Mark ChangeLog
[official-gcc.git] / gcc / postreload-gcse.c
blob56023d03ac7bcca26fca2cae35ad54462d8742e4
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "basic-block.h"
37 #include "output.h"
38 #include "function.h"
39 #include "expr.h"
40 #include "except.h"
41 #include "intl.h"
42 #include "obstack.h"
43 #include "hashtab.h"
44 #include "params.h"
45 #include "target.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
49 /* The following code implements gcse after reload, the purpose of this
50 pass is to cleanup redundant loads generated by reload and other
51 optimizations that come after gcse. It searches for simple inter-block
52 redundancies and tries to eliminate them by adding moves and loads
53 in cold places.
55 Perform partially redundant load elimination, try to eliminate redundant
56 loads created by the reload pass. We try to look for full or partial
57 redundant loads fed by one or more loads/stores in predecessor BBs,
58 and try adding loads to make them fully redundant. We also check if
59 it's worth adding loads to be able to delete the redundant load.
61 Algorithm:
62 1. Build available expressions hash table:
63 For each load/store instruction, if the loaded/stored memory didn't
64 change until the end of the basic block add this memory expression to
65 the hash table.
66 2. Perform Redundancy elimination:
67 For each load instruction do the following:
68 perform partial redundancy elimination, check if it's worth adding
69 loads to make the load fully redundant. If so add loads and
70 register copies and delete the load.
71 3. Delete instructions made redundant in step 2.
73 Future enhancement:
74 If the loaded register is used/defined between load and some store,
75 look for some other free register between load and all its stores,
76 and replace the load with a copy from this register to the loaded
77 register.
81 /* Keep statistics of this pass. */
82 static struct
84 int moves_inserted;
85 int copies_inserted;
86 int insns_deleted;
87 } stats;
89 /* We need to keep a hash table of expressions. The table entries are of
90 type 'struct expr', and for each expression there is a single linked
91 list of occurrences. */
93 /* The table itself. */
94 static htab_t expr_table;
96 /* Expression elements in the hash table. */
97 struct expr
99 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
100 rtx expr;
102 /* The same hash for this entry. */
103 hashval_t hash;
105 /* List of available occurrence in basic blocks in the function. */
106 struct occr *avail_occr;
109 static struct obstack expr_obstack;
111 /* Occurrence of an expression.
112 There is at most one occurrence per basic block. If a pattern appears
113 more than once, the last appearance is used. */
115 struct occr
117 /* Next occurrence of this expression. */
118 struct occr *next;
119 /* The insn that computes the expression. */
120 rtx insn;
121 /* Nonzero if this [anticipatable] occurrence has been deleted. */
122 char deleted_p;
125 static struct obstack occr_obstack;
127 /* The following structure holds the information about the occurrences of
128 the redundant instructions. */
129 struct unoccr
131 struct unoccr *next;
132 edge pred;
133 rtx insn;
136 static struct obstack unoccr_obstack;
138 /* Array where each element is the CUID if the insn that last set the hard
139 register with the number of the element, since the start of the current
140 basic block.
142 This array is used during the building of the hash table (step 1) to
143 determine if a reg is killed before the end of a basic block.
145 It is also used when eliminating partial redundancies (step 2) to see
146 if a reg was modified since the start of a basic block. */
147 static int *reg_avail_info;
149 /* A list of insns that may modify memory within the current basic block. */
150 struct modifies_mem
152 rtx insn;
153 struct modifies_mem *next;
155 static struct modifies_mem *modifies_mem_list;
157 /* The modifies_mem structs also go on an obstack, only this obstack is
158 freed each time after completing the analysis or transformations on
159 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
160 object on the obstack to keep track of the bottom of the obstack. */
161 static struct obstack modifies_mem_obstack;
162 static struct modifies_mem *modifies_mem_obstack_bottom;
164 /* Mapping of insn UIDs to CUIDs.
165 CUIDs are like UIDs except they increase monotonically in each basic
166 block, have no gaps, and only apply to real insns. */
167 static int *uid_cuid;
168 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
171 /* Helpers for memory allocation/freeing. */
172 static void alloc_mem (void);
173 static void free_mem (void);
175 /* Support for hash table construction and transformations. */
176 static bool oprs_unchanged_p (rtx, rtx, bool);
177 static void record_last_reg_set_info (rtx, int);
178 static void record_last_mem_set_info (rtx);
179 static void record_last_set_info (rtx, rtx, void *);
180 static void record_opr_changes (rtx);
182 static void find_mem_conflicts (rtx, rtx, void *);
183 static int load_killed_in_block_p (int, rtx, bool);
184 static void reset_opr_set_tables (void);
186 /* Hash table support. */
187 static hashval_t hash_expr (rtx, int *);
188 static hashval_t hash_expr_for_htab (const void *);
189 static int expr_equiv_p (const void *, const void *);
190 static void insert_expr_in_table (rtx, rtx);
191 static struct expr *lookup_expr_in_table (rtx);
192 static int dump_hash_table_entry (void **, void *);
193 static void dump_hash_table (FILE *);
195 /* Helpers for eliminate_partially_redundant_load. */
196 static bool reg_killed_on_edge (rtx, edge);
197 static bool reg_used_on_edge (rtx, edge);
199 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
200 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
201 static rtx get_avail_load_store_reg (rtx);
203 static bool bb_has_well_behaved_predecessors (basic_block);
204 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
205 static void hash_scan_set (rtx);
206 static void compute_hash_table (void);
208 /* The work horses of this pass. */
209 static void eliminate_partially_redundant_load (basic_block,
210 rtx,
211 struct expr *);
212 static void eliminate_partially_redundant_loads (void);
215 /* Allocate memory for the CUID mapping array and register/memory
216 tracking tables. */
218 static void
219 alloc_mem (void)
221 int i;
222 basic_block bb;
223 rtx insn;
225 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
226 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
227 i = 1;
228 FOR_EACH_BB (bb)
229 FOR_BB_INSNS (bb, insn)
231 if (INSN_P (insn))
232 uid_cuid[INSN_UID (insn)] = i++;
233 else
234 uid_cuid[INSN_UID (insn)] = i;
237 /* Allocate the available expressions hash table. We don't want to
238 make the hash table too small, but unnecessarily making it too large
239 also doesn't help. The i/4 is a gcse.c relic, and seems like a
240 reasonable choice. */
241 expr_table = htab_create (MAX (i / 4, 13),
242 hash_expr_for_htab, expr_equiv_p, NULL);
244 /* We allocate everything on obstacks because we often can roll back
245 the whole obstack to some point. Freeing obstacks is very fast. */
246 gcc_obstack_init (&expr_obstack);
247 gcc_obstack_init (&occr_obstack);
248 gcc_obstack_init (&unoccr_obstack);
249 gcc_obstack_init (&modifies_mem_obstack);
251 /* Working array used to track the last set for each register
252 in the current block. */
253 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
255 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
256 can roll it back in reset_opr_set_tables. */
257 modifies_mem_obstack_bottom =
258 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
259 sizeof (struct modifies_mem));
262 /* Free memory allocated by alloc_mem. */
264 static void
265 free_mem (void)
267 free (uid_cuid);
269 htab_delete (expr_table);
271 obstack_free (&expr_obstack, NULL);
272 obstack_free (&occr_obstack, NULL);
273 obstack_free (&unoccr_obstack, NULL);
274 obstack_free (&modifies_mem_obstack, NULL);
276 free (reg_avail_info);
280 /* Hash expression X.
281 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
282 or if the expression contains something we don't want to insert in the
283 table. */
285 static hashval_t
286 hash_expr (rtx x, int *do_not_record_p)
288 *do_not_record_p = 0;
289 return hash_rtx (x, GET_MODE (x), do_not_record_p,
290 NULL, /*have_reg_qty=*/false);
293 /* Callback for hashtab.
294 Return the hash value for expression EXP. We don't actually hash
295 here, we just return the cached hash value. */
297 static hashval_t
298 hash_expr_for_htab (const void *expp)
300 struct expr *exp = (struct expr *) expp;
301 return exp->hash;
304 /* Callback for hashtab.
305 Return nonzero if exp1 is equivalent to exp2. */
307 static int
308 expr_equiv_p (const void *exp1p, const void *exp2p)
310 struct expr *exp1 = (struct expr *) exp1p;
311 struct expr *exp2 = (struct expr *) exp2p;
312 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
314 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
315 return equiv_p;
319 /* Insert expression X in INSN in the hash TABLE.
320 If it is already present, record it as the last occurrence in INSN's
321 basic block. */
323 static void
324 insert_expr_in_table (rtx x, rtx insn)
326 int do_not_record_p;
327 hashval_t hash;
328 struct expr *cur_expr, **slot;
329 struct occr *avail_occr, *last_occr = NULL;
331 hash = hash_expr (x, &do_not_record_p);
333 /* Do not insert expression in the table if it contains volatile operands,
334 or if hash_expr determines the expression is something we don't want
335 to or can't handle. */
336 if (do_not_record_p)
337 return;
339 /* We anticipate that redundant expressions are rare, so for convenience
340 allocate a new hash table element here already and set its fields.
341 If we don't do this, we need a hack with a static struct expr. Anyway,
342 obstack_free is really fast and one more obstack_alloc doesn't hurt if
343 we're going to see more expressions later on. */
344 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
345 sizeof (struct expr));
346 cur_expr->expr = x;
347 cur_expr->hash = hash;
348 cur_expr->avail_occr = NULL;
350 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
351 hash, INSERT);
353 if (! (*slot))
354 /* The expression isn't found, so insert it. */
355 *slot = cur_expr;
356 else
358 /* The expression is already in the table, so roll back the
359 obstack and use the existing table entry. */
360 obstack_free (&expr_obstack, cur_expr);
361 cur_expr = *slot;
364 /* Search for another occurrence in the same basic block. */
365 avail_occr = cur_expr->avail_occr;
366 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
368 /* If an occurrence isn't found, save a pointer to the end of
369 the list. */
370 last_occr = avail_occr;
371 avail_occr = avail_occr->next;
374 if (avail_occr)
375 /* Found another instance of the expression in the same basic block.
376 Prefer this occurrence to the currently recorded one. We want
377 the last one in the block and the block is scanned from start
378 to end. */
379 avail_occr->insn = insn;
380 else
382 /* First occurrence of this expression in this basic block. */
383 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
384 sizeof (struct occr));
386 /* First occurrence of this expression in any block? */
387 if (cur_expr->avail_occr == NULL)
388 cur_expr->avail_occr = avail_occr;
389 else
390 last_occr->next = avail_occr;
392 avail_occr->insn = insn;
393 avail_occr->next = NULL;
394 avail_occr->deleted_p = 0;
399 /* Lookup pattern PAT in the expression hash table.
400 The result is a pointer to the table entry, or NULL if not found. */
402 static struct expr *
403 lookup_expr_in_table (rtx pat)
405 int do_not_record_p;
406 struct expr **slot, *tmp_expr;
407 hashval_t hash = hash_expr (pat, &do_not_record_p);
409 if (do_not_record_p)
410 return NULL;
412 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
413 sizeof (struct expr));
414 tmp_expr->expr = pat;
415 tmp_expr->hash = hash;
416 tmp_expr->avail_occr = NULL;
418 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
419 hash, INSERT);
420 obstack_free (&expr_obstack, tmp_expr);
422 if (!slot)
423 return NULL;
424 else
425 return (*slot);
429 /* Dump all expressions and occurrences that are currently in the
430 expression hash table to FILE. */
432 /* This helper is called via htab_traverse. */
433 static int
434 dump_hash_table_entry (void **slot, void *filep)
436 struct expr *expr = (struct expr *) *slot;
437 FILE *file = (FILE *) filep;
438 struct occr *occr;
440 fprintf (file, "expr: ");
441 print_rtl (file, expr->expr);
442 fprintf (file,"\nhashcode: %u\n", expr->hash);
443 fprintf (file,"list of occurrences:\n");
444 occr = expr->avail_occr;
445 while (occr)
447 rtx insn = occr->insn;
448 print_rtl_single (file, insn);
449 fprintf (file, "\n");
450 occr = occr->next;
452 fprintf (file, "\n");
453 return 1;
456 static void
457 dump_hash_table (FILE *file)
459 fprintf (file, "\n\nexpression hash table\n");
460 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
461 (long) htab_size (expr_table),
462 (long) htab_elements (expr_table),
463 htab_collisions (expr_table));
464 if (htab_elements (expr_table) > 0)
466 fprintf (file, "\n\ntable entries:\n");
467 htab_traverse (expr_table, dump_hash_table_entry, file);
469 fprintf (file, "\n");
473 /* Return nonzero if the operands of expression X are unchanged
474 1) from the start of INSN's basic block up to but not including INSN
475 if AFTER_INSN is false, or
476 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
478 static bool
479 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
481 int i, j;
482 enum rtx_code code;
483 const char *fmt;
485 if (x == 0)
486 return 1;
488 code = GET_CODE (x);
489 switch (code)
491 case REG:
492 /* We are called after register allocation. */
493 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
494 if (after_insn)
495 /* If the last CUID setting the insn is less than the CUID of
496 INSN, then reg X is not changed in or after INSN. */
497 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
498 else
499 /* Reg X is not set before INSN in the current basic block if
500 we have not yet recorded the CUID of an insn that touches
501 the reg. */
502 return reg_avail_info[REGNO (x)] == 0;
504 case MEM:
505 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
506 return 0;
507 else
508 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
510 case PC:
511 case CC0: /*FIXME*/
512 case CONST:
513 case CONST_INT:
514 case CONST_DOUBLE:
515 case CONST_VECTOR:
516 case SYMBOL_REF:
517 case LABEL_REF:
518 case ADDR_VEC:
519 case ADDR_DIFF_VEC:
520 return 1;
522 case PRE_DEC:
523 case PRE_INC:
524 case POST_DEC:
525 case POST_INC:
526 case PRE_MODIFY:
527 case POST_MODIFY:
528 if (after_insn)
529 return 0;
530 break;
532 default:
533 break;
536 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
538 if (fmt[i] == 'e')
540 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
541 return 0;
543 else if (fmt[i] == 'E')
544 for (j = 0; j < XVECLEN (x, i); j++)
545 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
546 return 0;
549 return 1;
553 /* Used for communication between find_mem_conflicts and
554 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
555 conflict between two memory references.
556 This is a bit of a hack to work around the limitations of note_stores. */
557 static int mems_conflict_p;
559 /* DEST is the output of an instruction. If it is a memory reference, and
560 possibly conflicts with the load found in DATA, then set mems_conflict_p
561 to a nonzero value. */
563 static void
564 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
565 void *data)
567 rtx mem_op = (rtx) data;
569 while (GET_CODE (dest) == SUBREG
570 || GET_CODE (dest) == ZERO_EXTRACT
571 || GET_CODE (dest) == STRICT_LOW_PART)
572 dest = XEXP (dest, 0);
574 /* If DEST is not a MEM, then it will not conflict with the load. Note
575 that function calls are assumed to clobber memory, but are handled
576 elsewhere. */
577 if (! MEM_P (dest))
578 return;
580 if (true_dependence (dest, GET_MODE (dest), mem_op,
581 rtx_addr_varies_p))
582 mems_conflict_p = 1;
586 /* Return nonzero if the expression in X (a memory reference) is killed
587 in the current basic block before (if AFTER_INSN is false) or after
588 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
590 This function assumes that the modifies_mem table is flushed when
591 the hash table construction or redundancy elimination phases start
592 processing a new basic block. */
594 static int
595 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
597 struct modifies_mem *list_entry = modifies_mem_list;
599 while (list_entry)
601 rtx setter = list_entry->insn;
603 /* Ignore entries in the list that do not apply. */
604 if ((after_insn
605 && INSN_CUID (setter) < uid_limit)
606 || (! after_insn
607 && INSN_CUID (setter) > uid_limit))
609 list_entry = list_entry->next;
610 continue;
613 /* If SETTER is a call everything is clobbered. Note that calls
614 to pure functions are never put on the list, so we need not
615 worry about them. */
616 if (CALL_P (setter))
617 return 1;
619 /* SETTER must be an insn of some kind that sets memory. Call
620 note_stores to examine each hunk of memory that is modified.
621 It will set mems_conflict_p to nonzero if there may be a
622 conflict between X and SETTER. */
623 mems_conflict_p = 0;
624 note_stores (PATTERN (setter), find_mem_conflicts, x);
625 if (mems_conflict_p)
626 return 1;
628 list_entry = list_entry->next;
630 return 0;
634 /* Record register first/last/block set information for REGNO in INSN. */
636 static inline void
637 record_last_reg_set_info (rtx insn, int regno)
639 reg_avail_info[regno] = INSN_CUID (insn);
643 /* Record memory modification information for INSN. We do not actually care
644 about the memory location(s) that are set, or even how they are set (consider
645 a CALL_INSN). We merely need to record which insns modify memory. */
647 static void
648 record_last_mem_set_info (rtx insn)
650 struct modifies_mem *list_entry;
652 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
653 sizeof (struct modifies_mem));
654 list_entry->insn = insn;
655 list_entry->next = modifies_mem_list;
656 modifies_mem_list = list_entry;
659 /* Called from compute_hash_table via note_stores to handle one
660 SET or CLOBBER in an insn. DATA is really the instruction in which
661 the SET is taking place. */
663 static void
664 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
666 rtx last_set_insn = (rtx) data;
668 if (GET_CODE (dest) == SUBREG)
669 dest = SUBREG_REG (dest);
671 if (REG_P (dest))
672 record_last_reg_set_info (last_set_insn, REGNO (dest));
673 else if (MEM_P (dest))
675 /* Ignore pushes, they don't clobber memory. They may still
676 clobber the stack pointer though. Some targets do argument
677 pushes without adding REG_INC notes. See e.g. PR25196,
678 where a pushsi2 on i386 doesn't have REG_INC notes. Note
679 such changes here too. */
680 if (! push_operand (dest, GET_MODE (dest)))
681 record_last_mem_set_info (last_set_insn);
682 else
683 record_last_reg_set_info (last_set_insn, STACK_POINTER_REGNUM);
688 /* Reset tables used to keep track of what's still available since the
689 start of the block. */
691 static void
692 reset_opr_set_tables (void)
694 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
695 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
696 modifies_mem_list = NULL;
700 /* Record things set by INSN.
701 This data is used by oprs_unchanged_p. */
703 static void
704 record_opr_changes (rtx insn)
706 rtx note;
708 /* Find all stores and record them. */
709 note_stores (PATTERN (insn), record_last_set_info, insn);
711 /* Also record autoincremented REGs for this insn as changed. */
712 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
713 if (REG_NOTE_KIND (note) == REG_INC)
714 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
716 /* Finally, if this is a call, record all call clobbers. */
717 if (CALL_P (insn))
719 unsigned int regno;
721 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
722 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
723 record_last_reg_set_info (insn, regno);
725 if (! CONST_OR_PURE_CALL_P (insn))
726 record_last_mem_set_info (insn);
731 /* Scan the pattern of INSN and add an entry to the hash TABLE.
732 After reload we are interested in loads/stores only. */
734 static void
735 hash_scan_set (rtx insn)
737 rtx pat = PATTERN (insn);
738 rtx src = SET_SRC (pat);
739 rtx dest = SET_DEST (pat);
741 /* We are only interested in loads and stores. */
742 if (! MEM_P (src) && ! MEM_P (dest))
743 return;
745 /* Don't mess with jumps and nops. */
746 if (JUMP_P (insn) || set_noop_p (pat))
747 return;
749 if (REG_P (dest))
751 if (/* Don't CSE something if we can't do a reg/reg copy. */
752 can_copy_p (GET_MODE (dest))
753 /* Is SET_SRC something we want to gcse? */
754 && general_operand (src, GET_MODE (src))
755 #ifdef STACK_REGS
756 /* Never consider insns touching the register stack. It may
757 create situations that reg-stack cannot handle (e.g. a stack
758 register live across an abnormal edge). */
759 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
760 #endif
761 /* An expression is not available if its operands are
762 subsequently modified, including this insn. */
763 && oprs_unchanged_p (src, insn, true))
765 insert_expr_in_table (src, insn);
768 else if (REG_P (src))
770 /* Only record sets of pseudo-regs in the hash table. */
771 if (/* Don't CSE something if we can't do a reg/reg copy. */
772 can_copy_p (GET_MODE (src))
773 /* Is SET_DEST something we want to gcse? */
774 && general_operand (dest, GET_MODE (dest))
775 #ifdef STACK_REGS
776 /* As above for STACK_REGS. */
777 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
778 #endif
779 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
780 /* Check if the memory expression is killed after insn. */
781 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
782 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
784 insert_expr_in_table (dest, insn);
790 /* Create hash table of memory expressions available at end of basic
791 blocks. Basically you should think of this hash table as the
792 representation of AVAIL_OUT. This is the set of expressions that
793 is generated in a basic block and not killed before the end of the
794 same basic block. Notice that this is really a local computation. */
796 static void
797 compute_hash_table (void)
799 basic_block bb;
801 FOR_EACH_BB (bb)
803 rtx insn;
805 /* First pass over the instructions records information used to
806 determine when registers and memory are last set.
807 Since we compute a "local" AVAIL_OUT, reset the tables that
808 help us keep track of what has been modified since the start
809 of the block. */
810 reset_opr_set_tables ();
811 FOR_BB_INSNS (bb, insn)
813 if (INSN_P (insn))
814 record_opr_changes (insn);
817 /* The next pass actually builds the hash table. */
818 FOR_BB_INSNS (bb, insn)
819 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
820 hash_scan_set (insn);
825 /* Check if register REG is killed in any insn waiting to be inserted on
826 edge E. This function is required to check that our data flow analysis
827 is still valid prior to commit_edge_insertions. */
829 static bool
830 reg_killed_on_edge (rtx reg, edge e)
832 rtx insn;
834 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
835 if (INSN_P (insn) && reg_set_p (reg, insn))
836 return true;
838 return false;
841 /* Similar to above - check if register REG is used in any insn waiting
842 to be inserted on edge E.
843 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
844 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
846 static bool
847 reg_used_on_edge (rtx reg, edge e)
849 rtx insn;
851 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
852 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
853 return true;
855 return false;
859 /* Return the insn that sets register REG or clobbers it in between
860 FROM_INSN and TO_INSN (exclusive of those two).
861 Just like reg_set_between but for hard registers and not pseudos. */
863 static rtx
864 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
866 rtx insn;
868 /* We are called after register allocation. */
869 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
871 if (from_insn == to_insn)
872 return NULL_RTX;
874 for (insn = NEXT_INSN (from_insn);
875 insn != to_insn;
876 insn = NEXT_INSN (insn))
877 if (INSN_P (insn))
879 if (set_of (reg, insn) != NULL_RTX)
880 return insn;
881 if ((CALL_P (insn)
882 && call_used_regs[REGNO (reg)])
883 || find_reg_fusage (insn, CLOBBER, reg))
884 return insn;
886 if (FIND_REG_INC_NOTE (insn, reg))
887 return insn;
890 return NULL_RTX;
893 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
894 (exclusive of those two). Similar to reg_used_between but for hard
895 registers and not pseudos. */
897 static rtx
898 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
900 rtx insn;
902 /* We are called after register allocation. */
903 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
905 if (from_insn == to_insn)
906 return NULL_RTX;
908 for (insn = NEXT_INSN (from_insn);
909 insn != to_insn;
910 insn = NEXT_INSN (insn))
911 if (INSN_P (insn))
913 if (reg_overlap_mentioned_p (reg, PATTERN (insn))
914 || (CALL_P (insn)
915 && call_used_regs[REGNO (reg)])
916 || find_reg_fusage (insn, USE, reg)
917 || find_reg_fusage (insn, CLOBBER, reg))
918 return insn;
920 if (FIND_REG_INC_NOTE (insn, reg))
921 return insn;
924 return NULL_RTX;
927 /* Return true if REG is used, set, or killed between the beginning of
928 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
930 static bool
931 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
933 rtx insn, start = PREV_INSN (BB_HEAD (bb));
935 if (reg_avail_info[REGNO (reg)] != 0)
936 return true;
938 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
939 if (! insn)
940 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
942 if (insn)
943 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
945 return insn != NULL_RTX;
948 /* Return the loaded/stored register of a load/store instruction. */
950 static rtx
951 get_avail_load_store_reg (rtx insn)
953 if (REG_P (SET_DEST (PATTERN (insn))))
954 /* A load. */
955 return SET_DEST(PATTERN(insn));
956 else
958 /* A store. */
959 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
960 return SET_SRC (PATTERN (insn));
964 /* Return nonzero if the predecessors of BB are "well behaved". */
966 static bool
967 bb_has_well_behaved_predecessors (basic_block bb)
969 edge pred;
970 edge_iterator ei;
972 if (EDGE_COUNT (bb->preds) == 0)
973 return false;
975 FOR_EACH_EDGE (pred, ei, bb->preds)
977 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
978 return false;
980 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
981 return false;
983 return true;
987 /* Search for the occurrences of expression in BB. */
989 static struct occr*
990 get_bb_avail_insn (basic_block bb, struct occr *occr)
992 for (; occr != NULL; occr = occr->next)
993 if (BLOCK_FOR_INSN (occr->insn) == bb)
994 return occr;
995 return NULL;
999 /* This handles the case where several stores feed a partially redundant
1000 load. It checks if the redundancy elimination is possible and if it's
1001 worth it.
1003 Redundancy elimination is possible if,
1004 1) None of the operands of an insn have been modified since the start
1005 of the current basic block.
1006 2) In any predecessor of the current basic block, the same expression
1007 is generated.
1009 See the function body for the heuristics that determine if eliminating
1010 a redundancy is also worth doing, assuming it is possible. */
1012 static void
1013 eliminate_partially_redundant_load (basic_block bb, rtx insn,
1014 struct expr *expr)
1016 edge pred;
1017 rtx avail_insn = NULL_RTX;
1018 rtx avail_reg;
1019 rtx dest, pat;
1020 struct occr *a_occr;
1021 struct unoccr *occr, *avail_occrs = NULL;
1022 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1023 int npred_ok = 0;
1024 gcov_type ok_count = 0; /* Redundant load execution count. */
1025 gcov_type critical_count = 0; /* Execution count of critical edges. */
1026 edge_iterator ei;
1027 bool critical_edge_split = false;
1029 /* The execution count of the loads to be added to make the
1030 load fully redundant. */
1031 gcov_type not_ok_count = 0;
1032 basic_block pred_bb;
1034 pat = PATTERN (insn);
1035 dest = SET_DEST (pat);
1037 /* Check that the loaded register is not used, set, or killed from the
1038 beginning of the block. */
1039 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1040 return;
1042 /* Check potential for replacing load with copy for predecessors. */
1043 FOR_EACH_EDGE (pred, ei, bb->preds)
1045 rtx next_pred_bb_end;
1047 avail_insn = NULL_RTX;
1048 avail_reg = NULL_RTX;
1049 pred_bb = pred->src;
1050 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1051 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1052 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1054 /* Check if the loaded register is not used. */
1055 avail_insn = a_occr->insn;
1056 avail_reg = get_avail_load_store_reg (avail_insn);
1057 gcc_assert (avail_reg);
1059 /* Make sure we can generate a move from register avail_reg to
1060 dest. */
1061 extract_insn (gen_move_insn (copy_rtx (dest),
1062 copy_rtx (avail_reg)));
1063 if (! constrain_operands (1)
1064 || reg_killed_on_edge (avail_reg, pred)
1065 || reg_used_on_edge (dest, pred))
1067 avail_insn = NULL;
1068 continue;
1070 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1071 next_pred_bb_end))
1072 /* AVAIL_INSN remains non-null. */
1073 break;
1074 else
1075 avail_insn = NULL;
1078 if (EDGE_CRITICAL_P (pred))
1079 critical_count += pred->count;
1081 if (avail_insn != NULL_RTX)
1083 npred_ok++;
1084 ok_count += pred->count;
1085 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1086 copy_rtx (avail_reg)))))
1088 /* Check if there is going to be a split. */
1089 if (EDGE_CRITICAL_P (pred))
1090 critical_edge_split = true;
1092 else /* Its a dead move no need to generate. */
1093 continue;
1094 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1095 sizeof (struct unoccr));
1096 occr->insn = avail_insn;
1097 occr->pred = pred;
1098 occr->next = avail_occrs;
1099 avail_occrs = occr;
1100 if (! rollback_unoccr)
1101 rollback_unoccr = occr;
1103 else
1105 /* Adding a load on a critical edge will cause a split. */
1106 if (EDGE_CRITICAL_P (pred))
1107 critical_edge_split = true;
1108 not_ok_count += pred->count;
1109 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1110 sizeof (struct unoccr));
1111 unoccr->insn = NULL_RTX;
1112 unoccr->pred = pred;
1113 unoccr->next = unavail_occrs;
1114 unavail_occrs = unoccr;
1115 if (! rollback_unoccr)
1116 rollback_unoccr = unoccr;
1120 if (/* No load can be replaced by copy. */
1121 npred_ok == 0
1122 /* Prevent exploding the code. */
1123 || (optimize_size && npred_ok > 1)
1124 /* If we don't have profile information we cannot tell if splitting
1125 a critical edge is profitable or not so don't do it. */
1126 || ((! profile_info || ! flag_branch_probabilities
1127 || targetm.cannot_modify_jumps_p ())
1128 && critical_edge_split))
1129 goto cleanup;
1131 /* Check if it's worth applying the partial redundancy elimination. */
1132 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1133 goto cleanup;
1134 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1135 goto cleanup;
1137 /* Generate moves to the loaded register from where
1138 the memory is available. */
1139 for (occr = avail_occrs; occr; occr = occr->next)
1141 avail_insn = occr->insn;
1142 pred = occr->pred;
1143 /* Set avail_reg to be the register having the value of the
1144 memory. */
1145 avail_reg = get_avail_load_store_reg (avail_insn);
1146 gcc_assert (avail_reg);
1148 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1149 copy_rtx (avail_reg)),
1150 pred);
1151 stats.moves_inserted++;
1153 if (dump_file)
1154 fprintf (dump_file,
1155 "generating move from %d to %d on edge from %d to %d\n",
1156 REGNO (avail_reg),
1157 REGNO (dest),
1158 pred->src->index,
1159 pred->dest->index);
1162 /* Regenerate loads where the memory is unavailable. */
1163 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1165 pred = unoccr->pred;
1166 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1167 stats.copies_inserted++;
1169 if (dump_file)
1171 fprintf (dump_file,
1172 "generating on edge from %d to %d a copy of load: ",
1173 pred->src->index,
1174 pred->dest->index);
1175 print_rtl (dump_file, PATTERN (insn));
1176 fprintf (dump_file, "\n");
1180 /* Delete the insn if it is not available in this block and mark it
1181 for deletion if it is available. If insn is available it may help
1182 discover additional redundancies, so mark it for later deletion. */
1183 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1184 a_occr && (a_occr->insn != insn);
1185 a_occr = get_bb_avail_insn (bb, a_occr->next));
1187 if (!a_occr)
1189 stats.insns_deleted++;
1191 if (dump_file)
1193 fprintf (dump_file, "deleting insn:\n");
1194 print_rtl_single (dump_file, insn);
1195 fprintf (dump_file, "\n");
1197 delete_insn (insn);
1199 else
1200 a_occr->deleted_p = 1;
1202 cleanup:
1203 if (rollback_unoccr)
1204 obstack_free (&unoccr_obstack, rollback_unoccr);
1207 /* Performing the redundancy elimination as described before. */
1209 static void
1210 eliminate_partially_redundant_loads (void)
1212 rtx insn;
1213 basic_block bb;
1215 /* Note we start at block 1. */
1217 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1218 return;
1220 FOR_BB_BETWEEN (bb,
1221 ENTRY_BLOCK_PTR->next_bb->next_bb,
1222 EXIT_BLOCK_PTR,
1223 next_bb)
1225 /* Don't try anything on basic blocks with strange predecessors. */
1226 if (! bb_has_well_behaved_predecessors (bb))
1227 continue;
1229 /* Do not try anything on cold basic blocks. */
1230 if (probably_cold_bb_p (bb))
1231 continue;
1233 /* Reset the table of things changed since the start of the current
1234 basic block. */
1235 reset_opr_set_tables ();
1237 /* Look at all insns in the current basic block and see if there are
1238 any loads in it that we can record. */
1239 FOR_BB_INSNS (bb, insn)
1241 /* Is it a load - of the form (set (reg) (mem))? */
1242 if (NONJUMP_INSN_P (insn)
1243 && GET_CODE (PATTERN (insn)) == SET
1244 && REG_P (SET_DEST (PATTERN (insn)))
1245 && MEM_P (SET_SRC (PATTERN (insn))))
1247 rtx pat = PATTERN (insn);
1248 rtx src = SET_SRC (pat);
1249 struct expr *expr;
1251 if (!MEM_VOLATILE_P (src)
1252 && GET_MODE (src) != BLKmode
1253 && general_operand (src, GET_MODE (src))
1254 /* Are the operands unchanged since the start of the
1255 block? */
1256 && oprs_unchanged_p (src, insn, false)
1257 && !(flag_non_call_exceptions && may_trap_p (src))
1258 && !side_effects_p (src)
1259 /* Is the expression recorded? */
1260 && (expr = lookup_expr_in_table (src)) != NULL)
1262 /* We now have a load (insn) and an available memory at
1263 its BB start (expr). Try to remove the loads if it is
1264 redundant. */
1265 eliminate_partially_redundant_load (bb, insn, expr);
1269 /* Keep track of everything modified by this insn, so that we
1270 know what has been modified since the start of the current
1271 basic block. */
1272 if (INSN_P (insn))
1273 record_opr_changes (insn);
1277 commit_edge_insertions ();
1280 /* Go over the expression hash table and delete insns that were
1281 marked for later deletion. */
1283 /* This helper is called via htab_traverse. */
1284 static int
1285 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1287 struct expr *expr = (struct expr *) *slot;
1288 struct occr *occr;
1290 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1292 if (occr->deleted_p)
1294 delete_insn (occr->insn);
1295 stats.insns_deleted++;
1297 if (dump_file)
1299 fprintf (dump_file, "deleting insn:\n");
1300 print_rtl_single (dump_file, occr->insn);
1301 fprintf (dump_file, "\n");
1306 return 1;
1309 static void
1310 delete_redundant_insns (void)
1312 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1313 if (dump_file)
1314 fprintf (dump_file, "\n");
1317 /* Main entry point of the GCSE after reload - clean some redundant loads
1318 due to spilling. */
1320 static void
1321 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1324 memset (&stats, 0, sizeof (stats));
1326 /* Allocate ememory for this pass.
1327 Also computes and initializes the insns' CUIDs. */
1328 alloc_mem ();
1330 /* We need alias analysis. */
1331 init_alias_analysis ();
1333 compute_hash_table ();
1335 if (dump_file)
1336 dump_hash_table (dump_file);
1338 if (htab_elements (expr_table) > 0)
1340 eliminate_partially_redundant_loads ();
1341 delete_redundant_insns ();
1343 if (dump_file)
1345 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1346 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1347 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1348 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1349 fprintf (dump_file, "\n\n");
1353 /* We are finished with alias. */
1354 end_alias_analysis ();
1356 free_mem ();
1360 static bool
1361 gate_handle_gcse2 (void)
1363 return (optimize > 0 && flag_gcse_after_reload);
1367 static unsigned int
1368 rest_of_handle_gcse2 (void)
1370 gcse_after_reload_main (get_insns ());
1371 rebuild_jump_labels (get_insns ());
1372 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1373 return 0;
1376 struct tree_opt_pass pass_gcse2 =
1378 "gcse2", /* name */
1379 gate_handle_gcse2, /* gate */
1380 rest_of_handle_gcse2, /* execute */
1381 NULL, /* sub */
1382 NULL, /* next */
1383 0, /* static_pass_number */
1384 TV_GCSE_AFTER_RELOAD, /* tv_id */
1385 0, /* properties_required */
1386 0, /* properties_provided */
1387 0, /* properties_destroyed */
1388 0, /* todo_flags_start */
1389 TODO_dump_func |
1390 TODO_verify_flow | TODO_ggc_collect, /* todo_flags_finish */
1391 'J' /* letter */