1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
55 #include "coretypes.h"
59 #include "gensupport.h"
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64 /* A listhead of decision trees. The alternatives to a node are kept
65 in a doubly-linked list so we can easily add nodes to the proper
66 place when merging. */
70 struct decision
*first
;
71 struct decision
*last
;
74 /* A single test. The two accept types aren't tests per-se, but
75 their equality (or lack thereof) does affect tree merging so
76 it is convenient to keep them here. */
80 /* A linked list through the tests attached to a node. */
81 struct decision_test
*next
;
83 /* These types are roughly in the order in which we'd like to test them. */
87 DT_mode
, DT_code
, DT_veclen
,
88 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
90 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
91 DT_accept_op
, DT_accept_insn
96 int num_insns
; /* Number if insn in a define_peephole2. */
97 enum machine_mode mode
; /* Machine mode of node. */
98 RTX_CODE code
; /* Code to test. */
102 const char *name
; /* Predicate to call. */
103 const struct pred_data
*data
;
104 /* Optimization hints for this predicate. */
105 enum machine_mode mode
; /* Machine mode for node. */
108 const char *c_test
; /* Additional test to perform. */
109 int veclen
; /* Length of vector. */
110 int dup
; /* Number of operand to compare against. */
111 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
112 int opno
; /* Operand number matched. */
115 int code_number
; /* Insn number matched. */
116 int lineno
; /* Line number of the insn. */
117 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
122 /* Data structure for decision tree for recognizing legitimate insns. */
126 struct decision_head success
; /* Nodes to test on success. */
127 struct decision
*next
; /* Node to test on failure. */
128 struct decision
*prev
; /* Node whose failure tests us. */
129 struct decision
*afterward
; /* Node to test on success,
130 but failure of successor nodes. */
132 const char *position
; /* String denoting position in pattern. */
134 struct decision_test
*tests
; /* The tests for this node. */
136 int number
; /* Node number, used for labels */
137 int subroutine_number
; /* Number of subroutine this node starts */
138 int need_label
; /* Label needs to be output. */
141 #define SUBROUTINE_THRESHOLD 100
143 static int next_subroutine_number
;
145 /* We can write three types of subroutines: One for insn recognition,
146 one to split insns, and one for peephole-type optimizations. This
147 defines which type is being written. */
150 RECOG
, SPLIT
, PEEPHOLE2
153 #define IS_SPLIT(X) ((X) != RECOG)
155 /* Next available node number for tree nodes. */
157 static int next_number
;
159 /* Next number to use as an insn_code. */
161 static int next_insn_code
;
163 /* Record the highest depth we ever have so we know how many variables to
164 allocate in each subroutine we make. */
166 static int max_depth
;
168 /* The line number of the start of the pattern currently being processed. */
169 static int pattern_lineno
;
171 /* Count of errors. */
172 static int error_count
;
174 /* Predicate handling.
176 We construct from the machine description a table mapping each
177 predicate to a list of the rtl codes it can possibly match. The
178 function 'maybe_both_true' uses it to deduce that there are no
179 expressions that can be matches by certain pairs of tree nodes.
180 Also, if a predicate can match only one code, we can hardwire that
181 code into the node testing the predicate.
183 Some predicates are flagged as special. validate_pattern will not
184 warn about modeless match_operand expressions if they have a
185 special predicate. Predicates that allow only constants are also
186 treated as special, for this purpose.
188 validate_pattern will warn about predicates that allow non-lvalues
189 when they appear in destination operands.
191 Calculating the set of rtx codes that can possibly be accepted by a
192 predicate expression EXP requires a three-state logic: any given
193 subexpression may definitively accept a code C (Y), definitively
194 reject a code C (N), or may have an indeterminate effect (I). N
195 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
206 We represent Y with 1, N with 0, I with 2. If any code is left in
207 an I state by the complete expression, we must assume that that
208 code can be accepted. */
214 #define TRISTATE_AND(a,b) \
215 ((a) == I ? ((b) == N ? N : I) : \
216 (b) == I ? ((a) == N ? N : I) : \
219 #define TRISTATE_OR(a,b) \
220 ((a) == I ? ((b) == Y ? Y : I) : \
221 (b) == I ? ((a) == Y ? Y : I) : \
224 #define TRISTATE_NOT(a) \
225 ((a) == I ? I : !(a))
227 /* 0 means no warning about that code yet, 1 means warned. */
228 static char did_you_mean_codes
[NUM_RTX_CODE
];
230 /* Recursively calculate the set of rtx codes accepted by the
231 predicate expression EXP, writing the result to CODES. */
233 compute_predicate_codes (rtx exp
, char codes
[NUM_RTX_CODE
])
235 char op0_codes
[NUM_RTX_CODE
];
236 char op1_codes
[NUM_RTX_CODE
];
237 char op2_codes
[NUM_RTX_CODE
];
240 switch (GET_CODE (exp
))
243 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
244 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
245 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
246 codes
[i
] = TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]);
250 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
251 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
252 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
253 codes
[i
] = TRISTATE_OR (op0_codes
[i
], op1_codes
[i
]);
256 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
257 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
258 codes
[i
] = TRISTATE_NOT (op0_codes
[i
]);
262 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
263 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
264 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
265 compute_predicate_codes (XEXP (exp
, 2), op2_codes
);
266 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
267 codes
[i
] = TRISTATE_OR (TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]),
268 TRISTATE_AND (TRISTATE_NOT (op0_codes
[i
]),
273 /* MATCH_CODE allows a specified list of codes. However, if it
274 does not apply to the top level of the expression, it does not
275 constrain the set of codes for the top level. */
276 if (XSTR (exp
, 1)[0] != '\0')
278 memset (codes
, Y
, NUM_RTX_CODE
);
282 memset (codes
, N
, NUM_RTX_CODE
);
284 const char *next_code
= XSTR (exp
, 0);
287 if (*next_code
== '\0')
289 message_with_line (pattern_lineno
, "empty match_code expression");
294 while ((code
= scan_comma_elt (&next_code
)) != 0)
296 size_t n
= next_code
- code
;
299 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
300 if (!strncmp (code
, GET_RTX_NAME (i
), n
)
301 && GET_RTX_NAME (i
)[n
] == '\0')
309 message_with_line (pattern_lineno
, "match_code \"%.*s\" matches nothing",
312 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
313 if (!strncasecmp (code
, GET_RTX_NAME (i
), n
)
314 && GET_RTX_NAME (i
)[n
] == '\0'
315 && !did_you_mean_codes
[i
])
317 did_you_mean_codes
[i
] = 1;
318 message_with_line (pattern_lineno
, "(did you mean \"%s\"?)", GET_RTX_NAME (i
));
327 /* MATCH_OPERAND disallows the set of codes that the named predicate
328 disallows, and is indeterminate for the codes that it does allow. */
330 struct pred_data
*p
= lookup_predicate (XSTR (exp
, 1));
333 message_with_line (pattern_lineno
,
334 "reference to unknown predicate '%s'",
339 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
340 codes
[i
] = p
->codes
[i
] ? I
: N
;
346 /* (match_test WHATEVER) is completely indeterminate. */
347 memset (codes
, I
, NUM_RTX_CODE
);
351 message_with_line (pattern_lineno
,
352 "'%s' cannot be used in a define_predicate expression",
353 GET_RTX_NAME (GET_CODE (exp
)));
355 memset (codes
, I
, NUM_RTX_CODE
);
364 /* Process a define_predicate expression: compute the set of predicates
365 that can be matched, and record this as a known predicate. */
367 process_define_predicate (rtx desc
)
369 struct pred_data
*pred
= xcalloc (sizeof (struct pred_data
), 1);
370 char codes
[NUM_RTX_CODE
];
371 bool seen_one
= false;
374 pred
->name
= XSTR (desc
, 0);
375 if (GET_CODE (desc
) == DEFINE_SPECIAL_PREDICATE
)
378 compute_predicate_codes (XEXP (desc
, 1), codes
);
380 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
383 pred
->codes
[i
] = true;
384 if (GET_RTX_CLASS (i
) != RTX_CONST_OBJ
)
385 pred
->allows_non_const
= true;
391 && i
!= STRICT_LOW_PART
)
392 pred
->allows_non_lvalue
= true;
395 pred
->singleton
= UNKNOWN
;
402 add_predicate (pred
);
409 static struct decision
*new_decision
410 (const char *, struct decision_head
*);
411 static struct decision_test
*new_decision_test
412 (enum decision_type
, struct decision_test
***);
413 static rtx find_operand
415 static rtx find_matching_operand
417 static void validate_pattern
418 (rtx
, rtx
, rtx
, int);
419 static struct decision
*add_to_sequence
420 (rtx
, struct decision_head
*, const char *, enum routine_type
, int);
422 static int maybe_both_true_2
423 (struct decision_test
*, struct decision_test
*);
424 static int maybe_both_true_1
425 (struct decision_test
*, struct decision_test
*);
426 static int maybe_both_true
427 (struct decision
*, struct decision
*, int);
429 static int nodes_identical_1
430 (struct decision_test
*, struct decision_test
*);
431 static int nodes_identical
432 (struct decision
*, struct decision
*);
433 static void merge_accept_insn
434 (struct decision
*, struct decision
*);
435 static void merge_trees
436 (struct decision_head
*, struct decision_head
*);
438 static void factor_tests
439 (struct decision_head
*);
440 static void simplify_tests
441 (struct decision_head
*);
442 static int break_out_subroutines
443 (struct decision_head
*, int);
444 static void find_afterward
445 (struct decision_head
*, struct decision
*);
447 static void change_state
448 (const char *, const char *, const char *);
449 static void print_code
451 static void write_afterward
452 (struct decision
*, struct decision
*, const char *);
453 static struct decision
*write_switch
454 (struct decision
*, int);
455 static void write_cond
456 (struct decision_test
*, int, enum routine_type
);
457 static void write_action
458 (struct decision
*, struct decision_test
*, int, int,
459 struct decision
*, enum routine_type
);
460 static int is_unconditional
461 (struct decision_test
*, enum routine_type
);
462 static int write_node
463 (struct decision
*, int, enum routine_type
);
464 static void write_tree_1
465 (struct decision_head
*, int, enum routine_type
);
466 static void write_tree
467 (struct decision_head
*, const char *, enum routine_type
, int);
468 static void write_subroutine
469 (struct decision_head
*, enum routine_type
);
470 static void write_subroutines
471 (struct decision_head
*, enum routine_type
);
472 static void write_header
475 static struct decision_head make_insn_sequence
476 (rtx
, enum routine_type
);
477 static void process_tree
478 (struct decision_head
*, enum routine_type
);
480 static void debug_decision_0
481 (struct decision
*, int, int);
482 static void debug_decision_1
483 (struct decision
*, int);
484 static void debug_decision_2
485 (struct decision_test
*);
486 extern void debug_decision
488 extern void debug_decision_list
491 /* Create a new node in sequence after LAST. */
493 static struct decision
*
494 new_decision (const char *position
, struct decision_head
*last
)
496 struct decision
*new = xcalloc (1, sizeof (struct decision
));
498 new->success
= *last
;
499 new->position
= xstrdup (position
);
500 new->number
= next_number
++;
502 last
->first
= last
->last
= new;
506 /* Create a new test and link it in at PLACE. */
508 static struct decision_test
*
509 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
511 struct decision_test
**place
= *pplace
;
512 struct decision_test
*test
;
514 test
= XNEW (struct decision_test
);
525 /* Search for and return operand N, stop when reaching node STOP. */
528 find_operand (rtx pattern
, int n
, rtx stop
)
538 code
= GET_CODE (pattern
);
539 if ((code
== MATCH_SCRATCH
540 || code
== MATCH_OPERAND
541 || code
== MATCH_OPERATOR
542 || code
== MATCH_PARALLEL
)
543 && XINT (pattern
, 0) == n
)
546 fmt
= GET_RTX_FORMAT (code
);
547 len
= GET_RTX_LENGTH (code
);
548 for (i
= 0; i
< len
; i
++)
553 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
558 if (! XVEC (pattern
, i
))
563 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
564 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
569 case 'i': case 'w': case '0': case 's':
580 /* Search for and return operand M, such that it has a matching
581 constraint for operand N. */
584 find_matching_operand (rtx pattern
, int n
)
591 code
= GET_CODE (pattern
);
592 if (code
== MATCH_OPERAND
593 && (XSTR (pattern
, 2)[0] == '0' + n
594 || (XSTR (pattern
, 2)[0] == '%'
595 && XSTR (pattern
, 2)[1] == '0' + n
)))
598 fmt
= GET_RTX_FORMAT (code
);
599 len
= GET_RTX_LENGTH (code
);
600 for (i
= 0; i
< len
; i
++)
605 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
610 if (! XVEC (pattern
, i
))
615 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
616 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
620 case 'i': case 'w': case '0': case 's':
632 /* Check for various errors in patterns. SET is nonnull for a destination,
633 and is the complete set pattern. SET_CODE is '=' for normal sets, and
634 '+' within a context that requires in-out constraints. */
637 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
644 code
= GET_CODE (pattern
);
652 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
654 message_with_line (pattern_lineno
,
655 "operand %i duplicated before defined",
663 const char *pred_name
= XSTR (pattern
, 1);
664 const struct pred_data
*pred
;
667 if (GET_CODE (insn
) == DEFINE_INSN
)
668 c_test
= XSTR (insn
, 2);
670 c_test
= XSTR (insn
, 1);
672 if (pred_name
[0] != 0)
674 pred
= lookup_predicate (pred_name
);
676 message_with_line (pattern_lineno
,
677 "warning: unknown predicate '%s'",
683 if (code
== MATCH_OPERAND
)
685 const char constraints0
= XSTR (pattern
, 2)[0];
687 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
688 don't use the MATCH_OPERAND constraint, only the predicate.
689 This is confusing to folks doing new ports, so help them
690 not make the mistake. */
691 if (GET_CODE (insn
) == DEFINE_EXPAND
692 || GET_CODE (insn
) == DEFINE_SPLIT
693 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
696 message_with_line (pattern_lineno
,
697 "warning: constraints not supported in %s",
698 rtx_name
[GET_CODE (insn
)]);
701 /* A MATCH_OPERAND that is a SET should have an output reload. */
702 else if (set
&& constraints0
)
706 if (constraints0
== '+')
708 /* If we've only got an output reload for this operand,
709 we'd better have a matching input operand. */
710 else if (constraints0
== '='
711 && find_matching_operand (insn
, XINT (pattern
, 0)))
715 message_with_line (pattern_lineno
,
716 "operand %d missing in-out reload",
721 else if (constraints0
!= '=' && constraints0
!= '+')
723 message_with_line (pattern_lineno
,
724 "operand %d missing output reload",
731 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
732 while not likely to occur at runtime, results in less efficient
733 code from insn-recog.c. */
734 if (set
&& pred
&& pred
->allows_non_lvalue
)
735 message_with_line (pattern_lineno
,
736 "warning: destination operand %d "
740 /* A modeless MATCH_OPERAND can be handy when we can check for
741 multiple modes in the c_test. In most other cases, it is a
742 mistake. Only DEFINE_INSN is eligible, since SPLIT and
743 PEEP2 can FAIL within the output pattern. Exclude special
744 predicates, which check the mode themselves. Also exclude
745 predicates that allow only constants. Exclude the SET_DEST
746 of a call instruction, as that is a common idiom. */
748 if (GET_MODE (pattern
) == VOIDmode
749 && code
== MATCH_OPERAND
750 && GET_CODE (insn
) == DEFINE_INSN
753 && pred
->allows_non_const
754 && strstr (c_test
, "operands") == NULL
756 && GET_CODE (set
) == SET
757 && GET_CODE (SET_SRC (set
)) == CALL
))
758 message_with_line (pattern_lineno
,
759 "warning: operand %d missing mode?",
766 enum machine_mode dmode
, smode
;
769 dest
= SET_DEST (pattern
);
770 src
= SET_SRC (pattern
);
772 /* STRICT_LOW_PART is a wrapper. Its argument is the real
773 destination, and it's mode should match the source. */
774 if (GET_CODE (dest
) == STRICT_LOW_PART
)
775 dest
= XEXP (dest
, 0);
777 /* Find the referent for a DUP. */
779 if (GET_CODE (dest
) == MATCH_DUP
780 || GET_CODE (dest
) == MATCH_OP_DUP
781 || GET_CODE (dest
) == MATCH_PAR_DUP
)
782 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
784 if (GET_CODE (src
) == MATCH_DUP
785 || GET_CODE (src
) == MATCH_OP_DUP
786 || GET_CODE (src
) == MATCH_PAR_DUP
)
787 src
= find_operand (insn
, XINT (src
, 0), NULL
);
789 dmode
= GET_MODE (dest
);
790 smode
= GET_MODE (src
);
792 /* The mode of an ADDRESS_OPERAND is the mode of the memory
793 reference, not the mode of the address. */
794 if (GET_CODE (src
) == MATCH_OPERAND
795 && ! strcmp (XSTR (src
, 1), "address_operand"))
798 /* The operands of a SET must have the same mode unless one
800 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
802 message_with_line (pattern_lineno
,
803 "mode mismatch in set: %smode vs %smode",
804 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
808 /* If only one of the operands is VOIDmode, and PC or CC0 is
809 not involved, it's probably a mistake. */
810 else if (dmode
!= smode
811 && GET_CODE (dest
) != PC
812 && GET_CODE (dest
) != CC0
813 && GET_CODE (src
) != PC
814 && GET_CODE (src
) != CC0
815 && GET_CODE (src
) != CONST_INT
)
818 which
= (dmode
== VOIDmode
? "destination" : "source");
819 message_with_line (pattern_lineno
,
820 "warning: %s missing a mode?", which
);
823 if (dest
!= SET_DEST (pattern
))
824 validate_pattern (dest
, insn
, pattern
, '=');
825 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
826 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
831 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
835 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
836 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
837 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
840 case STRICT_LOW_PART
:
841 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
845 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
847 message_with_line (pattern_lineno
,
848 "operand to label_ref %smode not VOIDmode",
849 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
858 fmt
= GET_RTX_FORMAT (code
);
859 len
= GET_RTX_LENGTH (code
);
860 for (i
= 0; i
< len
; i
++)
865 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
869 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
870 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
873 case 'i': case 'w': case '0': case 's':
882 /* Create a chain of nodes to verify that an rtl expression matches
885 LAST is a pointer to the listhead in the previous node in the chain (or
886 in the calling function, for the first node).
888 POSITION is the string representing the current position in the insn.
890 INSN_TYPE is the type of insn for which we are emitting code.
892 A pointer to the final node in the chain is returned. */
894 static struct decision
*
895 add_to_sequence (rtx pattern
, struct decision_head
*last
, const char *position
,
896 enum routine_type insn_type
, int top
)
899 struct decision
*this, *sub
;
900 struct decision_test
*test
;
901 struct decision_test
**place
;
905 int depth
= strlen (position
);
907 enum machine_mode mode
;
909 if (depth
> max_depth
)
912 subpos
= xmalloc (depth
+ 2);
913 strcpy (subpos
, position
);
914 subpos
[depth
+ 1] = 0;
916 sub
= this = new_decision (position
, last
);
917 place
= &this->tests
;
920 mode
= GET_MODE (pattern
);
921 code
= GET_CODE (pattern
);
926 /* Toplevel peephole pattern. */
927 if (insn_type
== PEEPHOLE2
&& top
)
931 /* Check we have sufficient insns. This avoids complications
932 because we then know peep2_next_insn never fails. */
933 num_insns
= XVECLEN (pattern
, 0);
936 test
= new_decision_test (DT_num_insns
, &place
);
937 test
->u
.num_insns
= num_insns
;
938 last
= &sub
->success
;
942 /* We don't need the node we just created -- unlink it. */
943 last
->first
= last
->last
= NULL
;
946 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
948 /* Which insn we're looking at is represented by A-Z. We don't
949 ever use 'A', however; it is always implied. */
951 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
952 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
953 last
, subpos
, insn_type
, 0);
954 last
= &sub
->success
;
959 /* Else nothing special. */
963 /* The explicit patterns within a match_parallel enforce a minimum
964 length on the vector. The match_parallel predicate may allow
965 for more elements. We do need to check for this minimum here
966 or the code generated to match the internals may reference data
967 beyond the end of the vector. */
968 test
= new_decision_test (DT_veclen_ge
, &place
);
969 test
->u
.veclen
= XVECLEN (pattern
, 2);
976 RTX_CODE was_code
= code
;
977 const char *pred_name
;
978 bool allows_const_int
= true;
980 if (code
== MATCH_SCRATCH
)
982 pred_name
= "scratch_operand";
987 pred_name
= XSTR (pattern
, 1);
988 if (code
== MATCH_PARALLEL
)
994 if (pred_name
[0] != 0)
996 const struct pred_data
*pred
;
998 test
= new_decision_test (DT_pred
, &place
);
999 test
->u
.pred
.name
= pred_name
;
1000 test
->u
.pred
.mode
= mode
;
1002 /* See if we know about this predicate.
1003 If we do, remember it for use below.
1005 We can optimize the generated code a little if either
1006 (a) the predicate only accepts one code, or (b) the
1007 predicate does not allow CONST_INT, in which case it
1008 can match only if the modes match. */
1009 pred
= lookup_predicate (pred_name
);
1012 test
->u
.pred
.data
= pred
;
1013 allows_const_int
= pred
->codes
[CONST_INT
];
1014 if (was_code
== MATCH_PARALLEL
1015 && pred
->singleton
!= PARALLEL
)
1016 message_with_line (pattern_lineno
,
1017 "predicate '%s' used in match_parallel "
1018 "does not allow only PARALLEL", pred
->name
);
1020 code
= pred
->singleton
;
1023 message_with_line (pattern_lineno
,
1024 "warning: unknown predicate '%s' in '%s' expression",
1025 pred_name
, GET_RTX_NAME (was_code
));
1028 /* Can't enforce a mode if we allow const_int. */
1029 if (allows_const_int
)
1032 /* Accept the operand, i.e. record it in `operands'. */
1033 test
= new_decision_test (DT_accept_op
, &place
);
1034 test
->u
.opno
= XINT (pattern
, 0);
1036 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
1038 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
1039 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
1041 subpos
[depth
] = i
+ base
;
1042 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
1043 &sub
->success
, subpos
, insn_type
, 0);
1052 test
= new_decision_test (DT_dup
, &place
);
1053 test
->u
.dup
= XINT (pattern
, 0);
1055 test
= new_decision_test (DT_accept_op
, &place
);
1056 test
->u
.opno
= XINT (pattern
, 0);
1058 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
1060 subpos
[depth
] = i
+ '0';
1061 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
1062 &sub
->success
, subpos
, insn_type
, 0);
1070 test
= new_decision_test (DT_dup
, &place
);
1071 test
->u
.dup
= XINT (pattern
, 0);
1075 pattern
= XEXP (pattern
, 0);
1082 fmt
= GET_RTX_FORMAT (code
);
1083 len
= GET_RTX_LENGTH (code
);
1085 /* Do tests against the current node first. */
1086 for (i
= 0; i
< (size_t) len
; i
++)
1094 test
= new_decision_test (DT_elt_zero_int
, &place
);
1095 test
->u
.intval
= XINT (pattern
, i
);
1099 test
= new_decision_test (DT_elt_one_int
, &place
);
1100 test
->u
.intval
= XINT (pattern
, i
);
1103 else if (fmt
[i
] == 'w')
1105 /* If this value actually fits in an int, we can use a switch
1106 statement here, so indicate that. */
1107 enum decision_type type
1108 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
1109 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
1113 test
= new_decision_test (type
, &place
);
1114 test
->u
.intval
= XWINT (pattern
, i
);
1116 else if (fmt
[i
] == 'E')
1120 test
= new_decision_test (DT_veclen
, &place
);
1121 test
->u
.veclen
= XVECLEN (pattern
, i
);
1125 /* Now test our sub-patterns. */
1126 for (i
= 0; i
< (size_t) len
; i
++)
1131 subpos
[depth
] = '0' + i
;
1132 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
1133 subpos
, insn_type
, 0);
1139 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
1141 subpos
[depth
] = 'a' + j
;
1142 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
1143 &sub
->success
, subpos
, insn_type
, 0);
1149 /* Handled above. */
1160 /* Insert nodes testing mode and code, if they're still relevant,
1161 before any of the nodes we may have added above. */
1162 if (code
!= UNKNOWN
)
1164 place
= &this->tests
;
1165 test
= new_decision_test (DT_code
, &place
);
1166 test
->u
.code
= code
;
1169 if (mode
!= VOIDmode
)
1171 place
= &this->tests
;
1172 test
= new_decision_test (DT_mode
, &place
);
1173 test
->u
.mode
= mode
;
1176 /* If we didn't insert any tests or accept nodes, hork. */
1177 gcc_assert (this->tests
);
1184 /* A subroutine of maybe_both_true; examines only one test.
1185 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1188 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
1190 if (d1
->type
== d2
->type
)
1195 if (d1
->u
.num_insns
== d2
->u
.num_insns
)
1201 return d1
->u
.mode
== d2
->u
.mode
;
1204 return d1
->u
.code
== d2
->u
.code
;
1207 return d1
->u
.veclen
== d2
->u
.veclen
;
1209 case DT_elt_zero_int
:
1210 case DT_elt_one_int
:
1211 case DT_elt_zero_wide
:
1212 case DT_elt_zero_wide_safe
:
1213 return d1
->u
.intval
== d2
->u
.intval
;
1220 /* If either has a predicate that we know something about, set
1221 things up so that D1 is the one that always has a known
1222 predicate. Then see if they have any codes in common. */
1224 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1226 if (d2
->type
== DT_pred
)
1228 struct decision_test
*tmp
;
1229 tmp
= d1
, d1
= d2
, d2
= tmp
;
1232 /* If D2 tests a mode, see if it matches D1. */
1233 if (d1
->u
.pred
.mode
!= VOIDmode
)
1235 if (d2
->type
== DT_mode
)
1237 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1238 /* The mode of an address_operand predicate is the
1239 mode of the memory, not the operand. It can only
1240 be used for testing the predicate, so we must
1242 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1245 /* Don't check two predicate modes here, because if both predicates
1246 accept CONST_INT, then both can still be true even if the modes
1247 are different. If they don't accept CONST_INT, there will be a
1248 separate DT_mode that will make maybe_both_true_1 return 0. */
1251 if (d1
->u
.pred
.data
)
1253 /* If D2 tests a code, see if it is in the list of valid
1254 codes for D1's predicate. */
1255 if (d2
->type
== DT_code
)
1257 if (!d1
->u
.pred
.data
->codes
[d2
->u
.code
])
1261 /* Otherwise see if the predicates have any codes in common. */
1262 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.data
)
1264 bool common
= false;
1267 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1268 if (d1
->u
.pred
.data
->codes
[c
] && d2
->u
.pred
.data
->codes
[c
])
1280 /* Tests vs veclen may be known when strict equality is involved. */
1281 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1282 return d1
->u
.veclen
>= d2
->u
.veclen
;
1283 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1284 return d2
->u
.veclen
>= d1
->u
.veclen
;
1289 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1290 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1293 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1295 struct decision_test
*t1
, *t2
;
1297 /* A match_operand with no predicate can match anything. Recognize
1298 this by the existence of a lone DT_accept_op test. */
1299 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1302 /* Eliminate pairs of tests while they can exactly match. */
1303 while (d1
&& d2
&& d1
->type
== d2
->type
)
1305 if (maybe_both_true_2 (d1
, d2
) == 0)
1307 d1
= d1
->next
, d2
= d2
->next
;
1310 /* After that, consider all pairs. */
1311 for (t1
= d1
; t1
; t1
= t1
->next
)
1312 for (t2
= d2
; t2
; t2
= t2
->next
)
1313 if (maybe_both_true_2 (t1
, t2
) == 0)
1319 /* Return 0 if we can prove that there is no RTL that can match both
1320 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1321 can match both or just that we couldn't prove there wasn't such an RTL).
1323 TOPLEVEL is nonzero if we are to only look at the top level and not
1324 recursively descend. */
1327 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1330 struct decision
*p1
, *p2
;
1333 /* Don't compare strings on the different positions in insn. Doing so
1334 is incorrect and results in false matches from constructs like
1336 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1337 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1339 [(set (match_operand:HI "register_operand" "r")
1340 (match_operand:HI "register_operand" "r"))]
1342 If we are presented with such, we are recursing through the remainder
1343 of a node's success nodes (from the loop at the end of this function).
1344 Skip forward until we come to a position that matches.
1346 Due to the way position strings are constructed, we know that iterating
1347 forward from the lexically lower position (e.g. "00") will run into
1348 the lexically higher position (e.g. "1") and not the other way around.
1349 This saves a bit of effort. */
1351 cmp
= strcmp (d1
->position
, d2
->position
);
1354 gcc_assert (!toplevel
);
1356 /* If the d2->position was lexically lower, swap. */
1358 p1
= d1
, d1
= d2
, d2
= p1
;
1360 if (d1
->success
.first
== 0)
1362 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1363 if (maybe_both_true (p1
, d2
, 0))
1369 /* Test the current level. */
1370 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1374 /* We can't prove that D1 and D2 cannot both be true. If we are only
1375 to check the top level, return 1. Otherwise, see if we can prove
1376 that all choices in both successors are mutually exclusive. If
1377 either does not have any successors, we can't prove they can't both
1380 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1383 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1384 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1385 if (maybe_both_true (p1
, p2
, 0))
1391 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1394 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1399 return d1
->u
.num_insns
== d2
->u
.num_insns
;
1402 return d1
->u
.mode
== d2
->u
.mode
;
1405 return d1
->u
.code
== d2
->u
.code
;
1408 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1409 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1412 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1416 return d1
->u
.veclen
== d2
->u
.veclen
;
1419 return d1
->u
.dup
== d2
->u
.dup
;
1421 case DT_elt_zero_int
:
1422 case DT_elt_one_int
:
1423 case DT_elt_zero_wide
:
1424 case DT_elt_zero_wide_safe
:
1425 return d1
->u
.intval
== d2
->u
.intval
;
1428 return d1
->u
.opno
== d2
->u
.opno
;
1430 case DT_accept_insn
:
1431 /* Differences will be handled in merge_accept_insn. */
1439 /* True iff the two nodes are identical (on one level only). Due
1440 to the way these lists are constructed, we shouldn't have to
1441 consider different orderings on the tests. */
1444 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1446 struct decision_test
*t1
, *t2
;
1448 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1450 if (t1
->type
!= t2
->type
)
1452 if (! nodes_identical_1 (t1
, t2
))
1456 /* For success, they should now both be null. */
1460 /* Check that their subnodes are at the same position, as any one set
1461 of sibling decisions must be at the same position. Allowing this
1462 requires complications to find_afterward and when change_state is
1464 if (d1
->success
.first
1465 && d2
->success
.first
1466 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1472 /* A subroutine of merge_trees; given two nodes that have been declared
1473 identical, cope with two insn accept states. If they differ in the
1474 number of clobbers, then the conflict was created by make_insn_sequence
1475 and we can drop the with-clobbers version on the floor. If both
1476 nodes have no additional clobbers, we have found an ambiguity in the
1477 source machine description. */
1480 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1482 struct decision_test
*old
, *add
;
1484 for (old
= oldd
->tests
; old
; old
= old
->next
)
1485 if (old
->type
== DT_accept_insn
)
1490 for (add
= addd
->tests
; add
; add
= add
->next
)
1491 if (add
->type
== DT_accept_insn
)
1496 /* If one node is for a normal insn and the second is for the base
1497 insn with clobbers stripped off, the second node should be ignored. */
1499 if (old
->u
.insn
.num_clobbers_to_add
== 0
1500 && add
->u
.insn
.num_clobbers_to_add
> 0)
1502 /* Nothing to do here. */
1504 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1505 && add
->u
.insn
.num_clobbers_to_add
== 0)
1507 /* In this case, replace OLD with ADD. */
1508 old
->u
.insn
= add
->u
.insn
;
1512 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1513 get_insn_name (add
->u
.insn
.code_number
),
1514 get_insn_name (old
->u
.insn
.code_number
));
1515 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1516 get_insn_name (old
->u
.insn
.code_number
));
1521 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1524 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1526 struct decision
*next
, *add
;
1528 if (addh
->first
== 0)
1530 if (oldh
->first
== 0)
1536 /* Trying to merge bits at different positions isn't possible. */
1537 gcc_assert (!strcmp (oldh
->first
->position
, addh
->first
->position
));
1539 for (add
= addh
->first
; add
; add
= next
)
1541 struct decision
*old
, *insert_before
= NULL
;
1545 /* The semantics of pattern matching state that the tests are
1546 done in the order given in the MD file so that if an insn
1547 matches two patterns, the first one will be used. However,
1548 in practice, most, if not all, patterns are unambiguous so
1549 that their order is independent. In that case, we can merge
1550 identical tests and group all similar modes and codes together.
1552 Scan starting from the end of OLDH until we reach a point
1553 where we reach the head of the list or where we pass a
1554 pattern that could also be true if NEW is true. If we find
1555 an identical pattern, we can merge them. Also, record the
1556 last node that tests the same code and mode and the last one
1557 that tests just the same mode.
1559 If we have no match, place NEW after the closest match we found. */
1561 for (old
= oldh
->last
; old
; old
= old
->prev
)
1563 if (nodes_identical (old
, add
))
1565 merge_accept_insn (old
, add
);
1566 merge_trees (&old
->success
, &add
->success
);
1570 if (maybe_both_true (old
, add
, 0))
1573 /* Insert the nodes in DT test type order, which is roughly
1574 how expensive/important the test is. Given that the tests
1575 are also ordered within the list, examining the first is
1577 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1578 insert_before
= old
;
1581 if (insert_before
== NULL
)
1584 add
->prev
= oldh
->last
;
1585 oldh
->last
->next
= add
;
1590 if ((add
->prev
= insert_before
->prev
) != NULL
)
1591 add
->prev
->next
= add
;
1594 add
->next
= insert_before
;
1595 insert_before
->prev
= add
;
1602 /* Walk the tree looking for sub-nodes that perform common tests.
1603 Factor out the common test into a new node. This enables us
1604 (depending on the test type) to emit switch statements later. */
1607 factor_tests (struct decision_head
*head
)
1609 struct decision
*first
, *next
;
1611 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1613 enum decision_type type
;
1614 struct decision
*new, *old_last
;
1616 type
= first
->tests
->type
;
1619 /* Want at least two compatible sequential nodes. */
1620 if (next
->tests
->type
!= type
)
1623 /* Don't want all node types, just those we can turn into
1624 switch statements. */
1627 && type
!= DT_veclen
1628 && type
!= DT_elt_zero_int
1629 && type
!= DT_elt_one_int
1630 && type
!= DT_elt_zero_wide_safe
)
1633 /* If we'd been performing more than one test, create a new node
1634 below our first test. */
1635 if (first
->tests
->next
!= NULL
)
1637 new = new_decision (first
->position
, &first
->success
);
1638 new->tests
= first
->tests
->next
;
1639 first
->tests
->next
= NULL
;
1642 /* Crop the node tree off after our first test. */
1644 old_last
= head
->last
;
1647 /* For each compatible test, adjust to perform only one test in
1648 the top level node, then merge the node back into the tree. */
1651 struct decision_head h
;
1653 if (next
->tests
->next
!= NULL
)
1655 new = new_decision (next
->position
, &next
->success
);
1656 new->tests
= next
->tests
->next
;
1657 next
->tests
->next
= NULL
;
1662 h
.first
= h
.last
= new;
1664 merge_trees (head
, &h
);
1666 while (next
&& next
->tests
->type
== type
);
1668 /* After we run out of compatible tests, graft the remaining nodes
1669 back onto the tree. */
1672 next
->prev
= head
->last
;
1673 head
->last
->next
= next
;
1674 head
->last
= old_last
;
1679 for (first
= head
->first
; first
; first
= first
->next
)
1680 factor_tests (&first
->success
);
1683 /* After factoring, try to simplify the tests on any one node.
1684 Tests that are useful for switch statements are recognizable
1685 by having only a single test on a node -- we'll be manipulating
1686 nodes with multiple tests:
1688 If we have mode tests or code tests that are redundant with
1689 predicates, remove them. */
1692 simplify_tests (struct decision_head
*head
)
1694 struct decision
*tree
;
1696 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1698 struct decision_test
*a
, *b
;
1705 /* Find a predicate node. */
1706 while (b
&& b
->type
!= DT_pred
)
1710 /* Due to how these tests are constructed, we don't even need
1711 to check that the mode and code are compatible -- they were
1712 generated from the predicate in the first place. */
1713 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1720 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1721 simplify_tests (&tree
->success
);
1724 /* Count the number of subnodes of HEAD. If the number is high enough,
1725 make the first node in HEAD start a separate subroutine in the C code
1726 that is generated. */
1729 break_out_subroutines (struct decision_head
*head
, int initial
)
1732 struct decision
*sub
;
1734 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1735 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1737 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1739 head
->first
->subroutine_number
= ++next_subroutine_number
;
1745 /* For each node p, find the next alternative that might be true
1749 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1751 struct decision
*p
, *q
, *afterward
;
1753 /* We can't propagate alternatives across subroutine boundaries.
1754 This is not incorrect, merely a minor optimization loss. */
1757 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1759 for ( ; p
; p
= p
->next
)
1761 /* Find the next node that might be true if this one fails. */
1762 for (q
= p
->next
; q
; q
= q
->next
)
1763 if (maybe_both_true (p
, q
, 1))
1766 /* If we reached the end of the list without finding one,
1767 use the incoming afterward position. */
1776 for (p
= head
->first
; p
; p
= p
->next
)
1777 if (p
->success
.first
)
1778 find_afterward (&p
->success
, p
->afterward
);
1780 /* When we are generating a subroutine, record the real afterward
1781 position in the first node where write_tree can find it, and we
1782 can do the right thing at the subroutine call site. */
1784 if (p
->subroutine_number
> 0)
1785 p
->afterward
= real_afterward
;
1788 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1789 actions are necessary to move to NEWPOS. If we fail to move to the
1790 new state, branch to node AFTERWARD if nonzero, otherwise return.
1792 Failure to move to the new state can only occur if we are trying to
1793 match multiple insns and we try to step past the end of the stream. */
1796 change_state (const char *oldpos
, const char *newpos
, const char *indent
)
1798 int odepth
= strlen (oldpos
);
1799 int ndepth
= strlen (newpos
);
1801 int old_has_insn
, new_has_insn
;
1803 /* Pop up as many levels as necessary. */
1804 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1807 /* Hunt for the last [A-Z] in both strings. */
1808 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1809 if (ISUPPER (oldpos
[old_has_insn
]))
1811 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1812 if (ISUPPER (newpos
[new_has_insn
]))
1815 /* Go down to desired level. */
1816 while (depth
< ndepth
)
1818 /* It's a different insn from the first one. */
1819 if (ISUPPER (newpos
[depth
]))
1821 printf ("%stem = peep2_next_insn (%d);\n",
1822 indent
, newpos
[depth
] - 'A');
1823 printf ("%sx%d = PATTERN (tem);\n", indent
, depth
+ 1);
1825 else if (ISLOWER (newpos
[depth
]))
1826 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1827 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1829 printf ("%sx%d = XEXP (x%d, %c);\n",
1830 indent
, depth
+ 1, depth
, newpos
[depth
]);
1835 /* Print the enumerator constant for CODE -- the upcase version of
1839 print_code (enum rtx_code code
)
1842 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1843 putchar (TOUPPER (*p
));
1846 /* Emit code to cross an afterward link -- change state and branch. */
1849 write_afterward (struct decision
*start
, struct decision
*afterward
,
1852 if (!afterward
|| start
->subroutine_number
> 0)
1853 printf("%sgoto ret0;\n", indent
);
1856 change_state (start
->position
, afterward
->position
, indent
);
1857 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1861 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1862 special care to avoid "decimal constant is so large that it is unsigned"
1863 warnings in the resulting code. */
1866 print_host_wide_int (HOST_WIDE_INT val
)
1868 HOST_WIDE_INT min
= (unsigned HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1);
1870 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
"-1)", val
+ 1);
1872 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
1875 /* Emit a switch statement, if possible, for an initial sequence of
1876 nodes at START. Return the first node yet untested. */
1878 static struct decision
*
1879 write_switch (struct decision
*start
, int depth
)
1881 struct decision
*p
= start
;
1882 enum decision_type type
= p
->tests
->type
;
1883 struct decision
*needs_label
= NULL
;
1885 /* If we have two or more nodes in sequence that test the same one
1886 thing, we may be able to use a switch statement. */
1890 || p
->next
->tests
->type
!= type
1891 || p
->next
->tests
->next
1892 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1895 /* DT_code is special in that we can do interesting things with
1896 known predicates at the same time. */
1897 if (type
== DT_code
)
1899 char codemap
[NUM_RTX_CODE
];
1900 struct decision
*ret
;
1903 memset (codemap
, 0, sizeof(codemap
));
1905 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1906 code
= p
->tests
->u
.code
;
1909 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1914 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1915 p
->success
.first
->need_label
= 1;
1922 && p
->tests
->type
== DT_code
1923 && ! codemap
[code
= p
->tests
->u
.code
]);
1925 /* If P is testing a predicate that we know about and we haven't
1926 seen any of the codes that are valid for the predicate, we can
1927 write a series of "case" statement, one for each possible code.
1928 Since we are already in a switch, these redundant tests are very
1929 cheap and will reduce the number of predicates called. */
1931 /* Note that while we write out cases for these predicates here,
1932 we don't actually write the test here, as it gets kinda messy.
1933 It is trivial to leave this to later by telling our caller that
1934 we only processed the CODE tests. */
1935 if (needs_label
!= NULL
)
1940 while (p
&& p
->tests
->type
== DT_pred
&& p
->tests
->u
.pred
.data
)
1942 const struct pred_data
*data
= p
->tests
->u
.pred
.data
;
1944 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1945 if (codemap
[c
] && data
->codes
[c
])
1948 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1951 fputs (" case ", stdout
);
1953 fputs (":\n", stdout
);
1957 printf (" goto L%d;\n", p
->number
);
1963 /* Make the default case skip the predicates we managed to match. */
1965 printf (" default:\n");
1970 printf (" goto L%d;\n", p
->number
);
1974 write_afterward (start
, start
->afterward
, " ");
1977 printf (" break;\n");
1982 else if (type
== DT_mode
1983 || type
== DT_veclen
1984 || type
== DT_elt_zero_int
1985 || type
== DT_elt_one_int
1986 || type
== DT_elt_zero_wide_safe
)
1988 const char *indent
= "";
1990 /* We cast switch parameter to integer, so we must ensure that the value
1992 if (type
== DT_elt_zero_wide_safe
)
1995 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1997 printf ("%s switch (", indent
);
2001 printf ("GET_MODE (x%d)", depth
);
2004 printf ("XVECLEN (x%d, 0)", depth
);
2006 case DT_elt_zero_int
:
2007 printf ("XINT (x%d, 0)", depth
);
2009 case DT_elt_one_int
:
2010 printf ("XINT (x%d, 1)", depth
);
2012 case DT_elt_zero_wide_safe
:
2013 /* Convert result of XWINT to int for portability since some C
2014 compilers won't do it and some will. */
2015 printf ("(int) XWINT (x%d, 0)", depth
);
2020 printf (")\n%s {\n", indent
);
2024 /* Merge trees will not unify identical nodes if their
2025 sub-nodes are at different levels. Thus we must check
2026 for duplicate cases. */
2028 for (q
= start
; q
!= p
; q
= q
->next
)
2029 if (nodes_identical_1 (p
->tests
, q
->tests
))
2032 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
2035 printf ("%s case ", indent
);
2039 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
2042 printf ("%d", p
->tests
->u
.veclen
);
2044 case DT_elt_zero_int
:
2045 case DT_elt_one_int
:
2046 case DT_elt_zero_wide
:
2047 case DT_elt_zero_wide_safe
:
2048 print_host_wide_int (p
->tests
->u
.intval
);
2053 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
2054 p
->success
.first
->need_label
= 1;
2058 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
2061 printf ("%s default:\n%s break;\n%s }\n",
2062 indent
, indent
, indent
);
2064 return needs_label
!= NULL
? needs_label
: p
;
2068 /* None of the other tests are amenable. */
2073 /* Emit code for one test. */
2076 write_cond (struct decision_test
*p
, int depth
,
2077 enum routine_type subroutine_type
)
2082 printf ("peep2_current_count >= %d", p
->u
.num_insns
);
2086 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
2090 printf ("GET_CODE (x%d) == ", depth
);
2091 print_code (p
->u
.code
);
2095 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
2098 case DT_elt_zero_int
:
2099 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
2102 case DT_elt_one_int
:
2103 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
2106 case DT_elt_zero_wide
:
2107 case DT_elt_zero_wide_safe
:
2108 printf ("XWINT (x%d, 0) == ", depth
);
2109 print_host_wide_int (p
->u
.intval
);
2113 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2114 depth
, (int) p
->u
.intval
);
2118 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
2122 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
2126 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
2127 GET_MODE_NAME (p
->u
.pred
.mode
));
2131 print_c_condition (p
->u
.c_test
);
2134 case DT_accept_insn
:
2135 gcc_assert (subroutine_type
== RECOG
);
2136 gcc_assert (p
->u
.insn
.num_clobbers_to_add
);
2137 printf ("pnum_clobbers != NULL");
2145 /* Emit code for one action. The previous tests have succeeded;
2146 TEST is the last of the chain. In the normal case we simply
2147 perform a state change. For the `accept' tests we must do more work. */
2150 write_action (struct decision
*p
, struct decision_test
*test
,
2151 int depth
, int uncond
, struct decision
*success
,
2152 enum routine_type subroutine_type
)
2159 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
2161 fputs (" {\n", stdout
);
2168 if (test
->type
== DT_accept_op
)
2170 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
2172 /* Only allow DT_accept_insn to follow. */
2176 gcc_assert (test
->type
== DT_accept_insn
);
2180 /* Sanity check that we're now at the end of the list of tests. */
2181 gcc_assert (!test
->next
);
2183 if (test
->type
== DT_accept_insn
)
2185 switch (subroutine_type
)
2188 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
2189 printf ("%s*pnum_clobbers = %d;\n",
2190 indent
, test
->u
.insn
.num_clobbers_to_add
);
2191 printf ("%sreturn %d; /* %s */\n", indent
,
2192 test
->u
.insn
.code_number
,
2193 get_insn_name (test
->u
.insn
.code_number
));
2197 printf ("%sreturn gen_split_%d (insn, operands);\n",
2198 indent
, test
->u
.insn
.code_number
);
2203 int match_len
= 0, i
;
2205 for (i
= strlen (p
->position
) - 1; i
>= 0; --i
)
2206 if (ISUPPER (p
->position
[i
]))
2208 match_len
= p
->position
[i
] - 'A';
2211 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2212 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2213 indent
, test
->u
.insn
.code_number
);
2214 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2224 printf("%sgoto L%d;\n", indent
, success
->number
);
2225 success
->need_label
= 1;
2229 fputs (" }\n", stdout
);
2232 /* Return 1 if the test is always true and has no fallthru path. Return -1
2233 if the test does have a fallthru path, but requires that the condition be
2234 terminated. Otherwise return 0 for a normal test. */
2235 /* ??? is_unconditional is a stupid name for a tri-state function. */
2238 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2240 if (t
->type
== DT_accept_op
)
2243 if (t
->type
== DT_accept_insn
)
2245 switch (subroutine_type
)
2248 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2261 /* Emit code for one node -- the conditional and the accompanying action.
2262 Return true if there is no fallthru path. */
2265 write_node (struct decision
*p
, int depth
,
2266 enum routine_type subroutine_type
)
2268 struct decision_test
*test
, *last_test
;
2271 /* Scan the tests and simplify comparisons against small
2273 for (test
= p
->tests
; test
; test
= test
->next
)
2275 if (test
->type
== DT_code
2276 && test
->u
.code
== CONST_INT
2278 && test
->next
->type
== DT_elt_zero_wide_safe
2279 && -MAX_SAVED_CONST_INT
<= test
->next
->u
.intval
2280 && test
->next
->u
.intval
<= MAX_SAVED_CONST_INT
)
2282 test
->type
= DT_const_int
;
2283 test
->u
.intval
= test
->next
->u
.intval
;
2284 test
->next
= test
->next
->next
;
2288 last_test
= test
= p
->tests
;
2289 uncond
= is_unconditional (test
, subroutine_type
);
2293 write_cond (test
, depth
, subroutine_type
);
2295 while ((test
= test
->next
) != NULL
)
2298 if (is_unconditional (test
, subroutine_type
))
2302 write_cond (test
, depth
, subroutine_type
);
2308 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2313 /* Emit code for all of the sibling nodes of HEAD. */
2316 write_tree_1 (struct decision_head
*head
, int depth
,
2317 enum routine_type subroutine_type
)
2319 struct decision
*p
, *next
;
2322 for (p
= head
->first
; p
; p
= next
)
2324 /* The label for the first element was printed in write_tree. */
2325 if (p
!= head
->first
&& p
->need_label
)
2326 OUTPUT_LABEL (" ", p
->number
);
2328 /* Attempt to write a switch statement for a whole sequence. */
2329 next
= write_switch (p
, depth
);
2334 /* Failed -- fall back and write one node. */
2335 uncond
= write_node (p
, depth
, subroutine_type
);
2340 /* Finished with this chain. Close a fallthru path by branching
2341 to the afterward node. */
2343 write_afterward (head
->last
, head
->last
->afterward
, " ");
2346 /* Write out the decision tree starting at HEAD. PREVPOS is the
2347 position at the node that branched to this node. */
2350 write_tree (struct decision_head
*head
, const char *prevpos
,
2351 enum routine_type type
, int initial
)
2353 struct decision
*p
= head
->first
;
2357 OUTPUT_LABEL (" ", p
->number
);
2359 if (! initial
&& p
->subroutine_number
> 0)
2361 static const char * const name_prefix
[] = {
2362 "recog", "split", "peephole2"
2365 static const char * const call_suffix
[] = {
2366 ", pnum_clobbers", "", ", _pmatch_len"
2369 /* This node has been broken out into a separate subroutine.
2370 Call it, test the result, and branch accordingly. */
2374 printf (" tem = %s_%d (x0, insn%s);\n",
2375 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2376 if (IS_SPLIT (type
))
2377 printf (" if (tem != 0)\n return tem;\n");
2379 printf (" if (tem >= 0)\n return tem;\n");
2381 change_state (p
->position
, p
->afterward
->position
, " ");
2382 printf (" goto L%d;\n", p
->afterward
->number
);
2386 printf (" return %s_%d (x0, insn%s);\n",
2387 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2392 int depth
= strlen (p
->position
);
2394 change_state (prevpos
, p
->position
, " ");
2395 write_tree_1 (head
, depth
, type
);
2397 for (p
= head
->first
; p
; p
= p
->next
)
2398 if (p
->success
.first
)
2399 write_tree (&p
->success
, p
->position
, type
, 0);
2403 /* Write out a subroutine of type TYPE to do comparisons starting at
2407 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2409 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2414 s_or_e
= subfunction
? "static " : "";
2417 sprintf (extension
, "_%d", subfunction
);
2418 else if (type
== RECOG
)
2419 extension
[0] = '\0';
2421 strcpy (extension
, "_insns");
2427 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e
, extension
);
2431 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2436 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2441 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2442 for (i
= 1; i
<= max_depth
; i
++)
2443 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2445 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2448 printf (" recog_data.insn = NULL_RTX;\n");
2451 write_tree (head
, "", type
, 1);
2453 printf (" goto ret0;\n");
2455 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2458 /* In break_out_subroutines, we discovered the boundaries for the
2459 subroutines, but did not write them out. Do so now. */
2462 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2466 for (p
= head
->first
; p
; p
= p
->next
)
2467 if (p
->success
.first
)
2468 write_subroutines (&p
->success
, type
);
2470 if (head
->first
->subroutine_number
> 0)
2471 write_subroutine (head
, type
);
2474 /* Begin the output file. */
2480 /* Generated automatically by the program `genrecog' from the target\n\
2481 machine description file. */\n\
2483 #include \"config.h\"\n\
2484 #include \"system.h\"\n\
2485 #include \"coretypes.h\"\n\
2486 #include \"tm.h\"\n\
2487 #include \"rtl.h\"\n\
2488 #include \"tm_p.h\"\n\
2489 #include \"function.h\"\n\
2490 #include \"insn-config.h\"\n\
2491 #include \"recog.h\"\n\
2492 #include \"real.h\"\n\
2493 #include \"output.h\"\n\
2494 #include \"flags.h\"\n\
2495 #include \"hard-reg-set.h\"\n\
2496 #include \"resource.h\"\n\
2497 #include \"toplev.h\"\n\
2498 #include \"reload.h\"\n\
2499 #include \"tm-constrs.h\"\n\
2503 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2504 X0 is a valid instruction.\n\
2506 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2507 returns a nonnegative number which is the insn code number for the\n\
2508 pattern that matched. This is the same as the order in the machine\n\
2509 description of the entry that matched. This number can be used as an\n\
2510 index into `insn_data' and other tables.\n");
2512 The third argument to recog is an optional pointer to an int. If\n\
2513 present, recog will accept a pattern if it matches except for missing\n\
2514 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2515 the optional pointer will be set to the number of CLOBBERs that need\n\
2516 to be added (it should be initialized to zero by the caller). If it");
2518 is set nonzero, the caller should allocate a PARALLEL of the\n\
2519 appropriate size, copy the initial entries, and call add_clobbers\n\
2520 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2524 The function split_insns returns 0 if the rtl could not\n\
2525 be split or the split rtl as an INSN list if it can be.\n\
2527 The function peephole2_insns returns 0 if the rtl could not\n\
2528 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2529 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2534 /* Construct and return a sequence of decisions
2535 that will recognize INSN.
2537 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2539 static struct decision_head
2540 make_insn_sequence (rtx insn
, enum routine_type type
)
2543 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2544 int truth
= maybe_eval_c_test (c_test
);
2545 struct decision
*last
;
2546 struct decision_test
*test
, **place
;
2547 struct decision_head head
;
2550 /* We should never see an insn whose C test is false at compile time. */
2553 c_test_pos
[0] = '\0';
2554 if (type
== PEEPHOLE2
)
2558 /* peephole2 gets special treatment:
2559 - X always gets an outer parallel even if it's only one entry
2560 - we remove all traces of outer-level match_scratch and match_dup
2561 expressions here. */
2562 x
= rtx_alloc (PARALLEL
);
2563 PUT_MODE (x
, VOIDmode
);
2564 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2565 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2567 rtx tmp
= XVECEXP (insn
, 0, i
);
2568 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2570 XVECEXP (x
, 0, j
) = tmp
;
2576 c_test_pos
[0] = 'A' + j
- 1;
2577 c_test_pos
[1] = '\0';
2579 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2580 x
= XVECEXP (insn
, type
== RECOG
, 0);
2583 x
= rtx_alloc (PARALLEL
);
2584 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2585 PUT_MODE (x
, VOIDmode
);
2588 validate_pattern (x
, insn
, NULL_RTX
, 0);
2590 memset(&head
, 0, sizeof(head
));
2591 last
= add_to_sequence (x
, &head
, "", type
, 1);
2593 /* Find the end of the test chain on the last node. */
2594 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2596 place
= &test
->next
;
2598 /* Skip the C test if it's known to be true at compile time. */
2601 /* Need a new node if we have another test to add. */
2602 if (test
->type
== DT_accept_op
)
2604 last
= new_decision (c_test_pos
, &last
->success
);
2605 place
= &last
->tests
;
2607 test
= new_decision_test (DT_c_test
, &place
);
2608 test
->u
.c_test
= c_test
;
2611 test
= new_decision_test (DT_accept_insn
, &place
);
2612 test
->u
.insn
.code_number
= next_insn_code
;
2613 test
->u
.insn
.lineno
= pattern_lineno
;
2614 test
->u
.insn
.num_clobbers_to_add
= 0;
2619 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2620 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2621 If so, set up to recognize the pattern without these CLOBBERs. */
2623 if (GET_CODE (x
) == PARALLEL
)
2627 /* Find the last non-clobber in the parallel. */
2628 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2630 rtx y
= XVECEXP (x
, 0, i
- 1);
2631 if (GET_CODE (y
) != CLOBBER
2632 || (!REG_P (XEXP (y
, 0))
2633 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2637 if (i
!= XVECLEN (x
, 0))
2640 struct decision_head clobber_head
;
2642 /* Build a similar insn without the clobbers. */
2644 new = XVECEXP (x
, 0, 0);
2649 new = rtx_alloc (PARALLEL
);
2650 XVEC (new, 0) = rtvec_alloc (i
);
2651 for (j
= i
- 1; j
>= 0; j
--)
2652 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2656 memset (&clobber_head
, 0, sizeof(clobber_head
));
2657 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2659 /* Find the end of the test chain on the last node. */
2660 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2663 /* We definitely have a new test to add -- create a new
2665 place
= &test
->next
;
2666 if (test
->type
== DT_accept_op
)
2668 last
= new_decision ("", &last
->success
);
2669 place
= &last
->tests
;
2672 /* Skip the C test if it's known to be true at compile
2676 test
= new_decision_test (DT_c_test
, &place
);
2677 test
->u
.c_test
= c_test
;
2680 test
= new_decision_test (DT_accept_insn
, &place
);
2681 test
->u
.insn
.code_number
= next_insn_code
;
2682 test
->u
.insn
.lineno
= pattern_lineno
;
2683 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2685 merge_trees (&head
, &clobber_head
);
2691 /* Define the subroutine we will call below and emit in genemit. */
2692 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code
);
2696 /* Define the subroutine we will call below and emit in genemit. */
2697 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2706 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2708 if (head
->first
== NULL
)
2710 /* We can elide peephole2_insns, but not recog or split_insns. */
2711 if (subroutine_type
== PEEPHOLE2
)
2716 factor_tests (head
);
2718 next_subroutine_number
= 0;
2719 break_out_subroutines (head
, 1);
2720 find_afterward (head
, NULL
);
2722 /* We run this after find_afterward, because find_afterward needs
2723 the redundant DT_mode tests on predicates to determine whether
2724 two tests can both be true or not. */
2725 simplify_tests(head
);
2727 write_subroutines (head
, subroutine_type
);
2730 write_subroutine (head
, subroutine_type
);
2733 extern int main (int, char **);
2736 main (int argc
, char **argv
)
2739 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2741 progname
= "genrecog";
2743 memset (&recog_tree
, 0, sizeof recog_tree
);
2744 memset (&split_tree
, 0, sizeof split_tree
);
2745 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2747 if (init_md_reader_args (argc
, argv
) != SUCCESS_EXIT_CODE
)
2748 return (FATAL_EXIT_CODE
);
2754 /* Read the machine description. */
2758 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2762 switch (GET_CODE (desc
))
2764 case DEFINE_PREDICATE
:
2765 case DEFINE_SPECIAL_PREDICATE
:
2766 process_define_predicate (desc
);
2770 h
= make_insn_sequence (desc
, RECOG
);
2771 merge_trees (&recog_tree
, &h
);
2775 h
= make_insn_sequence (desc
, SPLIT
);
2776 merge_trees (&split_tree
, &h
);
2779 case DEFINE_PEEPHOLE2
:
2780 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2781 merge_trees (&peephole2_tree
, &h
);
2788 if (error_count
|| have_error
)
2789 return FATAL_EXIT_CODE
;
2793 process_tree (&recog_tree
, RECOG
);
2794 process_tree (&split_tree
, SPLIT
);
2795 process_tree (&peephole2_tree
, PEEPHOLE2
);
2798 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2802 debug_decision_2 (struct decision_test
*test
)
2807 fprintf (stderr
, "num_insns=%d", test
->u
.num_insns
);
2810 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2813 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2816 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2818 case DT_elt_zero_int
:
2819 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2821 case DT_elt_one_int
:
2822 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2824 case DT_elt_zero_wide
:
2825 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2827 case DT_elt_zero_wide_safe
:
2828 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2831 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2834 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2837 fprintf (stderr
, "pred=(%s,%s)",
2838 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2843 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2844 memcpy (sub
+16, "...", 4);
2845 fprintf (stderr
, "c_test=\"%s\"", sub
);
2849 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2851 case DT_accept_insn
:
2852 fprintf (stderr
, "A_insn=(%d,%d)",
2853 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2862 debug_decision_1 (struct decision
*d
, int indent
)
2865 struct decision_test
*test
;
2869 for (i
= 0; i
< indent
; ++i
)
2871 fputs ("(nil)\n", stderr
);
2875 for (i
= 0; i
< indent
; ++i
)
2882 debug_decision_2 (test
);
2883 while ((test
= test
->next
) != NULL
)
2885 fputs (" + ", stderr
);
2886 debug_decision_2 (test
);
2889 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2890 (d
->next
? d
->next
->number
: -1),
2891 (d
->afterward
? d
->afterward
->number
: -1));
2895 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2904 for (i
= 0; i
< indent
; ++i
)
2906 fputs ("(nil)\n", stderr
);
2910 debug_decision_1 (d
, indent
);
2911 for (n
= d
->success
.first
; n
; n
= n
->next
)
2912 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2916 debug_decision (struct decision
*d
)
2918 debug_decision_0 (d
, 0, 1000000);
2922 debug_decision_list (struct decision
*d
)
2926 debug_decision_0 (d
, 0, 0);