2015-01-20 Jeff Law <law@redhat.com>
[official-gcc.git] / gcc / tree-predcom.c
blobac32c849a121559bd3663aa31c965f8a76e8a47f
1 /* Predictive commoning.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
162 a[i] = 1;
163 a[i+2] = 2;
166 can be replaced with
168 t0 = a[0];
169 t1 = a[1];
170 for (i = 0; i < n; i++)
172 a[i] = 1;
173 t2 = 2;
174 t0 = t1;
175 t1 = t2;
177 a[n] = t0;
178 a[n+1] = t1;
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187 #include "config.h"
188 #include "system.h"
189 #include "coretypes.h"
190 #include "tm.h"
191 #include "hash-set.h"
192 #include "machmode.h"
193 #include "vec.h"
194 #include "double-int.h"
195 #include "input.h"
196 #include "alias.h"
197 #include "symtab.h"
198 #include "wide-int.h"
199 #include "inchash.h"
200 #include "tree.h"
201 #include "fold-const.h"
202 #include "tm_p.h"
203 #include "cfgloop.h"
204 #include "predict.h"
205 #include "hard-reg-set.h"
206 #include "function.h"
207 #include "dominance.h"
208 #include "cfg.h"
209 #include "basic-block.h"
210 #include "tree-ssa-alias.h"
211 #include "internal-fn.h"
212 #include "tree-eh.h"
213 #include "gimple-expr.h"
214 #include "is-a.h"
215 #include "gimple.h"
216 #include "gimplify.h"
217 #include "gimple-iterator.h"
218 #include "gimplify-me.h"
219 #include "gimple-ssa.h"
220 #include "tree-phinodes.h"
221 #include "ssa-iterators.h"
222 #include "stringpool.h"
223 #include "tree-ssanames.h"
224 #include "tree-ssa-loop-ivopts.h"
225 #include "tree-ssa-loop-manip.h"
226 #include "tree-ssa-loop-niter.h"
227 #include "tree-ssa-loop.h"
228 #include "tree-into-ssa.h"
229 #include "hashtab.h"
230 #include "rtl.h"
231 #include "flags.h"
232 #include "statistics.h"
233 #include "real.h"
234 #include "fixed-value.h"
235 #include "insn-config.h"
236 #include "expmed.h"
237 #include "dojump.h"
238 #include "explow.h"
239 #include "calls.h"
240 #include "emit-rtl.h"
241 #include "varasm.h"
242 #include "stmt.h"
243 #include "expr.h"
244 #include "tree-dfa.h"
245 #include "tree-ssa.h"
246 #include "tree-data-ref.h"
247 #include "tree-scalar-evolution.h"
248 #include "tree-chrec.h"
249 #include "params.h"
250 #include "gimple-pretty-print.h"
251 #include "tree-pass.h"
252 #include "tree-affine.h"
253 #include "tree-inline.h"
254 #include "wide-int-print.h"
256 /* The maximum number of iterations between the considered memory
257 references. */
259 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
261 /* Data references (or phi nodes that carry data reference values across
262 loop iterations). */
264 typedef struct dref_d
266 /* The reference itself. */
267 struct data_reference *ref;
269 /* The statement in that the reference appears. */
270 gimple stmt;
272 /* In case that STMT is a phi node, this field is set to the SSA name
273 defined by it in replace_phis_by_defined_names (in order to avoid
274 pointing to phi node that got reallocated in the meantime). */
275 tree name_defined_by_phi;
277 /* Distance of the reference from the root of the chain (in number of
278 iterations of the loop). */
279 unsigned distance;
281 /* Number of iterations offset from the first reference in the component. */
282 widest_int offset;
284 /* Number of the reference in a component, in dominance ordering. */
285 unsigned pos;
287 /* True if the memory reference is always accessed when the loop is
288 entered. */
289 unsigned always_accessed : 1;
290 } *dref;
293 /* Type of the chain of the references. */
295 enum chain_type
297 /* The addresses of the references in the chain are constant. */
298 CT_INVARIANT,
300 /* There are only loads in the chain. */
301 CT_LOAD,
303 /* Root of the chain is store, the rest are loads. */
304 CT_STORE_LOAD,
306 /* A combination of two chains. */
307 CT_COMBINATION
310 /* Chains of data references. */
312 typedef struct chain
314 /* Type of the chain. */
315 enum chain_type type;
317 /* For combination chains, the operator and the two chains that are
318 combined, and the type of the result. */
319 enum tree_code op;
320 tree rslt_type;
321 struct chain *ch1, *ch2;
323 /* The references in the chain. */
324 vec<dref> refs;
326 /* The maximum distance of the reference in the chain from the root. */
327 unsigned length;
329 /* The variables used to copy the value throughout iterations. */
330 vec<tree> vars;
332 /* Initializers for the variables. */
333 vec<tree> inits;
335 /* True if there is a use of a variable with the maximal distance
336 that comes after the root in the loop. */
337 unsigned has_max_use_after : 1;
339 /* True if all the memory references in the chain are always accessed. */
340 unsigned all_always_accessed : 1;
342 /* True if this chain was combined together with some other chain. */
343 unsigned combined : 1;
344 } *chain_p;
347 /* Describes the knowledge about the step of the memory references in
348 the component. */
350 enum ref_step_type
352 /* The step is zero. */
353 RS_INVARIANT,
355 /* The step is nonzero. */
356 RS_NONZERO,
358 /* The step may or may not be nonzero. */
359 RS_ANY
362 /* Components of the data dependence graph. */
364 struct component
366 /* The references in the component. */
367 vec<dref> refs;
369 /* What we know about the step of the references in the component. */
370 enum ref_step_type comp_step;
372 /* Next component in the list. */
373 struct component *next;
376 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
378 static bitmap looparound_phis;
380 /* Cache used by tree_to_aff_combination_expand. */
382 static hash_map<tree, name_expansion *> *name_expansions;
384 /* Dumps data reference REF to FILE. */
386 extern void dump_dref (FILE *, dref);
387 void
388 dump_dref (FILE *file, dref ref)
390 if (ref->ref)
392 fprintf (file, " ");
393 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
394 fprintf (file, " (id %u%s)\n", ref->pos,
395 DR_IS_READ (ref->ref) ? "" : ", write");
397 fprintf (file, " offset ");
398 print_decs (ref->offset, file);
399 fprintf (file, "\n");
401 fprintf (file, " distance %u\n", ref->distance);
403 else
405 if (gimple_code (ref->stmt) == GIMPLE_PHI)
406 fprintf (file, " looparound ref\n");
407 else
408 fprintf (file, " combination ref\n");
409 fprintf (file, " in statement ");
410 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
411 fprintf (file, "\n");
412 fprintf (file, " distance %u\n", ref->distance);
417 /* Dumps CHAIN to FILE. */
419 extern void dump_chain (FILE *, chain_p);
420 void
421 dump_chain (FILE *file, chain_p chain)
423 dref a;
424 const char *chain_type;
425 unsigned i;
426 tree var;
428 switch (chain->type)
430 case CT_INVARIANT:
431 chain_type = "Load motion";
432 break;
434 case CT_LOAD:
435 chain_type = "Loads-only";
436 break;
438 case CT_STORE_LOAD:
439 chain_type = "Store-loads";
440 break;
442 case CT_COMBINATION:
443 chain_type = "Combination";
444 break;
446 default:
447 gcc_unreachable ();
450 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
451 chain->combined ? " (combined)" : "");
452 if (chain->type != CT_INVARIANT)
453 fprintf (file, " max distance %u%s\n", chain->length,
454 chain->has_max_use_after ? "" : ", may reuse first");
456 if (chain->type == CT_COMBINATION)
458 fprintf (file, " equal to %p %s %p in type ",
459 (void *) chain->ch1, op_symbol_code (chain->op),
460 (void *) chain->ch2);
461 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
462 fprintf (file, "\n");
465 if (chain->vars.exists ())
467 fprintf (file, " vars");
468 FOR_EACH_VEC_ELT (chain->vars, i, var)
470 fprintf (file, " ");
471 print_generic_expr (file, var, TDF_SLIM);
473 fprintf (file, "\n");
476 if (chain->inits.exists ())
478 fprintf (file, " inits");
479 FOR_EACH_VEC_ELT (chain->inits, i, var)
481 fprintf (file, " ");
482 print_generic_expr (file, var, TDF_SLIM);
484 fprintf (file, "\n");
487 fprintf (file, " references:\n");
488 FOR_EACH_VEC_ELT (chain->refs, i, a)
489 dump_dref (file, a);
491 fprintf (file, "\n");
494 /* Dumps CHAINS to FILE. */
496 extern void dump_chains (FILE *, vec<chain_p> );
497 void
498 dump_chains (FILE *file, vec<chain_p> chains)
500 chain_p chain;
501 unsigned i;
503 FOR_EACH_VEC_ELT (chains, i, chain)
504 dump_chain (file, chain);
507 /* Dumps COMP to FILE. */
509 extern void dump_component (FILE *, struct component *);
510 void
511 dump_component (FILE *file, struct component *comp)
513 dref a;
514 unsigned i;
516 fprintf (file, "Component%s:\n",
517 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
518 FOR_EACH_VEC_ELT (comp->refs, i, a)
519 dump_dref (file, a);
520 fprintf (file, "\n");
523 /* Dumps COMPS to FILE. */
525 extern void dump_components (FILE *, struct component *);
526 void
527 dump_components (FILE *file, struct component *comps)
529 struct component *comp;
531 for (comp = comps; comp; comp = comp->next)
532 dump_component (file, comp);
535 /* Frees a chain CHAIN. */
537 static void
538 release_chain (chain_p chain)
540 dref ref;
541 unsigned i;
543 if (chain == NULL)
544 return;
546 FOR_EACH_VEC_ELT (chain->refs, i, ref)
547 free (ref);
549 chain->refs.release ();
550 chain->vars.release ();
551 chain->inits.release ();
553 free (chain);
556 /* Frees CHAINS. */
558 static void
559 release_chains (vec<chain_p> chains)
561 unsigned i;
562 chain_p chain;
564 FOR_EACH_VEC_ELT (chains, i, chain)
565 release_chain (chain);
566 chains.release ();
569 /* Frees a component COMP. */
571 static void
572 release_component (struct component *comp)
574 comp->refs.release ();
575 free (comp);
578 /* Frees list of components COMPS. */
580 static void
581 release_components (struct component *comps)
583 struct component *act, *next;
585 for (act = comps; act; act = next)
587 next = act->next;
588 release_component (act);
592 /* Finds a root of tree given by FATHERS containing A, and performs path
593 shortening. */
595 static unsigned
596 component_of (unsigned fathers[], unsigned a)
598 unsigned root, n;
600 for (root = a; root != fathers[root]; root = fathers[root])
601 continue;
603 for (; a != root; a = n)
605 n = fathers[a];
606 fathers[a] = root;
609 return root;
612 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
613 components, A and B are components to merge. */
615 static void
616 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
618 unsigned ca = component_of (fathers, a);
619 unsigned cb = component_of (fathers, b);
621 if (ca == cb)
622 return;
624 if (sizes[ca] < sizes[cb])
626 sizes[cb] += sizes[ca];
627 fathers[ca] = cb;
629 else
631 sizes[ca] += sizes[cb];
632 fathers[cb] = ca;
636 /* Returns true if A is a reference that is suitable for predictive commoning
637 in the innermost loop that contains it. REF_STEP is set according to the
638 step of the reference A. */
640 static bool
641 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
643 tree ref = DR_REF (a), step = DR_STEP (a);
645 if (!step
646 || TREE_THIS_VOLATILE (ref)
647 || !is_gimple_reg_type (TREE_TYPE (ref))
648 || tree_could_throw_p (ref))
649 return false;
651 if (integer_zerop (step))
652 *ref_step = RS_INVARIANT;
653 else if (integer_nonzerop (step))
654 *ref_step = RS_NONZERO;
655 else
656 *ref_step = RS_ANY;
658 return true;
661 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
663 static void
664 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
666 tree type = TREE_TYPE (DR_OFFSET (dr));
667 aff_tree delta;
669 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
670 &name_expansions);
671 aff_combination_const (&delta, type, wi::to_widest (DR_INIT (dr)));
672 aff_combination_add (offset, &delta);
675 /* Determines number of iterations of the innermost enclosing loop before B
676 refers to exactly the same location as A and stores it to OFF. If A and
677 B do not have the same step, they never meet, or anything else fails,
678 returns false, otherwise returns true. Both A and B are assumed to
679 satisfy suitable_reference_p. */
681 static bool
682 determine_offset (struct data_reference *a, struct data_reference *b,
683 widest_int *off)
685 aff_tree diff, baseb, step;
686 tree typea, typeb;
688 /* Check that both the references access the location in the same type. */
689 typea = TREE_TYPE (DR_REF (a));
690 typeb = TREE_TYPE (DR_REF (b));
691 if (!useless_type_conversion_p (typeb, typea))
692 return false;
694 /* Check whether the base address and the step of both references is the
695 same. */
696 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
697 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
698 return false;
700 if (integer_zerop (DR_STEP (a)))
702 /* If the references have loop invariant address, check that they access
703 exactly the same location. */
704 *off = 0;
705 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
706 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
709 /* Compare the offsets of the addresses, and check whether the difference
710 is a multiple of step. */
711 aff_combination_dr_offset (a, &diff);
712 aff_combination_dr_offset (b, &baseb);
713 aff_combination_scale (&baseb, -1);
714 aff_combination_add (&diff, &baseb);
716 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
717 &step, &name_expansions);
718 return aff_combination_constant_multiple_p (&diff, &step, off);
721 /* Returns the last basic block in LOOP for that we are sure that
722 it is executed whenever the loop is entered. */
724 static basic_block
725 last_always_executed_block (struct loop *loop)
727 unsigned i;
728 vec<edge> exits = get_loop_exit_edges (loop);
729 edge ex;
730 basic_block last = loop->latch;
732 FOR_EACH_VEC_ELT (exits, i, ex)
733 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
734 exits.release ();
736 return last;
739 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
741 static struct component *
742 split_data_refs_to_components (struct loop *loop,
743 vec<data_reference_p> datarefs,
744 vec<ddr_p> depends)
746 unsigned i, n = datarefs.length ();
747 unsigned ca, ia, ib, bad;
748 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
749 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
750 struct component **comps;
751 struct data_reference *dr, *dra, *drb;
752 struct data_dependence_relation *ddr;
753 struct component *comp_list = NULL, *comp;
754 dref dataref;
755 basic_block last_always_executed = last_always_executed_block (loop);
757 FOR_EACH_VEC_ELT (datarefs, i, dr)
759 if (!DR_REF (dr))
761 /* A fake reference for call or asm_expr that may clobber memory;
762 just fail. */
763 goto end;
765 /* predcom pass isn't prepared to handle calls with data references. */
766 if (is_gimple_call (DR_STMT (dr)))
767 goto end;
768 dr->aux = (void *) (size_t) i;
769 comp_father[i] = i;
770 comp_size[i] = 1;
773 /* A component reserved for the "bad" data references. */
774 comp_father[n] = n;
775 comp_size[n] = 1;
777 FOR_EACH_VEC_ELT (datarefs, i, dr)
779 enum ref_step_type dummy;
781 if (!suitable_reference_p (dr, &dummy))
783 ia = (unsigned) (size_t) dr->aux;
784 merge_comps (comp_father, comp_size, n, ia);
788 FOR_EACH_VEC_ELT (depends, i, ddr)
790 widest_int dummy_off;
792 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
793 continue;
795 dra = DDR_A (ddr);
796 drb = DDR_B (ddr);
797 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
798 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
799 if (ia == ib)
800 continue;
802 bad = component_of (comp_father, n);
804 /* If both A and B are reads, we may ignore unsuitable dependences. */
805 if (DR_IS_READ (dra) && DR_IS_READ (drb))
807 if (ia == bad || ib == bad
808 || !determine_offset (dra, drb, &dummy_off))
809 continue;
811 /* If A is read and B write or vice versa and there is unsuitable
812 dependence, instead of merging both components into a component
813 that will certainly not pass suitable_component_p, just put the
814 read into bad component, perhaps at least the write together with
815 all the other data refs in it's component will be optimizable. */
816 else if (DR_IS_READ (dra) && ib != bad)
818 if (ia == bad)
819 continue;
820 else if (!determine_offset (dra, drb, &dummy_off))
822 merge_comps (comp_father, comp_size, bad, ia);
823 continue;
826 else if (DR_IS_READ (drb) && ia != bad)
828 if (ib == bad)
829 continue;
830 else if (!determine_offset (dra, drb, &dummy_off))
832 merge_comps (comp_father, comp_size, bad, ib);
833 continue;
837 merge_comps (comp_father, comp_size, ia, ib);
840 comps = XCNEWVEC (struct component *, n);
841 bad = component_of (comp_father, n);
842 FOR_EACH_VEC_ELT (datarefs, i, dr)
844 ia = (unsigned) (size_t) dr->aux;
845 ca = component_of (comp_father, ia);
846 if (ca == bad)
847 continue;
849 comp = comps[ca];
850 if (!comp)
852 comp = XCNEW (struct component);
853 comp->refs.create (comp_size[ca]);
854 comps[ca] = comp;
857 dataref = XCNEW (struct dref_d);
858 dataref->ref = dr;
859 dataref->stmt = DR_STMT (dr);
860 dataref->offset = 0;
861 dataref->distance = 0;
863 dataref->always_accessed
864 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
865 gimple_bb (dataref->stmt));
866 dataref->pos = comp->refs.length ();
867 comp->refs.quick_push (dataref);
870 for (i = 0; i < n; i++)
872 comp = comps[i];
873 if (comp)
875 comp->next = comp_list;
876 comp_list = comp;
879 free (comps);
881 end:
882 free (comp_father);
883 free (comp_size);
884 return comp_list;
887 /* Returns true if the component COMP satisfies the conditions
888 described in 2) at the beginning of this file. LOOP is the current
889 loop. */
891 static bool
892 suitable_component_p (struct loop *loop, struct component *comp)
894 unsigned i;
895 dref a, first;
896 basic_block ba, bp = loop->header;
897 bool ok, has_write = false;
899 FOR_EACH_VEC_ELT (comp->refs, i, a)
901 ba = gimple_bb (a->stmt);
903 if (!just_once_each_iteration_p (loop, ba))
904 return false;
906 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
907 bp = ba;
909 if (DR_IS_WRITE (a->ref))
910 has_write = true;
913 first = comp->refs[0];
914 ok = suitable_reference_p (first->ref, &comp->comp_step);
915 gcc_assert (ok);
916 first->offset = 0;
918 for (i = 1; comp->refs.iterate (i, &a); i++)
920 if (!determine_offset (first->ref, a->ref, &a->offset))
921 return false;
923 #ifdef ENABLE_CHECKING
925 enum ref_step_type a_step;
926 ok = suitable_reference_p (a->ref, &a_step);
927 gcc_assert (ok && a_step == comp->comp_step);
929 #endif
932 /* If there is a write inside the component, we must know whether the
933 step is nonzero or not -- we would not otherwise be able to recognize
934 whether the value accessed by reads comes from the OFFSET-th iteration
935 or the previous one. */
936 if (has_write && comp->comp_step == RS_ANY)
937 return false;
939 return true;
942 /* Check the conditions on references inside each of components COMPS,
943 and remove the unsuitable components from the list. The new list
944 of components is returned. The conditions are described in 2) at
945 the beginning of this file. LOOP is the current loop. */
947 static struct component *
948 filter_suitable_components (struct loop *loop, struct component *comps)
950 struct component **comp, *act;
952 for (comp = &comps; *comp; )
954 act = *comp;
955 if (suitable_component_p (loop, act))
956 comp = &act->next;
957 else
959 dref ref;
960 unsigned i;
962 *comp = act->next;
963 FOR_EACH_VEC_ELT (act->refs, i, ref)
964 free (ref);
965 release_component (act);
969 return comps;
972 /* Compares two drefs A and B by their offset and position. Callback for
973 qsort. */
975 static int
976 order_drefs (const void *a, const void *b)
978 const dref *const da = (const dref *) a;
979 const dref *const db = (const dref *) b;
980 int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
982 if (offcmp != 0)
983 return offcmp;
985 return (*da)->pos - (*db)->pos;
988 /* Returns root of the CHAIN. */
990 static inline dref
991 get_chain_root (chain_p chain)
993 return chain->refs[0];
996 /* Adds REF to the chain CHAIN. */
998 static void
999 add_ref_to_chain (chain_p chain, dref ref)
1001 dref root = get_chain_root (chain);
1003 gcc_assert (wi::les_p (root->offset, ref->offset));
1004 widest_int dist = ref->offset - root->offset;
1005 if (wi::leu_p (MAX_DISTANCE, dist))
1007 free (ref);
1008 return;
1010 gcc_assert (wi::fits_uhwi_p (dist));
1012 chain->refs.safe_push (ref);
1014 ref->distance = dist.to_uhwi ();
1016 if (ref->distance >= chain->length)
1018 chain->length = ref->distance;
1019 chain->has_max_use_after = false;
1022 if (ref->distance == chain->length
1023 && ref->pos > root->pos)
1024 chain->has_max_use_after = true;
1026 chain->all_always_accessed &= ref->always_accessed;
1029 /* Returns the chain for invariant component COMP. */
1031 static chain_p
1032 make_invariant_chain (struct component *comp)
1034 chain_p chain = XCNEW (struct chain);
1035 unsigned i;
1036 dref ref;
1038 chain->type = CT_INVARIANT;
1040 chain->all_always_accessed = true;
1042 FOR_EACH_VEC_ELT (comp->refs, i, ref)
1044 chain->refs.safe_push (ref);
1045 chain->all_always_accessed &= ref->always_accessed;
1048 return chain;
1051 /* Make a new chain rooted at REF. */
1053 static chain_p
1054 make_rooted_chain (dref ref)
1056 chain_p chain = XCNEW (struct chain);
1058 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
1060 chain->refs.safe_push (ref);
1061 chain->all_always_accessed = ref->always_accessed;
1063 ref->distance = 0;
1065 return chain;
1068 /* Returns true if CHAIN is not trivial. */
1070 static bool
1071 nontrivial_chain_p (chain_p chain)
1073 return chain != NULL && chain->refs.length () > 1;
1076 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1077 is no such name. */
1079 static tree
1080 name_for_ref (dref ref)
1082 tree name;
1084 if (is_gimple_assign (ref->stmt))
1086 if (!ref->ref || DR_IS_READ (ref->ref))
1087 name = gimple_assign_lhs (ref->stmt);
1088 else
1089 name = gimple_assign_rhs1 (ref->stmt);
1091 else
1092 name = PHI_RESULT (ref->stmt);
1094 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1097 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1098 iterations of the innermost enclosing loop). */
1100 static bool
1101 valid_initializer_p (struct data_reference *ref,
1102 unsigned distance, struct data_reference *root)
1104 aff_tree diff, base, step;
1105 widest_int off;
1107 /* Both REF and ROOT must be accessing the same object. */
1108 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1109 return false;
1111 /* The initializer is defined outside of loop, hence its address must be
1112 invariant inside the loop. */
1113 gcc_assert (integer_zerop (DR_STEP (ref)));
1115 /* If the address of the reference is invariant, initializer must access
1116 exactly the same location. */
1117 if (integer_zerop (DR_STEP (root)))
1118 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1119 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1121 /* Verify that this index of REF is equal to the root's index at
1122 -DISTANCE-th iteration. */
1123 aff_combination_dr_offset (root, &diff);
1124 aff_combination_dr_offset (ref, &base);
1125 aff_combination_scale (&base, -1);
1126 aff_combination_add (&diff, &base);
1128 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1129 &step, &name_expansions);
1130 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1131 return false;
1133 if (off != distance)
1134 return false;
1136 return true;
1139 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1140 initial value is correct (equal to initial value of REF shifted by one
1141 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1142 is the root of the current chain. */
1144 static gphi *
1145 find_looparound_phi (struct loop *loop, dref ref, dref root)
1147 tree name, init, init_ref;
1148 gphi *phi = NULL;
1149 gimple init_stmt;
1150 edge latch = loop_latch_edge (loop);
1151 struct data_reference init_dr;
1152 gphi_iterator psi;
1154 if (is_gimple_assign (ref->stmt))
1156 if (DR_IS_READ (ref->ref))
1157 name = gimple_assign_lhs (ref->stmt);
1158 else
1159 name = gimple_assign_rhs1 (ref->stmt);
1161 else
1162 name = PHI_RESULT (ref->stmt);
1163 if (!name)
1164 return NULL;
1166 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1168 phi = psi.phi ();
1169 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1170 break;
1173 if (gsi_end_p (psi))
1174 return NULL;
1176 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1177 if (TREE_CODE (init) != SSA_NAME)
1178 return NULL;
1179 init_stmt = SSA_NAME_DEF_STMT (init);
1180 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1181 return NULL;
1182 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1184 init_ref = gimple_assign_rhs1 (init_stmt);
1185 if (!REFERENCE_CLASS_P (init_ref)
1186 && !DECL_P (init_ref))
1187 return NULL;
1189 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1190 loop enclosing PHI). */
1191 memset (&init_dr, 0, sizeof (struct data_reference));
1192 DR_REF (&init_dr) = init_ref;
1193 DR_STMT (&init_dr) = phi;
1194 if (!dr_analyze_innermost (&init_dr, loop))
1195 return NULL;
1197 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1198 return NULL;
1200 return phi;
1203 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1205 static void
1206 insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
1208 dref nw = XCNEW (struct dref_d), aref;
1209 unsigned i;
1211 nw->stmt = phi;
1212 nw->distance = ref->distance + 1;
1213 nw->always_accessed = 1;
1215 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1216 if (aref->distance >= nw->distance)
1217 break;
1218 chain->refs.safe_insert (i, nw);
1220 if (nw->distance > chain->length)
1222 chain->length = nw->distance;
1223 chain->has_max_use_after = false;
1227 /* For references in CHAIN that are copied around the LOOP (created previously
1228 by PRE, or by user), add the results of such copies to the chain. This
1229 enables us to remove the copies by unrolling, and may need less registers
1230 (also, it may allow us to combine chains together). */
1232 static void
1233 add_looparound_copies (struct loop *loop, chain_p chain)
1235 unsigned i;
1236 dref ref, root = get_chain_root (chain);
1237 gphi *phi;
1239 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1241 phi = find_looparound_phi (loop, ref, root);
1242 if (!phi)
1243 continue;
1245 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1246 insert_looparound_copy (chain, ref, phi);
1250 /* Find roots of the values and determine distances in the component COMP.
1251 The references are redistributed into CHAINS. LOOP is the current
1252 loop. */
1254 static void
1255 determine_roots_comp (struct loop *loop,
1256 struct component *comp,
1257 vec<chain_p> *chains)
1259 unsigned i;
1260 dref a;
1261 chain_p chain = NULL;
1262 widest_int last_ofs = 0;
1264 /* Invariants are handled specially. */
1265 if (comp->comp_step == RS_INVARIANT)
1267 chain = make_invariant_chain (comp);
1268 chains->safe_push (chain);
1269 return;
1272 comp->refs.qsort (order_drefs);
1274 FOR_EACH_VEC_ELT (comp->refs, i, a)
1276 if (!chain || DR_IS_WRITE (a->ref)
1277 || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
1279 if (nontrivial_chain_p (chain))
1281 add_looparound_copies (loop, chain);
1282 chains->safe_push (chain);
1284 else
1285 release_chain (chain);
1286 chain = make_rooted_chain (a);
1287 last_ofs = a->offset;
1288 continue;
1291 add_ref_to_chain (chain, a);
1294 if (nontrivial_chain_p (chain))
1296 add_looparound_copies (loop, chain);
1297 chains->safe_push (chain);
1299 else
1300 release_chain (chain);
1303 /* Find roots of the values and determine distances in components COMPS, and
1304 separates the references to CHAINS. LOOP is the current loop. */
1306 static void
1307 determine_roots (struct loop *loop,
1308 struct component *comps, vec<chain_p> *chains)
1310 struct component *comp;
1312 for (comp = comps; comp; comp = comp->next)
1313 determine_roots_comp (loop, comp, chains);
1316 /* Replace the reference in statement STMT with temporary variable
1317 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1318 the reference in the statement. IN_LHS is true if the reference
1319 is in the lhs of STMT, false if it is in rhs. */
1321 static void
1322 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1324 tree val;
1325 gassign *new_stmt;
1326 gimple_stmt_iterator bsi, psi;
1328 if (gimple_code (stmt) == GIMPLE_PHI)
1330 gcc_assert (!in_lhs && !set);
1332 val = PHI_RESULT (stmt);
1333 bsi = gsi_after_labels (gimple_bb (stmt));
1334 psi = gsi_for_stmt (stmt);
1335 remove_phi_node (&psi, false);
1337 /* Turn the phi node into GIMPLE_ASSIGN. */
1338 new_stmt = gimple_build_assign (val, new_tree);
1339 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1340 return;
1343 /* Since the reference is of gimple_reg type, it should only
1344 appear as lhs or rhs of modify statement. */
1345 gcc_assert (is_gimple_assign (stmt));
1347 bsi = gsi_for_stmt (stmt);
1349 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1350 if (!set)
1352 gcc_assert (!in_lhs);
1353 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1354 stmt = gsi_stmt (bsi);
1355 update_stmt (stmt);
1356 return;
1359 if (in_lhs)
1361 /* We have statement
1363 OLD = VAL
1365 If OLD is a memory reference, then VAL is gimple_val, and we transform
1366 this to
1368 OLD = VAL
1369 NEW = VAL
1371 Otherwise, we are replacing a combination chain,
1372 VAL is the expression that performs the combination, and OLD is an
1373 SSA name. In this case, we transform the assignment to
1375 OLD = VAL
1376 NEW = OLD
1380 val = gimple_assign_lhs (stmt);
1381 if (TREE_CODE (val) != SSA_NAME)
1383 val = gimple_assign_rhs1 (stmt);
1384 gcc_assert (gimple_assign_single_p (stmt));
1385 if (TREE_CLOBBER_P (val))
1386 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1387 else
1388 gcc_assert (gimple_assign_copy_p (stmt));
1391 else
1393 /* VAL = OLD
1395 is transformed to
1397 VAL = OLD
1398 NEW = VAL */
1400 val = gimple_assign_lhs (stmt);
1403 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1404 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1407 /* Returns a memory reference to DR in the ITER-th iteration of
1408 the loop it was analyzed in. Append init stmts to STMTS. */
1410 static tree
1411 ref_at_iteration (data_reference_p dr, int iter, gimple_seq *stmts)
1413 tree off = DR_OFFSET (dr);
1414 tree coff = DR_INIT (dr);
1415 if (iter == 0)
1417 else if (TREE_CODE (DR_STEP (dr)) == INTEGER_CST)
1418 coff = size_binop (PLUS_EXPR, coff,
1419 size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
1420 else
1421 off = size_binop (PLUS_EXPR, off,
1422 size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
1423 tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
1424 addr = force_gimple_operand_1 (unshare_expr (addr), stmts,
1425 is_gimple_mem_ref_addr, NULL_TREE);
1426 tree alias_ptr = fold_convert (reference_alias_ptr_type (DR_REF (dr)), coff);
1427 /* While data-ref analysis punts on bit offsets it still handles
1428 bitfield accesses at byte boundaries. Cope with that. Note that
1429 we cannot simply re-apply the outer COMPONENT_REF because the
1430 byte-granular portion of it is already applied via DR_INIT and
1431 DR_OFFSET, so simply build a BIT_FIELD_REF knowing that the bits
1432 start at offset zero. */
1433 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
1434 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
1436 tree field = TREE_OPERAND (DR_REF (dr), 1);
1437 return build3 (BIT_FIELD_REF, TREE_TYPE (DR_REF (dr)),
1438 build2 (MEM_REF, DECL_BIT_FIELD_TYPE (field),
1439 addr, alias_ptr),
1440 DECL_SIZE (field), bitsize_zero_node);
1442 else
1443 return fold_build2 (MEM_REF, TREE_TYPE (DR_REF (dr)), addr, alias_ptr);
1446 /* Get the initialization expression for the INDEX-th temporary variable
1447 of CHAIN. */
1449 static tree
1450 get_init_expr (chain_p chain, unsigned index)
1452 if (chain->type == CT_COMBINATION)
1454 tree e1 = get_init_expr (chain->ch1, index);
1455 tree e2 = get_init_expr (chain->ch2, index);
1457 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1459 else
1460 return chain->inits[index];
1463 /* Returns a new temporary variable used for the I-th variable carrying
1464 value of REF. The variable's uid is marked in TMP_VARS. */
1466 static tree
1467 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1469 tree type = TREE_TYPE (ref);
1470 /* We never access the components of the temporary variable in predictive
1471 commoning. */
1472 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1473 bitmap_set_bit (tmp_vars, DECL_UID (var));
1474 return var;
1477 /* Creates the variables for CHAIN, as well as phi nodes for them and
1478 initialization on entry to LOOP. Uids of the newly created
1479 temporary variables are marked in TMP_VARS. */
1481 static void
1482 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1484 unsigned i;
1485 unsigned n = chain->length;
1486 dref root = get_chain_root (chain);
1487 bool reuse_first = !chain->has_max_use_after;
1488 tree ref, init, var, next;
1489 gphi *phi;
1490 gimple_seq stmts;
1491 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1493 /* If N == 0, then all the references are within the single iteration. And
1494 since this is an nonempty chain, reuse_first cannot be true. */
1495 gcc_assert (n > 0 || !reuse_first);
1497 chain->vars.create (n + 1);
1499 if (chain->type == CT_COMBINATION)
1500 ref = gimple_assign_lhs (root->stmt);
1501 else
1502 ref = DR_REF (root->ref);
1504 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1506 var = predcom_tmp_var (ref, i, tmp_vars);
1507 chain->vars.quick_push (var);
1509 if (reuse_first)
1510 chain->vars.quick_push (chain->vars[0]);
1512 FOR_EACH_VEC_ELT (chain->vars, i, var)
1513 chain->vars[i] = make_ssa_name (var);
1515 for (i = 0; i < n; i++)
1517 var = chain->vars[i];
1518 next = chain->vars[i + 1];
1519 init = get_init_expr (chain, i);
1521 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1522 if (stmts)
1523 gsi_insert_seq_on_edge_immediate (entry, stmts);
1525 phi = create_phi_node (var, loop->header);
1526 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1527 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1531 /* Create the variables and initialization statement for root of chain
1532 CHAIN. Uids of the newly created temporary variables are marked
1533 in TMP_VARS. */
1535 static void
1536 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1538 dref root = get_chain_root (chain);
1539 bool in_lhs = (chain->type == CT_STORE_LOAD
1540 || chain->type == CT_COMBINATION);
1542 initialize_root_vars (loop, chain, tmp_vars);
1543 replace_ref_with (root->stmt,
1544 chain->vars[chain->length],
1545 true, in_lhs);
1548 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1549 initialization on entry to LOOP if necessary. The ssa name for the variable
1550 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1551 around the loop is created. Uid of the newly created temporary variable
1552 is marked in TMP_VARS. INITS is the list containing the (single)
1553 initializer. */
1555 static void
1556 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1557 vec<tree> *vars, vec<tree> inits,
1558 bitmap tmp_vars)
1560 unsigned i;
1561 tree ref = DR_REF (root->ref), init, var, next;
1562 gimple_seq stmts;
1563 gphi *phi;
1564 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1566 /* Find the initializer for the variable, and check that it cannot
1567 trap. */
1568 init = inits[0];
1570 vars->create (written ? 2 : 1);
1571 var = predcom_tmp_var (ref, 0, tmp_vars);
1572 vars->quick_push (var);
1573 if (written)
1574 vars->quick_push ((*vars)[0]);
1576 FOR_EACH_VEC_ELT (*vars, i, var)
1577 (*vars)[i] = make_ssa_name (var);
1579 var = (*vars)[0];
1581 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1582 if (stmts)
1583 gsi_insert_seq_on_edge_immediate (entry, stmts);
1585 if (written)
1587 next = (*vars)[1];
1588 phi = create_phi_node (var, loop->header);
1589 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1590 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1592 else
1594 gassign *init_stmt = gimple_build_assign (var, init);
1595 gsi_insert_on_edge_immediate (entry, init_stmt);
1600 /* Execute load motion for references in chain CHAIN. Uids of the newly
1601 created temporary variables are marked in TMP_VARS. */
1603 static void
1604 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1606 auto_vec<tree> vars;
1607 dref a;
1608 unsigned n_writes = 0, ridx, i;
1609 tree var;
1611 gcc_assert (chain->type == CT_INVARIANT);
1612 gcc_assert (!chain->combined);
1613 FOR_EACH_VEC_ELT (chain->refs, i, a)
1614 if (DR_IS_WRITE (a->ref))
1615 n_writes++;
1617 /* If there are no reads in the loop, there is nothing to do. */
1618 if (n_writes == chain->refs.length ())
1619 return;
1621 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1622 &vars, chain->inits, tmp_vars);
1624 ridx = 0;
1625 FOR_EACH_VEC_ELT (chain->refs, i, a)
1627 bool is_read = DR_IS_READ (a->ref);
1629 if (DR_IS_WRITE (a->ref))
1631 n_writes--;
1632 if (n_writes)
1634 var = vars[0];
1635 var = make_ssa_name (SSA_NAME_VAR (var));
1636 vars[0] = var;
1638 else
1639 ridx = 1;
1642 replace_ref_with (a->stmt, vars[ridx],
1643 !is_read, !is_read);
1647 /* Returns the single statement in that NAME is used, excepting
1648 the looparound phi nodes contained in one of the chains. If there is no
1649 such statement, or more statements, NULL is returned. */
1651 static gimple
1652 single_nonlooparound_use (tree name)
1654 use_operand_p use;
1655 imm_use_iterator it;
1656 gimple stmt, ret = NULL;
1658 FOR_EACH_IMM_USE_FAST (use, it, name)
1660 stmt = USE_STMT (use);
1662 if (gimple_code (stmt) == GIMPLE_PHI)
1664 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1665 could not be processed anyway, so just fail for them. */
1666 if (bitmap_bit_p (looparound_phis,
1667 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1668 continue;
1670 return NULL;
1672 else if (is_gimple_debug (stmt))
1673 continue;
1674 else if (ret != NULL)
1675 return NULL;
1676 else
1677 ret = stmt;
1680 return ret;
1683 /* Remove statement STMT, as well as the chain of assignments in that it is
1684 used. */
1686 static void
1687 remove_stmt (gimple stmt)
1689 tree name;
1690 gimple next;
1691 gimple_stmt_iterator psi;
1693 if (gimple_code (stmt) == GIMPLE_PHI)
1695 name = PHI_RESULT (stmt);
1696 next = single_nonlooparound_use (name);
1697 reset_debug_uses (stmt);
1698 psi = gsi_for_stmt (stmt);
1699 remove_phi_node (&psi, true);
1701 if (!next
1702 || !gimple_assign_ssa_name_copy_p (next)
1703 || gimple_assign_rhs1 (next) != name)
1704 return;
1706 stmt = next;
1709 while (1)
1711 gimple_stmt_iterator bsi;
1713 bsi = gsi_for_stmt (stmt);
1715 name = gimple_assign_lhs (stmt);
1716 gcc_assert (TREE_CODE (name) == SSA_NAME);
1718 next = single_nonlooparound_use (name);
1719 reset_debug_uses (stmt);
1721 unlink_stmt_vdef (stmt);
1722 gsi_remove (&bsi, true);
1723 release_defs (stmt);
1725 if (!next
1726 || !gimple_assign_ssa_name_copy_p (next)
1727 || gimple_assign_rhs1 (next) != name)
1728 return;
1730 stmt = next;
1734 /* Perform the predictive commoning optimization for a chain CHAIN.
1735 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1737 static void
1738 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1739 bitmap tmp_vars)
1741 unsigned i;
1742 dref a;
1743 tree var;
1745 if (chain->combined)
1747 /* For combined chains, just remove the statements that are used to
1748 compute the values of the expression (except for the root one). */
1749 for (i = 1; chain->refs.iterate (i, &a); i++)
1750 remove_stmt (a->stmt);
1752 else
1754 /* For non-combined chains, set up the variables that hold its value,
1755 and replace the uses of the original references by these
1756 variables. */
1757 initialize_root (loop, chain, tmp_vars);
1758 for (i = 1; chain->refs.iterate (i, &a); i++)
1760 var = chain->vars[chain->length - a->distance];
1761 replace_ref_with (a->stmt, var, false, false);
1766 /* Determines the unroll factor necessary to remove as many temporary variable
1767 copies as possible. CHAINS is the list of chains that will be
1768 optimized. */
1770 static unsigned
1771 determine_unroll_factor (vec<chain_p> chains)
1773 chain_p chain;
1774 unsigned factor = 1, af, nfactor, i;
1775 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1777 FOR_EACH_VEC_ELT (chains, i, chain)
1779 if (chain->type == CT_INVARIANT || chain->combined)
1780 continue;
1782 /* The best unroll factor for this chain is equal to the number of
1783 temporary variables that we create for it. */
1784 af = chain->length;
1785 if (chain->has_max_use_after)
1786 af++;
1788 nfactor = factor * af / gcd (factor, af);
1789 if (nfactor <= max)
1790 factor = nfactor;
1793 return factor;
1796 /* Perform the predictive commoning optimization for CHAINS.
1797 Uids of the newly created temporary variables are marked in TMP_VARS. */
1799 static void
1800 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
1801 bitmap tmp_vars)
1803 chain_p chain;
1804 unsigned i;
1806 FOR_EACH_VEC_ELT (chains, i, chain)
1808 if (chain->type == CT_INVARIANT)
1809 execute_load_motion (loop, chain, tmp_vars);
1810 else
1811 execute_pred_commoning_chain (loop, chain, tmp_vars);
1814 update_ssa (TODO_update_ssa_only_virtuals);
1817 /* For each reference in CHAINS, if its defining statement is
1818 phi node, record the ssa name that is defined by it. */
1820 static void
1821 replace_phis_by_defined_names (vec<chain_p> chains)
1823 chain_p chain;
1824 dref a;
1825 unsigned i, j;
1827 FOR_EACH_VEC_ELT (chains, i, chain)
1828 FOR_EACH_VEC_ELT (chain->refs, j, a)
1830 if (gimple_code (a->stmt) == GIMPLE_PHI)
1832 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1833 a->stmt = NULL;
1838 /* For each reference in CHAINS, if name_defined_by_phi is not
1839 NULL, use it to set the stmt field. */
1841 static void
1842 replace_names_by_phis (vec<chain_p> chains)
1844 chain_p chain;
1845 dref a;
1846 unsigned i, j;
1848 FOR_EACH_VEC_ELT (chains, i, chain)
1849 FOR_EACH_VEC_ELT (chain->refs, j, a)
1850 if (a->stmt == NULL)
1852 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1853 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1854 a->name_defined_by_phi = NULL_TREE;
1858 /* Wrapper over execute_pred_commoning, to pass it as a callback
1859 to tree_transform_and_unroll_loop. */
1861 struct epcc_data
1863 vec<chain_p> chains;
1864 bitmap tmp_vars;
1867 static void
1868 execute_pred_commoning_cbck (struct loop *loop, void *data)
1870 struct epcc_data *const dta = (struct epcc_data *) data;
1872 /* Restore phi nodes that were replaced by ssa names before
1873 tree_transform_and_unroll_loop (see detailed description in
1874 tree_predictive_commoning_loop). */
1875 replace_names_by_phis (dta->chains);
1876 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1879 /* Base NAME and all the names in the chain of phi nodes that use it
1880 on variable VAR. The phi nodes are recognized by being in the copies of
1881 the header of the LOOP. */
1883 static void
1884 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1886 gimple stmt, phi;
1887 imm_use_iterator iter;
1889 replace_ssa_name_symbol (name, var);
1891 while (1)
1893 phi = NULL;
1894 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1896 if (gimple_code (stmt) == GIMPLE_PHI
1897 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1899 phi = stmt;
1900 BREAK_FROM_IMM_USE_STMT (iter);
1903 if (!phi)
1904 return;
1906 name = PHI_RESULT (phi);
1907 replace_ssa_name_symbol (name, var);
1911 /* Given an unrolled LOOP after predictive commoning, remove the
1912 register copies arising from phi nodes by changing the base
1913 variables of SSA names. TMP_VARS is the set of the temporary variables
1914 for those we want to perform this. */
1916 static void
1917 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1919 edge e;
1920 gphi *phi;
1921 gimple stmt;
1922 tree name, use, var;
1923 gphi_iterator psi;
1925 e = loop_latch_edge (loop);
1926 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1928 phi = psi.phi ();
1929 name = PHI_RESULT (phi);
1930 var = SSA_NAME_VAR (name);
1931 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
1932 continue;
1933 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1934 gcc_assert (TREE_CODE (use) == SSA_NAME);
1936 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1937 stmt = SSA_NAME_DEF_STMT (use);
1938 while (gimple_code (stmt) == GIMPLE_PHI
1939 /* In case we could not unroll the loop enough to eliminate
1940 all copies, we may reach the loop header before the defining
1941 statement (in that case, some register copies will be present
1942 in loop latch in the final code, corresponding to the newly
1943 created looparound phi nodes). */
1944 && gimple_bb (stmt) != loop->header)
1946 gcc_assert (single_pred_p (gimple_bb (stmt)));
1947 use = PHI_ARG_DEF (stmt, 0);
1948 stmt = SSA_NAME_DEF_STMT (use);
1951 base_names_in_chain_on (loop, use, var);
1955 /* Returns true if CHAIN is suitable to be combined. */
1957 static bool
1958 chain_can_be_combined_p (chain_p chain)
1960 return (!chain->combined
1961 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1964 /* Returns the modify statement that uses NAME. Skips over assignment
1965 statements, NAME is replaced with the actual name used in the returned
1966 statement. */
1968 static gimple
1969 find_use_stmt (tree *name)
1971 gimple stmt;
1972 tree rhs, lhs;
1974 /* Skip over assignments. */
1975 while (1)
1977 stmt = single_nonlooparound_use (*name);
1978 if (!stmt)
1979 return NULL;
1981 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1982 return NULL;
1984 lhs = gimple_assign_lhs (stmt);
1985 if (TREE_CODE (lhs) != SSA_NAME)
1986 return NULL;
1988 if (gimple_assign_copy_p (stmt))
1990 rhs = gimple_assign_rhs1 (stmt);
1991 if (rhs != *name)
1992 return NULL;
1994 *name = lhs;
1996 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1997 == GIMPLE_BINARY_RHS)
1998 return stmt;
1999 else
2000 return NULL;
2004 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2006 static bool
2007 may_reassociate_p (tree type, enum tree_code code)
2009 if (FLOAT_TYPE_P (type)
2010 && !flag_unsafe_math_optimizations)
2011 return false;
2013 return (commutative_tree_code (code)
2014 && associative_tree_code (code));
2017 /* If the operation used in STMT is associative and commutative, go through the
2018 tree of the same operations and returns its root. Distance to the root
2019 is stored in DISTANCE. */
2021 static gimple
2022 find_associative_operation_root (gimple stmt, unsigned *distance)
2024 tree lhs;
2025 gimple next;
2026 enum tree_code code = gimple_assign_rhs_code (stmt);
2027 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2028 unsigned dist = 0;
2030 if (!may_reassociate_p (type, code))
2031 return NULL;
2033 while (1)
2035 lhs = gimple_assign_lhs (stmt);
2036 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2038 next = find_use_stmt (&lhs);
2039 if (!next
2040 || gimple_assign_rhs_code (next) != code)
2041 break;
2043 stmt = next;
2044 dist++;
2047 if (distance)
2048 *distance = dist;
2049 return stmt;
2052 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2053 is no such statement, returns NULL_TREE. In case the operation used on
2054 NAME1 and NAME2 is associative and commutative, returns the root of the
2055 tree formed by this operation instead of the statement that uses NAME1 or
2056 NAME2. */
2058 static gimple
2059 find_common_use_stmt (tree *name1, tree *name2)
2061 gimple stmt1, stmt2;
2063 stmt1 = find_use_stmt (name1);
2064 if (!stmt1)
2065 return NULL;
2067 stmt2 = find_use_stmt (name2);
2068 if (!stmt2)
2069 return NULL;
2071 if (stmt1 == stmt2)
2072 return stmt1;
2074 stmt1 = find_associative_operation_root (stmt1, NULL);
2075 if (!stmt1)
2076 return NULL;
2077 stmt2 = find_associative_operation_root (stmt2, NULL);
2078 if (!stmt2)
2079 return NULL;
2081 return (stmt1 == stmt2 ? stmt1 : NULL);
2084 /* Checks whether R1 and R2 are combined together using CODE, with the result
2085 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2086 if it is true. If CODE is ERROR_MARK, set these values instead. */
2088 static bool
2089 combinable_refs_p (dref r1, dref r2,
2090 enum tree_code *code, bool *swap, tree *rslt_type)
2092 enum tree_code acode;
2093 bool aswap;
2094 tree atype;
2095 tree name1, name2;
2096 gimple stmt;
2098 name1 = name_for_ref (r1);
2099 name2 = name_for_ref (r2);
2100 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2102 stmt = find_common_use_stmt (&name1, &name2);
2104 if (!stmt
2105 /* A simple post-dominance check - make sure the combination
2106 is executed under the same condition as the references. */
2107 || (gimple_bb (stmt) != gimple_bb (r1->stmt)
2108 && gimple_bb (stmt) != gimple_bb (r2->stmt)))
2109 return false;
2111 acode = gimple_assign_rhs_code (stmt);
2112 aswap = (!commutative_tree_code (acode)
2113 && gimple_assign_rhs1 (stmt) != name1);
2114 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2116 if (*code == ERROR_MARK)
2118 *code = acode;
2119 *swap = aswap;
2120 *rslt_type = atype;
2121 return true;
2124 return (*code == acode
2125 && *swap == aswap
2126 && *rslt_type == atype);
2129 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2130 an assignment of the remaining operand. */
2132 static void
2133 remove_name_from_operation (gimple stmt, tree op)
2135 tree other_op;
2136 gimple_stmt_iterator si;
2138 gcc_assert (is_gimple_assign (stmt));
2140 if (gimple_assign_rhs1 (stmt) == op)
2141 other_op = gimple_assign_rhs2 (stmt);
2142 else
2143 other_op = gimple_assign_rhs1 (stmt);
2145 si = gsi_for_stmt (stmt);
2146 gimple_assign_set_rhs_from_tree (&si, other_op);
2148 /* We should not have reallocated STMT. */
2149 gcc_assert (gsi_stmt (si) == stmt);
2151 update_stmt (stmt);
2154 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2155 are combined in a single statement, and returns this statement. */
2157 static gimple
2158 reassociate_to_the_same_stmt (tree name1, tree name2)
2160 gimple stmt1, stmt2, root1, root2, s1, s2;
2161 gassign *new_stmt, *tmp_stmt;
2162 tree new_name, tmp_name, var, r1, r2;
2163 unsigned dist1, dist2;
2164 enum tree_code code;
2165 tree type = TREE_TYPE (name1);
2166 gimple_stmt_iterator bsi;
2168 stmt1 = find_use_stmt (&name1);
2169 stmt2 = find_use_stmt (&name2);
2170 root1 = find_associative_operation_root (stmt1, &dist1);
2171 root2 = find_associative_operation_root (stmt2, &dist2);
2172 code = gimple_assign_rhs_code (stmt1);
2174 gcc_assert (root1 && root2 && root1 == root2
2175 && code == gimple_assign_rhs_code (stmt2));
2177 /* Find the root of the nearest expression in that both NAME1 and NAME2
2178 are used. */
2179 r1 = name1;
2180 s1 = stmt1;
2181 r2 = name2;
2182 s2 = stmt2;
2184 while (dist1 > dist2)
2186 s1 = find_use_stmt (&r1);
2187 r1 = gimple_assign_lhs (s1);
2188 dist1--;
2190 while (dist2 > dist1)
2192 s2 = find_use_stmt (&r2);
2193 r2 = gimple_assign_lhs (s2);
2194 dist2--;
2197 while (s1 != s2)
2199 s1 = find_use_stmt (&r1);
2200 r1 = gimple_assign_lhs (s1);
2201 s2 = find_use_stmt (&r2);
2202 r2 = gimple_assign_lhs (s2);
2205 /* Remove NAME1 and NAME2 from the statements in that they are used
2206 currently. */
2207 remove_name_from_operation (stmt1, name1);
2208 remove_name_from_operation (stmt2, name2);
2210 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2211 combine it with the rhs of S1. */
2212 var = create_tmp_reg (type, "predreastmp");
2213 new_name = make_ssa_name (var);
2214 new_stmt = gimple_build_assign (new_name, code, name1, name2);
2216 var = create_tmp_reg (type, "predreastmp");
2217 tmp_name = make_ssa_name (var);
2219 /* Rhs of S1 may now be either a binary expression with operation
2220 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2221 so that name1 or name2 was removed from it). */
2222 tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1),
2223 gimple_assign_rhs1 (s1),
2224 gimple_assign_rhs2 (s1));
2226 bsi = gsi_for_stmt (s1);
2227 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2228 s1 = gsi_stmt (bsi);
2229 update_stmt (s1);
2231 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2232 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2234 return new_stmt;
2237 /* Returns the statement that combines references R1 and R2. In case R1
2238 and R2 are not used in the same statement, but they are used with an
2239 associative and commutative operation in the same expression, reassociate
2240 the expression so that they are used in the same statement. */
2242 static gimple
2243 stmt_combining_refs (dref r1, dref r2)
2245 gimple stmt1, stmt2;
2246 tree name1 = name_for_ref (r1);
2247 tree name2 = name_for_ref (r2);
2249 stmt1 = find_use_stmt (&name1);
2250 stmt2 = find_use_stmt (&name2);
2251 if (stmt1 == stmt2)
2252 return stmt1;
2254 return reassociate_to_the_same_stmt (name1, name2);
2257 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2258 description of the new chain is returned, otherwise we return NULL. */
2260 static chain_p
2261 combine_chains (chain_p ch1, chain_p ch2)
2263 dref r1, r2, nw;
2264 enum tree_code op = ERROR_MARK;
2265 bool swap = false;
2266 chain_p new_chain;
2267 unsigned i;
2268 gimple root_stmt;
2269 tree rslt_type = NULL_TREE;
2271 if (ch1 == ch2)
2272 return NULL;
2273 if (ch1->length != ch2->length)
2274 return NULL;
2276 if (ch1->refs.length () != ch2->refs.length ())
2277 return NULL;
2279 for (i = 0; (ch1->refs.iterate (i, &r1)
2280 && ch2->refs.iterate (i, &r2)); i++)
2282 if (r1->distance != r2->distance)
2283 return NULL;
2285 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2286 return NULL;
2289 if (swap)
2291 chain_p tmp = ch1;
2292 ch1 = ch2;
2293 ch2 = tmp;
2296 new_chain = XCNEW (struct chain);
2297 new_chain->type = CT_COMBINATION;
2298 new_chain->op = op;
2299 new_chain->ch1 = ch1;
2300 new_chain->ch2 = ch2;
2301 new_chain->rslt_type = rslt_type;
2302 new_chain->length = ch1->length;
2304 for (i = 0; (ch1->refs.iterate (i, &r1)
2305 && ch2->refs.iterate (i, &r2)); i++)
2307 nw = XCNEW (struct dref_d);
2308 nw->stmt = stmt_combining_refs (r1, r2);
2309 nw->distance = r1->distance;
2311 new_chain->refs.safe_push (nw);
2314 new_chain->has_max_use_after = false;
2315 root_stmt = get_chain_root (new_chain)->stmt;
2316 for (i = 1; new_chain->refs.iterate (i, &nw); i++)
2318 if (nw->distance == new_chain->length
2319 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2321 new_chain->has_max_use_after = true;
2322 break;
2326 ch1->combined = true;
2327 ch2->combined = true;
2328 return new_chain;
2331 /* Try to combine the CHAINS. */
2333 static void
2334 try_combine_chains (vec<chain_p> *chains)
2336 unsigned i, j;
2337 chain_p ch1, ch2, cch;
2338 auto_vec<chain_p> worklist;
2340 FOR_EACH_VEC_ELT (*chains, i, ch1)
2341 if (chain_can_be_combined_p (ch1))
2342 worklist.safe_push (ch1);
2344 while (!worklist.is_empty ())
2346 ch1 = worklist.pop ();
2347 if (!chain_can_be_combined_p (ch1))
2348 continue;
2350 FOR_EACH_VEC_ELT (*chains, j, ch2)
2352 if (!chain_can_be_combined_p (ch2))
2353 continue;
2355 cch = combine_chains (ch1, ch2);
2356 if (cch)
2358 worklist.safe_push (cch);
2359 chains->safe_push (cch);
2360 break;
2366 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2367 impossible because one of these initializers may trap, true otherwise. */
2369 static bool
2370 prepare_initializers_chain (struct loop *loop, chain_p chain)
2372 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2373 struct data_reference *dr = get_chain_root (chain)->ref;
2374 tree init;
2375 dref laref;
2376 edge entry = loop_preheader_edge (loop);
2378 /* Find the initializers for the variables, and check that they cannot
2379 trap. */
2380 chain->inits.create (n);
2381 for (i = 0; i < n; i++)
2382 chain->inits.quick_push (NULL_TREE);
2384 /* If we have replaced some looparound phi nodes, use their initializers
2385 instead of creating our own. */
2386 FOR_EACH_VEC_ELT (chain->refs, i, laref)
2388 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2389 continue;
2391 gcc_assert (laref->distance > 0);
2392 chain->inits[n - laref->distance]
2393 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
2396 for (i = 0; i < n; i++)
2398 gimple_seq stmts = NULL;
2400 if (chain->inits[i] != NULL_TREE)
2401 continue;
2403 init = ref_at_iteration (dr, (int) i - n, &stmts);
2404 if (!chain->all_always_accessed && tree_could_trap_p (init))
2406 gimple_seq_discard (stmts);
2407 return false;
2410 if (stmts)
2411 gsi_insert_seq_on_edge_immediate (entry, stmts);
2413 chain->inits[i] = init;
2416 return true;
2419 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2420 be used because the initializers might trap. */
2422 static void
2423 prepare_initializers (struct loop *loop, vec<chain_p> chains)
2425 chain_p chain;
2426 unsigned i;
2428 for (i = 0; i < chains.length (); )
2430 chain = chains[i];
2431 if (prepare_initializers_chain (loop, chain))
2432 i++;
2433 else
2435 release_chain (chain);
2436 chains.unordered_remove (i);
2441 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2442 unrolled. */
2444 static bool
2445 tree_predictive_commoning_loop (struct loop *loop)
2447 vec<data_reference_p> datarefs;
2448 vec<ddr_p> dependences;
2449 struct component *components;
2450 vec<chain_p> chains = vNULL;
2451 unsigned unroll_factor;
2452 struct tree_niter_desc desc;
2453 bool unroll = false;
2454 edge exit;
2455 bitmap tmp_vars;
2457 if (dump_file && (dump_flags & TDF_DETAILS))
2458 fprintf (dump_file, "Processing loop %d\n", loop->num);
2460 /* Find the data references and split them into components according to their
2461 dependence relations. */
2462 auto_vec<loop_p, 3> loop_nest;
2463 dependences.create (10);
2464 datarefs.create (10);
2465 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2466 &dependences))
2468 if (dump_file && (dump_flags & TDF_DETAILS))
2469 fprintf (dump_file, "Cannot analyze data dependencies\n");
2470 free_data_refs (datarefs);
2471 free_dependence_relations (dependences);
2472 return false;
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2476 dump_data_dependence_relations (dump_file, dependences);
2478 components = split_data_refs_to_components (loop, datarefs, dependences);
2479 loop_nest.release ();
2480 free_dependence_relations (dependences);
2481 if (!components)
2483 free_data_refs (datarefs);
2484 free_affine_expand_cache (&name_expansions);
2485 return false;
2488 if (dump_file && (dump_flags & TDF_DETAILS))
2490 fprintf (dump_file, "Initial state:\n\n");
2491 dump_components (dump_file, components);
2494 /* Find the suitable components and split them into chains. */
2495 components = filter_suitable_components (loop, components);
2497 tmp_vars = BITMAP_ALLOC (NULL);
2498 looparound_phis = BITMAP_ALLOC (NULL);
2499 determine_roots (loop, components, &chains);
2500 release_components (components);
2502 if (!chains.exists ())
2504 if (dump_file && (dump_flags & TDF_DETAILS))
2505 fprintf (dump_file,
2506 "Predictive commoning failed: no suitable chains\n");
2507 goto end;
2509 prepare_initializers (loop, chains);
2511 /* Try to combine the chains that are always worked with together. */
2512 try_combine_chains (&chains);
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2516 fprintf (dump_file, "Before commoning:\n\n");
2517 dump_chains (dump_file, chains);
2520 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2521 that its number of iterations is divisible by the factor. */
2522 unroll_factor = determine_unroll_factor (chains);
2523 scev_reset ();
2524 unroll = (unroll_factor > 1
2525 && can_unroll_loop_p (loop, unroll_factor, &desc));
2526 exit = single_dom_exit (loop);
2528 /* Execute the predictive commoning transformations, and possibly unroll the
2529 loop. */
2530 if (unroll)
2532 struct epcc_data dta;
2534 if (dump_file && (dump_flags & TDF_DETAILS))
2535 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2537 dta.chains = chains;
2538 dta.tmp_vars = tmp_vars;
2540 update_ssa (TODO_update_ssa_only_virtuals);
2542 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2543 execute_pred_commoning_cbck is called may cause phi nodes to be
2544 reallocated, which is a problem since CHAINS may point to these
2545 statements. To fix this, we store the ssa names defined by the
2546 phi nodes here instead of the phi nodes themselves, and restore
2547 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2548 replace_phis_by_defined_names (chains);
2550 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2551 execute_pred_commoning_cbck, &dta);
2552 eliminate_temp_copies (loop, tmp_vars);
2554 else
2556 if (dump_file && (dump_flags & TDF_DETAILS))
2557 fprintf (dump_file,
2558 "Executing predictive commoning without unrolling.\n");
2559 execute_pred_commoning (loop, chains, tmp_vars);
2562 end: ;
2563 release_chains (chains);
2564 free_data_refs (datarefs);
2565 BITMAP_FREE (tmp_vars);
2566 BITMAP_FREE (looparound_phis);
2568 free_affine_expand_cache (&name_expansions);
2570 return unroll;
2573 /* Runs predictive commoning. */
2575 unsigned
2576 tree_predictive_commoning (void)
2578 bool unrolled = false;
2579 struct loop *loop;
2580 unsigned ret = 0;
2582 initialize_original_copy_tables ();
2583 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
2584 if (optimize_loop_for_speed_p (loop))
2586 unrolled |= tree_predictive_commoning_loop (loop);
2589 if (unrolled)
2591 scev_reset ();
2592 ret = TODO_cleanup_cfg;
2594 free_original_copy_tables ();
2596 return ret;
2599 /* Predictive commoning Pass. */
2601 static unsigned
2602 run_tree_predictive_commoning (struct function *fun)
2604 if (number_of_loops (fun) <= 1)
2605 return 0;
2607 return tree_predictive_commoning ();
2610 namespace {
2612 const pass_data pass_data_predcom =
2614 GIMPLE_PASS, /* type */
2615 "pcom", /* name */
2616 OPTGROUP_LOOP, /* optinfo_flags */
2617 TV_PREDCOM, /* tv_id */
2618 PROP_cfg, /* properties_required */
2619 0, /* properties_provided */
2620 0, /* properties_destroyed */
2621 0, /* todo_flags_start */
2622 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
2625 class pass_predcom : public gimple_opt_pass
2627 public:
2628 pass_predcom (gcc::context *ctxt)
2629 : gimple_opt_pass (pass_data_predcom, ctxt)
2632 /* opt_pass methods: */
2633 virtual bool gate (function *) { return flag_predictive_commoning != 0; }
2634 virtual unsigned int execute (function *fun)
2636 return run_tree_predictive_commoning (fun);
2639 }; // class pass_predcom
2641 } // anon namespace
2643 gimple_opt_pass *
2644 make_pass_predcom (gcc::context *ctxt)
2646 return new pass_predcom (ctxt);