1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "diagnostic-core.h"
34 #include "langhooks.h"
38 #include "tree-inline.h"
39 #include "tree-dump.h"
42 /* Data type for the expressions representing sizes of data types.
43 It is the first integer type laid out. */
44 tree sizetype_tab
[(int) stk_type_kind_last
];
46 /* If nonzero, this is an upper limit on alignment of structure fields.
47 The value is measured in bits. */
48 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
50 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
51 in the address spaces' address_mode, not pointer_mode. Set only by
52 internal_reference_types called only by a front end. */
53 static int reference_types_internal
= 0;
55 static tree
self_referential_size (tree
);
56 static void finalize_record_size (record_layout_info
);
57 static void finalize_type_size (tree
);
58 static void place_union_field (record_layout_info
, tree
);
59 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
60 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
63 extern void debug_rli (record_layout_info
);
65 /* Show that REFERENCE_TYPES are internal and should use address_mode.
66 Called only by front end. */
69 internal_reference_types (void)
71 reference_types_internal
= 1;
74 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
75 to serve as the actual size-expression for a type or decl. */
78 variable_size (tree size
)
81 if (TREE_CONSTANT (size
))
84 /* If the size is self-referential, we can't make a SAVE_EXPR (see
85 save_expr for the rationale). But we can do something else. */
86 if (CONTAINS_PLACEHOLDER_P (size
))
87 return self_referential_size (size
);
89 /* If we are in the global binding level, we can't make a SAVE_EXPR
90 since it may end up being shared across functions, so it is up
91 to the front-end to deal with this case. */
92 if (lang_hooks
.decls
.global_bindings_p ())
95 return save_expr (size
);
98 /* An array of functions used for self-referential size computation. */
99 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
101 /* Similar to copy_tree_r but do not copy component references involving
102 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
103 and substituted in substitute_in_expr. */
106 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
108 enum tree_code code
= TREE_CODE (*tp
);
110 /* Stop at types, decls, constants like copy_tree_r. */
111 if (TREE_CODE_CLASS (code
) == tcc_type
112 || TREE_CODE_CLASS (code
) == tcc_declaration
113 || TREE_CODE_CLASS (code
) == tcc_constant
)
119 /* This is the pattern built in ada/make_aligning_type. */
120 else if (code
== ADDR_EXPR
121 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
127 /* Default case: the component reference. */
128 else if (code
== COMPONENT_REF
)
131 for (inner
= TREE_OPERAND (*tp
, 0);
132 REFERENCE_CLASS_P (inner
);
133 inner
= TREE_OPERAND (inner
, 0))
136 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
143 /* We're not supposed to have them in self-referential size trees
144 because we wouldn't properly control when they are evaluated.
145 However, not creating superfluous SAVE_EXPRs requires accurate
146 tracking of readonly-ness all the way down to here, which we
147 cannot always guarantee in practice. So punt in this case. */
148 else if (code
== SAVE_EXPR
)
149 return error_mark_node
;
151 else if (code
== STATEMENT_LIST
)
154 return copy_tree_r (tp
, walk_subtrees
, data
);
157 /* Given a SIZE expression that is self-referential, return an equivalent
158 expression to serve as the actual size expression for a type. */
161 self_referential_size (tree size
)
163 static unsigned HOST_WIDE_INT fnno
= 0;
164 vec
<tree
> self_refs
= vNULL
;
165 tree param_type_list
= NULL
, param_decl_list
= NULL
;
166 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
169 vec
<tree
, va_gc
> *args
= NULL
;
171 /* Do not factor out simple operations. */
172 t
= skip_simple_constant_arithmetic (size
);
173 if (TREE_CODE (t
) == CALL_EXPR
)
176 /* Collect the list of self-references in the expression. */
177 find_placeholder_in_expr (size
, &self_refs
);
178 gcc_assert (self_refs
.length () > 0);
180 /* Obtain a private copy of the expression. */
182 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
186 /* Build the parameter and argument lists in parallel; also
187 substitute the former for the latter in the expression. */
188 vec_alloc (args
, self_refs
.length ());
189 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
191 tree subst
, param_name
, param_type
, param_decl
;
195 /* We shouldn't have true variables here. */
196 gcc_assert (TREE_READONLY (ref
));
199 /* This is the pattern built in ada/make_aligning_type. */
200 else if (TREE_CODE (ref
) == ADDR_EXPR
)
202 /* Default case: the component reference. */
204 subst
= TREE_OPERAND (ref
, 1);
206 sprintf (buf
, "p%d", i
);
207 param_name
= get_identifier (buf
);
208 param_type
= TREE_TYPE (ref
);
210 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
211 if (targetm
.calls
.promote_prototypes (NULL_TREE
)
212 && INTEGRAL_TYPE_P (param_type
)
213 && TYPE_PRECISION (param_type
) < TYPE_PRECISION (integer_type_node
))
214 DECL_ARG_TYPE (param_decl
) = integer_type_node
;
216 DECL_ARG_TYPE (param_decl
) = param_type
;
217 DECL_ARTIFICIAL (param_decl
) = 1;
218 TREE_READONLY (param_decl
) = 1;
220 size
= substitute_in_expr (size
, subst
, param_decl
);
222 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
223 param_decl_list
= chainon (param_decl
, param_decl_list
);
224 args
->quick_push (ref
);
227 self_refs
.release ();
229 /* Append 'void' to indicate that the number of parameters is fixed. */
230 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
232 /* The 3 lists have been created in reverse order. */
233 param_type_list
= nreverse (param_type_list
);
234 param_decl_list
= nreverse (param_decl_list
);
236 /* Build the function type. */
237 return_type
= TREE_TYPE (size
);
238 fntype
= build_function_type (return_type
, param_type_list
);
240 /* Build the function declaration. */
241 sprintf (buf
, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
242 fnname
= get_file_function_name (buf
);
243 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
244 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
245 DECL_CONTEXT (t
) = fndecl
;
246 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
248 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
249 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
251 /* The function has been created by the compiler and we don't
252 want to emit debug info for it. */
253 DECL_ARTIFICIAL (fndecl
) = 1;
254 DECL_IGNORED_P (fndecl
) = 1;
256 /* It is supposed to be "const" and never throw. */
257 TREE_READONLY (fndecl
) = 1;
258 TREE_NOTHROW (fndecl
) = 1;
260 /* We want it to be inlined when this is deemed profitable, as
261 well as discarded if every call has been integrated. */
262 DECL_DECLARED_INLINE_P (fndecl
) = 1;
264 /* It is made up of a unique return statement. */
265 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
266 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
267 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
268 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
269 TREE_STATIC (fndecl
) = 1;
271 /* Put it onto the list of size functions. */
272 vec_safe_push (size_functions
, fndecl
);
274 /* Replace the original expression with a call to the size function. */
275 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
278 /* Take, queue and compile all the size functions. It is essential that
279 the size functions be gimplified at the very end of the compilation
280 in order to guarantee transparent handling of self-referential sizes.
281 Otherwise the GENERIC inliner would not be able to inline them back
282 at each of their call sites, thus creating artificial non-constant
283 size expressions which would trigger nasty problems later on. */
286 finalize_size_functions (void)
291 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
293 allocate_struct_function (fndecl
, false);
295 dump_function (TDI_original
, fndecl
);
296 gimplify_function_tree (fndecl
);
297 dump_function (TDI_generic
, fndecl
);
298 cgraph_finalize_function (fndecl
, false);
301 vec_free (size_functions
);
304 /* Return the machine mode to use for a nonscalar of SIZE bits. The
305 mode must be in class MCLASS, and have exactly that many value bits;
306 it may have padding as well. If LIMIT is nonzero, modes of wider
307 than MAX_FIXED_MODE_SIZE will not be used. */
310 mode_for_size (unsigned int size
, enum mode_class mclass
, int limit
)
312 enum machine_mode mode
;
314 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
317 /* Get the first mode which has this size, in the specified class. */
318 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
319 mode
= GET_MODE_WIDER_MODE (mode
))
320 if (GET_MODE_PRECISION (mode
) == size
)
326 /* Similar, except passed a tree node. */
329 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
331 unsigned HOST_WIDE_INT uhwi
;
334 if (!host_integerp (size
, 1))
336 uhwi
= tree_low_cst (size
, 1);
340 return mode_for_size (ui
, mclass
, limit
);
343 /* Similar, but never return BLKmode; return the narrowest mode that
344 contains at least the requested number of value bits. */
347 smallest_mode_for_size (unsigned int size
, enum mode_class mclass
)
349 enum machine_mode mode
;
351 /* Get the first mode which has at least this size, in the
353 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
354 mode
= GET_MODE_WIDER_MODE (mode
))
355 if (GET_MODE_PRECISION (mode
) >= size
)
361 /* Find an integer mode of the exact same size, or BLKmode on failure. */
364 int_mode_for_mode (enum machine_mode mode
)
366 switch (GET_MODE_CLASS (mode
))
369 case MODE_PARTIAL_INT
:
372 case MODE_COMPLEX_INT
:
373 case MODE_COMPLEX_FLOAT
:
375 case MODE_DECIMAL_FLOAT
:
376 case MODE_VECTOR_INT
:
377 case MODE_VECTOR_FLOAT
:
382 case MODE_VECTOR_FRACT
:
383 case MODE_VECTOR_ACCUM
:
384 case MODE_VECTOR_UFRACT
:
385 case MODE_VECTOR_UACCUM
:
386 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
393 /* ... fall through ... */
403 /* Find a mode that is suitable for representing a vector with
404 NUNITS elements of mode INNERMODE. Returns BLKmode if there
405 is no suitable mode. */
408 mode_for_vector (enum machine_mode innermode
, unsigned nunits
)
410 enum machine_mode mode
;
412 /* First, look for a supported vector type. */
413 if (SCALAR_FLOAT_MODE_P (innermode
))
414 mode
= MIN_MODE_VECTOR_FLOAT
;
415 else if (SCALAR_FRACT_MODE_P (innermode
))
416 mode
= MIN_MODE_VECTOR_FRACT
;
417 else if (SCALAR_UFRACT_MODE_P (innermode
))
418 mode
= MIN_MODE_VECTOR_UFRACT
;
419 else if (SCALAR_ACCUM_MODE_P (innermode
))
420 mode
= MIN_MODE_VECTOR_ACCUM
;
421 else if (SCALAR_UACCUM_MODE_P (innermode
))
422 mode
= MIN_MODE_VECTOR_UACCUM
;
424 mode
= MIN_MODE_VECTOR_INT
;
426 /* Do not check vector_mode_supported_p here. We'll do that
427 later in vector_type_mode. */
428 for (; mode
!= VOIDmode
; mode
= GET_MODE_WIDER_MODE (mode
))
429 if (GET_MODE_NUNITS (mode
) == nunits
430 && GET_MODE_INNER (mode
) == innermode
)
433 /* For integers, try mapping it to a same-sized scalar mode. */
435 && GET_MODE_CLASS (innermode
) == MODE_INT
)
436 mode
= mode_for_size (nunits
* GET_MODE_BITSIZE (innermode
),
440 || (GET_MODE_CLASS (mode
) == MODE_INT
441 && !have_regs_of_mode
[mode
]))
447 /* Return the alignment of MODE. This will be bounded by 1 and
448 BIGGEST_ALIGNMENT. */
451 get_mode_alignment (enum machine_mode mode
)
453 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
456 /* Return the natural mode of an array, given that it is SIZE bytes in
457 total and has elements of type ELEM_TYPE. */
459 static enum machine_mode
460 mode_for_array (tree elem_type
, tree size
)
463 unsigned HOST_WIDE_INT int_size
, int_elem_size
;
466 /* One-element arrays get the component type's mode. */
467 elem_size
= TYPE_SIZE (elem_type
);
468 if (simple_cst_equal (size
, elem_size
))
469 return TYPE_MODE (elem_type
);
472 if (host_integerp (size
, 1) && host_integerp (elem_size
, 1))
474 int_size
= tree_low_cst (size
, 1);
475 int_elem_size
= tree_low_cst (elem_size
, 1);
476 if (int_elem_size
> 0
477 && int_size
% int_elem_size
== 0
478 && targetm
.array_mode_supported_p (TYPE_MODE (elem_type
),
479 int_size
/ int_elem_size
))
482 return mode_for_size_tree (size
, MODE_INT
, limit_p
);
485 /* Subroutine of layout_decl: Force alignment required for the data type.
486 But if the decl itself wants greater alignment, don't override that. */
489 do_type_align (tree type
, tree decl
)
491 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
493 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
494 if (TREE_CODE (decl
) == FIELD_DECL
)
495 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
499 /* Set the size, mode and alignment of a ..._DECL node.
500 TYPE_DECL does need this for C++.
501 Note that LABEL_DECL and CONST_DECL nodes do not need this,
502 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
503 Don't call layout_decl for them.
505 KNOWN_ALIGN is the amount of alignment we can assume this
506 decl has with no special effort. It is relevant only for FIELD_DECLs
507 and depends on the previous fields.
508 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
509 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
510 the record will be aligned to suit. */
513 layout_decl (tree decl
, unsigned int known_align
)
515 tree type
= TREE_TYPE (decl
);
516 enum tree_code code
= TREE_CODE (decl
);
518 location_t loc
= DECL_SOURCE_LOCATION (decl
);
520 if (code
== CONST_DECL
)
523 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
524 || code
== TYPE_DECL
||code
== FIELD_DECL
);
526 rtl
= DECL_RTL_IF_SET (decl
);
528 if (type
== error_mark_node
)
529 type
= void_type_node
;
531 /* Usually the size and mode come from the data type without change,
532 however, the front-end may set the explicit width of the field, so its
533 size may not be the same as the size of its type. This happens with
534 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
535 also happens with other fields. For example, the C++ front-end creates
536 zero-sized fields corresponding to empty base classes, and depends on
537 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
538 size in bytes from the size in bits. If we have already set the mode,
539 don't set it again since we can be called twice for FIELD_DECLs. */
541 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
542 if (DECL_MODE (decl
) == VOIDmode
)
543 DECL_MODE (decl
) = TYPE_MODE (type
);
545 if (DECL_SIZE (decl
) == 0)
547 DECL_SIZE (decl
) = TYPE_SIZE (type
);
548 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
550 else if (DECL_SIZE_UNIT (decl
) == 0)
551 DECL_SIZE_UNIT (decl
)
552 = fold_convert_loc (loc
, sizetype
,
553 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
556 if (code
!= FIELD_DECL
)
557 /* For non-fields, update the alignment from the type. */
558 do_type_align (type
, decl
);
560 /* For fields, it's a bit more complicated... */
562 bool old_user_align
= DECL_USER_ALIGN (decl
);
563 bool zero_bitfield
= false;
564 bool packed_p
= DECL_PACKED (decl
);
567 if (DECL_BIT_FIELD (decl
))
569 DECL_BIT_FIELD_TYPE (decl
) = type
;
571 /* A zero-length bit-field affects the alignment of the next
572 field. In essence such bit-fields are not influenced by
573 any packing due to #pragma pack or attribute packed. */
574 if (integer_zerop (DECL_SIZE (decl
))
575 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
577 zero_bitfield
= true;
579 #ifdef PCC_BITFIELD_TYPE_MATTERS
580 if (PCC_BITFIELD_TYPE_MATTERS
)
581 do_type_align (type
, decl
);
585 #ifdef EMPTY_FIELD_BOUNDARY
586 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
588 DECL_ALIGN (decl
) = EMPTY_FIELD_BOUNDARY
;
589 DECL_USER_ALIGN (decl
) = 0;
595 /* See if we can use an ordinary integer mode for a bit-field.
596 Conditions are: a fixed size that is correct for another mode,
597 occupying a complete byte or bytes on proper boundary,
598 and not -fstrict-volatile-bitfields. If the latter is set,
599 we unfortunately can't check TREE_THIS_VOLATILE, as a cast
600 may make a volatile object later. */
601 if (TYPE_SIZE (type
) != 0
602 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
603 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
604 && flag_strict_volatile_bitfields
<= 0)
606 enum machine_mode xmode
607 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
608 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
611 && !(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
612 && (known_align
== 0 || known_align
>= xalign
))
614 DECL_ALIGN (decl
) = MAX (xalign
, DECL_ALIGN (decl
));
615 DECL_MODE (decl
) = xmode
;
616 DECL_BIT_FIELD (decl
) = 0;
620 /* Turn off DECL_BIT_FIELD if we won't need it set. */
621 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
622 && known_align
>= TYPE_ALIGN (type
)
623 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
624 DECL_BIT_FIELD (decl
) = 0;
626 else if (packed_p
&& DECL_USER_ALIGN (decl
))
627 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
628 round up; we'll reduce it again below. We want packing to
629 supersede USER_ALIGN inherited from the type, but defer to
630 alignment explicitly specified on the field decl. */;
632 do_type_align (type
, decl
);
634 /* If the field is packed and not explicitly aligned, give it the
635 minimum alignment. Note that do_type_align may set
636 DECL_USER_ALIGN, so we need to check old_user_align instead. */
639 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
641 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
643 /* Some targets (i.e. i386, VMS) limit struct field alignment
644 to a lower boundary than alignment of variables unless
645 it was overridden by attribute aligned. */
646 #ifdef BIGGEST_FIELD_ALIGNMENT
648 = MIN (DECL_ALIGN (decl
), (unsigned) BIGGEST_FIELD_ALIGNMENT
);
650 #ifdef ADJUST_FIELD_ALIGN
651 DECL_ALIGN (decl
) = ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
));
656 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
658 mfa
= maximum_field_alignment
;
659 /* Should this be controlled by DECL_USER_ALIGN, too? */
661 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), mfa
);
664 /* Evaluate nonconstant size only once, either now or as soon as safe. */
665 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
666 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
667 if (DECL_SIZE_UNIT (decl
) != 0
668 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
669 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
671 /* If requested, warn about definitions of large data objects. */
673 && (code
== VAR_DECL
|| code
== PARM_DECL
)
674 && ! DECL_EXTERNAL (decl
))
676 tree size
= DECL_SIZE_UNIT (decl
);
678 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
679 && compare_tree_int (size
, larger_than_size
) > 0)
681 int size_as_int
= TREE_INT_CST_LOW (size
);
683 if (compare_tree_int (size
, size_as_int
) == 0)
684 warning (OPT_Wlarger_than_
, "size of %q+D is %d bytes", decl
, size_as_int
);
686 warning (OPT_Wlarger_than_
, "size of %q+D is larger than %wd bytes",
687 decl
, larger_than_size
);
691 /* If the RTL was already set, update its mode and mem attributes. */
694 PUT_MODE (rtl
, DECL_MODE (decl
));
695 SET_DECL_RTL (decl
, 0);
696 set_mem_attributes (rtl
, decl
, 1);
697 SET_DECL_RTL (decl
, rtl
);
701 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
702 a previous call to layout_decl and calls it again. */
705 relayout_decl (tree decl
)
707 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
708 DECL_MODE (decl
) = VOIDmode
;
709 if (!DECL_USER_ALIGN (decl
))
710 DECL_ALIGN (decl
) = 0;
711 SET_DECL_RTL (decl
, 0);
713 layout_decl (decl
, 0);
716 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
717 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
718 is to be passed to all other layout functions for this record. It is the
719 responsibility of the caller to call `free' for the storage returned.
720 Note that garbage collection is not permitted until we finish laying
724 start_record_layout (tree t
)
726 record_layout_info rli
= XNEW (struct record_layout_info_s
);
730 /* If the type has a minimum specified alignment (via an attribute
731 declaration, for example) use it -- otherwise, start with a
732 one-byte alignment. */
733 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
734 rli
->unpacked_align
= rli
->record_align
;
735 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
737 #ifdef STRUCTURE_SIZE_BOUNDARY
738 /* Packed structures don't need to have minimum size. */
739 if (! TYPE_PACKED (t
))
743 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
744 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
745 if (maximum_field_alignment
!= 0)
746 tmp
= MIN (tmp
, maximum_field_alignment
);
747 rli
->record_align
= MAX (rli
->record_align
, tmp
);
751 rli
->offset
= size_zero_node
;
752 rli
->bitpos
= bitsize_zero_node
;
754 rli
->pending_statics
= 0;
755 rli
->packed_maybe_necessary
= 0;
756 rli
->remaining_in_alignment
= 0;
761 /* Return the combined bit position for the byte offset OFFSET and the
764 These functions operate on byte and bit positions present in FIELD_DECLs
765 and assume that these expressions result in no (intermediate) overflow.
766 This assumption is necessary to fold the expressions as much as possible,
767 so as to avoid creating artificially variable-sized types in languages
768 supporting variable-sized types like Ada. */
771 bit_from_pos (tree offset
, tree bitpos
)
773 if (TREE_CODE (offset
) == PLUS_EXPR
)
774 offset
= size_binop (PLUS_EXPR
,
775 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 0)),
776 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 1)));
778 offset
= fold_convert (bitsizetype
, offset
);
779 return size_binop (PLUS_EXPR
, bitpos
,
780 size_binop (MULT_EXPR
, offset
, bitsize_unit_node
));
783 /* Return the combined truncated byte position for the byte offset OFFSET and
784 the bit position BITPOS. */
787 byte_from_pos (tree offset
, tree bitpos
)
790 if (TREE_CODE (bitpos
) == MULT_EXPR
791 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
792 bytepos
= TREE_OPERAND (bitpos
, 0);
794 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
795 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
798 /* Split the bit position POS into a byte offset *POFFSET and a bit
799 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
802 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
805 tree toff_align
= bitsize_int (off_align
);
806 if (TREE_CODE (pos
) == MULT_EXPR
807 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
809 *poffset
= size_binop (MULT_EXPR
,
810 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
811 size_int (off_align
/ BITS_PER_UNIT
));
812 *pbitpos
= bitsize_zero_node
;
816 *poffset
= size_binop (MULT_EXPR
,
817 fold_convert (sizetype
,
818 size_binop (FLOOR_DIV_EXPR
, pos
,
820 size_int (off_align
/ BITS_PER_UNIT
));
821 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
825 /* Given a pointer to bit and byte offsets and an offset alignment,
826 normalize the offsets so they are within the alignment. */
829 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
831 /* If the bit position is now larger than it should be, adjust it
833 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
836 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
837 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
842 /* Print debugging information about the information in RLI. */
845 debug_rli (record_layout_info rli
)
847 print_node_brief (stderr
, "type", rli
->t
, 0);
848 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
849 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
851 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
852 rli
->record_align
, rli
->unpacked_align
,
855 /* The ms_struct code is the only that uses this. */
856 if (targetm
.ms_bitfield_layout_p (rli
->t
))
857 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
859 if (rli
->packed_maybe_necessary
)
860 fprintf (stderr
, "packed may be necessary\n");
862 if (!vec_safe_is_empty (rli
->pending_statics
))
864 fprintf (stderr
, "pending statics:\n");
865 debug_vec_tree (rli
->pending_statics
);
869 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
870 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
873 normalize_rli (record_layout_info rli
)
875 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
878 /* Returns the size in bytes allocated so far. */
881 rli_size_unit_so_far (record_layout_info rli
)
883 return byte_from_pos (rli
->offset
, rli
->bitpos
);
886 /* Returns the size in bits allocated so far. */
889 rli_size_so_far (record_layout_info rli
)
891 return bit_from_pos (rli
->offset
, rli
->bitpos
);
894 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
895 the next available location within the record is given by KNOWN_ALIGN.
896 Update the variable alignment fields in RLI, and return the alignment
897 to give the FIELD. */
900 update_alignment_for_field (record_layout_info rli
, tree field
,
901 unsigned int known_align
)
903 /* The alignment required for FIELD. */
904 unsigned int desired_align
;
905 /* The type of this field. */
906 tree type
= TREE_TYPE (field
);
907 /* True if the field was explicitly aligned by the user. */
911 /* Do not attempt to align an ERROR_MARK node */
912 if (TREE_CODE (type
) == ERROR_MARK
)
915 /* Lay out the field so we know what alignment it needs. */
916 layout_decl (field
, known_align
);
917 desired_align
= DECL_ALIGN (field
);
918 user_align
= DECL_USER_ALIGN (field
);
920 is_bitfield
= (type
!= error_mark_node
921 && DECL_BIT_FIELD_TYPE (field
)
922 && ! integer_zerop (TYPE_SIZE (type
)));
924 /* Record must have at least as much alignment as any field.
925 Otherwise, the alignment of the field within the record is
927 if (targetm
.ms_bitfield_layout_p (rli
->t
))
929 /* Here, the alignment of the underlying type of a bitfield can
930 affect the alignment of a record; even a zero-sized field
931 can do this. The alignment should be to the alignment of
932 the type, except that for zero-size bitfields this only
933 applies if there was an immediately prior, nonzero-size
934 bitfield. (That's the way it is, experimentally.) */
935 if ((!is_bitfield
&& !DECL_PACKED (field
))
936 || ((DECL_SIZE (field
) == NULL_TREE
937 || !integer_zerop (DECL_SIZE (field
)))
938 ? !DECL_PACKED (field
)
940 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
941 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
943 unsigned int type_align
= TYPE_ALIGN (type
);
944 type_align
= MAX (type_align
, desired_align
);
945 if (maximum_field_alignment
!= 0)
946 type_align
= MIN (type_align
, maximum_field_alignment
);
947 rli
->record_align
= MAX (rli
->record_align
, type_align
);
948 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
951 #ifdef PCC_BITFIELD_TYPE_MATTERS
952 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
954 /* Named bit-fields cause the entire structure to have the
955 alignment implied by their type. Some targets also apply the same
956 rules to unnamed bitfields. */
957 if (DECL_NAME (field
) != 0
958 || targetm
.align_anon_bitfield ())
960 unsigned int type_align
= TYPE_ALIGN (type
);
962 #ifdef ADJUST_FIELD_ALIGN
963 if (! TYPE_USER_ALIGN (type
))
964 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
967 /* Targets might chose to handle unnamed and hence possibly
968 zero-width bitfield. Those are not influenced by #pragmas
969 or packed attributes. */
970 if (integer_zerop (DECL_SIZE (field
)))
972 if (initial_max_fld_align
)
973 type_align
= MIN (type_align
,
974 initial_max_fld_align
* BITS_PER_UNIT
);
976 else if (maximum_field_alignment
!= 0)
977 type_align
= MIN (type_align
, maximum_field_alignment
);
978 else if (DECL_PACKED (field
))
979 type_align
= MIN (type_align
, BITS_PER_UNIT
);
981 /* The alignment of the record is increased to the maximum
982 of the current alignment, the alignment indicated on the
983 field (i.e., the alignment specified by an __aligned__
984 attribute), and the alignment indicated by the type of
986 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
987 rli
->record_align
= MAX (rli
->record_align
, type_align
);
990 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
991 user_align
|= TYPE_USER_ALIGN (type
);
997 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
998 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1001 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1003 return desired_align
;
1006 /* Called from place_field to handle unions. */
1009 place_union_field (record_layout_info rli
, tree field
)
1011 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1013 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1014 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1015 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1017 /* If this is an ERROR_MARK return *after* having set the
1018 field at the start of the union. This helps when parsing
1020 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1023 /* We assume the union's size will be a multiple of a byte so we don't
1024 bother with BITPOS. */
1025 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1026 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1027 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1028 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1029 DECL_SIZE_UNIT (field
), rli
->offset
);
1032 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1033 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1034 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1035 units of alignment than the underlying TYPE. */
1037 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1038 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1040 /* Note that the calculation of OFFSET might overflow; we calculate it so
1041 that we still get the right result as long as ALIGN is a power of two. */
1042 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1044 offset
= offset
% align
;
1045 return ((offset
+ size
+ align
- 1) / align
1046 > ((unsigned HOST_WIDE_INT
) tree_low_cst (TYPE_SIZE (type
), 1)
1051 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1052 is a FIELD_DECL to be added after those fields already present in
1053 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1054 callers that desire that behavior must manually perform that step.) */
1057 place_field (record_layout_info rli
, tree field
)
1059 /* The alignment required for FIELD. */
1060 unsigned int desired_align
;
1061 /* The alignment FIELD would have if we just dropped it into the
1062 record as it presently stands. */
1063 unsigned int known_align
;
1064 unsigned int actual_align
;
1065 /* The type of this field. */
1066 tree type
= TREE_TYPE (field
);
1068 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1070 /* If FIELD is static, then treat it like a separate variable, not
1071 really like a structure field. If it is a FUNCTION_DECL, it's a
1072 method. In both cases, all we do is lay out the decl, and we do
1073 it *after* the record is laid out. */
1074 if (TREE_CODE (field
) == VAR_DECL
)
1076 vec_safe_push (rli
->pending_statics
, field
);
1080 /* Enumerators and enum types which are local to this class need not
1081 be laid out. Likewise for initialized constant fields. */
1082 else if (TREE_CODE (field
) != FIELD_DECL
)
1085 /* Unions are laid out very differently than records, so split
1086 that code off to another function. */
1087 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1089 place_union_field (rli
, field
);
1093 else if (TREE_CODE (type
) == ERROR_MARK
)
1095 /* Place this field at the current allocation position, so we
1096 maintain monotonicity. */
1097 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1098 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1099 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1103 /* Work out the known alignment so far. Note that A & (-A) is the
1104 value of the least-significant bit in A that is one. */
1105 if (! integer_zerop (rli
->bitpos
))
1106 known_align
= (tree_low_cst (rli
->bitpos
, 1)
1107 & - tree_low_cst (rli
->bitpos
, 1));
1108 else if (integer_zerop (rli
->offset
))
1110 else if (host_integerp (rli
->offset
, 1))
1111 known_align
= (BITS_PER_UNIT
1112 * (tree_low_cst (rli
->offset
, 1)
1113 & - tree_low_cst (rli
->offset
, 1)));
1115 known_align
= rli
->offset_align
;
1117 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1118 if (known_align
== 0)
1119 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1121 if (warn_packed
&& DECL_PACKED (field
))
1123 if (known_align
>= TYPE_ALIGN (type
))
1125 if (TYPE_ALIGN (type
) > desired_align
)
1127 if (STRICT_ALIGNMENT
)
1128 warning (OPT_Wattributes
, "packed attribute causes "
1129 "inefficient alignment for %q+D", field
);
1130 /* Don't warn if DECL_PACKED was set by the type. */
1131 else if (!TYPE_PACKED (rli
->t
))
1132 warning (OPT_Wattributes
, "packed attribute is "
1133 "unnecessary for %q+D", field
);
1137 rli
->packed_maybe_necessary
= 1;
1140 /* Does this field automatically have alignment it needs by virtue
1141 of the fields that precede it and the record's own alignment? */
1142 if (known_align
< desired_align
)
1144 /* No, we need to skip space before this field.
1145 Bump the cumulative size to multiple of field alignment. */
1147 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1148 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
)
1149 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1151 /* If the alignment is still within offset_align, just align
1152 the bit position. */
1153 if (desired_align
< rli
->offset_align
)
1154 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1157 /* First adjust OFFSET by the partial bits, then align. */
1159 = size_binop (PLUS_EXPR
, rli
->offset
,
1160 fold_convert (sizetype
,
1161 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1162 bitsize_unit_node
)));
1163 rli
->bitpos
= bitsize_zero_node
;
1165 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1168 if (! TREE_CONSTANT (rli
->offset
))
1169 rli
->offset_align
= desired_align
;
1170 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1171 rli
->prev_field
= NULL
;
1174 /* Handle compatibility with PCC. Note that if the record has any
1175 variable-sized fields, we need not worry about compatibility. */
1176 #ifdef PCC_BITFIELD_TYPE_MATTERS
1177 if (PCC_BITFIELD_TYPE_MATTERS
1178 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1179 && TREE_CODE (field
) == FIELD_DECL
1180 && type
!= error_mark_node
1181 && DECL_BIT_FIELD (field
)
1182 && (! DECL_PACKED (field
)
1183 /* Enter for these packed fields only to issue a warning. */
1184 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1185 && maximum_field_alignment
== 0
1186 && ! integer_zerop (DECL_SIZE (field
))
1187 && host_integerp (DECL_SIZE (field
), 1)
1188 && host_integerp (rli
->offset
, 1)
1189 && host_integerp (TYPE_SIZE (type
), 1))
1191 unsigned int type_align
= TYPE_ALIGN (type
);
1192 tree dsize
= DECL_SIZE (field
);
1193 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
1194 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
1195 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
1197 #ifdef ADJUST_FIELD_ALIGN
1198 if (! TYPE_USER_ALIGN (type
))
1199 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1202 /* A bit field may not span more units of alignment of its type
1203 than its type itself. Advance to next boundary if necessary. */
1204 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1206 if (DECL_PACKED (field
))
1208 if (warn_packed_bitfield_compat
== 1)
1211 "offset of packed bit-field %qD has changed in GCC 4.4",
1215 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1218 if (! DECL_PACKED (field
))
1219 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1223 #ifdef BITFIELD_NBYTES_LIMITED
1224 if (BITFIELD_NBYTES_LIMITED
1225 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1226 && TREE_CODE (field
) == FIELD_DECL
1227 && type
!= error_mark_node
1228 && DECL_BIT_FIELD_TYPE (field
)
1229 && ! DECL_PACKED (field
)
1230 && ! integer_zerop (DECL_SIZE (field
))
1231 && host_integerp (DECL_SIZE (field
), 1)
1232 && host_integerp (rli
->offset
, 1)
1233 && host_integerp (TYPE_SIZE (type
), 1))
1235 unsigned int type_align
= TYPE_ALIGN (type
);
1236 tree dsize
= DECL_SIZE (field
);
1237 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
1238 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
1239 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
1241 #ifdef ADJUST_FIELD_ALIGN
1242 if (! TYPE_USER_ALIGN (type
))
1243 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1246 if (maximum_field_alignment
!= 0)
1247 type_align
= MIN (type_align
, maximum_field_alignment
);
1248 /* ??? This test is opposite the test in the containing if
1249 statement, so this code is unreachable currently. */
1250 else if (DECL_PACKED (field
))
1251 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1253 /* A bit field may not span the unit of alignment of its type.
1254 Advance to next boundary if necessary. */
1255 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1256 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1258 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1262 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1264 When a bit field is inserted into a packed record, the whole
1265 size of the underlying type is used by one or more same-size
1266 adjacent bitfields. (That is, if its long:3, 32 bits is
1267 used in the record, and any additional adjacent long bitfields are
1268 packed into the same chunk of 32 bits. However, if the size
1269 changes, a new field of that size is allocated.) In an unpacked
1270 record, this is the same as using alignment, but not equivalent
1273 Note: for compatibility, we use the type size, not the type alignment
1274 to determine alignment, since that matches the documentation */
1276 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1278 tree prev_saved
= rli
->prev_field
;
1279 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1281 /* This is a bitfield if it exists. */
1282 if (rli
->prev_field
)
1284 /* If both are bitfields, nonzero, and the same size, this is
1285 the middle of a run. Zero declared size fields are special
1286 and handled as "end of run". (Note: it's nonzero declared
1287 size, but equal type sizes!) (Since we know that both
1288 the current and previous fields are bitfields by the
1289 time we check it, DECL_SIZE must be present for both.) */
1290 if (DECL_BIT_FIELD_TYPE (field
)
1291 && !integer_zerop (DECL_SIZE (field
))
1292 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1293 && host_integerp (DECL_SIZE (rli
->prev_field
), 0)
1294 && host_integerp (TYPE_SIZE (type
), 0)
1295 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1297 /* We're in the middle of a run of equal type size fields; make
1298 sure we realign if we run out of bits. (Not decl size,
1300 HOST_WIDE_INT bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
1302 if (rli
->remaining_in_alignment
< bitsize
)
1304 HOST_WIDE_INT typesize
= tree_low_cst (TYPE_SIZE (type
), 1);
1306 /* out of bits; bump up to next 'word'. */
1308 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1309 bitsize_int (rli
->remaining_in_alignment
));
1310 rli
->prev_field
= field
;
1311 if (typesize
< bitsize
)
1312 rli
->remaining_in_alignment
= 0;
1314 rli
->remaining_in_alignment
= typesize
- bitsize
;
1317 rli
->remaining_in_alignment
-= bitsize
;
1321 /* End of a run: if leaving a run of bitfields of the same type
1322 size, we have to "use up" the rest of the bits of the type
1325 Compute the new position as the sum of the size for the prior
1326 type and where we first started working on that type.
1327 Note: since the beginning of the field was aligned then
1328 of course the end will be too. No round needed. */
1330 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1333 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1334 bitsize_int (rli
->remaining_in_alignment
));
1337 /* We "use up" size zero fields; the code below should behave
1338 as if the prior field was not a bitfield. */
1341 /* Cause a new bitfield to be captured, either this time (if
1342 currently a bitfield) or next time we see one. */
1343 if (!DECL_BIT_FIELD_TYPE(field
)
1344 || integer_zerop (DECL_SIZE (field
)))
1345 rli
->prev_field
= NULL
;
1348 normalize_rli (rli
);
1351 /* If we're starting a new run of same type size bitfields
1352 (or a run of non-bitfields), set up the "first of the run"
1355 That is, if the current field is not a bitfield, or if there
1356 was a prior bitfield the type sizes differ, or if there wasn't
1357 a prior bitfield the size of the current field is nonzero.
1359 Note: we must be sure to test ONLY the type size if there was
1360 a prior bitfield and ONLY for the current field being zero if
1363 if (!DECL_BIT_FIELD_TYPE (field
)
1364 || (prev_saved
!= NULL
1365 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1366 : !integer_zerop (DECL_SIZE (field
)) ))
1368 /* Never smaller than a byte for compatibility. */
1369 unsigned int type_align
= BITS_PER_UNIT
;
1371 /* (When not a bitfield), we could be seeing a flex array (with
1372 no DECL_SIZE). Since we won't be using remaining_in_alignment
1373 until we see a bitfield (and come by here again) we just skip
1375 if (DECL_SIZE (field
) != NULL
1376 && host_integerp (TYPE_SIZE (TREE_TYPE (field
)), 1)
1377 && host_integerp (DECL_SIZE (field
), 1))
1379 unsigned HOST_WIDE_INT bitsize
1380 = tree_low_cst (DECL_SIZE (field
), 1);
1381 unsigned HOST_WIDE_INT typesize
1382 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field
)), 1);
1384 if (typesize
< bitsize
)
1385 rli
->remaining_in_alignment
= 0;
1387 rli
->remaining_in_alignment
= typesize
- bitsize
;
1390 /* Now align (conventionally) for the new type. */
1391 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1393 if (maximum_field_alignment
!= 0)
1394 type_align
= MIN (type_align
, maximum_field_alignment
);
1396 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1398 /* If we really aligned, don't allow subsequent bitfields
1400 rli
->prev_field
= NULL
;
1404 /* Offset so far becomes the position of this field after normalizing. */
1405 normalize_rli (rli
);
1406 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1407 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1408 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1410 /* If this field ended up more aligned than we thought it would be (we
1411 approximate this by seeing if its position changed), lay out the field
1412 again; perhaps we can use an integral mode for it now. */
1413 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1414 actual_align
= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1415 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1));
1416 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1417 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1418 else if (host_integerp (DECL_FIELD_OFFSET (field
), 1))
1419 actual_align
= (BITS_PER_UNIT
1420 * (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1421 & - tree_low_cst (DECL_FIELD_OFFSET (field
), 1)));
1423 actual_align
= DECL_OFFSET_ALIGN (field
);
1424 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1425 store / extract bit field operations will check the alignment of the
1426 record against the mode of bit fields. */
1428 if (known_align
!= actual_align
)
1429 layout_decl (field
, actual_align
);
1431 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1432 rli
->prev_field
= field
;
1434 /* Now add size of this field to the size of the record. If the size is
1435 not constant, treat the field as being a multiple of bytes and just
1436 adjust the offset, resetting the bit position. Otherwise, apportion the
1437 size amongst the bit position and offset. First handle the case of an
1438 unspecified size, which can happen when we have an invalid nested struct
1439 definition, such as struct j { struct j { int i; } }. The error message
1440 is printed in finish_struct. */
1441 if (DECL_SIZE (field
) == 0)
1443 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1444 || TREE_OVERFLOW (DECL_SIZE (field
)))
1447 = size_binop (PLUS_EXPR
, rli
->offset
,
1448 fold_convert (sizetype
,
1449 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1450 bitsize_unit_node
)));
1452 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1453 rli
->bitpos
= bitsize_zero_node
;
1454 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1456 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1458 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1460 /* If we ended a bitfield before the full length of the type then
1461 pad the struct out to the full length of the last type. */
1462 if ((DECL_CHAIN (field
) == NULL
1463 || TREE_CODE (DECL_CHAIN (field
)) != FIELD_DECL
)
1464 && DECL_BIT_FIELD_TYPE (field
)
1465 && !integer_zerop (DECL_SIZE (field
)))
1466 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1467 bitsize_int (rli
->remaining_in_alignment
));
1469 normalize_rli (rli
);
1473 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1474 normalize_rli (rli
);
1478 /* Assuming that all the fields have been laid out, this function uses
1479 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1480 indicated by RLI. */
1483 finalize_record_size (record_layout_info rli
)
1485 tree unpadded_size
, unpadded_size_unit
;
1487 /* Now we want just byte and bit offsets, so set the offset alignment
1488 to be a byte and then normalize. */
1489 rli
->offset_align
= BITS_PER_UNIT
;
1490 normalize_rli (rli
);
1492 /* Determine the desired alignment. */
1493 #ifdef ROUND_TYPE_ALIGN
1494 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1497 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1500 /* Compute the size so far. Be sure to allow for extra bits in the
1501 size in bytes. We have guaranteed above that it will be no more
1502 than a single byte. */
1503 unpadded_size
= rli_size_so_far (rli
);
1504 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1505 if (! integer_zerop (rli
->bitpos
))
1507 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1509 /* Round the size up to be a multiple of the required alignment. */
1510 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1511 TYPE_SIZE_UNIT (rli
->t
)
1512 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1514 if (TREE_CONSTANT (unpadded_size
)
1515 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1516 && input_location
!= BUILTINS_LOCATION
)
1517 warning (OPT_Wpadded
, "padding struct size to alignment boundary");
1519 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1520 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1521 && TREE_CONSTANT (unpadded_size
))
1525 #ifdef ROUND_TYPE_ALIGN
1527 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1529 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1532 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1533 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1535 if (TYPE_NAME (rli
->t
))
1539 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1540 name
= TYPE_NAME (rli
->t
);
1542 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1544 if (STRICT_ALIGNMENT
)
1545 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1546 "alignment for %qE", name
);
1548 warning (OPT_Wpacked
,
1549 "packed attribute is unnecessary for %qE", name
);
1553 if (STRICT_ALIGNMENT
)
1554 warning (OPT_Wpacked
,
1555 "packed attribute causes inefficient alignment");
1557 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1563 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1566 compute_record_mode (tree type
)
1569 enum machine_mode mode
= VOIDmode
;
1571 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1572 However, if possible, we use a mode that fits in a register
1573 instead, in order to allow for better optimization down the
1575 SET_TYPE_MODE (type
, BLKmode
);
1577 if (! host_integerp (TYPE_SIZE (type
), 1))
1580 /* A record which has any BLKmode members must itself be
1581 BLKmode; it can't go in a register. Unless the member is
1582 BLKmode only because it isn't aligned. */
1583 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1585 if (TREE_CODE (field
) != FIELD_DECL
)
1588 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1589 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1590 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1591 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1592 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1593 || ! host_integerp (bit_position (field
), 1)
1594 || DECL_SIZE (field
) == 0
1595 || ! host_integerp (DECL_SIZE (field
), 1))
1598 /* If this field is the whole struct, remember its mode so
1599 that, say, we can put a double in a class into a DF
1600 register instead of forcing it to live in the stack. */
1601 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1602 mode
= DECL_MODE (field
);
1604 /* With some targets, it is sub-optimal to access an aligned
1605 BLKmode structure as a scalar. */
1606 if (targetm
.member_type_forces_blk (field
, mode
))
1610 /* If we only have one real field; use its mode if that mode's size
1611 matches the type's size. This only applies to RECORD_TYPE. This
1612 does not apply to unions. */
1613 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
1614 && host_integerp (TYPE_SIZE (type
), 1)
1615 && GET_MODE_BITSIZE (mode
) == TREE_INT_CST_LOW (TYPE_SIZE (type
)))
1616 SET_TYPE_MODE (type
, mode
);
1618 SET_TYPE_MODE (type
, mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1));
1620 /* If structure's known alignment is less than what the scalar
1621 mode would need, and it matters, then stick with BLKmode. */
1622 if (TYPE_MODE (type
) != BLKmode
1624 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1625 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1627 /* If this is the only reason this type is BLKmode, then
1628 don't force containing types to be BLKmode. */
1629 TYPE_NO_FORCE_BLK (type
) = 1;
1630 SET_TYPE_MODE (type
, BLKmode
);
1634 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1638 finalize_type_size (tree type
)
1640 /* Normally, use the alignment corresponding to the mode chosen.
1641 However, where strict alignment is not required, avoid
1642 over-aligning structures, since most compilers do not do this
1645 if (TYPE_MODE (type
) != BLKmode
&& TYPE_MODE (type
) != VOIDmode
1646 && (STRICT_ALIGNMENT
1647 || (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
1648 && TREE_CODE (type
) != QUAL_UNION_TYPE
1649 && TREE_CODE (type
) != ARRAY_TYPE
)))
1651 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1653 /* Don't override a larger alignment requirement coming from a user
1654 alignment of one of the fields. */
1655 if (mode_align
>= TYPE_ALIGN (type
))
1657 TYPE_ALIGN (type
) = mode_align
;
1658 TYPE_USER_ALIGN (type
) = 0;
1662 /* Do machine-dependent extra alignment. */
1663 #ifdef ROUND_TYPE_ALIGN
1665 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1668 /* If we failed to find a simple way to calculate the unit size
1669 of the type, find it by division. */
1670 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1671 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1672 result will fit in sizetype. We will get more efficient code using
1673 sizetype, so we force a conversion. */
1674 TYPE_SIZE_UNIT (type
)
1675 = fold_convert (sizetype
,
1676 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1677 bitsize_unit_node
));
1679 if (TYPE_SIZE (type
) != 0)
1681 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1682 TYPE_SIZE_UNIT (type
)
1683 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
1686 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1687 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1688 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1689 if (TYPE_SIZE_UNIT (type
) != 0
1690 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1691 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1693 /* Also layout any other variants of the type. */
1694 if (TYPE_NEXT_VARIANT (type
)
1695 || type
!= TYPE_MAIN_VARIANT (type
))
1698 /* Record layout info of this variant. */
1699 tree size
= TYPE_SIZE (type
);
1700 tree size_unit
= TYPE_SIZE_UNIT (type
);
1701 unsigned int align
= TYPE_ALIGN (type
);
1702 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1703 enum machine_mode mode
= TYPE_MODE (type
);
1705 /* Copy it into all variants. */
1706 for (variant
= TYPE_MAIN_VARIANT (type
);
1708 variant
= TYPE_NEXT_VARIANT (variant
))
1710 TYPE_SIZE (variant
) = size
;
1711 TYPE_SIZE_UNIT (variant
) = size_unit
;
1712 TYPE_ALIGN (variant
) = align
;
1713 TYPE_USER_ALIGN (variant
) = user_align
;
1714 SET_TYPE_MODE (variant
, mode
);
1719 /* Return a new underlying object for a bitfield started with FIELD. */
1722 start_bitfield_representative (tree field
)
1724 tree repr
= make_node (FIELD_DECL
);
1725 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
1726 /* Force the representative to begin at a BITS_PER_UNIT aligned
1727 boundary - C++ may use tail-padding of a base object to
1728 continue packing bits so the bitfield region does not start
1729 at bit zero (see g++.dg/abi/bitfield5.C for example).
1730 Unallocated bits may happen for other reasons as well,
1731 for example Ada which allows explicit bit-granular structure layout. */
1732 DECL_FIELD_BIT_OFFSET (repr
)
1733 = size_binop (BIT_AND_EXPR
,
1734 DECL_FIELD_BIT_OFFSET (field
),
1735 bitsize_int (~(BITS_PER_UNIT
- 1)));
1736 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
1737 DECL_SIZE (repr
) = DECL_SIZE (field
);
1738 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
1739 DECL_PACKED (repr
) = DECL_PACKED (field
);
1740 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
1744 /* Finish up a bitfield group that was started by creating the underlying
1745 object REPR with the last field in the bitfield group FIELD. */
1748 finish_bitfield_representative (tree repr
, tree field
)
1750 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
1751 enum machine_mode mode
;
1754 size
= size_diffop (DECL_FIELD_OFFSET (field
),
1755 DECL_FIELD_OFFSET (repr
));
1756 gcc_assert (host_integerp (size
, 1));
1757 bitsize
= (tree_low_cst (size
, 1) * BITS_PER_UNIT
1758 + tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1759 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1)
1760 + tree_low_cst (DECL_SIZE (field
), 1));
1762 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1763 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1765 /* Now nothing tells us how to pad out bitsize ... */
1766 nextf
= DECL_CHAIN (field
);
1767 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
1768 nextf
= DECL_CHAIN (nextf
);
1772 /* If there was an error, the field may be not laid out
1773 correctly. Don't bother to do anything. */
1774 if (TREE_TYPE (nextf
) == error_mark_node
)
1776 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
1777 DECL_FIELD_OFFSET (repr
));
1778 if (host_integerp (maxsize
, 1))
1780 maxbitsize
= (tree_low_cst (maxsize
, 1) * BITS_PER_UNIT
1781 + tree_low_cst (DECL_FIELD_BIT_OFFSET (nextf
), 1)
1782 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1));
1783 /* If the group ends within a bitfield nextf does not need to be
1784 aligned to BITS_PER_UNIT. Thus round up. */
1785 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1788 maxbitsize
= bitsize
;
1792 /* ??? If you consider that tail-padding of this struct might be
1793 re-used when deriving from it we cannot really do the following
1794 and thus need to set maxsize to bitsize? Also we cannot
1795 generally rely on maxsize to fold to an integer constant, so
1796 use bitsize as fallback for this case. */
1797 tree maxsize
= size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field
)),
1798 DECL_FIELD_OFFSET (repr
));
1799 if (host_integerp (maxsize
, 1))
1800 maxbitsize
= (tree_low_cst (maxsize
, 1) * BITS_PER_UNIT
1801 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1));
1803 maxbitsize
= bitsize
;
1806 /* Only if we don't artificially break up the representative in
1807 the middle of a large bitfield with different possibly
1808 overlapping representatives. And all representatives start
1810 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
1812 /* Find the smallest nice mode to use. */
1813 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1814 mode
= GET_MODE_WIDER_MODE (mode
))
1815 if (GET_MODE_BITSIZE (mode
) >= bitsize
)
1817 if (mode
!= VOIDmode
1818 && (GET_MODE_BITSIZE (mode
) > maxbitsize
1819 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
))
1822 if (mode
== VOIDmode
)
1824 /* We really want a BLKmode representative only as a last resort,
1825 considering the member b in
1826 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1827 Otherwise we simply want to split the representative up
1828 allowing for overlaps within the bitfield region as required for
1829 struct { int a : 7; int b : 7;
1830 int c : 10; int d; } __attribute__((packed));
1831 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1832 DECL_SIZE (repr
) = bitsize_int (bitsize
);
1833 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
1834 DECL_MODE (repr
) = BLKmode
;
1835 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
1836 bitsize
/ BITS_PER_UNIT
);
1840 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
1841 DECL_SIZE (repr
) = bitsize_int (modesize
);
1842 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
1843 DECL_MODE (repr
) = mode
;
1844 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
1847 /* Remember whether the bitfield group is at the end of the
1848 structure or not. */
1849 DECL_CHAIN (repr
) = nextf
;
1852 /* Compute and set FIELD_DECLs for the underlying objects we should
1853 use for bitfield access for the structure laid out with RLI. */
1856 finish_bitfield_layout (record_layout_info rli
)
1859 tree repr
= NULL_TREE
;
1861 /* Unions would be special, for the ease of type-punning optimizations
1862 we could use the underlying type as hint for the representative
1863 if the bitfield would fit and the representative would not exceed
1864 the union in size. */
1865 if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1868 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (rli
->t
);
1869 field
; field
= DECL_CHAIN (field
))
1871 if (TREE_CODE (field
) != FIELD_DECL
)
1874 /* In the C++ memory model, consecutive bit fields in a structure are
1875 considered one memory location and updating a memory location
1876 may not store into adjacent memory locations. */
1878 && DECL_BIT_FIELD_TYPE (field
))
1880 /* Start new representative. */
1881 repr
= start_bitfield_representative (field
);
1884 && ! DECL_BIT_FIELD_TYPE (field
))
1886 /* Finish off new representative. */
1887 finish_bitfield_representative (repr
, prev
);
1890 else if (DECL_BIT_FIELD_TYPE (field
))
1892 gcc_assert (repr
!= NULL_TREE
);
1894 /* Zero-size bitfields finish off a representative and
1895 do not have a representative themselves. This is
1896 required by the C++ memory model. */
1897 if (integer_zerop (DECL_SIZE (field
)))
1899 finish_bitfield_representative (repr
, prev
);
1903 /* We assume that either DECL_FIELD_OFFSET of the representative
1904 and each bitfield member is a constant or they are equal.
1905 This is because we need to be able to compute the bit-offset
1906 of each field relative to the representative in get_bit_range
1907 during RTL expansion.
1908 If these constraints are not met, simply force a new
1909 representative to be generated. That will at most
1910 generate worse code but still maintain correctness with
1911 respect to the C++ memory model. */
1912 else if (!((host_integerp (DECL_FIELD_OFFSET (repr
), 1)
1913 && host_integerp (DECL_FIELD_OFFSET (field
), 1))
1914 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
1915 DECL_FIELD_OFFSET (field
), 0)))
1917 finish_bitfield_representative (repr
, prev
);
1918 repr
= start_bitfield_representative (field
);
1925 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
1931 finish_bitfield_representative (repr
, prev
);
1934 /* Do all of the work required to layout the type indicated by RLI,
1935 once the fields have been laid out. This function will call `free'
1936 for RLI, unless FREE_P is false. Passing a value other than false
1937 for FREE_P is bad practice; this option only exists to support the
1941 finish_record_layout (record_layout_info rli
, int free_p
)
1945 /* Compute the final size. */
1946 finalize_record_size (rli
);
1948 /* Compute the TYPE_MODE for the record. */
1949 compute_record_mode (rli
->t
);
1951 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1952 finalize_type_size (rli
->t
);
1954 /* Compute bitfield representatives. */
1955 finish_bitfield_layout (rli
);
1957 /* Propagate TYPE_PACKED to variants. With C++ templates,
1958 handle_packed_attribute is too early to do this. */
1959 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
1960 variant
= TYPE_NEXT_VARIANT (variant
))
1961 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
1963 /* Lay out any static members. This is done now because their type
1964 may use the record's type. */
1965 while (!vec_safe_is_empty (rli
->pending_statics
))
1966 layout_decl (rli
->pending_statics
->pop (), 0);
1971 vec_free (rli
->pending_statics
);
1977 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1978 NAME, its fields are chained in reverse on FIELDS.
1980 If ALIGN_TYPE is non-null, it is given the same alignment as
1984 finish_builtin_struct (tree type
, const char *name
, tree fields
,
1989 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
1991 DECL_FIELD_CONTEXT (fields
) = type
;
1992 next
= DECL_CHAIN (fields
);
1993 DECL_CHAIN (fields
) = tail
;
1995 TYPE_FIELDS (type
) = tail
;
1999 TYPE_ALIGN (type
) = TYPE_ALIGN (align_type
);
2000 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2004 #if 0 /* not yet, should get fixed properly later */
2005 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2007 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2008 TYPE_DECL
, get_identifier (name
), type
);
2010 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2011 layout_decl (TYPE_NAME (type
), 0);
2014 /* Calculate the mode, size, and alignment for TYPE.
2015 For an array type, calculate the element separation as well.
2016 Record TYPE on the chain of permanent or temporary types
2017 so that dbxout will find out about it.
2019 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2020 layout_type does nothing on such a type.
2022 If the type is incomplete, its TYPE_SIZE remains zero. */
2025 layout_type (tree type
)
2029 if (type
== error_mark_node
)
2032 /* Do nothing if type has been laid out before. */
2033 if (TYPE_SIZE (type
))
2036 switch (TREE_CODE (type
))
2039 /* This kind of type is the responsibility
2040 of the language-specific code. */
2043 case BOOLEAN_TYPE
: /* Used for Java, Pascal, and Chill. */
2044 if (TYPE_PRECISION (type
) == 0)
2045 TYPE_PRECISION (type
) = 1; /* default to one byte/boolean. */
2047 /* ... fall through ... */
2051 if (TREE_CODE (TYPE_MIN_VALUE (type
)) == INTEGER_CST
2052 && tree_int_cst_sgn (TYPE_MIN_VALUE (type
)) >= 0)
2053 TYPE_UNSIGNED (type
) = 1;
2055 SET_TYPE_MODE (type
,
2056 smallest_mode_for_size (TYPE_PRECISION (type
), MODE_INT
));
2057 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2058 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2062 SET_TYPE_MODE (type
,
2063 mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0));
2064 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2065 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2068 case FIXED_POINT_TYPE
:
2069 /* TYPE_MODE (type) has been set already. */
2070 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2071 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2075 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2076 SET_TYPE_MODE (type
,
2077 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
2078 (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
2079 ? MODE_COMPLEX_FLOAT
: MODE_COMPLEX_INT
),
2081 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2082 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2087 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
2088 tree innertype
= TREE_TYPE (type
);
2090 gcc_assert (!(nunits
& (nunits
- 1)));
2092 /* Find an appropriate mode for the vector type. */
2093 if (TYPE_MODE (type
) == VOIDmode
)
2094 SET_TYPE_MODE (type
,
2095 mode_for_vector (TYPE_MODE (innertype
), nunits
));
2097 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2098 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2099 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2100 TYPE_SIZE_UNIT (innertype
),
2102 TYPE_SIZE (type
) = int_const_binop (MULT_EXPR
, TYPE_SIZE (innertype
),
2103 bitsize_int (nunits
));
2105 /* For vector types, we do not default to the mode's alignment.
2106 Instead, query a target hook, defaulting to natural alignment.
2107 This prevents ABI changes depending on whether or not native
2108 vector modes are supported. */
2109 TYPE_ALIGN (type
) = targetm
.vector_alignment (type
);
2111 /* However, if the underlying mode requires a bigger alignment than
2112 what the target hook provides, we cannot use the mode. For now,
2113 simply reject that case. */
2114 gcc_assert (TYPE_ALIGN (type
)
2115 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2120 /* This is an incomplete type and so doesn't have a size. */
2121 TYPE_ALIGN (type
) = 1;
2122 TYPE_USER_ALIGN (type
) = 0;
2123 SET_TYPE_MODE (type
, VOIDmode
);
2127 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2128 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE
/ BITS_PER_UNIT
);
2129 /* A pointer might be MODE_PARTIAL_INT,
2130 but ptrdiff_t must be integral. */
2131 SET_TYPE_MODE (type
, mode_for_size (POINTER_SIZE
, MODE_INT
, 0));
2132 TYPE_PRECISION (type
) = POINTER_SIZE
;
2137 /* It's hard to see what the mode and size of a function ought to
2138 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2139 make it consistent with that. */
2140 SET_TYPE_MODE (type
, mode_for_size (FUNCTION_BOUNDARY
, MODE_INT
, 0));
2141 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2142 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2146 case REFERENCE_TYPE
:
2148 enum machine_mode mode
= TYPE_MODE (type
);
2149 if (TREE_CODE (type
) == REFERENCE_TYPE
&& reference_types_internal
)
2151 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
2152 mode
= targetm
.addr_space
.address_mode (as
);
2155 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2156 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2157 TYPE_UNSIGNED (type
) = 1;
2158 TYPE_PRECISION (type
) = GET_MODE_BITSIZE (mode
);
2164 tree index
= TYPE_DOMAIN (type
);
2165 tree element
= TREE_TYPE (type
);
2167 build_pointer_type (element
);
2169 /* We need to know both bounds in order to compute the size. */
2170 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2171 && TYPE_SIZE (element
))
2173 tree ub
= TYPE_MAX_VALUE (index
);
2174 tree lb
= TYPE_MIN_VALUE (index
);
2175 tree element_size
= TYPE_SIZE (element
);
2178 /* Make sure that an array of zero-sized element is zero-sized
2179 regardless of its extent. */
2180 if (integer_zerop (element_size
))
2181 length
= size_zero_node
;
2183 /* The computation should happen in the original signedness so
2184 that (possible) negative values are handled appropriately
2185 when determining overflow. */
2188 /* ??? When it is obvious that the range is signed
2189 represent it using ssizetype. */
2190 if (TREE_CODE (lb
) == INTEGER_CST
2191 && TREE_CODE (ub
) == INTEGER_CST
2192 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2193 && tree_int_cst_lt (ub
, lb
))
2195 unsigned prec
= TYPE_PRECISION (TREE_TYPE (lb
));
2196 lb
= double_int_to_tree
2198 tree_to_double_int (lb
).sext (prec
));
2199 ub
= double_int_to_tree
2201 tree_to_double_int (ub
).sext (prec
));
2204 = fold_convert (sizetype
,
2205 size_binop (PLUS_EXPR
,
2206 build_int_cst (TREE_TYPE (lb
), 1),
2207 size_binop (MINUS_EXPR
, ub
, lb
)));
2210 /* ??? We have no way to distinguish a null-sized array from an
2211 array spanning the whole sizetype range, so we arbitrarily
2212 decide that [0, -1] is the only valid representation. */
2213 if (integer_zerop (length
)
2214 && TREE_OVERFLOW (length
)
2215 && integer_zerop (lb
))
2216 length
= size_zero_node
;
2218 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2219 fold_convert (bitsizetype
,
2222 /* If we know the size of the element, calculate the total size
2223 directly, rather than do some division thing below. This
2224 optimization helps Fortran assumed-size arrays (where the
2225 size of the array is determined at runtime) substantially. */
2226 if (TYPE_SIZE_UNIT (element
))
2227 TYPE_SIZE_UNIT (type
)
2228 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2231 /* Now round the alignment and size,
2232 using machine-dependent criteria if any. */
2234 #ifdef ROUND_TYPE_ALIGN
2236 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (element
), BITS_PER_UNIT
);
2238 TYPE_ALIGN (type
) = MAX (TYPE_ALIGN (element
), BITS_PER_UNIT
);
2240 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2241 SET_TYPE_MODE (type
, BLKmode
);
2242 if (TYPE_SIZE (type
) != 0
2243 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2244 /* BLKmode elements force BLKmode aggregate;
2245 else extract/store fields may lose. */
2246 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2247 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2249 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2251 if (TYPE_MODE (type
) != BLKmode
2252 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2253 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2255 TYPE_NO_FORCE_BLK (type
) = 1;
2256 SET_TYPE_MODE (type
, BLKmode
);
2259 /* When the element size is constant, check that it is at least as
2260 large as the element alignment. */
2261 if (TYPE_SIZE_UNIT (element
)
2262 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2263 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2265 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2266 && !integer_zerop (TYPE_SIZE_UNIT (element
))
2267 && compare_tree_int (TYPE_SIZE_UNIT (element
),
2268 TYPE_ALIGN_UNIT (element
)) < 0)
2269 error ("alignment of array elements is greater than element size");
2275 case QUAL_UNION_TYPE
:
2278 record_layout_info rli
;
2280 /* Initialize the layout information. */
2281 rli
= start_record_layout (type
);
2283 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2284 in the reverse order in building the COND_EXPR that denotes
2285 its size. We reverse them again later. */
2286 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2287 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2289 /* Place all the fields. */
2290 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2291 place_field (rli
, field
);
2293 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2294 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2296 /* Finish laying out the record. */
2297 finish_record_layout (rli
, /*free_p=*/true);
2305 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2306 records and unions, finish_record_layout already called this
2308 if (TREE_CODE (type
) != RECORD_TYPE
2309 && TREE_CODE (type
) != UNION_TYPE
2310 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
2311 finalize_type_size (type
);
2313 /* We should never see alias sets on incomplete aggregates. And we
2314 should not call layout_type on not incomplete aggregates. */
2315 if (AGGREGATE_TYPE_P (type
))
2316 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2319 /* Vector types need to re-check the target flags each time we report
2320 the machine mode. We need to do this because attribute target can
2321 change the result of vector_mode_supported_p and have_regs_of_mode
2322 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2323 change on a per-function basis. */
2324 /* ??? Possibly a better solution is to run through all the types
2325 referenced by a function and re-compute the TYPE_MODE once, rather
2326 than make the TYPE_MODE macro call a function. */
2329 vector_type_mode (const_tree t
)
2331 enum machine_mode mode
;
2333 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
2335 mode
= t
->type_common
.mode
;
2336 if (VECTOR_MODE_P (mode
)
2337 && (!targetm
.vector_mode_supported_p (mode
)
2338 || !have_regs_of_mode
[mode
]))
2340 enum machine_mode innermode
= TREE_TYPE (t
)->type_common
.mode
;
2342 /* For integers, try mapping it to a same-sized scalar mode. */
2343 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
2345 mode
= mode_for_size (TYPE_VECTOR_SUBPARTS (t
)
2346 * GET_MODE_BITSIZE (innermode
), MODE_INT
, 0);
2348 if (mode
!= VOIDmode
&& have_regs_of_mode
[mode
])
2358 /* Create and return a type for signed integers of PRECISION bits. */
2361 make_signed_type (int precision
)
2363 tree type
= make_node (INTEGER_TYPE
);
2365 TYPE_PRECISION (type
) = precision
;
2367 fixup_signed_type (type
);
2371 /* Create and return a type for unsigned integers of PRECISION bits. */
2374 make_unsigned_type (int precision
)
2376 tree type
= make_node (INTEGER_TYPE
);
2378 TYPE_PRECISION (type
) = precision
;
2380 fixup_unsigned_type (type
);
2384 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2388 make_fract_type (int precision
, int unsignedp
, int satp
)
2390 tree type
= make_node (FIXED_POINT_TYPE
);
2392 TYPE_PRECISION (type
) = precision
;
2395 TYPE_SATURATING (type
) = 1;
2397 /* Lay out the type: set its alignment, size, etc. */
2400 TYPE_UNSIGNED (type
) = 1;
2401 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UFRACT
, 0));
2404 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_FRACT
, 0));
2410 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2414 make_accum_type (int precision
, int unsignedp
, int satp
)
2416 tree type
= make_node (FIXED_POINT_TYPE
);
2418 TYPE_PRECISION (type
) = precision
;
2421 TYPE_SATURATING (type
) = 1;
2423 /* Lay out the type: set its alignment, size, etc. */
2426 TYPE_UNSIGNED (type
) = 1;
2427 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UACCUM
, 0));
2430 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_ACCUM
, 0));
2436 /* Initialize sizetypes so layout_type can use them. */
2439 initialize_sizetypes (void)
2441 int precision
, bprecision
;
2443 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2444 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2445 precision
= INT_TYPE_SIZE
;
2446 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2447 precision
= LONG_TYPE_SIZE
;
2448 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2449 precision
= LONG_LONG_TYPE_SIZE
;
2450 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2451 precision
= SHORT_TYPE_SIZE
;
2456 = MIN (precision
+ BITS_PER_UNIT_LOG
+ 1, MAX_FIXED_MODE_SIZE
);
2458 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision
, MODE_INT
));
2459 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2460 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2462 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2463 sizetype
= make_node (INTEGER_TYPE
);
2464 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2465 TYPE_PRECISION (sizetype
) = precision
;
2466 TYPE_UNSIGNED (sizetype
) = 1;
2467 bitsizetype
= make_node (INTEGER_TYPE
);
2468 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2469 TYPE_PRECISION (bitsizetype
) = bprecision
;
2470 TYPE_UNSIGNED (bitsizetype
) = 1;
2472 /* Now layout both types manually. */
2473 SET_TYPE_MODE (sizetype
, smallest_mode_for_size (precision
, MODE_INT
));
2474 TYPE_ALIGN (sizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
));
2475 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2476 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype
)));
2477 set_min_and_max_values_for_integral_type (sizetype
, precision
,
2478 /*is_unsigned=*/true);
2480 SET_TYPE_MODE (bitsizetype
, smallest_mode_for_size (bprecision
, MODE_INT
));
2481 TYPE_ALIGN (bitsizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
));
2482 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2483 TYPE_SIZE_UNIT (bitsizetype
)
2484 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype
)));
2485 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
,
2486 /*is_unsigned=*/true);
2488 /* Create the signed variants of *sizetype. */
2489 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2490 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2491 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2492 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2495 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2496 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2497 for TYPE, based on the PRECISION and whether or not the TYPE
2498 IS_UNSIGNED. PRECISION need not correspond to a width supported
2499 natively by the hardware; for example, on a machine with 8-bit,
2500 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2504 set_min_and_max_values_for_integral_type (tree type
,
2513 min_value
= build_int_cst (type
, 0);
2515 = build_int_cst_wide (type
, precision
- HOST_BITS_PER_WIDE_INT
>= 0
2517 : ((HOST_WIDE_INT
) 1 << precision
) - 1,
2518 precision
- HOST_BITS_PER_WIDE_INT
> 0
2519 ? ((unsigned HOST_WIDE_INT
) ~0
2520 >> (HOST_BITS_PER_WIDE_INT
2521 - (precision
- HOST_BITS_PER_WIDE_INT
)))
2527 = build_int_cst_wide (type
,
2528 (precision
- HOST_BITS_PER_WIDE_INT
> 0
2530 : (HOST_WIDE_INT
) (-1) << (precision
- 1)),
2531 (((HOST_WIDE_INT
) (-1)
2532 << (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
2533 ? precision
- HOST_BITS_PER_WIDE_INT
- 1
2536 = build_int_cst_wide (type
,
2537 (precision
- HOST_BITS_PER_WIDE_INT
> 0
2540 (((unsigned HOST_WIDE_INT
) 1
2541 << (precision
- 1)) - 1)),
2542 (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
2544 ((((unsigned HOST_WIDE_INT
) 1
2545 << (precision
- HOST_BITS_PER_WIDE_INT
2550 TYPE_MIN_VALUE (type
) = min_value
;
2551 TYPE_MAX_VALUE (type
) = max_value
;
2554 /* Set the extreme values of TYPE based on its precision in bits,
2555 then lay it out. Used when make_signed_type won't do
2556 because the tree code is not INTEGER_TYPE.
2557 E.g. for Pascal, when the -fsigned-char option is given. */
2560 fixup_signed_type (tree type
)
2562 int precision
= TYPE_PRECISION (type
);
2564 /* We can not represent properly constants greater then
2565 HOST_BITS_PER_DOUBLE_INT, still we need the types
2566 as they are used by i386 vector extensions and friends. */
2567 if (precision
> HOST_BITS_PER_DOUBLE_INT
)
2568 precision
= HOST_BITS_PER_DOUBLE_INT
;
2570 set_min_and_max_values_for_integral_type (type
, precision
,
2571 /*is_unsigned=*/false);
2573 /* Lay out the type: set its alignment, size, etc. */
2577 /* Set the extreme values of TYPE based on its precision in bits,
2578 then lay it out. This is used both in `make_unsigned_type'
2579 and for enumeral types. */
2582 fixup_unsigned_type (tree type
)
2584 int precision
= TYPE_PRECISION (type
);
2586 /* We can not represent properly constants greater then
2587 HOST_BITS_PER_DOUBLE_INT, still we need the types
2588 as they are used by i386 vector extensions and friends. */
2589 if (precision
> HOST_BITS_PER_DOUBLE_INT
)
2590 precision
= HOST_BITS_PER_DOUBLE_INT
;
2592 TYPE_UNSIGNED (type
) = 1;
2594 set_min_and_max_values_for_integral_type (type
, precision
,
2595 /*is_unsigned=*/true);
2597 /* Lay out the type: set its alignment, size, etc. */
2601 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2604 BITREGION_START is the bit position of the first bit in this
2605 sequence of bit fields. BITREGION_END is the last bit in this
2606 sequence. If these two fields are non-zero, we should restrict the
2607 memory access to that range. Otherwise, we are allowed to touch
2608 any adjacent non bit-fields.
2610 ALIGN is the alignment of the underlying object in bits.
2611 VOLATILEP says whether the bitfield is volatile. */
2613 bit_field_mode_iterator
2614 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2615 HOST_WIDE_INT bitregion_start
,
2616 HOST_WIDE_INT bitregion_end
,
2617 unsigned int align
, bool volatilep
)
2618 : mode_ (GET_CLASS_NARROWEST_MODE (MODE_INT
)), bitsize_ (bitsize
),
2619 bitpos_ (bitpos
), bitregion_start_ (bitregion_start
),
2620 bitregion_end_ (bitregion_end
), align_ (align
),
2621 volatilep_ (volatilep
), count_ (0)
2623 if (!bitregion_end_
)
2625 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2626 the bitfield is mapped and won't trap, provided that ALIGN isn't
2627 too large. The cap is the biggest required alignment for data,
2628 or at least the word size. And force one such chunk at least. */
2629 unsigned HOST_WIDE_INT units
2630 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
2633 bitregion_end_
= bitpos
+ bitsize
+ units
- 1;
2634 bitregion_end_
-= bitregion_end_
% units
+ 1;
2638 /* Calls to this function return successively larger modes that can be used
2639 to represent the bitfield. Return true if another bitfield mode is
2640 available, storing it in *OUT_MODE if so. */
2643 bit_field_mode_iterator::next_mode (enum machine_mode
*out_mode
)
2645 for (; mode_
!= VOIDmode
; mode_
= GET_MODE_WIDER_MODE (mode_
))
2647 unsigned int unit
= GET_MODE_BITSIZE (mode_
);
2649 /* Skip modes that don't have full precision. */
2650 if (unit
!= GET_MODE_PRECISION (mode_
))
2653 /* Stop if the mode is too wide to handle efficiently. */
2654 if (unit
> MAX_FIXED_MODE_SIZE
)
2657 /* Don't deliver more than one multiword mode; the smallest one
2659 if (count_
> 0 && unit
> BITS_PER_WORD
)
2662 /* Skip modes that are too small. */
2663 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) bitpos_
% unit
;
2664 unsigned HOST_WIDE_INT subend
= substart
+ bitsize_
;
2668 /* Stop if the mode goes outside the bitregion. */
2669 HOST_WIDE_INT start
= bitpos_
- substart
;
2670 if (bitregion_start_
&& start
< bitregion_start_
)
2672 HOST_WIDE_INT end
= start
+ unit
;
2673 if (end
> bitregion_end_
+ 1)
2676 /* Stop if the mode requires too much alignment. */
2677 if (GET_MODE_ALIGNMENT (mode_
) > align_
2678 && SLOW_UNALIGNED_ACCESS (mode_
, align_
))
2682 mode_
= GET_MODE_WIDER_MODE (mode_
);
2689 /* Return true if smaller modes are generally preferred for this kind
2693 bit_field_mode_iterator::prefer_smaller_modes ()
2696 ? targetm
.narrow_volatile_bitfield ()
2697 : !SLOW_BYTE_ACCESS
);
2700 /* Find the best machine mode to use when referencing a bit field of length
2701 BITSIZE bits starting at BITPOS.
2703 BITREGION_START is the bit position of the first bit in this
2704 sequence of bit fields. BITREGION_END is the last bit in this
2705 sequence. If these two fields are non-zero, we should restrict the
2706 memory access to that range. Otherwise, we are allowed to touch
2707 any adjacent non bit-fields.
2709 The underlying object is known to be aligned to a boundary of ALIGN bits.
2710 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2711 larger than LARGEST_MODE (usually SImode).
2713 If no mode meets all these conditions, we return VOIDmode.
2715 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2716 smallest mode meeting these conditions.
2718 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2719 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2722 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2723 decide which of the above modes should be used. */
2726 get_best_mode (int bitsize
, int bitpos
,
2727 unsigned HOST_WIDE_INT bitregion_start
,
2728 unsigned HOST_WIDE_INT bitregion_end
,
2730 enum machine_mode largest_mode
, bool volatilep
)
2732 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
2733 bitregion_end
, align
, volatilep
);
2734 enum machine_mode widest_mode
= VOIDmode
;
2735 enum machine_mode mode
;
2736 while (iter
.next_mode (&mode
)
2737 /* ??? For historical reasons, reject modes that would normally
2738 receive greater alignment, even if unaligned accesses are
2739 acceptable. This has both advantages and disadvantages.
2740 Removing this check means that something like:
2742 struct s { unsigned int x; unsigned int y; };
2743 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2745 can be implemented using a single load and compare on
2746 64-bit machines that have no alignment restrictions.
2747 For example, on powerpc64-linux-gnu, we would generate:
2769 However, accessing more than one field can make life harder
2770 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2771 has a series of unsigned short copies followed by a series of
2772 unsigned short comparisons. With this check, both the copies
2773 and comparisons remain 16-bit accesses and FRE is able
2774 to eliminate the latter. Without the check, the comparisons
2775 can be done using 2 64-bit operations, which FRE isn't able
2776 to handle in the same way.
2778 Either way, it would probably be worth disabling this check
2779 during expand. One particular example where removing the
2780 check would help is the get_best_mode call in store_bit_field.
2781 If we are given a memory bitregion of 128 bits that is aligned
2782 to a 64-bit boundary, and the bitfield we want to modify is
2783 in the second half of the bitregion, this check causes
2784 store_bitfield to turn the memory into a 64-bit reference
2785 to the _first_ half of the region. We later use
2786 adjust_bitfield_address to get a reference to the correct half,
2787 but doing so looks to adjust_bitfield_address as though we are
2788 moving past the end of the original object, so it drops the
2789 associated MEM_EXPR and MEM_OFFSET. Removing the check
2790 causes store_bit_field to keep a 128-bit memory reference,
2791 so that the final bitfield reference still has a MEM_EXPR
2793 && GET_MODE_ALIGNMENT (mode
) <= align
2794 && (largest_mode
== VOIDmode
2795 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (largest_mode
)))
2798 if (iter
.prefer_smaller_modes ())
2804 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2805 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2808 get_mode_bounds (enum machine_mode mode
, int sign
,
2809 enum machine_mode target_mode
,
2810 rtx
*mmin
, rtx
*mmax
)
2812 unsigned size
= GET_MODE_BITSIZE (mode
);
2813 unsigned HOST_WIDE_INT min_val
, max_val
;
2815 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
2819 min_val
= -((unsigned HOST_WIDE_INT
) 1 << (size
- 1));
2820 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)) - 1;
2825 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1) << 1) - 1;
2828 *mmin
= gen_int_mode (min_val
, target_mode
);
2829 *mmax
= gen_int_mode (max_val
, target_mode
);
2832 #include "gt-stor-layout.h"