Mark ChangeLog
[official-gcc.git] / gcc / ifcvt.c
blob5945e94bf6459eafda9fa2a4a23da96c677ae48b
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
47 #ifndef HAVE_conditional_execution
48 #define HAVE_conditional_execution 0
49 #endif
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
62 #ifndef HAVE_conditional_trap
63 #define HAVE_conditional_trap 0
64 #endif
66 #ifndef MAX_CONDITIONAL_EXECUTE
67 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
68 #endif
70 #define NULL_BLOCK ((basic_block) NULL)
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks;
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
76 execution. */
77 static int num_updated_if_blocks;
79 /* # of changes made which require life information to be updated. */
80 static int num_true_changes;
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p;
85 /* True if life data ok at present. */
86 static bool life_data_ok;
88 /* Forward references. */
89 static int count_bb_insns (basic_block);
90 static bool cheap_bb_rtx_cost_p (basic_block, int);
91 static rtx first_active_insn (basic_block);
92 static rtx last_active_insn (basic_block, int);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static int cond_exec_process_if_block (ce_if_block_t *, int);
97 static rtx noce_get_condition (rtx, rtx *);
98 static int noce_operand_ok (rtx);
99 static int noce_process_if_block (ce_if_block_t *);
100 static int process_if_block (ce_if_block_t *);
101 static void merge_if_block (ce_if_block_t *);
102 static int find_cond_trap (basic_block, edge, edge);
103 static basic_block find_if_header (basic_block, int);
104 static int block_jumps_and_fallthru_p (basic_block, basic_block);
105 static int find_if_block (ce_if_block_t *);
106 static int find_if_case_1 (basic_block, edge, edge);
107 static int find_if_case_2 (basic_block, edge, edge);
108 static int find_memory (rtx *, void *);
109 static int dead_or_predicable (basic_block, basic_block, basic_block,
110 basic_block, int);
111 static void noce_emit_move_insn (rtx, rtx);
112 static rtx block_has_only_trap (basic_block);
114 /* Count the number of non-jump active insns in BB. */
116 static int
117 count_bb_insns (basic_block bb)
119 int count = 0;
120 rtx insn = BB_HEAD (bb);
122 while (1)
124 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
125 count++;
127 if (insn == BB_END (bb))
128 break;
129 insn = NEXT_INSN (insn);
132 return count;
135 /* Determine whether the total insn_rtx_cost on non-jump insns in
136 basic block BB is less than MAX_COST. This function returns
137 false if the cost of any instruction could not be estimated. */
139 static bool
140 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
142 int count = 0;
143 rtx insn = BB_HEAD (bb);
145 while (1)
147 if (NONJUMP_INSN_P (insn))
149 int cost = insn_rtx_cost (PATTERN (insn));
150 if (cost == 0)
151 return false;
153 /* If this instruction is the load or set of a "stack" register,
154 such as a floating point register on x87, then the cost of
155 speculatively executing this insn may need to include
156 the additional cost of popping its result off of the
157 register stack. Unfortunately, correctly recognizing and
158 accounting for this additional overhead is tricky, so for
159 now we simply prohibit such speculative execution. */
160 #ifdef STACK_REGS
162 rtx set = single_set (insn);
163 if (set && STACK_REG_P (SET_DEST (set)))
164 return false;
166 #endif
168 count += cost;
169 if (count >= max_cost)
170 return false;
172 else if (CALL_P (insn))
173 return false;
175 if (insn == BB_END (bb))
176 break;
177 insn = NEXT_INSN (insn);
180 return true;
183 /* Return the first non-jump active insn in the basic block. */
185 static rtx
186 first_active_insn (basic_block bb)
188 rtx insn = BB_HEAD (bb);
190 if (LABEL_P (insn))
192 if (insn == BB_END (bb))
193 return NULL_RTX;
194 insn = NEXT_INSN (insn);
197 while (NOTE_P (insn))
199 if (insn == BB_END (bb))
200 return NULL_RTX;
201 insn = NEXT_INSN (insn);
204 if (JUMP_P (insn))
205 return NULL_RTX;
207 return insn;
210 /* Return the last non-jump active (non-jump) insn in the basic block. */
212 static rtx
213 last_active_insn (basic_block bb, int skip_use_p)
215 rtx insn = BB_END (bb);
216 rtx head = BB_HEAD (bb);
218 while (NOTE_P (insn)
219 || JUMP_P (insn)
220 || (skip_use_p
221 && NONJUMP_INSN_P (insn)
222 && GET_CODE (PATTERN (insn)) == USE))
224 if (insn == head)
225 return NULL_RTX;
226 insn = PREV_INSN (insn);
229 if (LABEL_P (insn))
230 return NULL_RTX;
232 return insn;
235 /* Return the basic block reached by falling though the basic block BB. */
237 static basic_block
238 block_fallthru (basic_block bb)
240 edge e;
241 edge_iterator ei;
243 FOR_EACH_EDGE (e, ei, bb->succs)
244 if (e->flags & EDGE_FALLTHRU)
245 break;
247 return (e) ? e->dest : NULL_BLOCK;
250 /* Go through a bunch of insns, converting them to conditional
251 execution format if possible. Return TRUE if all of the non-note
252 insns were processed. */
254 static int
255 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
256 /* if block information */rtx start,
257 /* first insn to look at */rtx end,
258 /* last insn to look at */rtx test,
259 /* conditional execution test */rtx prob_val,
260 /* probability of branch taken. */int mod_ok)
262 int must_be_last = FALSE;
263 rtx insn;
264 rtx xtest;
265 rtx pattern;
267 if (!start || !end)
268 return FALSE;
270 for (insn = start; ; insn = NEXT_INSN (insn))
272 if (NOTE_P (insn))
273 goto insn_done;
275 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
277 /* Remove USE insns that get in the way. */
278 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
280 /* ??? Ug. Actually unlinking the thing is problematic,
281 given what we'd have to coordinate with our callers. */
282 SET_INSN_DELETED (insn);
283 goto insn_done;
286 /* Last insn wasn't last? */
287 if (must_be_last)
288 return FALSE;
290 if (modified_in_p (test, insn))
292 if (!mod_ok)
293 return FALSE;
294 must_be_last = TRUE;
297 /* Now build the conditional form of the instruction. */
298 pattern = PATTERN (insn);
299 xtest = copy_rtx (test);
301 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
302 two conditions. */
303 if (GET_CODE (pattern) == COND_EXEC)
305 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
306 return FALSE;
308 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
309 COND_EXEC_TEST (pattern));
310 pattern = COND_EXEC_CODE (pattern);
313 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
315 /* If the machine needs to modify the insn being conditionally executed,
316 say for example to force a constant integer operand into a temp
317 register, do so here. */
318 #ifdef IFCVT_MODIFY_INSN
319 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
320 if (! pattern)
321 return FALSE;
322 #endif
324 validate_change (insn, &PATTERN (insn), pattern, 1);
326 if (CALL_P (insn) && prob_val)
327 validate_change (insn, &REG_NOTES (insn),
328 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
329 REG_NOTES (insn)), 1);
331 insn_done:
332 if (insn == end)
333 break;
336 return TRUE;
339 /* Return the condition for a jump. Do not do any special processing. */
341 static rtx
342 cond_exec_get_condition (rtx jump)
344 rtx test_if, cond;
346 if (any_condjump_p (jump))
347 test_if = SET_SRC (pc_set (jump));
348 else
349 return NULL_RTX;
350 cond = XEXP (test_if, 0);
352 /* If this branches to JUMP_LABEL when the condition is false,
353 reverse the condition. */
354 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
355 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
357 enum rtx_code rev = reversed_comparison_code (cond, jump);
358 if (rev == UNKNOWN)
359 return NULL_RTX;
361 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
362 XEXP (cond, 1));
365 return cond;
368 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
369 to conditional execution. Return TRUE if we were successful at
370 converting the block. */
372 static int
373 cond_exec_process_if_block (ce_if_block_t * ce_info,
374 /* if block information */int do_multiple_p)
376 basic_block test_bb = ce_info->test_bb; /* last test block */
377 basic_block then_bb = ce_info->then_bb; /* THEN */
378 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
379 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
380 rtx then_start; /* first insn in THEN block */
381 rtx then_end; /* last insn + 1 in THEN block */
382 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
383 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
384 int max; /* max # of insns to convert. */
385 int then_mod_ok; /* whether conditional mods are ok in THEN */
386 rtx true_expr; /* test for else block insns */
387 rtx false_expr; /* test for then block insns */
388 rtx true_prob_val; /* probability of else block */
389 rtx false_prob_val; /* probability of then block */
390 int n_insns;
391 enum rtx_code false_code;
393 /* If test is comprised of && or || elements, and we've failed at handling
394 all of them together, just use the last test if it is the special case of
395 && elements without an ELSE block. */
396 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
398 if (else_bb || ! ce_info->and_and_p)
399 return FALSE;
401 ce_info->test_bb = test_bb = ce_info->last_test_bb;
402 ce_info->num_multiple_test_blocks = 0;
403 ce_info->num_and_and_blocks = 0;
404 ce_info->num_or_or_blocks = 0;
407 /* Find the conditional jump to the ELSE or JOIN part, and isolate
408 the test. */
409 test_expr = cond_exec_get_condition (BB_END (test_bb));
410 if (! test_expr)
411 return FALSE;
413 /* If the conditional jump is more than just a conditional jump,
414 then we can not do conditional execution conversion on this block. */
415 if (! onlyjump_p (BB_END (test_bb)))
416 return FALSE;
418 /* Collect the bounds of where we're to search, skipping any labels, jumps
419 and notes at the beginning and end of the block. Then count the total
420 number of insns and see if it is small enough to convert. */
421 then_start = first_active_insn (then_bb);
422 then_end = last_active_insn (then_bb, TRUE);
423 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
424 max = MAX_CONDITIONAL_EXECUTE;
426 if (else_bb)
428 max *= 2;
429 else_start = first_active_insn (else_bb);
430 else_end = last_active_insn (else_bb, TRUE);
431 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
434 if (n_insns > max)
435 return FALSE;
437 /* Map test_expr/test_jump into the appropriate MD tests to use on
438 the conditionally executed code. */
440 true_expr = test_expr;
442 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
443 if (false_code != UNKNOWN)
444 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
445 XEXP (true_expr, 0), XEXP (true_expr, 1));
446 else
447 false_expr = NULL_RTX;
449 #ifdef IFCVT_MODIFY_TESTS
450 /* If the machine description needs to modify the tests, such as setting a
451 conditional execution register from a comparison, it can do so here. */
452 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
454 /* See if the conversion failed. */
455 if (!true_expr || !false_expr)
456 goto fail;
457 #endif
459 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
460 if (true_prob_val)
462 true_prob_val = XEXP (true_prob_val, 0);
463 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
465 else
466 false_prob_val = NULL_RTX;
468 /* If we have && or || tests, do them here. These tests are in the adjacent
469 blocks after the first block containing the test. */
470 if (ce_info->num_multiple_test_blocks > 0)
472 basic_block bb = test_bb;
473 basic_block last_test_bb = ce_info->last_test_bb;
475 if (! false_expr)
476 goto fail;
480 rtx start, end;
481 rtx t, f;
482 enum rtx_code f_code;
484 bb = block_fallthru (bb);
485 start = first_active_insn (bb);
486 end = last_active_insn (bb, TRUE);
487 if (start
488 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
489 false_prob_val, FALSE))
490 goto fail;
492 /* If the conditional jump is more than just a conditional jump, then
493 we can not do conditional execution conversion on this block. */
494 if (! onlyjump_p (BB_END (bb)))
495 goto fail;
497 /* Find the conditional jump and isolate the test. */
498 t = cond_exec_get_condition (BB_END (bb));
499 if (! t)
500 goto fail;
502 f_code = reversed_comparison_code (t, BB_END (bb));
503 if (f_code == UNKNOWN)
504 goto fail;
506 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
507 if (ce_info->and_and_p)
509 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
510 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
512 else
514 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
515 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
518 /* If the machine description needs to modify the tests, such as
519 setting a conditional execution register from a comparison, it can
520 do so here. */
521 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
522 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
524 /* See if the conversion failed. */
525 if (!t || !f)
526 goto fail;
527 #endif
529 true_expr = t;
530 false_expr = f;
532 while (bb != last_test_bb);
535 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
536 on then THEN block. */
537 then_mod_ok = (else_bb == NULL_BLOCK);
539 /* Go through the THEN and ELSE blocks converting the insns if possible
540 to conditional execution. */
542 if (then_end
543 && (! false_expr
544 || ! cond_exec_process_insns (ce_info, then_start, then_end,
545 false_expr, false_prob_val,
546 then_mod_ok)))
547 goto fail;
549 if (else_bb && else_end
550 && ! cond_exec_process_insns (ce_info, else_start, else_end,
551 true_expr, true_prob_val, TRUE))
552 goto fail;
554 /* If we cannot apply the changes, fail. Do not go through the normal fail
555 processing, since apply_change_group will call cancel_changes. */
556 if (! apply_change_group ())
558 #ifdef IFCVT_MODIFY_CANCEL
559 /* Cancel any machine dependent changes. */
560 IFCVT_MODIFY_CANCEL (ce_info);
561 #endif
562 return FALSE;
565 #ifdef IFCVT_MODIFY_FINAL
566 /* Do any machine dependent final modifications. */
567 IFCVT_MODIFY_FINAL (ce_info);
568 #endif
570 /* Conversion succeeded. */
571 if (dump_file)
572 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
573 n_insns, (n_insns == 1) ? " was" : "s were");
575 /* Merge the blocks! */
576 merge_if_block (ce_info);
577 cond_exec_changed_p = TRUE;
578 return TRUE;
580 fail:
581 #ifdef IFCVT_MODIFY_CANCEL
582 /* Cancel any machine dependent changes. */
583 IFCVT_MODIFY_CANCEL (ce_info);
584 #endif
586 cancel_changes (0);
587 return FALSE;
590 /* Used by noce_process_if_block to communicate with its subroutines.
592 The subroutines know that A and B may be evaluated freely. They
593 know that X is a register. They should insert new instructions
594 before cond_earliest. */
596 struct noce_if_info
598 basic_block test_bb;
599 rtx insn_a, insn_b;
600 rtx x, a, b;
601 rtx jump, cond, cond_earliest;
602 /* True if "b" was originally evaluated unconditionally. */
603 bool b_unconditional;
606 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
607 static int noce_try_move (struct noce_if_info *);
608 static int noce_try_store_flag (struct noce_if_info *);
609 static int noce_try_addcc (struct noce_if_info *);
610 static int noce_try_store_flag_constants (struct noce_if_info *);
611 static int noce_try_store_flag_mask (struct noce_if_info *);
612 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
613 rtx, rtx, rtx);
614 static int noce_try_cmove (struct noce_if_info *);
615 static int noce_try_cmove_arith (struct noce_if_info *);
616 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
617 static int noce_try_minmax (struct noce_if_info *);
618 static int noce_try_abs (struct noce_if_info *);
619 static int noce_try_sign_mask (struct noce_if_info *);
621 /* Helper function for noce_try_store_flag*. */
623 static rtx
624 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
625 int normalize)
627 rtx cond = if_info->cond;
628 int cond_complex;
629 enum rtx_code code;
631 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
632 || ! general_operand (XEXP (cond, 1), VOIDmode));
634 /* If earliest == jump, or when the condition is complex, try to
635 build the store_flag insn directly. */
637 if (cond_complex)
638 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
640 if (reversep)
641 code = reversed_comparison_code (cond, if_info->jump);
642 else
643 code = GET_CODE (cond);
645 if ((if_info->cond_earliest == if_info->jump || cond_complex)
646 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
648 rtx tmp;
650 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
651 XEXP (cond, 1));
652 tmp = gen_rtx_SET (VOIDmode, x, tmp);
654 start_sequence ();
655 tmp = emit_insn (tmp);
657 if (recog_memoized (tmp) >= 0)
659 tmp = get_insns ();
660 end_sequence ();
661 emit_insn (tmp);
663 if_info->cond_earliest = if_info->jump;
665 return x;
668 end_sequence ();
671 /* Don't even try if the comparison operands or the mode of X are weird. */
672 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
673 return NULL_RTX;
675 return emit_store_flag (x, code, XEXP (cond, 0),
676 XEXP (cond, 1), VOIDmode,
677 (code == LTU || code == LEU
678 || code == GEU || code == GTU), normalize);
681 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
682 X is the destination/target and Y is the value to copy. */
684 static void
685 noce_emit_move_insn (rtx x, rtx y)
687 enum machine_mode outmode;
688 rtx outer, inner;
689 int bitpos;
691 if (GET_CODE (x) != STRICT_LOW_PART)
693 rtx seq, insn, target;
694 optab ot;
696 start_sequence ();
697 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
698 otherwise construct a suitable SET pattern ourselves. */
699 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
700 ? emit_move_insn (x, y)
701 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
702 seq = get_insns ();
703 end_sequence();
705 if (recog_memoized (insn) <= 0)
707 if (GET_CODE (x) == ZERO_EXTRACT)
709 rtx op = XEXP (x, 0);
710 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
711 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
713 /* store_bit_field expects START to be relative to
714 BYTES_BIG_ENDIAN and adjusts this value for machines with
715 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
716 invoke store_bit_field again it is necessary to have the START
717 value from the first call. */
718 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
720 if (MEM_P (op))
721 start = BITS_PER_UNIT - start - size;
722 else
724 gcc_assert (REG_P (op));
725 start = BITS_PER_WORD - start - size;
729 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
730 store_bit_field (op, size, start, GET_MODE (x), y);
731 return;
734 switch (GET_RTX_CLASS (GET_CODE (y)))
736 case RTX_UNARY:
737 ot = code_to_optab[GET_CODE (y)];
738 if (ot)
740 start_sequence ();
741 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
742 if (target != NULL_RTX)
744 if (target != x)
745 emit_move_insn (x, target);
746 seq = get_insns ();
748 end_sequence ();
750 break;
752 case RTX_BIN_ARITH:
753 case RTX_COMM_ARITH:
754 ot = code_to_optab[GET_CODE (y)];
755 if (ot)
757 start_sequence ();
758 target = expand_binop (GET_MODE (y), ot,
759 XEXP (y, 0), XEXP (y, 1),
760 x, 0, OPTAB_DIRECT);
761 if (target != NULL_RTX)
763 if (target != x)
764 emit_move_insn (x, target);
765 seq = get_insns ();
767 end_sequence ();
769 break;
771 default:
772 break;
776 emit_insn (seq);
777 return;
780 outer = XEXP (x, 0);
781 inner = XEXP (outer, 0);
782 outmode = GET_MODE (outer);
783 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
784 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
787 /* Return sequence of instructions generated by if conversion. This
788 function calls end_sequence() to end the current stream, ensures
789 that are instructions are unshared, recognizable non-jump insns.
790 On failure, this function returns a NULL_RTX. */
792 static rtx
793 end_ifcvt_sequence (struct noce_if_info *if_info)
795 rtx insn;
796 rtx seq = get_insns ();
798 set_used_flags (if_info->x);
799 set_used_flags (if_info->cond);
800 unshare_all_rtl_in_chain (seq);
801 end_sequence ();
803 /* Make sure that all of the instructions emitted are recognizable,
804 and that we haven't introduced a new jump instruction.
805 As an exercise for the reader, build a general mechanism that
806 allows proper placement of required clobbers. */
807 for (insn = seq; insn; insn = NEXT_INSN (insn))
808 if (JUMP_P (insn)
809 || recog_memoized (insn) == -1)
810 return NULL_RTX;
812 return seq;
815 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
816 "if (a == b) x = a; else x = b" into "x = b". */
818 static int
819 noce_try_move (struct noce_if_info *if_info)
821 rtx cond = if_info->cond;
822 enum rtx_code code = GET_CODE (cond);
823 rtx y, seq;
825 if (code != NE && code != EQ)
826 return FALSE;
828 /* This optimization isn't valid if either A or B could be a NaN
829 or a signed zero. */
830 if (HONOR_NANS (GET_MODE (if_info->x))
831 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
832 return FALSE;
834 /* Check whether the operands of the comparison are A and in
835 either order. */
836 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
837 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
838 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
839 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
841 y = (code == EQ) ? if_info->a : if_info->b;
843 /* Avoid generating the move if the source is the destination. */
844 if (! rtx_equal_p (if_info->x, y))
846 start_sequence ();
847 noce_emit_move_insn (if_info->x, y);
848 seq = end_ifcvt_sequence (if_info);
849 if (!seq)
850 return FALSE;
852 emit_insn_before_setloc (seq, if_info->jump,
853 INSN_LOCATOR (if_info->insn_a));
855 return TRUE;
857 return FALSE;
860 /* Convert "if (test) x = 1; else x = 0".
862 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
863 tried in noce_try_store_flag_constants after noce_try_cmove has had
864 a go at the conversion. */
866 static int
867 noce_try_store_flag (struct noce_if_info *if_info)
869 int reversep;
870 rtx target, seq;
872 if (GET_CODE (if_info->b) == CONST_INT
873 && INTVAL (if_info->b) == STORE_FLAG_VALUE
874 && if_info->a == const0_rtx)
875 reversep = 0;
876 else if (if_info->b == const0_rtx
877 && GET_CODE (if_info->a) == CONST_INT
878 && INTVAL (if_info->a) == STORE_FLAG_VALUE
879 && (reversed_comparison_code (if_info->cond, if_info->jump)
880 != UNKNOWN))
881 reversep = 1;
882 else
883 return FALSE;
885 start_sequence ();
887 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
888 if (target)
890 if (target != if_info->x)
891 noce_emit_move_insn (if_info->x, target);
893 seq = end_ifcvt_sequence (if_info);
894 if (! seq)
895 return FALSE;
897 emit_insn_before_setloc (seq, if_info->jump,
898 INSN_LOCATOR (if_info->insn_a));
899 return TRUE;
901 else
903 end_sequence ();
904 return FALSE;
908 /* Convert "if (test) x = a; else x = b", for A and B constant. */
910 static int
911 noce_try_store_flag_constants (struct noce_if_info *if_info)
913 rtx target, seq;
914 int reversep;
915 HOST_WIDE_INT itrue, ifalse, diff, tmp;
916 int normalize, can_reverse;
917 enum machine_mode mode;
919 if (! no_new_pseudos
920 && GET_CODE (if_info->a) == CONST_INT
921 && GET_CODE (if_info->b) == CONST_INT)
923 mode = GET_MODE (if_info->x);
924 ifalse = INTVAL (if_info->a);
925 itrue = INTVAL (if_info->b);
927 /* Make sure we can represent the difference between the two values. */
928 if ((itrue - ifalse > 0)
929 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
930 return FALSE;
932 diff = trunc_int_for_mode (itrue - ifalse, mode);
934 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
935 != UNKNOWN);
937 reversep = 0;
938 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
939 normalize = 0;
940 else if (ifalse == 0 && exact_log2 (itrue) >= 0
941 && (STORE_FLAG_VALUE == 1
942 || BRANCH_COST >= 2))
943 normalize = 1;
944 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
945 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
946 normalize = 1, reversep = 1;
947 else if (itrue == -1
948 && (STORE_FLAG_VALUE == -1
949 || BRANCH_COST >= 2))
950 normalize = -1;
951 else if (ifalse == -1 && can_reverse
952 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
953 normalize = -1, reversep = 1;
954 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
955 || BRANCH_COST >= 3)
956 normalize = -1;
957 else
958 return FALSE;
960 if (reversep)
962 tmp = itrue; itrue = ifalse; ifalse = tmp;
963 diff = trunc_int_for_mode (-diff, mode);
966 start_sequence ();
967 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
968 if (! target)
970 end_sequence ();
971 return FALSE;
974 /* if (test) x = 3; else x = 4;
975 => x = 3 + (test == 0); */
976 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
978 target = expand_simple_binop (mode,
979 (diff == STORE_FLAG_VALUE
980 ? PLUS : MINUS),
981 GEN_INT (ifalse), target, if_info->x, 0,
982 OPTAB_WIDEN);
985 /* if (test) x = 8; else x = 0;
986 => x = (test != 0) << 3; */
987 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
989 target = expand_simple_binop (mode, ASHIFT,
990 target, GEN_INT (tmp), if_info->x, 0,
991 OPTAB_WIDEN);
994 /* if (test) x = -1; else x = b;
995 => x = -(test != 0) | b; */
996 else if (itrue == -1)
998 target = expand_simple_binop (mode, IOR,
999 target, GEN_INT (ifalse), if_info->x, 0,
1000 OPTAB_WIDEN);
1003 /* if (test) x = a; else x = b;
1004 => x = (-(test != 0) & (b - a)) + a; */
1005 else
1007 target = expand_simple_binop (mode, AND,
1008 target, GEN_INT (diff), if_info->x, 0,
1009 OPTAB_WIDEN);
1010 if (target)
1011 target = expand_simple_binop (mode, PLUS,
1012 target, GEN_INT (ifalse),
1013 if_info->x, 0, OPTAB_WIDEN);
1016 if (! target)
1018 end_sequence ();
1019 return FALSE;
1022 if (target != if_info->x)
1023 noce_emit_move_insn (if_info->x, target);
1025 seq = end_ifcvt_sequence (if_info);
1026 if (!seq)
1027 return FALSE;
1029 emit_insn_before_setloc (seq, if_info->jump,
1030 INSN_LOCATOR (if_info->insn_a));
1031 return TRUE;
1034 return FALSE;
1037 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1038 similarly for "foo--". */
1040 static int
1041 noce_try_addcc (struct noce_if_info *if_info)
1043 rtx target, seq;
1044 int subtract, normalize;
1046 if (! no_new_pseudos
1047 && GET_CODE (if_info->a) == PLUS
1048 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1049 && (reversed_comparison_code (if_info->cond, if_info->jump)
1050 != UNKNOWN))
1052 rtx cond = if_info->cond;
1053 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1055 /* First try to use addcc pattern. */
1056 if (general_operand (XEXP (cond, 0), VOIDmode)
1057 && general_operand (XEXP (cond, 1), VOIDmode))
1059 start_sequence ();
1060 target = emit_conditional_add (if_info->x, code,
1061 XEXP (cond, 0),
1062 XEXP (cond, 1),
1063 VOIDmode,
1064 if_info->b,
1065 XEXP (if_info->a, 1),
1066 GET_MODE (if_info->x),
1067 (code == LTU || code == GEU
1068 || code == LEU || code == GTU));
1069 if (target)
1071 if (target != if_info->x)
1072 noce_emit_move_insn (if_info->x, target);
1074 seq = end_ifcvt_sequence (if_info);
1075 if (!seq)
1076 return FALSE;
1078 emit_insn_before_setloc (seq, if_info->jump,
1079 INSN_LOCATOR (if_info->insn_a));
1080 return TRUE;
1082 end_sequence ();
1085 /* If that fails, construct conditional increment or decrement using
1086 setcc. */
1087 if (BRANCH_COST >= 2
1088 && (XEXP (if_info->a, 1) == const1_rtx
1089 || XEXP (if_info->a, 1) == constm1_rtx))
1091 start_sequence ();
1092 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1093 subtract = 0, normalize = 0;
1094 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1095 subtract = 1, normalize = 0;
1096 else
1097 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1100 target = noce_emit_store_flag (if_info,
1101 gen_reg_rtx (GET_MODE (if_info->x)),
1102 1, normalize);
1104 if (target)
1105 target = expand_simple_binop (GET_MODE (if_info->x),
1106 subtract ? MINUS : PLUS,
1107 if_info->b, target, if_info->x,
1108 0, OPTAB_WIDEN);
1109 if (target)
1111 if (target != if_info->x)
1112 noce_emit_move_insn (if_info->x, target);
1114 seq = end_ifcvt_sequence (if_info);
1115 if (!seq)
1116 return FALSE;
1118 emit_insn_before_setloc (seq, if_info->jump,
1119 INSN_LOCATOR (if_info->insn_a));
1120 return TRUE;
1122 end_sequence ();
1126 return FALSE;
1129 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1131 static int
1132 noce_try_store_flag_mask (struct noce_if_info *if_info)
1134 rtx target, seq;
1135 int reversep;
1137 reversep = 0;
1138 if (! no_new_pseudos
1139 && (BRANCH_COST >= 2
1140 || STORE_FLAG_VALUE == -1)
1141 && ((if_info->a == const0_rtx
1142 && rtx_equal_p (if_info->b, if_info->x))
1143 || ((reversep = (reversed_comparison_code (if_info->cond,
1144 if_info->jump)
1145 != UNKNOWN))
1146 && if_info->b == const0_rtx
1147 && rtx_equal_p (if_info->a, if_info->x))))
1149 start_sequence ();
1150 target = noce_emit_store_flag (if_info,
1151 gen_reg_rtx (GET_MODE (if_info->x)),
1152 reversep, -1);
1153 if (target)
1154 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1155 if_info->x,
1156 target, if_info->x, 0,
1157 OPTAB_WIDEN);
1159 if (target)
1161 if (target != if_info->x)
1162 noce_emit_move_insn (if_info->x, target);
1164 seq = end_ifcvt_sequence (if_info);
1165 if (!seq)
1166 return FALSE;
1168 emit_insn_before_setloc (seq, if_info->jump,
1169 INSN_LOCATOR (if_info->insn_a));
1170 return TRUE;
1173 end_sequence ();
1176 return FALSE;
1179 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1181 static rtx
1182 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1183 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1185 /* If earliest == jump, try to build the cmove insn directly.
1186 This is helpful when combine has created some complex condition
1187 (like for alpha's cmovlbs) that we can't hope to regenerate
1188 through the normal interface. */
1190 if (if_info->cond_earliest == if_info->jump)
1192 rtx tmp;
1194 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1195 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1196 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1198 start_sequence ();
1199 tmp = emit_insn (tmp);
1201 if (recog_memoized (tmp) >= 0)
1203 tmp = get_insns ();
1204 end_sequence ();
1205 emit_insn (tmp);
1207 return x;
1210 end_sequence ();
1213 /* Don't even try if the comparison operands are weird. */
1214 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1215 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1216 return NULL_RTX;
1218 #if HAVE_conditional_move
1219 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1220 vtrue, vfalse, GET_MODE (x),
1221 (code == LTU || code == GEU
1222 || code == LEU || code == GTU));
1223 #else
1224 /* We'll never get here, as noce_process_if_block doesn't call the
1225 functions involved. Ifdef code, however, should be discouraged
1226 because it leads to typos in the code not selected. However,
1227 emit_conditional_move won't exist either. */
1228 return NULL_RTX;
1229 #endif
1232 /* Try only simple constants and registers here. More complex cases
1233 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1234 has had a go at it. */
1236 static int
1237 noce_try_cmove (struct noce_if_info *if_info)
1239 enum rtx_code code;
1240 rtx target, seq;
1242 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1243 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1245 start_sequence ();
1247 code = GET_CODE (if_info->cond);
1248 target = noce_emit_cmove (if_info, if_info->x, code,
1249 XEXP (if_info->cond, 0),
1250 XEXP (if_info->cond, 1),
1251 if_info->a, if_info->b);
1253 if (target)
1255 if (target != if_info->x)
1256 noce_emit_move_insn (if_info->x, target);
1258 seq = end_ifcvt_sequence (if_info);
1259 if (!seq)
1260 return FALSE;
1262 emit_insn_before_setloc (seq, if_info->jump,
1263 INSN_LOCATOR (if_info->insn_a));
1264 return TRUE;
1266 else
1268 end_sequence ();
1269 return FALSE;
1273 return FALSE;
1276 /* Try more complex cases involving conditional_move. */
1278 static int
1279 noce_try_cmove_arith (struct noce_if_info *if_info)
1281 rtx a = if_info->a;
1282 rtx b = if_info->b;
1283 rtx x = if_info->x;
1284 rtx orig_a, orig_b;
1285 rtx insn_a, insn_b;
1286 rtx tmp, target;
1287 int is_mem = 0;
1288 int insn_cost;
1289 enum rtx_code code;
1291 /* A conditional move from two memory sources is equivalent to a
1292 conditional on their addresses followed by a load. Don't do this
1293 early because it'll screw alias analysis. Note that we've
1294 already checked for no side effects. */
1295 if (! no_new_pseudos && cse_not_expected
1296 && MEM_P (a) && MEM_P (b)
1297 && BRANCH_COST >= 5)
1299 a = XEXP (a, 0);
1300 b = XEXP (b, 0);
1301 x = gen_reg_rtx (Pmode);
1302 is_mem = 1;
1305 /* ??? We could handle this if we knew that a load from A or B could
1306 not fault. This is also true if we've already loaded
1307 from the address along the path from ENTRY. */
1308 else if (may_trap_p (a) || may_trap_p (b))
1309 return FALSE;
1311 /* if (test) x = a + b; else x = c - d;
1312 => y = a + b;
1313 x = c - d;
1314 if (test)
1315 x = y;
1318 code = GET_CODE (if_info->cond);
1319 insn_a = if_info->insn_a;
1320 insn_b = if_info->insn_b;
1322 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1323 if insn_rtx_cost can't be estimated. */
1324 if (insn_a)
1326 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1327 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1328 return FALSE;
1330 else
1332 insn_cost = 0;
1335 if (insn_b) {
1336 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1337 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1338 return FALSE;
1341 /* Possibly rearrange operands to make things come out more natural. */
1342 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1344 int reversep = 0;
1345 if (rtx_equal_p (b, x))
1346 reversep = 1;
1347 else if (general_operand (b, GET_MODE (b)))
1348 reversep = 1;
1350 if (reversep)
1352 code = reversed_comparison_code (if_info->cond, if_info->jump);
1353 tmp = a, a = b, b = tmp;
1354 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1358 start_sequence ();
1360 orig_a = a;
1361 orig_b = b;
1363 /* If either operand is complex, load it into a register first.
1364 The best way to do this is to copy the original insn. In this
1365 way we preserve any clobbers etc that the insn may have had.
1366 This is of course not possible in the IS_MEM case. */
1367 if (! general_operand (a, GET_MODE (a)))
1369 rtx set;
1371 if (no_new_pseudos)
1372 goto end_seq_and_fail;
1374 if (is_mem)
1376 tmp = gen_reg_rtx (GET_MODE (a));
1377 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1379 else if (! insn_a)
1380 goto end_seq_and_fail;
1381 else
1383 a = gen_reg_rtx (GET_MODE (a));
1384 tmp = copy_rtx (insn_a);
1385 set = single_set (tmp);
1386 SET_DEST (set) = a;
1387 tmp = emit_insn (PATTERN (tmp));
1389 if (recog_memoized (tmp) < 0)
1390 goto end_seq_and_fail;
1392 if (! general_operand (b, GET_MODE (b)))
1394 rtx set, last;
1396 if (no_new_pseudos)
1397 goto end_seq_and_fail;
1399 if (is_mem)
1401 tmp = gen_reg_rtx (GET_MODE (b));
1402 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1404 else if (! insn_b)
1405 goto end_seq_and_fail;
1406 else
1408 b = gen_reg_rtx (GET_MODE (b));
1409 tmp = copy_rtx (insn_b);
1410 set = single_set (tmp);
1411 SET_DEST (set) = b;
1412 tmp = PATTERN (tmp);
1415 /* If insn to set up A clobbers any registers B depends on, try to
1416 swap insn that sets up A with the one that sets up B. If even
1417 that doesn't help, punt. */
1418 last = get_last_insn ();
1419 if (last && modified_in_p (orig_b, last))
1421 tmp = emit_insn_before (tmp, get_insns ());
1422 if (modified_in_p (orig_a, tmp))
1423 goto end_seq_and_fail;
1425 else
1426 tmp = emit_insn (tmp);
1428 if (recog_memoized (tmp) < 0)
1429 goto end_seq_and_fail;
1432 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1433 XEXP (if_info->cond, 1), a, b);
1435 if (! target)
1436 goto end_seq_and_fail;
1438 /* If we're handling a memory for above, emit the load now. */
1439 if (is_mem)
1441 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1443 /* Copy over flags as appropriate. */
1444 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1445 MEM_VOLATILE_P (tmp) = 1;
1446 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1447 MEM_IN_STRUCT_P (tmp) = 1;
1448 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1449 MEM_SCALAR_P (tmp) = 1;
1450 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1451 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1452 set_mem_align (tmp,
1453 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1455 noce_emit_move_insn (if_info->x, tmp);
1457 else if (target != x)
1458 noce_emit_move_insn (x, target);
1460 tmp = end_ifcvt_sequence (if_info);
1461 if (!tmp)
1462 return FALSE;
1464 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1465 return TRUE;
1467 end_seq_and_fail:
1468 end_sequence ();
1469 return FALSE;
1472 /* For most cases, the simplified condition we found is the best
1473 choice, but this is not the case for the min/max/abs transforms.
1474 For these we wish to know that it is A or B in the condition. */
1476 static rtx
1477 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1478 rtx *earliest)
1480 rtx cond, set, insn;
1481 int reverse;
1483 /* If target is already mentioned in the known condition, return it. */
1484 if (reg_mentioned_p (target, if_info->cond))
1486 *earliest = if_info->cond_earliest;
1487 return if_info->cond;
1490 set = pc_set (if_info->jump);
1491 cond = XEXP (SET_SRC (set), 0);
1492 reverse
1493 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1494 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1496 /* If we're looking for a constant, try to make the conditional
1497 have that constant in it. There are two reasons why it may
1498 not have the constant we want:
1500 1. GCC may have needed to put the constant in a register, because
1501 the target can't compare directly against that constant. For
1502 this case, we look for a SET immediately before the comparison
1503 that puts a constant in that register.
1505 2. GCC may have canonicalized the conditional, for example
1506 replacing "if x < 4" with "if x <= 3". We can undo that (or
1507 make equivalent types of changes) to get the constants we need
1508 if they're off by one in the right direction. */
1510 if (GET_CODE (target) == CONST_INT)
1512 enum rtx_code code = GET_CODE (if_info->cond);
1513 rtx op_a = XEXP (if_info->cond, 0);
1514 rtx op_b = XEXP (if_info->cond, 1);
1515 rtx prev_insn;
1517 /* First, look to see if we put a constant in a register. */
1518 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1519 if (prev_insn
1520 && INSN_P (prev_insn)
1521 && GET_CODE (PATTERN (prev_insn)) == SET)
1523 rtx src = find_reg_equal_equiv_note (prev_insn);
1524 if (!src)
1525 src = SET_SRC (PATTERN (prev_insn));
1526 if (GET_CODE (src) == CONST_INT)
1528 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1529 op_a = src;
1530 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1531 op_b = src;
1533 if (GET_CODE (op_a) == CONST_INT)
1535 rtx tmp = op_a;
1536 op_a = op_b;
1537 op_b = tmp;
1538 code = swap_condition (code);
1543 /* Now, look to see if we can get the right constant by
1544 adjusting the conditional. */
1545 if (GET_CODE (op_b) == CONST_INT)
1547 HOST_WIDE_INT desired_val = INTVAL (target);
1548 HOST_WIDE_INT actual_val = INTVAL (op_b);
1550 switch (code)
1552 case LT:
1553 if (actual_val == desired_val + 1)
1555 code = LE;
1556 op_b = GEN_INT (desired_val);
1558 break;
1559 case LE:
1560 if (actual_val == desired_val - 1)
1562 code = LT;
1563 op_b = GEN_INT (desired_val);
1565 break;
1566 case GT:
1567 if (actual_val == desired_val - 1)
1569 code = GE;
1570 op_b = GEN_INT (desired_val);
1572 break;
1573 case GE:
1574 if (actual_val == desired_val + 1)
1576 code = GT;
1577 op_b = GEN_INT (desired_val);
1579 break;
1580 default:
1581 break;
1585 /* If we made any changes, generate a new conditional that is
1586 equivalent to what we started with, but has the right
1587 constants in it. */
1588 if (code != GET_CODE (if_info->cond)
1589 || op_a != XEXP (if_info->cond, 0)
1590 || op_b != XEXP (if_info->cond, 1))
1592 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1593 *earliest = if_info->cond_earliest;
1594 return cond;
1598 cond = canonicalize_condition (if_info->jump, cond, reverse,
1599 earliest, target, false, true);
1600 if (! cond || ! reg_mentioned_p (target, cond))
1601 return NULL;
1603 /* We almost certainly searched back to a different place.
1604 Need to re-verify correct lifetimes. */
1606 /* X may not be mentioned in the range (cond_earliest, jump]. */
1607 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1608 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1609 return NULL;
1611 /* A and B may not be modified in the range [cond_earliest, jump). */
1612 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1613 if (INSN_P (insn)
1614 && (modified_in_p (if_info->a, insn)
1615 || modified_in_p (if_info->b, insn)))
1616 return NULL;
1618 return cond;
1621 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1623 static int
1624 noce_try_minmax (struct noce_if_info *if_info)
1626 rtx cond, earliest, target, seq;
1627 enum rtx_code code, op;
1628 int unsignedp;
1630 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1631 if (no_new_pseudos)
1632 return FALSE;
1634 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1635 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1636 to get the target to tell us... */
1637 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1638 || HONOR_NANS (GET_MODE (if_info->x)))
1639 return FALSE;
1641 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1642 if (!cond)
1643 return FALSE;
1645 /* Verify the condition is of the form we expect, and canonicalize
1646 the comparison code. */
1647 code = GET_CODE (cond);
1648 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1650 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1651 return FALSE;
1653 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1655 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1656 return FALSE;
1657 code = swap_condition (code);
1659 else
1660 return FALSE;
1662 /* Determine what sort of operation this is. Note that the code is for
1663 a taken branch, so the code->operation mapping appears backwards. */
1664 switch (code)
1666 case LT:
1667 case LE:
1668 case UNLT:
1669 case UNLE:
1670 op = SMAX;
1671 unsignedp = 0;
1672 break;
1673 case GT:
1674 case GE:
1675 case UNGT:
1676 case UNGE:
1677 op = SMIN;
1678 unsignedp = 0;
1679 break;
1680 case LTU:
1681 case LEU:
1682 op = UMAX;
1683 unsignedp = 1;
1684 break;
1685 case GTU:
1686 case GEU:
1687 op = UMIN;
1688 unsignedp = 1;
1689 break;
1690 default:
1691 return FALSE;
1694 start_sequence ();
1696 target = expand_simple_binop (GET_MODE (if_info->x), op,
1697 if_info->a, if_info->b,
1698 if_info->x, unsignedp, OPTAB_WIDEN);
1699 if (! target)
1701 end_sequence ();
1702 return FALSE;
1704 if (target != if_info->x)
1705 noce_emit_move_insn (if_info->x, target);
1707 seq = end_ifcvt_sequence (if_info);
1708 if (!seq)
1709 return FALSE;
1711 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1712 if_info->cond = cond;
1713 if_info->cond_earliest = earliest;
1715 return TRUE;
1718 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1720 static int
1721 noce_try_abs (struct noce_if_info *if_info)
1723 rtx cond, earliest, target, seq, a, b, c;
1724 int negate;
1726 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1727 if (no_new_pseudos)
1728 return FALSE;
1730 /* Recognize A and B as constituting an ABS or NABS. The canonical
1731 form is a branch around the negation, taken when the object is the
1732 first operand of a comparison against 0 that evaluates to true. */
1733 a = if_info->a;
1734 b = if_info->b;
1735 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1736 negate = 0;
1737 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1739 c = a; a = b; b = c;
1740 negate = 1;
1742 else
1743 return FALSE;
1745 cond = noce_get_alt_condition (if_info, b, &earliest);
1746 if (!cond)
1747 return FALSE;
1749 /* Verify the condition is of the form we expect. */
1750 if (rtx_equal_p (XEXP (cond, 0), b))
1751 c = XEXP (cond, 1);
1752 else if (rtx_equal_p (XEXP (cond, 1), b))
1754 c = XEXP (cond, 0);
1755 negate = !negate;
1757 else
1758 return FALSE;
1760 /* Verify that C is zero. Search one step backward for a
1761 REG_EQUAL note or a simple source if necessary. */
1762 if (REG_P (c))
1764 rtx set, insn = prev_nonnote_insn (earliest);
1765 if (insn
1766 && (set = single_set (insn))
1767 && rtx_equal_p (SET_DEST (set), c))
1769 rtx note = find_reg_equal_equiv_note (insn);
1770 if (note)
1771 c = XEXP (note, 0);
1772 else
1773 c = SET_SRC (set);
1775 else
1776 return FALSE;
1778 if (MEM_P (c)
1779 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1780 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1781 c = get_pool_constant (XEXP (c, 0));
1783 /* Work around funny ideas get_condition has wrt canonicalization.
1784 Note that these rtx constants are known to be CONST_INT, and
1785 therefore imply integer comparisons. */
1786 if (c == constm1_rtx && GET_CODE (cond) == GT)
1788 else if (c == const1_rtx && GET_CODE (cond) == LT)
1790 else if (c != CONST0_RTX (GET_MODE (b)))
1791 return FALSE;
1793 /* Determine what sort of operation this is. */
1794 switch (GET_CODE (cond))
1796 case LT:
1797 case LE:
1798 case UNLT:
1799 case UNLE:
1800 negate = !negate;
1801 break;
1802 case GT:
1803 case GE:
1804 case UNGT:
1805 case UNGE:
1806 break;
1807 default:
1808 return FALSE;
1811 start_sequence ();
1813 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1815 /* ??? It's a quandary whether cmove would be better here, especially
1816 for integers. Perhaps combine will clean things up. */
1817 if (target && negate)
1818 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1820 if (! target)
1822 end_sequence ();
1823 return FALSE;
1826 if (target != if_info->x)
1827 noce_emit_move_insn (if_info->x, target);
1829 seq = end_ifcvt_sequence (if_info);
1830 if (!seq)
1831 return FALSE;
1833 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1834 if_info->cond = cond;
1835 if_info->cond_earliest = earliest;
1837 return TRUE;
1840 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1842 static int
1843 noce_try_sign_mask (struct noce_if_info *if_info)
1845 rtx cond, t, m, c, seq;
1846 enum machine_mode mode;
1847 enum rtx_code code;
1849 if (no_new_pseudos)
1850 return FALSE;
1852 cond = if_info->cond;
1853 code = GET_CODE (cond);
1854 m = XEXP (cond, 0);
1855 c = XEXP (cond, 1);
1857 t = NULL_RTX;
1858 if (if_info->a == const0_rtx)
1860 if ((code == LT && c == const0_rtx)
1861 || (code == LE && c == constm1_rtx))
1862 t = if_info->b;
1864 else if (if_info->b == const0_rtx)
1866 if ((code == GE && c == const0_rtx)
1867 || (code == GT && c == constm1_rtx))
1868 t = if_info->a;
1871 if (! t || side_effects_p (t))
1872 return FALSE;
1874 /* We currently don't handle different modes. */
1875 mode = GET_MODE (t);
1876 if (GET_MODE (m) != mode)
1877 return FALSE;
1879 /* This is only profitable if T is cheap, or T is unconditionally
1880 executed/evaluated in the original insn sequence. */
1881 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1882 && (!if_info->b_unconditional
1883 || t != if_info->b))
1884 return FALSE;
1886 start_sequence ();
1887 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1888 "(signed) m >> 31" directly. This benefits targets with specialized
1889 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1890 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1891 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1892 : NULL_RTX;
1894 if (!t)
1896 end_sequence ();
1897 return FALSE;
1900 noce_emit_move_insn (if_info->x, t);
1902 seq = end_ifcvt_sequence (if_info);
1903 if (!seq)
1904 return FALSE;
1906 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1907 return TRUE;
1911 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1912 transformations. */
1914 static int
1915 noce_try_bitop (struct noce_if_info *if_info)
1917 rtx cond, x, a, result, seq;
1918 enum machine_mode mode;
1919 enum rtx_code code;
1920 int bitnum;
1922 x = if_info->x;
1923 cond = if_info->cond;
1924 code = GET_CODE (cond);
1926 /* Check for no else condition. */
1927 if (! rtx_equal_p (x, if_info->b))
1928 return FALSE;
1930 /* Check for a suitable condition. */
1931 if (code != NE && code != EQ)
1932 return FALSE;
1933 if (XEXP (cond, 1) != const0_rtx)
1934 return FALSE;
1935 cond = XEXP (cond, 0);
1937 /* ??? We could also handle AND here. */
1938 if (GET_CODE (cond) == ZERO_EXTRACT)
1940 if (XEXP (cond, 1) != const1_rtx
1941 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1942 || ! rtx_equal_p (x, XEXP (cond, 0)))
1943 return FALSE;
1944 bitnum = INTVAL (XEXP (cond, 2));
1945 mode = GET_MODE (x);
1946 if (BITS_BIG_ENDIAN)
1947 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1948 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1949 return FALSE;
1951 else
1952 return FALSE;
1954 a = if_info->a;
1955 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1957 /* Check for "if (X & C) x = x op C". */
1958 if (! rtx_equal_p (x, XEXP (a, 0))
1959 || GET_CODE (XEXP (a, 1)) != CONST_INT
1960 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1961 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1962 return FALSE;
1964 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1965 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1966 if (GET_CODE (a) == IOR)
1967 result = (code == NE) ? a : NULL_RTX;
1968 else if (code == NE)
1970 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1971 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1972 result = simplify_gen_binary (IOR, mode, x, result);
1974 else
1976 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
1977 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1978 result = simplify_gen_binary (AND, mode, x, result);
1981 else if (GET_CODE (a) == AND)
1983 /* Check for "if (X & C) x &= ~C". */
1984 if (! rtx_equal_p (x, XEXP (a, 0))
1985 || GET_CODE (XEXP (a, 1)) != CONST_INT
1986 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1987 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
1988 return FALSE;
1990 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
1991 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
1992 result = (code == EQ) ? a : NULL_RTX;
1994 else
1995 return FALSE;
1997 if (result)
1999 start_sequence ();
2000 noce_emit_move_insn (x, result);
2001 seq = end_ifcvt_sequence (if_info);
2002 if (!seq)
2003 return FALSE;
2005 emit_insn_before_setloc (seq, if_info->jump,
2006 INSN_LOCATOR (if_info->insn_a));
2008 return TRUE;
2012 /* Similar to get_condition, only the resulting condition must be
2013 valid at JUMP, instead of at EARLIEST. */
2015 static rtx
2016 noce_get_condition (rtx jump, rtx *earliest)
2018 rtx cond, set, tmp;
2019 bool reverse;
2021 if (! any_condjump_p (jump))
2022 return NULL_RTX;
2024 set = pc_set (jump);
2026 /* If this branches to JUMP_LABEL when the condition is false,
2027 reverse the condition. */
2028 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2029 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2031 /* If the condition variable is a register and is MODE_INT, accept it. */
2033 cond = XEXP (SET_SRC (set), 0);
2034 tmp = XEXP (cond, 0);
2035 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2037 *earliest = jump;
2039 if (reverse)
2040 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2041 GET_MODE (cond), tmp, XEXP (cond, 1));
2042 return cond;
2045 /* Otherwise, fall back on canonicalize_condition to do the dirty
2046 work of manipulating MODE_CC values and COMPARE rtx codes. */
2047 return canonicalize_condition (jump, cond, reverse, earliest,
2048 NULL_RTX, false, true);
2051 /* Initialize for a simple IF-THEN or IF-THEN-ELSE block. We will not
2052 be using conditional execution. Set some fields of IF_INFO based
2053 on CE_INFO: test_bb, cond, jump, cond_earliest. Return TRUE if
2054 things look OK. */
2056 static int
2057 noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
2059 basic_block test_bb = ce_info->test_bb;
2060 rtx cond, jump;
2062 /* If test is comprised of && or || elements, don't handle it unless
2063 it is the special case of && elements without an ELSE block. */
2064 if (ce_info->num_multiple_test_blocks)
2066 if (ce_info->else_bb || !ce_info->and_and_p)
2067 return FALSE;
2069 ce_info->test_bb = test_bb = ce_info->last_test_bb;
2070 ce_info->num_multiple_test_blocks = 0;
2071 ce_info->num_and_and_blocks = 0;
2072 ce_info->num_or_or_blocks = 0;
2075 /* If this is not a standard conditional jump, we can't parse it. */
2076 jump = BB_END (test_bb);
2077 cond = noce_get_condition (jump, &if_info->cond_earliest);
2078 if (!cond)
2079 return FALSE;
2081 /* If the conditional jump is more than just a conditional
2082 jump, then we can not do if-conversion on this block. */
2083 if (! onlyjump_p (jump))
2084 return FALSE;
2086 /* We must be comparing objects whose modes imply the size. */
2087 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2088 return FALSE;
2090 if_info->test_bb = test_bb;
2091 if_info->cond = cond;
2092 if_info->jump = jump;
2094 return TRUE;
2097 /* Return true if OP is ok for if-then-else processing. */
2099 static int
2100 noce_operand_ok (rtx op)
2102 /* We special-case memories, so handle any of them with
2103 no address side effects. */
2104 if (MEM_P (op))
2105 return ! side_effects_p (XEXP (op, 0));
2107 if (side_effects_p (op))
2108 return FALSE;
2110 return ! may_trap_p (op);
2113 /* Return true if a write into MEM may trap or fault. */
2115 static bool
2116 noce_mem_write_may_trap_or_fault_p (rtx mem)
2118 rtx addr;
2120 if (MEM_READONLY_P (mem))
2121 return true;
2123 if (may_trap_or_fault_p (mem))
2124 return true;
2126 addr = XEXP (mem, 0);
2128 /* Call target hook to avoid the effects of -fpic etc.... */
2129 addr = targetm.delegitimize_address (addr);
2131 while (addr)
2132 switch (GET_CODE (addr))
2134 case CONST:
2135 case PRE_DEC:
2136 case PRE_INC:
2137 case POST_DEC:
2138 case POST_INC:
2139 case POST_MODIFY:
2140 addr = XEXP (addr, 0);
2141 break;
2142 case LO_SUM:
2143 case PRE_MODIFY:
2144 addr = XEXP (addr, 1);
2145 break;
2146 case PLUS:
2147 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2148 addr = XEXP (addr, 0);
2149 else
2150 return false;
2151 break;
2152 case LABEL_REF:
2153 return true;
2154 case SYMBOL_REF:
2155 if (SYMBOL_REF_DECL (addr)
2156 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2157 return true;
2158 return false;
2159 default:
2160 return false;
2163 return false;
2166 /* Return whether we can use store speculation for MEM. TOP_BB is the
2167 basic block above the conditional block where we are considering
2168 doing the speculative store. We look for whether MEM is set
2169 unconditionally later in the function. */
2171 static bool
2172 noce_can_store_speculate_p (basic_block top_bb, rtx mem)
2174 basic_block dominator;
2176 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2177 dominator != NULL;
2178 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2180 rtx insn;
2182 FOR_BB_INSNS (dominator, insn)
2184 /* If we see something that might be a memory barrier, we
2185 have to stop looking. Even if the MEM is set later in
2186 the function, we still don't want to set it
2187 unconditionally before the barrier. */
2188 if (INSN_P (insn)
2189 && (volatile_insn_p (PATTERN (insn))
2190 || (CALL_P (insn)
2191 && (!CONST_OR_PURE_CALL_P (insn)
2192 || pure_call_p (insn)))))
2193 return false;
2195 if (memory_modified_in_insn_p (mem, insn))
2196 return true;
2197 if (modified_in_p (XEXP (mem, 0), insn))
2198 return false;
2203 return false;
2206 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2207 without using conditional execution. Return TRUE if we were
2208 successful at converting the block. */
2210 static int
2211 noce_process_if_block (struct ce_if_block * ce_info)
2213 basic_block test_bb = ce_info->test_bb; /* test block */
2214 basic_block then_bb = ce_info->then_bb; /* THEN */
2215 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2216 struct noce_if_info if_info;
2217 rtx insn_a, insn_b;
2218 rtx set_a, set_b;
2219 rtx orig_x, x, a, b;
2220 rtx jump, cond;
2222 /* We're looking for patterns of the form
2224 (1) if (...) x = a; else x = b;
2225 (2) x = b; if (...) x = a;
2226 (3) if (...) x = a; // as if with an initial x = x.
2228 The later patterns require jumps to be more expensive.
2230 ??? For future expansion, look for multiple X in such patterns. */
2232 if (!noce_init_if_info (ce_info, &if_info))
2233 return FALSE;
2235 cond = if_info.cond;
2236 jump = if_info.jump;
2238 /* Look for one of the potential sets. */
2239 insn_a = first_active_insn (then_bb);
2240 if (! insn_a
2241 || insn_a != last_active_insn (then_bb, FALSE)
2242 || (set_a = single_set (insn_a)) == NULL_RTX)
2243 return FALSE;
2245 x = SET_DEST (set_a);
2246 a = SET_SRC (set_a);
2248 /* Look for the other potential set. Make sure we've got equivalent
2249 destinations. */
2250 /* ??? This is overconservative. Storing to two different mems is
2251 as easy as conditionally computing the address. Storing to a
2252 single mem merely requires a scratch memory to use as one of the
2253 destination addresses; often the memory immediately below the
2254 stack pointer is available for this. */
2255 set_b = NULL_RTX;
2256 if (else_bb)
2258 insn_b = first_active_insn (else_bb);
2259 if (! insn_b
2260 || insn_b != last_active_insn (else_bb, FALSE)
2261 || (set_b = single_set (insn_b)) == NULL_RTX
2262 || ! rtx_equal_p (x, SET_DEST (set_b)))
2263 return FALSE;
2265 else
2267 insn_b = prev_nonnote_insn (if_info.cond_earliest);
2268 /* We're going to be moving the evaluation of B down from above
2269 COND_EARLIEST to JUMP. Make sure the relevant data is still
2270 intact. */
2271 if (! insn_b
2272 || !NONJUMP_INSN_P (insn_b)
2273 || (set_b = single_set (insn_b)) == NULL_RTX
2274 || ! rtx_equal_p (x, SET_DEST (set_b))
2275 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2276 || modified_between_p (SET_SRC (set_b),
2277 PREV_INSN (if_info.cond_earliest), jump)
2278 /* Likewise with X. In particular this can happen when
2279 noce_get_condition looks farther back in the instruction
2280 stream than one might expect. */
2281 || reg_overlap_mentioned_p (x, cond)
2282 || reg_overlap_mentioned_p (x, a)
2283 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
2284 insn_b = set_b = NULL_RTX;
2287 /* If x has side effects then only the if-then-else form is safe to
2288 convert. But even in that case we would need to restore any notes
2289 (such as REG_INC) at then end. That can be tricky if
2290 noce_emit_move_insn expands to more than one insn, so disable the
2291 optimization entirely for now if there are side effects. */
2292 if (side_effects_p (x))
2293 return FALSE;
2295 b = (set_b ? SET_SRC (set_b) : x);
2297 /* Only operate on register destinations, and even then avoid extending
2298 the lifetime of hard registers on small register class machines. */
2299 orig_x = x;
2300 if (!REG_P (x)
2301 || (SMALL_REGISTER_CLASSES
2302 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2304 if (no_new_pseudos || GET_MODE (x) == BLKmode)
2305 return FALSE;
2307 if (GET_MODE (x) == ZERO_EXTRACT
2308 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2309 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2310 return FALSE;
2312 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2313 ? XEXP (x, 0) : x));
2316 /* Don't operate on sources that may trap or are volatile. */
2317 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2318 return FALSE;
2320 /* Set up the info block for our subroutines. */
2321 if_info.insn_a = insn_a;
2322 if_info.insn_b = insn_b;
2323 if_info.x = x;
2324 if_info.a = a;
2325 if_info.b = b;
2326 if_info.b_unconditional = else_bb == 0;
2328 /* Try optimizations in some approximation of a useful order. */
2329 /* ??? Should first look to see if X is live incoming at all. If it
2330 isn't, we don't need anything but an unconditional set. */
2332 /* Look and see if A and B are really the same. Avoid creating silly
2333 cmove constructs that no one will fix up later. */
2334 if (rtx_equal_p (a, b))
2336 /* If we have an INSN_B, we don't have to create any new rtl. Just
2337 move the instruction that we already have. If we don't have an
2338 INSN_B, that means that A == X, and we've got a noop move. In
2339 that case don't do anything and let the code below delete INSN_A. */
2340 if (insn_b && else_bb)
2342 rtx note;
2344 if (else_bb && insn_b == BB_END (else_bb))
2345 BB_END (else_bb) = PREV_INSN (insn_b);
2346 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2348 /* If there was a REG_EQUAL note, delete it since it may have been
2349 true due to this insn being after a jump. */
2350 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2351 remove_note (insn_b, note);
2353 insn_b = NULL_RTX;
2355 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2356 x must be executed twice. */
2357 else if (insn_b && side_effects_p (orig_x))
2358 return FALSE;
2360 x = orig_x;
2361 goto success;
2364 if (!set_b && MEM_P (orig_x))
2366 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2367 for optimizations if writing to x may trap or fault,
2368 i.e. it's a memory other than a static var or a stack slot,
2369 is misaligned on strict aligned machines or is read-only. If
2370 x is a read-only memory, then the program is valid only if we
2371 avoid the store into it. If there are stores on both the
2372 THEN and ELSE arms, then we can go ahead with the conversion;
2373 either the program is broken, or the condition is always
2374 false such that the other memory is selected. */
2375 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2376 return FALSE;
2378 /* Avoid store speculation: given "if (...) x = a" where x is a
2379 MEM, we only want to do the store if x is always set
2380 somewhere in the function. This avoids cases like
2381 if (pthread_mutex_trylock(mutex))
2382 ++global_variable;
2383 where we only want global_variable to be changed if the mutex
2384 is held. FIXME: This should ideally be expressed directly in
2385 RTL somehow. */
2386 if (!noce_can_store_speculate_p (test_bb, orig_x))
2387 return FALSE;
2390 if (noce_try_move (&if_info))
2391 goto success;
2392 if (noce_try_store_flag (&if_info))
2393 goto success;
2394 if (noce_try_bitop (&if_info))
2395 goto success;
2396 if (noce_try_minmax (&if_info))
2397 goto success;
2398 if (noce_try_abs (&if_info))
2399 goto success;
2400 if (HAVE_conditional_move
2401 && noce_try_cmove (&if_info))
2402 goto success;
2403 if (! HAVE_conditional_execution)
2405 if (noce_try_store_flag_constants (&if_info))
2406 goto success;
2407 if (noce_try_addcc (&if_info))
2408 goto success;
2409 if (noce_try_store_flag_mask (&if_info))
2410 goto success;
2411 if (HAVE_conditional_move
2412 && noce_try_cmove_arith (&if_info))
2413 goto success;
2414 if (noce_try_sign_mask (&if_info))
2415 goto success;
2418 return FALSE;
2420 success:
2421 /* The original sets may now be killed. */
2422 delete_insn (insn_a);
2424 /* Several special cases here: First, we may have reused insn_b above,
2425 in which case insn_b is now NULL. Second, we want to delete insn_b
2426 if it came from the ELSE block, because follows the now correct
2427 write that appears in the TEST block. However, if we got insn_b from
2428 the TEST block, it may in fact be loading data needed for the comparison.
2429 We'll let life_analysis remove the insn if it's really dead. */
2430 if (insn_b && else_bb)
2431 delete_insn (insn_b);
2433 /* The new insns will have been inserted immediately before the jump. We
2434 should be able to remove the jump with impunity, but the condition itself
2435 may have been modified by gcse to be shared across basic blocks. */
2436 delete_insn (jump);
2438 /* If we used a temporary, fix it up now. */
2439 if (orig_x != x)
2441 start_sequence ();
2442 noce_emit_move_insn (orig_x, x);
2443 insn_b = get_insns ();
2444 set_used_flags (orig_x);
2445 unshare_all_rtl_in_chain (insn_b);
2446 end_sequence ();
2448 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2451 /* Merge the blocks! */
2452 merge_if_block (ce_info);
2454 return TRUE;
2457 /* Check whether a block is suitable for conditional move conversion.
2458 Every insn must be a simple set of a register to a constant or a
2459 register. For each assignment, store the value in the array VALS,
2460 indexed by register number. COND is the condition we will
2461 test. */
2463 static int
2464 check_cond_move_block (basic_block bb, rtx *vals, rtx cond)
2466 rtx insn;
2468 FOR_BB_INSNS (bb, insn)
2470 rtx set, dest, src;
2472 if (!INSN_P (insn) || JUMP_P (insn))
2473 continue;
2474 set = single_set (insn);
2475 if (!set)
2476 return FALSE;
2478 dest = SET_DEST (set);
2479 src = SET_SRC (set);
2480 if (!REG_P (dest)
2481 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2482 return FALSE;
2484 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2485 return FALSE;
2487 if (side_effects_p (src) || side_effects_p (dest))
2488 return FALSE;
2490 if (may_trap_p (src) || may_trap_p (dest))
2491 return FALSE;
2493 /* Don't try to handle this if the source register was
2494 modified earlier in the block. */
2495 if ((REG_P (src)
2496 && vals[REGNO (src)] != NULL)
2497 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2498 && vals[REGNO (SUBREG_REG (src))] != NULL))
2499 return FALSE;
2501 /* Don't try to handle this if the destination register was
2502 modified earlier in the block. */
2503 if (vals[REGNO (dest)] != NULL)
2504 return FALSE;
2506 /* Don't try to handle this if the condition uses the
2507 destination register. */
2508 if (reg_overlap_mentioned_p (dest, cond))
2509 return FALSE;
2511 vals[REGNO (dest)] = src;
2513 /* Don't try to handle this if the source register is modified
2514 later in the block. */
2515 if (!CONSTANT_P (src)
2516 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2517 return FALSE;
2520 return TRUE;
2523 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2524 using only conditional moves. Return TRUE if we were successful at
2525 converting the block. */
2527 static int
2528 cond_move_process_if_block (struct ce_if_block *ce_info)
2530 basic_block then_bb = ce_info->then_bb;
2531 basic_block else_bb = ce_info->else_bb;
2532 struct noce_if_info if_info;
2533 rtx jump, cond, insn, seq, cond_arg0, cond_arg1, loc_insn;
2534 int max_reg, size, c, i;
2535 rtx *then_vals;
2536 rtx *else_vals;
2537 enum rtx_code code;
2539 if (!HAVE_conditional_move || no_new_pseudos)
2540 return FALSE;
2542 memset (&if_info, 0, sizeof if_info);
2544 if (!noce_init_if_info (ce_info, &if_info))
2545 return FALSE;
2547 cond = if_info.cond;
2548 jump = if_info.jump;
2550 /* Build a mapping for each block to the value used for each
2551 register. */
2552 max_reg = max_reg_num ();
2553 size = (max_reg + 1) * sizeof (rtx);
2554 then_vals = (rtx *) alloca (size);
2555 else_vals = (rtx *) alloca (size);
2556 memset (then_vals, 0, size);
2557 memset (else_vals, 0, size);
2559 /* Make sure the blocks are suitable. */
2560 if (!check_cond_move_block (then_bb, then_vals, cond)
2561 || (else_bb && !check_cond_move_block (else_bb, else_vals, cond)))
2562 return FALSE;
2564 /* Make sure the blocks can be used together. If the same register
2565 is set in both blocks, and is not set to a constant in both
2566 cases, then both blocks must set it to the same register. We
2567 have already verified that if it is set to a register, that the
2568 source register does not change after the assignment. Also count
2569 the number of registers set in only one of the blocks. */
2570 c = 0;
2571 for (i = 0; i <= max_reg; ++i)
2573 if (!then_vals[i] && !else_vals[i])
2574 continue;
2576 if (!then_vals[i] || !else_vals[i])
2577 ++c;
2578 else
2580 if (!CONSTANT_P (then_vals[i])
2581 && !CONSTANT_P (else_vals[i])
2582 && !rtx_equal_p (then_vals[i], else_vals[i]))
2583 return FALSE;
2587 /* Make sure it is reasonable to convert this block. What matters
2588 is the number of assignments currently made in only one of the
2589 branches, since if we convert we are going to always execute
2590 them. */
2591 if (c > MAX_CONDITIONAL_EXECUTE)
2592 return FALSE;
2594 /* Emit the conditional moves. First do the then block, then do
2595 anything left in the else blocks. */
2597 code = GET_CODE (cond);
2598 cond_arg0 = XEXP (cond, 0);
2599 cond_arg1 = XEXP (cond, 1);
2601 start_sequence ();
2603 FOR_BB_INSNS (then_bb, insn)
2605 rtx set, target, dest, t, e;
2606 unsigned int regno;
2608 if (!INSN_P (insn) || JUMP_P (insn))
2609 continue;
2610 set = single_set (insn);
2611 gcc_assert (set && REG_P (SET_DEST (set)));
2613 dest = SET_DEST (set);
2614 regno = REGNO (dest);
2615 t = then_vals[regno];
2616 e = else_vals[regno];
2617 gcc_assert (t);
2618 if (!e)
2619 e = dest;
2620 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2621 t, e);
2622 if (!target)
2624 end_sequence ();
2625 return FALSE;
2628 if (target != dest)
2629 noce_emit_move_insn (dest, target);
2632 if (else_bb)
2634 FOR_BB_INSNS (else_bb, insn)
2636 rtx set, target, dest;
2637 unsigned int regno;
2639 if (!INSN_P (insn) || JUMP_P (insn))
2640 continue;
2641 set = single_set (insn);
2642 gcc_assert (set && REG_P (SET_DEST (set)));
2644 dest = SET_DEST (set);
2645 regno = REGNO (dest);
2647 /* If this register was set in the then block, we already
2648 handled this case above. */
2649 if (then_vals[regno])
2650 continue;
2651 gcc_assert (else_vals[regno]);
2653 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2654 dest, else_vals[regno]);
2655 if (!target)
2657 end_sequence ();
2658 return FALSE;
2661 if (target != dest)
2662 noce_emit_move_insn (dest, target);
2666 seq = end_ifcvt_sequence (&if_info);
2667 if (!seq)
2668 return FALSE;
2670 loc_insn = first_active_insn (then_bb);
2671 if (!loc_insn)
2673 loc_insn = first_active_insn (else_bb);
2674 gcc_assert (loc_insn);
2676 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2678 FOR_BB_INSNS (then_bb, insn)
2679 if (INSN_P (insn) && !JUMP_P (insn))
2680 delete_insn (insn);
2681 if (else_bb)
2683 FOR_BB_INSNS (else_bb, insn)
2684 if (INSN_P (insn) && !JUMP_P (insn))
2685 delete_insn (insn);
2687 delete_insn (jump);
2689 merge_if_block (ce_info);
2691 return TRUE;
2694 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2695 straight line code. Return true if successful. */
2697 static int
2698 process_if_block (struct ce_if_block * ce_info)
2700 if (! reload_completed
2701 && noce_process_if_block (ce_info))
2702 return TRUE;
2704 if (HAVE_conditional_move
2705 && cond_move_process_if_block (ce_info))
2706 return TRUE;
2708 if (HAVE_conditional_execution && reload_completed)
2710 /* If we have && and || tests, try to first handle combining the && and
2711 || tests into the conditional code, and if that fails, go back and
2712 handle it without the && and ||, which at present handles the && case
2713 if there was no ELSE block. */
2714 if (cond_exec_process_if_block (ce_info, TRUE))
2715 return TRUE;
2717 if (ce_info->num_multiple_test_blocks)
2719 cancel_changes (0);
2721 if (cond_exec_process_if_block (ce_info, FALSE))
2722 return TRUE;
2726 return FALSE;
2729 /* Merge the blocks and mark for local life update. */
2731 static void
2732 merge_if_block (struct ce_if_block * ce_info)
2734 basic_block test_bb = ce_info->test_bb; /* last test block */
2735 basic_block then_bb = ce_info->then_bb; /* THEN */
2736 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2737 basic_block join_bb = ce_info->join_bb; /* join block */
2738 basic_block combo_bb;
2740 /* All block merging is done into the lower block numbers. */
2742 combo_bb = test_bb;
2744 /* Merge any basic blocks to handle && and || subtests. Each of
2745 the blocks are on the fallthru path from the predecessor block. */
2746 if (ce_info->num_multiple_test_blocks > 0)
2748 basic_block bb = test_bb;
2749 basic_block last_test_bb = ce_info->last_test_bb;
2750 basic_block fallthru = block_fallthru (bb);
2754 bb = fallthru;
2755 fallthru = block_fallthru (bb);
2756 merge_blocks (combo_bb, bb);
2757 num_true_changes++;
2759 while (bb != last_test_bb);
2762 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2763 label, but it might if there were || tests. That label's count should be
2764 zero, and it normally should be removed. */
2766 if (then_bb)
2768 if (combo_bb->il.rtl->global_live_at_end)
2769 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2770 then_bb->il.rtl->global_live_at_end);
2771 merge_blocks (combo_bb, then_bb);
2772 num_true_changes++;
2775 /* The ELSE block, if it existed, had a label. That label count
2776 will almost always be zero, but odd things can happen when labels
2777 get their addresses taken. */
2778 if (else_bb)
2780 merge_blocks (combo_bb, else_bb);
2781 num_true_changes++;
2784 /* If there was no join block reported, that means it was not adjacent
2785 to the others, and so we cannot merge them. */
2787 if (! join_bb)
2789 rtx last = BB_END (combo_bb);
2791 /* The outgoing edge for the current COMBO block should already
2792 be correct. Verify this. */
2793 if (EDGE_COUNT (combo_bb->succs) == 0)
2794 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2795 || (NONJUMP_INSN_P (last)
2796 && GET_CODE (PATTERN (last)) == TRAP_IF
2797 && (TRAP_CONDITION (PATTERN (last))
2798 == const_true_rtx)));
2800 else
2801 /* There should still be something at the end of the THEN or ELSE
2802 blocks taking us to our final destination. */
2803 gcc_assert (JUMP_P (last)
2804 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2805 && CALL_P (last)
2806 && SIBLING_CALL_P (last))
2807 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2808 && can_throw_internal (last)));
2811 /* The JOIN block may have had quite a number of other predecessors too.
2812 Since we've already merged the TEST, THEN and ELSE blocks, we should
2813 have only one remaining edge from our if-then-else diamond. If there
2814 is more than one remaining edge, it must come from elsewhere. There
2815 may be zero incoming edges if the THEN block didn't actually join
2816 back up (as with a call to a non-return function). */
2817 else if (EDGE_COUNT (join_bb->preds) < 2
2818 && join_bb != EXIT_BLOCK_PTR)
2820 /* We can merge the JOIN. */
2821 if (combo_bb->il.rtl->global_live_at_end)
2822 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2823 join_bb->il.rtl->global_live_at_end);
2825 merge_blocks (combo_bb, join_bb);
2826 num_true_changes++;
2828 else
2830 /* We cannot merge the JOIN. */
2832 /* The outgoing edge for the current COMBO block should already
2833 be correct. Verify this. */
2834 gcc_assert (single_succ_p (combo_bb)
2835 && single_succ (combo_bb) == join_bb);
2837 /* Remove the jump and cruft from the end of the COMBO block. */
2838 if (join_bb != EXIT_BLOCK_PTR)
2839 tidy_fallthru_edge (single_succ_edge (combo_bb));
2842 num_updated_if_blocks++;
2845 /* Find a block ending in a simple IF condition and try to transform it
2846 in some way. When converting a multi-block condition, put the new code
2847 in the first such block and delete the rest. Return a pointer to this
2848 first block if some transformation was done. Return NULL otherwise. */
2850 static basic_block
2851 find_if_header (basic_block test_bb, int pass)
2853 ce_if_block_t ce_info;
2854 edge then_edge;
2855 edge else_edge;
2857 /* The kind of block we're looking for has exactly two successors. */
2858 if (EDGE_COUNT (test_bb->succs) != 2)
2859 return NULL;
2861 then_edge = EDGE_SUCC (test_bb, 0);
2862 else_edge = EDGE_SUCC (test_bb, 1);
2864 /* Neither edge should be abnormal. */
2865 if ((then_edge->flags & EDGE_COMPLEX)
2866 || (else_edge->flags & EDGE_COMPLEX))
2867 return NULL;
2869 /* Nor exit the loop. */
2870 if ((then_edge->flags & EDGE_LOOP_EXIT)
2871 || (else_edge->flags & EDGE_LOOP_EXIT))
2872 return NULL;
2874 /* The THEN edge is canonically the one that falls through. */
2875 if (then_edge->flags & EDGE_FALLTHRU)
2877 else if (else_edge->flags & EDGE_FALLTHRU)
2879 edge e = else_edge;
2880 else_edge = then_edge;
2881 then_edge = e;
2883 else
2884 /* Otherwise this must be a multiway branch of some sort. */
2885 return NULL;
2887 memset (&ce_info, '\0', sizeof (ce_info));
2888 ce_info.test_bb = test_bb;
2889 ce_info.then_bb = then_edge->dest;
2890 ce_info.else_bb = else_edge->dest;
2891 ce_info.pass = pass;
2893 #ifdef IFCVT_INIT_EXTRA_FIELDS
2894 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2895 #endif
2897 if (find_if_block (&ce_info))
2898 goto success;
2900 if (HAVE_trap && HAVE_conditional_trap
2901 && find_cond_trap (test_bb, then_edge, else_edge))
2902 goto success;
2904 if (life_data_ok
2905 && dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2906 && (! HAVE_conditional_execution || reload_completed))
2908 if (find_if_case_1 (test_bb, then_edge, else_edge))
2909 goto success;
2910 if (find_if_case_2 (test_bb, then_edge, else_edge))
2911 goto success;
2914 return NULL;
2916 success:
2917 if (dump_file)
2918 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2919 return ce_info.test_bb;
2922 /* Return true if a block has two edges, one of which falls through to the next
2923 block, and the other jumps to a specific block, so that we can tell if the
2924 block is part of an && test or an || test. Returns either -1 or the number
2925 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2927 static int
2928 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2930 edge cur_edge;
2931 int fallthru_p = FALSE;
2932 int jump_p = FALSE;
2933 rtx insn;
2934 rtx end;
2935 int n_insns = 0;
2936 edge_iterator ei;
2938 if (!cur_bb || !target_bb)
2939 return -1;
2941 /* If no edges, obviously it doesn't jump or fallthru. */
2942 if (EDGE_COUNT (cur_bb->succs) == 0)
2943 return FALSE;
2945 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2947 if (cur_edge->flags & EDGE_COMPLEX)
2948 /* Anything complex isn't what we want. */
2949 return -1;
2951 else if (cur_edge->flags & EDGE_FALLTHRU)
2952 fallthru_p = TRUE;
2954 else if (cur_edge->dest == target_bb)
2955 jump_p = TRUE;
2957 else
2958 return -1;
2961 if ((jump_p & fallthru_p) == 0)
2962 return -1;
2964 /* Don't allow calls in the block, since this is used to group && and ||
2965 together for conditional execution support. ??? we should support
2966 conditional execution support across calls for IA-64 some day, but
2967 for now it makes the code simpler. */
2968 end = BB_END (cur_bb);
2969 insn = BB_HEAD (cur_bb);
2971 while (insn != NULL_RTX)
2973 if (CALL_P (insn))
2974 return -1;
2976 if (INSN_P (insn)
2977 && !JUMP_P (insn)
2978 && GET_CODE (PATTERN (insn)) != USE
2979 && GET_CODE (PATTERN (insn)) != CLOBBER)
2980 n_insns++;
2982 if (insn == end)
2983 break;
2985 insn = NEXT_INSN (insn);
2988 return n_insns;
2991 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2992 block. If so, we'll try to convert the insns to not require the branch.
2993 Return TRUE if we were successful at converting the block. */
2995 static int
2996 find_if_block (struct ce_if_block * ce_info)
2998 basic_block test_bb = ce_info->test_bb;
2999 basic_block then_bb = ce_info->then_bb;
3000 basic_block else_bb = ce_info->else_bb;
3001 basic_block join_bb = NULL_BLOCK;
3002 edge cur_edge;
3003 basic_block next;
3004 edge_iterator ei;
3006 ce_info->last_test_bb = test_bb;
3008 /* Discover if any fall through predecessors of the current test basic block
3009 were && tests (which jump to the else block) or || tests (which jump to
3010 the then block). */
3011 if (HAVE_conditional_execution && reload_completed
3012 && single_pred_p (test_bb)
3013 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3015 basic_block bb = single_pred (test_bb);
3016 basic_block target_bb;
3017 int max_insns = MAX_CONDITIONAL_EXECUTE;
3018 int n_insns;
3020 /* Determine if the preceding block is an && or || block. */
3021 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3023 ce_info->and_and_p = TRUE;
3024 target_bb = else_bb;
3026 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3028 ce_info->and_and_p = FALSE;
3029 target_bb = then_bb;
3031 else
3032 target_bb = NULL_BLOCK;
3034 if (target_bb && n_insns <= max_insns)
3036 int total_insns = 0;
3037 int blocks = 0;
3039 ce_info->last_test_bb = test_bb;
3041 /* Found at least one && or || block, look for more. */
3044 ce_info->test_bb = test_bb = bb;
3045 total_insns += n_insns;
3046 blocks++;
3048 if (!single_pred_p (bb))
3049 break;
3051 bb = single_pred (bb);
3052 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3054 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3056 ce_info->num_multiple_test_blocks = blocks;
3057 ce_info->num_multiple_test_insns = total_insns;
3059 if (ce_info->and_and_p)
3060 ce_info->num_and_and_blocks = blocks;
3061 else
3062 ce_info->num_or_or_blocks = blocks;
3066 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3067 other than any || blocks which jump to the THEN block. */
3068 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3069 return FALSE;
3071 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3072 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3074 if (cur_edge->flags & EDGE_COMPLEX)
3075 return FALSE;
3078 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3080 if (cur_edge->flags & EDGE_COMPLEX)
3081 return FALSE;
3084 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3085 if (EDGE_COUNT (then_bb->succs) > 0
3086 && (!single_succ_p (then_bb)
3087 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3088 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3089 return FALSE;
3091 /* If the THEN block has no successors, conditional execution can still
3092 make a conditional call. Don't do this unless the ELSE block has
3093 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3094 Check for the last insn of the THEN block being an indirect jump, which
3095 is listed as not having any successors, but confuses the rest of the CE
3096 code processing. ??? we should fix this in the future. */
3097 if (EDGE_COUNT (then_bb->succs) == 0)
3099 if (single_pred_p (else_bb))
3101 rtx last_insn = BB_END (then_bb);
3103 while (last_insn
3104 && NOTE_P (last_insn)
3105 && last_insn != BB_HEAD (then_bb))
3106 last_insn = PREV_INSN (last_insn);
3108 if (last_insn
3109 && JUMP_P (last_insn)
3110 && ! simplejump_p (last_insn))
3111 return FALSE;
3113 join_bb = else_bb;
3114 else_bb = NULL_BLOCK;
3116 else
3117 return FALSE;
3120 /* If the THEN block's successor is the other edge out of the TEST block,
3121 then we have an IF-THEN combo without an ELSE. */
3122 else if (single_succ (then_bb) == else_bb)
3124 join_bb = else_bb;
3125 else_bb = NULL_BLOCK;
3128 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3129 has exactly one predecessor and one successor, and the outgoing edge
3130 is not complex, then we have an IF-THEN-ELSE combo. */
3131 else if (single_succ_p (else_bb)
3132 && single_succ (then_bb) == single_succ (else_bb)
3133 && single_pred_p (else_bb)
3134 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3135 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3136 join_bb = single_succ (else_bb);
3138 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3139 else
3140 return FALSE;
3142 num_possible_if_blocks++;
3144 if (dump_file)
3146 fprintf (dump_file,
3147 "\nIF-THEN%s block found, pass %d, start block %d "
3148 "[insn %d], then %d [%d]",
3149 (else_bb) ? "-ELSE" : "",
3150 ce_info->pass,
3151 test_bb->index,
3152 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3153 then_bb->index,
3154 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3156 if (else_bb)
3157 fprintf (dump_file, ", else %d [%d]",
3158 else_bb->index,
3159 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3161 fprintf (dump_file, ", join %d [%d]",
3162 join_bb->index,
3163 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3165 if (ce_info->num_multiple_test_blocks > 0)
3166 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3167 ce_info->num_multiple_test_blocks,
3168 (ce_info->and_and_p) ? "&&" : "||",
3169 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3170 ce_info->last_test_bb->index,
3171 ((BB_HEAD (ce_info->last_test_bb))
3172 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3173 : -1));
3175 fputc ('\n', dump_file);
3178 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3179 first condition for free, since we've already asserted that there's a
3180 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3181 we checked the FALLTHRU flag, those are already adjacent to the last IF
3182 block. */
3183 /* ??? As an enhancement, move the ELSE block. Have to deal with
3184 BLOCK notes, if by no other means than backing out the merge if they
3185 exist. Sticky enough I don't want to think about it now. */
3186 next = then_bb;
3187 if (else_bb && (next = next->next_bb) != else_bb)
3188 return FALSE;
3189 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3191 if (else_bb)
3192 join_bb = NULL;
3193 else
3194 return FALSE;
3197 /* Do the real work. */
3198 ce_info->else_bb = else_bb;
3199 ce_info->join_bb = join_bb;
3201 return process_if_block (ce_info);
3204 /* Convert a branch over a trap, or a branch
3205 to a trap, into a conditional trap. */
3207 static int
3208 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3210 basic_block then_bb = then_edge->dest;
3211 basic_block else_bb = else_edge->dest;
3212 basic_block other_bb, trap_bb;
3213 rtx trap, jump, cond, cond_earliest, seq;
3214 enum rtx_code code;
3216 /* Locate the block with the trap instruction. */
3217 /* ??? While we look for no successors, we really ought to allow
3218 EH successors. Need to fix merge_if_block for that to work. */
3219 if ((trap = block_has_only_trap (then_bb)) != NULL)
3220 trap_bb = then_bb, other_bb = else_bb;
3221 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3222 trap_bb = else_bb, other_bb = then_bb;
3223 else
3224 return FALSE;
3226 if (dump_file)
3228 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3229 test_bb->index, trap_bb->index);
3232 /* If this is not a standard conditional jump, we can't parse it. */
3233 jump = BB_END (test_bb);
3234 cond = noce_get_condition (jump, &cond_earliest);
3235 if (! cond)
3236 return FALSE;
3238 /* If the conditional jump is more than just a conditional jump, then
3239 we can not do if-conversion on this block. */
3240 if (! onlyjump_p (jump))
3241 return FALSE;
3243 /* We must be comparing objects whose modes imply the size. */
3244 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3245 return FALSE;
3247 /* Reverse the comparison code, if necessary. */
3248 code = GET_CODE (cond);
3249 if (then_bb == trap_bb)
3251 code = reversed_comparison_code (cond, jump);
3252 if (code == UNKNOWN)
3253 return FALSE;
3256 /* Attempt to generate the conditional trap. */
3257 seq = gen_cond_trap (code, XEXP (cond, 0),
3258 XEXP (cond, 1),
3259 TRAP_CODE (PATTERN (trap)));
3260 if (seq == NULL)
3261 return FALSE;
3263 num_true_changes++;
3265 /* Emit the new insns before cond_earliest. */
3266 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3268 /* Delete the trap block if possible. */
3269 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3270 if (EDGE_COUNT (trap_bb->preds) == 0)
3271 delete_basic_block (trap_bb);
3273 /* If the non-trap block and the test are now adjacent, merge them.
3274 Otherwise we must insert a direct branch. */
3275 if (test_bb->next_bb == other_bb)
3277 struct ce_if_block new_ce_info;
3278 delete_insn (jump);
3279 memset (&new_ce_info, '\0', sizeof (new_ce_info));
3280 new_ce_info.test_bb = test_bb;
3281 new_ce_info.then_bb = NULL;
3282 new_ce_info.else_bb = NULL;
3283 new_ce_info.join_bb = other_bb;
3284 merge_if_block (&new_ce_info);
3286 else
3288 rtx lab, newjump;
3290 lab = JUMP_LABEL (jump);
3291 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3292 LABEL_NUSES (lab) += 1;
3293 JUMP_LABEL (newjump) = lab;
3294 emit_barrier_after (newjump);
3296 delete_insn (jump);
3299 return TRUE;
3302 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3303 return it. */
3305 static rtx
3306 block_has_only_trap (basic_block bb)
3308 rtx trap;
3310 /* We're not the exit block. */
3311 if (bb == EXIT_BLOCK_PTR)
3312 return NULL_RTX;
3314 /* The block must have no successors. */
3315 if (EDGE_COUNT (bb->succs) > 0)
3316 return NULL_RTX;
3318 /* The only instruction in the THEN block must be the trap. */
3319 trap = first_active_insn (bb);
3320 if (! (trap == BB_END (bb)
3321 && GET_CODE (PATTERN (trap)) == TRAP_IF
3322 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3323 return NULL_RTX;
3325 return trap;
3328 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3329 transformable, but not necessarily the other. There need be no
3330 JOIN block.
3332 Return TRUE if we were successful at converting the block.
3334 Cases we'd like to look at:
3337 if (test) goto over; // x not live
3338 x = a;
3339 goto label;
3340 over:
3342 becomes
3344 x = a;
3345 if (! test) goto label;
3348 if (test) goto E; // x not live
3349 x = big();
3350 goto L;
3352 x = b;
3353 goto M;
3355 becomes
3357 x = b;
3358 if (test) goto M;
3359 x = big();
3360 goto L;
3362 (3) // This one's really only interesting for targets that can do
3363 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3364 // it results in multiple branches on a cache line, which often
3365 // does not sit well with predictors.
3367 if (test1) goto E; // predicted not taken
3368 x = a;
3369 if (test2) goto F;
3372 x = b;
3375 becomes
3377 x = a;
3378 if (test1) goto E;
3379 if (test2) goto F;
3381 Notes:
3383 (A) Don't do (2) if the branch is predicted against the block we're
3384 eliminating. Do it anyway if we can eliminate a branch; this requires
3385 that the sole successor of the eliminated block postdominate the other
3386 side of the if.
3388 (B) With CE, on (3) we can steal from both sides of the if, creating
3390 if (test1) x = a;
3391 if (!test1) x = b;
3392 if (test1) goto J;
3393 if (test2) goto F;
3397 Again, this is most useful if J postdominates.
3399 (C) CE substitutes for helpful life information.
3401 (D) These heuristics need a lot of work. */
3403 /* Tests for case 1 above. */
3405 static int
3406 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3408 basic_block then_bb = then_edge->dest;
3409 basic_block else_bb = else_edge->dest, new_bb;
3410 int then_bb_index;
3412 /* If we are partitioning hot/cold basic blocks, we don't want to
3413 mess up unconditional or indirect jumps that cross between hot
3414 and cold sections.
3416 Basic block partitioning may result in some jumps that appear to
3417 be optimizable (or blocks that appear to be mergeable), but which really
3418 must be left untouched (they are required to make it safely across
3419 partition boundaries). See the comments at the top of
3420 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3422 if ((BB_END (then_bb)
3423 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3424 || (BB_END (test_bb)
3425 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3426 || (BB_END (else_bb)
3427 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3428 NULL_RTX)))
3429 return FALSE;
3431 /* THEN has one successor. */
3432 if (!single_succ_p (then_bb))
3433 return FALSE;
3435 /* THEN does not fall through, but is not strange either. */
3436 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3437 return FALSE;
3439 /* THEN has one predecessor. */
3440 if (!single_pred_p (then_bb))
3441 return FALSE;
3443 /* THEN must do something. */
3444 if (forwarder_block_p (then_bb))
3445 return FALSE;
3447 num_possible_if_blocks++;
3448 if (dump_file)
3449 fprintf (dump_file,
3450 "\nIF-CASE-1 found, start %d, then %d\n",
3451 test_bb->index, then_bb->index);
3453 /* THEN is small. */
3454 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3455 return FALSE;
3457 /* Registers set are dead, or are predicable. */
3458 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3459 single_succ (then_bb), 1))
3460 return FALSE;
3462 /* Conversion went ok, including moving the insns and fixing up the
3463 jump. Adjust the CFG to match. */
3465 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3466 else_bb->il.rtl->global_live_at_start,
3467 then_bb->il.rtl->global_live_at_end);
3470 /* We can avoid creating a new basic block if then_bb is immediately
3471 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3472 thru to else_bb. */
3474 if (then_bb->next_bb == else_bb
3475 && then_bb->prev_bb == test_bb
3476 && else_bb != EXIT_BLOCK_PTR)
3478 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3479 new_bb = 0;
3481 else
3482 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3483 else_bb);
3485 then_bb_index = then_bb->index;
3486 delete_basic_block (then_bb);
3488 /* Make rest of code believe that the newly created block is the THEN_BB
3489 block we removed. */
3490 if (new_bb)
3492 new_bb->index = then_bb_index;
3493 SET_BASIC_BLOCK (then_bb_index, new_bb);
3494 /* Since the fallthru edge was redirected from test_bb to new_bb,
3495 we need to ensure that new_bb is in the same partition as
3496 test bb (you can not fall through across section boundaries). */
3497 BB_COPY_PARTITION (new_bb, test_bb);
3499 /* We've possibly created jump to next insn, cleanup_cfg will solve that
3500 later. */
3502 num_true_changes++;
3503 num_updated_if_blocks++;
3505 return TRUE;
3508 /* Test for case 2 above. */
3510 static int
3511 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3513 basic_block then_bb = then_edge->dest;
3514 basic_block else_bb = else_edge->dest;
3515 edge else_succ;
3516 rtx note;
3518 /* If we are partitioning hot/cold basic blocks, we don't want to
3519 mess up unconditional or indirect jumps that cross between hot
3520 and cold sections.
3522 Basic block partitioning may result in some jumps that appear to
3523 be optimizable (or blocks that appear to be mergeable), but which really
3524 must be left untouched (they are required to make it safely across
3525 partition boundaries). See the comments at the top of
3526 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3528 if ((BB_END (then_bb)
3529 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3530 || (BB_END (test_bb)
3531 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3532 || (BB_END (else_bb)
3533 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3534 NULL_RTX)))
3535 return FALSE;
3537 /* ELSE has one successor. */
3538 if (!single_succ_p (else_bb))
3539 return FALSE;
3540 else
3541 else_succ = single_succ_edge (else_bb);
3543 /* ELSE outgoing edge is not complex. */
3544 if (else_succ->flags & EDGE_COMPLEX)
3545 return FALSE;
3547 /* ELSE has one predecessor. */
3548 if (!single_pred_p (else_bb))
3549 return FALSE;
3551 /* THEN is not EXIT. */
3552 if (then_bb->index < NUM_FIXED_BLOCKS)
3553 return FALSE;
3555 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3556 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3557 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3559 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3560 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3561 else_succ->dest))
3563 else
3564 return FALSE;
3566 num_possible_if_blocks++;
3567 if (dump_file)
3568 fprintf (dump_file,
3569 "\nIF-CASE-2 found, start %d, else %d\n",
3570 test_bb->index, else_bb->index);
3572 /* ELSE is small. */
3573 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3574 return FALSE;
3576 /* Registers set are dead, or are predicable. */
3577 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3578 return FALSE;
3580 /* Conversion went ok, including moving the insns and fixing up the
3581 jump. Adjust the CFG to match. */
3583 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3584 then_bb->il.rtl->global_live_at_start,
3585 else_bb->il.rtl->global_live_at_end);
3587 delete_basic_block (else_bb);
3589 num_true_changes++;
3590 num_updated_if_blocks++;
3592 /* ??? We may now fallthru from one of THEN's successors into a join
3593 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3595 return TRUE;
3598 /* A subroutine of dead_or_predicable called through for_each_rtx.
3599 Return 1 if a memory is found. */
3601 static int
3602 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3604 return MEM_P (*px);
3607 /* Used by the code above to perform the actual rtl transformations.
3608 Return TRUE if successful.
3610 TEST_BB is the block containing the conditional branch. MERGE_BB
3611 is the block containing the code to manipulate. NEW_DEST is the
3612 label TEST_BB should be branching to after the conversion.
3613 REVERSEP is true if the sense of the branch should be reversed. */
3615 static int
3616 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3617 basic_block other_bb, basic_block new_dest, int reversep)
3619 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3621 jump = BB_END (test_bb);
3623 /* Find the extent of the real code in the merge block. */
3624 head = BB_HEAD (merge_bb);
3625 end = BB_END (merge_bb);
3627 /* If merge_bb ends with a tablejump, predicating/moving insn's
3628 into test_bb and then deleting merge_bb will result in the jumptable
3629 that follows merge_bb being removed along with merge_bb and then we
3630 get an unresolved reference to the jumptable. */
3631 if (tablejump_p (end, NULL, NULL))
3632 return FALSE;
3634 if (LABEL_P (head))
3635 head = NEXT_INSN (head);
3636 if (NOTE_P (head))
3638 if (head == end)
3640 head = end = NULL_RTX;
3641 goto no_body;
3643 head = NEXT_INSN (head);
3646 if (JUMP_P (end))
3648 if (head == end)
3650 head = end = NULL_RTX;
3651 goto no_body;
3653 end = PREV_INSN (end);
3656 /* Disable handling dead code by conditional execution if the machine needs
3657 to do anything funny with the tests, etc. */
3658 #ifndef IFCVT_MODIFY_TESTS
3659 if (HAVE_conditional_execution)
3661 /* In the conditional execution case, we have things easy. We know
3662 the condition is reversible. We don't have to check life info
3663 because we're going to conditionally execute the code anyway.
3664 All that's left is making sure the insns involved can actually
3665 be predicated. */
3667 rtx cond, prob_val;
3669 cond = cond_exec_get_condition (jump);
3670 if (! cond)
3671 return FALSE;
3673 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3674 if (prob_val)
3675 prob_val = XEXP (prob_val, 0);
3677 if (reversep)
3679 enum rtx_code rev = reversed_comparison_code (cond, jump);
3680 if (rev == UNKNOWN)
3681 return FALSE;
3682 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3683 XEXP (cond, 1));
3684 if (prob_val)
3685 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3688 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3689 prob_val, 0))
3690 goto cancel;
3692 earliest = jump;
3694 else
3695 #endif
3697 /* In the non-conditional execution case, we have to verify that there
3698 are no trapping operations, no calls, no references to memory, and
3699 that any registers modified are dead at the branch site. */
3701 rtx insn, cond, prev;
3702 regset merge_set, tmp, test_live, test_set;
3703 struct propagate_block_info *pbi;
3704 unsigned i, fail = 0;
3705 bitmap_iterator bi;
3707 /* Check for no calls or trapping operations. */
3708 for (insn = head; ; insn = NEXT_INSN (insn))
3710 if (CALL_P (insn))
3711 return FALSE;
3712 if (INSN_P (insn))
3714 if (may_trap_p (PATTERN (insn)))
3715 return FALSE;
3717 /* ??? Even non-trapping memories such as stack frame
3718 references must be avoided. For stores, we collect
3719 no lifetime info; for reads, we'd have to assert
3720 true_dependence false against every store in the
3721 TEST range. */
3722 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3723 return FALSE;
3725 if (insn == end)
3726 break;
3729 if (! any_condjump_p (jump))
3730 return FALSE;
3732 /* Find the extent of the conditional. */
3733 cond = noce_get_condition (jump, &earliest);
3734 if (! cond)
3735 return FALSE;
3737 /* Collect:
3738 MERGE_SET = set of registers set in MERGE_BB
3739 TEST_LIVE = set of registers live at EARLIEST
3740 TEST_SET = set of registers set between EARLIEST and the
3741 end of the block. */
3743 tmp = ALLOC_REG_SET (&reg_obstack);
3744 merge_set = ALLOC_REG_SET (&reg_obstack);
3745 test_live = ALLOC_REG_SET (&reg_obstack);
3746 test_set = ALLOC_REG_SET (&reg_obstack);
3748 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3749 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3750 since we've already asserted that MERGE_BB is small. */
3751 /* If we allocated new pseudos (e.g. in the conditional move
3752 expander called from noce_emit_cmove), we must resize the
3753 array first. */
3754 if (max_regno < max_reg_num ())
3756 max_regno = max_reg_num ();
3757 allocate_reg_info (max_regno, FALSE, FALSE);
3759 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3761 /* For small register class machines, don't lengthen lifetimes of
3762 hard registers before reload. */
3763 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3765 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3767 if (i < FIRST_PSEUDO_REGISTER
3768 && ! fixed_regs[i]
3769 && ! global_regs[i])
3770 fail = 1;
3774 /* For TEST, we're interested in a range of insns, not a whole block.
3775 Moreover, we're interested in the insns live from OTHER_BB. */
3777 COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3778 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3781 for (insn = jump; ; insn = prev)
3783 prev = propagate_one_insn (pbi, insn);
3784 if (insn == earliest)
3785 break;
3788 free_propagate_block_info (pbi);
3790 /* We can perform the transformation if
3791 MERGE_SET & (TEST_SET | TEST_LIVE)
3793 TEST_SET & merge_bb->il.rtl->global_live_at_start
3794 are empty. */
3796 if (bitmap_intersect_p (test_set, merge_set)
3797 || bitmap_intersect_p (test_live, merge_set)
3798 || bitmap_intersect_p (test_set,
3799 merge_bb->il.rtl->global_live_at_start))
3800 fail = 1;
3802 FREE_REG_SET (tmp);
3803 FREE_REG_SET (merge_set);
3804 FREE_REG_SET (test_live);
3805 FREE_REG_SET (test_set);
3807 if (fail)
3808 return FALSE;
3811 no_body:
3812 /* We don't want to use normal invert_jump or redirect_jump because
3813 we don't want to delete_insn called. Also, we want to do our own
3814 change group management. */
3816 old_dest = JUMP_LABEL (jump);
3817 if (other_bb != new_dest)
3819 new_label = block_label (new_dest);
3820 if (reversep
3821 ? ! invert_jump_1 (jump, new_label)
3822 : ! redirect_jump_1 (jump, new_label))
3823 goto cancel;
3826 if (! apply_change_group ())
3827 return FALSE;
3829 if (other_bb != new_dest)
3831 redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3833 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3834 if (reversep)
3836 gcov_type count, probability;
3837 count = BRANCH_EDGE (test_bb)->count;
3838 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3839 FALLTHRU_EDGE (test_bb)->count = count;
3840 probability = BRANCH_EDGE (test_bb)->probability;
3841 BRANCH_EDGE (test_bb)->probability
3842 = FALLTHRU_EDGE (test_bb)->probability;
3843 FALLTHRU_EDGE (test_bb)->probability = probability;
3844 update_br_prob_note (test_bb);
3848 /* Move the insns out of MERGE_BB to before the branch. */
3849 if (head != NULL)
3851 rtx insn;
3853 if (end == BB_END (merge_bb))
3854 BB_END (merge_bb) = PREV_INSN (head);
3856 if (squeeze_notes (&head, &end))
3857 return TRUE;
3859 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3860 notes might become invalid. */
3861 insn = head;
3864 rtx note, set;
3866 if (! INSN_P (insn))
3867 continue;
3868 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3869 if (! note)
3870 continue;
3871 set = single_set (insn);
3872 if (!set || !function_invariant_p (SET_SRC (set)))
3873 remove_note (insn, note);
3874 } while (insn != end && (insn = NEXT_INSN (insn)));
3876 reorder_insns (head, end, PREV_INSN (earliest));
3879 /* Remove the jump and edge if we can. */
3880 if (other_bb == new_dest)
3882 delete_insn (jump);
3883 remove_edge (BRANCH_EDGE (test_bb));
3884 /* ??? Can't merge blocks here, as then_bb is still in use.
3885 At minimum, the merge will get done just before bb-reorder. */
3888 return TRUE;
3890 cancel:
3891 cancel_changes (0);
3892 return FALSE;
3895 /* Main entry point for all if-conversion. */
3897 static void
3898 if_convert (int x_life_data_ok)
3900 basic_block bb;
3901 int pass;
3903 num_possible_if_blocks = 0;
3904 num_updated_if_blocks = 0;
3905 num_true_changes = 0;
3906 life_data_ok = (x_life_data_ok != 0);
3908 if ((! targetm.cannot_modify_jumps_p ())
3909 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3910 || !targetm.have_named_sections))
3912 struct loops loops;
3914 flow_loops_find (&loops);
3915 mark_loop_exit_edges (&loops);
3916 flow_loops_free (&loops);
3917 free_dominance_info (CDI_DOMINATORS);
3920 /* Compute postdominators. */
3921 calculate_dominance_info (CDI_POST_DOMINATORS);
3923 if (life_data_ok)
3924 clear_bb_flags ();
3926 /* Go through each of the basic blocks looking for things to convert. If we
3927 have conditional execution, we make multiple passes to allow us to handle
3928 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3929 pass = 0;
3932 cond_exec_changed_p = FALSE;
3933 pass++;
3935 #ifdef IFCVT_MULTIPLE_DUMPS
3936 if (dump_file && pass > 1)
3937 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3938 #endif
3940 FOR_EACH_BB (bb)
3942 basic_block new_bb;
3943 while ((new_bb = find_if_header (bb, pass)))
3944 bb = new_bb;
3947 #ifdef IFCVT_MULTIPLE_DUMPS
3948 if (dump_file && cond_exec_changed_p)
3949 print_rtl_with_bb (dump_file, get_insns ());
3950 #endif
3952 while (cond_exec_changed_p);
3954 #ifdef IFCVT_MULTIPLE_DUMPS
3955 if (dump_file)
3956 fprintf (dump_file, "\n\n========== no more changes\n");
3957 #endif
3959 free_dominance_info (CDI_POST_DOMINATORS);
3961 if (dump_file)
3962 fflush (dump_file);
3964 clear_aux_for_blocks ();
3966 /* Rebuild life info for basic blocks that require it. */
3967 if (num_true_changes && life_data_ok)
3969 /* If we allocated new pseudos, we must resize the array for sched1. */
3970 if (max_regno < max_reg_num ())
3972 max_regno = max_reg_num ();
3973 allocate_reg_info (max_regno, FALSE, FALSE);
3975 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3976 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3977 | PROP_KILL_DEAD_CODE);
3980 /* Write the final stats. */
3981 if (dump_file && num_possible_if_blocks > 0)
3983 fprintf (dump_file,
3984 "\n%d possible IF blocks searched.\n",
3985 num_possible_if_blocks);
3986 fprintf (dump_file,
3987 "%d IF blocks converted.\n",
3988 num_updated_if_blocks);
3989 fprintf (dump_file,
3990 "%d true changes made.\n\n\n",
3991 num_true_changes);
3994 #ifdef ENABLE_CHECKING
3995 verify_flow_info ();
3996 #endif
3999 static bool
4000 gate_handle_if_conversion (void)
4002 return (optimize > 0);
4005 /* If-conversion and CFG cleanup. */
4006 static unsigned int
4007 rest_of_handle_if_conversion (void)
4009 if (flag_if_conversion)
4011 if (dump_file)
4012 dump_flow_info (dump_file, dump_flags);
4013 cleanup_cfg (CLEANUP_EXPENSIVE);
4014 reg_scan (get_insns (), max_reg_num ());
4015 if_convert (0);
4018 timevar_push (TV_JUMP);
4019 cleanup_cfg (CLEANUP_EXPENSIVE);
4020 reg_scan (get_insns (), max_reg_num ());
4021 timevar_pop (TV_JUMP);
4022 return 0;
4025 struct tree_opt_pass pass_rtl_ifcvt =
4027 "ce1", /* name */
4028 gate_handle_if_conversion, /* gate */
4029 rest_of_handle_if_conversion, /* execute */
4030 NULL, /* sub */
4031 NULL, /* next */
4032 0, /* static_pass_number */
4033 TV_IFCVT, /* tv_id */
4034 0, /* properties_required */
4035 0, /* properties_provided */
4036 0, /* properties_destroyed */
4037 0, /* todo_flags_start */
4038 TODO_dump_func, /* todo_flags_finish */
4039 'C' /* letter */
4042 static bool
4043 gate_handle_if_after_combine (void)
4045 return (optimize > 0 && flag_if_conversion);
4049 /* Rerun if-conversion, as combine may have simplified things enough
4050 to now meet sequence length restrictions. */
4051 static unsigned int
4052 rest_of_handle_if_after_combine (void)
4054 no_new_pseudos = 0;
4055 if_convert (1);
4056 no_new_pseudos = 1;
4057 return 0;
4060 struct tree_opt_pass pass_if_after_combine =
4062 "ce2", /* name */
4063 gate_handle_if_after_combine, /* gate */
4064 rest_of_handle_if_after_combine, /* execute */
4065 NULL, /* sub */
4066 NULL, /* next */
4067 0, /* static_pass_number */
4068 TV_IFCVT, /* tv_id */
4069 0, /* properties_required */
4070 0, /* properties_provided */
4071 0, /* properties_destroyed */
4072 0, /* todo_flags_start */
4073 TODO_dump_func |
4074 TODO_ggc_collect, /* todo_flags_finish */
4075 'C' /* letter */
4079 static bool
4080 gate_handle_if_after_reload (void)
4082 return (optimize > 0);
4085 static unsigned int
4086 rest_of_handle_if_after_reload (void)
4088 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
4089 splitting possibly introduced more crossjumping opportunities. */
4090 cleanup_cfg (CLEANUP_EXPENSIVE
4091 | CLEANUP_UPDATE_LIFE
4092 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
4093 if (flag_if_conversion2)
4094 if_convert (1);
4095 return 0;
4099 struct tree_opt_pass pass_if_after_reload =
4101 "ce3", /* name */
4102 gate_handle_if_after_reload, /* gate */
4103 rest_of_handle_if_after_reload, /* execute */
4104 NULL, /* sub */
4105 NULL, /* next */
4106 0, /* static_pass_number */
4107 TV_IFCVT2, /* tv_id */
4108 0, /* properties_required */
4109 0, /* properties_provided */
4110 0, /* properties_destroyed */
4111 0, /* todo_flags_start */
4112 TODO_dump_func |
4113 TODO_ggc_collect, /* todo_flags_finish */
4114 'E' /* letter */