2010-02-22 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / sel-sched-ir.h
blob20f0bba53746e09e95a46cf73ded1a78a1102409
1 /* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
3 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_SEL_SCHED_IR_H
22 #define GCC_SEL_SCHED_IR_H
24 /* For state_t. */
25 #include "insn-attr.h"
26 /* For regset_head. */
27 #include "basic-block.h"
28 /* For reg_note. */
29 #include "rtl.h"
30 #include "ggc.h"
31 #include "bitmap.h"
32 #include "vecprim.h"
33 #include "sched-int.h"
34 #include "cfgloop.h"
36 /* tc_t is a short for target context. This is a state of the target
37 backend. */
38 typedef void *tc_t;
40 /* List data types used for av sets, fences, paths, and boundaries. */
42 /* Forward declarations for types that are part of some list nodes. */
43 struct _list_node;
45 /* List backend. */
46 typedef struct _list_node *_list_t;
47 #define _LIST_NEXT(L) ((L)->next)
49 /* Instruction data that is part of vinsn type. */
50 struct idata_def;
51 typedef struct idata_def *idata_t;
53 /* A virtual instruction, i.e. an instruction as seen by the scheduler. */
54 struct vinsn_def;
55 typedef struct vinsn_def *vinsn_t;
57 /* RTX list.
58 This type is the backend for ilist. */
59 typedef _list_t _xlist_t;
60 #define _XLIST_X(L) ((L)->u.x)
61 #define _XLIST_NEXT(L) (_LIST_NEXT (L))
63 /* Instruction. */
64 typedef rtx insn_t;
66 /* List of insns. */
67 typedef _xlist_t ilist_t;
68 #define ILIST_INSN(L) (_XLIST_X (L))
69 #define ILIST_NEXT(L) (_XLIST_NEXT (L))
71 /* This lists possible transformations that done locally, i.e. in
72 moveup_expr. */
73 enum local_trans_type
75 TRANS_SUBSTITUTION,
76 TRANS_SPECULATION
79 /* This struct is used to record the history of expression's
80 transformations. */
81 struct expr_history_def_1
83 /* UID of the insn. */
84 unsigned uid;
86 /* How the expression looked like. */
87 vinsn_t old_expr_vinsn;
89 /* How the expression looks after the transformation. */
90 vinsn_t new_expr_vinsn;
92 /* And its speculative status. */
93 ds_t spec_ds;
95 /* Type of the transformation. */
96 enum local_trans_type type;
99 typedef struct expr_history_def_1 expr_history_def;
101 DEF_VEC_O (expr_history_def);
102 DEF_VEC_ALLOC_O (expr_history_def, heap);
104 /* Expression information. */
105 struct _expr
107 /* Insn description. */
108 vinsn_t vinsn;
110 /* SPEC is the degree of speculativeness.
111 FIXME: now spec is increased when an rhs is moved through a
112 conditional, thus showing only control speculativeness. In the
113 future we'd like to count data spec separately to allow a better
114 control on scheduling. */
115 int spec;
117 /* Degree of speculativeness measured as probability of executing
118 instruction's original basic block given relative to
119 the current scheduling point. */
120 int usefulness;
122 /* A priority of this expression. */
123 int priority;
125 /* A priority adjustment of this expression. */
126 int priority_adj;
128 /* Number of times the insn was scheduled. */
129 int sched_times;
131 /* A basic block index this was originated from. Zero when there is
132 more than one originator. */
133 int orig_bb_index;
135 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
136 point. */
137 ds_t spec_done_ds;
139 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
140 (used only during move_op ()). */
141 ds_t spec_to_check_ds;
143 /* Cycle on which original insn was scheduled. Zero when it has not yet
144 been scheduled or more than one originator. */
145 int orig_sched_cycle;
147 /* This vector contains the history of insn's transformations. */
148 VEC(expr_history_def, heap) *history_of_changes;
150 /* True (1) when original target (register or memory) of this instruction
151 is available for scheduling, false otherwise. -1 means we're not sure;
152 please run find_used_regs to clarify. */
153 signed char target_available;
155 /* True when this expression needs a speculation check to be scheduled.
156 This is used during find_used_regs. */
157 BOOL_BITFIELD needs_spec_check_p : 1;
159 /* True when the expression was substituted. Used for statistical
160 purposes. */
161 BOOL_BITFIELD was_substituted : 1;
163 /* True when the expression was renamed. */
164 BOOL_BITFIELD was_renamed : 1;
166 /* True when expression can't be moved. */
167 BOOL_BITFIELD cant_move : 1;
170 typedef struct _expr expr_def;
171 typedef expr_def *expr_t;
173 #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
174 #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
175 #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
176 #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
177 #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
178 #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
179 #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
181 #define EXPR_SPEC(EXPR) ((EXPR)->spec)
182 #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
183 #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
184 #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
185 #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
186 #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
187 #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
188 #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
189 #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
190 #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
191 #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
192 #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
193 #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
194 #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
195 #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
197 #define EXPR_WAS_CHANGED(EXPR) (VEC_length (expr_history_def, \
198 EXPR_HISTORY_OF_CHANGES (EXPR)) > 0)
200 /* Insn definition for list of original insns in find_used_regs. */
201 struct _def
203 insn_t orig_insn;
205 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
206 rhs from two different places, but only one of the code motion paths
207 crosses a call, we can't use any of the call_used_regs, no matter which
208 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
209 to static params. */
210 bool crosses_call;
212 typedef struct _def *def_t;
215 /* Availability sets are sets of expressions we're scheduling. */
216 typedef _list_t av_set_t;
217 #define _AV_SET_EXPR(L) (&(L)->u.expr)
218 #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
221 /* Boundary of the current fence group. */
222 struct _bnd
224 /* The actual boundary instruction. */
225 insn_t to;
227 /* Its path to the fence. */
228 ilist_t ptr;
230 /* Availability set at the boundary. */
231 av_set_t av;
233 /* This set moved to the fence. */
234 av_set_t av1;
236 /* Deps context at this boundary. As long as we have one boundary per fence,
237 this is just a pointer to the same deps context as in the corresponding
238 fence. */
239 deps_t dc;
241 typedef struct _bnd *bnd_t;
242 #define BND_TO(B) ((B)->to)
244 /* PTR stands not for pointer as you might think, but as a Path To Root of the
245 current instruction group from boundary B. */
246 #define BND_PTR(B) ((B)->ptr)
247 #define BND_AV(B) ((B)->av)
248 #define BND_AV1(B) ((B)->av1)
249 #define BND_DC(B) ((B)->dc)
251 /* List of boundaries. */
252 typedef _list_t blist_t;
253 #define BLIST_BND(L) (&(L)->u.bnd)
254 #define BLIST_NEXT(L) (_LIST_NEXT (L))
257 /* Fence information. A fence represents current scheduling point and also
258 blocks code motion through it when pipelining. */
259 struct _fence
261 /* Insn before which we gather an instruction group.*/
262 insn_t insn;
264 /* Modeled state of the processor pipeline. */
265 state_t state;
267 /* Current cycle that is being scheduled on this fence. */
268 int cycle;
270 /* Number of insns that were scheduled on the current cycle.
271 This information has to be local to a fence. */
272 int cycle_issued_insns;
274 /* At the end of fill_insns () this field holds the list of the instructions
275 that are inner boundaries of the scheduled parallel group. */
276 ilist_t bnds;
278 /* Deps context at this fence. It is used to model dependencies at the
279 fence so that insn ticks can be properly evaluated. */
280 deps_t dc;
282 /* Target context at this fence. Used to save and load any local target
283 scheduling information when changing fences. */
284 tc_t tc;
286 /* A vector of insns that are scheduled but not yet completed. */
287 VEC (rtx,gc) *executing_insns;
289 /* A vector indexed by UIDs that caches the earliest cycle on which
290 an insn can be scheduled on this fence. */
291 int *ready_ticks;
293 /* Its size. */
294 int ready_ticks_size;
296 /* Insn, which has been scheduled last on this fence. */
297 rtx last_scheduled_insn;
299 /* The last value of can_issue_more variable on this fence. */
300 int issue_more;
302 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
303 rtx sched_next;
305 /* True if fill_insns processed this fence. */
306 BOOL_BITFIELD processed_p : 1;
308 /* True if fill_insns actually scheduled something on this fence. */
309 BOOL_BITFIELD scheduled_p : 1;
311 /* True when the next insn scheduled here would start a cycle. */
312 BOOL_BITFIELD starts_cycle_p : 1;
314 /* True when the next insn scheduled here would be scheduled after a stall. */
315 BOOL_BITFIELD after_stall_p : 1;
317 typedef struct _fence *fence_t;
319 #define FENCE_INSN(F) ((F)->insn)
320 #define FENCE_STATE(F) ((F)->state)
321 #define FENCE_BNDS(F) ((F)->bnds)
322 #define FENCE_PROCESSED_P(F) ((F)->processed_p)
323 #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
324 #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
325 #define FENCE_CYCLE(F) ((F)->cycle)
326 #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
327 #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
328 #define FENCE_DC(F) ((F)->dc)
329 #define FENCE_TC(F) ((F)->tc)
330 #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
331 #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
332 #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
333 #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
334 #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
335 #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
337 /* List of fences. */
338 typedef _list_t flist_t;
339 #define FLIST_FENCE(L) (&(L)->u.fence)
340 #define FLIST_NEXT(L) (_LIST_NEXT (L))
342 /* List of fences with pointer to the tail node. */
343 struct flist_tail_def
345 flist_t head;
346 flist_t *tailp;
349 typedef struct flist_tail_def *flist_tail_t;
350 #define FLIST_TAIL_HEAD(L) ((L)->head)
351 #define FLIST_TAIL_TAILP(L) ((L)->tailp)
353 /* List node information. A list node can be any of the types above. */
354 struct _list_node
356 _list_t next;
358 union
360 rtx x;
361 struct _bnd bnd;
362 expr_def expr;
363 struct _fence fence;
364 struct _def def;
365 void *data;
366 } u;
370 /* _list_t functions.
371 All of _*list_* functions are used through accessor macros, thus
372 we can't move them in sel-sched-ir.c. */
373 extern alloc_pool sched_lists_pool;
375 static inline _list_t
376 _list_alloc (void)
378 return (_list_t) pool_alloc (sched_lists_pool);
381 static inline void
382 _list_add (_list_t *lp)
384 _list_t l = _list_alloc ();
386 _LIST_NEXT (l) = *lp;
387 *lp = l;
390 static inline void
391 _list_remove_nofree (_list_t *lp)
393 _list_t n = *lp;
395 *lp = _LIST_NEXT (n);
398 static inline void
399 _list_remove (_list_t *lp)
401 _list_t n = *lp;
403 *lp = _LIST_NEXT (n);
404 pool_free (sched_lists_pool, n);
407 static inline void
408 _list_clear (_list_t *l)
410 while (*l)
411 _list_remove (l);
415 /* List iterator backend. */
416 typedef struct
418 /* The list we're iterating. */
419 _list_t *lp;
421 /* True when this iterator supprts removing. */
422 bool can_remove_p;
424 /* True when we've actually removed something. */
425 bool removed_p;
426 } _list_iterator;
428 static inline void
429 _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
431 ip->lp = lp;
432 ip->can_remove_p = can_remove_p;
433 ip->removed_p = false;
436 static inline void
437 _list_iter_next (_list_iterator *ip)
439 if (!ip->removed_p)
440 ip->lp = &_LIST_NEXT (*ip->lp);
441 else
442 ip->removed_p = false;
445 static inline void
446 _list_iter_remove (_list_iterator *ip)
448 gcc_assert (!ip->removed_p && ip->can_remove_p);
449 _list_remove (ip->lp);
450 ip->removed_p = true;
453 static inline void
454 _list_iter_remove_nofree (_list_iterator *ip)
456 gcc_assert (!ip->removed_p && ip->can_remove_p);
457 _list_remove_nofree (ip->lp);
458 ip->removed_p = true;
461 /* General macros to traverse a list. FOR_EACH_* interfaces are
462 implemented using these. */
463 #define _FOR_EACH(TYPE, ELEM, I, L) \
464 for (_list_iter_start (&(I), &(L), false); \
465 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
466 _list_iter_next (&(I)))
468 #define _FOR_EACH_1(TYPE, ELEM, I, LP) \
469 for (_list_iter_start (&(I), (LP), true); \
470 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
471 _list_iter_next (&(I)))
474 /* _xlist_t functions. */
476 static inline void
477 _xlist_add (_xlist_t *lp, rtx x)
479 _list_add (lp);
480 _XLIST_X (*lp) = x;
483 #define _xlist_remove(LP) (_list_remove (LP))
484 #define _xlist_clear(LP) (_list_clear (LP))
486 static inline bool
487 _xlist_is_in_p (_xlist_t l, rtx x)
489 while (l)
491 if (_XLIST_X (l) == x)
492 return true;
493 l = _XLIST_NEXT (l);
496 return false;
499 /* Used through _FOR_EACH. */
500 static inline bool
501 _list_iter_cond_x (_xlist_t l, rtx *xp)
503 if (l)
505 *xp = _XLIST_X (l);
506 return true;
509 return false;
512 #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
514 typedef _list_iterator _xlist_iterator;
515 #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
516 #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
519 /* ilist_t functions. Instruction lists are simply RTX lists. */
521 #define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
522 #define ilist_remove(LP) (_xlist_remove (LP))
523 #define ilist_clear(LP) (_xlist_clear (LP))
524 #define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
525 #define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
527 typedef _xlist_iterator ilist_iterator;
528 #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
529 #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
532 /* Av set iterators. */
533 typedef _list_iterator av_set_iterator;
534 #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
535 #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
537 static bool
538 _list_iter_cond_expr (av_set_t av, expr_t *exprp)
540 if (av)
542 *exprp = _AV_SET_EXPR (av);
543 return true;
546 return false;
550 /* Def list iterators. */
551 typedef _list_t def_list_t;
552 typedef _list_iterator def_list_iterator;
554 #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
555 #define DEF_LIST_DEF(L) (&(L)->u.def)
557 #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
559 static inline bool
560 _list_iter_cond_def (def_list_t def_list, def_t *def)
562 if (def_list)
564 *def = DEF_LIST_DEF (def_list);
565 return true;
568 return false;
572 /* InstructionData. Contains information about insn pattern. */
573 struct idata_def
575 /* Type of the insn.
576 o CALL_INSN - Call insn
577 o JUMP_INSN - Jump insn
578 o INSN - INSN that cannot be cloned
579 o USE - INSN that can be cloned
580 o SET - INSN that can be cloned and separable into lhs and rhs
581 o PC - simplejump. Insns that simply redirect control flow should not
582 have any dependencies. Sched-deps.c, though, might consider them as
583 producers or consumers of certain registers. To avoid that we handle
584 dependency for simple jumps ourselves. */
585 int type;
587 /* If insn is a SET, this is its left hand side. */
588 rtx lhs;
590 /* If insn is a SET, this is its right hand side. */
591 rtx rhs;
593 /* Registers that are set/used by this insn. This info is now gathered
594 via sched-deps.c. The downside of this is that we also use live info
595 from flow that is accumulated in the basic blocks. These two infos
596 can be slightly inconsistent, hence in the beginning we make a pass
597 through CFG and calculating the conservative solution for the info in
598 basic blocks. When this scheduler will be switched to use dataflow,
599 this can be unified as df gives us both per basic block and per
600 instruction info. Actually, we don't do that pass and just hope
601 for the best. */
602 regset reg_sets;
604 regset reg_clobbers;
606 regset reg_uses;
609 #define IDATA_TYPE(ID) ((ID)->type)
610 #define IDATA_LHS(ID) ((ID)->lhs)
611 #define IDATA_RHS(ID) ((ID)->rhs)
612 #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
613 #define IDATA_REG_USES(ID) ((ID)->reg_uses)
614 #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
616 /* Type to represent all needed info to emit an insn.
617 This is a virtual equivalent of the insn.
618 Every insn in the stream has an associated vinsn. This is used
619 to reduce memory consumption basing on the fact that many insns
620 don't change through the scheduler.
622 vinsn can be either normal or unique.
623 * Normal vinsn is the one, that can be cloned multiple times and typically
624 corresponds to normal instruction.
626 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
627 unusual stuff. Such a vinsn is described by its INSN field, which is a
628 reference to the original instruction. */
629 struct vinsn_def
631 /* Associated insn. */
632 rtx insn_rtx;
634 /* Its description. */
635 struct idata_def id;
637 /* Hash of vinsn. It is computed either from pattern or from rhs using
638 hash_rtx. It is not placed in ID for faster compares. */
639 unsigned hash;
641 /* Hash of the insn_rtx pattern. */
642 unsigned hash_rtx;
644 /* Smart pointer counter. */
645 int count;
647 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
648 int cost;
650 /* Mark insns that may trap so we don't move them through jumps. */
651 bool may_trap_p;
654 #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
655 #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
657 #define VINSN_ID(VI) (&((VI)->id))
658 #define VINSN_HASH(VI) ((VI)->hash)
659 #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
660 #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
661 #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
662 #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
663 #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
664 #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
665 #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
666 #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
667 #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
668 #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
669 #define VINSN_COUNT(VI) ((VI)->count)
670 #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
673 /* An entry of the hashtable describing transformations happened when
674 moving up through an insn. */
675 struct transformed_insns
677 /* Previous vinsn. Used to find the proper element. */
678 vinsn_t vinsn_old;
680 /* A new vinsn. */
681 vinsn_t vinsn_new;
683 /* Speculative status. */
684 ds_t ds;
686 /* Type of transformation happened. */
687 enum local_trans_type type;
689 /* Whether a conflict on the target register happened. */
690 BOOL_BITFIELD was_target_conflict : 1;
692 /* Whether a check was needed. */
693 BOOL_BITFIELD needs_check : 1;
696 /* Indexed by INSN_LUID, the collection of all data associated with
697 a single instruction that is in the stream. */
698 struct _sel_insn_data
700 /* The expression that contains vinsn for this insn and some
701 flow-sensitive data like priority. */
702 expr_def expr;
704 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
705 int ws_level;
707 /* A number that helps in defining a traversing order for a region. */
708 int seqno;
710 /* A liveness data computed above this insn. */
711 regset live;
713 /* An INSN_UID bit is set when deps analysis result is already known. */
714 bitmap analyzed_deps;
716 /* An INSN_UID bit is set when a hard dep was found, not set when
717 no dependence is found. This is meaningful only when the analyzed_deps
718 bitmap has its bit set. */
719 bitmap found_deps;
721 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
722 a parent with this uid. If a parent is a bookkeeping copy, all its
723 originators are transitively included in this set. */
724 bitmap originators;
726 /* A hashtable caching the result of insn transformations through this one. */
727 htab_t transformed_insns;
729 /* A context incapsulating this insn. */
730 struct deps deps_context;
732 /* This field is initialized at the beginning of scheduling and is used
733 to handle sched group instructions. If it is non-null, then it points
734 to the instruction, which should be forced to schedule next. Such
735 instructions are unique. */
736 insn_t sched_next;
738 /* Cycle at which insn was scheduled. It is greater than zero if insn was
739 scheduled. This is used for bundling. */
740 int sched_cycle;
742 /* Cycle at which insn's data will be fully ready. */
743 int ready_cycle;
745 /* Speculations that are being checked by this insn. */
746 ds_t spec_checked_ds;
748 /* Whether the live set valid or not. */
749 BOOL_BITFIELD live_valid_p : 1;
750 /* Insn is an ASM. */
751 BOOL_BITFIELD asm_p : 1;
753 /* True when an insn is scheduled after we've determined that a stall is
754 required.
755 This is used when emulating the Haifa scheduler for bundling. */
756 BOOL_BITFIELD after_stall_p : 1;
759 typedef struct _sel_insn_data sel_insn_data_def;
760 typedef sel_insn_data_def *sel_insn_data_t;
762 DEF_VEC_O (sel_insn_data_def);
763 DEF_VEC_ALLOC_O (sel_insn_data_def, heap);
764 extern VEC (sel_insn_data_def, heap) *s_i_d;
766 /* Accessor macros for s_i_d. */
767 #define SID(INSN) (VEC_index (sel_insn_data_def, s_i_d, INSN_LUID (INSN)))
768 #define SID_BY_UID(UID) (VEC_index (sel_insn_data_def, s_i_d, LUID_BY_UID (UID)))
770 extern sel_insn_data_def insn_sid (insn_t);
772 #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
773 #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
774 #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
775 #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
776 #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
777 #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
778 #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
779 #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
781 #define INSN_EXPR(INSN) (&SID (INSN)->expr)
782 #define INSN_LIVE(INSN) (SID (INSN)->live)
783 #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
784 #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
785 #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
786 #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
787 #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
788 #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
789 #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
790 #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
791 #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
792 #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
793 #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
794 #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
795 #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
796 #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
797 #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
799 /* A global level shows whether an insn is valid or not. */
800 extern int global_level;
802 #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
804 extern av_set_t get_av_set (insn_t);
805 extern int get_av_level (insn_t);
807 #define AV_SET(INSN) (get_av_set (INSN))
808 #define AV_LEVEL(INSN) (get_av_level (INSN))
809 #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
811 /* A list of fences currently in the works. */
812 extern flist_t fences;
814 /* A NOP pattern used as a placeholder for real insns. */
815 extern rtx nop_pattern;
817 /* An insn that 'contained' in EXIT block. */
818 extern rtx exit_insn;
820 /* Provide a separate luid for the insn. */
821 #define INSN_INIT_TODO_LUID (1)
823 /* Initialize s_s_i_d. */
824 #define INSN_INIT_TODO_SSID (2)
826 /* Initialize data for simplejump. */
827 #define INSN_INIT_TODO_SIMPLEJUMP (4)
829 /* Return true if INSN is a local NOP. The nop is local in the sense that
830 it was emitted by the scheduler as a temporary insn and will soon be
831 deleted. These nops are identified by their pattern. */
832 #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
834 /* Return true if INSN is linked into instruction stream.
835 NB: It is impossible for INSN to have one field null and the other not
836 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
837 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
838 #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
840 /* Return true if INSN is in current fence. */
841 #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
843 /* Marks loop as being considered for pipelining. */
844 #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
845 #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
847 /* Saved loop preheader to transfer when scheduling the loop. */
848 #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
849 ? NULL \
850 : ((VEC(basic_block, heap) *) (LOOP)->aux))
851 #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
852 = (BLOCKS != NULL \
853 ? BLOCKS \
854 : (LOOP)->aux))
856 extern bitmap blocks_to_reschedule;
859 /* A variable to track which part of rtx we are scanning in
860 sched-deps.c: sched_analyze_insn (). */
861 enum deps_where_def
863 DEPS_IN_INSN,
864 DEPS_IN_LHS,
865 DEPS_IN_RHS,
866 DEPS_IN_NOWHERE
868 typedef enum deps_where_def deps_where_t;
871 /* Per basic block data for the whole CFG. */
872 typedef struct
874 /* For each bb header this field contains a set of live registers.
875 For all other insns this field has a NULL.
876 We also need to know LV sets for the instructions, that are immediatly
877 after the border of the region. */
878 regset lv_set;
880 /* Status of LV_SET.
881 true - block has usable LV_SET.
882 false - block's LV_SET should be recomputed. */
883 bool lv_set_valid_p;
884 } sel_global_bb_info_def;
886 typedef sel_global_bb_info_def *sel_global_bb_info_t;
888 DEF_VEC_O (sel_global_bb_info_def);
889 DEF_VEC_ALLOC_O (sel_global_bb_info_def, heap);
891 /* Per basic block data. This array is indexed by basic block index. */
892 extern VEC (sel_global_bb_info_def, heap) *sel_global_bb_info;
894 extern void sel_extend_global_bb_info (void);
895 extern void sel_finish_global_bb_info (void);
897 /* Get data for BB. */
898 #define SEL_GLOBAL_BB_INFO(BB) \
899 (VEC_index (sel_global_bb_info_def, sel_global_bb_info, (BB)->index))
901 /* Access macros. */
902 #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
903 #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
905 /* Per basic block data for the region. */
906 typedef struct
908 /* This insn stream is constructed in such a way that it should be
909 traversed by PREV_INSN field - (*not* NEXT_INSN). */
910 rtx note_list;
912 /* Cached availability set at the beginning of a block.
913 See also AV_LEVEL () for conditions when this av_set can be used. */
914 av_set_t av_set;
916 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
917 int av_level;
918 } sel_region_bb_info_def;
920 typedef sel_region_bb_info_def *sel_region_bb_info_t;
922 DEF_VEC_O (sel_region_bb_info_def);
923 DEF_VEC_ALLOC_O (sel_region_bb_info_def, heap);
925 /* Per basic block data. This array is indexed by basic block index. */
926 extern VEC (sel_region_bb_info_def, heap) *sel_region_bb_info;
928 /* Get data for BB. */
929 #define SEL_REGION_BB_INFO(BB) (VEC_index (sel_region_bb_info_def, \
930 sel_region_bb_info, (BB)->index))
932 /* Get BB's note_list.
933 A note_list is a list of various notes that was scattered across BB
934 before scheduling, and will be appended at the beginning of BB after
935 scheduling is finished. */
936 #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
938 #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
939 #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
940 #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
942 /* Used in bb_in_ebb_p. */
943 extern bitmap_head *forced_ebb_heads;
945 /* The loop nest being pipelined. */
946 extern struct loop *current_loop_nest;
948 /* Saves pipelined blocks. Bitmap is indexed by bb->index. */
949 extern sbitmap bbs_pipelined;
951 /* Various flags. */
952 extern bool enable_moveup_set_path_p;
953 extern bool pipelining_p;
954 extern bool bookkeeping_p;
955 extern int max_insns_to_rename;
956 extern bool preheader_removed;
958 /* Software lookahead window size.
959 According to the results in Nakatani and Ebcioglu [1993], window size of 16
960 is enough to extract most ILP in integer code. */
961 #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
963 extern regset sel_all_regs;
966 /* Successor iterator backend. */
967 typedef struct
969 /* True if we're at BB end. */
970 bool bb_end;
972 /* An edge on which we're iterating. */
973 edge e1;
975 /* The previous edge saved after skipping empty blocks. */
976 edge e2;
978 /* Edge iterator used when there are successors in other basic blocks. */
979 edge_iterator ei;
981 /* Successor block we're traversing. */
982 basic_block bb;
984 /* Flags that are passed to the iterator. We return only successors
985 that comply to these flags. */
986 short flags;
988 /* When flags include SUCCS_ALL, this will be set to the exact type
989 of the sucessor we're traversing now. */
990 short current_flags;
992 /* If skip to loop exits, save here information about loop exits. */
993 int current_exit;
994 VEC (edge, heap) *loop_exits;
995 } succ_iterator;
997 /* A structure returning all successor's information. */
998 struct succs_info
1000 /* Flags that these succcessors were computed with. */
1001 short flags;
1003 /* Successors that correspond to the flags. */
1004 insn_vec_t succs_ok;
1006 /* Their probabilities. As of now, we don't need this for other
1007 successors. */
1008 VEC(int,heap) *probs_ok;
1010 /* Other successors. */
1011 insn_vec_t succs_other;
1013 /* Probability of all successors. */
1014 int all_prob;
1016 /* The number of all successors. */
1017 int all_succs_n;
1019 /* The number of good successors. */
1020 int succs_ok_n;
1023 /* Some needed definitions. */
1024 extern basic_block after_recovery;
1026 extern insn_t sel_bb_head (basic_block);
1027 extern insn_t sel_bb_end (basic_block);
1028 extern bool sel_bb_empty_p (basic_block);
1029 extern bool in_current_region_p (basic_block);
1031 /* True when BB is a header of the inner loop. */
1032 static inline bool
1033 inner_loop_header_p (basic_block bb)
1035 struct loop *inner_loop;
1037 if (!current_loop_nest)
1038 return false;
1040 if (bb == EXIT_BLOCK_PTR)
1041 return false;
1043 inner_loop = bb->loop_father;
1044 if (inner_loop == current_loop_nest)
1045 return false;
1047 /* If successor belongs to another loop. */
1048 if (bb == inner_loop->header
1049 && flow_bb_inside_loop_p (current_loop_nest, bb))
1051 /* Could be '=' here because of wrong loop depths. */
1052 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1053 return true;
1056 return false;
1059 /* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1060 static inline VEC (edge, heap) *
1061 get_loop_exit_edges_unique_dests (const struct loop *loop)
1063 VEC (edge, heap) *edges = NULL;
1064 struct loop_exit *exit;
1066 gcc_assert (loop->latch != EXIT_BLOCK_PTR
1067 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1069 for (exit = loop->exits->next; exit->e; exit = exit->next)
1071 int i;
1072 edge e;
1073 bool was_dest = false;
1075 for (i = 0; VEC_iterate (edge, edges, i, e); i++)
1076 if (e->dest == exit->e->dest)
1078 was_dest = true;
1079 break;
1082 if (!was_dest)
1083 VEC_safe_push (edge, heap, edges, exit->e);
1085 return edges;
1088 static bool
1089 sel_bb_empty_or_nop_p (basic_block bb)
1091 insn_t first = sel_bb_head (bb), last;
1093 if (first == NULL_RTX)
1094 return true;
1096 if (!INSN_NOP_P (first))
1097 return false;
1099 if (bb == EXIT_BLOCK_PTR)
1100 return false;
1102 last = sel_bb_end (bb);
1103 if (first != last)
1104 return false;
1106 return true;
1109 /* Collect all loop exits recursively, skipping empty BBs between them.
1110 E.g. if BB is a loop header which has several loop exits,
1111 traverse all of them and if any of them turns out to be another loop header
1112 (after skipping empty BBs), add its loop exits to the resulting vector
1113 as well. */
1114 static inline VEC(edge, heap) *
1115 get_all_loop_exits (basic_block bb)
1117 VEC(edge, heap) *exits = NULL;
1119 /* If bb is empty, and we're skipping to loop exits, then
1120 consider bb as a possible gate to the inner loop now. */
1121 while (sel_bb_empty_or_nop_p (bb)
1122 && in_current_region_p (bb))
1124 bb = single_succ (bb);
1126 /* This empty block could only lead outside the region. */
1127 gcc_assert (! in_current_region_p (bb));
1130 /* And now check whether we should skip over inner loop. */
1131 if (inner_loop_header_p (bb))
1133 struct loop *this_loop;
1134 struct loop *pred_loop = NULL;
1135 int i;
1136 edge e;
1138 for (this_loop = bb->loop_father;
1139 this_loop && this_loop != current_loop_nest;
1140 this_loop = loop_outer (this_loop))
1141 pred_loop = this_loop;
1143 this_loop = pred_loop;
1144 gcc_assert (this_loop != NULL);
1146 exits = get_loop_exit_edges_unique_dests (this_loop);
1148 /* Traverse all loop headers. */
1149 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
1150 if (in_current_region_p (e->dest)
1151 || inner_loop_header_p (e->dest))
1153 VEC(edge, heap) *next_exits = get_all_loop_exits (e->dest);
1155 if (next_exits)
1157 int j;
1158 edge ne;
1160 /* Add all loop exits for the current edge into the
1161 resulting vector. */
1162 for (j = 0; VEC_iterate (edge, next_exits, j, ne); j++)
1163 VEC_safe_push (edge, heap, exits, ne);
1165 /* Remove the original edge. */
1166 VEC_ordered_remove (edge, exits, i);
1168 /* Decrease the loop counter so we won't skip anything. */
1169 i--;
1170 continue;
1175 return exits;
1178 /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1179 Any successor will fall into exactly one category. */
1181 /* Include normal successors. */
1182 #define SUCCS_NORMAL (1)
1184 /* Include back-edge successors. */
1185 #define SUCCS_BACK (2)
1187 /* Include successors that are outside of the current region. */
1188 #define SUCCS_OUT (4)
1190 /* When pipelining of the outer loops is enabled, skip innermost loops
1191 to their exits. */
1192 #define SUCCS_SKIP_TO_LOOP_EXITS (8)
1194 /* Include all successors. */
1195 #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1197 /* We need to return a succ_iterator to avoid 'unitialized' warning
1198 during bootstrap. */
1199 static inline succ_iterator
1200 _succ_iter_start (insn_t *succp, insn_t insn, int flags)
1202 succ_iterator i;
1204 basic_block bb = BLOCK_FOR_INSN (insn);
1206 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1208 i.flags = flags;
1210 /* Avoid 'uninitialized' warning. */
1211 *succp = NULL;
1212 i.e1 = NULL;
1213 i.e2 = NULL;
1214 i.bb = bb;
1215 i.current_flags = 0;
1216 i.current_exit = -1;
1217 i.loop_exits = NULL;
1219 if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
1221 i.bb_end = false;
1223 /* Avoid 'uninitialized' warning. */
1224 i.ei.index = 0;
1225 i.ei.container = NULL;
1227 else
1229 i.ei = ei_start (bb->succs);
1230 i.bb_end = true;
1233 return i;
1236 static inline bool
1237 _succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
1238 bool check (edge, succ_iterator *))
1240 if (!ip->bb_end)
1242 /* When we're in a middle of a basic block, return
1243 the next insn immediately, but only when SUCCS_NORMAL is set. */
1244 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1245 return false;
1247 *succp = NEXT_INSN (insn);
1248 ip->current_flags = SUCCS_NORMAL;
1249 return true;
1251 else
1253 while (1)
1255 edge e_tmp = NULL;
1257 /* First, try loop exits, if we have them. */
1258 if (ip->loop_exits)
1262 VEC_iterate (edge, ip->loop_exits,
1263 ip->current_exit, e_tmp);
1264 ip->current_exit++;
1266 while (e_tmp && !check (e_tmp, ip));
1268 if (!e_tmp)
1269 VEC_free (edge, heap, ip->loop_exits);
1272 /* If we have found a successor, then great. */
1273 if (e_tmp)
1275 ip->e1 = e_tmp;
1276 break;
1279 /* If not, then try the next edge. */
1280 while (ei_cond (ip->ei, &(ip->e1)))
1282 basic_block bb = ip->e1->dest;
1284 /* Consider bb as a possible loop header. */
1285 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1286 && flag_sel_sched_pipelining_outer_loops
1287 && (!in_current_region_p (bb)
1288 || BLOCK_TO_BB (ip->bb->index)
1289 < BLOCK_TO_BB (bb->index)))
1291 /* Get all loop exits recursively. */
1292 ip->loop_exits = get_all_loop_exits (bb);
1294 if (ip->loop_exits)
1296 ip->current_exit = 0;
1297 /* Move the iterator now, because we won't do
1298 succ_iter_next until loop exits will end. */
1299 ei_next (&(ip->ei));
1300 break;
1304 /* bb is not a loop header, check as usual. */
1305 if (check (ip->e1, ip))
1306 break;
1308 ei_next (&(ip->ei));
1311 /* If loop_exits are non null, we have found an inner loop;
1312 do one more iteration to fetch an edge from these exits. */
1313 if (ip->loop_exits)
1314 continue;
1316 /* Otherwise, we've found an edge in a usual way. Break now. */
1317 break;
1320 if (ip->e1)
1322 basic_block bb = ip->e2->dest;
1324 if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
1325 *succp = exit_insn;
1326 else
1328 *succp = sel_bb_head (bb);
1330 gcc_assert (ip->flags != SUCCS_NORMAL
1331 || *succp == NEXT_INSN (bb_note (bb)));
1332 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1335 return true;
1337 else
1338 return false;
1342 static inline void
1343 _succ_iter_next (succ_iterator *ip)
1345 gcc_assert (!ip->e2 || ip->e1);
1347 if (ip->bb_end && ip->e1 && !ip->loop_exits)
1348 ei_next (&(ip->ei));
1351 /* Returns true when E1 is an eligible successor edge, possibly skipping
1352 empty blocks. When E2P is not null, the resulting edge is written there.
1353 FLAGS are used to specify whether back edges and out-of-region edges
1354 should be considered. */
1355 static inline bool
1356 _eligible_successor_edge_p (edge e1, succ_iterator *ip)
1358 edge e2 = e1;
1359 basic_block bb;
1360 int flags = ip->flags;
1361 bool src_outside_rgn = !in_current_region_p (e1->src);
1363 gcc_assert (flags != 0);
1365 if (src_outside_rgn)
1367 /* Any successor of the block that is outside current region is
1368 ineligible, except when we're skipping to loop exits. */
1369 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1371 if (flags & SUCCS_OUT)
1372 return false;
1375 bb = e2->dest;
1377 /* Skip empty blocks, but be careful not to leave the region. */
1378 while (1)
1380 if (!sel_bb_empty_p (bb))
1382 edge ne;
1383 basic_block nbb;
1385 if (!sel_bb_empty_or_nop_p (bb))
1386 break;
1388 ne = EDGE_SUCC (bb, 0);
1389 nbb = ne->dest;
1391 if (!in_current_region_p (nbb)
1392 && !(flags & SUCCS_OUT))
1393 break;
1395 e2 = ne;
1396 bb = nbb;
1397 continue;
1400 if (!in_current_region_p (bb)
1401 && !(flags & SUCCS_OUT))
1402 return false;
1404 if (EDGE_COUNT (bb->succs) == 0)
1405 return false;
1407 e2 = EDGE_SUCC (bb, 0);
1408 bb = e2->dest;
1411 /* Save the second edge for later checks. */
1412 ip->e2 = e2;
1414 if (in_current_region_p (bb))
1416 /* BLOCK_TO_BB sets topological order of the region here.
1417 It is important to use real predecessor here, which is ip->bb,
1418 as we may well have e1->src outside current region,
1419 when skipping to loop exits. */
1420 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1421 < BLOCK_TO_BB (bb->index));
1423 /* This is true for the all cases except the last one. */
1424 ip->current_flags = SUCCS_NORMAL;
1426 /* We are advancing forward in the region, as usual. */
1427 if (succeeds_in_top_order)
1429 /* We are skipping to loop exits here. */
1430 gcc_assert (!src_outside_rgn
1431 || flag_sel_sched_pipelining_outer_loops);
1432 return !!(flags & SUCCS_NORMAL);
1435 /* This is a back edge. During pipelining we ignore back edges,
1436 but only when it leads to the same loop. It can lead to the header
1437 of the outer loop, which will also be the preheader of
1438 the current loop. */
1439 if (pipelining_p
1440 && e1->src->loop_father == bb->loop_father)
1441 return !!(flags & SUCCS_NORMAL);
1443 /* A back edge should be requested explicitly. */
1444 ip->current_flags = SUCCS_BACK;
1445 return !!(flags & SUCCS_BACK);
1448 ip->current_flags = SUCCS_OUT;
1449 return !!(flags & SUCCS_OUT);
1452 #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1453 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1454 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1455 _succ_iter_next (&(ITER)))
1457 #define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1458 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1460 /* Return the current edge along which a successor was built. */
1461 #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1463 /* Return the next block of BB not running into inconsistencies. */
1464 static inline basic_block
1465 bb_next_bb (basic_block bb)
1467 switch (EDGE_COUNT (bb->succs))
1469 case 0:
1470 return bb->next_bb;
1472 case 1:
1473 return single_succ (bb);
1475 case 2:
1476 return FALLTHRU_EDGE (bb)->dest;
1478 default:
1479 return bb->next_bb;
1482 gcc_unreachable ();
1487 /* Functions that are used in sel-sched.c. */
1489 /* List functions. */
1490 extern ilist_t ilist_copy (ilist_t);
1491 extern ilist_t ilist_invert (ilist_t);
1492 extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1493 extern void blist_remove (blist_t *);
1494 extern void flist_tail_init (flist_tail_t);
1496 extern fence_t flist_lookup (flist_t, insn_t);
1497 extern void flist_clear (flist_t *);
1498 extern void def_list_add (def_list_t *, insn_t, bool);
1500 /* Target context functions. */
1501 extern tc_t create_target_context (bool);
1502 extern void set_target_context (tc_t);
1503 extern void reset_target_context (tc_t, bool);
1505 /* Deps context functions. */
1506 extern void advance_deps_context (deps_t, insn_t);
1508 /* Fences functions. */
1509 extern void init_fences (insn_t);
1510 extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1511 extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1512 extern void move_fence_to_fences (flist_t, flist_tail_t);
1514 /* Pool functions. */
1515 extern regset get_regset_from_pool (void);
1516 extern regset get_clear_regset_from_pool (void);
1517 extern void return_regset_to_pool (regset);
1518 extern void free_regset_pool (void);
1520 extern insn_t get_nop_from_pool (insn_t);
1521 extern void return_nop_to_pool (insn_t, bool);
1522 extern void free_nop_pool (void);
1524 /* Vinsns functions. */
1525 extern bool vinsn_separable_p (vinsn_t);
1526 extern bool vinsn_cond_branch_p (vinsn_t);
1527 extern void recompute_vinsn_lhs_rhs (vinsn_t);
1528 extern int sel_vinsn_cost (vinsn_t);
1529 extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1530 extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1531 extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1532 extern insn_t sel_move_insn (expr_t, int, insn_t);
1533 extern void vinsn_attach (vinsn_t);
1534 extern void vinsn_detach (vinsn_t);
1535 extern vinsn_t vinsn_copy (vinsn_t, bool);
1536 extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1538 /* EXPR functions. */
1539 extern void copy_expr (expr_t, expr_t);
1540 extern void copy_expr_onside (expr_t, expr_t);
1541 extern void merge_expr_data (expr_t, expr_t, insn_t);
1542 extern void merge_expr (expr_t, expr_t, insn_t);
1543 extern void clear_expr (expr_t);
1544 extern unsigned expr_dest_regno (expr_t);
1545 extern rtx expr_dest_reg (expr_t);
1546 extern int find_in_history_vect (VEC(expr_history_def, heap) *,
1547 rtx, vinsn_t, bool);
1548 extern void insert_in_history_vect (VEC(expr_history_def, heap) **,
1549 unsigned, enum local_trans_type,
1550 vinsn_t, vinsn_t, ds_t);
1551 extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1552 extern int speculate_expr (expr_t, ds_t);
1554 /* Av set functions. */
1555 extern void av_set_add (av_set_t *, expr_t);
1556 extern void av_set_iter_remove (av_set_iterator *);
1557 extern expr_t av_set_lookup (av_set_t, vinsn_t);
1558 extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1559 extern bool av_set_is_in_p (av_set_t, vinsn_t);
1560 extern av_set_t av_set_copy (av_set_t);
1561 extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1562 extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1563 extern void av_set_clear (av_set_t *);
1564 extern void av_set_leave_one_nonspec (av_set_t *);
1565 extern expr_t av_set_element (av_set_t, int);
1566 extern void av_set_substract_cond_branches (av_set_t *);
1567 extern void av_set_split_usefulness (av_set_t, int, int);
1568 extern void av_set_intersect (av_set_t *, av_set_t);
1570 extern void sel_save_haifa_priorities (void);
1572 extern void sel_init_global_and_expr (bb_vec_t);
1573 extern void sel_finish_global_and_expr (void);
1575 extern regset compute_live (insn_t);
1577 /* Dependence analysis functions. */
1578 extern void sel_clear_has_dependence (void);
1579 extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1581 extern int tick_check_p (expr_t, deps_t, fence_t);
1583 /* Functions to work with insns. */
1584 extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1585 extern bool insn_eligible_for_subst_p (insn_t);
1586 extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1588 extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1589 extern bool sel_remove_insn (insn_t, bool, bool);
1590 extern bool bb_header_p (insn_t);
1591 extern void sel_init_invalid_data_sets (insn_t);
1592 extern bool insn_at_boundary_p (insn_t);
1593 extern bool jump_leads_only_to_bb_p (insn_t, basic_block);
1595 /* Basic block and CFG functions. */
1597 extern insn_t sel_bb_head (basic_block);
1598 extern bool sel_bb_head_p (insn_t);
1599 extern insn_t sel_bb_end (basic_block);
1600 extern bool sel_bb_end_p (insn_t);
1601 extern bool sel_bb_empty_p (basic_block);
1603 extern bool in_current_region_p (basic_block);
1604 extern basic_block fallthru_bb_of_jump (rtx);
1606 extern void sel_init_bbs (bb_vec_t, basic_block);
1607 extern void sel_finish_bbs (void);
1609 extern struct succs_info * compute_succs_info (insn_t, short);
1610 extern void free_succs_info (struct succs_info *);
1611 extern bool sel_insn_has_single_succ_p (insn_t, int);
1612 extern bool sel_num_cfg_preds_gt_1 (insn_t);
1613 extern int get_seqno_by_preds (rtx);
1615 extern bool bb_ends_ebb_p (basic_block);
1616 extern bool in_same_ebb_p (insn_t, insn_t);
1618 extern bool tidy_control_flow (basic_block, bool);
1619 extern void free_bb_note_pool (void);
1621 extern void sel_remove_empty_bb (basic_block, bool, bool);
1622 extern void purge_empty_blocks (void);
1623 extern basic_block sel_split_edge (edge);
1624 extern basic_block sel_create_recovery_block (insn_t);
1625 extern void sel_merge_blocks (basic_block, basic_block);
1626 extern bool sel_redirect_edge_and_branch (edge, basic_block);
1627 extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1628 extern void sel_init_pipelining (void);
1629 extern void sel_finish_pipelining (void);
1630 extern void sel_sched_region (int);
1631 extern loop_p get_loop_nest_for_rgn (unsigned int);
1632 extern bool considered_for_pipelining_p (struct loop *);
1633 extern void make_region_from_loop_preheader (VEC(basic_block, heap) **);
1634 extern void sel_add_loop_preheaders (void);
1635 extern bool sel_is_loop_preheader_p (basic_block);
1636 extern void clear_outdated_rtx_info (basic_block);
1637 extern void free_data_sets (basic_block);
1638 extern void exchange_data_sets (basic_block, basic_block);
1639 extern void copy_data_sets (basic_block, basic_block);
1641 extern void sel_register_cfg_hooks (void);
1642 extern void sel_unregister_cfg_hooks (void);
1644 /* Expression transformation routines. */
1645 extern rtx create_insn_rtx_from_pattern (rtx, rtx);
1646 extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
1647 extern rtx create_copy_of_insn_rtx (rtx);
1648 extern void change_vinsn_in_expr (expr_t, vinsn_t);
1650 /* Various initialization functions. */
1651 extern void init_lv_sets (void);
1652 extern void free_lv_sets (void);
1653 extern void setup_nop_and_exit_insns (void);
1654 extern void free_nop_and_exit_insns (void);
1655 extern void free_data_for_scheduled_insn (insn_t);
1656 extern void setup_nop_vinsn (void);
1657 extern void free_nop_vinsn (void);
1658 extern void sel_set_sched_flags (void);
1659 extern void sel_setup_sched_infos (void);
1660 extern void alloc_sched_pools (void);
1661 extern void free_sched_pools (void);
1663 #endif /* GCC_SEL_SCHED_IR_H */