, rtx fallback_label
,
11188 int default_probability
)
11190 struct expand_operand ops
[5];
11191 machine_mode index_mode
= SImode
;
11192 rtx op1
, op2
, index
;
11197 /* Convert the index to SImode. */
11198 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
11200 machine_mode omode
= TYPE_MODE (index_type
);
11201 rtx rangertx
= expand_normal (range
);
11203 /* We must handle the endpoints in the original mode. */
11204 index_expr
= build2 (MINUS_EXPR
, index_type
,
11205 index_expr
, minval
);
11206 minval
= integer_zero_node
;
11207 index
= expand_normal (index_expr
);
11209 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11210 omode
, 1, default_label
,
11211 default_probability
);
11212 /* Now we can safely truncate. */
11213 index
= convert_to_mode (index_mode
, index
, 0);
11217 if (TYPE_MODE (index_type
) != index_mode
)
11219 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11220 index_expr
= fold_convert (index_type
, index_expr
);
11223 index
= expand_normal (index_expr
);
11226 do_pending_stack_adjust ();
11228 op1
= expand_normal (minval
);
11229 op2
= expand_normal (range
);
11231 create_input_operand (&ops
[0], index
, index_mode
);
11232 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11233 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11234 create_fixed_operand (&ops
[3], table_label
);
11235 create_fixed_operand (&ops
[4], (default_label
11237 : fallback_label
));
11238 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11242 /* Attempt to generate a tablejump instruction; same concept. */
11243 #ifndef HAVE_tablejump
11244 #define HAVE_tablejump 0
11245 #define gen_tablejump(x, y) (0)
11248 /* Subroutine of the next function.
11250 INDEX is the value being switched on, with the lowest value
11251 in the table already subtracted.
11252 MODE is its expected mode (needed if INDEX is constant).
11253 RANGE is the length of the jump table.
11254 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11256 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11257 index value is out of range.
11258 DEFAULT_PROBABILITY is the probability of jumping to
11259 the default label. */
11262 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
11263 rtx default_label
, int default_probability
)
11267 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11268 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11270 /* Do an unsigned comparison (in the proper mode) between the index
11271 expression and the value which represents the length of the range.
11272 Since we just finished subtracting the lower bound of the range
11273 from the index expression, this comparison allows us to simultaneously
11274 check that the original index expression value is both greater than
11275 or equal to the minimum value of the range and less than or equal to
11276 the maximum value of the range. */
11279 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11280 default_label
, default_probability
);
11283 /* If index is in range, it must fit in Pmode.
11284 Convert to Pmode so we can index with it. */
11286 index
= convert_to_mode (Pmode
, index
, 1);
11288 /* Don't let a MEM slip through, because then INDEX that comes
11289 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11290 and break_out_memory_refs will go to work on it and mess it up. */
11291 #ifdef PIC_CASE_VECTOR_ADDRESS
11292 if (flag_pic
&& !REG_P (index
))
11293 index
= copy_to_mode_reg (Pmode
, index
);
11296 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11297 GET_MODE_SIZE, because this indicates how large insns are. The other
11298 uses should all be Pmode, because they are addresses. This code
11299 could fail if addresses and insns are not the same size. */
11300 index
= simplify_gen_binary (MULT
, Pmode
, index
,
11301 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
11303 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
11304 gen_rtx_LABEL_REF (Pmode
, table_label
));
11306 #ifdef PIC_CASE_VECTOR_ADDRESS
11308 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11311 index
= memory_address (CASE_VECTOR_MODE
, index
);
11312 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11313 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11314 convert_move (temp
, vector
, 0);
11316 emit_jump_insn (gen_tablejump (temp
, table_label
));
11318 /* If we are generating PIC code or if the table is PC-relative, the
11319 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11320 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11325 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11326 rtx table_label
, rtx default_label
, int default_probability
)
11330 if (! HAVE_tablejump
)
11333 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11334 fold_convert (index_type
, index_expr
),
11335 fold_convert (index_type
, minval
));
11336 index
= expand_normal (index_expr
);
11337 do_pending_stack_adjust ();
11339 do_tablejump (index
, TYPE_MODE (index_type
),
11340 convert_modes (TYPE_MODE (index_type
),
11341 TYPE_MODE (TREE_TYPE (range
)),
11342 expand_normal (range
),
11343 TYPE_UNSIGNED (TREE_TYPE (range
))),
11344 table_label
, default_label
, default_probability
);
11348 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11350 const_vector_from_tree (tree exp
)
11356 machine_mode inner
, mode
;
11358 mode
= TYPE_MODE (TREE_TYPE (exp
));
11360 if (initializer_zerop (exp
))
11361 return CONST0_RTX (mode
);
11363 units
= GET_MODE_NUNITS (mode
);
11364 inner
= GET_MODE_INNER (mode
);
11366 v
= rtvec_alloc (units
);
11368 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11370 elt
= VECTOR_CST_ELT (exp
, i
);
11372 if (TREE_CODE (elt
) == REAL_CST
)
11373 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11375 else if (TREE_CODE (elt
) == FIXED_CST
)
11376 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11379 RTVEC_ELT (v
, i
) = immed_wide_int_const (elt
, inner
);
11382 return gen_rtx_CONST_VECTOR (mode
, v
);
11385 /* Build a decl for a personality function given a language prefix. */
11388 build_personality_function (const char *lang
)
11390 const char *unwind_and_version
;
11394 switch (targetm_common
.except_unwind_info (&global_options
))
11399 unwind_and_version
= "_sj0";
11403 unwind_and_version
= "_v0";
11406 unwind_and_version
= "_seh0";
11409 gcc_unreachable ();
11412 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11414 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11415 long_long_unsigned_type_node
,
11416 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11417 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11418 get_identifier (name
), type
);
11419 DECL_ARTIFICIAL (decl
) = 1;
11420 DECL_EXTERNAL (decl
) = 1;
11421 TREE_PUBLIC (decl
) = 1;
11423 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11424 are the flags assigned by targetm.encode_section_info. */
11425 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11430 /* Extracts the personality function of DECL and returns the corresponding
11434 get_personality_function (tree decl
)
11436 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11437 enum eh_personality_kind pk
;
11439 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11440 if (pk
== eh_personality_none
)
11444 && pk
== eh_personality_any
)
11445 personality
= lang_hooks
.eh_personality ();
11447 if (pk
== eh_personality_lang
)
11448 gcc_assert (personality
!= NULL_TREE
);
11450 return XEXP (DECL_RTL (personality
), 0);
11453 /* Returns a tree for the size of EXP in bytes. */
11456 tree_expr_size (const_tree exp
)
11459 && DECL_SIZE_UNIT (exp
) != 0)
11460 return DECL_SIZE_UNIT (exp
);
11462 return size_in_bytes (TREE_TYPE (exp
));
11465 /* Return an rtx for the size in bytes of the value of EXP. */
11468 expr_size (tree exp
)
11472 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11473 size
= TREE_OPERAND (exp
, 1);
11476 size
= tree_expr_size (exp
);
11478 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
11481 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
11484 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11485 if the size can vary or is larger than an integer. */
11487 static HOST_WIDE_INT
11488 int_expr_size (tree exp
)
11492 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11493 size
= TREE_OPERAND (exp
, 1);
11496 size
= tree_expr_size (exp
);
11500 if (size
== 0 || !tree_fits_shwi_p (size
))
11503 return tree_to_shwi (size
);
11506 #include "gt-expr.h"