2005-08-12 Andreas Krebbel <krebbel1@de.ibm.com>
[official-gcc.git] / libgfortran / generated / sum_r8.c
blob3c57ce80e3a328bff79dfb5031f183f7afa9b498
1 /* Implementation of the SUM intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
37 extern void sum_r8 (gfc_array_r8 *, gfc_array_r8 *, index_type *);
38 export_proto(sum_r8);
40 void
41 sum_r8 (gfc_array_r8 *retarray, gfc_array_r8 *array, index_type *pdim)
43 index_type count[GFC_MAX_DIMENSIONS];
44 index_type extent[GFC_MAX_DIMENSIONS];
45 index_type sstride[GFC_MAX_DIMENSIONS];
46 index_type dstride[GFC_MAX_DIMENSIONS];
47 GFC_REAL_8 *base;
48 GFC_REAL_8 *dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
55 /* Make dim zero based to avoid confusion. */
56 dim = (*pdim) - 1;
57 rank = GFC_DESCRIPTOR_RANK (array) - 1;
59 /* TODO: It should be a front end job to correctly set the strides. */
61 if (array->dim[0].stride == 0)
62 array->dim[0].stride = 1;
64 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
65 delta = array->dim[dim].stride;
67 for (n = 0; n < dim; n++)
69 sstride[n] = array->dim[n].stride;
70 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
72 for (n = dim; n < rank; n++)
74 sstride[n] = array->dim[n + 1].stride;
75 extent[n] =
76 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
79 if (retarray->data == NULL)
81 for (n = 0; n < rank; n++)
83 retarray->dim[n].lbound = 0;
84 retarray->dim[n].ubound = extent[n]-1;
85 if (n == 0)
86 retarray->dim[n].stride = 1;
87 else
88 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
91 retarray->data
92 = internal_malloc_size (sizeof (GFC_REAL_8)
93 * retarray->dim[rank-1].stride
94 * extent[rank-1]);
95 retarray->offset = 0;
96 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
98 else
100 if (retarray->dim[0].stride == 0)
101 retarray->dim[0].stride = 1;
103 if (rank != GFC_DESCRIPTOR_RANK (retarray))
104 runtime_error ("rank of return array incorrect");
107 for (n = 0; n < rank; n++)
109 count[n] = 0;
110 dstride[n] = retarray->dim[n].stride;
111 if (extent[n] <= 0)
112 len = 0;
115 base = array->data;
116 dest = retarray->data;
118 while (base)
120 GFC_REAL_8 *src;
121 GFC_REAL_8 result;
122 src = base;
125 result = 0;
126 if (len <= 0)
127 *dest = 0;
128 else
130 for (n = 0; n < len; n++, src += delta)
133 result += *src;
135 *dest = result;
138 /* Advance to the next element. */
139 count[0]++;
140 base += sstride[0];
141 dest += dstride[0];
142 n = 0;
143 while (count[n] == extent[n])
145 /* When we get to the end of a dimension, reset it and increment
146 the next dimension. */
147 count[n] = 0;
148 /* We could precalculate these products, but this is a less
149 frequently used path so proabably not worth it. */
150 base -= sstride[n] * extent[n];
151 dest -= dstride[n] * extent[n];
152 n++;
153 if (n == rank)
155 /* Break out of the look. */
156 base = NULL;
157 break;
159 else
161 count[n]++;
162 base += sstride[n];
163 dest += dstride[n];
170 extern void msum_r8 (gfc_array_r8 *, gfc_array_r8 *, index_type *,
171 gfc_array_l4 *);
172 export_proto(msum_r8);
174 void
175 msum_r8 (gfc_array_r8 * retarray, gfc_array_r8 * array,
176 index_type *pdim, gfc_array_l4 * mask)
178 index_type count[GFC_MAX_DIMENSIONS];
179 index_type extent[GFC_MAX_DIMENSIONS];
180 index_type sstride[GFC_MAX_DIMENSIONS];
181 index_type dstride[GFC_MAX_DIMENSIONS];
182 index_type mstride[GFC_MAX_DIMENSIONS];
183 GFC_REAL_8 *dest;
184 GFC_REAL_8 *base;
185 GFC_LOGICAL_4 *mbase;
186 int rank;
187 int dim;
188 index_type n;
189 index_type len;
190 index_type delta;
191 index_type mdelta;
193 dim = (*pdim) - 1;
194 rank = GFC_DESCRIPTOR_RANK (array) - 1;
196 /* TODO: It should be a front end job to correctly set the strides. */
198 if (array->dim[0].stride == 0)
199 array->dim[0].stride = 1;
201 if (mask->dim[0].stride == 0)
202 mask->dim[0].stride = 1;
204 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
205 if (len <= 0)
206 return;
207 delta = array->dim[dim].stride;
208 mdelta = mask->dim[dim].stride;
210 for (n = 0; n < dim; n++)
212 sstride[n] = array->dim[n].stride;
213 mstride[n] = mask->dim[n].stride;
214 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
216 for (n = dim; n < rank; n++)
218 sstride[n] = array->dim[n + 1].stride;
219 mstride[n] = mask->dim[n + 1].stride;
220 extent[n] =
221 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
224 if (retarray->data == NULL)
226 for (n = 0; n < rank; n++)
228 retarray->dim[n].lbound = 0;
229 retarray->dim[n].ubound = extent[n]-1;
230 if (n == 0)
231 retarray->dim[n].stride = 1;
232 else
233 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
236 retarray->data
237 = internal_malloc_size (sizeof (GFC_REAL_8)
238 * retarray->dim[rank-1].stride
239 * extent[rank-1]);
240 retarray->offset = 0;
241 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
243 else
245 if (retarray->dim[0].stride == 0)
246 retarray->dim[0].stride = 1;
248 if (rank != GFC_DESCRIPTOR_RANK (retarray))
249 runtime_error ("rank of return array incorrect");
252 for (n = 0; n < rank; n++)
254 count[n] = 0;
255 dstride[n] = retarray->dim[n].stride;
256 if (extent[n] <= 0)
257 return;
260 dest = retarray->data;
261 base = array->data;
262 mbase = mask->data;
264 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
266 /* This allows the same loop to be used for all logical types. */
267 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
268 for (n = 0; n < rank; n++)
269 mstride[n] <<= 1;
270 mdelta <<= 1;
271 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
274 while (base)
276 GFC_REAL_8 *src;
277 GFC_LOGICAL_4 *msrc;
278 GFC_REAL_8 result;
279 src = base;
280 msrc = mbase;
283 result = 0;
284 if (len <= 0)
285 *dest = 0;
286 else
288 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
291 if (*msrc)
292 result += *src;
294 *dest = result;
297 /* Advance to the next element. */
298 count[0]++;
299 base += sstride[0];
300 mbase += mstride[0];
301 dest += dstride[0];
302 n = 0;
303 while (count[n] == extent[n])
305 /* When we get to the end of a dimension, reset it and increment
306 the next dimension. */
307 count[n] = 0;
308 /* We could precalculate these products, but this is a less
309 frequently used path so proabably not worth it. */
310 base -= sstride[n] * extent[n];
311 mbase -= mstride[n] * extent[n];
312 dest -= dstride[n] * extent[n];
313 n++;
314 if (n == rank)
316 /* Break out of the look. */
317 base = NULL;
318 break;
320 else
322 count[n]++;
323 base += sstride[n];
324 mbase += mstride[n];
325 dest += dstride[n];