1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
28 #include "insn-config.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx
, const_rtx
, void *);
43 static bool covers_regno_p (const_rtx
, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
45 static int rtx_referenced_p_1 (rtx
*, void *);
46 static int computed_jump_p_1 (const_rtx
);
47 static void parms_set (rtx
, const_rtx
, void *);
49 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
50 const_rtx
, enum machine_mode
,
51 unsigned HOST_WIDE_INT
);
52 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
53 const_rtx
, enum machine_mode
,
54 unsigned HOST_WIDE_INT
);
55 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
58 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
59 enum machine_mode
, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
79 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
81 /* Return 1 if the value of X is unstable
82 (would be different at a different point in the program).
83 The frame pointer, arg pointer, etc. are considered stable
84 (within one function) and so is anything marked `unchanging'. */
87 rtx_unstable_p (const_rtx x
)
89 const RTX_CODE code
= GET_CODE (x
);
96 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
105 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
106 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
107 /* The arg pointer varies if it is not a fixed register. */
108 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
110 /* ??? When call-clobbered, the value is stable modulo the restore
111 that must happen after a call. This currently screws up local-alloc
112 into believing that the restore is not needed. */
113 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
118 if (MEM_VOLATILE_P (x
))
127 fmt
= GET_RTX_FORMAT (code
);
128 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
131 if (rtx_unstable_p (XEXP (x
, i
)))
134 else if (fmt
[i
] == 'E')
137 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
138 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
145 /* Return 1 if X has a value that can vary even between two
146 executions of the program. 0 means X can be compared reliably
147 against certain constants or near-constants.
148 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
149 zero, we are slightly more conservative.
150 The frame pointer and the arg pointer are considered constant. */
153 rtx_varies_p (const_rtx x
, bool for_alias
)
166 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
175 /* Note that we have to test for the actual rtx used for the frame
176 and arg pointers and not just the register number in case we have
177 eliminated the frame and/or arg pointer and are using it
179 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
180 /* The arg pointer varies if it is not a fixed register. */
181 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
183 if (x
== pic_offset_table_rtx
184 /* ??? When call-clobbered, the value is stable modulo the restore
185 that must happen after a call. This currently screws up
186 local-alloc into believing that the restore is not needed, so we
187 must return 0 only if we are called from alias analysis. */
188 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
193 /* The operand 0 of a LO_SUM is considered constant
194 (in fact it is related specifically to operand 1)
195 during alias analysis. */
196 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
197 || rtx_varies_p (XEXP (x
, 1), for_alias
);
200 if (MEM_VOLATILE_P (x
))
209 fmt
= GET_RTX_FORMAT (code
);
210 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
213 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
216 else if (fmt
[i
] == 'E')
219 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
220 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
227 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
228 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
229 whether nonzero is returned for unaligned memory accesses on strict
230 alignment machines. */
233 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
234 enum machine_mode mode
, bool unaligned_mems
)
236 enum rtx_code code
= GET_CODE (x
);
240 && GET_MODE_SIZE (mode
) != 0)
242 HOST_WIDE_INT actual_offset
= offset
;
243 #ifdef SPARC_STACK_BOUNDARY_HACK
244 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
245 the real alignment of %sp. However, when it does this, the
246 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
247 if (SPARC_STACK_BOUNDARY_HACK
248 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
249 actual_offset
-= STACK_POINTER_OFFSET
;
252 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
259 if (SYMBOL_REF_WEAK (x
))
261 if (!CONSTANT_POOL_ADDRESS_P (x
))
264 HOST_WIDE_INT decl_size
;
269 size
= GET_MODE_SIZE (mode
);
273 /* If the size of the access or of the symbol is unknown,
275 decl
= SYMBOL_REF_DECL (x
);
277 /* Else check that the access is in bounds. TODO: restructure
278 expr_size/tree_expr_size/int_expr_size and just use the latter. */
281 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
282 decl_size
= (host_integerp (DECL_SIZE_UNIT (decl
), 0)
283 ? tree_low_cst (DECL_SIZE_UNIT (decl
), 0)
285 else if (TREE_CODE (decl
) == STRING_CST
)
286 decl_size
= TREE_STRING_LENGTH (decl
);
287 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
288 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
292 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
301 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
302 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
303 || x
== stack_pointer_rtx
304 /* The arg pointer varies if it is not a fixed register. */
305 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
307 /* All of the virtual frame registers are stack references. */
308 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
309 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
314 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
315 mode
, unaligned_mems
);
318 /* An address is assumed not to trap if:
319 - it is the pic register plus a constant. */
320 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
323 /* - or it is an address that can't trap plus a constant integer,
324 with the proper remainder modulo the mode size if we are
325 considering unaligned memory references. */
326 if (CONST_INT_P (XEXP (x
, 1))
327 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
328 size
, mode
, unaligned_mems
))
335 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
336 mode
, unaligned_mems
);
343 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
344 mode
, unaligned_mems
);
350 /* If it isn't one of the case above, it can cause a trap. */
354 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
357 rtx_addr_can_trap_p (const_rtx x
)
359 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
362 /* Return true if X is an address that is known to not be zero. */
365 nonzero_address_p (const_rtx x
)
367 const enum rtx_code code
= GET_CODE (x
);
372 return !SYMBOL_REF_WEAK (x
);
378 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
379 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
380 || x
== stack_pointer_rtx
381 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
383 /* All of the virtual frame registers are stack references. */
384 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
385 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
390 return nonzero_address_p (XEXP (x
, 0));
393 /* Handle PIC references. */
394 if (XEXP (x
, 0) == pic_offset_table_rtx
395 && CONSTANT_P (XEXP (x
, 1)))
400 /* Similar to the above; allow positive offsets. Further, since
401 auto-inc is only allowed in memories, the register must be a
403 if (CONST_INT_P (XEXP (x
, 1))
404 && INTVAL (XEXP (x
, 1)) > 0)
406 return nonzero_address_p (XEXP (x
, 0));
409 /* Similarly. Further, the offset is always positive. */
416 return nonzero_address_p (XEXP (x
, 0));
419 return nonzero_address_p (XEXP (x
, 1));
425 /* If it isn't one of the case above, might be zero. */
429 /* Return 1 if X refers to a memory location whose address
430 cannot be compared reliably with constant addresses,
431 or if X refers to a BLKmode memory object.
432 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
433 zero, we are slightly more conservative. */
436 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
447 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
449 fmt
= GET_RTX_FORMAT (code
);
450 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
453 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
456 else if (fmt
[i
] == 'E')
459 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
460 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
466 /* Return the CALL in X if there is one. */
469 get_call_rtx_from (rtx x
)
473 if (GET_CODE (x
) == PARALLEL
)
474 x
= XVECEXP (x
, 0, 0);
475 if (GET_CODE (x
) == SET
)
477 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
482 /* Return the value of the integer term in X, if one is apparent;
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
488 get_integer_term (const_rtx x
)
490 if (GET_CODE (x
) == CONST
)
493 if (GET_CODE (x
) == MINUS
494 && CONST_INT_P (XEXP (x
, 1)))
495 return - INTVAL (XEXP (x
, 1));
496 if (GET_CODE (x
) == PLUS
497 && CONST_INT_P (XEXP (x
, 1)))
498 return INTVAL (XEXP (x
, 1));
502 /* If X is a constant, return the value sans apparent integer term;
504 Only obvious integer terms are detected. */
507 get_related_value (const_rtx x
)
509 if (GET_CODE (x
) != CONST
)
512 if (GET_CODE (x
) == PLUS
513 && CONST_INT_P (XEXP (x
, 1)))
515 else if (GET_CODE (x
) == MINUS
516 && CONST_INT_P (XEXP (x
, 1)))
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
525 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
529 if (GET_CODE (symbol
) != SYMBOL_REF
)
537 if (CONSTANT_POOL_ADDRESS_P (symbol
)
538 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
541 decl
= SYMBOL_REF_DECL (symbol
);
542 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
547 && SYMBOL_REF_BLOCK (symbol
)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
549 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
550 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
560 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
562 if (GET_CODE (x
) == CONST
)
565 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
567 *base_out
= XEXP (x
, 0);
568 *offset_out
= XEXP (x
, 1);
573 *offset_out
= const0_rtx
;
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
580 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
584 const char *format_ptr
;
603 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
605 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
609 if (MEM_P (find
) && rtx_equal_p (x
, find
))
614 if (SET_DEST (x
) == find
&& ! count_dest
)
615 return count_occurrences (SET_SRC (x
), find
, count_dest
);
622 format_ptr
= GET_RTX_FORMAT (code
);
625 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
627 switch (*format_ptr
++)
630 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
634 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
635 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
643 /* Return TRUE if OP is a register or subreg of a register that
644 holds an unsigned quantity. Otherwise, return FALSE. */
647 unsigned_reg_p (rtx op
)
651 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
654 if (GET_CODE (op
) == SUBREG
655 && SUBREG_PROMOTED_UNSIGNED_P (op
))
662 /* Nonzero if register REG appears somewhere within IN.
663 Also works if REG is not a register; in this case it checks
664 for a subexpression of IN that is Lisp "equal" to REG. */
667 reg_mentioned_p (const_rtx reg
, const_rtx in
)
679 if (GET_CODE (in
) == LABEL_REF
)
680 return reg
== XEXP (in
, 0);
682 code
= GET_CODE (in
);
686 /* Compare registers by number. */
688 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
690 /* These codes have no constituent expressions
698 /* These are kept unique for a given value. */
705 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
708 fmt
= GET_RTX_FORMAT (code
);
710 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
715 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
716 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
719 else if (fmt
[i
] == 'e'
720 && reg_mentioned_p (reg
, XEXP (in
, i
)))
726 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
727 no CODE_LABEL insn. */
730 no_labels_between_p (const_rtx beg
, const_rtx end
)
735 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
741 /* Nonzero if register REG is used in an insn between
742 FROM_INSN and TO_INSN (exclusive of those two). */
745 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
749 if (from_insn
== to_insn
)
752 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
753 if (NONDEBUG_INSN_P (insn
)
754 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
755 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
760 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
761 is entirely replaced by a new value and the only use is as a SET_DEST,
762 we do not consider it a reference. */
765 reg_referenced_p (const_rtx x
, const_rtx body
)
769 switch (GET_CODE (body
))
772 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
775 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
776 of a REG that occupies all of the REG, the insn references X if
777 it is mentioned in the destination. */
778 if (GET_CODE (SET_DEST (body
)) != CC0
779 && GET_CODE (SET_DEST (body
)) != PC
780 && !REG_P (SET_DEST (body
))
781 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
782 && REG_P (SUBREG_REG (SET_DEST (body
)))
783 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
784 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
785 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
786 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
787 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
792 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
793 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
800 return reg_overlap_mentioned_p (x
, body
);
803 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
806 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
809 case UNSPEC_VOLATILE
:
810 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
811 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
816 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
817 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
822 if (MEM_P (XEXP (body
, 0)))
823 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
828 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
830 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
837 /* Nonzero if register REG is set or clobbered in an insn between
838 FROM_INSN and TO_INSN (exclusive of those two). */
841 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
845 if (from_insn
== to_insn
)
848 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
849 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
854 /* Internals of reg_set_between_p. */
856 reg_set_p (const_rtx reg
, const_rtx insn
)
858 /* We can be passed an insn or part of one. If we are passed an insn,
859 check if a side-effect of the insn clobbers REG. */
861 && (FIND_REG_INC_NOTE (insn
, reg
)
864 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
865 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
866 GET_MODE (reg
), REGNO (reg
)))
868 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
871 return set_of (reg
, insn
) != NULL_RTX
;
874 /* Similar to reg_set_between_p, but check all registers in X. Return 0
875 only if none of them are modified between START and END. Return 1 if
876 X contains a MEM; this routine does use memory aliasing. */
879 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
881 const enum rtx_code code
= GET_CODE (x
);
902 if (modified_between_p (XEXP (x
, 0), start
, end
))
904 if (MEM_READONLY_P (x
))
906 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
907 if (memory_modified_in_insn_p (x
, insn
))
913 return reg_set_between_p (x
, start
, end
);
919 fmt
= GET_RTX_FORMAT (code
);
920 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
922 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
925 else if (fmt
[i
] == 'E')
926 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
927 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
934 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
935 of them are modified in INSN. Return 1 if X contains a MEM; this routine
936 does use memory aliasing. */
939 modified_in_p (const_rtx x
, const_rtx insn
)
941 const enum rtx_code code
= GET_CODE (x
);
958 if (modified_in_p (XEXP (x
, 0), insn
))
960 if (MEM_READONLY_P (x
))
962 if (memory_modified_in_insn_p (x
, insn
))
968 return reg_set_p (x
, insn
);
974 fmt
= GET_RTX_FORMAT (code
);
975 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
977 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
980 else if (fmt
[i
] == 'E')
981 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
982 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
989 /* Helper function for set_of. */
997 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
999 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1000 if (rtx_equal_p (x
, data
->pat
)
1001 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1005 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1006 (either directly or via STRICT_LOW_PART and similar modifiers). */
1008 set_of (const_rtx pat
, const_rtx insn
)
1010 struct set_of_data data
;
1011 data
.found
= NULL_RTX
;
1013 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1017 /* This function, called through note_stores, collects sets and
1018 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1021 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1023 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1024 if (REG_P (x
) && HARD_REGISTER_P (x
))
1025 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1028 /* Examine INSN, and compute the set of hard registers written by it.
1029 Store it in *PSET. Should only be called after reload. */
1031 find_all_hard_reg_sets (const_rtx insn
, HARD_REG_SET
*pset
)
1035 CLEAR_HARD_REG_SET (*pset
);
1036 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1038 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1039 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1040 if (REG_NOTE_KIND (link
) == REG_INC
)
1041 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1044 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1046 record_hard_reg_uses_1 (rtx
*px
, void *data
)
1049 HARD_REG_SET
*pused
= (HARD_REG_SET
*)data
;
1051 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1053 int nregs
= hard_regno_nregs
[REGNO (x
)][GET_MODE (x
)];
1055 SET_HARD_REG_BIT (*pused
, REGNO (x
) + nregs
);
1060 /* Like record_hard_reg_sets, but called through note_uses. */
1062 record_hard_reg_uses (rtx
*px
, void *data
)
1064 for_each_rtx (px
, record_hard_reg_uses_1
, data
);
1067 /* Given an INSN, return a SET expression if this insn has only a single SET.
1068 It may also have CLOBBERs, USEs, or SET whose output
1069 will not be used, which we ignore. */
1072 single_set_2 (const_rtx insn
, const_rtx pat
)
1075 int set_verified
= 1;
1078 if (GET_CODE (pat
) == PARALLEL
)
1080 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1082 rtx sub
= XVECEXP (pat
, 0, i
);
1083 switch (GET_CODE (sub
))
1090 /* We can consider insns having multiple sets, where all
1091 but one are dead as single set insns. In common case
1092 only single set is present in the pattern so we want
1093 to avoid checking for REG_UNUSED notes unless necessary.
1095 When we reach set first time, we just expect this is
1096 the single set we are looking for and only when more
1097 sets are found in the insn, we check them. */
1100 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1101 && !side_effects_p (set
))
1107 set
= sub
, set_verified
= 0;
1108 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1109 || side_effects_p (sub
))
1121 /* Given an INSN, return nonzero if it has more than one SET, else return
1125 multiple_sets (const_rtx insn
)
1130 /* INSN must be an insn. */
1131 if (! INSN_P (insn
))
1134 /* Only a PARALLEL can have multiple SETs. */
1135 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1137 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1138 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1140 /* If we have already found a SET, then return now. */
1148 /* Either zero or one SET. */
1152 /* Return nonzero if the destination of SET equals the source
1153 and there are no side effects. */
1156 set_noop_p (const_rtx set
)
1158 rtx src
= SET_SRC (set
);
1159 rtx dst
= SET_DEST (set
);
1161 if (dst
== pc_rtx
&& src
== pc_rtx
)
1164 if (MEM_P (dst
) && MEM_P (src
))
1165 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1167 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1168 return rtx_equal_p (XEXP (dst
, 0), src
)
1169 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1170 && !side_effects_p (src
);
1172 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1173 dst
= XEXP (dst
, 0);
1175 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1177 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1179 src
= SUBREG_REG (src
);
1180 dst
= SUBREG_REG (dst
);
1183 return (REG_P (src
) && REG_P (dst
)
1184 && REGNO (src
) == REGNO (dst
));
1187 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1191 noop_move_p (const_rtx insn
)
1193 rtx pat
= PATTERN (insn
);
1195 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1198 /* Insns carrying these notes are useful later on. */
1199 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1202 /* Check the code to be executed for COND_EXEC. */
1203 if (GET_CODE (pat
) == COND_EXEC
)
1204 pat
= COND_EXEC_CODE (pat
);
1206 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1209 if (GET_CODE (pat
) == PARALLEL
)
1212 /* If nothing but SETs of registers to themselves,
1213 this insn can also be deleted. */
1214 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1216 rtx tem
= XVECEXP (pat
, 0, i
);
1218 if (GET_CODE (tem
) == USE
1219 || GET_CODE (tem
) == CLOBBER
)
1222 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1232 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1233 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1234 If the object was modified, if we hit a partial assignment to X, or hit a
1235 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1236 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1240 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1244 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1248 rtx set
= single_set (p
);
1249 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1251 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1253 rtx src
= SET_SRC (set
);
1255 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1256 src
= XEXP (note
, 0);
1258 if ((valid_to
== NULL_RTX
1259 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1260 /* Reject hard registers because we don't usually want
1261 to use them; we'd rather use a pseudo. */
1263 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1270 /* If set in non-simple way, we don't have a value. */
1271 if (reg_set_p (x
, p
))
1278 /* Return nonzero if register in range [REGNO, ENDREGNO)
1279 appears either explicitly or implicitly in X
1280 other than being stored into.
1282 References contained within the substructure at LOC do not count.
1283 LOC may be zero, meaning don't ignore anything. */
1286 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1290 unsigned int x_regno
;
1295 /* The contents of a REG_NONNEG note is always zero, so we must come here
1296 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1300 code
= GET_CODE (x
);
1305 x_regno
= REGNO (x
);
1307 /* If we modifying the stack, frame, or argument pointer, it will
1308 clobber a virtual register. In fact, we could be more precise,
1309 but it isn't worth it. */
1310 if ((x_regno
== STACK_POINTER_REGNUM
1311 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1312 || x_regno
== ARG_POINTER_REGNUM
1314 || x_regno
== FRAME_POINTER_REGNUM
)
1315 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1318 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1321 /* If this is a SUBREG of a hard reg, we can see exactly which
1322 registers are being modified. Otherwise, handle normally. */
1323 if (REG_P (SUBREG_REG (x
))
1324 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1326 unsigned int inner_regno
= subreg_regno (x
);
1327 unsigned int inner_endregno
1328 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1329 ? subreg_nregs (x
) : 1);
1331 return endregno
> inner_regno
&& regno
< inner_endregno
;
1337 if (&SET_DEST (x
) != loc
1338 /* Note setting a SUBREG counts as referring to the REG it is in for
1339 a pseudo but not for hard registers since we can
1340 treat each word individually. */
1341 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1342 && loc
!= &SUBREG_REG (SET_DEST (x
))
1343 && REG_P (SUBREG_REG (SET_DEST (x
)))
1344 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1345 && refers_to_regno_p (regno
, endregno
,
1346 SUBREG_REG (SET_DEST (x
)), loc
))
1347 || (!REG_P (SET_DEST (x
))
1348 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1351 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1360 /* X does not match, so try its subexpressions. */
1362 fmt
= GET_RTX_FORMAT (code
);
1363 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1365 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1373 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1376 else if (fmt
[i
] == 'E')
1379 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1380 if (loc
!= &XVECEXP (x
, i
, j
)
1381 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1388 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1389 we check if any register number in X conflicts with the relevant register
1390 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1391 contains a MEM (we don't bother checking for memory addresses that can't
1392 conflict because we expect this to be a rare case. */
1395 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1397 unsigned int regno
, endregno
;
1399 /* If either argument is a constant, then modifying X can not
1400 affect IN. Here we look at IN, we can profitably combine
1401 CONSTANT_P (x) with the switch statement below. */
1402 if (CONSTANT_P (in
))
1406 switch (GET_CODE (x
))
1408 case STRICT_LOW_PART
:
1411 /* Overly conservative. */
1416 regno
= REGNO (SUBREG_REG (x
));
1417 if (regno
< FIRST_PSEUDO_REGISTER
)
1418 regno
= subreg_regno (x
);
1419 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1420 ? subreg_nregs (x
) : 1);
1425 endregno
= END_REGNO (x
);
1427 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1437 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1438 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1441 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1444 else if (fmt
[i
] == 'E')
1447 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1448 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1458 return reg_mentioned_p (x
, in
);
1464 /* If any register in here refers to it we return true. */
1465 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1466 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1467 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1473 gcc_assert (CONSTANT_P (x
));
1478 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1479 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1480 ignored by note_stores, but passed to FUN.
1482 FUN receives three arguments:
1483 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1484 2. the SET or CLOBBER rtx that does the store,
1485 3. the pointer DATA provided to note_stores.
1487 If the item being stored in or clobbered is a SUBREG of a hard register,
1488 the SUBREG will be passed. */
1491 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1495 if (GET_CODE (x
) == COND_EXEC
)
1496 x
= COND_EXEC_CODE (x
);
1498 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1500 rtx dest
= SET_DEST (x
);
1502 while ((GET_CODE (dest
) == SUBREG
1503 && (!REG_P (SUBREG_REG (dest
))
1504 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1505 || GET_CODE (dest
) == ZERO_EXTRACT
1506 || GET_CODE (dest
) == STRICT_LOW_PART
)
1507 dest
= XEXP (dest
, 0);
1509 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1510 each of whose first operand is a register. */
1511 if (GET_CODE (dest
) == PARALLEL
)
1513 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1514 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1515 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1518 (*fun
) (dest
, x
, data
);
1521 else if (GET_CODE (x
) == PARALLEL
)
1522 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1523 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1526 /* Like notes_stores, but call FUN for each expression that is being
1527 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1528 FUN for each expression, not any interior subexpressions. FUN receives a
1529 pointer to the expression and the DATA passed to this function.
1531 Note that this is not quite the same test as that done in reg_referenced_p
1532 since that considers something as being referenced if it is being
1533 partially set, while we do not. */
1536 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1541 switch (GET_CODE (body
))
1544 (*fun
) (&COND_EXEC_TEST (body
), data
);
1545 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1549 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1550 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1554 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1555 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1559 (*fun
) (&XEXP (body
, 0), data
);
1563 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1564 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1568 (*fun
) (&TRAP_CONDITION (body
), data
);
1572 (*fun
) (&XEXP (body
, 0), data
);
1576 case UNSPEC_VOLATILE
:
1577 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1578 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1582 if (MEM_P (XEXP (body
, 0)))
1583 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1588 rtx dest
= SET_DEST (body
);
1590 /* For sets we replace everything in source plus registers in memory
1591 expression in store and operands of a ZERO_EXTRACT. */
1592 (*fun
) (&SET_SRC (body
), data
);
1594 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1596 (*fun
) (&XEXP (dest
, 1), data
);
1597 (*fun
) (&XEXP (dest
, 2), data
);
1600 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1601 dest
= XEXP (dest
, 0);
1604 (*fun
) (&XEXP (dest
, 0), data
);
1609 /* All the other possibilities never store. */
1610 (*fun
) (pbody
, data
);
1615 /* Return nonzero if X's old contents don't survive after INSN.
1616 This will be true if X is (cc0) or if X is a register and
1617 X dies in INSN or because INSN entirely sets X.
1619 "Entirely set" means set directly and not through a SUBREG, or
1620 ZERO_EXTRACT, so no trace of the old contents remains.
1621 Likewise, REG_INC does not count.
1623 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1624 but for this use that makes no difference, since regs don't overlap
1625 during their lifetimes. Therefore, this function may be used
1626 at any time after deaths have been computed.
1628 If REG is a hard reg that occupies multiple machine registers, this
1629 function will only return 1 if each of those registers will be replaced
1633 dead_or_set_p (const_rtx insn
, const_rtx x
)
1635 unsigned int regno
, end_regno
;
1638 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1639 if (GET_CODE (x
) == CC0
)
1642 gcc_assert (REG_P (x
));
1645 end_regno
= END_REGNO (x
);
1646 for (i
= regno
; i
< end_regno
; i
++)
1647 if (! dead_or_set_regno_p (insn
, i
))
1653 /* Return TRUE iff DEST is a register or subreg of a register and
1654 doesn't change the number of words of the inner register, and any
1655 part of the register is TEST_REGNO. */
1658 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1660 unsigned int regno
, endregno
;
1662 if (GET_CODE (dest
) == SUBREG
1663 && (((GET_MODE_SIZE (GET_MODE (dest
))
1664 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1665 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1666 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1667 dest
= SUBREG_REG (dest
);
1672 regno
= REGNO (dest
);
1673 endregno
= END_REGNO (dest
);
1674 return (test_regno
>= regno
&& test_regno
< endregno
);
1677 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1678 any member matches the covers_regno_no_parallel_p criteria. */
1681 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1683 if (GET_CODE (dest
) == PARALLEL
)
1685 /* Some targets place small structures in registers for return
1686 values of functions, and those registers are wrapped in
1687 PARALLELs that we may see as the destination of a SET. */
1690 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1692 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1693 if (inner
!= NULL_RTX
1694 && covers_regno_no_parallel_p (inner
, test_regno
))
1701 return covers_regno_no_parallel_p (dest
, test_regno
);
1704 /* Utility function for dead_or_set_p to check an individual register. */
1707 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1711 /* See if there is a death note for something that includes TEST_REGNO. */
1712 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1716 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1719 pattern
= PATTERN (insn
);
1721 /* If a COND_EXEC is not executed, the value survives. */
1722 if (GET_CODE (pattern
) == COND_EXEC
)
1725 if (GET_CODE (pattern
) == SET
)
1726 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1727 else if (GET_CODE (pattern
) == PARALLEL
)
1731 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1733 rtx body
= XVECEXP (pattern
, 0, i
);
1735 if (GET_CODE (body
) == COND_EXEC
)
1736 body
= COND_EXEC_CODE (body
);
1738 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1739 && covers_regno_p (SET_DEST (body
), test_regno
))
1747 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1748 If DATUM is nonzero, look for one whose datum is DATUM. */
1751 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1755 gcc_checking_assert (insn
);
1757 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1758 if (! INSN_P (insn
))
1762 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1763 if (REG_NOTE_KIND (link
) == kind
)
1768 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1769 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1774 /* Return the reg-note of kind KIND in insn INSN which applies to register
1775 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1776 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1777 it might be the case that the note overlaps REGNO. */
1780 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1784 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1785 if (! INSN_P (insn
))
1788 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1789 if (REG_NOTE_KIND (link
) == kind
1790 /* Verify that it is a register, so that scratch and MEM won't cause a
1792 && REG_P (XEXP (link
, 0))
1793 && REGNO (XEXP (link
, 0)) <= regno
1794 && END_REGNO (XEXP (link
, 0)) > regno
)
1799 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1803 find_reg_equal_equiv_note (const_rtx insn
)
1810 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1811 if (REG_NOTE_KIND (link
) == REG_EQUAL
1812 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1814 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1815 insns that have multiple sets. Checking single_set to
1816 make sure of this is not the proper check, as explained
1817 in the comment in set_unique_reg_note.
1819 This should be changed into an assert. */
1820 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1827 /* Check whether INSN is a single_set whose source is known to be
1828 equivalent to a constant. Return that constant if so, otherwise
1832 find_constant_src (const_rtx insn
)
1836 set
= single_set (insn
);
1839 x
= avoid_constant_pool_reference (SET_SRC (set
));
1844 note
= find_reg_equal_equiv_note (insn
);
1845 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1846 return XEXP (note
, 0);
1851 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1852 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1855 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1857 /* If it's not a CALL_INSN, it can't possibly have a
1858 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1868 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1870 link
= XEXP (link
, 1))
1871 if (GET_CODE (XEXP (link
, 0)) == code
1872 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1877 unsigned int regno
= REGNO (datum
);
1879 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1880 to pseudo registers, so don't bother checking. */
1882 if (regno
< FIRST_PSEUDO_REGISTER
)
1884 unsigned int end_regno
= END_HARD_REGNO (datum
);
1887 for (i
= regno
; i
< end_regno
; i
++)
1888 if (find_regno_fusage (insn
, code
, i
))
1896 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1897 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1900 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1904 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1905 to pseudo registers, so don't bother checking. */
1907 if (regno
>= FIRST_PSEUDO_REGISTER
1911 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1915 if (GET_CODE (op
= XEXP (link
, 0)) == code
1916 && REG_P (reg
= XEXP (op
, 0))
1917 && REGNO (reg
) <= regno
1918 && END_HARD_REGNO (reg
) > regno
)
1926 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1927 stored as the pointer to the next register note. */
1930 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1938 case REG_LABEL_TARGET
:
1939 case REG_LABEL_OPERAND
:
1941 /* These types of register notes use an INSN_LIST rather than an
1942 EXPR_LIST, so that copying is done right and dumps look
1944 note
= alloc_INSN_LIST (datum
, list
);
1945 PUT_REG_NOTE_KIND (note
, kind
);
1949 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1956 /* Add register note with kind KIND and datum DATUM to INSN. */
1959 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1961 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1964 /* Remove register note NOTE from the REG_NOTES of INSN. */
1967 remove_note (rtx insn
, const_rtx note
)
1971 if (note
== NULL_RTX
)
1974 if (REG_NOTES (insn
) == note
)
1975 REG_NOTES (insn
) = XEXP (note
, 1);
1977 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1978 if (XEXP (link
, 1) == note
)
1980 XEXP (link
, 1) = XEXP (note
, 1);
1984 switch (REG_NOTE_KIND (note
))
1988 df_notes_rescan (insn
);
1995 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1998 remove_reg_equal_equiv_notes (rtx insn
)
2002 loc
= ®_NOTES (insn
);
2005 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2006 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2007 *loc
= XEXP (*loc
, 1);
2009 loc
= &XEXP (*loc
, 1);
2013 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2016 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2023 /* This loop is a little tricky. We cannot just go down the chain because
2024 it is being modified by some actions in the loop. So we just iterate
2025 over the head. We plan to drain the list anyway. */
2026 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2028 rtx insn
= DF_REF_INSN (eq_use
);
2029 rtx note
= find_reg_equal_equiv_note (insn
);
2031 /* This assert is generally triggered when someone deletes a REG_EQUAL
2032 or REG_EQUIV note by hacking the list manually rather than calling
2036 remove_note (insn
, note
);
2040 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2041 return 1 if it is found. A simple equality test is used to determine if
2045 in_expr_list_p (const_rtx listp
, const_rtx node
)
2049 for (x
= listp
; x
; x
= XEXP (x
, 1))
2050 if (node
== XEXP (x
, 0))
2056 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2057 remove that entry from the list if it is found.
2059 A simple equality test is used to determine if NODE matches. */
2062 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
2065 rtx prev
= NULL_RTX
;
2069 if (node
== XEXP (temp
, 0))
2071 /* Splice the node out of the list. */
2073 XEXP (prev
, 1) = XEXP (temp
, 1);
2075 *listp
= XEXP (temp
, 1);
2081 temp
= XEXP (temp
, 1);
2085 /* Nonzero if X contains any volatile instructions. These are instructions
2086 which may cause unpredictable machine state instructions, and thus no
2087 instructions or register uses should be moved or combined across them.
2088 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2091 volatile_insn_p (const_rtx x
)
2093 const RTX_CODE code
= GET_CODE (x
);
2111 case UNSPEC_VOLATILE
:
2116 if (MEM_VOLATILE_P (x
))
2123 /* Recursively scan the operands of this expression. */
2126 const char *const fmt
= GET_RTX_FORMAT (code
);
2129 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2133 if (volatile_insn_p (XEXP (x
, i
)))
2136 else if (fmt
[i
] == 'E')
2139 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2140 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2148 /* Nonzero if X contains any volatile memory references
2149 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2152 volatile_refs_p (const_rtx x
)
2154 const RTX_CODE code
= GET_CODE (x
);
2170 case UNSPEC_VOLATILE
:
2176 if (MEM_VOLATILE_P (x
))
2183 /* Recursively scan the operands of this expression. */
2186 const char *const fmt
= GET_RTX_FORMAT (code
);
2189 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2193 if (volatile_refs_p (XEXP (x
, i
)))
2196 else if (fmt
[i
] == 'E')
2199 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2200 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2208 /* Similar to above, except that it also rejects register pre- and post-
2212 side_effects_p (const_rtx x
)
2214 const RTX_CODE code
= GET_CODE (x
);
2231 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2232 when some combination can't be done. If we see one, don't think
2233 that we can simplify the expression. */
2234 return (GET_MODE (x
) != VOIDmode
);
2243 case UNSPEC_VOLATILE
:
2249 if (MEM_VOLATILE_P (x
))
2256 /* Recursively scan the operands of this expression. */
2259 const char *fmt
= GET_RTX_FORMAT (code
);
2262 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2266 if (side_effects_p (XEXP (x
, i
)))
2269 else if (fmt
[i
] == 'E')
2272 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2273 if (side_effects_p (XVECEXP (x
, i
, j
)))
2281 /* Return nonzero if evaluating rtx X might cause a trap.
2282 FLAGS controls how to consider MEMs. A nonzero means the context
2283 of the access may have changed from the original, such that the
2284 address may have become invalid. */
2287 may_trap_p_1 (const_rtx x
, unsigned flags
)
2293 /* We make no distinction currently, but this function is part of
2294 the internal target-hooks ABI so we keep the parameter as
2295 "unsigned flags". */
2296 bool code_changed
= flags
!= 0;
2300 code
= GET_CODE (x
);
2303 /* Handle these cases quickly. */
2315 return targetm
.unspec_may_trap_p (x
, flags
);
2317 case UNSPEC_VOLATILE
:
2323 return MEM_VOLATILE_P (x
);
2325 /* Memory ref can trap unless it's a static var or a stack slot. */
2327 /* Recognize specific pattern of stack checking probes. */
2328 if (flag_stack_check
2329 && MEM_VOLATILE_P (x
)
2330 && XEXP (x
, 0) == stack_pointer_rtx
)
2332 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2333 reference; moving it out of context such as when moving code
2334 when optimizing, might cause its address to become invalid. */
2336 || !MEM_NOTRAP_P (x
))
2338 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2339 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2340 GET_MODE (x
), code_changed
);
2345 /* Division by a non-constant might trap. */
2350 if (HONOR_SNANS (GET_MODE (x
)))
2352 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2353 return flag_trapping_math
;
2354 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2359 /* An EXPR_LIST is used to represent a function call. This
2360 certainly may trap. */
2369 /* Some floating point comparisons may trap. */
2370 if (!flag_trapping_math
)
2372 /* ??? There is no machine independent way to check for tests that trap
2373 when COMPARE is used, though many targets do make this distinction.
2374 For instance, sparc uses CCFPE for compares which generate exceptions
2375 and CCFP for compares which do not generate exceptions. */
2376 if (HONOR_NANS (GET_MODE (x
)))
2378 /* But often the compare has some CC mode, so check operand
2380 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2381 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2387 if (HONOR_SNANS (GET_MODE (x
)))
2389 /* Often comparison is CC mode, so check operand modes. */
2390 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2391 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2396 /* Conversion of floating point might trap. */
2397 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2404 /* These operations don't trap even with floating point. */
2408 /* Any floating arithmetic may trap. */
2409 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)) && flag_trapping_math
)
2413 fmt
= GET_RTX_FORMAT (code
);
2414 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2418 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2421 else if (fmt
[i
] == 'E')
2424 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2425 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2432 /* Return nonzero if evaluating rtx X might cause a trap. */
2435 may_trap_p (const_rtx x
)
2437 return may_trap_p_1 (x
, 0);
2440 /* Same as above, but additionally return nonzero if evaluating rtx X might
2441 cause a fault. We define a fault for the purpose of this function as a
2442 erroneous execution condition that cannot be encountered during the normal
2443 execution of a valid program; the typical example is an unaligned memory
2444 access on a strict alignment machine. The compiler guarantees that it
2445 doesn't generate code that will fault from a valid program, but this
2446 guarantee doesn't mean anything for individual instructions. Consider
2447 the following example:
2449 struct S { int d; union { char *cp; int *ip; }; };
2451 int foo(struct S *s)
2459 on a strict alignment machine. In a valid program, foo will never be
2460 invoked on a structure for which d is equal to 1 and the underlying
2461 unique field of the union not aligned on a 4-byte boundary, but the
2462 expression *s->ip might cause a fault if considered individually.
2464 At the RTL level, potentially problematic expressions will almost always
2465 verify may_trap_p; for example, the above dereference can be emitted as
2466 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2467 However, suppose that foo is inlined in a caller that causes s->cp to
2468 point to a local character variable and guarantees that s->d is not set
2469 to 1; foo may have been effectively translated into pseudo-RTL as:
2472 (set (reg:SI) (mem:SI (%fp - 7)))
2474 (set (reg:QI) (mem:QI (%fp - 7)))
2476 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2477 memory reference to a stack slot, but it will certainly cause a fault
2478 on a strict alignment machine. */
2481 may_trap_or_fault_p (const_rtx x
)
2483 return may_trap_p_1 (x
, 1);
2486 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2487 i.e., an inequality. */
2490 inequality_comparisons_p (const_rtx x
)
2494 const enum rtx_code code
= GET_CODE (x
);
2522 len
= GET_RTX_LENGTH (code
);
2523 fmt
= GET_RTX_FORMAT (code
);
2525 for (i
= 0; i
< len
; i
++)
2529 if (inequality_comparisons_p (XEXP (x
, i
)))
2532 else if (fmt
[i
] == 'E')
2535 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2536 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2544 /* Replace any occurrence of FROM in X with TO. The function does
2545 not enter into CONST_DOUBLE for the replace.
2547 Note that copying is not done so X must not be shared unless all copies
2548 are to be modified. */
2551 replace_rtx (rtx x
, rtx from
, rtx to
)
2559 /* Allow this function to make replacements in EXPR_LISTs. */
2563 if (GET_CODE (x
) == SUBREG
)
2565 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2567 if (CONST_INT_P (new_rtx
))
2569 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2570 GET_MODE (SUBREG_REG (x
)),
2575 SUBREG_REG (x
) = new_rtx
;
2579 else if (GET_CODE (x
) == ZERO_EXTEND
)
2581 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2583 if (CONST_INT_P (new_rtx
))
2585 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2586 new_rtx
, GET_MODE (XEXP (x
, 0)));
2590 XEXP (x
, 0) = new_rtx
;
2595 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2596 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2599 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2600 else if (fmt
[i
] == 'E')
2601 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2602 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2608 /* Replace occurrences of the old label in *X with the new one.
2609 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2612 replace_label (rtx
*x
, void *data
)
2615 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2616 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2617 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2622 if (GET_CODE (l
) == SYMBOL_REF
2623 && CONSTANT_POOL_ADDRESS_P (l
))
2625 rtx c
= get_pool_constant (l
);
2626 if (rtx_referenced_p (old_label
, c
))
2629 replace_label_data
*d
= (replace_label_data
*) data
;
2631 /* Create a copy of constant C; replace the label inside
2632 but do not update LABEL_NUSES because uses in constant pool
2634 new_c
= copy_rtx (c
);
2635 d
->update_label_nuses
= false;
2636 for_each_rtx (&new_c
, replace_label
, data
);
2637 d
->update_label_nuses
= update_label_nuses
;
2639 /* Add the new constant NEW_C to constant pool and replace
2640 the old reference to constant by new reference. */
2641 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2642 *x
= replace_rtx (l
, l
, new_l
);
2647 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2648 field. This is not handled by for_each_rtx because it doesn't
2649 handle unprinted ('0') fields. */
2650 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2651 JUMP_LABEL (l
) = new_label
;
2653 if ((GET_CODE (l
) == LABEL_REF
2654 || GET_CODE (l
) == INSN_LIST
)
2655 && XEXP (l
, 0) == old_label
)
2657 XEXP (l
, 0) = new_label
;
2658 if (update_label_nuses
)
2660 ++LABEL_NUSES (new_label
);
2661 --LABEL_NUSES (old_label
);
2669 /* When *BODY is equal to X or X is directly referenced by *BODY
2670 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2671 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2674 rtx_referenced_p_1 (rtx
*body
, void *x
)
2678 if (*body
== NULL_RTX
)
2679 return y
== NULL_RTX
;
2681 /* Return true if a label_ref *BODY refers to label Y. */
2682 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2683 return XEXP (*body
, 0) == y
;
2685 /* If *BODY is a reference to pool constant traverse the constant. */
2686 if (GET_CODE (*body
) == SYMBOL_REF
2687 && CONSTANT_POOL_ADDRESS_P (*body
))
2688 return rtx_referenced_p (y
, get_pool_constant (*body
));
2690 /* By default, compare the RTL expressions. */
2691 return rtx_equal_p (*body
, y
);
2694 /* Return true if X is referenced in BODY. */
2697 rtx_referenced_p (rtx x
, rtx body
)
2699 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2702 /* If INSN is a tablejump return true and store the label (before jump table) to
2703 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2706 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2713 label
= JUMP_LABEL (insn
);
2714 if (label
!= NULL_RTX
&& !ANY_RETURN_P (label
)
2715 && (table
= next_active_insn (label
)) != NULL_RTX
2716 && JUMP_TABLE_DATA_P (table
))
2718 gcc_assert (table
== NEXT_INSN (label
));
2728 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2729 constant that is not in the constant pool and not in the condition
2730 of an IF_THEN_ELSE. */
2733 computed_jump_p_1 (const_rtx x
)
2735 const enum rtx_code code
= GET_CODE (x
);
2752 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2753 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2756 return (computed_jump_p_1 (XEXP (x
, 1))
2757 || computed_jump_p_1 (XEXP (x
, 2)));
2763 fmt
= GET_RTX_FORMAT (code
);
2764 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2767 && computed_jump_p_1 (XEXP (x
, i
)))
2770 else if (fmt
[i
] == 'E')
2771 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2772 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2779 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2781 Tablejumps and casesi insns are not considered indirect jumps;
2782 we can recognize them by a (use (label_ref)). */
2785 computed_jump_p (const_rtx insn
)
2790 rtx pat
= PATTERN (insn
);
2792 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2793 if (JUMP_LABEL (insn
) != NULL
)
2796 if (GET_CODE (pat
) == PARALLEL
)
2798 int len
= XVECLEN (pat
, 0);
2799 int has_use_labelref
= 0;
2801 for (i
= len
- 1; i
>= 0; i
--)
2802 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2803 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2806 has_use_labelref
= 1;
2810 if (! has_use_labelref
)
2811 for (i
= len
- 1; i
>= 0; i
--)
2812 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2813 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2814 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2817 else if (GET_CODE (pat
) == SET
2818 && SET_DEST (pat
) == pc_rtx
2819 && computed_jump_p_1 (SET_SRC (pat
)))
2825 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2826 calls. Processes the subexpressions of EXP and passes them to F. */
2828 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2831 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2834 for (; format
[n
] != '\0'; n
++)
2841 result
= (*f
) (x
, data
);
2843 /* Do not traverse sub-expressions. */
2845 else if (result
!= 0)
2846 /* Stop the traversal. */
2850 /* There are no sub-expressions. */
2853 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2856 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2864 if (XVEC (exp
, n
) == 0)
2866 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2869 x
= &XVECEXP (exp
, n
, j
);
2870 result
= (*f
) (x
, data
);
2872 /* Do not traverse sub-expressions. */
2874 else if (result
!= 0)
2875 /* Stop the traversal. */
2879 /* There are no sub-expressions. */
2882 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2885 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2893 /* Nothing to do. */
2901 /* Traverse X via depth-first search, calling F for each
2902 sub-expression (including X itself). F is also passed the DATA.
2903 If F returns -1, do not traverse sub-expressions, but continue
2904 traversing the rest of the tree. If F ever returns any other
2905 nonzero value, stop the traversal, and return the value returned
2906 by F. Otherwise, return 0. This function does not traverse inside
2907 tree structure that contains RTX_EXPRs, or into sub-expressions
2908 whose format code is `0' since it is not known whether or not those
2909 codes are actually RTL.
2911 This routine is very general, and could (should?) be used to
2912 implement many of the other routines in this file. */
2915 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2921 result
= (*f
) (x
, data
);
2923 /* Do not traverse sub-expressions. */
2925 else if (result
!= 0)
2926 /* Stop the traversal. */
2930 /* There are no sub-expressions. */
2933 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2937 return for_each_rtx_1 (*x
, i
, f
, data
);
2942 /* Data structure that holds the internal state communicated between
2943 for_each_inc_dec, for_each_inc_dec_find_mem and
2944 for_each_inc_dec_find_inc_dec. */
2946 struct for_each_inc_dec_ops
{
2947 /* The function to be called for each autoinc operation found. */
2948 for_each_inc_dec_fn fn
;
2949 /* The opaque argument to be passed to it. */
2951 /* The MEM we're visiting, if any. */
2955 static int for_each_inc_dec_find_mem (rtx
*r
, void *d
);
2957 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2958 operands of the equivalent add insn and pass the result to the
2959 operator specified by *D. */
2962 for_each_inc_dec_find_inc_dec (rtx
*r
, void *d
)
2965 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*)d
;
2967 switch (GET_CODE (x
))
2972 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2973 rtx r1
= XEXP (x
, 0);
2974 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
2975 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2981 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2982 rtx r1
= XEXP (x
, 0);
2983 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
2984 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2990 rtx r1
= XEXP (x
, 0);
2991 rtx add
= XEXP (x
, 1);
2992 return data
->fn (data
->mem
, x
, r1
, add
, NULL
, data
->arg
);
2997 rtx save
= data
->mem
;
2998 int ret
= for_each_inc_dec_find_mem (r
, d
);
3008 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3009 address, extract the operands of the equivalent add insn and pass
3010 the result to the operator specified by *D. */
3013 for_each_inc_dec_find_mem (rtx
*r
, void *d
)
3016 if (x
!= NULL_RTX
&& MEM_P (x
))
3018 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*) d
;
3023 result
= for_each_rtx (&XEXP (x
, 0), for_each_inc_dec_find_inc_dec
,
3033 /* Traverse *X looking for MEMs, and for autoinc operations within
3034 them. For each such autoinc operation found, call FN, passing it
3035 the innermost enclosing MEM, the operation itself, the RTX modified
3036 by the operation, two RTXs (the second may be NULL) that, once
3037 added, represent the value to be held by the modified RTX
3038 afterwards, and ARG. FN is to return -1 to skip looking for other
3039 autoinc operations within the visited operation, 0 to continue the
3040 traversal, or any other value to have it returned to the caller of
3041 for_each_inc_dec. */
3044 for_each_inc_dec (rtx
*x
,
3045 for_each_inc_dec_fn fn
,
3048 struct for_each_inc_dec_ops data
;
3054 return for_each_rtx (x
, for_each_inc_dec_find_mem
, &data
);
3058 /* Searches X for any reference to REGNO, returning the rtx of the
3059 reference found if any. Otherwise, returns NULL_RTX. */
3062 regno_use_in (unsigned int regno
, rtx x
)
3068 if (REG_P (x
) && REGNO (x
) == regno
)
3071 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3072 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3076 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3079 else if (fmt
[i
] == 'E')
3080 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3081 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3088 /* Return a value indicating whether OP, an operand of a commutative
3089 operation, is preferred as the first or second operand. The higher
3090 the value, the stronger the preference for being the first operand.
3091 We use negative values to indicate a preference for the first operand
3092 and positive values for the second operand. */
3095 commutative_operand_precedence (rtx op
)
3097 enum rtx_code code
= GET_CODE (op
);
3099 /* Constants always come the second operand. Prefer "nice" constants. */
3100 if (code
== CONST_INT
)
3102 if (code
== CONST_DOUBLE
)
3104 if (code
== CONST_FIXED
)
3106 op
= avoid_constant_pool_reference (op
);
3107 code
= GET_CODE (op
);
3109 switch (GET_RTX_CLASS (code
))
3112 if (code
== CONST_INT
)
3114 if (code
== CONST_DOUBLE
)
3116 if (code
== CONST_FIXED
)
3121 /* SUBREGs of objects should come second. */
3122 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3127 /* Complex expressions should be the first, so decrease priority
3128 of objects. Prefer pointer objects over non pointer objects. */
3129 if ((REG_P (op
) && REG_POINTER (op
))
3130 || (MEM_P (op
) && MEM_POINTER (op
)))
3134 case RTX_COMM_ARITH
:
3135 /* Prefer operands that are themselves commutative to be first.
3136 This helps to make things linear. In particular,
3137 (and (and (reg) (reg)) (not (reg))) is canonical. */
3141 /* If only one operand is a binary expression, it will be the first
3142 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3143 is canonical, although it will usually be further simplified. */
3147 /* Then prefer NEG and NOT. */
3148 if (code
== NEG
|| code
== NOT
)
3156 /* Return 1 iff it is necessary to swap operands of commutative operation
3157 in order to canonicalize expression. */
3160 swap_commutative_operands_p (rtx x
, rtx y
)
3162 return (commutative_operand_precedence (x
)
3163 < commutative_operand_precedence (y
));
3166 /* Return 1 if X is an autoincrement side effect and the register is
3167 not the stack pointer. */
3169 auto_inc_p (const_rtx x
)
3171 switch (GET_CODE (x
))
3179 /* There are no REG_INC notes for SP. */
3180 if (XEXP (x
, 0) != stack_pointer_rtx
)
3188 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3190 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3199 code
= GET_CODE (in
);
3200 fmt
= GET_RTX_FORMAT (code
);
3201 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3205 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3208 else if (fmt
[i
] == 'E')
3209 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3210 if (loc
== &XVECEXP (in
, i
, j
)
3211 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3217 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3218 and SUBREG_BYTE, return the bit offset where the subreg begins
3219 (counting from the least significant bit of the operand). */
3222 subreg_lsb_1 (enum machine_mode outer_mode
,
3223 enum machine_mode inner_mode
,
3224 unsigned int subreg_byte
)
3226 unsigned int bitpos
;
3230 /* A paradoxical subreg begins at bit position 0. */
3231 if (GET_MODE_PRECISION (outer_mode
) > GET_MODE_PRECISION (inner_mode
))
3234 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3235 /* If the subreg crosses a word boundary ensure that
3236 it also begins and ends on a word boundary. */
3237 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3238 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3239 && (subreg_byte
% UNITS_PER_WORD
3240 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3242 if (WORDS_BIG_ENDIAN
)
3243 word
= (GET_MODE_SIZE (inner_mode
)
3244 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3246 word
= subreg_byte
/ UNITS_PER_WORD
;
3247 bitpos
= word
* BITS_PER_WORD
;
3249 if (BYTES_BIG_ENDIAN
)
3250 byte
= (GET_MODE_SIZE (inner_mode
)
3251 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3253 byte
= subreg_byte
% UNITS_PER_WORD
;
3254 bitpos
+= byte
* BITS_PER_UNIT
;
3259 /* Given a subreg X, return the bit offset where the subreg begins
3260 (counting from the least significant bit of the reg). */
3263 subreg_lsb (const_rtx x
)
3265 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3269 /* Fill in information about a subreg of a hard register.
3270 xregno - A regno of an inner hard subreg_reg (or what will become one).
3271 xmode - The mode of xregno.
3272 offset - The byte offset.
3273 ymode - The mode of a top level SUBREG (or what may become one).
3274 info - Pointer to structure to fill in. */
3276 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3277 unsigned int offset
, enum machine_mode ymode
,
3278 struct subreg_info
*info
)
3280 int nregs_xmode
, nregs_ymode
;
3281 int mode_multiple
, nregs_multiple
;
3282 int offset_adj
, y_offset
, y_offset_adj
;
3283 int regsize_xmode
, regsize_ymode
;
3286 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3290 /* If there are holes in a non-scalar mode in registers, we expect
3291 that it is made up of its units concatenated together. */
3292 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3294 enum machine_mode xmode_unit
;
3296 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3297 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3300 xmode_unit
= GET_MODE_INNER (xmode
);
3301 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3302 gcc_assert (nregs_xmode
3303 == (GET_MODE_NUNITS (xmode
)
3304 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3305 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3306 == (hard_regno_nregs
[xregno
][xmode_unit
]
3307 * GET_MODE_NUNITS (xmode
)));
3309 /* You can only ask for a SUBREG of a value with holes in the middle
3310 if you don't cross the holes. (Such a SUBREG should be done by
3311 picking a different register class, or doing it in memory if
3312 necessary.) An example of a value with holes is XCmode on 32-bit
3313 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3314 3 for each part, but in memory it's two 128-bit parts.
3315 Padding is assumed to be at the end (not necessarily the 'high part')
3317 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3318 < GET_MODE_NUNITS (xmode
))
3319 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3320 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3321 / GET_MODE_SIZE (xmode_unit
))))
3323 info
->representable_p
= false;
3328 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3330 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3332 /* Paradoxical subregs are otherwise valid. */
3335 && GET_MODE_PRECISION (ymode
) > GET_MODE_PRECISION (xmode
))
3337 info
->representable_p
= true;
3338 /* If this is a big endian paradoxical subreg, which uses more
3339 actual hard registers than the original register, we must
3340 return a negative offset so that we find the proper highpart
3342 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3343 ? REG_WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3344 info
->offset
= nregs_xmode
- nregs_ymode
;
3347 info
->nregs
= nregs_ymode
;
3351 /* If registers store different numbers of bits in the different
3352 modes, we cannot generally form this subreg. */
3353 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3354 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3355 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3356 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3358 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3359 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3360 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3362 info
->representable_p
= false;
3364 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3365 info
->offset
= offset
/ regsize_xmode
;
3368 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3370 info
->representable_p
= false;
3372 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3373 info
->offset
= offset
/ regsize_xmode
;
3378 /* Lowpart subregs are otherwise valid. */
3379 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3381 info
->representable_p
= true;
3384 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3387 info
->nregs
= nregs_ymode
;
3392 /* This should always pass, otherwise we don't know how to verify
3393 the constraint. These conditions may be relaxed but
3394 subreg_regno_offset would need to be redesigned. */
3395 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3396 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3398 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
3399 && GET_MODE_SIZE (xmode
) > UNITS_PER_WORD
)
3401 HOST_WIDE_INT xsize
= GET_MODE_SIZE (xmode
);
3402 HOST_WIDE_INT ysize
= GET_MODE_SIZE (ymode
);
3403 HOST_WIDE_INT off_low
= offset
& (ysize
- 1);
3404 HOST_WIDE_INT off_high
= offset
& ~(ysize
- 1);
3405 offset
= (xsize
- ysize
- off_high
) | off_low
;
3407 /* The XMODE value can be seen as a vector of NREGS_XMODE
3408 values. The subreg must represent a lowpart of given field.
3409 Compute what field it is. */
3410 offset_adj
= offset
;
3411 offset_adj
-= subreg_lowpart_offset (ymode
,
3412 mode_for_size (GET_MODE_BITSIZE (xmode
)
3416 /* Size of ymode must not be greater than the size of xmode. */
3417 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3418 gcc_assert (mode_multiple
!= 0);
3420 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3421 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3422 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3424 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3425 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3429 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3432 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3433 info
->nregs
= nregs_ymode
;
3436 /* This function returns the regno offset of a subreg expression.
3437 xregno - A regno of an inner hard subreg_reg (or what will become one).
3438 xmode - The mode of xregno.
3439 offset - The byte offset.
3440 ymode - The mode of a top level SUBREG (or what may become one).
3441 RETURN - The regno offset which would be used. */
3443 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3444 unsigned int offset
, enum machine_mode ymode
)
3446 struct subreg_info info
;
3447 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3451 /* This function returns true when the offset is representable via
3452 subreg_offset in the given regno.
3453 xregno - A regno of an inner hard subreg_reg (or what will become one).
3454 xmode - The mode of xregno.
3455 offset - The byte offset.
3456 ymode - The mode of a top level SUBREG (or what may become one).
3457 RETURN - Whether the offset is representable. */
3459 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3460 unsigned int offset
, enum machine_mode ymode
)
3462 struct subreg_info info
;
3463 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3464 return info
.representable_p
;
3467 /* Return the number of a YMODE register to which
3469 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3471 can be simplified. Return -1 if the subreg can't be simplified.
3473 XREGNO is a hard register number. */
3476 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3477 unsigned int offset
, enum machine_mode ymode
)
3479 struct subreg_info info
;
3480 unsigned int yregno
;
3482 #ifdef CANNOT_CHANGE_MODE_CLASS
3483 /* Give the backend a chance to disallow the mode change. */
3484 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3485 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3486 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3487 /* We can use mode change in LRA for some transformations. */
3488 && ! lra_in_progress
)
3492 /* We shouldn't simplify stack-related registers. */
3493 if ((!reload_completed
|| frame_pointer_needed
)
3494 && xregno
== FRAME_POINTER_REGNUM
)
3497 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3498 && xregno
== ARG_POINTER_REGNUM
)
3501 if (xregno
== STACK_POINTER_REGNUM
3502 /* We should convert hard stack register in LRA if it is
3504 && ! lra_in_progress
)
3507 /* Try to get the register offset. */
3508 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3509 if (!info
.representable_p
)
3512 /* Make sure that the offsetted register value is in range. */
3513 yregno
= xregno
+ info
.offset
;
3514 if (!HARD_REGISTER_NUM_P (yregno
))
3517 /* See whether (reg:YMODE YREGNO) is valid.
3519 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3520 This is a kludge to work around how complex FP arguments are passed
3521 on IA-64 and should be fixed. See PR target/49226. */
3522 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3523 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3526 return (int) yregno
;
3529 /* Return the final regno that a subreg expression refers to. */
3531 subreg_regno (const_rtx x
)
3534 rtx subreg
= SUBREG_REG (x
);
3535 int regno
= REGNO (subreg
);
3537 ret
= regno
+ subreg_regno_offset (regno
,
3545 /* Return the number of registers that a subreg expression refers
3548 subreg_nregs (const_rtx x
)
3550 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3553 /* Return the number of registers that a subreg REG with REGNO
3554 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3555 changed so that the regno can be passed in. */
3558 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3560 struct subreg_info info
;
3561 rtx subreg
= SUBREG_REG (x
);
3563 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3569 struct parms_set_data
3575 /* Helper function for noticing stores to parameter registers. */
3577 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3579 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3580 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3581 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3583 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3588 /* Look backward for first parameter to be loaded.
3589 Note that loads of all parameters will not necessarily be
3590 found if CSE has eliminated some of them (e.g., an argument
3591 to the outer function is passed down as a parameter).
3592 Do not skip BOUNDARY. */
3594 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3596 struct parms_set_data parm
;
3597 rtx p
, before
, first_set
;
3599 /* Since different machines initialize their parameter registers
3600 in different orders, assume nothing. Collect the set of all
3601 parameter registers. */
3602 CLEAR_HARD_REG_SET (parm
.regs
);
3604 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3605 if (GET_CODE (XEXP (p
, 0)) == USE
3606 && REG_P (XEXP (XEXP (p
, 0), 0)))
3608 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3610 /* We only care about registers which can hold function
3612 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3615 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3619 first_set
= call_insn
;
3621 /* Search backward for the first set of a register in this set. */
3622 while (parm
.nregs
&& before
!= boundary
)
3624 before
= PREV_INSN (before
);
3626 /* It is possible that some loads got CSEed from one call to
3627 another. Stop in that case. */
3628 if (CALL_P (before
))
3631 /* Our caller needs either ensure that we will find all sets
3632 (in case code has not been optimized yet), or take care
3633 for possible labels in a way by setting boundary to preceding
3635 if (LABEL_P (before
))
3637 gcc_assert (before
== boundary
);
3641 if (INSN_P (before
))
3643 int nregs_old
= parm
.nregs
;
3644 note_stores (PATTERN (before
), parms_set
, &parm
);
3645 /* If we found something that did not set a parameter reg,
3646 we're done. Do not keep going, as that might result
3647 in hoisting an insn before the setting of a pseudo
3648 that is used by the hoisted insn. */
3649 if (nregs_old
!= parm
.nregs
)
3658 /* Return true if we should avoid inserting code between INSN and preceding
3659 call instruction. */
3662 keep_with_call_p (const_rtx insn
)
3666 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3668 if (REG_P (SET_DEST (set
))
3669 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3670 && fixed_regs
[REGNO (SET_DEST (set
))]
3671 && general_operand (SET_SRC (set
), VOIDmode
))
3673 if (REG_P (SET_SRC (set
))
3674 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3675 && REG_P (SET_DEST (set
))
3676 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3678 /* There may be a stack pop just after the call and before the store
3679 of the return register. Search for the actual store when deciding
3680 if we can break or not. */
3681 if (SET_DEST (set
) == stack_pointer_rtx
)
3683 /* This CONST_CAST is okay because next_nonnote_insn just
3684 returns its argument and we assign it to a const_rtx
3686 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3687 if (i2
&& keep_with_call_p (i2
))
3694 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3695 to non-complex jumps. That is, direct unconditional, conditional,
3696 and tablejumps, but not computed jumps or returns. It also does
3697 not apply to the fallthru case of a conditional jump. */
3700 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3702 rtx tmp
= JUMP_LABEL (jump_insn
);
3707 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3709 rtvec vec
= XVEC (PATTERN (tmp
),
3710 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3711 int i
, veclen
= GET_NUM_ELEM (vec
);
3713 for (i
= 0; i
< veclen
; ++i
)
3714 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3718 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3725 /* Return an estimate of the cost of computing rtx X.
3726 One use is in cse, to decide which expression to keep in the hash table.
3727 Another is in rtl generation, to pick the cheapest way to multiply.
3728 Other uses like the latter are expected in the future.
3730 X appears as operand OPNO in an expression with code OUTER_CODE.
3731 SPEED specifies whether costs optimized for speed or size should
3735 rtx_cost (rtx x
, enum rtx_code outer_code
, int opno
, bool speed
)
3746 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3747 many insns, taking N times as long. */
3748 factor
= GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
;
3752 /* Compute the default costs of certain things.
3753 Note that targetm.rtx_costs can override the defaults. */
3755 code
= GET_CODE (x
);
3759 /* Multiplication has time-complexity O(N*N), where N is the
3760 number of units (translated from digits) when using
3761 schoolbook long multiplication. */
3762 total
= factor
* factor
* COSTS_N_INSNS (5);
3768 /* Similarly, complexity for schoolbook long division. */
3769 total
= factor
* factor
* COSTS_N_INSNS (7);
3772 /* Used in combine.c as a marker. */
3776 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3777 the mode for the factor. */
3778 factor
= GET_MODE_SIZE (GET_MODE (SET_DEST (x
))) / UNITS_PER_WORD
;
3783 total
= factor
* COSTS_N_INSNS (1);
3793 /* If we can't tie these modes, make this expensive. The larger
3794 the mode, the more expensive it is. */
3795 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3796 return COSTS_N_INSNS (2 + factor
);
3800 if (targetm
.rtx_costs (x
, code
, outer_code
, opno
, &total
, speed
))
3805 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3806 which is already in total. */
3808 fmt
= GET_RTX_FORMAT (code
);
3809 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3811 total
+= rtx_cost (XEXP (x
, i
), code
, i
, speed
);
3812 else if (fmt
[i
] == 'E')
3813 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3814 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, i
, speed
);
3819 /* Fill in the structure C with information about both speed and size rtx
3820 costs for X, which is operand OPNO in an expression with code OUTER. */
3823 get_full_rtx_cost (rtx x
, enum rtx_code outer
, int opno
,
3824 struct full_rtx_costs
*c
)
3826 c
->speed
= rtx_cost (x
, outer
, opno
, true);
3827 c
->size
= rtx_cost (x
, outer
, opno
, false);
3831 /* Return cost of address expression X.
3832 Expect that X is properly formed address reference.
3834 SPEED parameter specify whether costs optimized for speed or size should
3838 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3840 /* We may be asked for cost of various unusual addresses, such as operands
3841 of push instruction. It is not worthwhile to complicate writing
3842 of the target hook by such cases. */
3844 if (!memory_address_addr_space_p (mode
, x
, as
))
3847 return targetm
.address_cost (x
, mode
, as
, speed
);
3850 /* If the target doesn't override, compute the cost as with arithmetic. */
3853 default_address_cost (rtx x
, enum machine_mode
, addr_space_t
, bool speed
)
3855 return rtx_cost (x
, MEM
, 0, speed
);
3859 unsigned HOST_WIDE_INT
3860 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3862 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3866 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3868 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3871 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3872 It avoids exponential behavior in nonzero_bits1 when X has
3873 identical subexpressions on the first or the second level. */
3875 static unsigned HOST_WIDE_INT
3876 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3877 enum machine_mode known_mode
,
3878 unsigned HOST_WIDE_INT known_ret
)
3880 if (x
== known_x
&& mode
== known_mode
)
3883 /* Try to find identical subexpressions. If found call
3884 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3885 precomputed value for the subexpression as KNOWN_RET. */
3887 if (ARITHMETIC_P (x
))
3889 rtx x0
= XEXP (x
, 0);
3890 rtx x1
= XEXP (x
, 1);
3892 /* Check the first level. */
3894 return nonzero_bits1 (x
, mode
, x0
, mode
,
3895 cached_nonzero_bits (x0
, mode
, known_x
,
3896 known_mode
, known_ret
));
3898 /* Check the second level. */
3899 if (ARITHMETIC_P (x0
)
3900 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3901 return nonzero_bits1 (x
, mode
, x1
, mode
,
3902 cached_nonzero_bits (x1
, mode
, known_x
,
3903 known_mode
, known_ret
));
3905 if (ARITHMETIC_P (x1
)
3906 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3907 return nonzero_bits1 (x
, mode
, x0
, mode
,
3908 cached_nonzero_bits (x0
, mode
, known_x
,
3909 known_mode
, known_ret
));
3912 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3915 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3916 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3917 is less useful. We can't allow both, because that results in exponential
3918 run time recursion. There is a nullstone testcase that triggered
3919 this. This macro avoids accidental uses of num_sign_bit_copies. */
3920 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3922 /* Given an expression, X, compute which bits in X can be nonzero.
3923 We don't care about bits outside of those defined in MODE.
3925 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3926 an arithmetic operation, we can do better. */
3928 static unsigned HOST_WIDE_INT
3929 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3930 enum machine_mode known_mode
,
3931 unsigned HOST_WIDE_INT known_ret
)
3933 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3934 unsigned HOST_WIDE_INT inner_nz
;
3936 enum machine_mode inner_mode
;
3937 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
3939 /* For floating-point and vector values, assume all bits are needed. */
3940 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3941 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3944 /* If X is wider than MODE, use its mode instead. */
3945 if (GET_MODE_PRECISION (GET_MODE (x
)) > mode_width
)
3947 mode
= GET_MODE (x
);
3948 nonzero
= GET_MODE_MASK (mode
);
3949 mode_width
= GET_MODE_PRECISION (mode
);
3952 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3953 /* Our only callers in this case look for single bit values. So
3954 just return the mode mask. Those tests will then be false. */
3957 #ifndef WORD_REGISTER_OPERATIONS
3958 /* If MODE is wider than X, but both are a single word for both the host
3959 and target machines, we can compute this from which bits of the
3960 object might be nonzero in its own mode, taking into account the fact
3961 that on many CISC machines, accessing an object in a wider mode
3962 causes the high-order bits to become undefined. So they are
3963 not known to be zero. */
3965 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3966 && GET_MODE_PRECISION (GET_MODE (x
)) <= BITS_PER_WORD
3967 && GET_MODE_PRECISION (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3968 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (GET_MODE (x
)))
3970 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3971 known_x
, known_mode
, known_ret
);
3972 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3977 code
= GET_CODE (x
);
3981 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3982 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3983 all the bits above ptr_mode are known to be zero. */
3984 /* As we do not know which address space the pointer is referring to,
3985 we can do this only if the target does not support different pointer
3986 or address modes depending on the address space. */
3987 if (target_default_pointer_address_modes_p ()
3988 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3990 nonzero
&= GET_MODE_MASK (ptr_mode
);
3993 /* Include declared information about alignment of pointers. */
3994 /* ??? We don't properly preserve REG_POINTER changes across
3995 pointer-to-integer casts, so we can't trust it except for
3996 things that we know must be pointers. See execute/960116-1.c. */
3997 if ((x
== stack_pointer_rtx
3998 || x
== frame_pointer_rtx
3999 || x
== arg_pointer_rtx
)
4000 && REGNO_POINTER_ALIGN (REGNO (x
)))
4002 unsigned HOST_WIDE_INT alignment
4003 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
4005 #ifdef PUSH_ROUNDING
4006 /* If PUSH_ROUNDING is defined, it is possible for the
4007 stack to be momentarily aligned only to that amount,
4008 so we pick the least alignment. */
4009 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4010 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
4014 nonzero
&= ~(alignment
- 1);
4018 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4019 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
4020 known_mode
, known_ret
,
4024 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4025 known_mode
, known_ret
);
4027 return nonzero_for_hook
;
4031 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4032 /* If X is negative in MODE, sign-extend the value. */
4034 && mode_width
< BITS_PER_WORD
4035 && (UINTVAL (x
) & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
4037 return UINTVAL (x
) | ((unsigned HOST_WIDE_INT
) (-1) << mode_width
);
4043 #ifdef LOAD_EXTEND_OP
4044 /* In many, if not most, RISC machines, reading a byte from memory
4045 zeros the rest of the register. Noticing that fact saves a lot
4046 of extra zero-extends. */
4047 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
4048 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
4053 case UNEQ
: case LTGT
:
4054 case GT
: case GTU
: case UNGT
:
4055 case LT
: case LTU
: case UNLT
:
4056 case GE
: case GEU
: case UNGE
:
4057 case LE
: case LEU
: case UNLE
:
4058 case UNORDERED
: case ORDERED
:
4059 /* If this produces an integer result, we know which bits are set.
4060 Code here used to clear bits outside the mode of X, but that is
4062 /* Mind that MODE is the mode the caller wants to look at this
4063 operation in, and not the actual operation mode. We can wind
4064 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4065 that describes the results of a vector compare. */
4066 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
4067 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4068 nonzero
= STORE_FLAG_VALUE
;
4073 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4074 and num_sign_bit_copies. */
4075 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4076 == GET_MODE_PRECISION (GET_MODE (x
)))
4080 if (GET_MODE_PRECISION (GET_MODE (x
)) < mode_width
)
4081 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
4086 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4087 and num_sign_bit_copies. */
4088 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4089 == GET_MODE_PRECISION (GET_MODE (x
)))
4095 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4096 known_x
, known_mode
, known_ret
)
4097 & GET_MODE_MASK (mode
));
4101 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4102 known_x
, known_mode
, known_ret
);
4103 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4104 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4108 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4109 Otherwise, show all the bits in the outer mode but not the inner
4111 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4112 known_x
, known_mode
, known_ret
);
4113 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4115 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4116 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4117 inner_nz
|= (GET_MODE_MASK (mode
)
4118 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4121 nonzero
&= inner_nz
;
4125 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4126 known_x
, known_mode
, known_ret
)
4127 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4128 known_x
, known_mode
, known_ret
);
4132 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4134 unsigned HOST_WIDE_INT nonzero0
4135 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4136 known_x
, known_mode
, known_ret
);
4138 /* Don't call nonzero_bits for the second time if it cannot change
4140 if ((nonzero
& nonzero0
) != nonzero
)
4142 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4143 known_x
, known_mode
, known_ret
);
4147 case PLUS
: case MINUS
:
4149 case DIV
: case UDIV
:
4150 case MOD
: case UMOD
:
4151 /* We can apply the rules of arithmetic to compute the number of
4152 high- and low-order zero bits of these operations. We start by
4153 computing the width (position of the highest-order nonzero bit)
4154 and the number of low-order zero bits for each value. */
4156 unsigned HOST_WIDE_INT nz0
4157 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4158 known_x
, known_mode
, known_ret
);
4159 unsigned HOST_WIDE_INT nz1
4160 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4161 known_x
, known_mode
, known_ret
);
4162 int sign_index
= GET_MODE_PRECISION (GET_MODE (x
)) - 1;
4163 int width0
= floor_log2 (nz0
) + 1;
4164 int width1
= floor_log2 (nz1
) + 1;
4165 int low0
= floor_log2 (nz0
& -nz0
);
4166 int low1
= floor_log2 (nz1
& -nz1
);
4167 unsigned HOST_WIDE_INT op0_maybe_minusp
4168 = nz0
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4169 unsigned HOST_WIDE_INT op1_maybe_minusp
4170 = nz1
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4171 unsigned int result_width
= mode_width
;
4177 result_width
= MAX (width0
, width1
) + 1;
4178 result_low
= MIN (low0
, low1
);
4181 result_low
= MIN (low0
, low1
);
4184 result_width
= width0
+ width1
;
4185 result_low
= low0
+ low1
;
4190 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4191 result_width
= width0
;
4196 result_width
= width0
;
4201 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4202 result_width
= MIN (width0
, width1
);
4203 result_low
= MIN (low0
, low1
);
4208 result_width
= MIN (width0
, width1
);
4209 result_low
= MIN (low0
, low1
);
4215 if (result_width
< mode_width
)
4216 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << result_width
) - 1;
4219 nonzero
&= ~(((unsigned HOST_WIDE_INT
) 1 << result_low
) - 1);
4224 if (CONST_INT_P (XEXP (x
, 1))
4225 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4226 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4230 /* If this is a SUBREG formed for a promoted variable that has
4231 been zero-extended, we know that at least the high-order bits
4232 are zero, though others might be too. */
4234 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4235 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4236 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4237 known_x
, known_mode
, known_ret
);
4239 inner_mode
= GET_MODE (SUBREG_REG (x
));
4240 /* If the inner mode is a single word for both the host and target
4241 machines, we can compute this from which bits of the inner
4242 object might be nonzero. */
4243 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4244 && (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
))
4246 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4247 known_x
, known_mode
, known_ret
);
4249 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4250 /* If this is a typical RISC machine, we only have to worry
4251 about the way loads are extended. */
4252 if ((LOAD_EXTEND_OP (inner_mode
) == SIGN_EXTEND
4253 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4254 : LOAD_EXTEND_OP (inner_mode
) != ZERO_EXTEND
)
4255 || !MEM_P (SUBREG_REG (x
)))
4258 /* On many CISC machines, accessing an object in a wider mode
4259 causes the high-order bits to become undefined. So they are
4260 not known to be zero. */
4261 if (GET_MODE_PRECISION (GET_MODE (x
))
4262 > GET_MODE_PRECISION (inner_mode
))
4263 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4264 & ~GET_MODE_MASK (inner_mode
));
4273 /* The nonzero bits are in two classes: any bits within MODE
4274 that aren't in GET_MODE (x) are always significant. The rest of the
4275 nonzero bits are those that are significant in the operand of
4276 the shift when shifted the appropriate number of bits. This
4277 shows that high-order bits are cleared by the right shift and
4278 low-order bits by left shifts. */
4279 if (CONST_INT_P (XEXP (x
, 1))
4280 && INTVAL (XEXP (x
, 1)) >= 0
4281 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4282 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4284 enum machine_mode inner_mode
= GET_MODE (x
);
4285 unsigned int width
= GET_MODE_PRECISION (inner_mode
);
4286 int count
= INTVAL (XEXP (x
, 1));
4287 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4288 unsigned HOST_WIDE_INT op_nonzero
4289 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4290 known_x
, known_mode
, known_ret
);
4291 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4292 unsigned HOST_WIDE_INT outer
= 0;
4294 if (mode_width
> width
)
4295 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4297 if (code
== LSHIFTRT
)
4299 else if (code
== ASHIFTRT
)
4303 /* If the sign bit may have been nonzero before the shift, we
4304 need to mark all the places it could have been copied to
4305 by the shift as possibly nonzero. */
4306 if (inner
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4307 inner
|= (((unsigned HOST_WIDE_INT
) 1 << count
) - 1)
4310 else if (code
== ASHIFT
)
4313 inner
= ((inner
<< (count
% width
)
4314 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4316 nonzero
&= (outer
| inner
);
4322 /* This is at most the number of bits in the mode. */
4323 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4327 /* If CLZ has a known value at zero, then the nonzero bits are
4328 that value, plus the number of bits in the mode minus one. */
4329 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4331 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4337 /* If CTZ has a known value at zero, then the nonzero bits are
4338 that value, plus the number of bits in the mode minus one. */
4339 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4341 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4347 /* This is at most the number of bits in the mode minus 1. */
4348 nonzero
= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4357 unsigned HOST_WIDE_INT nonzero_true
4358 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4359 known_x
, known_mode
, known_ret
);
4361 /* Don't call nonzero_bits for the second time if it cannot change
4363 if ((nonzero
& nonzero_true
) != nonzero
)
4364 nonzero
&= nonzero_true
4365 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4366 known_x
, known_mode
, known_ret
);
4377 /* See the macro definition above. */
4378 #undef cached_num_sign_bit_copies
4381 /* The function cached_num_sign_bit_copies is a wrapper around
4382 num_sign_bit_copies1. It avoids exponential behavior in
4383 num_sign_bit_copies1 when X has identical subexpressions on the
4384 first or the second level. */
4387 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4388 enum machine_mode known_mode
,
4389 unsigned int known_ret
)
4391 if (x
== known_x
&& mode
== known_mode
)
4394 /* Try to find identical subexpressions. If found call
4395 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4396 the precomputed value for the subexpression as KNOWN_RET. */
4398 if (ARITHMETIC_P (x
))
4400 rtx x0
= XEXP (x
, 0);
4401 rtx x1
= XEXP (x
, 1);
4403 /* Check the first level. */
4406 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4407 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4411 /* Check the second level. */
4412 if (ARITHMETIC_P (x0
)
4413 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4415 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4416 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4420 if (ARITHMETIC_P (x1
)
4421 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4423 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4424 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4429 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4432 /* Return the number of bits at the high-order end of X that are known to
4433 be equal to the sign bit. X will be used in mode MODE; if MODE is
4434 VOIDmode, X will be used in its own mode. The returned value will always
4435 be between 1 and the number of bits in MODE. */
4438 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4439 enum machine_mode known_mode
,
4440 unsigned int known_ret
)
4442 enum rtx_code code
= GET_CODE (x
);
4443 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4444 int num0
, num1
, result
;
4445 unsigned HOST_WIDE_INT nonzero
;
4447 /* If we weren't given a mode, use the mode of X. If the mode is still
4448 VOIDmode, we don't know anything. Likewise if one of the modes is
4451 if (mode
== VOIDmode
)
4452 mode
= GET_MODE (x
);
4454 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4455 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4458 /* For a smaller object, just ignore the high bits. */
4459 if (bitwidth
< GET_MODE_PRECISION (GET_MODE (x
)))
4461 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4462 known_x
, known_mode
, known_ret
);
4464 num0
- (int) (GET_MODE_PRECISION (GET_MODE (x
)) - bitwidth
));
4467 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_PRECISION (GET_MODE (x
)))
4469 #ifndef WORD_REGISTER_OPERATIONS
4470 /* If this machine does not do all register operations on the entire
4471 register and MODE is wider than the mode of X, we can say nothing
4472 at all about the high-order bits. */
4475 /* Likewise on machines that do, if the mode of the object is smaller
4476 than a word and loads of that size don't sign extend, we can say
4477 nothing about the high order bits. */
4478 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
4479 #ifdef LOAD_EXTEND_OP
4480 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4491 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4492 /* If pointers extend signed and this is a pointer in Pmode, say that
4493 all the bits above ptr_mode are known to be sign bit copies. */
4494 /* As we do not know which address space the pointer is referring to,
4495 we can do this only if the target does not support different pointer
4496 or address modes depending on the address space. */
4497 if (target_default_pointer_address_modes_p ()
4498 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4499 && mode
== Pmode
&& REG_POINTER (x
))
4500 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4504 unsigned int copies_for_hook
= 1, copies
= 1;
4505 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4506 known_mode
, known_ret
,
4510 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4511 known_mode
, known_ret
);
4513 if (copies
> 1 || copies_for_hook
> 1)
4514 return MAX (copies
, copies_for_hook
);
4516 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4521 #ifdef LOAD_EXTEND_OP
4522 /* Some RISC machines sign-extend all loads of smaller than a word. */
4523 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4524 return MAX (1, ((int) bitwidth
4525 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1));
4530 /* If the constant is negative, take its 1's complement and remask.
4531 Then see how many zero bits we have. */
4532 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4533 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4534 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4535 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4537 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4540 /* If this is a SUBREG for a promoted object that is sign-extended
4541 and we are looking at it in a wider mode, we know that at least the
4542 high-order bits are known to be sign bit copies. */
4544 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4546 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4547 known_x
, known_mode
, known_ret
);
4548 return MAX ((int) bitwidth
4549 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1,
4553 /* For a smaller object, just ignore the high bits. */
4554 if (bitwidth
<= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))))
4556 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4557 known_x
, known_mode
, known_ret
);
4558 return MAX (1, (num0
4559 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
)))
4563 #ifdef WORD_REGISTER_OPERATIONS
4564 #ifdef LOAD_EXTEND_OP
4565 /* For paradoxical SUBREGs on machines where all register operations
4566 affect the entire register, just look inside. Note that we are
4567 passing MODE to the recursive call, so the number of sign bit copies
4568 will remain relative to that mode, not the inner mode. */
4570 /* This works only if loads sign extend. Otherwise, if we get a
4571 reload for the inner part, it may be loaded from the stack, and
4572 then we lose all sign bit copies that existed before the store
4575 if (paradoxical_subreg_p (x
)
4576 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4577 && MEM_P (SUBREG_REG (x
)))
4578 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4579 known_x
, known_mode
, known_ret
);
4585 if (CONST_INT_P (XEXP (x
, 1)))
4586 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4590 return (bitwidth
- GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4591 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4592 known_x
, known_mode
, known_ret
));
4595 /* For a smaller object, just ignore the high bits. */
4596 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4597 known_x
, known_mode
, known_ret
);
4598 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4602 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4603 known_x
, known_mode
, known_ret
);
4605 case ROTATE
: case ROTATERT
:
4606 /* If we are rotating left by a number of bits less than the number
4607 of sign bit copies, we can just subtract that amount from the
4609 if (CONST_INT_P (XEXP (x
, 1))
4610 && INTVAL (XEXP (x
, 1)) >= 0
4611 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4613 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4614 known_x
, known_mode
, known_ret
);
4615 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4616 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4621 /* In general, this subtracts one sign bit copy. But if the value
4622 is known to be positive, the number of sign bit copies is the
4623 same as that of the input. Finally, if the input has just one bit
4624 that might be nonzero, all the bits are copies of the sign bit. */
4625 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4626 known_x
, known_mode
, known_ret
);
4627 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4628 return num0
> 1 ? num0
- 1 : 1;
4630 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4635 && (((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4640 case IOR
: case AND
: case XOR
:
4641 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4642 /* Logical operations will preserve the number of sign-bit copies.
4643 MIN and MAX operations always return one of the operands. */
4644 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4645 known_x
, known_mode
, known_ret
);
4646 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4647 known_x
, known_mode
, known_ret
);
4649 /* If num1 is clearing some of the top bits then regardless of
4650 the other term, we are guaranteed to have at least that many
4651 high-order zero bits. */
4654 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4655 && CONST_INT_P (XEXP (x
, 1))
4656 && (UINTVAL (XEXP (x
, 1))
4657 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) == 0)
4660 /* Similarly for IOR when setting high-order bits. */
4663 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4664 && CONST_INT_P (XEXP (x
, 1))
4665 && (UINTVAL (XEXP (x
, 1))
4666 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4669 return MIN (num0
, num1
);
4671 case PLUS
: case MINUS
:
4672 /* For addition and subtraction, we can have a 1-bit carry. However,
4673 if we are subtracting 1 from a positive number, there will not
4674 be such a carry. Furthermore, if the positive number is known to
4675 be 0 or 1, we know the result is either -1 or 0. */
4677 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4678 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4680 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4681 if ((((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4682 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4683 : bitwidth
- floor_log2 (nonzero
) - 1);
4686 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4687 known_x
, known_mode
, known_ret
);
4688 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4689 known_x
, known_mode
, known_ret
);
4690 result
= MAX (1, MIN (num0
, num1
) - 1);
4695 /* The number of bits of the product is the sum of the number of
4696 bits of both terms. However, unless one of the terms if known
4697 to be positive, we must allow for an additional bit since negating
4698 a negative number can remove one sign bit copy. */
4700 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4701 known_x
, known_mode
, known_ret
);
4702 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4703 known_x
, known_mode
, known_ret
);
4705 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4707 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4708 || (((nonzero_bits (XEXP (x
, 0), mode
)
4709 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4710 && ((nonzero_bits (XEXP (x
, 1), mode
)
4711 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)))
4715 return MAX (1, result
);
4718 /* The result must be <= the first operand. If the first operand
4719 has the high bit set, we know nothing about the number of sign
4721 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4723 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4724 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4727 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4728 known_x
, known_mode
, known_ret
);
4731 /* The result must be <= the second operand. If the second operand
4732 has (or just might have) the high bit set, we know nothing about
4733 the number of sign bit copies. */
4734 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4736 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4737 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4740 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4741 known_x
, known_mode
, known_ret
);
4744 /* Similar to unsigned division, except that we have to worry about
4745 the case where the divisor is negative, in which case we have
4747 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4748 known_x
, known_mode
, known_ret
);
4750 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4751 || (nonzero_bits (XEXP (x
, 1), mode
)
4752 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4758 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4759 known_x
, known_mode
, known_ret
);
4761 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4762 || (nonzero_bits (XEXP (x
, 1), mode
)
4763 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4769 /* Shifts by a constant add to the number of bits equal to the
4771 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4772 known_x
, known_mode
, known_ret
);
4773 if (CONST_INT_P (XEXP (x
, 1))
4774 && INTVAL (XEXP (x
, 1)) > 0
4775 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4776 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4781 /* Left shifts destroy copies. */
4782 if (!CONST_INT_P (XEXP (x
, 1))
4783 || INTVAL (XEXP (x
, 1)) < 0
4784 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4785 || INTVAL (XEXP (x
, 1)) >= GET_MODE_PRECISION (GET_MODE (x
)))
4788 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4789 known_x
, known_mode
, known_ret
);
4790 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4793 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4794 known_x
, known_mode
, known_ret
);
4795 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4796 known_x
, known_mode
, known_ret
);
4797 return MIN (num0
, num1
);
4799 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4800 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4801 case GEU
: case GTU
: case LEU
: case LTU
:
4802 case UNORDERED
: case ORDERED
:
4803 /* If the constant is negative, take its 1's complement and remask.
4804 Then see how many zero bits we have. */
4805 nonzero
= STORE_FLAG_VALUE
;
4806 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4807 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4808 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4810 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4816 /* If we haven't been able to figure it out by one of the above rules,
4817 see if some of the high-order bits are known to be zero. If so,
4818 count those bits and return one less than that amount. If we can't
4819 safely compute the mask for this mode, always return BITWIDTH. */
4821 bitwidth
= GET_MODE_PRECISION (mode
);
4822 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4825 nonzero
= nonzero_bits (x
, mode
);
4826 return nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4827 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4830 /* Calculate the rtx_cost of a single instruction. A return value of
4831 zero indicates an instruction pattern without a known cost. */
4834 insn_rtx_cost (rtx pat
, bool speed
)
4839 /* Extract the single set rtx from the instruction pattern.
4840 We can't use single_set since we only have the pattern. */
4841 if (GET_CODE (pat
) == SET
)
4843 else if (GET_CODE (pat
) == PARALLEL
)
4846 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4848 rtx x
= XVECEXP (pat
, 0, i
);
4849 if (GET_CODE (x
) == SET
)
4862 cost
= set_src_cost (SET_SRC (set
), speed
);
4863 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4866 /* Given an insn INSN and condition COND, return the condition in a
4867 canonical form to simplify testing by callers. Specifically:
4869 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4870 (2) Both operands will be machine operands; (cc0) will have been replaced.
4871 (3) If an operand is a constant, it will be the second operand.
4872 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4873 for GE, GEU, and LEU.
4875 If the condition cannot be understood, or is an inequality floating-point
4876 comparison which needs to be reversed, 0 will be returned.
4878 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4880 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4881 insn used in locating the condition was found. If a replacement test
4882 of the condition is desired, it should be placed in front of that
4883 insn and we will be sure that the inputs are still valid.
4885 If WANT_REG is nonzero, we wish the condition to be relative to that
4886 register, if possible. Therefore, do not canonicalize the condition
4887 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4888 to be a compare to a CC mode register.
4890 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4894 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4895 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4902 int reverse_code
= 0;
4903 enum machine_mode mode
;
4904 basic_block bb
= BLOCK_FOR_INSN (insn
);
4906 code
= GET_CODE (cond
);
4907 mode
= GET_MODE (cond
);
4908 op0
= XEXP (cond
, 0);
4909 op1
= XEXP (cond
, 1);
4912 code
= reversed_comparison_code (cond
, insn
);
4913 if (code
== UNKNOWN
)
4919 /* If we are comparing a register with zero, see if the register is set
4920 in the previous insn to a COMPARE or a comparison operation. Perform
4921 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4924 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4925 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4926 && op1
== CONST0_RTX (GET_MODE (op0
))
4929 /* Set nonzero when we find something of interest. */
4933 /* If comparison with cc0, import actual comparison from compare
4937 if ((prev
= prev_nonnote_insn (prev
)) == 0
4938 || !NONJUMP_INSN_P (prev
)
4939 || (set
= single_set (prev
)) == 0
4940 || SET_DEST (set
) != cc0_rtx
)
4943 op0
= SET_SRC (set
);
4944 op1
= CONST0_RTX (GET_MODE (op0
));
4950 /* If this is a COMPARE, pick up the two things being compared. */
4951 if (GET_CODE (op0
) == COMPARE
)
4953 op1
= XEXP (op0
, 1);
4954 op0
= XEXP (op0
, 0);
4957 else if (!REG_P (op0
))
4960 /* Go back to the previous insn. Stop if it is not an INSN. We also
4961 stop if it isn't a single set or if it has a REG_INC note because
4962 we don't want to bother dealing with it. */
4964 prev
= prev_nonnote_nondebug_insn (prev
);
4967 || !NONJUMP_INSN_P (prev
)
4968 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4969 /* In cfglayout mode, there do not have to be labels at the
4970 beginning of a block, or jumps at the end, so the previous
4971 conditions would not stop us when we reach bb boundary. */
4972 || BLOCK_FOR_INSN (prev
) != bb
)
4975 set
= set_of (op0
, prev
);
4978 && (GET_CODE (set
) != SET
4979 || !rtx_equal_p (SET_DEST (set
), op0
)))
4982 /* If this is setting OP0, get what it sets it to if it looks
4986 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4987 #ifdef FLOAT_STORE_FLAG_VALUE
4988 REAL_VALUE_TYPE fsfv
;
4991 /* ??? We may not combine comparisons done in a CCmode with
4992 comparisons not done in a CCmode. This is to aid targets
4993 like Alpha that have an IEEE compliant EQ instruction, and
4994 a non-IEEE compliant BEQ instruction. The use of CCmode is
4995 actually artificial, simply to prevent the combination, but
4996 should not affect other platforms.
4998 However, we must allow VOIDmode comparisons to match either
4999 CCmode or non-CCmode comparison, because some ports have
5000 modeless comparisons inside branch patterns.
5002 ??? This mode check should perhaps look more like the mode check
5003 in simplify_comparison in combine. */
5005 if ((GET_CODE (SET_SRC (set
)) == COMPARE
5008 && val_signbit_known_set_p (inner_mode
,
5010 #ifdef FLOAT_STORE_FLAG_VALUE
5012 && SCALAR_FLOAT_MODE_P (inner_mode
)
5013 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5014 REAL_VALUE_NEGATIVE (fsfv
)))
5017 && COMPARISON_P (SET_SRC (set
))))
5018 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5019 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5020 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5022 else if (((code
== EQ
5024 && val_signbit_known_set_p (inner_mode
,
5026 #ifdef FLOAT_STORE_FLAG_VALUE
5028 && SCALAR_FLOAT_MODE_P (inner_mode
)
5029 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5030 REAL_VALUE_NEGATIVE (fsfv
)))
5033 && COMPARISON_P (SET_SRC (set
))
5034 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5035 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5036 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5046 else if (reg_set_p (op0
, prev
))
5047 /* If this sets OP0, but not directly, we have to give up. */
5052 /* If the caller is expecting the condition to be valid at INSN,
5053 make sure X doesn't change before INSN. */
5054 if (valid_at_insn_p
)
5055 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5057 if (COMPARISON_P (x
))
5058 code
= GET_CODE (x
);
5061 code
= reversed_comparison_code (x
, prev
);
5062 if (code
== UNKNOWN
)
5067 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5073 /* If constant is first, put it last. */
5074 if (CONSTANT_P (op0
))
5075 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5077 /* If OP0 is the result of a comparison, we weren't able to find what
5078 was really being compared, so fail. */
5080 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5083 /* Canonicalize any ordered comparison with integers involving equality
5084 if we can do computations in the relevant mode and we do not
5087 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
5088 && CONST_INT_P (op1
)
5089 && GET_MODE (op0
) != VOIDmode
5090 && GET_MODE_PRECISION (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
5092 HOST_WIDE_INT const_val
= INTVAL (op1
);
5093 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5094 unsigned HOST_WIDE_INT max_val
5095 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
5100 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5101 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
5104 /* When cross-compiling, const_val might be sign-extended from
5105 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5107 if ((const_val
& max_val
)
5108 != ((unsigned HOST_WIDE_INT
) 1
5109 << (GET_MODE_PRECISION (GET_MODE (op0
)) - 1)))
5110 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
5114 if (uconst_val
< max_val
)
5115 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
5119 if (uconst_val
!= 0)
5120 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
5128 /* Never return CC0; return zero instead. */
5132 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5135 /* Given a jump insn JUMP, return the condition that will cause it to branch
5136 to its JUMP_LABEL. If the condition cannot be understood, or is an
5137 inequality floating-point comparison which needs to be reversed, 0 will
5140 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5141 insn used in locating the condition was found. If a replacement test
5142 of the condition is desired, it should be placed in front of that
5143 insn and we will be sure that the inputs are still valid. If EARLIEST
5144 is null, the returned condition will be valid at INSN.
5146 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5147 compare CC mode register.
5149 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5152 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
5158 /* If this is not a standard conditional jump, we can't parse it. */
5160 || ! any_condjump_p (jump
))
5162 set
= pc_set (jump
);
5164 cond
= XEXP (SET_SRC (set
), 0);
5166 /* If this branches to JUMP_LABEL when the condition is false, reverse
5169 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5170 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
5172 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5173 allow_cc_mode
, valid_at_insn_p
);
5176 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5177 TARGET_MODE_REP_EXTENDED.
5179 Note that we assume that the property of
5180 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5181 narrower than mode B. I.e., if A is a mode narrower than B then in
5182 order to be able to operate on it in mode B, mode A needs to
5183 satisfy the requirements set by the representation of mode B. */
5186 init_num_sign_bit_copies_in_rep (void)
5188 enum machine_mode mode
, in_mode
;
5190 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
5191 in_mode
= GET_MODE_WIDER_MODE (mode
))
5192 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
5193 mode
= GET_MODE_WIDER_MODE (mode
))
5195 enum machine_mode i
;
5197 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5198 extends to the next widest mode. */
5199 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5200 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5202 /* We are in in_mode. Count how many bits outside of mode
5203 have to be copies of the sign-bit. */
5204 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5206 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5208 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5209 /* We can only check sign-bit copies starting from the
5210 top-bit. In order to be able to check the bits we
5211 have already seen we pretend that subsequent bits
5212 have to be sign-bit copies too. */
5213 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5214 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5215 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5220 /* Suppose that truncation from the machine mode of X to MODE is not a
5221 no-op. See if there is anything special about X so that we can
5222 assume it already contains a truncated value of MODE. */
5225 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5227 /* This register has already been used in MODE without explicit
5229 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5232 /* See if we already satisfy the requirements of MODE. If yes we
5233 can just switch to MODE. */
5234 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5235 && (num_sign_bit_copies (x
, GET_MODE (x
))
5236 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5242 /* Initialize non_rtx_starting_operands, which is used to speed up
5248 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5250 const char *format
= GET_RTX_FORMAT (i
);
5251 const char *first
= strpbrk (format
, "eEV");
5252 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5255 init_num_sign_bit_copies_in_rep ();
5258 /* Check whether this is a constant pool constant. */
5260 constant_pool_constant_p (rtx x
)
5262 x
= avoid_constant_pool_reference (x
);
5263 return CONST_DOUBLE_P (x
);
5266 /* If M is a bitmask that selects a field of low-order bits within an item but
5267 not the entire word, return the length of the field. Return -1 otherwise.
5268 M is used in machine mode MODE. */
5271 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5273 if (mode
!= VOIDmode
)
5275 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5277 m
&= GET_MODE_MASK (mode
);
5280 return exact_log2 (m
+ 1);
5283 /* Return the mode of MEM's address. */
5286 get_address_mode (rtx mem
)
5288 enum machine_mode mode
;
5290 gcc_assert (MEM_P (mem
));
5291 mode
= GET_MODE (XEXP (mem
, 0));
5292 if (mode
!= VOIDmode
)
5294 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5297 /* Split up a CONST_DOUBLE or integer constant rtx
5298 into two rtx's for single words,
5299 storing in *FIRST the word that comes first in memory in the target
5300 and in *SECOND the other. */
5303 split_double (rtx value
, rtx
*first
, rtx
*second
)
5305 if (CONST_INT_P (value
))
5307 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5309 /* In this case the CONST_INT holds both target words.
5310 Extract the bits from it into two word-sized pieces.
5311 Sign extend each half to HOST_WIDE_INT. */
5312 unsigned HOST_WIDE_INT low
, high
;
5313 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5314 unsigned bits_per_word
= BITS_PER_WORD
;
5316 /* Set sign_bit to the most significant bit of a word. */
5318 sign_bit
<<= bits_per_word
- 1;
5320 /* Set mask so that all bits of the word are set. We could
5321 have used 1 << BITS_PER_WORD instead of basing the
5322 calculation on sign_bit. However, on machines where
5323 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5324 compiler warning, even though the code would never be
5326 mask
= sign_bit
<< 1;
5329 /* Set sign_extend as any remaining bits. */
5330 sign_extend
= ~mask
;
5332 /* Pick the lower word and sign-extend it. */
5333 low
= INTVAL (value
);
5338 /* Pick the higher word, shifted to the least significant
5339 bits, and sign-extend it. */
5340 high
= INTVAL (value
);
5341 high
>>= bits_per_word
- 1;
5344 if (high
& sign_bit
)
5345 high
|= sign_extend
;
5347 /* Store the words in the target machine order. */
5348 if (WORDS_BIG_ENDIAN
)
5350 *first
= GEN_INT (high
);
5351 *second
= GEN_INT (low
);
5355 *first
= GEN_INT (low
);
5356 *second
= GEN_INT (high
);
5361 /* The rule for using CONST_INT for a wider mode
5362 is that we regard the value as signed.
5363 So sign-extend it. */
5364 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
5365 if (WORDS_BIG_ENDIAN
)
5377 else if (!CONST_DOUBLE_P (value
))
5379 if (WORDS_BIG_ENDIAN
)
5381 *first
= const0_rtx
;
5387 *second
= const0_rtx
;
5390 else if (GET_MODE (value
) == VOIDmode
5391 /* This is the old way we did CONST_DOUBLE integers. */
5392 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
5394 /* In an integer, the words are defined as most and least significant.
5395 So order them by the target's convention. */
5396 if (WORDS_BIG_ENDIAN
)
5398 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5399 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
5403 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
5404 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5411 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
5413 /* Note, this converts the REAL_VALUE_TYPE to the target's
5414 format, splits up the floating point double and outputs
5415 exactly 32 bits of it into each of l[0] and l[1] --
5416 not necessarily BITS_PER_WORD bits. */
5417 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
5419 /* If 32 bits is an entire word for the target, but not for the host,
5420 then sign-extend on the host so that the number will look the same
5421 way on the host that it would on the target. See for instance
5422 simplify_unary_operation. The #if is needed to avoid compiler
5425 #if HOST_BITS_PER_LONG > 32
5426 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
5428 if (l
[0] & ((long) 1 << 31))
5429 l
[0] |= ((long) (-1) << 32);
5430 if (l
[1] & ((long) 1 << 31))
5431 l
[1] |= ((long) (-1) << 32);
5435 *first
= GEN_INT (l
[0]);
5436 *second
= GEN_INT (l
[1]);
5440 /* Strip outer address "mutations" from LOC and return a pointer to the
5441 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5442 stripped expression there.
5444 "Mutations" either convert between modes or apply some kind of
5448 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
5452 enum rtx_code code
= GET_CODE (*loc
);
5453 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
5454 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5455 used to convert between pointer sizes. */
5456 loc
= &XEXP (*loc
, 0);
5457 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
5458 /* (and ... (const_int -X)) is used to align to X bytes. */
5459 loc
= &XEXP (*loc
, 0);
5460 else if (code
== SUBREG
5461 && !OBJECT_P (SUBREG_REG (*loc
))
5462 && subreg_lowpart_p (*loc
))
5463 /* (subreg (operator ...) ...) inside and is used for mode
5465 loc
= &SUBREG_REG (*loc
);
5473 /* Return true if X must be a base rather than an index. */
5476 must_be_base_p (rtx x
)
5478 return GET_CODE (x
) == LO_SUM
;
5481 /* Return true if X must be an index rather than a base. */
5484 must_be_index_p (rtx x
)
5486 return GET_CODE (x
) == MULT
|| GET_CODE (x
) == ASHIFT
;
5489 /* Set the segment part of address INFO to LOC, given that INNER is the
5493 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5495 gcc_checking_assert (GET_CODE (*inner
) == UNSPEC
);
5497 gcc_assert (!info
->segment
);
5498 info
->segment
= loc
;
5499 info
->segment_term
= inner
;
5502 /* Set the base part of address INFO to LOC, given that INNER is the
5506 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5508 if (GET_CODE (*inner
) == LO_SUM
)
5509 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5510 gcc_checking_assert (REG_P (*inner
)
5512 || GET_CODE (*inner
) == SUBREG
);
5514 gcc_assert (!info
->base
);
5516 info
->base_term
= inner
;
5519 /* Set the index part of address INFO to LOC, given that INNER is the
5523 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5525 if ((GET_CODE (*inner
) == MULT
|| GET_CODE (*inner
) == ASHIFT
)
5526 && CONSTANT_P (XEXP (*inner
, 1)))
5527 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5528 gcc_checking_assert (REG_P (*inner
)
5530 || GET_CODE (*inner
) == SUBREG
);
5532 gcc_assert (!info
->index
);
5534 info
->index_term
= inner
;
5537 /* Set the displacement part of address INFO to LOC, given that INNER
5538 is the constant term. */
5541 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5543 gcc_checking_assert (CONSTANT_P (*inner
));
5545 gcc_assert (!info
->disp
);
5547 info
->disp_term
= inner
;
5550 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5551 rest of INFO accordingly. */
5554 decompose_incdec_address (struct address_info
*info
)
5556 info
->autoinc_p
= true;
5558 rtx
*base
= &XEXP (*info
->inner
, 0);
5559 set_address_base (info
, base
, base
);
5560 gcc_checking_assert (info
->base
== info
->base_term
);
5562 /* These addresses are only valid when the size of the addressed
5564 gcc_checking_assert (info
->mode
!= VOIDmode
);
5567 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5568 of INFO accordingly. */
5571 decompose_automod_address (struct address_info
*info
)
5573 info
->autoinc_p
= true;
5575 rtx
*base
= &XEXP (*info
->inner
, 0);
5576 set_address_base (info
, base
, base
);
5577 gcc_checking_assert (info
->base
== info
->base_term
);
5579 rtx plus
= XEXP (*info
->inner
, 1);
5580 gcc_assert (GET_CODE (plus
) == PLUS
);
5582 info
->base_term2
= &XEXP (plus
, 0);
5583 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
5585 rtx
*step
= &XEXP (plus
, 1);
5586 rtx
*inner_step
= strip_address_mutations (step
);
5587 if (CONSTANT_P (*inner_step
))
5588 set_address_disp (info
, step
, inner_step
);
5590 set_address_index (info
, step
, inner_step
);
5593 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5594 values in [PTR, END). Return a pointer to the end of the used array. */
5597 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
5600 if (GET_CODE (x
) == PLUS
)
5602 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
5603 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
5607 gcc_assert (ptr
!= end
);
5613 /* Evaluate the likelihood of X being a base or index value, returning
5614 positive if it is likely to be a base, negative if it is likely to be
5615 an index, and 0 if we can't tell. Make the magnitude of the return
5616 value reflect the amount of confidence we have in the answer.
5618 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5621 baseness (rtx x
, enum machine_mode mode
, addr_space_t as
,
5622 enum rtx_code outer_code
, enum rtx_code index_code
)
5624 /* See whether we can be certain. */
5625 if (must_be_base_p (x
))
5627 if (must_be_index_p (x
))
5630 /* Believe *_POINTER unless the address shape requires otherwise. */
5631 if (REG_P (x
) && REG_POINTER (x
))
5633 if (MEM_P (x
) && MEM_POINTER (x
))
5636 if (REG_P (x
) && HARD_REGISTER_P (x
))
5638 /* X is a hard register. If it only fits one of the base
5639 or index classes, choose that interpretation. */
5640 int regno
= REGNO (x
);
5641 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
5642 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
5643 if (base_p
!= index_p
)
5644 return base_p
? 1 : -1;
5649 /* INFO->INNER describes a normal, non-automodified address.
5650 Fill in the rest of INFO accordingly. */
5653 decompose_normal_address (struct address_info
*info
)
5655 /* Treat the address as the sum of up to four values. */
5657 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
5658 ops
+ ARRAY_SIZE (ops
)) - ops
;
5660 /* If there is more than one component, any base component is in a PLUS. */
5662 info
->base_outer_code
= PLUS
;
5664 /* Separate the parts that contain a REG or MEM from those that don't.
5665 Record the latter in INFO and leave the former in OPS. */
5668 for (size_t in
= 0; in
< n_ops
; ++in
)
5671 rtx
*inner
= strip_address_mutations (loc
);
5672 if (CONSTANT_P (*inner
))
5673 set_address_disp (info
, loc
, inner
);
5674 else if (GET_CODE (*inner
) == UNSPEC
)
5675 set_address_segment (info
, loc
, inner
);
5679 inner_ops
[out
] = inner
;
5684 /* Classify the remaining OPS members as bases and indexes. */
5687 /* Assume that the remaining value is a base unless the shape
5688 requires otherwise. */
5689 if (!must_be_index_p (*inner_ops
[0]))
5690 set_address_base (info
, ops
[0], inner_ops
[0]);
5692 set_address_index (info
, ops
[0], inner_ops
[0]);
5696 /* In the event of a tie, assume the base comes first. */
5697 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
5699 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
5700 GET_CODE (*ops
[0])))
5702 set_address_base (info
, ops
[0], inner_ops
[0]);
5703 set_address_index (info
, ops
[1], inner_ops
[1]);
5707 set_address_base (info
, ops
[1], inner_ops
[1]);
5708 set_address_index (info
, ops
[0], inner_ops
[0]);
5712 gcc_assert (out
== 0);
5715 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5716 or VOIDmode if not known. AS is the address space associated with LOC.
5717 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5720 decompose_address (struct address_info
*info
, rtx
*loc
, enum machine_mode mode
,
5721 addr_space_t as
, enum rtx_code outer_code
)
5723 memset (info
, 0, sizeof (*info
));
5726 info
->addr_outer_code
= outer_code
;
5728 info
->inner
= strip_address_mutations (loc
, &outer_code
);
5729 info
->base_outer_code
= outer_code
;
5730 switch (GET_CODE (*info
->inner
))
5736 decompose_incdec_address (info
);
5741 decompose_automod_address (info
);
5745 decompose_normal_address (info
);
5750 /* Describe address operand LOC in INFO. */
5753 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
5755 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
5758 /* Describe the address of MEM X in INFO. */
5761 decompose_mem_address (struct address_info
*info
, rtx x
)
5763 gcc_assert (MEM_P (x
));
5764 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
5765 MEM_ADDR_SPACE (x
), MEM
);
5768 /* Update INFO after a change to the address it describes. */
5771 update_address (struct address_info
*info
)
5773 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
5774 info
->addr_outer_code
);
5777 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5778 more complicated than that. */
5781 get_index_scale (const struct address_info
*info
)
5783 rtx index
= *info
->index
;
5784 if (GET_CODE (index
) == MULT
5785 && CONST_INT_P (XEXP (index
, 1))
5786 && info
->index_term
== &XEXP (index
, 0))
5787 return INTVAL (XEXP (index
, 1));
5789 if (GET_CODE (index
) == ASHIFT
5790 && CONST_INT_P (XEXP (index
, 1))
5791 && info
->index_term
== &XEXP (index
, 0))
5792 return (HOST_WIDE_INT
) 1 << INTVAL (XEXP (index
, 1));
5794 if (info
->index
== info
->index_term
)
5800 /* Return the "index code" of INFO, in the form required by
5804 get_index_code (const struct address_info
*info
)
5807 return GET_CODE (*info
->index
);
5810 return GET_CODE (*info
->disp
);