Implement -mmemcpy-strategy= and -mmemset-strategy= options
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob57712d83d9cbd35af875d6fa22970d34a8f97ead
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Dbug; use Exp_Dbug;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Lib.Xref; use Lib.Xref;
44 with Layout; use Layout;
45 with Namet; use Namet;
46 with Lib; use Lib;
47 with Nlists; use Nlists;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Output; use Output;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch3; use Sem_Ch3;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch5; use Sem_Ch5;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch10; use Sem_Ch10;
62 with Sem_Ch12; use Sem_Ch12;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Mech; use Sem_Mech;
70 with Sem_Prag; use Sem_Prag;
71 with Sem_Res; use Sem_Res;
72 with Sem_Util; use Sem_Util;
73 with Sem_Type; use Sem_Type;
74 with Sem_Warn; use Sem_Warn;
75 with Sinput; use Sinput;
76 with Stand; use Stand;
77 with Sinfo; use Sinfo;
78 with Sinfo.CN; use Sinfo.CN;
79 with Snames; use Snames;
80 with Stringt; use Stringt;
81 with Style;
82 with Stylesw; use Stylesw;
83 with Targparm; use Targparm;
84 with Tbuild; use Tbuild;
85 with Uintp; use Uintp;
86 with Urealp; use Urealp;
87 with Validsw; use Validsw;
89 package body Sem_Ch6 is
91 May_Hide_Profile : Boolean := False;
92 -- This flag is used to indicate that two formals in two subprograms being
93 -- checked for conformance differ only in that one is an access parameter
94 -- while the other is of a general access type with the same designated
95 -- type. In this case, if the rest of the signatures match, a call to
96 -- either subprogram may be ambiguous, which is worth a warning. The flag
97 -- is set in Compatible_Types, and the warning emitted in
98 -- New_Overloaded_Entity.
100 -----------------------
101 -- Local Subprograms --
102 -----------------------
104 procedure Analyze_Null_Procedure
105 (N : Node_Id;
106 Is_Completion : out Boolean);
107 -- A null procedure can be a declaration or (Ada 2012) a completion.
109 procedure Analyze_Return_Statement (N : Node_Id);
110 -- Common processing for simple and extended return statements
112 procedure Analyze_Function_Return (N : Node_Id);
113 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
114 -- applies to a [generic] function.
116 procedure Analyze_Return_Type (N : Node_Id);
117 -- Subsidiary to Process_Formals: analyze subtype mark in function
118 -- specification in a context where the formals are visible and hide
119 -- outer homographs.
121 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
122 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
123 -- that we can use RETURN but not skip the debug output at the end.
125 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
126 -- Analyze a generic subprogram body. N is the body to be analyzed, and
127 -- Gen_Id is the defining entity Id for the corresponding spec.
129 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
130 -- If a subprogram has pragma Inline and inlining is active, use generic
131 -- machinery to build an unexpanded body for the subprogram. This body is
132 -- subsequently used for inline expansions at call sites. If subprogram can
133 -- be inlined (depending on size and nature of local declarations) this
134 -- function returns true. Otherwise subprogram body is treated normally.
135 -- If proper warnings are enabled and the subprogram contains a construct
136 -- that cannot be inlined, the offending construct is flagged accordingly.
138 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
139 -- Returns true if Subp can override a predefined operator.
141 procedure Check_And_Build_Body_To_Inline
142 (N : Node_Id;
143 Spec_Id : Entity_Id;
144 Body_Id : Entity_Id);
145 -- Spec_Id and Body_Id are the entities of the specification and body of
146 -- the subprogram body N. If N can be inlined by the frontend (supported
147 -- cases documented in Check_Body_To_Inline) then build the body-to-inline
148 -- associated with N and attach it to the declaration node of Spec_Id.
150 procedure Check_Conformance
151 (New_Id : Entity_Id;
152 Old_Id : Entity_Id;
153 Ctype : Conformance_Type;
154 Errmsg : Boolean;
155 Conforms : out Boolean;
156 Err_Loc : Node_Id := Empty;
157 Get_Inst : Boolean := False;
158 Skip_Controlling_Formals : Boolean := False);
159 -- Given two entities, this procedure checks that the profiles associated
160 -- with these entities meet the conformance criterion given by the third
161 -- parameter. If they conform, Conforms is set True and control returns
162 -- to the caller. If they do not conform, Conforms is set to False, and
163 -- in addition, if Errmsg is True on the call, proper messages are output
164 -- to complain about the conformance failure. If Err_Loc is non_Empty
165 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
166 -- error messages are placed on the appropriate part of the construct
167 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
168 -- against a formal access-to-subprogram type so Get_Instance_Of must
169 -- be called.
171 procedure Check_Subprogram_Order (N : Node_Id);
172 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
173 -- the alpha ordering rule for N if this ordering requirement applicable.
175 procedure Check_Returns
176 (HSS : Node_Id;
177 Mode : Character;
178 Err : out Boolean;
179 Proc : Entity_Id := Empty);
180 -- Called to check for missing return statements in a function body, or for
181 -- returns present in a procedure body which has No_Return set. HSS is the
182 -- handled statement sequence for the subprogram body. This procedure
183 -- checks all flow paths to make sure they either have return (Mode = 'F',
184 -- used for functions) or do not have a return (Mode = 'P', used for
185 -- No_Return procedures). The flag Err is set if there are any control
186 -- paths not explicitly terminated by a return in the function case, and is
187 -- True otherwise. Proc is the entity for the procedure case and is used
188 -- in posting the warning message.
190 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
191 -- In Ada 2012, a primitive equality operator on an untagged record type
192 -- must appear before the type is frozen, and have the same visibility as
193 -- that of the type. This procedure checks that this rule is met, and
194 -- otherwise emits an error on the subprogram declaration and a warning
195 -- on the earlier freeze point if it is easy to locate.
197 procedure Enter_Overloaded_Entity (S : Entity_Id);
198 -- This procedure makes S, a new overloaded entity, into the first visible
199 -- entity with that name.
201 function Is_Non_Overriding_Operation
202 (Prev_E : Entity_Id;
203 New_E : Entity_Id) return Boolean;
204 -- Enforce the rule given in 12.3(18): a private operation in an instance
205 -- overrides an inherited operation only if the corresponding operation
206 -- was overriding in the generic. This needs to be checked for primitive
207 -- operations of types derived (in the generic unit) from formal private
208 -- or formal derived types.
210 procedure Make_Inequality_Operator (S : Entity_Id);
211 -- Create the declaration for an inequality operator that is implicitly
212 -- created by a user-defined equality operator that yields a boolean.
214 procedure May_Need_Actuals (Fun : Entity_Id);
215 -- Flag functions that can be called without parameters, i.e. those that
216 -- have no parameters, or those for which defaults exist for all parameters
218 procedure Process_PPCs
219 (N : Node_Id;
220 Spec_Id : Entity_Id;
221 Body_Id : Entity_Id);
222 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
223 -- conditions for the body and assembling and inserting the _postconditions
224 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
225 -- the entities for the body and separate spec (if there is no separate
226 -- spec, Spec_Id is Empty). Note that invariants and predicates may also
227 -- provide postconditions, and are also handled in this procedure.
229 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
230 -- Formal_Id is an formal parameter entity. This procedure deals with
231 -- setting the proper validity status for this entity, which depends on
232 -- the kind of parameter and the validity checking mode.
234 ---------------------------------------------
235 -- Analyze_Abstract_Subprogram_Declaration --
236 ---------------------------------------------
238 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
239 Designator : constant Entity_Id :=
240 Analyze_Subprogram_Specification (Specification (N));
241 Scop : constant Entity_Id := Current_Scope;
243 begin
244 Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
246 Generate_Definition (Designator);
247 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
248 Set_Is_Abstract_Subprogram (Designator);
249 New_Overloaded_Entity (Designator);
250 Check_Delayed_Subprogram (Designator);
252 Set_Categorization_From_Scope (Designator, Scop);
254 if Ekind (Scope (Designator)) = E_Protected_Type then
255 Error_Msg_N
256 ("abstract subprogram not allowed in protected type", N);
258 -- Issue a warning if the abstract subprogram is neither a dispatching
259 -- operation nor an operation that overrides an inherited subprogram or
260 -- predefined operator, since this most likely indicates a mistake.
262 elsif Warn_On_Redundant_Constructs
263 and then not Is_Dispatching_Operation (Designator)
264 and then not Present (Overridden_Operation (Designator))
265 and then (not Is_Operator_Symbol_Name (Chars (Designator))
266 or else Scop /= Scope (Etype (First_Formal (Designator))))
267 then
268 Error_Msg_N
269 ("abstract subprogram is not dispatching or overriding?r?", N);
270 end if;
272 Generate_Reference_To_Formals (Designator);
273 Check_Eliminated (Designator);
275 if Has_Aspects (N) then
276 Analyze_Aspect_Specifications (N, Designator);
277 end if;
278 end Analyze_Abstract_Subprogram_Declaration;
280 ---------------------------------
281 -- Analyze_Expression_Function --
282 ---------------------------------
284 procedure Analyze_Expression_Function (N : Node_Id) is
285 Loc : constant Source_Ptr := Sloc (N);
286 LocX : constant Source_Ptr := Sloc (Expression (N));
287 Expr : constant Node_Id := Expression (N);
288 Spec : constant Node_Id := Specification (N);
290 Def_Id : Entity_Id;
292 Prev : Entity_Id;
293 -- If the expression is a completion, Prev is the entity whose
294 -- declaration is completed. Def_Id is needed to analyze the spec.
296 New_Body : Node_Id;
297 New_Decl : Node_Id;
298 New_Spec : Node_Id;
299 Ret : Node_Id;
301 begin
302 -- This is one of the occasions on which we transform the tree during
303 -- semantic analysis. If this is a completion, transform the expression
304 -- function into an equivalent subprogram body, and analyze it.
306 -- Expression functions are inlined unconditionally. The back-end will
307 -- determine whether this is possible.
309 Inline_Processing_Required := True;
311 -- Create a specification for the generated body. Types and defauts in
312 -- the profile are copies of the spec, but new entities must be created
313 -- for the unit name and the formals.
315 New_Spec := New_Copy_Tree (Spec);
316 Set_Defining_Unit_Name (New_Spec,
317 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
318 Chars (Defining_Unit_Name (Spec))));
320 if Present (Parameter_Specifications (New_Spec)) then
321 declare
322 Formal_Spec : Node_Id;
323 begin
324 Formal_Spec := First (Parameter_Specifications (New_Spec));
325 while Present (Formal_Spec) loop
326 Set_Defining_Identifier
327 (Formal_Spec,
328 Make_Defining_Identifier (Sloc (Formal_Spec),
329 Chars => Chars (Defining_Identifier (Formal_Spec))));
330 Next (Formal_Spec);
331 end loop;
332 end;
333 end if;
335 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
337 -- If there are previous overloadable entities with the same name,
338 -- check whether any of them is completed by the expression function.
340 if Present (Prev) and then Is_Overloadable (Prev) then
341 Def_Id := Analyze_Subprogram_Specification (Spec);
342 Prev := Find_Corresponding_Spec (N);
343 end if;
345 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
347 New_Body :=
348 Make_Subprogram_Body (Loc,
349 Specification => New_Spec,
350 Declarations => Empty_List,
351 Handled_Statement_Sequence =>
352 Make_Handled_Sequence_Of_Statements (LocX,
353 Statements => New_List (Ret)));
355 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
357 -- If the expression completes a generic subprogram, we must create a
358 -- separate node for the body, because at instantiation the original
359 -- node of the generic copy must be a generic subprogram body, and
360 -- cannot be a expression function. Otherwise we just rewrite the
361 -- expression with the non-generic body.
363 Insert_After (N, New_Body);
364 Rewrite (N, Make_Null_Statement (Loc));
365 Set_Has_Completion (Prev, False);
366 Analyze (N);
367 Analyze (New_Body);
368 Set_Is_Inlined (Prev);
370 elsif Present (Prev) and then Comes_From_Source (Prev) then
371 Set_Has_Completion (Prev, False);
373 -- For navigation purposes, indicate that the function is a body
375 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
376 Rewrite (N, New_Body);
377 Analyze (N);
379 -- Prev is the previous entity with the same name, but it is can
380 -- be an unrelated spec that is not completed by the expression
381 -- function. In that case the relevant entity is the one in the body.
382 -- Not clear that the backend can inline it in this case ???
384 if Has_Completion (Prev) then
385 Set_Is_Inlined (Prev);
387 -- The formals of the expression function are body formals,
388 -- and do not appear in the ali file, which will only contain
389 -- references to the formals of the original subprogram spec.
391 declare
392 F1 : Entity_Id;
393 F2 : Entity_Id;
395 begin
396 F1 := First_Formal (Def_Id);
397 F2 := First_Formal (Prev);
399 while Present (F1) loop
400 Set_Spec_Entity (F1, F2);
401 Next_Formal (F1);
402 Next_Formal (F2);
403 end loop;
404 end;
406 else
407 Set_Is_Inlined (Defining_Entity (New_Body));
408 end if;
410 -- If this is not a completion, create both a declaration and a body, so
411 -- that the expression can be inlined whenever possible.
413 else
414 -- An expression function that is not a completion is not a
415 -- subprogram declaration, and thus cannot appear in a protected
416 -- definition.
418 if Nkind (Parent (N)) = N_Protected_Definition then
419 Error_Msg_N
420 ("an expression function is not a legal protected operation", N);
421 end if;
423 New_Decl :=
424 Make_Subprogram_Declaration (Loc, Specification => Spec);
426 Rewrite (N, New_Decl);
427 Analyze (N);
428 Set_Is_Inlined (Defining_Entity (New_Decl));
430 -- To prevent premature freeze action, insert the new body at the end
431 -- of the current declarations, or at the end of the package spec.
432 -- However, resolve usage names now, to prevent spurious visibility
433 -- on later entities.
435 declare
436 Decls : List_Id := List_Containing (N);
437 Par : constant Node_Id := Parent (Decls);
438 Id : constant Entity_Id := Defining_Entity (New_Decl);
440 begin
441 if Nkind (Par) = N_Package_Specification
442 and then Decls = Visible_Declarations (Par)
443 and then Present (Private_Declarations (Par))
444 and then not Is_Empty_List (Private_Declarations (Par))
445 then
446 Decls := Private_Declarations (Par);
447 end if;
449 Insert_After (Last (Decls), New_Body);
450 Push_Scope (Id);
451 Install_Formals (Id);
453 -- Do a preanalysis of the expression on a separate copy, to
454 -- prevent visibility issues later with operators in instances.
455 -- Attach copy to tree so that parent links are available.
457 declare
458 Expr : constant Node_Id := New_Copy_Tree (Expression (Ret));
459 begin
460 Set_Parent (Expr, Ret);
461 Preanalyze_Spec_Expression (Expr, Etype (Id));
462 end;
464 End_Scope;
465 end;
466 end if;
468 -- If the return expression is a static constant, we suppress warning
469 -- messages on unused formals, which in most cases will be noise.
471 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
472 Is_OK_Static_Expression (Expr));
473 end Analyze_Expression_Function;
475 ----------------------------------------
476 -- Analyze_Extended_Return_Statement --
477 ----------------------------------------
479 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
480 begin
481 Analyze_Return_Statement (N);
482 end Analyze_Extended_Return_Statement;
484 ----------------------------
485 -- Analyze_Function_Call --
486 ----------------------------
488 procedure Analyze_Function_Call (N : Node_Id) is
489 Actuals : constant List_Id := Parameter_Associations (N);
490 Func_Nam : constant Node_Id := Name (N);
491 Actual : Node_Id;
493 begin
494 Analyze (Func_Nam);
496 -- A call of the form A.B (X) may be an Ada 2005 call, which is
497 -- rewritten as B (A, X). If the rewriting is successful, the call
498 -- has been analyzed and we just return.
500 if Nkind (Func_Nam) = N_Selected_Component
501 and then Name (N) /= Func_Nam
502 and then Is_Rewrite_Substitution (N)
503 and then Present (Etype (N))
504 then
505 return;
506 end if;
508 -- If error analyzing name, then set Any_Type as result type and return
510 if Etype (Func_Nam) = Any_Type then
511 Set_Etype (N, Any_Type);
512 return;
513 end if;
515 -- Otherwise analyze the parameters
517 if Present (Actuals) then
518 Actual := First (Actuals);
519 while Present (Actual) loop
520 Analyze (Actual);
521 Check_Parameterless_Call (Actual);
522 Next (Actual);
523 end loop;
524 end if;
526 Analyze_Call (N);
527 end Analyze_Function_Call;
529 -----------------------------
530 -- Analyze_Function_Return --
531 -----------------------------
533 procedure Analyze_Function_Return (N : Node_Id) is
534 Loc : constant Source_Ptr := Sloc (N);
535 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
536 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
538 R_Type : constant Entity_Id := Etype (Scope_Id);
539 -- Function result subtype
541 procedure Check_Limited_Return (Expr : Node_Id);
542 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
543 -- limited types. Used only for simple return statements.
544 -- Expr is the expression returned.
546 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
547 -- Check that the return_subtype_indication properly matches the result
548 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
550 --------------------------
551 -- Check_Limited_Return --
552 --------------------------
554 procedure Check_Limited_Return (Expr : Node_Id) is
555 begin
556 -- Ada 2005 (AI-318-02): Return-by-reference types have been
557 -- removed and replaced by anonymous access results. This is an
558 -- incompatibility with Ada 95. Not clear whether this should be
559 -- enforced yet or perhaps controllable with special switch. ???
561 -- A limited interface that is not immutably limited is OK.
563 if Is_Limited_Interface (R_Type)
564 and then
565 not (Is_Task_Interface (R_Type)
566 or else Is_Protected_Interface (R_Type)
567 or else Is_Synchronized_Interface (R_Type))
568 then
569 null;
571 elsif Is_Limited_Type (R_Type)
572 and then not Is_Interface (R_Type)
573 and then Comes_From_Source (N)
574 and then not In_Instance_Body
575 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
576 then
577 -- Error in Ada 2005
579 if Ada_Version >= Ada_2005
580 and then not Debug_Flag_Dot_L
581 and then not GNAT_Mode
582 then
583 Error_Msg_N
584 ("(Ada 2005) cannot copy object of a limited type " &
585 "(RM-2005 6.5(5.5/2))", Expr);
587 if Is_Immutably_Limited_Type (R_Type) then
588 Error_Msg_N
589 ("\return by reference not permitted in Ada 2005", Expr);
590 end if;
592 -- Warn in Ada 95 mode, to give folks a heads up about this
593 -- incompatibility.
595 -- In GNAT mode, this is just a warning, to allow it to be
596 -- evilly turned off. Otherwise it is a real error.
598 -- In a generic context, simplify the warning because it makes
599 -- no sense to discuss pass-by-reference or copy.
601 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
602 if Inside_A_Generic then
603 Error_Msg_N
604 ("return of limited object not permitted in Ada 2005 "
605 & "(RM-2005 6.5(5.5/2))?y?", Expr);
607 elsif Is_Immutably_Limited_Type (R_Type) then
608 Error_Msg_N
609 ("return by reference not permitted in Ada 2005 "
610 & "(RM-2005 6.5(5.5/2))?y?", Expr);
611 else
612 Error_Msg_N
613 ("cannot copy object of a limited type in Ada 2005 "
614 & "(RM-2005 6.5(5.5/2))?y?", Expr);
615 end if;
617 -- Ada 95 mode, compatibility warnings disabled
619 else
620 return; -- skip continuation messages below
621 end if;
623 if not Inside_A_Generic then
624 Error_Msg_N
625 ("\consider switching to return of access type", Expr);
626 Explain_Limited_Type (R_Type, Expr);
627 end if;
628 end if;
629 end Check_Limited_Return;
631 -------------------------------------
632 -- Check_Return_Subtype_Indication --
633 -------------------------------------
635 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
636 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
638 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
639 -- Subtype given in the extended return statement (must match R_Type)
641 Subtype_Ind : constant Node_Id :=
642 Object_Definition (Original_Node (Obj_Decl));
644 R_Type_Is_Anon_Access :
645 constant Boolean :=
646 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
647 or else
648 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
649 or else
650 Ekind (R_Type) = E_Anonymous_Access_Type;
651 -- True if return type of the function is an anonymous access type
652 -- Can't we make Is_Anonymous_Access_Type in einfo ???
654 R_Stm_Type_Is_Anon_Access :
655 constant Boolean :=
656 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
657 or else
658 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
659 or else
660 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
661 -- True if type of the return object is an anonymous access type
663 begin
664 -- First, avoid cascaded errors
666 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
667 return;
668 end if;
670 -- "return access T" case; check that the return statement also has
671 -- "access T", and that the subtypes statically match:
672 -- if this is an access to subprogram the signatures must match.
674 if R_Type_Is_Anon_Access then
675 if R_Stm_Type_Is_Anon_Access then
677 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
678 then
679 if Base_Type (Designated_Type (R_Stm_Type)) /=
680 Base_Type (Designated_Type (R_Type))
681 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
682 then
683 Error_Msg_N
684 ("subtype must statically match function result subtype",
685 Subtype_Mark (Subtype_Ind));
686 end if;
688 else
689 -- For two anonymous access to subprogram types, the
690 -- types themselves must be type conformant.
692 if not Conforming_Types
693 (R_Stm_Type, R_Type, Fully_Conformant)
694 then
695 Error_Msg_N
696 ("subtype must statically match function result subtype",
697 Subtype_Ind);
698 end if;
699 end if;
701 else
702 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
703 end if;
705 -- If the return object is of an anonymous access type, then report
706 -- an error if the function's result type is not also anonymous.
708 elsif R_Stm_Type_Is_Anon_Access
709 and then not R_Type_Is_Anon_Access
710 then
711 Error_Msg_N ("anonymous access not allowed for function with " &
712 "named access result", Subtype_Ind);
714 -- Subtype indication case: check that the return object's type is
715 -- covered by the result type, and that the subtypes statically match
716 -- when the result subtype is constrained. Also handle record types
717 -- with unknown discriminants for which we have built the underlying
718 -- record view. Coverage is needed to allow specific-type return
719 -- objects when the result type is class-wide (see AI05-32).
721 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
722 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
723 and then
724 Covers
725 (Base_Type (R_Type),
726 Underlying_Record_View (Base_Type (R_Stm_Type))))
727 then
728 -- A null exclusion may be present on the return type, on the
729 -- function specification, on the object declaration or on the
730 -- subtype itself.
732 if Is_Access_Type (R_Type)
733 and then
734 (Can_Never_Be_Null (R_Type)
735 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
736 Can_Never_Be_Null (R_Stm_Type)
737 then
738 Error_Msg_N
739 ("subtype must statically match function result subtype",
740 Subtype_Ind);
741 end if;
743 -- AI05-103: for elementary types, subtypes must statically match
745 if Is_Constrained (R_Type)
746 or else Is_Access_Type (R_Type)
747 then
748 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
749 Error_Msg_N
750 ("subtype must statically match function result subtype",
751 Subtype_Ind);
752 end if;
753 end if;
755 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
756 and then Is_Null_Extension (Base_Type (R_Type))
757 then
758 null;
760 else
761 Error_Msg_N
762 ("wrong type for return_subtype_indication", Subtype_Ind);
763 end if;
764 end Check_Return_Subtype_Indication;
766 ---------------------
767 -- Local Variables --
768 ---------------------
770 Expr : Node_Id;
772 -- Start of processing for Analyze_Function_Return
774 begin
775 Set_Return_Present (Scope_Id);
777 if Nkind (N) = N_Simple_Return_Statement then
778 Expr := Expression (N);
780 -- Guard against a malformed expression. The parser may have tried to
781 -- recover but the node is not analyzable.
783 if Nkind (Expr) = N_Error then
784 Set_Etype (Expr, Any_Type);
785 Expander_Mode_Save_And_Set (False);
786 return;
788 else
789 -- The resolution of a controlled [extension] aggregate associated
790 -- with a return statement creates a temporary which needs to be
791 -- finalized on function exit. Wrap the return statement inside a
792 -- block so that the finalization machinery can detect this case.
793 -- This early expansion is done only when the return statement is
794 -- not part of a handled sequence of statements.
796 if Nkind_In (Expr, N_Aggregate,
797 N_Extension_Aggregate)
798 and then Needs_Finalization (R_Type)
799 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
800 then
801 Rewrite (N,
802 Make_Block_Statement (Loc,
803 Handled_Statement_Sequence =>
804 Make_Handled_Sequence_Of_Statements (Loc,
805 Statements => New_List (Relocate_Node (N)))));
807 Analyze (N);
808 return;
809 end if;
811 Analyze_And_Resolve (Expr, R_Type);
812 Check_Limited_Return (Expr);
813 end if;
815 -- RETURN only allowed in SPARK as the last statement in function
817 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
818 and then
819 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
820 or else Present (Next (N)))
821 then
822 Check_SPARK_Restriction
823 ("RETURN should be the last statement in function", N);
824 end if;
826 else
827 Check_SPARK_Restriction ("extended RETURN is not allowed", N);
829 -- Analyze parts specific to extended_return_statement:
831 declare
832 Obj_Decl : constant Node_Id :=
833 Last (Return_Object_Declarations (N));
834 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
835 HSS : constant Node_Id := Handled_Statement_Sequence (N);
837 begin
838 Expr := Expression (Obj_Decl);
840 -- Note: The check for OK_For_Limited_Init will happen in
841 -- Analyze_Object_Declaration; we treat it as a normal
842 -- object declaration.
844 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
845 Analyze (Obj_Decl);
847 Check_Return_Subtype_Indication (Obj_Decl);
849 if Present (HSS) then
850 Analyze (HSS);
852 if Present (Exception_Handlers (HSS)) then
854 -- ???Has_Nested_Block_With_Handler needs to be set.
855 -- Probably by creating an actual N_Block_Statement.
856 -- Probably in Expand.
858 null;
859 end if;
860 end if;
862 -- Mark the return object as referenced, since the return is an
863 -- implicit reference of the object.
865 Set_Referenced (Defining_Identifier (Obj_Decl));
867 Check_References (Stm_Entity);
869 -- Check RM 6.5 (5.9/3)
871 if Has_Aliased then
872 if Ada_Version < Ada_2012 then
874 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
875 -- Can it really happen (extended return???)
877 Error_Msg_N
878 ("aliased only allowed for limited"
879 & " return objects in Ada 2012?", N);
881 elsif not Is_Immutably_Limited_Type (R_Type) then
882 Error_Msg_N ("aliased only allowed for limited"
883 & " return objects", N);
884 end if;
885 end if;
886 end;
887 end if;
889 -- Case of Expr present
891 if Present (Expr)
893 -- Defend against previous errors
895 and then Nkind (Expr) /= N_Empty
896 and then Present (Etype (Expr))
897 then
898 -- Apply constraint check. Note that this is done before the implicit
899 -- conversion of the expression done for anonymous access types to
900 -- ensure correct generation of the null-excluding check associated
901 -- with null-excluding expressions found in return statements.
903 Apply_Constraint_Check (Expr, R_Type);
905 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
906 -- type, apply an implicit conversion of the expression to that type
907 -- to force appropriate static and run-time accessibility checks.
909 if Ada_Version >= Ada_2005
910 and then Ekind (R_Type) = E_Anonymous_Access_Type
911 then
912 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
913 Analyze_And_Resolve (Expr, R_Type);
915 -- If this is a local anonymous access to subprogram, the
916 -- accessibility check can be applied statically. The return is
917 -- illegal if the access type of the return expression is declared
918 -- inside of the subprogram (except if it is the subtype indication
919 -- of an extended return statement).
921 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
922 if not Comes_From_Source (Current_Scope)
923 or else Ekind (Current_Scope) = E_Return_Statement
924 then
925 null;
927 elsif
928 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
929 then
930 Error_Msg_N ("cannot return local access to subprogram", N);
931 end if;
932 end if;
934 -- If the result type is class-wide, then check that the return
935 -- expression's type is not declared at a deeper level than the
936 -- function (RM05-6.5(5.6/2)).
938 if Ada_Version >= Ada_2005
939 and then Is_Class_Wide_Type (R_Type)
940 then
941 if Type_Access_Level (Etype (Expr)) >
942 Subprogram_Access_Level (Scope_Id)
943 then
944 Error_Msg_N
945 ("level of return expression type is deeper than " &
946 "class-wide function!", Expr);
947 end if;
948 end if;
950 -- Check incorrect use of dynamically tagged expression
952 if Is_Tagged_Type (R_Type) then
953 Check_Dynamically_Tagged_Expression
954 (Expr => Expr,
955 Typ => R_Type,
956 Related_Nod => N);
957 end if;
959 -- ??? A real run-time accessibility check is needed in cases
960 -- involving dereferences of access parameters. For now we just
961 -- check the static cases.
963 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
964 and then Is_Immutably_Limited_Type (Etype (Scope_Id))
965 and then Object_Access_Level (Expr) >
966 Subprogram_Access_Level (Scope_Id)
967 then
968 -- Suppress the message in a generic, where the rewriting
969 -- is irrelevant.
971 if Inside_A_Generic then
972 null;
974 else
975 Rewrite (N,
976 Make_Raise_Program_Error (Loc,
977 Reason => PE_Accessibility_Check_Failed));
978 Analyze (N);
980 Error_Msg_N
981 ("cannot return a local value by reference??", N);
982 Error_Msg_NE
983 ("\& will be raised at run time??",
984 N, Standard_Program_Error);
985 end if;
986 end if;
988 if Known_Null (Expr)
989 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
990 and then Null_Exclusion_Present (Parent (Scope_Id))
991 then
992 Apply_Compile_Time_Constraint_Error
993 (N => Expr,
994 Msg => "(Ada 2005) null not allowed for "
995 & "null-excluding return??",
996 Reason => CE_Null_Not_Allowed);
997 end if;
998 end if;
999 end Analyze_Function_Return;
1001 -------------------------------------
1002 -- Analyze_Generic_Subprogram_Body --
1003 -------------------------------------
1005 procedure Analyze_Generic_Subprogram_Body
1006 (N : Node_Id;
1007 Gen_Id : Entity_Id)
1009 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1010 Kind : constant Entity_Kind := Ekind (Gen_Id);
1011 Body_Id : Entity_Id;
1012 New_N : Node_Id;
1013 Spec : Node_Id;
1015 begin
1016 -- Copy body and disable expansion while analyzing the generic For a
1017 -- stub, do not copy the stub (which would load the proper body), this
1018 -- will be done when the proper body is analyzed.
1020 if Nkind (N) /= N_Subprogram_Body_Stub then
1021 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1022 Rewrite (N, New_N);
1023 Start_Generic;
1024 end if;
1026 Spec := Specification (N);
1028 -- Within the body of the generic, the subprogram is callable, and
1029 -- behaves like the corresponding non-generic unit.
1031 Body_Id := Defining_Entity (Spec);
1033 if Kind = E_Generic_Procedure
1034 and then Nkind (Spec) /= N_Procedure_Specification
1035 then
1036 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1037 return;
1039 elsif Kind = E_Generic_Function
1040 and then Nkind (Spec) /= N_Function_Specification
1041 then
1042 Error_Msg_N ("invalid body for generic function ", Body_Id);
1043 return;
1044 end if;
1046 Set_Corresponding_Body (Gen_Decl, Body_Id);
1048 if Has_Completion (Gen_Id)
1049 and then Nkind (Parent (N)) /= N_Subunit
1050 then
1051 Error_Msg_N ("duplicate generic body", N);
1052 return;
1053 else
1054 Set_Has_Completion (Gen_Id);
1055 end if;
1057 if Nkind (N) = N_Subprogram_Body_Stub then
1058 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1059 else
1060 Set_Corresponding_Spec (N, Gen_Id);
1061 end if;
1063 if Nkind (Parent (N)) = N_Compilation_Unit then
1064 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1065 end if;
1067 -- Make generic parameters immediately visible in the body. They are
1068 -- needed to process the formals declarations. Then make the formals
1069 -- visible in a separate step.
1071 Push_Scope (Gen_Id);
1073 declare
1074 E : Entity_Id;
1075 First_Ent : Entity_Id;
1077 begin
1078 First_Ent := First_Entity (Gen_Id);
1080 E := First_Ent;
1081 while Present (E) and then not Is_Formal (E) loop
1082 Install_Entity (E);
1083 Next_Entity (E);
1084 end loop;
1086 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1088 -- Now generic formals are visible, and the specification can be
1089 -- analyzed, for subsequent conformance check.
1091 Body_Id := Analyze_Subprogram_Specification (Spec);
1093 -- Make formal parameters visible
1095 if Present (E) then
1097 -- E is the first formal parameter, we loop through the formals
1098 -- installing them so that they will be visible.
1100 Set_First_Entity (Gen_Id, E);
1101 while Present (E) loop
1102 Install_Entity (E);
1103 Next_Formal (E);
1104 end loop;
1105 end if;
1107 -- Visible generic entity is callable within its own body
1109 Set_Ekind (Gen_Id, Ekind (Body_Id));
1110 Set_Contract (Body_Id, Empty);
1111 Set_Ekind (Body_Id, E_Subprogram_Body);
1112 Set_Convention (Body_Id, Convention (Gen_Id));
1113 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1114 Set_Scope (Body_Id, Scope (Gen_Id));
1115 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1117 if Nkind (N) = N_Subprogram_Body_Stub then
1119 -- No body to analyze, so restore state of generic unit
1121 Set_Ekind (Gen_Id, Kind);
1122 Set_Ekind (Body_Id, Kind);
1124 if Present (First_Ent) then
1125 Set_First_Entity (Gen_Id, First_Ent);
1126 end if;
1128 End_Scope;
1129 return;
1130 end if;
1132 -- If this is a compilation unit, it must be made visible explicitly,
1133 -- because the compilation of the declaration, unlike other library
1134 -- unit declarations, does not. If it is not a unit, the following
1135 -- is redundant but harmless.
1137 Set_Is_Immediately_Visible (Gen_Id);
1138 Reference_Body_Formals (Gen_Id, Body_Id);
1140 if Is_Child_Unit (Gen_Id) then
1141 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1142 end if;
1144 Set_Actual_Subtypes (N, Current_Scope);
1146 -- Deal with preconditions and postconditions. In formal verification
1147 -- mode, we keep pre- and postconditions attached to entities rather
1148 -- than inserted in the code, in order to facilitate a distinct
1149 -- treatment for them.
1151 if not SPARK_Mode then
1152 Process_PPCs (N, Gen_Id, Body_Id);
1153 end if;
1155 -- If the generic unit carries pre- or post-conditions, copy them
1156 -- to the original generic tree, so that they are properly added
1157 -- to any instantiation.
1159 declare
1160 Orig : constant Node_Id := Original_Node (N);
1161 Cond : Node_Id;
1163 begin
1164 Cond := First (Declarations (N));
1165 while Present (Cond) loop
1166 if Nkind (Cond) = N_Pragma
1167 and then Pragma_Name (Cond) = Name_Check
1168 then
1169 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1171 elsif Nkind (Cond) = N_Pragma
1172 and then Pragma_Name (Cond) = Name_Postcondition
1173 then
1174 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1175 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1176 else
1177 exit;
1178 end if;
1180 Next (Cond);
1181 end loop;
1182 end;
1184 Analyze_Declarations (Declarations (N));
1185 Check_Completion;
1186 Analyze (Handled_Statement_Sequence (N));
1188 Save_Global_References (Original_Node (N));
1190 -- Prior to exiting the scope, include generic formals again (if any
1191 -- are present) in the set of local entities.
1193 if Present (First_Ent) then
1194 Set_First_Entity (Gen_Id, First_Ent);
1195 end if;
1197 Check_References (Gen_Id);
1198 end;
1200 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1201 End_Scope;
1202 Check_Subprogram_Order (N);
1204 -- Outside of its body, unit is generic again
1206 Set_Ekind (Gen_Id, Kind);
1207 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1209 if Style_Check then
1210 Style.Check_Identifier (Body_Id, Gen_Id);
1211 end if;
1213 End_Generic;
1214 end Analyze_Generic_Subprogram_Body;
1216 ----------------------------
1217 -- Analyze_Null_Procedure --
1218 ----------------------------
1220 procedure Analyze_Null_Procedure
1221 (N : Node_Id;
1222 Is_Completion : out Boolean)
1224 Loc : constant Source_Ptr := Sloc (N);
1225 Spec : constant Node_Id := Specification (N);
1226 Designator : Entity_Id;
1227 Form : Node_Id;
1228 Null_Body : Node_Id := Empty;
1229 Prev : Entity_Id;
1231 begin
1232 -- Capture the profile of the null procedure before analysis, for
1233 -- expansion at the freeze point and at each point of call. The body is
1234 -- used if the procedure has preconditions, or if it is a completion. In
1235 -- the first case the body is analyzed at the freeze point, in the other
1236 -- it replaces the null procedure declaration.
1238 Null_Body :=
1239 Make_Subprogram_Body (Loc,
1240 Specification => New_Copy_Tree (Spec),
1241 Declarations => New_List,
1242 Handled_Statement_Sequence =>
1243 Make_Handled_Sequence_Of_Statements (Loc,
1244 Statements => New_List (Make_Null_Statement (Loc))));
1246 -- Create new entities for body and formals
1248 Set_Defining_Unit_Name (Specification (Null_Body),
1249 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
1251 Form := First (Parameter_Specifications (Specification (Null_Body)));
1252 while Present (Form) loop
1253 Set_Defining_Identifier (Form,
1254 Make_Defining_Identifier (Loc, Chars (Defining_Identifier (Form))));
1255 Next (Form);
1256 end loop;
1258 -- Determine whether the null procedure may be a completion of a generic
1259 -- suprogram, in which case we use the new null body as the completion
1260 -- and set minimal semantic information on the original declaration,
1261 -- which is rewritten as a null statement.
1263 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1265 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1266 Insert_Before (N, Null_Body);
1267 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1268 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1270 Rewrite (N, Make_Null_Statement (Loc));
1271 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1272 Is_Completion := True;
1273 return;
1275 else
1277 -- Resolve the types of the formals now, because the freeze point
1278 -- may appear in a different context, e.g. an instantiation.
1280 Form := First (Parameter_Specifications (Specification (Null_Body)));
1281 while Present (Form) loop
1282 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1283 Find_Type (Parameter_Type (Form));
1285 elsif
1286 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1287 then
1288 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1290 else
1291 -- The case of a null procedure with a formal that is an
1292 -- access_to_subprogram type, and that is used as an actual
1293 -- in an instantiation is left to the enthusiastic reader.
1295 null;
1296 end if;
1298 Next (Form);
1299 end loop;
1300 end if;
1302 -- If there are previous overloadable entities with the same name,
1303 -- check whether any of them is completed by the null procedure.
1305 if Present (Prev) and then Is_Overloadable (Prev) then
1306 Designator := Analyze_Subprogram_Specification (Spec);
1307 Prev := Find_Corresponding_Spec (N);
1308 end if;
1310 if No (Prev) or else not Comes_From_Source (Prev) then
1311 Designator := Analyze_Subprogram_Specification (Spec);
1312 Set_Has_Completion (Designator);
1314 -- Signal to caller that this is a procedure declaration
1316 Is_Completion := False;
1318 -- Null procedures are always inlined, but generic formal subprograms
1319 -- which appear as such in the internal instance of formal packages,
1320 -- need no completion and are not marked Inline.
1322 if Expander_Active
1323 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1324 then
1325 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1326 Set_Body_To_Inline (N, Null_Body);
1327 Set_Is_Inlined (Designator);
1328 end if;
1330 else
1331 -- The null procedure is a completion
1333 Is_Completion := True;
1335 if Expander_Active then
1336 Rewrite (N, Null_Body);
1337 Analyze (N);
1339 else
1340 Designator := Analyze_Subprogram_Specification (Spec);
1341 Set_Has_Completion (Designator);
1342 Set_Has_Completion (Prev);
1343 end if;
1344 end if;
1345 end Analyze_Null_Procedure;
1347 -----------------------------
1348 -- Analyze_Operator_Symbol --
1349 -----------------------------
1351 -- An operator symbol such as "+" or "and" may appear in context where the
1352 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1353 -- is just a string, as in (conjunction = "or"). In these cases the parser
1354 -- generates this node, and the semantics does the disambiguation. Other
1355 -- such case are actuals in an instantiation, the generic unit in an
1356 -- instantiation, and pragma arguments.
1358 procedure Analyze_Operator_Symbol (N : Node_Id) is
1359 Par : constant Node_Id := Parent (N);
1361 begin
1362 if (Nkind (Par) = N_Function_Call
1363 and then N = Name (Par))
1364 or else Nkind (Par) = N_Function_Instantiation
1365 or else (Nkind (Par) = N_Indexed_Component
1366 and then N = Prefix (Par))
1367 or else (Nkind (Par) = N_Pragma_Argument_Association
1368 and then not Is_Pragma_String_Literal (Par))
1369 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1370 or else (Nkind (Par) = N_Attribute_Reference
1371 and then Attribute_Name (Par) /= Name_Value)
1372 then
1373 Find_Direct_Name (N);
1375 else
1376 Change_Operator_Symbol_To_String_Literal (N);
1377 Analyze (N);
1378 end if;
1379 end Analyze_Operator_Symbol;
1381 -----------------------------------
1382 -- Analyze_Parameter_Association --
1383 -----------------------------------
1385 procedure Analyze_Parameter_Association (N : Node_Id) is
1386 begin
1387 Analyze (Explicit_Actual_Parameter (N));
1388 end Analyze_Parameter_Association;
1390 ----------------------------
1391 -- Analyze_Procedure_Call --
1392 ----------------------------
1394 procedure Analyze_Procedure_Call (N : Node_Id) is
1395 Loc : constant Source_Ptr := Sloc (N);
1396 P : constant Node_Id := Name (N);
1397 Actuals : constant List_Id := Parameter_Associations (N);
1398 Actual : Node_Id;
1399 New_N : Node_Id;
1401 procedure Analyze_Call_And_Resolve;
1402 -- Do Analyze and Resolve calls for procedure call
1403 -- At end, check illegal order dependence.
1405 ------------------------------
1406 -- Analyze_Call_And_Resolve --
1407 ------------------------------
1409 procedure Analyze_Call_And_Resolve is
1410 begin
1411 if Nkind (N) = N_Procedure_Call_Statement then
1412 Analyze_Call (N);
1413 Resolve (N, Standard_Void_Type);
1414 else
1415 Analyze (N);
1416 end if;
1417 end Analyze_Call_And_Resolve;
1419 -- Start of processing for Analyze_Procedure_Call
1421 begin
1422 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1423 -- a procedure call or an entry call. The prefix may denote an access
1424 -- to subprogram type, in which case an implicit dereference applies.
1425 -- If the prefix is an indexed component (without implicit dereference)
1426 -- then the construct denotes a call to a member of an entire family.
1427 -- If the prefix is a simple name, it may still denote a call to a
1428 -- parameterless member of an entry family. Resolution of these various
1429 -- interpretations is delicate.
1431 Analyze (P);
1433 -- If this is a call of the form Obj.Op, the call may have been
1434 -- analyzed and possibly rewritten into a block, in which case
1435 -- we are done.
1437 if Analyzed (N) then
1438 return;
1439 end if;
1441 -- If there is an error analyzing the name (which may have been
1442 -- rewritten if the original call was in prefix notation) then error
1443 -- has been emitted already, mark node and return.
1445 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1446 Set_Etype (N, Any_Type);
1447 return;
1448 end if;
1450 -- Otherwise analyze the parameters
1452 if Present (Actuals) then
1453 Actual := First (Actuals);
1455 while Present (Actual) loop
1456 Analyze (Actual);
1457 Check_Parameterless_Call (Actual);
1458 Next (Actual);
1459 end loop;
1460 end if;
1462 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1464 if Nkind (P) = N_Attribute_Reference
1465 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1466 Name_Elab_Body,
1467 Name_Elab_Subp_Body)
1468 then
1469 if Present (Actuals) then
1470 Error_Msg_N
1471 ("no parameters allowed for this call", First (Actuals));
1472 return;
1473 end if;
1475 Set_Etype (N, Standard_Void_Type);
1476 Set_Analyzed (N);
1478 elsif Is_Entity_Name (P)
1479 and then Is_Record_Type (Etype (Entity (P)))
1480 and then Remote_AST_I_Dereference (P)
1481 then
1482 return;
1484 elsif Is_Entity_Name (P)
1485 and then Ekind (Entity (P)) /= E_Entry_Family
1486 then
1487 if Is_Access_Type (Etype (P))
1488 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1489 and then No (Actuals)
1490 and then Comes_From_Source (N)
1491 then
1492 Error_Msg_N ("missing explicit dereference in call", N);
1493 end if;
1495 Analyze_Call_And_Resolve;
1497 -- If the prefix is the simple name of an entry family, this is
1498 -- a parameterless call from within the task body itself.
1500 elsif Is_Entity_Name (P)
1501 and then Nkind (P) = N_Identifier
1502 and then Ekind (Entity (P)) = E_Entry_Family
1503 and then Present (Actuals)
1504 and then No (Next (First (Actuals)))
1505 then
1506 -- Can be call to parameterless entry family. What appears to be the
1507 -- sole argument is in fact the entry index. Rewrite prefix of node
1508 -- accordingly. Source representation is unchanged by this
1509 -- transformation.
1511 New_N :=
1512 Make_Indexed_Component (Loc,
1513 Prefix =>
1514 Make_Selected_Component (Loc,
1515 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1516 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1517 Expressions => Actuals);
1518 Set_Name (N, New_N);
1519 Set_Etype (New_N, Standard_Void_Type);
1520 Set_Parameter_Associations (N, No_List);
1521 Analyze_Call_And_Resolve;
1523 elsif Nkind (P) = N_Explicit_Dereference then
1524 if Ekind (Etype (P)) = E_Subprogram_Type then
1525 Analyze_Call_And_Resolve;
1526 else
1527 Error_Msg_N ("expect access to procedure in call", P);
1528 end if;
1530 -- The name can be a selected component or an indexed component that
1531 -- yields an access to subprogram. Such a prefix is legal if the call
1532 -- has parameter associations.
1534 elsif Is_Access_Type (Etype (P))
1535 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1536 then
1537 if Present (Actuals) then
1538 Analyze_Call_And_Resolve;
1539 else
1540 Error_Msg_N ("missing explicit dereference in call ", N);
1541 end if;
1543 -- If not an access to subprogram, then the prefix must resolve to the
1544 -- name of an entry, entry family, or protected operation.
1546 -- For the case of a simple entry call, P is a selected component where
1547 -- the prefix is the task and the selector name is the entry. A call to
1548 -- a protected procedure will have the same syntax. If the protected
1549 -- object contains overloaded operations, the entity may appear as a
1550 -- function, the context will select the operation whose type is Void.
1552 elsif Nkind (P) = N_Selected_Component
1553 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1554 E_Procedure,
1555 E_Function)
1556 then
1557 Analyze_Call_And_Resolve;
1559 elsif Nkind (P) = N_Selected_Component
1560 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1561 and then Present (Actuals)
1562 and then No (Next (First (Actuals)))
1563 then
1564 -- Can be call to parameterless entry family. What appears to be the
1565 -- sole argument is in fact the entry index. Rewrite prefix of node
1566 -- accordingly. Source representation is unchanged by this
1567 -- transformation.
1569 New_N :=
1570 Make_Indexed_Component (Loc,
1571 Prefix => New_Copy (P),
1572 Expressions => Actuals);
1573 Set_Name (N, New_N);
1574 Set_Etype (New_N, Standard_Void_Type);
1575 Set_Parameter_Associations (N, No_List);
1576 Analyze_Call_And_Resolve;
1578 -- For the case of a reference to an element of an entry family, P is
1579 -- an indexed component whose prefix is a selected component (task and
1580 -- entry family), and whose index is the entry family index.
1582 elsif Nkind (P) = N_Indexed_Component
1583 and then Nkind (Prefix (P)) = N_Selected_Component
1584 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1585 then
1586 Analyze_Call_And_Resolve;
1588 -- If the prefix is the name of an entry family, it is a call from
1589 -- within the task body itself.
1591 elsif Nkind (P) = N_Indexed_Component
1592 and then Nkind (Prefix (P)) = N_Identifier
1593 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1594 then
1595 New_N :=
1596 Make_Selected_Component (Loc,
1597 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1598 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1599 Rewrite (Prefix (P), New_N);
1600 Analyze (P);
1601 Analyze_Call_And_Resolve;
1603 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1604 -- procedure name, so the construct can only be a qualified expression.
1606 elsif Nkind (P) = N_Qualified_Expression
1607 and then Ada_Version >= Ada_2012
1608 then
1609 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1610 Analyze (N);
1612 -- Anything else is an error
1614 else
1615 Error_Msg_N ("invalid procedure or entry call", N);
1616 end if;
1617 end Analyze_Procedure_Call;
1619 ------------------------------
1620 -- Analyze_Return_Statement --
1621 ------------------------------
1623 procedure Analyze_Return_Statement (N : Node_Id) is
1625 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1626 N_Extended_Return_Statement));
1628 Returns_Object : constant Boolean :=
1629 Nkind (N) = N_Extended_Return_Statement
1630 or else
1631 (Nkind (N) = N_Simple_Return_Statement
1632 and then Present (Expression (N)));
1633 -- True if we're returning something; that is, "return <expression>;"
1634 -- or "return Result : T [:= ...]". False for "return;". Used for error
1635 -- checking: If Returns_Object is True, N should apply to a function
1636 -- body; otherwise N should apply to a procedure body, entry body,
1637 -- accept statement, or extended return statement.
1639 function Find_What_It_Applies_To return Entity_Id;
1640 -- Find the entity representing the innermost enclosing body, accept
1641 -- statement, or extended return statement. If the result is a callable
1642 -- construct or extended return statement, then this will be the value
1643 -- of the Return_Applies_To attribute. Otherwise, the program is
1644 -- illegal. See RM-6.5(4/2).
1646 -----------------------------
1647 -- Find_What_It_Applies_To --
1648 -----------------------------
1650 function Find_What_It_Applies_To return Entity_Id is
1651 Result : Entity_Id := Empty;
1653 begin
1654 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1655 -- and postconditions.
1657 for J in reverse 0 .. Scope_Stack.Last loop
1658 Result := Scope_Stack.Table (J).Entity;
1659 exit when not Ekind_In (Result, E_Block, E_Loop)
1660 and then Chars (Result) /= Name_uPostconditions;
1661 end loop;
1663 pragma Assert (Present (Result));
1664 return Result;
1665 end Find_What_It_Applies_To;
1667 -- Local declarations
1669 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1670 Kind : constant Entity_Kind := Ekind (Scope_Id);
1671 Loc : constant Source_Ptr := Sloc (N);
1672 Stm_Entity : constant Entity_Id :=
1673 New_Internal_Entity
1674 (E_Return_Statement, Current_Scope, Loc, 'R');
1676 -- Start of processing for Analyze_Return_Statement
1678 begin
1679 Set_Return_Statement_Entity (N, Stm_Entity);
1681 Set_Etype (Stm_Entity, Standard_Void_Type);
1682 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1684 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1685 -- (4/2): an inner return statement will apply to this extended return.
1687 if Nkind (N) = N_Extended_Return_Statement then
1688 Push_Scope (Stm_Entity);
1689 end if;
1691 -- Check that pragma No_Return is obeyed. Don't complain about the
1692 -- implicitly-generated return that is placed at the end.
1694 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1695 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1696 end if;
1698 -- Warn on any unassigned OUT parameters if in procedure
1700 if Ekind (Scope_Id) = E_Procedure then
1701 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1702 end if;
1704 -- Check that functions return objects, and other things do not
1706 if Kind = E_Function or else Kind = E_Generic_Function then
1707 if not Returns_Object then
1708 Error_Msg_N ("missing expression in return from function", N);
1709 end if;
1711 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1712 if Returns_Object then
1713 Error_Msg_N ("procedure cannot return value (use function)", N);
1714 end if;
1716 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1717 if Returns_Object then
1718 if Is_Protected_Type (Scope (Scope_Id)) then
1719 Error_Msg_N ("entry body cannot return value", N);
1720 else
1721 Error_Msg_N ("accept statement cannot return value", N);
1722 end if;
1723 end if;
1725 elsif Kind = E_Return_Statement then
1727 -- We are nested within another return statement, which must be an
1728 -- extended_return_statement.
1730 if Returns_Object then
1731 if Nkind (N) = N_Extended_Return_Statement then
1732 Error_Msg_N
1733 ("extended return statement cannot be nested (use `RETURN;`)",
1736 -- Case of a simple return statement with a value inside extended
1737 -- return statement.
1739 else
1740 Error_Msg_N
1741 ("return nested in extended return statement cannot return " &
1742 "value (use `RETURN;`)", N);
1743 end if;
1744 end if;
1746 else
1747 Error_Msg_N ("illegal context for return statement", N);
1748 end if;
1750 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1751 Analyze_Function_Return (N);
1753 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1754 Set_Return_Present (Scope_Id);
1755 end if;
1757 if Nkind (N) = N_Extended_Return_Statement then
1758 End_Scope;
1759 end if;
1761 Kill_Current_Values (Last_Assignment_Only => True);
1762 Check_Unreachable_Code (N);
1764 Analyze_Dimension (N);
1765 end Analyze_Return_Statement;
1767 -------------------------------------
1768 -- Analyze_Simple_Return_Statement --
1769 -------------------------------------
1771 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1772 begin
1773 if Present (Expression (N)) then
1774 Mark_Coextensions (N, Expression (N));
1775 end if;
1777 Analyze_Return_Statement (N);
1778 end Analyze_Simple_Return_Statement;
1780 -------------------------
1781 -- Analyze_Return_Type --
1782 -------------------------
1784 procedure Analyze_Return_Type (N : Node_Id) is
1785 Designator : constant Entity_Id := Defining_Entity (N);
1786 Typ : Entity_Id := Empty;
1788 begin
1789 -- Normal case where result definition does not indicate an error
1791 if Result_Definition (N) /= Error then
1792 if Nkind (Result_Definition (N)) = N_Access_Definition then
1793 Check_SPARK_Restriction
1794 ("access result is not allowed", Result_Definition (N));
1796 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1798 declare
1799 AD : constant Node_Id :=
1800 Access_To_Subprogram_Definition (Result_Definition (N));
1801 begin
1802 if Present (AD) and then Protected_Present (AD) then
1803 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1804 else
1805 Typ := Access_Definition (N, Result_Definition (N));
1806 end if;
1807 end;
1809 Set_Parent (Typ, Result_Definition (N));
1810 Set_Is_Local_Anonymous_Access (Typ);
1811 Set_Etype (Designator, Typ);
1813 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1815 Null_Exclusion_Static_Checks (N);
1817 -- Subtype_Mark case
1819 else
1820 Find_Type (Result_Definition (N));
1821 Typ := Entity (Result_Definition (N));
1822 Set_Etype (Designator, Typ);
1824 -- Unconstrained array as result is not allowed in SPARK
1826 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1827 Check_SPARK_Restriction
1828 ("returning an unconstrained array is not allowed",
1829 Result_Definition (N));
1830 end if;
1832 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1834 Null_Exclusion_Static_Checks (N);
1836 -- If a null exclusion is imposed on the result type, then create
1837 -- a null-excluding itype (an access subtype) and use it as the
1838 -- function's Etype. Note that the null exclusion checks are done
1839 -- right before this, because they don't get applied to types that
1840 -- do not come from source.
1842 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1843 Set_Etype (Designator,
1844 Create_Null_Excluding_Itype
1845 (T => Typ,
1846 Related_Nod => N,
1847 Scope_Id => Scope (Current_Scope)));
1849 -- The new subtype must be elaborated before use because
1850 -- it is visible outside of the function. However its base
1851 -- type may not be frozen yet, so the reference that will
1852 -- force elaboration must be attached to the freezing of
1853 -- the base type.
1855 -- If the return specification appears on a proper body,
1856 -- the subtype will have been created already on the spec.
1858 if Is_Frozen (Typ) then
1859 if Nkind (Parent (N)) = N_Subprogram_Body
1860 and then Nkind (Parent (Parent (N))) = N_Subunit
1861 then
1862 null;
1863 else
1864 Build_Itype_Reference (Etype (Designator), Parent (N));
1865 end if;
1867 else
1868 Ensure_Freeze_Node (Typ);
1870 declare
1871 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1872 begin
1873 Set_Itype (IR, Etype (Designator));
1874 Append_Freeze_Actions (Typ, New_List (IR));
1875 end;
1876 end if;
1878 else
1879 Set_Etype (Designator, Typ);
1880 end if;
1882 if Ekind (Typ) = E_Incomplete_Type
1883 and then Is_Value_Type (Typ)
1884 then
1885 null;
1887 elsif Ekind (Typ) = E_Incomplete_Type
1888 or else (Is_Class_Wide_Type (Typ)
1889 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1890 then
1891 -- AI05-0151: Tagged incomplete types are allowed in all formal
1892 -- parts. Untagged incomplete types are not allowed in bodies.
1894 if Ada_Version >= Ada_2012 then
1895 if Is_Tagged_Type (Typ) then
1896 null;
1898 elsif Nkind_In (Parent (Parent (N)),
1899 N_Accept_Statement,
1900 N_Entry_Body,
1901 N_Subprogram_Body)
1902 then
1903 Error_Msg_NE
1904 ("invalid use of untagged incomplete type&",
1905 Designator, Typ);
1906 end if;
1908 -- The type must be completed in the current package. This
1909 -- is checked at the end of the package declaraton, when
1910 -- Taft-amendment types are identified. If the return type
1911 -- is class-wide, there is no required check, the type can
1912 -- be a bona fide TAT.
1914 if Ekind (Scope (Current_Scope)) = E_Package
1915 and then In_Private_Part (Scope (Current_Scope))
1916 and then not Is_Class_Wide_Type (Typ)
1917 then
1918 Append_Elmt (Designator, Private_Dependents (Typ));
1919 end if;
1921 else
1922 Error_Msg_NE
1923 ("invalid use of incomplete type&", Designator, Typ);
1924 end if;
1925 end if;
1926 end if;
1928 -- Case where result definition does indicate an error
1930 else
1931 Set_Etype (Designator, Any_Type);
1932 end if;
1933 end Analyze_Return_Type;
1935 -----------------------------
1936 -- Analyze_Subprogram_Body --
1937 -----------------------------
1939 procedure Analyze_Subprogram_Body (N : Node_Id) is
1940 Loc : constant Source_Ptr := Sloc (N);
1941 Body_Spec : constant Node_Id := Specification (N);
1942 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1944 begin
1945 if Debug_Flag_C then
1946 Write_Str ("==> subprogram body ");
1947 Write_Name (Chars (Body_Id));
1948 Write_Str (" from ");
1949 Write_Location (Loc);
1950 Write_Eol;
1951 Indent;
1952 end if;
1954 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1956 -- The real work is split out into the helper, so it can do "return;"
1957 -- without skipping the debug output:
1959 Analyze_Subprogram_Body_Helper (N);
1961 if Debug_Flag_C then
1962 Outdent;
1963 Write_Str ("<== subprogram body ");
1964 Write_Name (Chars (Body_Id));
1965 Write_Str (" from ");
1966 Write_Location (Loc);
1967 Write_Eol;
1968 end if;
1969 end Analyze_Subprogram_Body;
1971 ------------------------------------
1972 -- Analyze_Subprogram_Body_Helper --
1973 ------------------------------------
1975 -- This procedure is called for regular subprogram bodies, generic bodies,
1976 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1977 -- specification matters, and is used to create a proper declaration for
1978 -- the subprogram, or to perform conformance checks.
1980 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
1981 Loc : constant Source_Ptr := Sloc (N);
1982 Body_Spec : constant Node_Id := Specification (N);
1983 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1984 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1985 Conformant : Boolean;
1986 HSS : Node_Id;
1987 Prot_Typ : Entity_Id := Empty;
1988 Spec_Id : Entity_Id;
1989 Spec_Decl : Node_Id := Empty;
1991 Last_Real_Spec_Entity : Entity_Id := Empty;
1992 -- When we analyze a separate spec, the entity chain ends up containing
1993 -- the formals, as well as any itypes generated during analysis of the
1994 -- default expressions for parameters, or the arguments of associated
1995 -- precondition/postcondition pragmas (which are analyzed in the context
1996 -- of the spec since they have visibility on formals).
1998 -- These entities belong with the spec and not the body. However we do
1999 -- the analysis of the body in the context of the spec (again to obtain
2000 -- visibility to the formals), and all the entities generated during
2001 -- this analysis end up also chained to the entity chain of the spec.
2002 -- But they really belong to the body, and there is circuitry to move
2003 -- them from the spec to the body.
2005 -- However, when we do this move, we don't want to move the real spec
2006 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2007 -- variable points to the last real spec entity, so we only move those
2008 -- chained beyond that point. It is initialized to Empty to deal with
2009 -- the case where there is no separate spec.
2011 procedure Check_Anonymous_Return;
2012 -- Ada 2005: if a function returns an access type that denotes a task,
2013 -- or a type that contains tasks, we must create a master entity for
2014 -- the anonymous type, which typically will be used in an allocator
2015 -- in the body of the function.
2017 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2018 -- Look ahead to recognize a pragma that may appear after the body.
2019 -- If there is a previous spec, check that it appears in the same
2020 -- declarative part. If the pragma is Inline_Always, perform inlining
2021 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2022 -- If the body acts as a spec, and inlining is required, we create a
2023 -- subprogram declaration for it, in order to attach the body to inline.
2024 -- If pragma does not appear after the body, check whether there is
2025 -- an inline pragma before any local declarations.
2027 procedure Check_Missing_Return;
2028 -- Checks for a function with a no return statements, and also performs
2029 -- the warning checks implemented by Check_Returns. In formal mode, also
2030 -- verify that a function ends with a RETURN and that a procedure does
2031 -- not contain any RETURN.
2033 function Disambiguate_Spec return Entity_Id;
2034 -- When a primitive is declared between the private view and the full
2035 -- view of a concurrent type which implements an interface, a special
2036 -- mechanism is used to find the corresponding spec of the primitive
2037 -- body.
2039 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2040 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2041 -- incomplete types coming from a limited context and swap their limited
2042 -- views with the non-limited ones.
2044 function Is_Private_Concurrent_Primitive
2045 (Subp_Id : Entity_Id) return Boolean;
2046 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2047 -- type that implements an interface and has a private view.
2049 procedure Set_Trivial_Subprogram (N : Node_Id);
2050 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2051 -- subprogram whose body is being analyzed. N is the statement node
2052 -- causing the flag to be set, if the following statement is a return
2053 -- of an entity, we mark the entity as set in source to suppress any
2054 -- warning on the stylized use of function stubs with a dummy return.
2056 procedure Verify_Overriding_Indicator;
2057 -- If there was a previous spec, the entity has been entered in the
2058 -- current scope previously. If the body itself carries an overriding
2059 -- indicator, check that it is consistent with the known status of the
2060 -- entity.
2062 ----------------------------
2063 -- Check_Anonymous_Return --
2064 ----------------------------
2066 procedure Check_Anonymous_Return is
2067 Decl : Node_Id;
2068 Par : Node_Id;
2069 Scop : Entity_Id;
2071 begin
2072 if Present (Spec_Id) then
2073 Scop := Spec_Id;
2074 else
2075 Scop := Body_Id;
2076 end if;
2078 if Ekind (Scop) = E_Function
2079 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2080 and then not Is_Thunk (Scop)
2081 and then (Has_Task (Designated_Type (Etype (Scop)))
2082 or else
2083 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2084 and then
2085 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2086 and then Expander_Active
2088 -- Avoid cases with no tasking support
2090 and then RTE_Available (RE_Current_Master)
2091 and then not Restriction_Active (No_Task_Hierarchy)
2092 then
2093 Decl :=
2094 Make_Object_Declaration (Loc,
2095 Defining_Identifier =>
2096 Make_Defining_Identifier (Loc, Name_uMaster),
2097 Constant_Present => True,
2098 Object_Definition =>
2099 New_Reference_To (RTE (RE_Master_Id), Loc),
2100 Expression =>
2101 Make_Explicit_Dereference (Loc,
2102 New_Reference_To (RTE (RE_Current_Master), Loc)));
2104 if Present (Declarations (N)) then
2105 Prepend (Decl, Declarations (N));
2106 else
2107 Set_Declarations (N, New_List (Decl));
2108 end if;
2110 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2111 Set_Has_Master_Entity (Scop);
2113 -- Now mark the containing scope as a task master
2115 Par := N;
2116 while Nkind (Par) /= N_Compilation_Unit loop
2117 Par := Parent (Par);
2118 pragma Assert (Present (Par));
2120 -- If we fall off the top, we are at the outer level, and
2121 -- the environment task is our effective master, so nothing
2122 -- to mark.
2124 if Nkind_In
2125 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2126 then
2127 Set_Is_Task_Master (Par, True);
2128 exit;
2129 end if;
2130 end loop;
2131 end if;
2132 end Check_Anonymous_Return;
2134 -------------------------
2135 -- Check_Inline_Pragma --
2136 -------------------------
2138 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2139 Prag : Node_Id;
2140 Plist : List_Id;
2142 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2143 -- True when N is a pragma Inline or Inline_Always that applies
2144 -- to this subprogram.
2146 -----------------------
2147 -- Is_Inline_Pragma --
2148 -----------------------
2150 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2151 begin
2152 return
2153 Nkind (N) = N_Pragma
2154 and then
2155 (Pragma_Name (N) = Name_Inline_Always
2156 or else
2157 (Front_End_Inlining
2158 and then Pragma_Name (N) = Name_Inline))
2159 and then
2160 Chars
2161 (Expression (First (Pragma_Argument_Associations (N)))) =
2162 Chars (Body_Id);
2163 end Is_Inline_Pragma;
2165 -- Start of processing for Check_Inline_Pragma
2167 begin
2168 if not Expander_Active then
2169 return;
2170 end if;
2172 if Is_List_Member (N)
2173 and then Present (Next (N))
2174 and then Is_Inline_Pragma (Next (N))
2175 then
2176 Prag := Next (N);
2178 elsif Nkind (N) /= N_Subprogram_Body_Stub
2179 and then Present (Declarations (N))
2180 and then Is_Inline_Pragma (First (Declarations (N)))
2181 then
2182 Prag := First (Declarations (N));
2184 else
2185 Prag := Empty;
2186 end if;
2188 if Present (Prag) then
2189 if Present (Spec_Id) then
2190 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2191 Analyze (Prag);
2192 end if;
2194 else
2195 -- Create a subprogram declaration, to make treatment uniform
2197 declare
2198 Subp : constant Entity_Id :=
2199 Make_Defining_Identifier (Loc, Chars (Body_Id));
2200 Decl : constant Node_Id :=
2201 Make_Subprogram_Declaration (Loc,
2202 Specification =>
2203 New_Copy_Tree (Specification (N)));
2205 begin
2206 Set_Defining_Unit_Name (Specification (Decl), Subp);
2208 if Present (First_Formal (Body_Id)) then
2209 Plist := Copy_Parameter_List (Body_Id);
2210 Set_Parameter_Specifications
2211 (Specification (Decl), Plist);
2212 end if;
2214 Insert_Before (N, Decl);
2215 Analyze (Decl);
2216 Analyze (Prag);
2217 Set_Has_Pragma_Inline (Subp);
2219 if Pragma_Name (Prag) = Name_Inline_Always then
2220 Set_Is_Inlined (Subp);
2221 Set_Has_Pragma_Inline_Always (Subp);
2222 end if;
2224 Spec := Subp;
2225 end;
2226 end if;
2227 end if;
2228 end Check_Inline_Pragma;
2230 --------------------------
2231 -- Check_Missing_Return --
2232 --------------------------
2234 procedure Check_Missing_Return is
2235 Id : Entity_Id;
2236 Missing_Ret : Boolean;
2238 begin
2239 if Nkind (Body_Spec) = N_Function_Specification then
2240 if Present (Spec_Id) then
2241 Id := Spec_Id;
2242 else
2243 Id := Body_Id;
2244 end if;
2246 if Return_Present (Id) then
2247 Check_Returns (HSS, 'F', Missing_Ret);
2249 if Missing_Ret then
2250 Set_Has_Missing_Return (Id);
2251 end if;
2253 elsif Is_Generic_Subprogram (Id)
2254 or else not Is_Machine_Code_Subprogram (Id)
2255 then
2256 Error_Msg_N ("missing RETURN statement in function body", N);
2257 end if;
2259 -- If procedure with No_Return, check returns
2261 elsif Nkind (Body_Spec) = N_Procedure_Specification
2262 and then Present (Spec_Id)
2263 and then No_Return (Spec_Id)
2264 then
2265 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2266 end if;
2268 -- Special checks in SPARK mode
2270 if Nkind (Body_Spec) = N_Function_Specification then
2272 -- In SPARK mode, last statement of a function should be a return
2274 declare
2275 Stat : constant Node_Id := Last_Source_Statement (HSS);
2276 begin
2277 if Present (Stat)
2278 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2279 N_Extended_Return_Statement)
2280 then
2281 Check_SPARK_Restriction
2282 ("last statement in function should be RETURN", Stat);
2283 end if;
2284 end;
2286 -- In SPARK mode, verify that a procedure has no return
2288 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2289 if Present (Spec_Id) then
2290 Id := Spec_Id;
2291 else
2292 Id := Body_Id;
2293 end if;
2295 -- Would be nice to point to return statement here, can we
2296 -- borrow the Check_Returns procedure here ???
2298 if Return_Present (Id) then
2299 Check_SPARK_Restriction
2300 ("procedure should not have RETURN", N);
2301 end if;
2302 end if;
2303 end Check_Missing_Return;
2305 -----------------------
2306 -- Disambiguate_Spec --
2307 -----------------------
2309 function Disambiguate_Spec return Entity_Id is
2310 Priv_Spec : Entity_Id;
2311 Spec_N : Entity_Id;
2313 procedure Replace_Types (To_Corresponding : Boolean);
2314 -- Depending on the flag, replace the type of formal parameters of
2315 -- Body_Id if it is a concurrent type implementing interfaces with
2316 -- the corresponding record type or the other way around.
2318 procedure Replace_Types (To_Corresponding : Boolean) is
2319 Formal : Entity_Id;
2320 Formal_Typ : Entity_Id;
2322 begin
2323 Formal := First_Formal (Body_Id);
2324 while Present (Formal) loop
2325 Formal_Typ := Etype (Formal);
2327 if Is_Class_Wide_Type (Formal_Typ) then
2328 Formal_Typ := Root_Type (Formal_Typ);
2329 end if;
2331 -- From concurrent type to corresponding record
2333 if To_Corresponding then
2334 if Is_Concurrent_Type (Formal_Typ)
2335 and then Present (Corresponding_Record_Type (Formal_Typ))
2336 and then Present (Interfaces (
2337 Corresponding_Record_Type (Formal_Typ)))
2338 then
2339 Set_Etype (Formal,
2340 Corresponding_Record_Type (Formal_Typ));
2341 end if;
2343 -- From corresponding record to concurrent type
2345 else
2346 if Is_Concurrent_Record_Type (Formal_Typ)
2347 and then Present (Interfaces (Formal_Typ))
2348 then
2349 Set_Etype (Formal,
2350 Corresponding_Concurrent_Type (Formal_Typ));
2351 end if;
2352 end if;
2354 Next_Formal (Formal);
2355 end loop;
2356 end Replace_Types;
2358 -- Start of processing for Disambiguate_Spec
2360 begin
2361 -- Try to retrieve the specification of the body as is. All error
2362 -- messages are suppressed because the body may not have a spec in
2363 -- its current state.
2365 Spec_N := Find_Corresponding_Spec (N, False);
2367 -- It is possible that this is the body of a primitive declared
2368 -- between a private and a full view of a concurrent type. The
2369 -- controlling parameter of the spec carries the concurrent type,
2370 -- not the corresponding record type as transformed by Analyze_
2371 -- Subprogram_Specification. In such cases, we undo the change
2372 -- made by the analysis of the specification and try to find the
2373 -- spec again.
2375 -- Note that wrappers already have their corresponding specs and
2376 -- bodies set during their creation, so if the candidate spec is
2377 -- a wrapper, then we definitely need to swap all types to their
2378 -- original concurrent status.
2380 if No (Spec_N)
2381 or else Is_Primitive_Wrapper (Spec_N)
2382 then
2383 -- Restore all references of corresponding record types to the
2384 -- original concurrent types.
2386 Replace_Types (To_Corresponding => False);
2387 Priv_Spec := Find_Corresponding_Spec (N, False);
2389 -- The current body truly belongs to a primitive declared between
2390 -- a private and a full view. We leave the modified body as is,
2391 -- and return the true spec.
2393 if Present (Priv_Spec)
2394 and then Is_Private_Primitive (Priv_Spec)
2395 then
2396 return Priv_Spec;
2397 end if;
2399 -- In case that this is some sort of error, restore the original
2400 -- state of the body.
2402 Replace_Types (To_Corresponding => True);
2403 end if;
2405 return Spec_N;
2406 end Disambiguate_Spec;
2408 ----------------------------
2409 -- Exchange_Limited_Views --
2410 ----------------------------
2412 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2413 procedure Detect_And_Exchange (Id : Entity_Id);
2414 -- Determine whether Id's type denotes an incomplete type associated
2415 -- with a limited with clause and exchange the limited view with the
2416 -- non-limited one.
2418 -------------------------
2419 -- Detect_And_Exchange --
2420 -------------------------
2422 procedure Detect_And_Exchange (Id : Entity_Id) is
2423 Typ : constant Entity_Id := Etype (Id);
2425 begin
2426 if Ekind (Typ) = E_Incomplete_Type
2427 and then From_With_Type (Typ)
2428 and then Present (Non_Limited_View (Typ))
2429 then
2430 Set_Etype (Id, Non_Limited_View (Typ));
2431 end if;
2432 end Detect_And_Exchange;
2434 -- Local variables
2436 Formal : Entity_Id;
2438 -- Start of processing for Exchange_Limited_Views
2440 begin
2441 if No (Subp_Id) then
2442 return;
2444 -- Do not process subprogram bodies as they already use the non-
2445 -- limited view of types.
2447 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2448 return;
2449 end if;
2451 -- Examine all formals and swap views when applicable
2453 Formal := First_Formal (Subp_Id);
2454 while Present (Formal) loop
2455 Detect_And_Exchange (Formal);
2457 Next_Formal (Formal);
2458 end loop;
2460 -- Process the return type of a function
2462 if Ekind (Subp_Id) = E_Function then
2463 Detect_And_Exchange (Subp_Id);
2464 end if;
2465 end Exchange_Limited_Views;
2467 -------------------------------------
2468 -- Is_Private_Concurrent_Primitive --
2469 -------------------------------------
2471 function Is_Private_Concurrent_Primitive
2472 (Subp_Id : Entity_Id) return Boolean
2474 Formal_Typ : Entity_Id;
2476 begin
2477 if Present (First_Formal (Subp_Id)) then
2478 Formal_Typ := Etype (First_Formal (Subp_Id));
2480 if Is_Concurrent_Record_Type (Formal_Typ) then
2481 if Is_Class_Wide_Type (Formal_Typ) then
2482 Formal_Typ := Root_Type (Formal_Typ);
2483 end if;
2485 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2486 end if;
2488 -- The type of the first formal is a concurrent tagged type with
2489 -- a private view.
2491 return
2492 Is_Concurrent_Type (Formal_Typ)
2493 and then Is_Tagged_Type (Formal_Typ)
2494 and then Has_Private_Declaration (Formal_Typ);
2495 end if;
2497 return False;
2498 end Is_Private_Concurrent_Primitive;
2500 ----------------------------
2501 -- Set_Trivial_Subprogram --
2502 ----------------------------
2504 procedure Set_Trivial_Subprogram (N : Node_Id) is
2505 Nxt : constant Node_Id := Next (N);
2507 begin
2508 Set_Is_Trivial_Subprogram (Body_Id);
2510 if Present (Spec_Id) then
2511 Set_Is_Trivial_Subprogram (Spec_Id);
2512 end if;
2514 if Present (Nxt)
2515 and then Nkind (Nxt) = N_Simple_Return_Statement
2516 and then No (Next (Nxt))
2517 and then Present (Expression (Nxt))
2518 and then Is_Entity_Name (Expression (Nxt))
2519 then
2520 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2521 end if;
2522 end Set_Trivial_Subprogram;
2524 ---------------------------------
2525 -- Verify_Overriding_Indicator --
2526 ---------------------------------
2528 procedure Verify_Overriding_Indicator is
2529 begin
2530 if Must_Override (Body_Spec) then
2531 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2532 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2533 then
2534 null;
2536 elsif not Present (Overridden_Operation (Spec_Id)) then
2537 Error_Msg_NE
2538 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2539 end if;
2541 elsif Must_Not_Override (Body_Spec) then
2542 if Present (Overridden_Operation (Spec_Id)) then
2543 Error_Msg_NE
2544 ("subprogram& overrides inherited operation",
2545 Body_Spec, Spec_Id);
2547 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2548 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2549 then
2550 Error_Msg_NE
2551 ("subprogram & overrides predefined operator ",
2552 Body_Spec, Spec_Id);
2554 -- If this is not a primitive operation or protected subprogram,
2555 -- then the overriding indicator is altogether illegal.
2557 elsif not Is_Primitive (Spec_Id)
2558 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2559 then
2560 Error_Msg_N
2561 ("overriding indicator only allowed " &
2562 "if subprogram is primitive",
2563 Body_Spec);
2564 end if;
2566 elsif Style_Check
2567 and then Present (Overridden_Operation (Spec_Id))
2568 then
2569 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2570 Style.Missing_Overriding (N, Body_Id);
2572 elsif Style_Check
2573 and then Can_Override_Operator (Spec_Id)
2574 and then not Is_Predefined_File_Name
2575 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
2576 then
2577 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2578 Style.Missing_Overriding (N, Body_Id);
2579 end if;
2580 end Verify_Overriding_Indicator;
2582 -- Start of processing for Analyze_Subprogram_Body_Helper
2584 begin
2585 -- Generic subprograms are handled separately. They always have a
2586 -- generic specification. Determine whether current scope has a
2587 -- previous declaration.
2589 -- If the subprogram body is defined within an instance of the same
2590 -- name, the instance appears as a package renaming, and will be hidden
2591 -- within the subprogram.
2593 if Present (Prev_Id)
2594 and then not Is_Overloadable (Prev_Id)
2595 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2596 or else Comes_From_Source (Prev_Id))
2597 then
2598 if Is_Generic_Subprogram (Prev_Id) then
2599 Spec_Id := Prev_Id;
2600 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2601 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2603 Analyze_Generic_Subprogram_Body (N, Spec_Id);
2605 if Nkind (N) = N_Subprogram_Body then
2606 HSS := Handled_Statement_Sequence (N);
2607 Check_Missing_Return;
2608 end if;
2610 return;
2612 else
2613 -- Previous entity conflicts with subprogram name. Attempting to
2614 -- enter name will post error.
2616 Enter_Name (Body_Id);
2617 return;
2618 end if;
2620 -- Non-generic case, find the subprogram declaration, if one was seen,
2621 -- or enter new overloaded entity in the current scope. If the
2622 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2623 -- part of the context of one of its subunits. No need to redo the
2624 -- analysis.
2626 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
2627 return;
2629 else
2630 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2632 if Nkind (N) = N_Subprogram_Body_Stub
2633 or else No (Corresponding_Spec (N))
2634 then
2635 if Is_Private_Concurrent_Primitive (Body_Id) then
2636 Spec_Id := Disambiguate_Spec;
2637 else
2638 Spec_Id := Find_Corresponding_Spec (N);
2639 end if;
2641 -- If this is a duplicate body, no point in analyzing it
2643 if Error_Posted (N) then
2644 return;
2645 end if;
2647 -- A subprogram body should cause freezing of its own declaration,
2648 -- but if there was no previous explicit declaration, then the
2649 -- subprogram will get frozen too late (there may be code within
2650 -- the body that depends on the subprogram having been frozen,
2651 -- such as uses of extra formals), so we force it to be frozen
2652 -- here. Same holds if the body and spec are compilation units.
2653 -- Finally, if the return type is an anonymous access to protected
2654 -- subprogram, it must be frozen before the body because its
2655 -- expansion has generated an equivalent type that is used when
2656 -- elaborating the body.
2658 -- An exception in the case of Ada 2012, AI05-177: The bodies
2659 -- created for expression functions do not freeze.
2661 if No (Spec_Id)
2662 and then Nkind (Original_Node (N)) /= N_Expression_Function
2663 then
2664 Freeze_Before (N, Body_Id);
2666 elsif Nkind (Parent (N)) = N_Compilation_Unit then
2667 Freeze_Before (N, Spec_Id);
2669 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2670 Freeze_Before (N, Etype (Body_Id));
2671 end if;
2673 else
2674 Spec_Id := Corresponding_Spec (N);
2675 end if;
2676 end if;
2678 -- Ada 2012 aspects may appear in a subprogram body, but only if there
2679 -- is no previous spec. Ditto for a subprogram stub that does not have
2680 -- a corresponding spec, but for which there may also be a spec_id.
2682 if Has_Aspects (N) then
2683 if Present (Spec_Id) then
2684 Error_Msg_N
2685 ("aspect specifications must appear in subprogram declaration",
2687 else
2688 Analyze_Aspect_Specifications (N, Body_Id);
2689 end if;
2690 end if;
2692 -- Previously we scanned the body to look for nested subprograms, and
2693 -- rejected an inline directive if nested subprograms were present,
2694 -- because the back-end would generate conflicting symbols for the
2695 -- nested bodies. This is now unnecessary.
2697 -- Look ahead to recognize a pragma Inline that appears after the body
2699 Check_Inline_Pragma (Spec_Id);
2701 -- Deal with special case of a fully private operation in the body of
2702 -- the protected type. We must create a declaration for the subprogram,
2703 -- in order to attach the protected subprogram that will be used in
2704 -- internal calls. We exclude compiler generated bodies from the
2705 -- expander since the issue does not arise for those cases.
2707 if No (Spec_Id)
2708 and then Comes_From_Source (N)
2709 and then Is_Protected_Type (Current_Scope)
2710 then
2711 Spec_Id := Build_Private_Protected_Declaration (N);
2712 end if;
2714 -- If a separate spec is present, then deal with freezing issues
2716 if Present (Spec_Id) then
2717 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2718 Verify_Overriding_Indicator;
2720 -- In general, the spec will be frozen when we start analyzing the
2721 -- body. However, for internally generated operations, such as
2722 -- wrapper functions for inherited operations with controlling
2723 -- results, the spec may not have been frozen by the time we expand
2724 -- the freeze actions that include the bodies. In particular, extra
2725 -- formals for accessibility or for return-in-place may need to be
2726 -- generated. Freeze nodes, if any, are inserted before the current
2727 -- body. These freeze actions are also needed in ASIS mode to enable
2728 -- the proper back-annotations.
2730 if not Is_Frozen (Spec_Id)
2731 and then (Expander_Active or ASIS_Mode)
2732 then
2733 -- Force the generation of its freezing node to ensure proper
2734 -- management of access types in the backend.
2736 -- This is definitely needed for some cases, but it is not clear
2737 -- why, to be investigated further???
2739 Set_Has_Delayed_Freeze (Spec_Id);
2740 Freeze_Before (N, Spec_Id);
2741 end if;
2742 end if;
2744 -- Mark presence of postcondition procedure in current scope and mark
2745 -- the procedure itself as needing debug info. The latter is important
2746 -- when analyzing decision coverage (for example, for MC/DC coverage).
2748 if Chars (Body_Id) = Name_uPostconditions then
2749 Set_Has_Postconditions (Current_Scope);
2750 Set_Debug_Info_Needed (Body_Id);
2751 end if;
2753 -- Place subprogram on scope stack, and make formals visible. If there
2754 -- is a spec, the visible entity remains that of the spec.
2756 if Present (Spec_Id) then
2757 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2759 if Is_Child_Unit (Spec_Id) then
2760 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2761 end if;
2763 if Style_Check then
2764 Style.Check_Identifier (Body_Id, Spec_Id);
2765 end if;
2767 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2768 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2770 if Is_Abstract_Subprogram (Spec_Id) then
2771 Error_Msg_N ("an abstract subprogram cannot have a body", N);
2772 return;
2774 else
2775 Set_Convention (Body_Id, Convention (Spec_Id));
2776 Set_Has_Completion (Spec_Id);
2778 if Is_Protected_Type (Scope (Spec_Id)) then
2779 Prot_Typ := Scope (Spec_Id);
2780 end if;
2782 -- If this is a body generated for a renaming, do not check for
2783 -- full conformance. The check is redundant, because the spec of
2784 -- the body is a copy of the spec in the renaming declaration,
2785 -- and the test can lead to spurious errors on nested defaults.
2787 if Present (Spec_Decl)
2788 and then not Comes_From_Source (N)
2789 and then
2790 (Nkind (Original_Node (Spec_Decl)) =
2791 N_Subprogram_Renaming_Declaration
2792 or else (Present (Corresponding_Body (Spec_Decl))
2793 and then
2794 Nkind (Unit_Declaration_Node
2795 (Corresponding_Body (Spec_Decl))) =
2796 N_Subprogram_Renaming_Declaration))
2797 then
2798 Conformant := True;
2800 -- Conversely, the spec may have been generated for specless body
2801 -- with an inline pragma.
2803 elsif Comes_From_Source (N)
2804 and then not Comes_From_Source (Spec_Id)
2805 and then Has_Pragma_Inline (Spec_Id)
2806 then
2807 Conformant := True;
2809 else
2810 Check_Conformance
2811 (Body_Id, Spec_Id,
2812 Fully_Conformant, True, Conformant, Body_Id);
2813 end if;
2815 -- If the body is not fully conformant, we have to decide if we
2816 -- should analyze it or not. If it has a really messed up profile
2817 -- then we probably should not analyze it, since we will get too
2818 -- many bogus messages.
2820 -- Our decision is to go ahead in the non-fully conformant case
2821 -- only if it is at least mode conformant with the spec. Note
2822 -- that the call to Check_Fully_Conformant has issued the proper
2823 -- error messages to complain about the lack of conformance.
2825 if not Conformant
2826 and then not Mode_Conformant (Body_Id, Spec_Id)
2827 then
2828 return;
2829 end if;
2830 end if;
2832 if Spec_Id /= Body_Id then
2833 Reference_Body_Formals (Spec_Id, Body_Id);
2834 end if;
2836 if Nkind (N) /= N_Subprogram_Body_Stub then
2837 Set_Corresponding_Spec (N, Spec_Id);
2839 -- Ada 2005 (AI-345): If the operation is a primitive operation
2840 -- of a concurrent type, the type of the first parameter has been
2841 -- replaced with the corresponding record, which is the proper
2842 -- run-time structure to use. However, within the body there may
2843 -- be uses of the formals that depend on primitive operations
2844 -- of the type (in particular calls in prefixed form) for which
2845 -- we need the original concurrent type. The operation may have
2846 -- several controlling formals, so the replacement must be done
2847 -- for all of them.
2849 if Comes_From_Source (Spec_Id)
2850 and then Present (First_Entity (Spec_Id))
2851 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2852 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2853 and then
2854 Present (Interfaces (Etype (First_Entity (Spec_Id))))
2855 and then
2856 Present
2857 (Corresponding_Concurrent_Type
2858 (Etype (First_Entity (Spec_Id))))
2859 then
2860 declare
2861 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2862 Form : Entity_Id;
2864 begin
2865 Form := First_Formal (Spec_Id);
2866 while Present (Form) loop
2867 if Etype (Form) = Typ then
2868 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2869 end if;
2871 Next_Formal (Form);
2872 end loop;
2873 end;
2874 end if;
2876 -- Make the formals visible, and place subprogram on scope stack.
2877 -- This is also the point at which we set Last_Real_Spec_Entity
2878 -- to mark the entities which will not be moved to the body.
2880 Install_Formals (Spec_Id);
2881 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2883 -- Within an instance, add local renaming declarations so that
2884 -- gdb can retrieve the values of actuals more easily. This is
2885 -- only relevant if generating code (and indeed we definitely
2886 -- do not want these definitions -gnatc mode, because that would
2887 -- confuse ASIS).
2889 if Is_Generic_Instance (Spec_Id)
2890 and then Is_Wrapper_Package (Current_Scope)
2891 and then Expander_Active
2892 then
2893 Build_Subprogram_Instance_Renamings (N, Current_Scope);
2894 end if;
2896 Push_Scope (Spec_Id);
2898 -- Make sure that the subprogram is immediately visible. For
2899 -- child units that have no separate spec this is indispensable.
2900 -- Otherwise it is safe albeit redundant.
2902 Set_Is_Immediately_Visible (Spec_Id);
2903 end if;
2905 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2906 Set_Contract (Body_Id, Empty);
2907 Set_Ekind (Body_Id, E_Subprogram_Body);
2908 Set_Scope (Body_Id, Scope (Spec_Id));
2909 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2911 -- Case of subprogram body with no previous spec
2913 else
2914 -- Check for style warning required
2916 if Style_Check
2918 -- Only apply check for source level subprograms for which checks
2919 -- have not been suppressed.
2921 and then Comes_From_Source (Body_Id)
2922 and then not Suppress_Style_Checks (Body_Id)
2924 -- No warnings within an instance
2926 and then not In_Instance
2928 -- No warnings for expression functions
2930 and then Nkind (Original_Node (N)) /= N_Expression_Function
2931 then
2932 Style.Body_With_No_Spec (N);
2933 end if;
2935 New_Overloaded_Entity (Body_Id);
2937 if Nkind (N) /= N_Subprogram_Body_Stub then
2938 Set_Acts_As_Spec (N);
2939 Generate_Definition (Body_Id);
2940 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
2941 Generate_Reference
2942 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2943 Install_Formals (Body_Id);
2944 Push_Scope (Body_Id);
2945 end if;
2947 -- For stubs and bodies with no previous spec, generate references to
2948 -- formals.
2950 Generate_Reference_To_Formals (Body_Id);
2951 end if;
2953 -- If the return type is an anonymous access type whose designated type
2954 -- is the limited view of a class-wide type and the non-limited view is
2955 -- available, update the return type accordingly.
2957 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
2958 declare
2959 Etyp : Entity_Id;
2960 Rtyp : Entity_Id;
2962 begin
2963 Rtyp := Etype (Current_Scope);
2965 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2966 Etyp := Directly_Designated_Type (Rtyp);
2968 if Is_Class_Wide_Type (Etyp) and then From_With_Type (Etyp) then
2969 Set_Directly_Designated_Type
2970 (Etype (Current_Scope), Available_View (Etyp));
2971 end if;
2972 end if;
2973 end;
2974 end if;
2976 -- If this is the proper body of a stub, we must verify that the stub
2977 -- conforms to the body, and to the previous spec if one was present.
2978 -- We know already that the body conforms to that spec. This test is
2979 -- only required for subprograms that come from source.
2981 if Nkind (Parent (N)) = N_Subunit
2982 and then Comes_From_Source (N)
2983 and then not Error_Posted (Body_Id)
2984 and then Nkind (Corresponding_Stub (Parent (N))) =
2985 N_Subprogram_Body_Stub
2986 then
2987 declare
2988 Old_Id : constant Entity_Id :=
2989 Defining_Entity
2990 (Specification (Corresponding_Stub (Parent (N))));
2992 Conformant : Boolean := False;
2994 begin
2995 if No (Spec_Id) then
2996 Check_Fully_Conformant (Body_Id, Old_Id);
2998 else
2999 Check_Conformance
3000 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3002 if not Conformant then
3004 -- The stub was taken to be a new declaration. Indicate that
3005 -- it lacks a body.
3007 Set_Has_Completion (Old_Id, False);
3008 end if;
3009 end if;
3010 end;
3011 end if;
3013 Set_Has_Completion (Body_Id);
3014 Check_Eliminated (Body_Id);
3016 if Nkind (N) = N_Subprogram_Body_Stub then
3017 return;
3018 end if;
3020 -- Handle frontend inlining. There is no need to prepare us for inlining
3021 -- if we will not generate the code.
3023 -- Old semantics
3025 if not Debug_Flag_Dot_K then
3026 if Present (Spec_Id)
3027 and then Expander_Active
3028 and then
3029 (Has_Pragma_Inline_Always (Spec_Id)
3030 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
3031 then
3032 Build_Body_To_Inline (N, Spec_Id);
3033 end if;
3035 -- New semantics
3037 elsif Expander_Active
3038 and then Serious_Errors_Detected = 0
3039 and then Present (Spec_Id)
3040 and then Has_Pragma_Inline (Spec_Id)
3041 then
3042 Check_And_Build_Body_To_Inline (N, Spec_Id, Body_Id);
3043 end if;
3045 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3046 -- of the specification we have to install the private withed units.
3047 -- This holds for child units as well.
3049 if Is_Compilation_Unit (Body_Id)
3050 or else Nkind (Parent (N)) = N_Compilation_Unit
3051 then
3052 Install_Private_With_Clauses (Body_Id);
3053 end if;
3055 Check_Anonymous_Return;
3057 -- Set the Protected_Formal field of each extra formal of the protected
3058 -- subprogram to reference the corresponding extra formal of the
3059 -- subprogram that implements it. For regular formals this occurs when
3060 -- the protected subprogram's declaration is expanded, but the extra
3061 -- formals don't get created until the subprogram is frozen. We need to
3062 -- do this before analyzing the protected subprogram's body so that any
3063 -- references to the original subprogram's extra formals will be changed
3064 -- refer to the implementing subprogram's formals (see Expand_Formal).
3066 if Present (Spec_Id)
3067 and then Is_Protected_Type (Scope (Spec_Id))
3068 and then Present (Protected_Body_Subprogram (Spec_Id))
3069 then
3070 declare
3071 Impl_Subp : constant Entity_Id :=
3072 Protected_Body_Subprogram (Spec_Id);
3073 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3074 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3075 begin
3076 while Present (Prot_Ext_Formal) loop
3077 pragma Assert (Present (Impl_Ext_Formal));
3078 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3079 Next_Formal_With_Extras (Prot_Ext_Formal);
3080 Next_Formal_With_Extras (Impl_Ext_Formal);
3081 end loop;
3082 end;
3083 end if;
3085 -- Now we can go on to analyze the body
3087 HSS := Handled_Statement_Sequence (N);
3088 Set_Actual_Subtypes (N, Current_Scope);
3090 -- Deal with preconditions and postconditions. In formal verification
3091 -- mode, we keep pre- and postconditions attached to entities rather
3092 -- than inserted in the code, in order to facilitate a distinct
3093 -- treatment for them.
3095 if not SPARK_Mode then
3096 Process_PPCs (N, Spec_Id, Body_Id);
3097 end if;
3099 -- Add a declaration for the Protection object, renaming declarations
3100 -- for discriminals and privals and finally a declaration for the entry
3101 -- family index (if applicable). This form of early expansion is done
3102 -- when the Expander is active because Install_Private_Data_Declarations
3103 -- references entities which were created during regular expansion. The
3104 -- body may be the rewritting of an expression function, and we need to
3105 -- verify that the original node is in the source.
3107 if Full_Expander_Active
3108 and then Comes_From_Source (Original_Node (N))
3109 and then Present (Prot_Typ)
3110 and then Present (Spec_Id)
3111 and then not Is_Eliminated (Spec_Id)
3112 then
3113 Install_Private_Data_Declarations
3114 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3115 end if;
3117 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3118 -- may now appear in parameter and result profiles. Since the analysis
3119 -- of a subprogram body may use the parameter and result profile of the
3120 -- spec, swap any limited views with their non-limited counterpart.
3122 if Ada_Version >= Ada_2012 then
3123 Exchange_Limited_Views (Spec_Id);
3124 end if;
3126 -- Analyze the declarations (this call will analyze the precondition
3127 -- Check pragmas we prepended to the list, as well as the declaration
3128 -- of the _Postconditions procedure).
3130 Analyze_Declarations (Declarations (N));
3132 -- Check completion, and analyze the statements
3134 Check_Completion;
3135 Inspect_Deferred_Constant_Completion (Declarations (N));
3136 Analyze (HSS);
3138 -- Deal with end of scope processing for the body
3140 Process_End_Label (HSS, 't', Current_Scope);
3141 End_Scope;
3142 Check_Subprogram_Order (N);
3143 Set_Analyzed (Body_Id);
3145 -- If we have a separate spec, then the analysis of the declarations
3146 -- caused the entities in the body to be chained to the spec id, but
3147 -- we want them chained to the body id. Only the formal parameters
3148 -- end up chained to the spec id in this case.
3150 if Present (Spec_Id) then
3152 -- We must conform to the categorization of our spec
3154 Validate_Categorization_Dependency (N, Spec_Id);
3156 -- And if this is a child unit, the parent units must conform
3158 if Is_Child_Unit (Spec_Id) then
3159 Validate_Categorization_Dependency
3160 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3161 end if;
3163 -- Here is where we move entities from the spec to the body
3165 -- Case where there are entities that stay with the spec
3167 if Present (Last_Real_Spec_Entity) then
3169 -- No body entities (happens when the only real spec entities come
3170 -- from precondition and postcondition pragmas).
3172 if No (Last_Entity (Body_Id)) then
3173 Set_First_Entity
3174 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3176 -- Body entities present (formals), so chain stuff past them
3178 else
3179 Set_Next_Entity
3180 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3181 end if;
3183 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3184 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3185 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3187 -- Case where there are no spec entities, in this case there can be
3188 -- no body entities either, so just move everything.
3190 else
3191 pragma Assert (No (Last_Entity (Body_Id)));
3192 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3193 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3194 Set_First_Entity (Spec_Id, Empty);
3195 Set_Last_Entity (Spec_Id, Empty);
3196 end if;
3197 end if;
3199 Check_Missing_Return;
3201 -- Now we are going to check for variables that are never modified in
3202 -- the body of the procedure. But first we deal with a special case
3203 -- where we want to modify this check. If the body of the subprogram
3204 -- starts with a raise statement or its equivalent, or if the body
3205 -- consists entirely of a null statement, then it is pretty obvious
3206 -- that it is OK to not reference the parameters. For example, this
3207 -- might be the following common idiom for a stubbed function:
3208 -- statement of the procedure raises an exception. In particular this
3209 -- deals with the common idiom of a stubbed function, which might
3210 -- appear as something like:
3212 -- function F (A : Integer) return Some_Type;
3213 -- X : Some_Type;
3214 -- begin
3215 -- raise Program_Error;
3216 -- return X;
3217 -- end F;
3219 -- Here the purpose of X is simply to satisfy the annoying requirement
3220 -- in Ada that there be at least one return, and we certainly do not
3221 -- want to go posting warnings on X that it is not initialized! On
3222 -- the other hand, if X is entirely unreferenced that should still
3223 -- get a warning.
3225 -- What we do is to detect these cases, and if we find them, flag the
3226 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3227 -- suppress unwanted warnings. For the case of the function stub above
3228 -- we have a special test to set X as apparently assigned to suppress
3229 -- the warning.
3231 declare
3232 Stm : Node_Id;
3234 begin
3235 -- Skip initial labels (for one thing this occurs when we are in
3236 -- front end ZCX mode, but in any case it is irrelevant), and also
3237 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3239 Stm := First (Statements (HSS));
3240 while Nkind (Stm) = N_Label
3241 or else Nkind (Stm) in N_Push_xxx_Label
3242 loop
3243 Next (Stm);
3244 end loop;
3246 -- Do the test on the original statement before expansion
3248 declare
3249 Ostm : constant Node_Id := Original_Node (Stm);
3251 begin
3252 -- If explicit raise statement, turn on flag
3254 if Nkind (Ostm) = N_Raise_Statement then
3255 Set_Trivial_Subprogram (Stm);
3257 -- If null statement, and no following statements, turn on flag
3259 elsif Nkind (Stm) = N_Null_Statement
3260 and then Comes_From_Source (Stm)
3261 and then No (Next (Stm))
3262 then
3263 Set_Trivial_Subprogram (Stm);
3265 -- Check for explicit call cases which likely raise an exception
3267 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3268 if Is_Entity_Name (Name (Ostm)) then
3269 declare
3270 Ent : constant Entity_Id := Entity (Name (Ostm));
3272 begin
3273 -- If the procedure is marked No_Return, then likely it
3274 -- raises an exception, but in any case it is not coming
3275 -- back here, so turn on the flag.
3277 if Present (Ent)
3278 and then Ekind (Ent) = E_Procedure
3279 and then No_Return (Ent)
3280 then
3281 Set_Trivial_Subprogram (Stm);
3282 end if;
3283 end;
3284 end if;
3285 end if;
3286 end;
3287 end;
3289 -- Check for variables that are never modified
3291 declare
3292 E1, E2 : Entity_Id;
3294 begin
3295 -- If there is a separate spec, then transfer Never_Set_In_Source
3296 -- flags from out parameters to the corresponding entities in the
3297 -- body. The reason we do that is we want to post error flags on
3298 -- the body entities, not the spec entities.
3300 if Present (Spec_Id) then
3301 E1 := First_Entity (Spec_Id);
3302 while Present (E1) loop
3303 if Ekind (E1) = E_Out_Parameter then
3304 E2 := First_Entity (Body_Id);
3305 while Present (E2) loop
3306 exit when Chars (E1) = Chars (E2);
3307 Next_Entity (E2);
3308 end loop;
3310 if Present (E2) then
3311 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
3312 end if;
3313 end if;
3315 Next_Entity (E1);
3316 end loop;
3317 end if;
3319 -- Check references in body
3321 Check_References (Body_Id);
3322 end;
3323 end Analyze_Subprogram_Body_Helper;
3325 ---------------------------------
3326 -- Analyze_Subprogram_Contract --
3327 ---------------------------------
3329 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
3330 Result_Seen : Boolean := False;
3331 -- A flag which keeps track of whether at least one postcondition or
3332 -- contract-case mentions attribute 'Result (set True if so).
3334 procedure Check_Result_And_Post_State
3335 (Prag : Node_Id;
3336 Error_Nod : in out Node_Id);
3337 -- Determine whether pragma Prag mentions attribute 'Result and whether
3338 -- the pragma contains an expression that evaluates differently in pre-
3339 -- and post-state. Prag is a postcondition or a contract-cases pragma.
3340 -- Error_Nod denotes the proper error node.
3342 ---------------------------------
3343 -- Check_Result_And_Post_State --
3344 ---------------------------------
3346 procedure Check_Result_And_Post_State
3347 (Prag : Node_Id;
3348 Error_Nod : in out Node_Id)
3350 procedure Check_Expression (Expr : Node_Id);
3351 -- Perform the 'Result and post-state checks on a given expression
3353 function Is_Function_Result (N : Node_Id) return Traverse_Result;
3354 -- Attempt to find attribute 'Result in a subtree denoted by N
3356 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
3357 -- Determine whether source node N denotes "True" or "False"
3359 function Mentions_Post_State (N : Node_Id) return Boolean;
3360 -- Determine whether a subtree denoted by N mentions any construct
3361 -- that denotes a post-state.
3363 procedure Check_Function_Result is
3364 new Traverse_Proc (Is_Function_Result);
3366 ----------------------
3367 -- Check_Expression --
3368 ----------------------
3370 procedure Check_Expression (Expr : Node_Id) is
3371 begin
3372 if not Is_Trivial_Boolean (Expr) then
3373 Check_Function_Result (Expr);
3375 if not Mentions_Post_State (Expr) then
3376 if Pragma_Name (Prag) = Name_Contract_Cases then
3377 Error_Msg_N
3378 ("contract case refers only to pre-state?T?", Expr);
3379 else
3380 Error_Msg_N
3381 ("postcondition refers only to pre-state?T?", Prag);
3382 end if;
3383 end if;
3384 end if;
3385 end Check_Expression;
3387 ------------------------
3388 -- Is_Function_Result --
3389 ------------------------
3391 function Is_Function_Result (N : Node_Id) return Traverse_Result is
3392 begin
3393 if Nkind (N) = N_Attribute_Reference
3394 and then Attribute_Name (N) = Name_Result
3395 then
3396 Result_Seen := True;
3397 return Abandon;
3399 -- Continue the traversal
3401 else
3402 return OK;
3403 end if;
3404 end Is_Function_Result;
3406 ------------------------
3407 -- Is_Trivial_Boolean --
3408 ------------------------
3410 function Is_Trivial_Boolean (N : Node_Id) return Boolean is
3411 begin
3412 return
3413 Comes_From_Source (N)
3414 and then Is_Entity_Name (N)
3415 and then (Entity (N) = Standard_True
3416 or else Entity (N) = Standard_False);
3417 end Is_Trivial_Boolean;
3419 -------------------------
3420 -- Mentions_Post_State --
3421 -------------------------
3423 function Mentions_Post_State (N : Node_Id) return Boolean is
3424 Post_State_Seen : Boolean := False;
3426 function Is_Post_State (N : Node_Id) return Traverse_Result;
3427 -- Attempt to find a construct that denotes a post-state. If this
3428 -- is the case, set flag Post_State_Seen.
3430 -------------------
3431 -- Is_Post_State --
3432 -------------------
3434 function Is_Post_State (N : Node_Id) return Traverse_Result is
3435 Ent : Entity_Id;
3437 begin
3438 if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
3439 Post_State_Seen := True;
3440 return Abandon;
3442 elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
3443 Ent := Entity (N);
3445 if No (Ent) or else Ekind (Ent) in Assignable_Kind then
3446 Post_State_Seen := True;
3447 return Abandon;
3448 end if;
3450 elsif Nkind (N) = N_Attribute_Reference then
3451 if Attribute_Name (N) = Name_Old then
3452 return Skip;
3453 elsif Attribute_Name (N) = Name_Result then
3454 Post_State_Seen := True;
3455 return Abandon;
3456 end if;
3457 end if;
3459 return OK;
3460 end Is_Post_State;
3462 procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
3464 -- Start of processing for Mentions_Post_State
3466 begin
3467 Find_Post_State (N);
3468 return Post_State_Seen;
3469 end Mentions_Post_State;
3471 -- Local variables
3473 Expr : constant Node_Id :=
3474 Expression (First (Pragma_Argument_Associations (Prag)));
3475 Nam : constant Name_Id := Pragma_Name (Prag);
3476 CCase : Node_Id;
3478 -- Start of processing for Check_Result_And_Post_State
3480 begin
3481 if No (Error_Nod) then
3482 Error_Nod := Prag;
3483 end if;
3485 -- Examine all consequences
3487 if Nam = Name_Contract_Cases then
3488 CCase := First (Component_Associations (Expr));
3489 while Present (CCase) loop
3490 Check_Expression (Expression (CCase));
3492 Next (CCase);
3493 end loop;
3495 -- Examine the expression of a postcondition
3497 else
3498 pragma Assert (Nam = Name_Postcondition);
3499 Check_Expression (Expr);
3500 end if;
3501 end Check_Result_And_Post_State;
3503 -- Local variables
3505 Items : constant Node_Id := Contract (Subp);
3506 Error_CCase : Node_Id;
3507 Error_Post : Node_Id;
3508 Prag : Node_Id;
3510 -- Start of processing for Analyze_Subprogram_Contract
3512 begin
3513 Error_CCase := Empty;
3514 Error_Post := Empty;
3516 if Present (Items) then
3518 -- Analyze pre- and postconditions
3520 Prag := Pre_Post_Conditions (Items);
3521 while Present (Prag) loop
3522 Analyze_PPC_In_Decl_Part (Prag, Subp);
3524 -- Verify whether a postcondition mentions attribute 'Result and
3525 -- its expression introduces a post-state.
3527 if Warn_On_Suspicious_Contract
3528 and then Pragma_Name (Prag) = Name_Postcondition
3529 then
3530 Check_Result_And_Post_State (Prag, Error_Post);
3531 end if;
3533 Prag := Next_Pragma (Prag);
3534 end loop;
3536 -- Analyze contract-cases and test-cases
3538 Prag := Contract_Test_Cases (Items);
3539 while Present (Prag) loop
3540 if Pragma_Name (Prag) = Name_Contract_Cases then
3541 Analyze_Contract_Cases_In_Decl_Part (Prag);
3543 -- Verify whether contract-cases mention attribute 'Result and
3544 -- its expression introduces a post-state. Perform the check
3545 -- only when the pragma is legal.
3547 if Warn_On_Suspicious_Contract
3548 and then not Error_Posted (Prag)
3549 then
3550 Check_Result_And_Post_State (Prag, Error_CCase);
3551 end if;
3553 else
3554 pragma Assert (Pragma_Name (Prag) = Name_Test_Case);
3555 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
3556 end if;
3558 Prag := Next_Pragma (Prag);
3559 end loop;
3561 -- Analyze classification pragmas
3563 Prag := Classifications (Contract (Subp));
3564 while Present (Prag) loop
3565 if Pragma_Name (Prag) = Name_Depends then
3566 Analyze_Depends_In_Decl_Part (Prag);
3567 else
3568 pragma Assert (Pragma_Name (Prag) = Name_Global);
3569 Analyze_Global_In_Decl_Part (Prag);
3570 end if;
3572 Prag := Next_Pragma (Prag);
3573 end loop;
3574 end if;
3576 -- Emit an error when none of the postconditions or contract-cases
3577 -- mention attribute 'Result in the context of a function.
3579 if Warn_On_Suspicious_Contract
3580 and then Ekind_In (Subp, E_Function, E_Generic_Function)
3581 and then not Result_Seen
3582 then
3583 if Present (Error_Post) and then Present (Error_CCase) then
3584 Error_Msg_N
3585 ("neither function postcondition nor contract cases mention "
3586 & "result?T?", Error_Post);
3588 elsif Present (Error_Post) then
3589 Error_Msg_N
3590 ("function postcondition does not mention result?T?",
3591 Error_Post);
3593 elsif Present (Error_CCase) then
3594 Error_Msg_N
3595 ("contract cases do not mention result?T?", Error_CCase);
3596 end if;
3597 end if;
3598 end Analyze_Subprogram_Contract;
3600 ------------------------------------
3601 -- Analyze_Subprogram_Declaration --
3602 ------------------------------------
3604 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
3605 Scop : constant Entity_Id := Current_Scope;
3606 Designator : Entity_Id;
3607 Is_Completion : Boolean;
3608 -- Indicates whether a null procedure declaration is a completion
3610 begin
3611 -- Null procedures are not allowed in SPARK
3613 if Nkind (Specification (N)) = N_Procedure_Specification
3614 and then Null_Present (Specification (N))
3615 then
3616 Check_SPARK_Restriction ("null procedure is not allowed", N);
3618 if Is_Protected_Type (Current_Scope) then
3619 Error_Msg_N ("protected operation cannot be a null procedure", N);
3620 end if;
3622 Analyze_Null_Procedure (N, Is_Completion);
3624 if Is_Completion then
3626 -- The null procedure acts as a body, nothing further is needed.
3628 return;
3629 end if;
3630 end if;
3632 Designator := Analyze_Subprogram_Specification (Specification (N));
3634 -- A reference may already have been generated for the unit name, in
3635 -- which case the following call is redundant. However it is needed for
3636 -- declarations that are the rewriting of an expression function.
3638 Generate_Definition (Designator);
3640 if Debug_Flag_C then
3641 Write_Str ("==> subprogram spec ");
3642 Write_Name (Chars (Designator));
3643 Write_Str (" from ");
3644 Write_Location (Sloc (N));
3645 Write_Eol;
3646 Indent;
3647 end if;
3649 Validate_RCI_Subprogram_Declaration (N);
3650 New_Overloaded_Entity (Designator);
3651 Check_Delayed_Subprogram (Designator);
3653 -- If the type of the first formal of the current subprogram is a
3654 -- non-generic tagged private type, mark the subprogram as being a
3655 -- private primitive. Ditto if this is a function with controlling
3656 -- result, and the return type is currently private. In both cases,
3657 -- the type of the controlling argument or result must be in the
3658 -- current scope for the operation to be primitive.
3660 if Has_Controlling_Result (Designator)
3661 and then Is_Private_Type (Etype (Designator))
3662 and then Scope (Etype (Designator)) = Current_Scope
3663 and then not Is_Generic_Actual_Type (Etype (Designator))
3664 then
3665 Set_Is_Private_Primitive (Designator);
3667 elsif Present (First_Formal (Designator)) then
3668 declare
3669 Formal_Typ : constant Entity_Id :=
3670 Etype (First_Formal (Designator));
3671 begin
3672 Set_Is_Private_Primitive (Designator,
3673 Is_Tagged_Type (Formal_Typ)
3674 and then Scope (Formal_Typ) = Current_Scope
3675 and then Is_Private_Type (Formal_Typ)
3676 and then not Is_Generic_Actual_Type (Formal_Typ));
3677 end;
3678 end if;
3680 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
3681 -- or null.
3683 if Ada_Version >= Ada_2005
3684 and then Comes_From_Source (N)
3685 and then Is_Dispatching_Operation (Designator)
3686 then
3687 declare
3688 E : Entity_Id;
3689 Etyp : Entity_Id;
3691 begin
3692 if Has_Controlling_Result (Designator) then
3693 Etyp := Etype (Designator);
3695 else
3696 E := First_Entity (Designator);
3697 while Present (E)
3698 and then Is_Formal (E)
3699 and then not Is_Controlling_Formal (E)
3700 loop
3701 Next_Entity (E);
3702 end loop;
3704 Etyp := Etype (E);
3705 end if;
3707 if Is_Access_Type (Etyp) then
3708 Etyp := Directly_Designated_Type (Etyp);
3709 end if;
3711 if Is_Interface (Etyp)
3712 and then not Is_Abstract_Subprogram (Designator)
3713 and then not (Ekind (Designator) = E_Procedure
3714 and then Null_Present (Specification (N)))
3715 then
3716 Error_Msg_Name_1 := Chars (Defining_Entity (N));
3718 -- Specialize error message based on procedures vs. functions,
3719 -- since functions can't be null subprograms.
3721 if Ekind (Designator) = E_Procedure then
3722 Error_Msg_N
3723 ("interface procedure % must be abstract or null", N);
3724 else
3725 Error_Msg_N ("interface function % must be abstract", N);
3726 end if;
3727 end if;
3728 end;
3729 end if;
3731 -- What is the following code for, it used to be
3733 -- ??? Set_Suppress_Elaboration_Checks
3734 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
3736 -- The following seems equivalent, but a bit dubious
3738 if Elaboration_Checks_Suppressed (Designator) then
3739 Set_Kill_Elaboration_Checks (Designator);
3740 end if;
3742 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
3743 Set_Categorization_From_Scope (Designator, Scop);
3745 else
3746 -- For a compilation unit, check for library-unit pragmas
3748 Push_Scope (Designator);
3749 Set_Categorization_From_Pragmas (N);
3750 Validate_Categorization_Dependency (N, Designator);
3751 Pop_Scope;
3752 end if;
3754 -- For a compilation unit, set body required. This flag will only be
3755 -- reset if a valid Import or Interface pragma is processed later on.
3757 if Nkind (Parent (N)) = N_Compilation_Unit then
3758 Set_Body_Required (Parent (N), True);
3760 if Ada_Version >= Ada_2005
3761 and then Nkind (Specification (N)) = N_Procedure_Specification
3762 and then Null_Present (Specification (N))
3763 then
3764 Error_Msg_N
3765 ("null procedure cannot be declared at library level", N);
3766 end if;
3767 end if;
3769 Generate_Reference_To_Formals (Designator);
3770 Check_Eliminated (Designator);
3772 if Debug_Flag_C then
3773 Outdent;
3774 Write_Str ("<== subprogram spec ");
3775 Write_Name (Chars (Designator));
3776 Write_Str (" from ");
3777 Write_Location (Sloc (N));
3778 Write_Eol;
3779 end if;
3781 if Is_Protected_Type (Current_Scope) then
3783 -- Indicate that this is a protected operation, because it may be
3784 -- used in subsequent declarations within the protected type.
3786 Set_Convention (Designator, Convention_Protected);
3787 end if;
3789 List_Inherited_Pre_Post_Aspects (Designator);
3791 if Has_Aspects (N) then
3792 Analyze_Aspect_Specifications (N, Designator);
3793 end if;
3794 end Analyze_Subprogram_Declaration;
3796 --------------------------------------
3797 -- Analyze_Subprogram_Specification --
3798 --------------------------------------
3800 -- Reminder: N here really is a subprogram specification (not a subprogram
3801 -- declaration). This procedure is called to analyze the specification in
3802 -- both subprogram bodies and subprogram declarations (specs).
3804 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
3805 Designator : constant Entity_Id := Defining_Entity (N);
3806 Formals : constant List_Id := Parameter_Specifications (N);
3808 -- Start of processing for Analyze_Subprogram_Specification
3810 begin
3811 -- User-defined operator is not allowed in SPARK, except as a renaming
3813 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
3814 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
3815 then
3816 Check_SPARK_Restriction ("user-defined operator is not allowed", N);
3817 end if;
3819 -- Proceed with analysis. Do not emit a cross-reference entry if the
3820 -- specification comes from an expression function, because it may be
3821 -- the completion of a previous declaration. It is is not, the cross-
3822 -- reference entry will be emitted for the new subprogram declaration.
3824 if Nkind (Parent (N)) /= N_Expression_Function then
3825 Generate_Definition (Designator);
3826 end if;
3828 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
3830 if Nkind (N) = N_Function_Specification then
3831 Set_Ekind (Designator, E_Function);
3832 Set_Mechanism (Designator, Default_Mechanism);
3833 else
3834 Set_Ekind (Designator, E_Procedure);
3835 Set_Etype (Designator, Standard_Void_Type);
3836 end if;
3838 -- Introduce new scope for analysis of the formals and the return type
3840 Set_Scope (Designator, Current_Scope);
3842 if Present (Formals) then
3843 Push_Scope (Designator);
3844 Process_Formals (Formals, N);
3846 -- Check dimensions in N for formals with default expression
3848 Analyze_Dimension_Formals (N, Formals);
3850 -- Ada 2005 (AI-345): If this is an overriding operation of an
3851 -- inherited interface operation, and the controlling type is
3852 -- a synchronized type, replace the type with its corresponding
3853 -- record, to match the proper signature of an overriding operation.
3854 -- Same processing for an access parameter whose designated type is
3855 -- derived from a synchronized interface.
3857 if Ada_Version >= Ada_2005 then
3858 declare
3859 Formal : Entity_Id;
3860 Formal_Typ : Entity_Id;
3861 Rec_Typ : Entity_Id;
3862 Desig_Typ : Entity_Id;
3864 begin
3865 Formal := First_Formal (Designator);
3866 while Present (Formal) loop
3867 Formal_Typ := Etype (Formal);
3869 if Is_Concurrent_Type (Formal_Typ)
3870 and then Present (Corresponding_Record_Type (Formal_Typ))
3871 then
3872 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
3874 if Present (Interfaces (Rec_Typ)) then
3875 Set_Etype (Formal, Rec_Typ);
3876 end if;
3878 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
3879 Desig_Typ := Designated_Type (Formal_Typ);
3881 if Is_Concurrent_Type (Desig_Typ)
3882 and then Present (Corresponding_Record_Type (Desig_Typ))
3883 then
3884 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
3886 if Present (Interfaces (Rec_Typ)) then
3887 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
3888 end if;
3889 end if;
3890 end if;
3892 Next_Formal (Formal);
3893 end loop;
3894 end;
3895 end if;
3897 End_Scope;
3899 -- The subprogram scope is pushed and popped around the processing of
3900 -- the return type for consistency with call above to Process_Formals
3901 -- (which itself can call Analyze_Return_Type), and to ensure that any
3902 -- itype created for the return type will be associated with the proper
3903 -- scope.
3905 elsif Nkind (N) = N_Function_Specification then
3906 Push_Scope (Designator);
3907 Analyze_Return_Type (N);
3908 End_Scope;
3909 end if;
3911 -- Function case
3913 if Nkind (N) = N_Function_Specification then
3915 -- Deal with operator symbol case
3917 if Nkind (Designator) = N_Defining_Operator_Symbol then
3918 Valid_Operator_Definition (Designator);
3919 end if;
3921 May_Need_Actuals (Designator);
3923 -- Ada 2005 (AI-251): If the return type is abstract, verify that
3924 -- the subprogram is abstract also. This does not apply to renaming
3925 -- declarations, where abstractness is inherited, and to subprogram
3926 -- bodies generated for stream operations, which become renamings as
3927 -- bodies.
3929 -- In case of primitives associated with abstract interface types
3930 -- the check is applied later (see Analyze_Subprogram_Declaration).
3932 if not Nkind_In (Original_Node (Parent (N)),
3933 N_Subprogram_Renaming_Declaration,
3934 N_Abstract_Subprogram_Declaration,
3935 N_Formal_Abstract_Subprogram_Declaration)
3936 then
3937 if Is_Abstract_Type (Etype (Designator))
3938 and then not Is_Interface (Etype (Designator))
3939 then
3940 Error_Msg_N
3941 ("function that returns abstract type must be abstract", N);
3943 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
3944 -- access result whose designated type is abstract.
3946 elsif Nkind (Result_Definition (N)) = N_Access_Definition
3947 and then
3948 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
3949 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
3950 and then Ada_Version >= Ada_2012
3951 then
3952 Error_Msg_N ("function whose access result designates "
3953 & "abstract type must be abstract", N);
3954 end if;
3955 end if;
3956 end if;
3958 return Designator;
3959 end Analyze_Subprogram_Specification;
3961 --------------------------
3962 -- Build_Body_To_Inline --
3963 --------------------------
3965 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
3966 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
3967 Original_Body : Node_Id;
3968 Body_To_Analyze : Node_Id;
3969 Max_Size : constant := 10;
3970 Stat_Count : Integer := 0;
3972 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
3973 -- Check for declarations that make inlining not worthwhile
3975 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
3976 -- Check for statements that make inlining not worthwhile: any tasking
3977 -- statement, nested at any level. Keep track of total number of
3978 -- elementary statements, as a measure of acceptable size.
3980 function Has_Pending_Instantiation return Boolean;
3981 -- If some enclosing body contains instantiations that appear before the
3982 -- corresponding generic body, the enclosing body has a freeze node so
3983 -- that it can be elaborated after the generic itself. This might
3984 -- conflict with subsequent inlinings, so that it is unsafe to try to
3985 -- inline in such a case.
3987 function Has_Single_Return return Boolean;
3988 -- In general we cannot inline functions that return unconstrained type.
3989 -- However, we can handle such functions if all return statements return
3990 -- a local variable that is the only declaration in the body of the
3991 -- function. In that case the call can be replaced by that local
3992 -- variable as is done for other inlined calls.
3994 procedure Remove_Pragmas;
3995 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
3996 -- parameter has no meaning when the body is inlined and the formals
3997 -- are rewritten. Remove it from body to inline. The analysis of the
3998 -- non-inlined body will handle the pragma properly.
4000 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
4001 -- If the body of the subprogram includes a call that returns an
4002 -- unconstrained type, the secondary stack is involved, and it
4003 -- is not worth inlining.
4005 ------------------------------
4006 -- Has_Excluded_Declaration --
4007 ------------------------------
4009 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
4010 D : Node_Id;
4012 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4013 -- Nested subprograms make a given body ineligible for inlining, but
4014 -- we make an exception for instantiations of unchecked conversion.
4015 -- The body has not been analyzed yet, so check the name, and verify
4016 -- that the visible entity with that name is the predefined unit.
4018 -----------------------------
4019 -- Is_Unchecked_Conversion --
4020 -----------------------------
4022 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4023 Id : constant Node_Id := Name (D);
4024 Conv : Entity_Id;
4026 begin
4027 if Nkind (Id) = N_Identifier
4028 and then Chars (Id) = Name_Unchecked_Conversion
4029 then
4030 Conv := Current_Entity (Id);
4032 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
4033 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4034 then
4035 Conv := Current_Entity (Selector_Name (Id));
4036 else
4037 return False;
4038 end if;
4040 return Present (Conv)
4041 and then Is_Predefined_File_Name
4042 (Unit_File_Name (Get_Source_Unit (Conv)))
4043 and then Is_Intrinsic_Subprogram (Conv);
4044 end Is_Unchecked_Conversion;
4046 -- Start of processing for Has_Excluded_Declaration
4048 begin
4049 D := First (Decls);
4050 while Present (D) loop
4051 if (Nkind (D) = N_Function_Instantiation
4052 and then not Is_Unchecked_Conversion (D))
4053 or else Nkind_In (D, N_Protected_Type_Declaration,
4054 N_Package_Declaration,
4055 N_Package_Instantiation,
4056 N_Subprogram_Body,
4057 N_Procedure_Instantiation,
4058 N_Task_Type_Declaration)
4059 then
4060 Cannot_Inline
4061 ("cannot inline & (non-allowed declaration)?", D, Subp);
4062 return True;
4063 end if;
4065 Next (D);
4066 end loop;
4068 return False;
4069 end Has_Excluded_Declaration;
4071 ----------------------------
4072 -- Has_Excluded_Statement --
4073 ----------------------------
4075 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
4076 S : Node_Id;
4077 E : Node_Id;
4079 begin
4080 S := First (Stats);
4081 while Present (S) loop
4082 Stat_Count := Stat_Count + 1;
4084 if Nkind_In (S, N_Abort_Statement,
4085 N_Asynchronous_Select,
4086 N_Conditional_Entry_Call,
4087 N_Delay_Relative_Statement,
4088 N_Delay_Until_Statement,
4089 N_Selective_Accept,
4090 N_Timed_Entry_Call)
4091 then
4092 Cannot_Inline
4093 ("cannot inline & (non-allowed statement)?", S, Subp);
4094 return True;
4096 elsif Nkind (S) = N_Block_Statement then
4097 if Present (Declarations (S))
4098 and then Has_Excluded_Declaration (Declarations (S))
4099 then
4100 return True;
4102 elsif Present (Handled_Statement_Sequence (S))
4103 and then
4104 (Present
4105 (Exception_Handlers (Handled_Statement_Sequence (S)))
4106 or else
4107 Has_Excluded_Statement
4108 (Statements (Handled_Statement_Sequence (S))))
4109 then
4110 return True;
4111 end if;
4113 elsif Nkind (S) = N_Case_Statement then
4114 E := First (Alternatives (S));
4115 while Present (E) loop
4116 if Has_Excluded_Statement (Statements (E)) then
4117 return True;
4118 end if;
4120 Next (E);
4121 end loop;
4123 elsif Nkind (S) = N_If_Statement then
4124 if Has_Excluded_Statement (Then_Statements (S)) then
4125 return True;
4126 end if;
4128 if Present (Elsif_Parts (S)) then
4129 E := First (Elsif_Parts (S));
4130 while Present (E) loop
4131 if Has_Excluded_Statement (Then_Statements (E)) then
4132 return True;
4133 end if;
4135 Next (E);
4136 end loop;
4137 end if;
4139 if Present (Else_Statements (S))
4140 and then Has_Excluded_Statement (Else_Statements (S))
4141 then
4142 return True;
4143 end if;
4145 elsif Nkind (S) = N_Loop_Statement
4146 and then Has_Excluded_Statement (Statements (S))
4147 then
4148 return True;
4150 elsif Nkind (S) = N_Extended_Return_Statement then
4151 if Has_Excluded_Statement
4152 (Statements (Handled_Statement_Sequence (S)))
4153 or else Present
4154 (Exception_Handlers (Handled_Statement_Sequence (S)))
4155 then
4156 return True;
4157 end if;
4158 end if;
4160 Next (S);
4161 end loop;
4163 return False;
4164 end Has_Excluded_Statement;
4166 -------------------------------
4167 -- Has_Pending_Instantiation --
4168 -------------------------------
4170 function Has_Pending_Instantiation return Boolean is
4171 S : Entity_Id;
4173 begin
4174 S := Current_Scope;
4175 while Present (S) loop
4176 if Is_Compilation_Unit (S)
4177 or else Is_Child_Unit (S)
4178 then
4179 return False;
4181 elsif Ekind (S) = E_Package
4182 and then Has_Forward_Instantiation (S)
4183 then
4184 return True;
4185 end if;
4187 S := Scope (S);
4188 end loop;
4190 return False;
4191 end Has_Pending_Instantiation;
4193 ------------------------
4194 -- Has_Single_Return --
4195 ------------------------
4197 function Has_Single_Return return Boolean is
4198 Return_Statement : Node_Id := Empty;
4200 function Check_Return (N : Node_Id) return Traverse_Result;
4202 ------------------
4203 -- Check_Return --
4204 ------------------
4206 function Check_Return (N : Node_Id) return Traverse_Result is
4207 begin
4208 if Nkind (N) = N_Simple_Return_Statement then
4209 if Present (Expression (N))
4210 and then Is_Entity_Name (Expression (N))
4211 then
4212 if No (Return_Statement) then
4213 Return_Statement := N;
4214 return OK;
4216 elsif Chars (Expression (N)) =
4217 Chars (Expression (Return_Statement))
4218 then
4219 return OK;
4221 else
4222 return Abandon;
4223 end if;
4225 -- A return statement within an extended return is a noop
4226 -- after inlining.
4228 elsif No (Expression (N))
4229 and then Nkind (Parent (Parent (N))) =
4230 N_Extended_Return_Statement
4231 then
4232 return OK;
4234 else
4235 -- Expression has wrong form
4237 return Abandon;
4238 end if;
4240 -- We can only inline a build-in-place function if
4241 -- it has a single extended return.
4243 elsif Nkind (N) = N_Extended_Return_Statement then
4244 if No (Return_Statement) then
4245 Return_Statement := N;
4246 return OK;
4248 else
4249 return Abandon;
4250 end if;
4252 else
4253 return OK;
4254 end if;
4255 end Check_Return;
4257 function Check_All_Returns is new Traverse_Func (Check_Return);
4259 -- Start of processing for Has_Single_Return
4261 begin
4262 if Check_All_Returns (N) /= OK then
4263 return False;
4265 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
4266 return True;
4268 else
4269 return Present (Declarations (N))
4270 and then Present (First (Declarations (N)))
4271 and then Chars (Expression (Return_Statement)) =
4272 Chars (Defining_Identifier (First (Declarations (N))));
4273 end if;
4274 end Has_Single_Return;
4276 --------------------
4277 -- Remove_Pragmas --
4278 --------------------
4280 procedure Remove_Pragmas is
4281 Decl : Node_Id;
4282 Nxt : Node_Id;
4284 begin
4285 Decl := First (Declarations (Body_To_Analyze));
4286 while Present (Decl) loop
4287 Nxt := Next (Decl);
4289 if Nkind (Decl) = N_Pragma
4290 and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
4291 Name_Unmodified)
4292 then
4293 Remove (Decl);
4294 end if;
4296 Decl := Nxt;
4297 end loop;
4298 end Remove_Pragmas;
4300 --------------------------
4301 -- Uses_Secondary_Stack --
4302 --------------------------
4304 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
4305 function Check_Call (N : Node_Id) return Traverse_Result;
4306 -- Look for function calls that return an unconstrained type
4308 ----------------
4309 -- Check_Call --
4310 ----------------
4312 function Check_Call (N : Node_Id) return Traverse_Result is
4313 begin
4314 if Nkind (N) = N_Function_Call
4315 and then Is_Entity_Name (Name (N))
4316 and then Is_Composite_Type (Etype (Entity (Name (N))))
4317 and then not Is_Constrained (Etype (Entity (Name (N))))
4318 then
4319 Cannot_Inline
4320 ("cannot inline & (call returns unconstrained type)?",
4321 N, Subp);
4322 return Abandon;
4323 else
4324 return OK;
4325 end if;
4326 end Check_Call;
4328 function Check_Calls is new Traverse_Func (Check_Call);
4330 begin
4331 return Check_Calls (Bod) = Abandon;
4332 end Uses_Secondary_Stack;
4334 -- Start of processing for Build_Body_To_Inline
4336 begin
4337 -- Return immediately if done already
4339 if Nkind (Decl) = N_Subprogram_Declaration
4340 and then Present (Body_To_Inline (Decl))
4341 then
4342 return;
4344 -- Functions that return unconstrained composite types require
4345 -- secondary stack handling, and cannot currently be inlined, unless
4346 -- all return statements return a local variable that is the first
4347 -- local declaration in the body.
4349 elsif Ekind (Subp) = E_Function
4350 and then not Is_Scalar_Type (Etype (Subp))
4351 and then not Is_Access_Type (Etype (Subp))
4352 and then not Is_Constrained (Etype (Subp))
4353 then
4354 if not Has_Single_Return then
4355 Cannot_Inline
4356 ("cannot inline & (unconstrained return type)?", N, Subp);
4357 return;
4358 end if;
4360 -- Ditto for functions that return controlled types, where controlled
4361 -- actions interfere in complex ways with inlining.
4363 elsif Ekind (Subp) = E_Function
4364 and then Needs_Finalization (Etype (Subp))
4365 then
4366 Cannot_Inline
4367 ("cannot inline & (controlled return type)?", N, Subp);
4368 return;
4369 end if;
4371 if Present (Declarations (N))
4372 and then Has_Excluded_Declaration (Declarations (N))
4373 then
4374 return;
4375 end if;
4377 if Present (Handled_Statement_Sequence (N)) then
4378 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
4379 Cannot_Inline
4380 ("cannot inline& (exception handler)?",
4381 First (Exception_Handlers (Handled_Statement_Sequence (N))),
4382 Subp);
4383 return;
4384 elsif
4385 Has_Excluded_Statement
4386 (Statements (Handled_Statement_Sequence (N)))
4387 then
4388 return;
4389 end if;
4390 end if;
4392 -- We do not inline a subprogram that is too large, unless it is
4393 -- marked Inline_Always. This pragma does not suppress the other
4394 -- checks on inlining (forbidden declarations, handlers, etc).
4396 if Stat_Count > Max_Size
4397 and then not Has_Pragma_Inline_Always (Subp)
4398 then
4399 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
4400 return;
4401 end if;
4403 if Has_Pending_Instantiation then
4404 Cannot_Inline
4405 ("cannot inline& (forward instance within enclosing body)?",
4406 N, Subp);
4407 return;
4408 end if;
4410 -- Within an instance, the body to inline must be treated as a nested
4411 -- generic, so that the proper global references are preserved.
4413 -- Note that we do not do this at the library level, because it is not
4414 -- needed, and furthermore this causes trouble if front end inlining
4415 -- is activated (-gnatN).
4417 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4418 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
4419 Original_Body := Copy_Generic_Node (N, Empty, True);
4420 else
4421 Original_Body := Copy_Separate_Tree (N);
4422 end if;
4424 -- We need to capture references to the formals in order to substitute
4425 -- the actuals at the point of inlining, i.e. instantiation. To treat
4426 -- the formals as globals to the body to inline, we nest it within
4427 -- a dummy parameterless subprogram, declared within the real one.
4428 -- To avoid generating an internal name (which is never public, and
4429 -- which affects serial numbers of other generated names), we use
4430 -- an internal symbol that cannot conflict with user declarations.
4432 Set_Parameter_Specifications (Specification (Original_Body), No_List);
4433 Set_Defining_Unit_Name
4434 (Specification (Original_Body),
4435 Make_Defining_Identifier (Sloc (N), Name_uParent));
4436 Set_Corresponding_Spec (Original_Body, Empty);
4438 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
4440 -- Set return type of function, which is also global and does not need
4441 -- to be resolved.
4443 if Ekind (Subp) = E_Function then
4444 Set_Result_Definition (Specification (Body_To_Analyze),
4445 New_Occurrence_Of (Etype (Subp), Sloc (N)));
4446 end if;
4448 if No (Declarations (N)) then
4449 Set_Declarations (N, New_List (Body_To_Analyze));
4450 else
4451 Append (Body_To_Analyze, Declarations (N));
4452 end if;
4454 Expander_Mode_Save_And_Set (False);
4455 Remove_Pragmas;
4457 Analyze (Body_To_Analyze);
4458 Push_Scope (Defining_Entity (Body_To_Analyze));
4459 Save_Global_References (Original_Body);
4460 End_Scope;
4461 Remove (Body_To_Analyze);
4463 Expander_Mode_Restore;
4465 -- Restore environment if previously saved
4467 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4468 Restore_Env;
4469 end if;
4471 -- If secondary stk used there is no point in inlining. We have
4472 -- already issued the warning in this case, so nothing to do.
4474 if Uses_Secondary_Stack (Body_To_Analyze) then
4475 return;
4476 end if;
4478 Set_Body_To_Inline (Decl, Original_Body);
4479 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
4480 Set_Is_Inlined (Subp);
4481 end Build_Body_To_Inline;
4483 -------------------
4484 -- Cannot_Inline --
4485 -------------------
4487 procedure Cannot_Inline
4488 (Msg : String;
4489 N : Node_Id;
4490 Subp : Entity_Id;
4491 Is_Serious : Boolean := False)
4493 begin
4494 pragma Assert (Msg (Msg'Last) = '?');
4496 -- Old semantics
4498 if not Debug_Flag_Dot_K then
4500 -- Do not emit warning if this is a predefined unit which is not
4501 -- the main unit. With validity checks enabled, some predefined
4502 -- subprograms may contain nested subprograms and become ineligible
4503 -- for inlining.
4505 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4506 and then not In_Extended_Main_Source_Unit (Subp)
4507 then
4508 null;
4510 elsif Has_Pragma_Inline_Always (Subp) then
4512 -- Remove last character (question mark) to make this into an
4513 -- error, because the Inline_Always pragma cannot be obeyed.
4515 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4517 elsif Ineffective_Inline_Warnings then
4518 Error_Msg_NE (Msg & "p?", N, Subp);
4519 end if;
4521 return;
4523 -- New semantics
4525 elsif Is_Serious then
4527 -- Remove last character (question mark) to make this into an error.
4529 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4531 elsif Optimization_Level = 0 then
4533 -- Do not emit warning if this is a predefined unit which is not
4534 -- the main unit. This behavior is currently provided for backward
4535 -- compatibility but it will be removed when we enforce the
4536 -- strictness of the new rules.
4538 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4539 and then not In_Extended_Main_Source_Unit (Subp)
4540 then
4541 null;
4543 elsif Has_Pragma_Inline_Always (Subp) then
4545 -- Emit a warning if this is a call to a runtime subprogram
4546 -- which is located inside a generic. Previously this call
4547 -- was silently skipped!
4549 if Is_Generic_Instance (Subp) then
4550 declare
4551 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
4552 begin
4553 if Is_Predefined_File_Name
4554 (Unit_File_Name (Get_Source_Unit (Gen_P)))
4555 then
4556 Set_Is_Inlined (Subp, False);
4557 Error_Msg_NE (Msg & "p?", N, Subp);
4558 return;
4559 end if;
4560 end;
4561 end if;
4563 -- Remove last character (question mark) to make this into an
4564 -- error, because the Inline_Always pragma cannot be obeyed.
4566 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4568 else pragma Assert (Front_End_Inlining);
4569 Set_Is_Inlined (Subp, False);
4571 -- When inlining cannot take place we must issue an error.
4572 -- For backward compatibility we still report a warning.
4574 if Ineffective_Inline_Warnings then
4575 Error_Msg_NE (Msg & "p?", N, Subp);
4576 end if;
4577 end if;
4579 -- Compiling with optimizations enabled it is too early to report
4580 -- problems since the backend may still perform inlining. In order
4581 -- to report unhandled inlinings the program must be compiled with
4582 -- -Winline and the error is reported by the backend.
4584 else
4585 null;
4586 end if;
4587 end Cannot_Inline;
4589 ------------------------------------
4590 -- Check_And_Build_Body_To_Inline --
4591 ------------------------------------
4593 procedure Check_And_Build_Body_To_Inline
4594 (N : Node_Id;
4595 Spec_Id : Entity_Id;
4596 Body_Id : Entity_Id)
4598 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
4599 -- Use generic machinery to build an unexpanded body for the subprogram.
4600 -- This body is subsequently used for inline expansions at call sites.
4602 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
4603 -- Return true if we generate code for the function body N, the function
4604 -- body N has no local declarations and its unique statement is a single
4605 -- extended return statement with a handled statements sequence.
4607 function Check_Body_To_Inline
4608 (N : Node_Id;
4609 Subp : Entity_Id) return Boolean;
4610 -- N is the N_Subprogram_Body of Subp. Return true if Subp can be
4611 -- inlined by the frontend. These are the rules:
4612 -- * At -O0 use fe inlining when inline_always is specified except if
4613 -- the function returns a controlled type.
4614 -- * At other optimization levels use the fe inlining for both inline
4615 -- and inline_always in the following cases:
4616 -- - function returning a known at compile time constant
4617 -- - function returning a call to an intrinsic function
4618 -- - function returning an unconstrained type (see Can_Split
4619 -- Unconstrained_Function).
4620 -- - function returning a call to a frontend-inlined function
4621 -- Use the back-end mechanism otherwise
4623 -- In addition, in the following cases the function cannot be inlined by
4624 -- the frontend:
4625 -- - functions that uses the secondary stack
4626 -- - functions that have declarations of:
4627 -- - Concurrent types
4628 -- - Packages
4629 -- - Instantiations
4630 -- - Subprograms
4631 -- - functions that have some of the following statements:
4632 -- - abort
4633 -- - asynchronous-select
4634 -- - conditional-entry-call
4635 -- - delay-relative
4636 -- - delay-until
4637 -- - selective-accept
4638 -- - timed-entry-call
4639 -- - functions that have exception handlers
4640 -- - functions that have some enclosing body containing instantiations
4641 -- that appear before the corresponding generic body.
4643 procedure Generate_Body_To_Inline
4644 (N : Node_Id;
4645 Body_To_Inline : out Node_Id);
4646 -- Generate a parameterless duplicate of subprogram body N. Occurrences
4647 -- of pragmas referencing the formals are removed since they have no
4648 -- meaning when the body is inlined and the formals are rewritten (the
4649 -- analysis of the non-inlined body will handle these pragmas properly).
4650 -- A new internal name is associated with Body_To_Inline.
4652 procedure Split_Unconstrained_Function
4653 (N : Node_Id;
4654 Spec_Id : Entity_Id);
4655 -- N is an inlined function body that returns an unconstrained type and
4656 -- has a single extended return statement. Split N in two subprograms:
4657 -- a procedure P' and a function F'. The formals of P' duplicate the
4658 -- formals of N plus an extra formal which is used return a value;
4659 -- its body is composed by the declarations and list of statements
4660 -- of the extended return statement of N.
4662 --------------------------
4663 -- Build_Body_To_Inline --
4664 --------------------------
4666 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
4667 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
4668 Original_Body : Node_Id;
4669 Body_To_Analyze : Node_Id;
4671 begin
4672 pragma Assert (Current_Scope = Spec_Id);
4674 -- Within an instance, the body to inline must be treated as a nested
4675 -- generic, so that the proper global references are preserved. We
4676 -- do not do this at the library level, because it is not needed, and
4677 -- furthermore this causes trouble if front end inlining is activated
4678 -- (-gnatN).
4680 if In_Instance
4681 and then Scope (Current_Scope) /= Standard_Standard
4682 then
4683 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
4684 end if;
4686 -- We need to capture references to the formals in order
4687 -- to substitute the actuals at the point of inlining, i.e.
4688 -- instantiation. To treat the formals as globals to the body to
4689 -- inline, we nest it within a dummy parameterless subprogram,
4690 -- declared within the real one.
4692 Generate_Body_To_Inline (N, Original_Body);
4693 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
4695 -- Set return type of function, which is also global and does not
4696 -- need to be resolved.
4698 if Ekind (Spec_Id) = E_Function then
4699 Set_Result_Definition (Specification (Body_To_Analyze),
4700 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
4701 end if;
4703 if No (Declarations (N)) then
4704 Set_Declarations (N, New_List (Body_To_Analyze));
4705 else
4706 Append_To (Declarations (N), Body_To_Analyze);
4707 end if;
4709 Preanalyze (Body_To_Analyze);
4711 Push_Scope (Defining_Entity (Body_To_Analyze));
4712 Save_Global_References (Original_Body);
4713 End_Scope;
4714 Remove (Body_To_Analyze);
4716 -- Restore environment if previously saved
4718 if In_Instance
4719 and then Scope (Current_Scope) /= Standard_Standard
4720 then
4721 Restore_Env;
4722 end if;
4724 pragma Assert (No (Body_To_Inline (Decl)));
4725 Set_Body_To_Inline (Decl, Original_Body);
4726 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
4727 end Build_Body_To_Inline;
4729 --------------------------
4730 -- Check_Body_To_Inline --
4731 --------------------------
4733 function Check_Body_To_Inline
4734 (N : Node_Id;
4735 Subp : Entity_Id) return Boolean
4737 Max_Size : constant := 10;
4738 Stat_Count : Integer := 0;
4740 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
4741 -- Check for declarations that make inlining not worthwhile
4743 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
4744 -- Check for statements that make inlining not worthwhile: any
4745 -- tasking statement, nested at any level. Keep track of total
4746 -- number of elementary statements, as a measure of acceptable size.
4748 function Has_Pending_Instantiation return Boolean;
4749 -- Return True if some enclosing body contains instantiations that
4750 -- appear before the corresponding generic body.
4752 function Returns_Compile_Time_Constant (N : Node_Id) return Boolean;
4753 -- Return True if all the return statements of the function body N
4754 -- are simple return statements and return a compile time constant
4756 function Returns_Intrinsic_Function_Call (N : Node_Id) return Boolean;
4757 -- Return True if all the return statements of the function body N
4758 -- are simple return statements and return an intrinsic function call
4760 function Uses_Secondary_Stack (N : Node_Id) return Boolean;
4761 -- If the body of the subprogram includes a call that returns an
4762 -- unconstrained type, the secondary stack is involved, and it
4763 -- is not worth inlining.
4765 ------------------------------
4766 -- Has_Excluded_Declaration --
4767 ------------------------------
4769 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
4770 D : Node_Id;
4772 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4773 -- Nested subprograms make a given body ineligible for inlining,
4774 -- but we make an exception for instantiations of unchecked
4775 -- conversion. The body has not been analyzed yet, so check the
4776 -- name, and verify that the visible entity with that name is the
4777 -- predefined unit.
4779 -----------------------------
4780 -- Is_Unchecked_Conversion --
4781 -----------------------------
4783 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4784 Id : constant Node_Id := Name (D);
4785 Conv : Entity_Id;
4787 begin
4788 if Nkind (Id) = N_Identifier
4789 and then Chars (Id) = Name_Unchecked_Conversion
4790 then
4791 Conv := Current_Entity (Id);
4793 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
4794 and then
4795 Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4796 then
4797 Conv := Current_Entity (Selector_Name (Id));
4798 else
4799 return False;
4800 end if;
4802 return Present (Conv)
4803 and then Is_Predefined_File_Name
4804 (Unit_File_Name (Get_Source_Unit (Conv)))
4805 and then Is_Intrinsic_Subprogram (Conv);
4806 end Is_Unchecked_Conversion;
4808 -- Start of processing for Has_Excluded_Declaration
4810 begin
4811 D := First (Decls);
4812 while Present (D) loop
4813 if (Nkind (D) = N_Function_Instantiation
4814 and then not Is_Unchecked_Conversion (D))
4815 or else Nkind_In (D, N_Protected_Type_Declaration,
4816 N_Package_Declaration,
4817 N_Package_Instantiation,
4818 N_Subprogram_Body,
4819 N_Procedure_Instantiation,
4820 N_Task_Type_Declaration)
4821 then
4822 Cannot_Inline
4823 ("cannot inline & (non-allowed declaration)?", D, Subp);
4825 return True;
4826 end if;
4828 Next (D);
4829 end loop;
4831 return False;
4832 end Has_Excluded_Declaration;
4834 ----------------------------
4835 -- Has_Excluded_Statement --
4836 ----------------------------
4838 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
4839 S : Node_Id;
4840 E : Node_Id;
4842 begin
4843 S := First (Stats);
4844 while Present (S) loop
4845 Stat_Count := Stat_Count + 1;
4847 if Nkind_In (S, N_Abort_Statement,
4848 N_Asynchronous_Select,
4849 N_Conditional_Entry_Call,
4850 N_Delay_Relative_Statement,
4851 N_Delay_Until_Statement,
4852 N_Selective_Accept,
4853 N_Timed_Entry_Call)
4854 then
4855 Cannot_Inline
4856 ("cannot inline & (non-allowed statement)?", S, Subp);
4857 return True;
4859 elsif Nkind (S) = N_Block_Statement then
4860 if Present (Declarations (S))
4861 and then Has_Excluded_Declaration (Declarations (S))
4862 then
4863 return True;
4865 elsif Present (Handled_Statement_Sequence (S)) then
4866 if Present
4867 (Exception_Handlers (Handled_Statement_Sequence (S)))
4868 then
4869 Cannot_Inline
4870 ("cannot inline& (exception handler)?",
4871 First (Exception_Handlers
4872 (Handled_Statement_Sequence (S))),
4873 Subp);
4874 return True;
4876 elsif Has_Excluded_Statement
4877 (Statements (Handled_Statement_Sequence (S)))
4878 then
4879 return True;
4880 end if;
4881 end if;
4883 elsif Nkind (S) = N_Case_Statement then
4884 E := First (Alternatives (S));
4885 while Present (E) loop
4886 if Has_Excluded_Statement (Statements (E)) then
4887 return True;
4888 end if;
4890 Next (E);
4891 end loop;
4893 elsif Nkind (S) = N_If_Statement then
4894 if Has_Excluded_Statement (Then_Statements (S)) then
4895 return True;
4896 end if;
4898 if Present (Elsif_Parts (S)) then
4899 E := First (Elsif_Parts (S));
4900 while Present (E) loop
4901 if Has_Excluded_Statement (Then_Statements (E)) then
4902 return True;
4903 end if;
4904 Next (E);
4905 end loop;
4906 end if;
4908 if Present (Else_Statements (S))
4909 and then Has_Excluded_Statement (Else_Statements (S))
4910 then
4911 return True;
4912 end if;
4914 elsif Nkind (S) = N_Loop_Statement
4915 and then Has_Excluded_Statement (Statements (S))
4916 then
4917 return True;
4919 elsif Nkind (S) = N_Extended_Return_Statement then
4920 if Present (Handled_Statement_Sequence (S))
4921 and then
4922 Has_Excluded_Statement
4923 (Statements (Handled_Statement_Sequence (S)))
4924 then
4925 return True;
4927 elsif Present (Handled_Statement_Sequence (S))
4928 and then
4929 Present (Exception_Handlers
4930 (Handled_Statement_Sequence (S)))
4931 then
4932 Cannot_Inline
4933 ("cannot inline& (exception handler)?",
4934 First (Exception_Handlers
4935 (Handled_Statement_Sequence (S))),
4936 Subp);
4937 return True;
4938 end if;
4939 end if;
4941 Next (S);
4942 end loop;
4944 return False;
4945 end Has_Excluded_Statement;
4947 -------------------------------
4948 -- Has_Pending_Instantiation --
4949 -------------------------------
4951 function Has_Pending_Instantiation return Boolean is
4952 S : Entity_Id;
4954 begin
4955 S := Current_Scope;
4956 while Present (S) loop
4957 if Is_Compilation_Unit (S)
4958 or else Is_Child_Unit (S)
4959 then
4960 return False;
4962 elsif Ekind (S) = E_Package
4963 and then Has_Forward_Instantiation (S)
4964 then
4965 return True;
4966 end if;
4968 S := Scope (S);
4969 end loop;
4971 return False;
4972 end Has_Pending_Instantiation;
4974 ------------------------------------
4975 -- Returns_Compile_Time_Constant --
4976 ------------------------------------
4978 function Returns_Compile_Time_Constant (N : Node_Id) return Boolean is
4980 function Check_Return (N : Node_Id) return Traverse_Result;
4982 ------------------
4983 -- Check_Return --
4984 ------------------
4986 function Check_Return (N : Node_Id) return Traverse_Result is
4987 begin
4988 if Nkind (N) = N_Extended_Return_Statement then
4989 return Abandon;
4991 elsif Nkind (N) = N_Simple_Return_Statement then
4992 if Present (Expression (N)) then
4993 declare
4994 Orig_Expr : constant Node_Id :=
4995 Original_Node (Expression (N));
4997 begin
4998 if Nkind_In (Orig_Expr, N_Integer_Literal,
4999 N_Real_Literal,
5000 N_Character_Literal)
5001 then
5002 return OK;
5004 elsif Is_Entity_Name (Orig_Expr)
5005 and then Ekind (Entity (Orig_Expr)) = E_Constant
5006 and then Is_Static_Expression (Orig_Expr)
5007 then
5008 return OK;
5009 else
5010 return Abandon;
5011 end if;
5012 end;
5014 -- Expression has wrong form
5016 else
5017 return Abandon;
5018 end if;
5020 -- Continue analyzing statements
5022 else
5023 return OK;
5024 end if;
5025 end Check_Return;
5027 function Check_All_Returns is new Traverse_Func (Check_Return);
5029 -- Start of processing for Returns_Compile_Time_Constant
5031 begin
5032 return Check_All_Returns (N) = OK;
5033 end Returns_Compile_Time_Constant;
5035 --------------------------------------
5036 -- Returns_Intrinsic_Function_Call --
5037 --------------------------------------
5039 function Returns_Intrinsic_Function_Call
5040 (N : Node_Id) return Boolean
5042 function Check_Return (N : Node_Id) return Traverse_Result;
5044 ------------------
5045 -- Check_Return --
5046 ------------------
5048 function Check_Return (N : Node_Id) return Traverse_Result is
5049 begin
5050 if Nkind (N) = N_Extended_Return_Statement then
5051 return Abandon;
5053 elsif Nkind (N) = N_Simple_Return_Statement then
5054 if Present (Expression (N)) then
5055 declare
5056 Orig_Expr : constant Node_Id :=
5057 Original_Node (Expression (N));
5059 begin
5060 if Nkind (Orig_Expr) in N_Op
5061 and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
5062 then
5063 return OK;
5065 elsif Nkind (Orig_Expr) in N_Has_Entity
5066 and then Present (Entity (Orig_Expr))
5067 and then Ekind (Entity (Orig_Expr)) = E_Function
5068 and then Is_Inlined (Entity (Orig_Expr))
5069 then
5070 return OK;
5072 elsif Nkind (Orig_Expr) in N_Has_Entity
5073 and then Present (Entity (Orig_Expr))
5074 and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
5075 then
5076 return OK;
5078 else
5079 return Abandon;
5080 end if;
5081 end;
5083 -- Expression has wrong form
5085 else
5086 return Abandon;
5087 end if;
5089 -- Continue analyzing statements
5091 else
5092 return OK;
5093 end if;
5094 end Check_Return;
5096 function Check_All_Returns is new Traverse_Func (Check_Return);
5098 -- Start of processing for Returns_Intrinsic_Function_Call
5100 begin
5101 return Check_All_Returns (N) = OK;
5102 end Returns_Intrinsic_Function_Call;
5104 --------------------------
5105 -- Uses_Secondary_Stack --
5106 --------------------------
5108 function Uses_Secondary_Stack (N : Node_Id) return Boolean is
5110 function Check_Call (N : Node_Id) return Traverse_Result;
5111 -- Look for function calls that return an unconstrained type
5113 ----------------
5114 -- Check_Call --
5115 ----------------
5117 function Check_Call (N : Node_Id) return Traverse_Result is
5118 begin
5119 if Nkind (N) = N_Function_Call
5120 and then Is_Entity_Name (Name (N))
5121 and then Is_Composite_Type (Etype (Entity (Name (N))))
5122 and then not Is_Constrained (Etype (Entity (Name (N))))
5123 then
5124 Cannot_Inline
5125 ("cannot inline & (call returns unconstrained type)?",
5126 N, Subp);
5128 return Abandon;
5129 else
5130 return OK;
5131 end if;
5132 end Check_Call;
5134 function Check_Calls is new Traverse_Func (Check_Call);
5136 -- Start of processing for Uses_Secondary_Stack
5138 begin
5139 return Check_Calls (N) = Abandon;
5140 end Uses_Secondary_Stack;
5142 -- Local variables
5144 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
5145 May_Inline : constant Boolean :=
5146 Has_Pragma_Inline_Always (Spec_Id)
5147 or else (Has_Pragma_Inline (Spec_Id)
5148 and then ((Optimization_Level > 0
5149 and then Ekind (Spec_Id)
5150 = E_Function)
5151 or else Front_End_Inlining));
5152 Body_To_Analyze : Node_Id;
5154 -- Start of processing for Check_Body_To_Inline
5156 begin
5157 -- No action needed in stubs since the attribute Body_To_Inline
5158 -- is not available
5160 if Nkind (Decl) = N_Subprogram_Body_Stub then
5161 return False;
5163 -- Cannot build the body to inline if the attribute is already set.
5164 -- This attribute may have been set if this is a subprogram renaming
5165 -- declarations (see Freeze.Build_Renamed_Body).
5167 elsif Present (Body_To_Inline (Decl)) then
5168 return False;
5170 -- No action needed if the subprogram does not fulfill the minimum
5171 -- conditions to be inlined by the frontend
5173 elsif not May_Inline then
5174 return False;
5175 end if;
5177 -- Check excluded declarations
5179 if Present (Declarations (N))
5180 and then Has_Excluded_Declaration (Declarations (N))
5181 then
5182 return False;
5183 end if;
5185 -- Check excluded statements
5187 if Present (Handled_Statement_Sequence (N)) then
5188 if Present
5189 (Exception_Handlers (Handled_Statement_Sequence (N)))
5190 then
5191 Cannot_Inline
5192 ("cannot inline& (exception handler)?",
5193 First
5194 (Exception_Handlers (Handled_Statement_Sequence (N))),
5195 Subp);
5197 return False;
5199 elsif Has_Excluded_Statement
5200 (Statements (Handled_Statement_Sequence (N)))
5201 then
5202 return False;
5203 end if;
5204 end if;
5206 -- For backward compatibility, compiling under -gnatN we do not
5207 -- inline a subprogram that is too large, unless it is marked
5208 -- Inline_Always. This pragma does not suppress the other checks
5209 -- on inlining (forbidden declarations, handlers, etc).
5211 if Front_End_Inlining
5212 and then not Has_Pragma_Inline_Always (Subp)
5213 and then Stat_Count > Max_Size
5214 then
5215 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
5216 return False;
5217 end if;
5219 -- If some enclosing body contains instantiations that appear before
5220 -- the corresponding generic body, the enclosing body has a freeze
5221 -- node so that it can be elaborated after the generic itself. This
5222 -- might conflict with subsequent inlinings, so that it is unsafe to
5223 -- try to inline in such a case.
5225 if Has_Pending_Instantiation then
5226 Cannot_Inline
5227 ("cannot inline& (forward instance within enclosing body)?",
5228 N, Subp);
5230 return False;
5231 end if;
5233 -- Generate and preanalyze the body to inline (needed to perform
5234 -- the rest of the checks)
5236 Generate_Body_To_Inline (N, Body_To_Analyze);
5238 if Ekind (Subp) = E_Function then
5239 Set_Result_Definition (Specification (Body_To_Analyze),
5240 New_Occurrence_Of (Etype (Subp), Sloc (N)));
5241 end if;
5243 -- Nest the body to analyze within the real one
5245 if No (Declarations (N)) then
5246 Set_Declarations (N, New_List (Body_To_Analyze));
5247 else
5248 Append_To (Declarations (N), Body_To_Analyze);
5249 end if;
5251 Preanalyze (Body_To_Analyze);
5252 Remove (Body_To_Analyze);
5254 -- Keep separate checks needed when compiling without optimizations
5256 if Optimization_Level = 0
5258 -- AAMP and VM targets have no support for inlining in the backend
5259 -- and hence we use frontend inlining at all optimization levels.
5261 or else AAMP_On_Target
5262 or else VM_Target /= No_VM
5263 then
5264 -- Cannot inline functions whose body has a call that returns an
5265 -- unconstrained type since the secondary stack is involved, and
5266 -- it is not worth inlining.
5268 if Uses_Secondary_Stack (Body_To_Analyze) then
5269 return False;
5271 -- Cannot inline functions that return controlled types since
5272 -- controlled actions interfere in complex ways with inlining.
5274 elsif Ekind (Subp) = E_Function
5275 and then Needs_Finalization (Etype (Subp))
5276 then
5277 Cannot_Inline
5278 ("cannot inline & (controlled return type)?", N, Subp);
5279 return False;
5281 elsif Returns_Unconstrained_Type (Subp) then
5282 Cannot_Inline
5283 ("cannot inline & (unconstrained return type)?", N, Subp);
5284 return False;
5285 end if;
5287 -- Compiling with optimizations enabled
5289 else
5290 -- Procedures are never frontend inlined in this case!
5292 if Ekind (Subp) /= E_Function then
5293 return False;
5295 -- Functions returning unconstrained types are tested
5296 -- separately (see Can_Split_Unconstrained_Function).
5298 elsif Returns_Unconstrained_Type (Subp) then
5299 null;
5301 -- Check supported cases
5303 elsif not Returns_Compile_Time_Constant (Body_To_Analyze)
5304 and then Convention (Subp) /= Convention_Intrinsic
5305 and then not Returns_Intrinsic_Function_Call (Body_To_Analyze)
5306 then
5307 return False;
5308 end if;
5309 end if;
5311 return True;
5312 end Check_Body_To_Inline;
5314 --------------------------------------
5315 -- Can_Split_Unconstrained_Function --
5316 --------------------------------------
5318 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
5320 Ret_Node : constant Node_Id :=
5321 First (Statements (Handled_Statement_Sequence (N)));
5322 D : Node_Id;
5324 begin
5325 -- No user defined declarations allowed in the function except inside
5326 -- the unique return statement; implicit labels are the only allowed
5327 -- declarations.
5329 if not Is_Empty_List (Declarations (N)) then
5330 D := First (Declarations (N));
5331 while Present (D) loop
5332 if Nkind (D) /= N_Implicit_Label_Declaration then
5333 return False;
5334 end if;
5336 Next (D);
5337 end loop;
5338 end if;
5340 -- We only split the inlined function when we are generating the code
5341 -- of its body; otherwise we leave duplicated split subprograms in
5342 -- the tree which (if referenced) generate wrong references at link
5343 -- time.
5345 return In_Extended_Main_Code_Unit (N)
5346 and then Present (Ret_Node)
5347 and then Nkind (Ret_Node) = N_Extended_Return_Statement
5348 and then No (Next (Ret_Node))
5349 and then Present (Handled_Statement_Sequence (Ret_Node));
5350 end Can_Split_Unconstrained_Function;
5352 -----------------------------
5353 -- Generate_Body_To_Inline --
5354 -----------------------------
5356 procedure Generate_Body_To_Inline
5357 (N : Node_Id;
5358 Body_To_Inline : out Node_Id)
5360 procedure Remove_Pragmas (N : Node_Id);
5361 -- Remove occurrences of pragmas that may reference the formals of
5362 -- N. The analysis of the non-inlined body will handle these pragmas
5363 -- properly.
5365 --------------------
5366 -- Remove_Pragmas --
5367 --------------------
5369 procedure Remove_Pragmas (N : Node_Id) is
5370 Decl : Node_Id;
5371 Nxt : Node_Id;
5373 begin
5374 Decl := First (Declarations (N));
5375 while Present (Decl) loop
5376 Nxt := Next (Decl);
5378 if Nkind (Decl) = N_Pragma
5379 and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
5380 Name_Unmodified)
5381 then
5382 Remove (Decl);
5383 end if;
5385 Decl := Nxt;
5386 end loop;
5387 end Remove_Pragmas;
5389 -- Start of processing for Generate_Body_To_Inline
5391 begin
5392 -- Within an instance, the body to inline must be treated as a nested
5393 -- generic, so that the proper global references are preserved.
5395 -- Note that we do not do this at the library level, because it
5396 -- is not needed, and furthermore this causes trouble if front
5397 -- end inlining is activated (-gnatN).
5399 if In_Instance
5400 and then Scope (Current_Scope) /= Standard_Standard
5401 then
5402 Body_To_Inline := Copy_Generic_Node (N, Empty, True);
5403 else
5404 Body_To_Inline := Copy_Separate_Tree (N);
5405 end if;
5407 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
5408 -- parameter has no meaning when the body is inlined and the formals
5409 -- are rewritten. Remove it from body to inline. The analysis of the
5410 -- non-inlined body will handle the pragma properly.
5412 Remove_Pragmas (Body_To_Inline);
5414 -- We need to capture references to the formals in order
5415 -- to substitute the actuals at the point of inlining, i.e.
5416 -- instantiation. To treat the formals as globals to the body to
5417 -- inline, we nest it within a dummy parameterless subprogram,
5418 -- declared within the real one.
5420 Set_Parameter_Specifications
5421 (Specification (Body_To_Inline), No_List);
5423 -- A new internal name is associated with Body_To_Inline to avoid
5424 -- conflicts when the non-inlined body N is analyzed.
5426 Set_Defining_Unit_Name (Specification (Body_To_Inline),
5427 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
5428 Set_Corresponding_Spec (Body_To_Inline, Empty);
5429 end Generate_Body_To_Inline;
5431 ----------------------------------
5432 -- Split_Unconstrained_Function --
5433 ----------------------------------
5435 procedure Split_Unconstrained_Function
5436 (N : Node_Id;
5437 Spec_Id : Entity_Id)
5439 Loc : constant Source_Ptr := Sloc (N);
5440 Ret_Node : constant Node_Id :=
5441 First (Statements (Handled_Statement_Sequence (N)));
5442 Ret_Obj : constant Node_Id :=
5443 First (Return_Object_Declarations (Ret_Node));
5445 procedure Build_Procedure
5446 (Proc_Id : out Entity_Id;
5447 Decl_List : out List_Id);
5448 -- Build a procedure containing the statements found in the extended
5449 -- return statement of the unconstrained function body N.
5451 procedure Build_Procedure
5452 (Proc_Id : out Entity_Id;
5453 Decl_List : out List_Id)
5455 Formal : Entity_Id;
5456 Formal_List : constant List_Id := New_List;
5457 Proc_Spec : Node_Id;
5458 Proc_Body : Node_Id;
5459 Subp_Name : constant Name_Id := New_Internal_Name ('F');
5460 Body_Decl_List : List_Id := No_List;
5461 Param_Type : Node_Id;
5463 begin
5464 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
5465 Param_Type := New_Copy (Object_Definition (Ret_Obj));
5466 else
5467 Param_Type :=
5468 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
5469 end if;
5471 Append_To (Formal_List,
5472 Make_Parameter_Specification (Loc,
5473 Defining_Identifier =>
5474 Make_Defining_Identifier (Loc,
5475 Chars => Chars (Defining_Identifier (Ret_Obj))),
5476 In_Present => False,
5477 Out_Present => True,
5478 Null_Exclusion_Present => False,
5479 Parameter_Type => Param_Type));
5481 Formal := First_Formal (Spec_Id);
5482 while Present (Formal) loop
5483 Append_To (Formal_List,
5484 Make_Parameter_Specification (Loc,
5485 Defining_Identifier =>
5486 Make_Defining_Identifier (Sloc (Formal),
5487 Chars => Chars (Formal)),
5488 In_Present => In_Present (Parent (Formal)),
5489 Out_Present => Out_Present (Parent (Formal)),
5490 Null_Exclusion_Present =>
5491 Null_Exclusion_Present (Parent (Formal)),
5492 Parameter_Type =>
5493 New_Reference_To (Etype (Formal), Loc),
5494 Expression =>
5495 Copy_Separate_Tree (Expression (Parent (Formal)))));
5497 Next_Formal (Formal);
5498 end loop;
5500 Proc_Id :=
5501 Make_Defining_Identifier (Loc, Chars => Subp_Name);
5503 Proc_Spec :=
5504 Make_Procedure_Specification (Loc,
5505 Defining_Unit_Name => Proc_Id,
5506 Parameter_Specifications => Formal_List);
5508 Decl_List := New_List;
5510 Append_To (Decl_List,
5511 Make_Subprogram_Declaration (Loc, Proc_Spec));
5513 -- Can_Convert_Unconstrained_Function checked that the function
5514 -- has no local declarations except implicit label declarations.
5515 -- Copy these declarations to the built procedure.
5517 if Present (Declarations (N)) then
5518 Body_Decl_List := New_List;
5520 declare
5521 D : Node_Id;
5522 New_D : Node_Id;
5524 begin
5525 D := First (Declarations (N));
5526 while Present (D) loop
5527 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
5529 New_D :=
5530 Make_Implicit_Label_Declaration (Loc,
5531 Make_Defining_Identifier (Loc,
5532 Chars => Chars (Defining_Identifier (D))),
5533 Label_Construct => Empty);
5534 Append_To (Body_Decl_List, New_D);
5536 Next (D);
5537 end loop;
5538 end;
5539 end if;
5541 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
5543 Proc_Body :=
5544 Make_Subprogram_Body (Loc,
5545 Specification => Copy_Separate_Tree (Proc_Spec),
5546 Declarations => Body_Decl_List,
5547 Handled_Statement_Sequence =>
5548 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
5550 Set_Defining_Unit_Name (Specification (Proc_Body),
5551 Make_Defining_Identifier (Loc, Subp_Name));
5553 Append_To (Decl_List, Proc_Body);
5554 end Build_Procedure;
5556 -- Local variables
5558 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
5559 Blk_Stmt : Node_Id;
5560 Proc_Id : Entity_Id;
5561 Proc_Call : Node_Id;
5563 -- Start of processing for Split_Unconstrained_Function
5565 begin
5566 -- Build the associated procedure, analyze it and insert it before
5567 -- the function body N
5569 declare
5570 Scope : constant Entity_Id := Current_Scope;
5571 Decl_List : List_Id;
5572 begin
5573 Pop_Scope;
5574 Build_Procedure (Proc_Id, Decl_List);
5575 Insert_Actions (N, Decl_List);
5576 Push_Scope (Scope);
5577 end;
5579 -- Build the call to the generated procedure
5581 declare
5582 Actual_List : constant List_Id := New_List;
5583 Formal : Entity_Id;
5585 begin
5586 Append_To (Actual_List,
5587 New_Reference_To (Defining_Identifier (New_Obj), Loc));
5589 Formal := First_Formal (Spec_Id);
5590 while Present (Formal) loop
5591 Append_To (Actual_List, New_Reference_To (Formal, Loc));
5593 -- Avoid spurious warning on unreferenced formals
5595 Set_Referenced (Formal);
5596 Next_Formal (Formal);
5597 end loop;
5599 Proc_Call :=
5600 Make_Procedure_Call_Statement (Loc,
5601 Name => New_Reference_To (Proc_Id, Loc),
5602 Parameter_Associations => Actual_List);
5603 end;
5605 -- Generate
5607 -- declare
5608 -- New_Obj : ...
5609 -- begin
5610 -- main_1__F1b (New_Obj, ...);
5611 -- return Obj;
5612 -- end B10b;
5614 Blk_Stmt :=
5615 Make_Block_Statement (Loc,
5616 Declarations => New_List (New_Obj),
5617 Handled_Statement_Sequence =>
5618 Make_Handled_Sequence_Of_Statements (Loc,
5619 Statements => New_List (
5621 Proc_Call,
5623 Make_Simple_Return_Statement (Loc,
5624 Expression =>
5625 New_Reference_To
5626 (Defining_Identifier (New_Obj), Loc)))));
5628 Rewrite (Ret_Node, Blk_Stmt);
5629 end Split_Unconstrained_Function;
5631 -- Start of processing for Check_And_Build_Body_To_Inline
5633 begin
5634 -- Do not inline any subprogram that contains nested subprograms, since
5635 -- the backend inlining circuit seems to generate uninitialized
5636 -- references in this case. We know this happens in the case of front
5637 -- end ZCX support, but it also appears it can happen in other cases as
5638 -- well. The backend often rejects attempts to inline in the case of
5639 -- nested procedures anyway, so little if anything is lost by this.
5640 -- Note that this is test is for the benefit of the back-end. There is
5641 -- a separate test for front-end inlining that also rejects nested
5642 -- subprograms.
5644 -- Do not do this test if errors have been detected, because in some
5645 -- error cases, this code blows up, and we don't need it anyway if
5646 -- there have been errors, since we won't get to the linker anyway.
5648 if Comes_From_Source (Body_Id)
5649 and then (Has_Pragma_Inline_Always (Spec_Id)
5650 or else Optimization_Level > 0)
5651 and then Serious_Errors_Detected = 0
5652 then
5653 declare
5654 P_Ent : Node_Id;
5656 begin
5657 P_Ent := Body_Id;
5658 loop
5659 P_Ent := Scope (P_Ent);
5660 exit when No (P_Ent) or else P_Ent = Standard_Standard;
5662 if Is_Subprogram (P_Ent) then
5663 Set_Is_Inlined (P_Ent, False);
5665 if Comes_From_Source (P_Ent)
5666 and then Has_Pragma_Inline (P_Ent)
5667 then
5668 Cannot_Inline
5669 ("cannot inline& (nested subprogram)?", N, P_Ent,
5670 Is_Serious => True);
5671 end if;
5672 end if;
5673 end loop;
5674 end;
5675 end if;
5677 -- Build the body to inline only if really needed!
5679 if Check_Body_To_Inline (N, Spec_Id)
5680 and then Serious_Errors_Detected = 0
5681 then
5682 if Returns_Unconstrained_Type (Spec_Id) then
5683 if Can_Split_Unconstrained_Function (N) then
5684 Split_Unconstrained_Function (N, Spec_Id);
5685 Build_Body_To_Inline (N, Spec_Id);
5686 Set_Is_Inlined (Spec_Id);
5687 end if;
5688 else
5689 Build_Body_To_Inline (N, Spec_Id);
5690 Set_Is_Inlined (Spec_Id);
5691 end if;
5692 end if;
5693 end Check_And_Build_Body_To_Inline;
5695 -----------------------
5696 -- Check_Conformance --
5697 -----------------------
5699 procedure Check_Conformance
5700 (New_Id : Entity_Id;
5701 Old_Id : Entity_Id;
5702 Ctype : Conformance_Type;
5703 Errmsg : Boolean;
5704 Conforms : out Boolean;
5705 Err_Loc : Node_Id := Empty;
5706 Get_Inst : Boolean := False;
5707 Skip_Controlling_Formals : Boolean := False)
5709 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5710 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5711 -- If Errmsg is True, then processing continues to post an error message
5712 -- for conformance error on given node. Two messages are output. The
5713 -- first message points to the previous declaration with a general "no
5714 -- conformance" message. The second is the detailed reason, supplied as
5715 -- Msg. The parameter N provide information for a possible & insertion
5716 -- in the message, and also provides the location for posting the
5717 -- message in the absence of a specified Err_Loc location.
5719 -----------------------
5720 -- Conformance_Error --
5721 -----------------------
5723 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5724 Enode : Node_Id;
5726 begin
5727 Conforms := False;
5729 if Errmsg then
5730 if No (Err_Loc) then
5731 Enode := N;
5732 else
5733 Enode := Err_Loc;
5734 end if;
5736 Error_Msg_Sloc := Sloc (Old_Id);
5738 case Ctype is
5739 when Type_Conformant =>
5740 Error_Msg_N -- CODEFIX
5741 ("not type conformant with declaration#!", Enode);
5743 when Mode_Conformant =>
5744 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5745 Error_Msg_N
5746 ("not mode conformant with operation inherited#!",
5747 Enode);
5748 else
5749 Error_Msg_N
5750 ("not mode conformant with declaration#!", Enode);
5751 end if;
5753 when Subtype_Conformant =>
5754 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5755 Error_Msg_N
5756 ("not subtype conformant with operation inherited#!",
5757 Enode);
5758 else
5759 Error_Msg_N
5760 ("not subtype conformant with declaration#!", Enode);
5761 end if;
5763 when Fully_Conformant =>
5764 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5765 Error_Msg_N -- CODEFIX
5766 ("not fully conformant with operation inherited#!",
5767 Enode);
5768 else
5769 Error_Msg_N -- CODEFIX
5770 ("not fully conformant with declaration#!", Enode);
5771 end if;
5772 end case;
5774 Error_Msg_NE (Msg, Enode, N);
5775 end if;
5776 end Conformance_Error;
5778 -- Local Variables
5780 Old_Type : constant Entity_Id := Etype (Old_Id);
5781 New_Type : constant Entity_Id := Etype (New_Id);
5782 Old_Formal : Entity_Id;
5783 New_Formal : Entity_Id;
5784 Access_Types_Match : Boolean;
5785 Old_Formal_Base : Entity_Id;
5786 New_Formal_Base : Entity_Id;
5788 -- Start of processing for Check_Conformance
5790 begin
5791 Conforms := True;
5793 -- We need a special case for operators, since they don't appear
5794 -- explicitly.
5796 if Ctype = Type_Conformant then
5797 if Ekind (New_Id) = E_Operator
5798 and then Operator_Matches_Spec (New_Id, Old_Id)
5799 then
5800 return;
5801 end if;
5802 end if;
5804 -- If both are functions/operators, check return types conform
5806 if Old_Type /= Standard_Void_Type
5807 and then New_Type /= Standard_Void_Type
5808 then
5810 -- If we are checking interface conformance we omit controlling
5811 -- arguments and result, because we are only checking the conformance
5812 -- of the remaining parameters.
5814 if Has_Controlling_Result (Old_Id)
5815 and then Has_Controlling_Result (New_Id)
5816 and then Skip_Controlling_Formals
5817 then
5818 null;
5820 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5821 Conformance_Error ("\return type does not match!", New_Id);
5822 return;
5823 end if;
5825 -- Ada 2005 (AI-231): In case of anonymous access types check the
5826 -- null-exclusion and access-to-constant attributes match.
5828 if Ada_Version >= Ada_2005
5829 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5830 and then
5831 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5832 or else Is_Access_Constant (Etype (Old_Type)) /=
5833 Is_Access_Constant (Etype (New_Type)))
5834 then
5835 Conformance_Error ("\return type does not match!", New_Id);
5836 return;
5837 end if;
5839 -- If either is a function/operator and the other isn't, error
5841 elsif Old_Type /= Standard_Void_Type
5842 or else New_Type /= Standard_Void_Type
5843 then
5844 Conformance_Error ("\functions can only match functions!", New_Id);
5845 return;
5846 end if;
5848 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5849 -- If this is a renaming as body, refine error message to indicate that
5850 -- the conflict is with the original declaration. If the entity is not
5851 -- frozen, the conventions don't have to match, the one of the renamed
5852 -- entity is inherited.
5854 if Ctype >= Subtype_Conformant then
5855 if Convention (Old_Id) /= Convention (New_Id) then
5856 if not Is_Frozen (New_Id) then
5857 null;
5859 elsif Present (Err_Loc)
5860 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5861 and then Present (Corresponding_Spec (Err_Loc))
5862 then
5863 Error_Msg_Name_1 := Chars (New_Id);
5864 Error_Msg_Name_2 :=
5865 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5866 Conformance_Error ("\prior declaration for% has convention %!");
5868 else
5869 Conformance_Error ("\calling conventions do not match!");
5870 end if;
5872 return;
5874 elsif Is_Formal_Subprogram (Old_Id)
5875 or else Is_Formal_Subprogram (New_Id)
5876 then
5877 Conformance_Error ("\formal subprograms not allowed!");
5878 return;
5879 end if;
5880 end if;
5882 -- Deal with parameters
5884 -- Note: we use the entity information, rather than going directly
5885 -- to the specification in the tree. This is not only simpler, but
5886 -- absolutely necessary for some cases of conformance tests between
5887 -- operators, where the declaration tree simply does not exist!
5889 Old_Formal := First_Formal (Old_Id);
5890 New_Formal := First_Formal (New_Id);
5891 while Present (Old_Formal) and then Present (New_Formal) loop
5892 if Is_Controlling_Formal (Old_Formal)
5893 and then Is_Controlling_Formal (New_Formal)
5894 and then Skip_Controlling_Formals
5895 then
5896 -- The controlling formals will have different types when
5897 -- comparing an interface operation with its match, but both
5898 -- or neither must be access parameters.
5900 if Is_Access_Type (Etype (Old_Formal))
5902 Is_Access_Type (Etype (New_Formal))
5903 then
5904 goto Skip_Controlling_Formal;
5905 else
5906 Conformance_Error
5907 ("\access parameter does not match!", New_Formal);
5908 end if;
5909 end if;
5911 -- Ada 2012: Mode conformance also requires that formal parameters
5912 -- be both aliased, or neither.
5914 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5915 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5916 Conformance_Error
5917 ("\aliased parameter mismatch!", New_Formal);
5918 end if;
5919 end if;
5921 if Ctype = Fully_Conformant then
5923 -- Names must match. Error message is more accurate if we do
5924 -- this before checking that the types of the formals match.
5926 if Chars (Old_Formal) /= Chars (New_Formal) then
5927 Conformance_Error ("\name & does not match!", New_Formal);
5929 -- Set error posted flag on new formal as well to stop
5930 -- junk cascaded messages in some cases.
5932 Set_Error_Posted (New_Formal);
5933 return;
5934 end if;
5936 -- Null exclusion must match
5938 if Null_Exclusion_Present (Parent (Old_Formal))
5940 Null_Exclusion_Present (Parent (New_Formal))
5941 then
5942 -- Only give error if both come from source. This should be
5943 -- investigated some time, since it should not be needed ???
5945 if Comes_From_Source (Old_Formal)
5946 and then
5947 Comes_From_Source (New_Formal)
5948 then
5949 Conformance_Error
5950 ("\null exclusion for & does not match", New_Formal);
5952 -- Mark error posted on the new formal to avoid duplicated
5953 -- complaint about types not matching.
5955 Set_Error_Posted (New_Formal);
5956 end if;
5957 end if;
5958 end if;
5960 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5961 -- case occurs whenever a subprogram is being renamed and one of its
5962 -- parameters imposes a null exclusion. For example:
5964 -- type T is null record;
5965 -- type Acc_T is access T;
5966 -- subtype Acc_T_Sub is Acc_T;
5968 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5969 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5970 -- renames P;
5972 Old_Formal_Base := Etype (Old_Formal);
5973 New_Formal_Base := Etype (New_Formal);
5975 if Get_Inst then
5976 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5977 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5978 end if;
5980 Access_Types_Match := Ada_Version >= Ada_2005
5982 -- Ensure that this rule is only applied when New_Id is a
5983 -- renaming of Old_Id.
5985 and then Nkind (Parent (Parent (New_Id))) =
5986 N_Subprogram_Renaming_Declaration
5987 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5988 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5989 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5991 -- Now handle the allowed access-type case
5993 and then Is_Access_Type (Old_Formal_Base)
5994 and then Is_Access_Type (New_Formal_Base)
5996 -- The type kinds must match. The only exception occurs with
5997 -- multiple generics of the form:
5999 -- generic generic
6000 -- type F is private; type A is private;
6001 -- type F_Ptr is access F; type A_Ptr is access A;
6002 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
6003 -- package F_Pack is ... package A_Pack is
6004 -- package F_Inst is
6005 -- new F_Pack (A, A_Ptr, A_P);
6007 -- When checking for conformance between the parameters of A_P
6008 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
6009 -- because the compiler has transformed A_Ptr into a subtype of
6010 -- F_Ptr. We catch this case in the code below.
6012 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
6013 or else
6014 (Is_Generic_Type (Old_Formal_Base)
6015 and then Is_Generic_Type (New_Formal_Base)
6016 and then Is_Internal (New_Formal_Base)
6017 and then Etype (Etype (New_Formal_Base)) =
6018 Old_Formal_Base))
6019 and then Directly_Designated_Type (Old_Formal_Base) =
6020 Directly_Designated_Type (New_Formal_Base)
6021 and then ((Is_Itype (Old_Formal_Base)
6022 and then Can_Never_Be_Null (Old_Formal_Base))
6023 or else
6024 (Is_Itype (New_Formal_Base)
6025 and then Can_Never_Be_Null (New_Formal_Base)));
6027 -- Types must always match. In the visible part of an instance,
6028 -- usual overloading rules for dispatching operations apply, and
6029 -- we check base types (not the actual subtypes).
6031 if In_Instance_Visible_Part
6032 and then Is_Dispatching_Operation (New_Id)
6033 then
6034 if not Conforming_Types
6035 (T1 => Base_Type (Etype (Old_Formal)),
6036 T2 => Base_Type (Etype (New_Formal)),
6037 Ctype => Ctype,
6038 Get_Inst => Get_Inst)
6039 and then not Access_Types_Match
6040 then
6041 Conformance_Error ("\type of & does not match!", New_Formal);
6042 return;
6043 end if;
6045 elsif not Conforming_Types
6046 (T1 => Old_Formal_Base,
6047 T2 => New_Formal_Base,
6048 Ctype => Ctype,
6049 Get_Inst => Get_Inst)
6050 and then not Access_Types_Match
6051 then
6052 -- Don't give error message if old type is Any_Type. This test
6053 -- avoids some cascaded errors, e.g. in case of a bad spec.
6055 if Errmsg and then Old_Formal_Base = Any_Type then
6056 Conforms := False;
6057 else
6058 Conformance_Error ("\type of & does not match!", New_Formal);
6059 end if;
6061 return;
6062 end if;
6064 -- For mode conformance, mode must match
6066 if Ctype >= Mode_Conformant then
6067 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
6068 if not Ekind_In (New_Id, E_Function, E_Procedure)
6069 or else not Is_Primitive_Wrapper (New_Id)
6070 then
6071 Conformance_Error ("\mode of & does not match!", New_Formal);
6073 else
6074 declare
6075 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
6076 begin
6077 if Is_Protected_Type
6078 (Corresponding_Concurrent_Type (T))
6079 then
6080 Error_Msg_PT (T, New_Id);
6081 else
6082 Conformance_Error
6083 ("\mode of & does not match!", New_Formal);
6084 end if;
6085 end;
6086 end if;
6088 return;
6090 -- Part of mode conformance for access types is having the same
6091 -- constant modifier.
6093 elsif Access_Types_Match
6094 and then Is_Access_Constant (Old_Formal_Base) /=
6095 Is_Access_Constant (New_Formal_Base)
6096 then
6097 Conformance_Error
6098 ("\constant modifier does not match!", New_Formal);
6099 return;
6100 end if;
6101 end if;
6103 if Ctype >= Subtype_Conformant then
6105 -- Ada 2005 (AI-231): In case of anonymous access types check
6106 -- the null-exclusion and access-to-constant attributes must
6107 -- match. For null exclusion, we test the types rather than the
6108 -- formals themselves, since the attribute is only set reliably
6109 -- on the formals in the Ada 95 case, and we exclude the case
6110 -- where Old_Formal is marked as controlling, to avoid errors
6111 -- when matching completing bodies with dispatching declarations
6112 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
6114 if Ada_Version >= Ada_2005
6115 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
6116 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
6117 and then
6118 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
6119 Can_Never_Be_Null (Etype (New_Formal))
6120 and then
6121 not Is_Controlling_Formal (Old_Formal))
6122 or else
6123 Is_Access_Constant (Etype (Old_Formal)) /=
6124 Is_Access_Constant (Etype (New_Formal)))
6126 -- Do not complain if error already posted on New_Formal. This
6127 -- avoids some redundant error messages.
6129 and then not Error_Posted (New_Formal)
6130 then
6131 -- It is allowed to omit the null-exclusion in case of stream
6132 -- attribute subprograms. We recognize stream subprograms
6133 -- through their TSS-generated suffix.
6135 declare
6136 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
6138 begin
6139 if TSS_Name /= TSS_Stream_Read
6140 and then TSS_Name /= TSS_Stream_Write
6141 and then TSS_Name /= TSS_Stream_Input
6142 and then TSS_Name /= TSS_Stream_Output
6143 then
6144 -- Here we have a definite conformance error. It is worth
6145 -- special casing the error message for the case of a
6146 -- controlling formal (which excludes null).
6148 if Is_Controlling_Formal (New_Formal) then
6149 Error_Msg_Node_2 := Scope (New_Formal);
6150 Conformance_Error
6151 ("\controlling formal& of& excludes null, "
6152 & "declaration must exclude null as well",
6153 New_Formal);
6155 -- Normal case (couldn't we give more detail here???)
6157 else
6158 Conformance_Error
6159 ("\type of & does not match!", New_Formal);
6160 end if;
6162 return;
6163 end if;
6164 end;
6165 end if;
6166 end if;
6168 -- Full conformance checks
6170 if Ctype = Fully_Conformant then
6172 -- We have checked already that names match
6174 if Parameter_Mode (Old_Formal) = E_In_Parameter then
6176 -- Check default expressions for in parameters
6178 declare
6179 NewD : constant Boolean :=
6180 Present (Default_Value (New_Formal));
6181 OldD : constant Boolean :=
6182 Present (Default_Value (Old_Formal));
6183 begin
6184 if NewD or OldD then
6186 -- The old default value has been analyzed because the
6187 -- current full declaration will have frozen everything
6188 -- before. The new default value has not been analyzed,
6189 -- so analyze it now before we check for conformance.
6191 if NewD then
6192 Push_Scope (New_Id);
6193 Preanalyze_Spec_Expression
6194 (Default_Value (New_Formal), Etype (New_Formal));
6195 End_Scope;
6196 end if;
6198 if not (NewD and OldD)
6199 or else not Fully_Conformant_Expressions
6200 (Default_Value (Old_Formal),
6201 Default_Value (New_Formal))
6202 then
6203 Conformance_Error
6204 ("\default expression for & does not match!",
6205 New_Formal);
6206 return;
6207 end if;
6208 end if;
6209 end;
6210 end if;
6211 end if;
6213 -- A couple of special checks for Ada 83 mode. These checks are
6214 -- skipped if either entity is an operator in package Standard,
6215 -- or if either old or new instance is not from the source program.
6217 if Ada_Version = Ada_83
6218 and then Sloc (Old_Id) > Standard_Location
6219 and then Sloc (New_Id) > Standard_Location
6220 and then Comes_From_Source (Old_Id)
6221 and then Comes_From_Source (New_Id)
6222 then
6223 declare
6224 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
6225 New_Param : constant Node_Id := Declaration_Node (New_Formal);
6227 begin
6228 -- Explicit IN must be present or absent in both cases. This
6229 -- test is required only in the full conformance case.
6231 if In_Present (Old_Param) /= In_Present (New_Param)
6232 and then Ctype = Fully_Conformant
6233 then
6234 Conformance_Error
6235 ("\(Ada 83) IN must appear in both declarations",
6236 New_Formal);
6237 return;
6238 end if;
6240 -- Grouping (use of comma in param lists) must be the same
6241 -- This is where we catch a misconformance like:
6243 -- A, B : Integer
6244 -- A : Integer; B : Integer
6246 -- which are represented identically in the tree except
6247 -- for the setting of the flags More_Ids and Prev_Ids.
6249 if More_Ids (Old_Param) /= More_Ids (New_Param)
6250 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
6251 then
6252 Conformance_Error
6253 ("\grouping of & does not match!", New_Formal);
6254 return;
6255 end if;
6256 end;
6257 end if;
6259 -- This label is required when skipping controlling formals
6261 <<Skip_Controlling_Formal>>
6263 Next_Formal (Old_Formal);
6264 Next_Formal (New_Formal);
6265 end loop;
6267 if Present (Old_Formal) then
6268 Conformance_Error ("\too few parameters!");
6269 return;
6271 elsif Present (New_Formal) then
6272 Conformance_Error ("\too many parameters!", New_Formal);
6273 return;
6274 end if;
6275 end Check_Conformance;
6277 -----------------------
6278 -- Check_Conventions --
6279 -----------------------
6281 procedure Check_Conventions (Typ : Entity_Id) is
6282 Ifaces_List : Elist_Id;
6284 procedure Check_Convention (Op : Entity_Id);
6285 -- Verify that the convention of inherited dispatching operation Op is
6286 -- consistent among all subprograms it overrides. In order to minimize
6287 -- the search, Search_From is utilized to designate a specific point in
6288 -- the list rather than iterating over the whole list once more.
6290 ----------------------
6291 -- Check_Convention --
6292 ----------------------
6294 procedure Check_Convention (Op : Entity_Id) is
6295 function Convention_Of (Id : Entity_Id) return Convention_Id;
6296 -- Given an entity, return its convention. The function treats Ghost
6297 -- as convention Ada because the two have the same dynamic semantics.
6299 -------------------
6300 -- Convention_Of --
6301 -------------------
6303 function Convention_Of (Id : Entity_Id) return Convention_Id is
6304 Conv : constant Convention_Id := Convention (Id);
6305 begin
6306 if Conv = Convention_Ghost then
6307 return Convention_Ada;
6308 else
6309 return Conv;
6310 end if;
6311 end Convention_Of;
6313 -- Local variables
6315 Op_Conv : constant Convention_Id := Convention_Of (Op);
6316 Iface_Conv : Convention_Id;
6317 Iface_Elmt : Elmt_Id;
6318 Iface_Prim_Elmt : Elmt_Id;
6319 Iface_Prim : Entity_Id;
6321 -- Start of processing for Check_Convention
6323 begin
6324 Iface_Elmt := First_Elmt (Ifaces_List);
6325 while Present (Iface_Elmt) loop
6326 Iface_Prim_Elmt :=
6327 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6328 while Present (Iface_Prim_Elmt) loop
6329 Iface_Prim := Node (Iface_Prim_Elmt);
6330 Iface_Conv := Convention_Of (Iface_Prim);
6332 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6333 and then Iface_Conv /= Op_Conv
6334 then
6335 Error_Msg_N
6336 ("inconsistent conventions in primitive operations", Typ);
6338 Error_Msg_Name_1 := Chars (Op);
6339 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6340 Error_Msg_Sloc := Sloc (Op);
6342 if Comes_From_Source (Op) or else No (Alias (Op)) then
6343 if not Present (Overridden_Operation (Op)) then
6344 Error_Msg_N ("\\primitive % defined #", Typ);
6345 else
6346 Error_Msg_N
6347 ("\\overriding operation % with " &
6348 "convention % defined #", Typ);
6349 end if;
6351 else pragma Assert (Present (Alias (Op)));
6352 Error_Msg_Sloc := Sloc (Alias (Op));
6353 Error_Msg_N
6354 ("\\inherited operation % with " &
6355 "convention % defined #", Typ);
6356 end if;
6358 Error_Msg_Name_1 := Chars (Op);
6359 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6360 Error_Msg_Sloc := Sloc (Iface_Prim);
6361 Error_Msg_N
6362 ("\\overridden operation % with " &
6363 "convention % defined #", Typ);
6365 -- Avoid cascading errors
6367 return;
6368 end if;
6370 Next_Elmt (Iface_Prim_Elmt);
6371 end loop;
6373 Next_Elmt (Iface_Elmt);
6374 end loop;
6375 end Check_Convention;
6377 -- Local variables
6379 Prim_Op : Entity_Id;
6380 Prim_Op_Elmt : Elmt_Id;
6382 -- Start of processing for Check_Conventions
6384 begin
6385 if not Has_Interfaces (Typ) then
6386 return;
6387 end if;
6389 Collect_Interfaces (Typ, Ifaces_List);
6391 -- The algorithm checks every overriding dispatching operation against
6392 -- all the corresponding overridden dispatching operations, detecting
6393 -- differences in conventions.
6395 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6396 while Present (Prim_Op_Elmt) loop
6397 Prim_Op := Node (Prim_Op_Elmt);
6399 -- A small optimization: skip the predefined dispatching operations
6400 -- since they always have the same convention.
6402 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6403 Check_Convention (Prim_Op);
6404 end if;
6406 Next_Elmt (Prim_Op_Elmt);
6407 end loop;
6408 end Check_Conventions;
6410 ------------------------------
6411 -- Check_Delayed_Subprogram --
6412 ------------------------------
6414 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6415 F : Entity_Id;
6417 procedure Possible_Freeze (T : Entity_Id);
6418 -- T is the type of either a formal parameter or of the return type.
6419 -- If T is not yet frozen and needs a delayed freeze, then the
6420 -- subprogram itself must be delayed. If T is the limited view of an
6421 -- incomplete type the subprogram must be frozen as well, because
6422 -- T may depend on local types that have not been frozen yet.
6424 ---------------------
6425 -- Possible_Freeze --
6426 ---------------------
6428 procedure Possible_Freeze (T : Entity_Id) is
6429 begin
6430 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6431 Set_Has_Delayed_Freeze (Designator);
6433 elsif Is_Access_Type (T)
6434 and then Has_Delayed_Freeze (Designated_Type (T))
6435 and then not Is_Frozen (Designated_Type (T))
6436 then
6437 Set_Has_Delayed_Freeze (Designator);
6439 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
6440 Set_Has_Delayed_Freeze (Designator);
6442 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
6443 -- of a subprogram or entry declaration.
6445 elsif Ekind (T) = E_Incomplete_Type
6446 and then Ada_Version >= Ada_2012
6447 then
6448 Set_Has_Delayed_Freeze (Designator);
6449 end if;
6451 end Possible_Freeze;
6453 -- Start of processing for Check_Delayed_Subprogram
6455 begin
6456 -- All subprograms, including abstract subprograms, may need a freeze
6457 -- node if some formal type or the return type needs one.
6459 Possible_Freeze (Etype (Designator));
6460 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6462 -- Need delayed freeze if any of the formal types themselves need
6463 -- a delayed freeze and are not yet frozen.
6465 F := First_Formal (Designator);
6466 while Present (F) loop
6467 Possible_Freeze (Etype (F));
6468 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6469 Next_Formal (F);
6470 end loop;
6472 -- Mark functions that return by reference. Note that it cannot be
6473 -- done for delayed_freeze subprograms because the underlying
6474 -- returned type may not be known yet (for private types)
6476 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6477 declare
6478 Typ : constant Entity_Id := Etype (Designator);
6479 Utyp : constant Entity_Id := Underlying_Type (Typ);
6480 begin
6481 if Is_Immutably_Limited_Type (Typ) then
6482 Set_Returns_By_Ref (Designator);
6483 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6484 Set_Returns_By_Ref (Designator);
6485 end if;
6486 end;
6487 end if;
6488 end Check_Delayed_Subprogram;
6490 ------------------------------------
6491 -- Check_Discriminant_Conformance --
6492 ------------------------------------
6494 procedure Check_Discriminant_Conformance
6495 (N : Node_Id;
6496 Prev : Entity_Id;
6497 Prev_Loc : Node_Id)
6499 Old_Discr : Entity_Id := First_Discriminant (Prev);
6500 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6501 New_Discr_Id : Entity_Id;
6502 New_Discr_Type : Entity_Id;
6504 procedure Conformance_Error (Msg : String; N : Node_Id);
6505 -- Post error message for conformance error on given node. Two messages
6506 -- are output. The first points to the previous declaration with a
6507 -- general "no conformance" message. The second is the detailed reason,
6508 -- supplied as Msg. The parameter N provide information for a possible
6509 -- & insertion in the message.
6511 -----------------------
6512 -- Conformance_Error --
6513 -----------------------
6515 procedure Conformance_Error (Msg : String; N : Node_Id) is
6516 begin
6517 Error_Msg_Sloc := Sloc (Prev_Loc);
6518 Error_Msg_N -- CODEFIX
6519 ("not fully conformant with declaration#!", N);
6520 Error_Msg_NE (Msg, N, N);
6521 end Conformance_Error;
6523 -- Start of processing for Check_Discriminant_Conformance
6525 begin
6526 while Present (Old_Discr) and then Present (New_Discr) loop
6527 New_Discr_Id := Defining_Identifier (New_Discr);
6529 -- The subtype mark of the discriminant on the full type has not
6530 -- been analyzed so we do it here. For an access discriminant a new
6531 -- type is created.
6533 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6534 New_Discr_Type :=
6535 Access_Definition (N, Discriminant_Type (New_Discr));
6537 else
6538 Analyze (Discriminant_Type (New_Discr));
6539 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6541 -- Ada 2005: if the discriminant definition carries a null
6542 -- exclusion, create an itype to check properly for consistency
6543 -- with partial declaration.
6545 if Is_Access_Type (New_Discr_Type)
6546 and then Null_Exclusion_Present (New_Discr)
6547 then
6548 New_Discr_Type :=
6549 Create_Null_Excluding_Itype
6550 (T => New_Discr_Type,
6551 Related_Nod => New_Discr,
6552 Scope_Id => Current_Scope);
6553 end if;
6554 end if;
6556 if not Conforming_Types
6557 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6558 then
6559 Conformance_Error ("type of & does not match!", New_Discr_Id);
6560 return;
6561 else
6562 -- Treat the new discriminant as an occurrence of the old one,
6563 -- for navigation purposes, and fill in some semantic
6564 -- information, for completeness.
6566 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6567 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6568 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6569 end if;
6571 -- Names must match
6573 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6574 Conformance_Error ("name & does not match!", New_Discr_Id);
6575 return;
6576 end if;
6578 -- Default expressions must match
6580 declare
6581 NewD : constant Boolean :=
6582 Present (Expression (New_Discr));
6583 OldD : constant Boolean :=
6584 Present (Expression (Parent (Old_Discr)));
6586 begin
6587 if NewD or OldD then
6589 -- The old default value has been analyzed and expanded,
6590 -- because the current full declaration will have frozen
6591 -- everything before. The new default values have not been
6592 -- expanded, so expand now to check conformance.
6594 if NewD then
6595 Preanalyze_Spec_Expression
6596 (Expression (New_Discr), New_Discr_Type);
6597 end if;
6599 if not (NewD and OldD)
6600 or else not Fully_Conformant_Expressions
6601 (Expression (Parent (Old_Discr)),
6602 Expression (New_Discr))
6604 then
6605 Conformance_Error
6606 ("default expression for & does not match!",
6607 New_Discr_Id);
6608 return;
6609 end if;
6610 end if;
6611 end;
6613 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6615 if Ada_Version = Ada_83 then
6616 declare
6617 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6619 begin
6620 -- Grouping (use of comma in param lists) must be the same
6621 -- This is where we catch a misconformance like:
6623 -- A, B : Integer
6624 -- A : Integer; B : Integer
6626 -- which are represented identically in the tree except
6627 -- for the setting of the flags More_Ids and Prev_Ids.
6629 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6630 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6631 then
6632 Conformance_Error
6633 ("grouping of & does not match!", New_Discr_Id);
6634 return;
6635 end if;
6636 end;
6637 end if;
6639 Next_Discriminant (Old_Discr);
6640 Next (New_Discr);
6641 end loop;
6643 if Present (Old_Discr) then
6644 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6645 return;
6647 elsif Present (New_Discr) then
6648 Conformance_Error
6649 ("too many discriminants!", Defining_Identifier (New_Discr));
6650 return;
6651 end if;
6652 end Check_Discriminant_Conformance;
6654 ----------------------------
6655 -- Check_Fully_Conformant --
6656 ----------------------------
6658 procedure Check_Fully_Conformant
6659 (New_Id : Entity_Id;
6660 Old_Id : Entity_Id;
6661 Err_Loc : Node_Id := Empty)
6663 Result : Boolean;
6664 pragma Warnings (Off, Result);
6665 begin
6666 Check_Conformance
6667 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6668 end Check_Fully_Conformant;
6670 ---------------------------
6671 -- Check_Mode_Conformant --
6672 ---------------------------
6674 procedure Check_Mode_Conformant
6675 (New_Id : Entity_Id;
6676 Old_Id : Entity_Id;
6677 Err_Loc : Node_Id := Empty;
6678 Get_Inst : Boolean := False)
6680 Result : Boolean;
6681 pragma Warnings (Off, Result);
6682 begin
6683 Check_Conformance
6684 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6685 end Check_Mode_Conformant;
6687 --------------------------------
6688 -- Check_Overriding_Indicator --
6689 --------------------------------
6691 procedure Check_Overriding_Indicator
6692 (Subp : Entity_Id;
6693 Overridden_Subp : Entity_Id;
6694 Is_Primitive : Boolean)
6696 Decl : Node_Id;
6697 Spec : Node_Id;
6699 begin
6700 -- No overriding indicator for literals
6702 if Ekind (Subp) = E_Enumeration_Literal then
6703 return;
6705 elsif Ekind (Subp) = E_Entry then
6706 Decl := Parent (Subp);
6708 -- No point in analyzing a malformed operator
6710 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6711 and then Error_Posted (Subp)
6712 then
6713 return;
6715 else
6716 Decl := Unit_Declaration_Node (Subp);
6717 end if;
6719 if Nkind_In (Decl, N_Subprogram_Body,
6720 N_Subprogram_Body_Stub,
6721 N_Subprogram_Declaration,
6722 N_Abstract_Subprogram_Declaration,
6723 N_Subprogram_Renaming_Declaration)
6724 then
6725 Spec := Specification (Decl);
6727 elsif Nkind (Decl) = N_Entry_Declaration then
6728 Spec := Decl;
6730 else
6731 return;
6732 end if;
6734 -- The overriding operation is type conformant with the overridden one,
6735 -- but the names of the formals are not required to match. If the names
6736 -- appear permuted in the overriding operation, this is a possible
6737 -- source of confusion that is worth diagnosing. Controlling formals
6738 -- often carry names that reflect the type, and it is not worthwhile
6739 -- requiring that their names match.
6741 if Present (Overridden_Subp)
6742 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6743 then
6744 declare
6745 Form1 : Entity_Id;
6746 Form2 : Entity_Id;
6748 begin
6749 Form1 := First_Formal (Subp);
6750 Form2 := First_Formal (Overridden_Subp);
6752 -- If the overriding operation is a synchronized operation, skip
6753 -- the first parameter of the overridden operation, which is
6754 -- implicit in the new one. If the operation is declared in the
6755 -- body it is not primitive and all formals must match.
6757 if Is_Concurrent_Type (Scope (Subp))
6758 and then Is_Tagged_Type (Scope (Subp))
6759 and then not Has_Completion (Scope (Subp))
6760 then
6761 Form2 := Next_Formal (Form2);
6762 end if;
6764 if Present (Form1) then
6765 Form1 := Next_Formal (Form1);
6766 Form2 := Next_Formal (Form2);
6767 end if;
6769 while Present (Form1) loop
6770 if not Is_Controlling_Formal (Form1)
6771 and then Present (Next_Formal (Form2))
6772 and then Chars (Form1) = Chars (Next_Formal (Form2))
6773 then
6774 Error_Msg_Node_2 := Alias (Overridden_Subp);
6775 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6776 Error_Msg_NE
6777 ("& does not match corresponding formal of&#",
6778 Form1, Form1);
6779 exit;
6780 end if;
6782 Next_Formal (Form1);
6783 Next_Formal (Form2);
6784 end loop;
6785 end;
6786 end if;
6788 -- If there is an overridden subprogram, then check that there is no
6789 -- "not overriding" indicator, and mark the subprogram as overriding.
6790 -- This is not done if the overridden subprogram is marked as hidden,
6791 -- which can occur for the case of inherited controlled operations
6792 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6793 -- subprogram is not itself hidden. (Note: This condition could probably
6794 -- be simplified, leaving out the testing for the specific controlled
6795 -- cases, but it seems safer and clearer this way, and echoes similar
6796 -- special-case tests of this kind in other places.)
6798 if Present (Overridden_Subp)
6799 and then (not Is_Hidden (Overridden_Subp)
6800 or else
6801 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6802 Name_Adjust,
6803 Name_Finalize)
6804 and then Present (Alias (Overridden_Subp))
6805 and then not Is_Hidden (Alias (Overridden_Subp))))
6806 then
6807 if Must_Not_Override (Spec) then
6808 Error_Msg_Sloc := Sloc (Overridden_Subp);
6810 if Ekind (Subp) = E_Entry then
6811 Error_Msg_NE
6812 ("entry & overrides inherited operation #", Spec, Subp);
6813 else
6814 Error_Msg_NE
6815 ("subprogram & overrides inherited operation #", Spec, Subp);
6816 end if;
6818 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6819 -- as an extension of Root_Controlled, and thus has a useless Adjust
6820 -- operation. This operation should not be inherited by other limited
6821 -- controlled types. An explicit Adjust for them is not overriding.
6823 elsif Must_Override (Spec)
6824 and then Chars (Overridden_Subp) = Name_Adjust
6825 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6826 and then Present (Alias (Overridden_Subp))
6827 and then
6828 Is_Predefined_File_Name
6829 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
6830 then
6831 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6833 elsif Is_Subprogram (Subp) then
6834 if Is_Init_Proc (Subp) then
6835 null;
6837 elsif No (Overridden_Operation (Subp)) then
6839 -- For entities generated by Derive_Subprograms the overridden
6840 -- operation is the inherited primitive (which is available
6841 -- through the attribute alias)
6843 if (Is_Dispatching_Operation (Subp)
6844 or else Is_Dispatching_Operation (Overridden_Subp))
6845 and then not Comes_From_Source (Overridden_Subp)
6846 and then Find_Dispatching_Type (Overridden_Subp) =
6847 Find_Dispatching_Type (Subp)
6848 and then Present (Alias (Overridden_Subp))
6849 and then Comes_From_Source (Alias (Overridden_Subp))
6850 then
6851 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6853 else
6854 Set_Overridden_Operation (Subp, Overridden_Subp);
6855 end if;
6856 end if;
6857 end if;
6859 -- If primitive flag is set or this is a protected operation, then
6860 -- the operation is overriding at the point of its declaration, so
6861 -- warn if necessary. Otherwise it may have been declared before the
6862 -- operation it overrides and no check is required.
6864 if Style_Check
6865 and then not Must_Override (Spec)
6866 and then (Is_Primitive
6867 or else Ekind (Scope (Subp)) = E_Protected_Type)
6868 then
6869 Style.Missing_Overriding (Decl, Subp);
6870 end if;
6872 -- If Subp is an operator, it may override a predefined operation, if
6873 -- it is defined in the same scope as the type to which it applies.
6874 -- In that case Overridden_Subp is empty because of our implicit
6875 -- representation for predefined operators. We have to check whether the
6876 -- signature of Subp matches that of a predefined operator. Note that
6877 -- first argument provides the name of the operator, and the second
6878 -- argument the signature that may match that of a standard operation.
6879 -- If the indicator is overriding, then the operator must match a
6880 -- predefined signature, because we know already that there is no
6881 -- explicit overridden operation.
6883 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6884 if Must_Not_Override (Spec) then
6886 -- If this is not a primitive or a protected subprogram, then
6887 -- "not overriding" is illegal.
6889 if not Is_Primitive
6890 and then Ekind (Scope (Subp)) /= E_Protected_Type
6891 then
6892 Error_Msg_N
6893 ("overriding indicator only allowed "
6894 & "if subprogram is primitive", Subp);
6896 elsif Can_Override_Operator (Subp) then
6897 Error_Msg_NE
6898 ("subprogram& overrides predefined operator ", Spec, Subp);
6899 end if;
6901 elsif Must_Override (Spec) then
6902 if No (Overridden_Operation (Subp))
6903 and then not Can_Override_Operator (Subp)
6904 then
6905 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6906 end if;
6908 elsif not Error_Posted (Subp)
6909 and then Style_Check
6910 and then Can_Override_Operator (Subp)
6911 and then
6912 not Is_Predefined_File_Name
6913 (Unit_File_Name (Get_Source_Unit (Subp)))
6914 then
6915 -- If style checks are enabled, indicate that the indicator is
6916 -- missing. However, at the point of declaration, the type of
6917 -- which this is a primitive operation may be private, in which
6918 -- case the indicator would be premature.
6920 if Has_Private_Declaration (Etype (Subp))
6921 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6922 then
6923 null;
6924 else
6925 Style.Missing_Overriding (Decl, Subp);
6926 end if;
6927 end if;
6929 elsif Must_Override (Spec) then
6930 if Ekind (Subp) = E_Entry then
6931 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6932 else
6933 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6934 end if;
6936 -- If the operation is marked "not overriding" and it's not primitive
6937 -- then an error is issued, unless this is an operation of a task or
6938 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6939 -- has been specified have already been checked above.
6941 elsif Must_Not_Override (Spec)
6942 and then not Is_Primitive
6943 and then Ekind (Subp) /= E_Entry
6944 and then Ekind (Scope (Subp)) /= E_Protected_Type
6945 then
6946 Error_Msg_N
6947 ("overriding indicator only allowed if subprogram is primitive",
6948 Subp);
6949 return;
6950 end if;
6951 end Check_Overriding_Indicator;
6953 -------------------
6954 -- Check_Returns --
6955 -------------------
6957 -- Note: this procedure needs to know far too much about how the expander
6958 -- messes with exceptions. The use of the flag Exception_Junk and the
6959 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6960 -- works, but is not very clean. It would be better if the expansion
6961 -- routines would leave Original_Node working nicely, and we could use
6962 -- Original_Node here to ignore all the peculiar expander messing ???
6964 procedure Check_Returns
6965 (HSS : Node_Id;
6966 Mode : Character;
6967 Err : out Boolean;
6968 Proc : Entity_Id := Empty)
6970 Handler : Node_Id;
6972 procedure Check_Statement_Sequence (L : List_Id);
6973 -- Internal recursive procedure to check a list of statements for proper
6974 -- termination by a return statement (or a transfer of control or a
6975 -- compound statement that is itself internally properly terminated).
6977 ------------------------------
6978 -- Check_Statement_Sequence --
6979 ------------------------------
6981 procedure Check_Statement_Sequence (L : List_Id) is
6982 Last_Stm : Node_Id;
6983 Stm : Node_Id;
6984 Kind : Node_Kind;
6986 Raise_Exception_Call : Boolean;
6987 -- Set True if statement sequence terminated by Raise_Exception call
6988 -- or a Reraise_Occurrence call.
6990 begin
6991 Raise_Exception_Call := False;
6993 -- Get last real statement
6995 Last_Stm := Last (L);
6997 -- Deal with digging out exception handler statement sequences that
6998 -- have been transformed by the local raise to goto optimization.
6999 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
7000 -- optimization has occurred, we are looking at something like:
7002 -- begin
7003 -- original stmts in block
7005 -- exception \
7006 -- when excep1 => |
7007 -- goto L1; | omitted if No_Exception_Propagation
7008 -- when excep2 => |
7009 -- goto L2; /
7010 -- end;
7012 -- goto L3; -- skip handler when exception not raised
7014 -- <<L1>> -- target label for local exception
7015 -- begin
7016 -- estmts1
7017 -- end;
7019 -- goto L3;
7021 -- <<L2>>
7022 -- begin
7023 -- estmts2
7024 -- end;
7026 -- <<L3>>
7028 -- and what we have to do is to dig out the estmts1 and estmts2
7029 -- sequences (which were the original sequences of statements in
7030 -- the exception handlers) and check them.
7032 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
7033 Stm := Last_Stm;
7034 loop
7035 Prev (Stm);
7036 exit when No (Stm);
7037 exit when Nkind (Stm) /= N_Block_Statement;
7038 exit when not Exception_Junk (Stm);
7039 Prev (Stm);
7040 exit when No (Stm);
7041 exit when Nkind (Stm) /= N_Label;
7042 exit when not Exception_Junk (Stm);
7043 Check_Statement_Sequence
7044 (Statements (Handled_Statement_Sequence (Next (Stm))));
7046 Prev (Stm);
7047 Last_Stm := Stm;
7048 exit when No (Stm);
7049 exit when Nkind (Stm) /= N_Goto_Statement;
7050 exit when not Exception_Junk (Stm);
7051 end loop;
7052 end if;
7054 -- Don't count pragmas
7056 while Nkind (Last_Stm) = N_Pragma
7058 -- Don't count call to SS_Release (can happen after Raise_Exception)
7060 or else
7061 (Nkind (Last_Stm) = N_Procedure_Call_Statement
7062 and then
7063 Nkind (Name (Last_Stm)) = N_Identifier
7064 and then
7065 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
7067 -- Don't count exception junk
7069 or else
7070 (Nkind_In (Last_Stm, N_Goto_Statement,
7071 N_Label,
7072 N_Object_Declaration)
7073 and then Exception_Junk (Last_Stm))
7074 or else Nkind (Last_Stm) in N_Push_xxx_Label
7075 or else Nkind (Last_Stm) in N_Pop_xxx_Label
7077 -- Inserted code, such as finalization calls, is irrelevant: we only
7078 -- need to check original source.
7080 or else Is_Rewrite_Insertion (Last_Stm)
7081 loop
7082 Prev (Last_Stm);
7083 end loop;
7085 -- Here we have the "real" last statement
7087 Kind := Nkind (Last_Stm);
7089 -- Transfer of control, OK. Note that in the No_Return procedure
7090 -- case, we already diagnosed any explicit return statements, so
7091 -- we can treat them as OK in this context.
7093 if Is_Transfer (Last_Stm) then
7094 return;
7096 -- Check cases of explicit non-indirect procedure calls
7098 elsif Kind = N_Procedure_Call_Statement
7099 and then Is_Entity_Name (Name (Last_Stm))
7100 then
7101 -- Check call to Raise_Exception procedure which is treated
7102 -- specially, as is a call to Reraise_Occurrence.
7104 -- We suppress the warning in these cases since it is likely that
7105 -- the programmer really does not expect to deal with the case
7106 -- of Null_Occurrence, and thus would find a warning about a
7107 -- missing return curious, and raising Program_Error does not
7108 -- seem such a bad behavior if this does occur.
7110 -- Note that in the Ada 2005 case for Raise_Exception, the actual
7111 -- behavior will be to raise Constraint_Error (see AI-329).
7113 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
7114 or else
7115 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
7116 then
7117 Raise_Exception_Call := True;
7119 -- For Raise_Exception call, test first argument, if it is
7120 -- an attribute reference for a 'Identity call, then we know
7121 -- that the call cannot possibly return.
7123 declare
7124 Arg : constant Node_Id :=
7125 Original_Node (First_Actual (Last_Stm));
7126 begin
7127 if Nkind (Arg) = N_Attribute_Reference
7128 and then Attribute_Name (Arg) = Name_Identity
7129 then
7130 return;
7131 end if;
7132 end;
7133 end if;
7135 -- If statement, need to look inside if there is an else and check
7136 -- each constituent statement sequence for proper termination.
7138 elsif Kind = N_If_Statement
7139 and then Present (Else_Statements (Last_Stm))
7140 then
7141 Check_Statement_Sequence (Then_Statements (Last_Stm));
7142 Check_Statement_Sequence (Else_Statements (Last_Stm));
7144 if Present (Elsif_Parts (Last_Stm)) then
7145 declare
7146 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
7148 begin
7149 while Present (Elsif_Part) loop
7150 Check_Statement_Sequence (Then_Statements (Elsif_Part));
7151 Next (Elsif_Part);
7152 end loop;
7153 end;
7154 end if;
7156 return;
7158 -- Case statement, check each case for proper termination
7160 elsif Kind = N_Case_Statement then
7161 declare
7162 Case_Alt : Node_Id;
7163 begin
7164 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
7165 while Present (Case_Alt) loop
7166 Check_Statement_Sequence (Statements (Case_Alt));
7167 Next_Non_Pragma (Case_Alt);
7168 end loop;
7169 end;
7171 return;
7173 -- Block statement, check its handled sequence of statements
7175 elsif Kind = N_Block_Statement then
7176 declare
7177 Err1 : Boolean;
7179 begin
7180 Check_Returns
7181 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7183 if Err1 then
7184 Err := True;
7185 end if;
7187 return;
7188 end;
7190 -- Loop statement. If there is an iteration scheme, we can definitely
7191 -- fall out of the loop. Similarly if there is an exit statement, we
7192 -- can fall out. In either case we need a following return.
7194 elsif Kind = N_Loop_Statement then
7195 if Present (Iteration_Scheme (Last_Stm))
7196 or else Has_Exit (Entity (Identifier (Last_Stm)))
7197 then
7198 null;
7200 -- A loop with no exit statement or iteration scheme is either
7201 -- an infinite loop, or it has some other exit (raise/return).
7202 -- In either case, no warning is required.
7204 else
7205 return;
7206 end if;
7208 -- Timed entry call, check entry call and delay alternatives
7210 -- Note: in expanded code, the timed entry call has been converted
7211 -- to a set of expanded statements on which the check will work
7212 -- correctly in any case.
7214 elsif Kind = N_Timed_Entry_Call then
7215 declare
7216 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7217 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
7219 begin
7220 -- If statement sequence of entry call alternative is missing,
7221 -- then we can definitely fall through, and we post the error
7222 -- message on the entry call alternative itself.
7224 if No (Statements (ECA)) then
7225 Last_Stm := ECA;
7227 -- If statement sequence of delay alternative is missing, then
7228 -- we can definitely fall through, and we post the error
7229 -- message on the delay alternative itself.
7231 -- Note: if both ECA and DCA are missing the return, then we
7232 -- post only one message, should be enough to fix the bugs.
7233 -- If not we will get a message next time on the DCA when the
7234 -- ECA is fixed!
7236 elsif No (Statements (DCA)) then
7237 Last_Stm := DCA;
7239 -- Else check both statement sequences
7241 else
7242 Check_Statement_Sequence (Statements (ECA));
7243 Check_Statement_Sequence (Statements (DCA));
7244 return;
7245 end if;
7246 end;
7248 -- Conditional entry call, check entry call and else part
7250 -- Note: in expanded code, the conditional entry call has been
7251 -- converted to a set of expanded statements on which the check
7252 -- will work correctly in any case.
7254 elsif Kind = N_Conditional_Entry_Call then
7255 declare
7256 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7258 begin
7259 -- If statement sequence of entry call alternative is missing,
7260 -- then we can definitely fall through, and we post the error
7261 -- message on the entry call alternative itself.
7263 if No (Statements (ECA)) then
7264 Last_Stm := ECA;
7266 -- Else check statement sequence and else part
7268 else
7269 Check_Statement_Sequence (Statements (ECA));
7270 Check_Statement_Sequence (Else_Statements (Last_Stm));
7271 return;
7272 end if;
7273 end;
7274 end if;
7276 -- If we fall through, issue appropriate message
7278 if Mode = 'F' then
7279 if not Raise_Exception_Call then
7280 Error_Msg_N
7281 ("RETURN statement missing following this statement??!",
7282 Last_Stm);
7283 Error_Msg_N
7284 ("\Program_Error may be raised at run time??!",
7285 Last_Stm);
7286 end if;
7288 -- Note: we set Err even though we have not issued a warning
7289 -- because we still have a case of a missing return. This is
7290 -- an extremely marginal case, probably will never be noticed
7291 -- but we might as well get it right.
7293 Err := True;
7295 -- Otherwise we have the case of a procedure marked No_Return
7297 else
7298 if not Raise_Exception_Call then
7299 Error_Msg_N
7300 ("implied return after this statement " &
7301 "will raise Program_Error??",
7302 Last_Stm);
7303 Error_Msg_NE
7304 ("\procedure & is marked as No_Return??!",
7305 Last_Stm, Proc);
7306 end if;
7308 declare
7309 RE : constant Node_Id :=
7310 Make_Raise_Program_Error (Sloc (Last_Stm),
7311 Reason => PE_Implicit_Return);
7312 begin
7313 Insert_After (Last_Stm, RE);
7314 Analyze (RE);
7315 end;
7316 end if;
7317 end Check_Statement_Sequence;
7319 -- Start of processing for Check_Returns
7321 begin
7322 Err := False;
7323 Check_Statement_Sequence (Statements (HSS));
7325 if Present (Exception_Handlers (HSS)) then
7326 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7327 while Present (Handler) loop
7328 Check_Statement_Sequence (Statements (Handler));
7329 Next_Non_Pragma (Handler);
7330 end loop;
7331 end if;
7332 end Check_Returns;
7334 ----------------------------
7335 -- Check_Subprogram_Order --
7336 ----------------------------
7338 procedure Check_Subprogram_Order (N : Node_Id) is
7340 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7341 -- This is used to check if S1 > S2 in the sense required by this test,
7342 -- for example nameab < namec, but name2 < name10.
7344 -----------------------------
7345 -- Subprogram_Name_Greater --
7346 -----------------------------
7348 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7349 L1, L2 : Positive;
7350 N1, N2 : Natural;
7352 begin
7353 -- Deal with special case where names are identical except for a
7354 -- numerical suffix. These are handled specially, taking the numeric
7355 -- ordering from the suffix into account.
7357 L1 := S1'Last;
7358 while S1 (L1) in '0' .. '9' loop
7359 L1 := L1 - 1;
7360 end loop;
7362 L2 := S2'Last;
7363 while S2 (L2) in '0' .. '9' loop
7364 L2 := L2 - 1;
7365 end loop;
7367 -- If non-numeric parts non-equal, do straight compare
7369 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7370 return S1 > S2;
7372 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7373 -- that a missing suffix is treated as numeric zero in this test.
7375 else
7376 N1 := 0;
7377 while L1 < S1'Last loop
7378 L1 := L1 + 1;
7379 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7380 end loop;
7382 N2 := 0;
7383 while L2 < S2'Last loop
7384 L2 := L2 + 1;
7385 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7386 end loop;
7388 return N1 > N2;
7389 end if;
7390 end Subprogram_Name_Greater;
7392 -- Start of processing for Check_Subprogram_Order
7394 begin
7395 -- Check body in alpha order if this is option
7397 if Style_Check
7398 and then Style_Check_Order_Subprograms
7399 and then Nkind (N) = N_Subprogram_Body
7400 and then Comes_From_Source (N)
7401 and then In_Extended_Main_Source_Unit (N)
7402 then
7403 declare
7404 LSN : String_Ptr
7405 renames Scope_Stack.Table
7406 (Scope_Stack.Last).Last_Subprogram_Name;
7408 Body_Id : constant Entity_Id :=
7409 Defining_Entity (Specification (N));
7411 begin
7412 Get_Decoded_Name_String (Chars (Body_Id));
7414 if LSN /= null then
7415 if Subprogram_Name_Greater
7416 (LSN.all, Name_Buffer (1 .. Name_Len))
7417 then
7418 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7419 end if;
7421 Free (LSN);
7422 end if;
7424 LSN := new String'(Name_Buffer (1 .. Name_Len));
7425 end;
7426 end if;
7427 end Check_Subprogram_Order;
7429 ------------------------------
7430 -- Check_Subtype_Conformant --
7431 ------------------------------
7433 procedure Check_Subtype_Conformant
7434 (New_Id : Entity_Id;
7435 Old_Id : Entity_Id;
7436 Err_Loc : Node_Id := Empty;
7437 Skip_Controlling_Formals : Boolean := False;
7438 Get_Inst : Boolean := False)
7440 Result : Boolean;
7441 pragma Warnings (Off, Result);
7442 begin
7443 Check_Conformance
7444 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7445 Skip_Controlling_Formals => Skip_Controlling_Formals,
7446 Get_Inst => Get_Inst);
7447 end Check_Subtype_Conformant;
7449 ---------------------------
7450 -- Check_Type_Conformant --
7451 ---------------------------
7453 procedure Check_Type_Conformant
7454 (New_Id : Entity_Id;
7455 Old_Id : Entity_Id;
7456 Err_Loc : Node_Id := Empty)
7458 Result : Boolean;
7459 pragma Warnings (Off, Result);
7460 begin
7461 Check_Conformance
7462 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7463 end Check_Type_Conformant;
7465 ---------------------------
7466 -- Can_Override_Operator --
7467 ---------------------------
7469 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7470 Typ : Entity_Id;
7472 begin
7473 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7474 return False;
7476 else
7477 Typ := Base_Type (Etype (First_Formal (Subp)));
7479 -- Check explicitly that the operation is a primitive of the type
7481 return Operator_Matches_Spec (Subp, Subp)
7482 and then not Is_Generic_Type (Typ)
7483 and then Scope (Subp) = Scope (Typ)
7484 and then not Is_Class_Wide_Type (Typ);
7485 end if;
7486 end Can_Override_Operator;
7488 ----------------------
7489 -- Conforming_Types --
7490 ----------------------
7492 function Conforming_Types
7493 (T1 : Entity_Id;
7494 T2 : Entity_Id;
7495 Ctype : Conformance_Type;
7496 Get_Inst : Boolean := False) return Boolean
7498 Type_1 : Entity_Id := T1;
7499 Type_2 : Entity_Id := T2;
7500 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7502 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
7503 -- If neither T1 nor T2 are generic actual types, or if they are in
7504 -- different scopes (e.g. parent and child instances), then verify that
7505 -- the base types are equal. Otherwise T1 and T2 must be on the same
7506 -- subtype chain. The whole purpose of this procedure is to prevent
7507 -- spurious ambiguities in an instantiation that may arise if two
7508 -- distinct generic types are instantiated with the same actual.
7510 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
7511 -- An access parameter can designate an incomplete type. If the
7512 -- incomplete type is the limited view of a type from a limited_
7513 -- with_clause, check whether the non-limited view is available. If
7514 -- it is a (non-limited) incomplete type, get the full view.
7516 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
7517 -- Returns True if and only if either T1 denotes a limited view of T2
7518 -- or T2 denotes a limited view of T1. This can arise when the limited
7519 -- with view of a type is used in a subprogram declaration and the
7520 -- subprogram body is in the scope of a regular with clause for the
7521 -- same unit. In such a case, the two type entities can be considered
7522 -- identical for purposes of conformance checking.
7524 ----------------------
7525 -- Base_Types_Match --
7526 ----------------------
7528 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
7529 BT1 : constant Entity_Id := Base_Type (T1);
7530 BT2 : constant Entity_Id := Base_Type (T2);
7532 begin
7533 if T1 = T2 then
7534 return True;
7536 elsif BT1 = BT2 then
7538 -- The following is too permissive. A more precise test should
7539 -- check that the generic actual is an ancestor subtype of the
7540 -- other ???.
7542 -- See code in Find_Corresponding_Spec that applies an additional
7543 -- filter to handle accidental amiguities in instances.
7545 return not Is_Generic_Actual_Type (T1)
7546 or else not Is_Generic_Actual_Type (T2)
7547 or else Scope (T1) /= Scope (T2);
7549 -- If T2 is a generic actual type it is declared as the subtype of
7550 -- the actual. If that actual is itself a subtype we need to use its
7551 -- own base type to check for compatibility.
7553 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
7554 return True;
7556 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
7557 return True;
7559 else
7560 return False;
7561 end if;
7562 end Base_Types_Match;
7564 --------------------------
7565 -- Find_Designated_Type --
7566 --------------------------
7568 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
7569 Desig : Entity_Id;
7571 begin
7572 Desig := Directly_Designated_Type (T);
7574 if Ekind (Desig) = E_Incomplete_Type then
7576 -- If regular incomplete type, get full view if available
7578 if Present (Full_View (Desig)) then
7579 Desig := Full_View (Desig);
7581 -- If limited view of a type, get non-limited view if available,
7582 -- and check again for a regular incomplete type.
7584 elsif Present (Non_Limited_View (Desig)) then
7585 Desig := Get_Full_View (Non_Limited_View (Desig));
7586 end if;
7587 end if;
7589 return Desig;
7590 end Find_Designated_Type;
7592 -------------------------------
7593 -- Matches_Limited_With_View --
7594 -------------------------------
7596 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
7597 begin
7598 -- In some cases a type imported through a limited_with clause, and
7599 -- its nonlimited view are both visible, for example in an anonymous
7600 -- access-to-class-wide type in a formal. Both entities designate the
7601 -- same type.
7603 if From_With_Type (T1) and then T2 = Available_View (T1) then
7604 return True;
7606 elsif From_With_Type (T2) and then T1 = Available_View (T2) then
7607 return True;
7609 elsif From_With_Type (T1)
7610 and then From_With_Type (T2)
7611 and then Available_View (T1) = Available_View (T2)
7612 then
7613 return True;
7615 else
7616 return False;
7617 end if;
7618 end Matches_Limited_With_View;
7620 -- Start of processing for Conforming_Types
7622 begin
7623 -- The context is an instance association for a formal access-to-
7624 -- subprogram type; the formal parameter types require mapping because
7625 -- they may denote other formal parameters of the generic unit.
7627 if Get_Inst then
7628 Type_1 := Get_Instance_Of (T1);
7629 Type_2 := Get_Instance_Of (T2);
7630 end if;
7632 -- If one of the types is a view of the other introduced by a limited
7633 -- with clause, treat these as conforming for all purposes.
7635 if Matches_Limited_With_View (T1, T2) then
7636 return True;
7638 elsif Base_Types_Match (Type_1, Type_2) then
7639 return Ctype <= Mode_Conformant
7640 or else Subtypes_Statically_Match (Type_1, Type_2);
7642 elsif Is_Incomplete_Or_Private_Type (Type_1)
7643 and then Present (Full_View (Type_1))
7644 and then Base_Types_Match (Full_View (Type_1), Type_2)
7645 then
7646 return Ctype <= Mode_Conformant
7647 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7649 elsif Ekind (Type_2) = E_Incomplete_Type
7650 and then Present (Full_View (Type_2))
7651 and then Base_Types_Match (Type_1, Full_View (Type_2))
7652 then
7653 return Ctype <= Mode_Conformant
7654 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7656 elsif Is_Private_Type (Type_2)
7657 and then In_Instance
7658 and then Present (Full_View (Type_2))
7659 and then Base_Types_Match (Type_1, Full_View (Type_2))
7660 then
7661 return Ctype <= Mode_Conformant
7662 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7663 end if;
7665 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7666 -- treated recursively because they carry a signature. As far as
7667 -- conformance is concerned, convention plays no role, and either
7668 -- or both could be access to protected subprograms.
7670 Are_Anonymous_Access_To_Subprogram_Types :=
7671 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7672 E_Anonymous_Access_Protected_Subprogram_Type)
7673 and then
7674 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7675 E_Anonymous_Access_Protected_Subprogram_Type);
7677 -- Test anonymous access type case. For this case, static subtype
7678 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7679 -- the base types because we may have built internal subtype entities
7680 -- to handle null-excluding types (see Process_Formals).
7682 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7683 and then
7684 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7686 -- Ada 2005 (AI-254)
7688 or else Are_Anonymous_Access_To_Subprogram_Types
7689 then
7690 declare
7691 Desig_1 : Entity_Id;
7692 Desig_2 : Entity_Id;
7694 begin
7695 -- In Ada 2005, access constant indicators must match for
7696 -- subtype conformance.
7698 if Ada_Version >= Ada_2005
7699 and then Ctype >= Subtype_Conformant
7700 and then
7701 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7702 then
7703 return False;
7704 end if;
7706 Desig_1 := Find_Designated_Type (Type_1);
7707 Desig_2 := Find_Designated_Type (Type_2);
7709 -- If the context is an instance association for a formal
7710 -- access-to-subprogram type; formal access parameter designated
7711 -- types require mapping because they may denote other formal
7712 -- parameters of the generic unit.
7714 if Get_Inst then
7715 Desig_1 := Get_Instance_Of (Desig_1);
7716 Desig_2 := Get_Instance_Of (Desig_2);
7717 end if;
7719 -- It is possible for a Class_Wide_Type to be introduced for an
7720 -- incomplete type, in which case there is a separate class_ wide
7721 -- type for the full view. The types conform if their Etypes
7722 -- conform, i.e. one may be the full view of the other. This can
7723 -- only happen in the context of an access parameter, other uses
7724 -- of an incomplete Class_Wide_Type are illegal.
7726 if Is_Class_Wide_Type (Desig_1)
7727 and then
7728 Is_Class_Wide_Type (Desig_2)
7729 then
7730 return
7731 Conforming_Types
7732 (Etype (Base_Type (Desig_1)),
7733 Etype (Base_Type (Desig_2)), Ctype);
7735 elsif Are_Anonymous_Access_To_Subprogram_Types then
7736 if Ada_Version < Ada_2005 then
7737 return Ctype = Type_Conformant
7738 or else
7739 Subtypes_Statically_Match (Desig_1, Desig_2);
7741 -- We must check the conformance of the signatures themselves
7743 else
7744 declare
7745 Conformant : Boolean;
7746 begin
7747 Check_Conformance
7748 (Desig_1, Desig_2, Ctype, False, Conformant);
7749 return Conformant;
7750 end;
7751 end if;
7753 else
7754 return Base_Type (Desig_1) = Base_Type (Desig_2)
7755 and then (Ctype = Type_Conformant
7756 or else
7757 Subtypes_Statically_Match (Desig_1, Desig_2));
7758 end if;
7759 end;
7761 -- Otherwise definitely no match
7763 else
7764 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7765 and then Is_Access_Type (Type_2))
7766 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7767 and then Is_Access_Type (Type_1)))
7768 and then
7769 Conforming_Types
7770 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7771 then
7772 May_Hide_Profile := True;
7773 end if;
7775 return False;
7776 end if;
7777 end Conforming_Types;
7779 --------------------------
7780 -- Create_Extra_Formals --
7781 --------------------------
7783 procedure Create_Extra_Formals (E : Entity_Id) is
7784 Formal : Entity_Id;
7785 First_Extra : Entity_Id := Empty;
7786 Last_Extra : Entity_Id;
7787 Formal_Type : Entity_Id;
7788 P_Formal : Entity_Id := Empty;
7790 function Add_Extra_Formal
7791 (Assoc_Entity : Entity_Id;
7792 Typ : Entity_Id;
7793 Scope : Entity_Id;
7794 Suffix : String) return Entity_Id;
7795 -- Add an extra formal to the current list of formals and extra formals.
7796 -- The extra formal is added to the end of the list of extra formals,
7797 -- and also returned as the result. These formals are always of mode IN.
7798 -- The new formal has the type Typ, is declared in Scope, and its name
7799 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7800 -- The following suffixes are currently used. They should not be changed
7801 -- without coordinating with CodePeer, which makes use of these to
7802 -- provide better messages.
7804 -- O denotes the Constrained bit.
7805 -- L denotes the accessibility level.
7806 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7807 -- the full list in exp_ch6.BIP_Formal_Kind.
7809 ----------------------
7810 -- Add_Extra_Formal --
7811 ----------------------
7813 function Add_Extra_Formal
7814 (Assoc_Entity : Entity_Id;
7815 Typ : Entity_Id;
7816 Scope : Entity_Id;
7817 Suffix : String) return Entity_Id
7819 EF : constant Entity_Id :=
7820 Make_Defining_Identifier (Sloc (Assoc_Entity),
7821 Chars => New_External_Name (Chars (Assoc_Entity),
7822 Suffix => Suffix));
7824 begin
7825 -- A little optimization. Never generate an extra formal for the
7826 -- _init operand of an initialization procedure, since it could
7827 -- never be used.
7829 if Chars (Formal) = Name_uInit then
7830 return Empty;
7831 end if;
7833 Set_Ekind (EF, E_In_Parameter);
7834 Set_Actual_Subtype (EF, Typ);
7835 Set_Etype (EF, Typ);
7836 Set_Scope (EF, Scope);
7837 Set_Mechanism (EF, Default_Mechanism);
7838 Set_Formal_Validity (EF);
7840 if No (First_Extra) then
7841 First_Extra := EF;
7842 Set_Extra_Formals (Scope, First_Extra);
7843 end if;
7845 if Present (Last_Extra) then
7846 Set_Extra_Formal (Last_Extra, EF);
7847 end if;
7849 Last_Extra := EF;
7851 return EF;
7852 end Add_Extra_Formal;
7854 -- Start of processing for Create_Extra_Formals
7856 begin
7857 -- We never generate extra formals if expansion is not active because we
7858 -- don't need them unless we are generating code.
7860 if not Expander_Active then
7861 return;
7862 end if;
7864 -- No need to generate extra formals in interface thunks whose target
7865 -- primitive has no extra formals.
7867 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7868 return;
7869 end if;
7871 -- If this is a derived subprogram then the subtypes of the parent
7872 -- subprogram's formal parameters will be used to determine the need
7873 -- for extra formals.
7875 if Is_Overloadable (E) and then Present (Alias (E)) then
7876 P_Formal := First_Formal (Alias (E));
7877 end if;
7879 Last_Extra := Empty;
7880 Formal := First_Formal (E);
7881 while Present (Formal) loop
7882 Last_Extra := Formal;
7883 Next_Formal (Formal);
7884 end loop;
7886 -- If Extra_formals were already created, don't do it again. This
7887 -- situation may arise for subprogram types created as part of
7888 -- dispatching calls (see Expand_Dispatching_Call)
7890 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7891 return;
7892 end if;
7894 -- If the subprogram is a predefined dispatching subprogram then don't
7895 -- generate any extra constrained or accessibility level formals. In
7896 -- general we suppress these for internal subprograms (by not calling
7897 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7898 -- generated stream attributes do get passed through because extra
7899 -- build-in-place formals are needed in some cases (limited 'Input).
7901 if Is_Predefined_Internal_Operation (E) then
7902 goto Test_For_Func_Result_Extras;
7903 end if;
7905 Formal := First_Formal (E);
7906 while Present (Formal) loop
7908 -- Create extra formal for supporting the attribute 'Constrained.
7909 -- The case of a private type view without discriminants also
7910 -- requires the extra formal if the underlying type has defaulted
7911 -- discriminants.
7913 if Ekind (Formal) /= E_In_Parameter then
7914 if Present (P_Formal) then
7915 Formal_Type := Etype (P_Formal);
7916 else
7917 Formal_Type := Etype (Formal);
7918 end if;
7920 -- Do not produce extra formals for Unchecked_Union parameters.
7921 -- Jump directly to the end of the loop.
7923 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7924 goto Skip_Extra_Formal_Generation;
7925 end if;
7927 if not Has_Discriminants (Formal_Type)
7928 and then Ekind (Formal_Type) in Private_Kind
7929 and then Present (Underlying_Type (Formal_Type))
7930 then
7931 Formal_Type := Underlying_Type (Formal_Type);
7932 end if;
7934 -- Suppress the extra formal if formal's subtype is constrained or
7935 -- indefinite, or we're compiling for Ada 2012 and the underlying
7936 -- type is tagged and limited. In Ada 2012, a limited tagged type
7937 -- can have defaulted discriminants, but 'Constrained is required
7938 -- to return True, so the formal is never needed (see AI05-0214).
7939 -- Note that this ensures consistency of calling sequences for
7940 -- dispatching operations when some types in a class have defaults
7941 -- on discriminants and others do not (and requiring the extra
7942 -- formal would introduce distributed overhead).
7944 -- If the type does not have a completion yet, treat as prior to
7945 -- Ada 2012 for consistency.
7947 if Has_Discriminants (Formal_Type)
7948 and then not Is_Constrained (Formal_Type)
7949 and then not Is_Indefinite_Subtype (Formal_Type)
7950 and then (Ada_Version < Ada_2012
7951 or else No (Underlying_Type (Formal_Type))
7952 or else not
7953 (Is_Limited_Type (Formal_Type)
7954 and then
7955 (Is_Tagged_Type
7956 (Underlying_Type (Formal_Type)))))
7957 then
7958 Set_Extra_Constrained
7959 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7960 end if;
7961 end if;
7963 -- Create extra formal for supporting accessibility checking. This
7964 -- is done for both anonymous access formals and formals of named
7965 -- access types that are marked as controlling formals. The latter
7966 -- case can occur when Expand_Dispatching_Call creates a subprogram
7967 -- type and substitutes the types of access-to-class-wide actuals
7968 -- for the anonymous access-to-specific-type of controlling formals.
7969 -- Base_Type is applied because in cases where there is a null
7970 -- exclusion the formal may have an access subtype.
7972 -- This is suppressed if we specifically suppress accessibility
7973 -- checks at the package level for either the subprogram, or the
7974 -- package in which it resides. However, we do not suppress it
7975 -- simply if the scope has accessibility checks suppressed, since
7976 -- this could cause trouble when clients are compiled with a
7977 -- different suppression setting. The explicit checks at the
7978 -- package level are safe from this point of view.
7980 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
7981 or else (Is_Controlling_Formal (Formal)
7982 and then Is_Access_Type (Base_Type (Etype (Formal)))))
7983 and then not
7984 (Explicit_Suppress (E, Accessibility_Check)
7985 or else
7986 Explicit_Suppress (Scope (E), Accessibility_Check))
7987 and then
7988 (No (P_Formal)
7989 or else Present (Extra_Accessibility (P_Formal)))
7990 then
7991 Set_Extra_Accessibility
7992 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
7993 end if;
7995 -- This label is required when skipping extra formal generation for
7996 -- Unchecked_Union parameters.
7998 <<Skip_Extra_Formal_Generation>>
8000 if Present (P_Formal) then
8001 Next_Formal (P_Formal);
8002 end if;
8004 Next_Formal (Formal);
8005 end loop;
8007 <<Test_For_Func_Result_Extras>>
8009 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8010 -- function call is ... determined by the point of call ...".
8012 if Needs_Result_Accessibility_Level (E) then
8013 Set_Extra_Accessibility_Of_Result
8014 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8015 end if;
8017 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8018 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8020 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
8021 declare
8022 Result_Subt : constant Entity_Id := Etype (E);
8023 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8024 Formal_Typ : Entity_Id;
8026 Discard : Entity_Id;
8027 pragma Warnings (Off, Discard);
8029 begin
8030 -- In the case of functions with unconstrained result subtypes,
8031 -- add a 4-state formal indicating whether the return object is
8032 -- allocated by the caller (1), or should be allocated by the
8033 -- callee on the secondary stack (2), in the global heap (3), or
8034 -- in a user-defined storage pool (4). For the moment we just use
8035 -- Natural for the type of this formal. Note that this formal
8036 -- isn't usually needed in the case where the result subtype is
8037 -- constrained, but it is needed when the function has a tagged
8038 -- result, because generally such functions can be called in a
8039 -- dispatching context and such calls must be handled like calls
8040 -- to a class-wide function.
8042 if Needs_BIP_Alloc_Form (E) then
8043 Discard :=
8044 Add_Extra_Formal
8045 (E, Standard_Natural,
8046 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8048 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8049 -- use a user-defined pool. This formal is not added on
8050 -- .NET/JVM/ZFP as those targets do not support pools.
8052 if VM_Target = No_VM
8053 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
8054 then
8055 Discard :=
8056 Add_Extra_Formal
8057 (E, RTE (RE_Root_Storage_Pool_Ptr),
8058 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8059 end if;
8060 end if;
8062 -- In the case of functions whose result type needs finalization,
8063 -- add an extra formal which represents the finalization master.
8065 if Needs_BIP_Finalization_Master (E) then
8066 Discard :=
8067 Add_Extra_Formal
8068 (E, RTE (RE_Finalization_Master_Ptr),
8069 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8070 end if;
8072 -- When the result type contains tasks, add two extra formals: the
8073 -- master of the tasks to be created, and the caller's activation
8074 -- chain.
8076 if Has_Task (Full_Subt) then
8077 Discard :=
8078 Add_Extra_Formal
8079 (E, RTE (RE_Master_Id),
8080 E, BIP_Formal_Suffix (BIP_Task_Master));
8081 Discard :=
8082 Add_Extra_Formal
8083 (E, RTE (RE_Activation_Chain_Access),
8084 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8085 end if;
8087 -- All build-in-place functions get an extra formal that will be
8088 -- passed the address of the return object within the caller.
8090 Formal_Typ :=
8091 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8093 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
8094 Set_Etype (Formal_Typ, Formal_Typ);
8095 Set_Depends_On_Private
8096 (Formal_Typ, Has_Private_Component (Formal_Typ));
8097 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8098 Set_Is_Access_Constant (Formal_Typ, False);
8100 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8101 -- the designated type comes from the limited view (for back-end
8102 -- purposes).
8104 Set_From_With_Type (Formal_Typ, From_With_Type (Result_Subt));
8106 Layout_Type (Formal_Typ);
8108 Discard :=
8109 Add_Extra_Formal
8110 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8111 end;
8112 end if;
8113 end Create_Extra_Formals;
8115 -----------------------------
8116 -- Enter_Overloaded_Entity --
8117 -----------------------------
8119 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8120 E : Entity_Id := Current_Entity_In_Scope (S);
8121 C_E : Entity_Id := Current_Entity (S);
8123 begin
8124 if Present (E) then
8125 Set_Has_Homonym (E);
8126 Set_Has_Homonym (S);
8127 end if;
8129 Set_Is_Immediately_Visible (S);
8130 Set_Scope (S, Current_Scope);
8132 -- Chain new entity if front of homonym in current scope, so that
8133 -- homonyms are contiguous.
8135 if Present (E) and then E /= C_E then
8136 while Homonym (C_E) /= E loop
8137 C_E := Homonym (C_E);
8138 end loop;
8140 Set_Homonym (C_E, S);
8142 else
8143 E := C_E;
8144 Set_Current_Entity (S);
8145 end if;
8147 Set_Homonym (S, E);
8149 if Is_Inherited_Operation (S) then
8150 Append_Inherited_Subprogram (S);
8151 else
8152 Append_Entity (S, Current_Scope);
8153 end if;
8155 Set_Public_Status (S);
8157 if Debug_Flag_E then
8158 Write_Str ("New overloaded entity chain: ");
8159 Write_Name (Chars (S));
8161 E := S;
8162 while Present (E) loop
8163 Write_Str (" "); Write_Int (Int (E));
8164 E := Homonym (E);
8165 end loop;
8167 Write_Eol;
8168 end if;
8170 -- Generate warning for hiding
8172 if Warn_On_Hiding
8173 and then Comes_From_Source (S)
8174 and then In_Extended_Main_Source_Unit (S)
8175 then
8176 E := S;
8177 loop
8178 E := Homonym (E);
8179 exit when No (E);
8181 -- Warn unless genuine overloading. Do not emit warning on
8182 -- hiding predefined operators in Standard (these are either an
8183 -- (artifact of our implicit declarations, or simple noise) but
8184 -- keep warning on a operator defined on a local subtype, because
8185 -- of the real danger that different operators may be applied in
8186 -- various parts of the program.
8188 -- Note that if E and S have the same scope, there is never any
8189 -- hiding. Either the two conflict, and the program is illegal,
8190 -- or S is overriding an implicit inherited subprogram.
8192 if Scope (E) /= Scope (S)
8193 and then (not Is_Overloadable (E)
8194 or else Subtype_Conformant (E, S))
8195 and then (Is_Immediately_Visible (E)
8196 or else
8197 Is_Potentially_Use_Visible (S))
8198 then
8199 if Scope (E) /= Standard_Standard then
8200 Error_Msg_Sloc := Sloc (E);
8201 Error_Msg_N ("declaration of & hides one#?h?", S);
8203 elsif Nkind (S) = N_Defining_Operator_Symbol
8204 and then
8205 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
8206 then
8207 Error_Msg_N
8208 ("declaration of & hides predefined operator?h?", S);
8209 end if;
8210 end if;
8211 end loop;
8212 end if;
8213 end Enter_Overloaded_Entity;
8215 -----------------------------
8216 -- Check_Untagged_Equality --
8217 -----------------------------
8219 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8220 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8221 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8222 Obj_Decl : Node_Id;
8224 begin
8225 if Nkind (Decl) = N_Subprogram_Declaration
8226 and then Is_Record_Type (Typ)
8227 and then not Is_Tagged_Type (Typ)
8228 then
8229 -- If the type is not declared in a package, or if we are in the
8230 -- body of the package or in some other scope, the new operation is
8231 -- not primitive, and therefore legal, though suspicious. If the
8232 -- type is a generic actual (sub)type, the operation is not primitive
8233 -- either because the base type is declared elsewhere.
8235 if Is_Frozen (Typ) then
8236 if Ekind (Scope (Typ)) /= E_Package
8237 or else Scope (Typ) /= Current_Scope
8238 then
8239 null;
8241 elsif Is_Generic_Actual_Type (Typ) then
8242 null;
8244 elsif In_Package_Body (Scope (Typ)) then
8245 Error_Msg_NE
8246 ("equality operator must be declared "
8247 & "before type& is frozen", Eq_Op, Typ);
8248 Error_Msg_N
8249 ("\move declaration to package spec", Eq_Op);
8251 else
8252 Error_Msg_NE
8253 ("equality operator must be declared "
8254 & "before type& is frozen", Eq_Op, Typ);
8256 Obj_Decl := Next (Parent (Typ));
8257 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8258 if Nkind (Obj_Decl) = N_Object_Declaration
8259 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8260 then
8261 Error_Msg_NE
8262 ("type& is frozen by declaration??", Obj_Decl, Typ);
8263 Error_Msg_N
8264 ("\an equality operator cannot be declared after this "
8265 & "point (RM 4.5.2 (9.8)) (Ada 2012))??", Obj_Decl);
8266 exit;
8267 end if;
8269 Next (Obj_Decl);
8270 end loop;
8271 end if;
8273 elsif not In_Same_List (Parent (Typ), Decl)
8274 and then not Is_Limited_Type (Typ)
8275 then
8277 -- This makes it illegal to have a primitive equality declared in
8278 -- the private part if the type is visible.
8280 Error_Msg_N ("equality operator appears too late", Eq_Op);
8281 end if;
8282 end if;
8283 end Check_Untagged_Equality;
8285 -----------------------------
8286 -- Find_Corresponding_Spec --
8287 -----------------------------
8289 function Find_Corresponding_Spec
8290 (N : Node_Id;
8291 Post_Error : Boolean := True) return Entity_Id
8293 Spec : constant Node_Id := Specification (N);
8294 Designator : constant Entity_Id := Defining_Entity (Spec);
8296 E : Entity_Id;
8298 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8299 -- Even if fully conformant, a body may depend on a generic actual when
8300 -- the spec does not, or vice versa, in which case they were distinct
8301 -- entities in the generic.
8303 -------------------------------
8304 -- Different_Generic_Profile --
8305 -------------------------------
8307 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8308 F1, F2 : Entity_Id;
8310 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8311 -- Check that the types of corresponding formals have the same
8312 -- generic actual if any. We have to account for subtypes of a
8313 -- generic formal, declared between a spec and a body, which may
8314 -- appear distinct in an instance but matched in the generic.
8316 -------------------------
8317 -- Same_Generic_Actual --
8318 -------------------------
8320 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8321 begin
8322 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8323 or else
8324 (Present (Parent (T1))
8325 and then Comes_From_Source (Parent (T1))
8326 and then Nkind (Parent (T1)) = N_Subtype_Declaration
8327 and then Is_Entity_Name (Subtype_Indication (Parent (T1)))
8328 and then Entity (Subtype_Indication (Parent (T1))) = T2);
8329 end Same_Generic_Actual;
8331 -- Start of processing for Different_Generic_Profile
8333 begin
8334 if not In_Instance then
8335 return False;
8337 elsif Ekind (E) = E_Function
8338 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8339 then
8340 return True;
8341 end if;
8343 F1 := First_Formal (Designator);
8344 F2 := First_Formal (E);
8345 while Present (F1) loop
8346 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8347 return True;
8348 end if;
8350 Next_Formal (F1);
8351 Next_Formal (F2);
8352 end loop;
8354 return False;
8355 end Different_Generic_Profile;
8357 -- Start of processing for Find_Corresponding_Spec
8359 begin
8360 E := Current_Entity (Designator);
8361 while Present (E) loop
8363 -- We are looking for a matching spec. It must have the same scope,
8364 -- and the same name, and either be type conformant, or be the case
8365 -- of a library procedure spec and its body (which belong to one
8366 -- another regardless of whether they are type conformant or not).
8368 if Scope (E) = Current_Scope then
8369 if Current_Scope = Standard_Standard
8370 or else (Ekind (E) = Ekind (Designator)
8371 and then Type_Conformant (E, Designator))
8372 then
8373 -- Within an instantiation, we know that spec and body are
8374 -- subtype conformant, because they were subtype conformant in
8375 -- the generic. We choose the subtype-conformant entity here as
8376 -- well, to resolve spurious ambiguities in the instance that
8377 -- were not present in the generic (i.e. when two different
8378 -- types are given the same actual). If we are looking for a
8379 -- spec to match a body, full conformance is expected.
8381 if In_Instance then
8382 Set_Convention (Designator, Convention (E));
8384 -- Skip past subprogram bodies and subprogram renamings that
8385 -- may appear to have a matching spec, but that aren't fully
8386 -- conformant with it. That can occur in cases where an
8387 -- actual type causes unrelated homographs in the instance.
8389 if Nkind_In (N, N_Subprogram_Body,
8390 N_Subprogram_Renaming_Declaration)
8391 and then Present (Homonym (E))
8392 and then not Fully_Conformant (Designator, E)
8393 then
8394 goto Next_Entity;
8396 elsif not Subtype_Conformant (Designator, E) then
8397 goto Next_Entity;
8399 elsif Different_Generic_Profile (E) then
8400 goto Next_Entity;
8401 end if;
8402 end if;
8404 -- Ada 2012 (AI05-0165): For internally generated bodies of
8405 -- null procedures locate the internally generated spec. We
8406 -- enforce mode conformance since a tagged type may inherit
8407 -- from interfaces several null primitives which differ only
8408 -- in the mode of the formals.
8410 if not (Comes_From_Source (E))
8411 and then Is_Null_Procedure (E)
8412 and then not Mode_Conformant (Designator, E)
8413 then
8414 null;
8416 -- For null procedures coming from source that are completions,
8417 -- analysis of the generated body will establish the link.
8419 elsif Comes_From_Source (E)
8420 and then Nkind (Spec) = N_Procedure_Specification
8421 and then Null_Present (Spec)
8422 then
8423 return E;
8425 elsif not Has_Completion (E) then
8426 if Nkind (N) /= N_Subprogram_Body_Stub then
8427 Set_Corresponding_Spec (N, E);
8428 end if;
8430 Set_Has_Completion (E);
8431 return E;
8433 elsif Nkind (Parent (N)) = N_Subunit then
8435 -- If this is the proper body of a subunit, the completion
8436 -- flag is set when analyzing the stub.
8438 return E;
8440 -- If E is an internal function with a controlling result that
8441 -- was created for an operation inherited by a null extension,
8442 -- it may be overridden by a body without a previous spec (one
8443 -- more reason why these should be shunned). In that case we
8444 -- remove the generated body if present, because the current
8445 -- one is the explicit overriding.
8447 elsif Ekind (E) = E_Function
8448 and then Ada_Version >= Ada_2005
8449 and then not Comes_From_Source (E)
8450 and then Has_Controlling_Result (E)
8451 and then Is_Null_Extension (Etype (E))
8452 and then Comes_From_Source (Spec)
8453 then
8454 Set_Has_Completion (E, False);
8456 if Expander_Active
8457 and then Nkind (Parent (E)) = N_Function_Specification
8458 then
8459 Remove
8460 (Unit_Declaration_Node
8461 (Corresponding_Body (Unit_Declaration_Node (E))));
8463 return E;
8465 -- If expansion is disabled, or if the wrapper function has
8466 -- not been generated yet, this a late body overriding an
8467 -- inherited operation, or it is an overriding by some other
8468 -- declaration before the controlling result is frozen. In
8469 -- either case this is a declaration of a new entity.
8471 else
8472 return Empty;
8473 end if;
8475 -- If the body already exists, then this is an error unless
8476 -- the previous declaration is the implicit declaration of a
8477 -- derived subprogram. It is also legal for an instance to
8478 -- contain type conformant overloadable declarations (but the
8479 -- generic declaration may not), per 8.3(26/2).
8481 elsif No (Alias (E))
8482 and then not Is_Intrinsic_Subprogram (E)
8483 and then not In_Instance
8484 and then Post_Error
8485 then
8486 Error_Msg_Sloc := Sloc (E);
8488 if Is_Imported (E) then
8489 Error_Msg_NE
8490 ("body not allowed for imported subprogram & declared#",
8491 N, E);
8492 else
8493 Error_Msg_NE ("duplicate body for & declared#", N, E);
8494 end if;
8495 end if;
8497 -- Child units cannot be overloaded, so a conformance mismatch
8498 -- between body and a previous spec is an error.
8500 elsif Is_Child_Unit (E)
8501 and then
8502 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8503 and then
8504 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8505 N_Compilation_Unit
8506 and then Post_Error
8507 then
8508 Error_Msg_N
8509 ("body of child unit does not match previous declaration", N);
8510 end if;
8511 end if;
8513 <<Next_Entity>>
8514 E := Homonym (E);
8515 end loop;
8517 -- On exit, we know that no previous declaration of subprogram exists
8519 return Empty;
8520 end Find_Corresponding_Spec;
8522 ----------------------
8523 -- Fully_Conformant --
8524 ----------------------
8526 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8527 Result : Boolean;
8528 begin
8529 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8530 return Result;
8531 end Fully_Conformant;
8533 ----------------------------------
8534 -- Fully_Conformant_Expressions --
8535 ----------------------------------
8537 function Fully_Conformant_Expressions
8538 (Given_E1 : Node_Id;
8539 Given_E2 : Node_Id) return Boolean
8541 E1 : constant Node_Id := Original_Node (Given_E1);
8542 E2 : constant Node_Id := Original_Node (Given_E2);
8543 -- We always test conformance on original nodes, since it is possible
8544 -- for analysis and/or expansion to make things look as though they
8545 -- conform when they do not, e.g. by converting 1+2 into 3.
8547 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8548 renames Fully_Conformant_Expressions;
8550 function FCL (L1, L2 : List_Id) return Boolean;
8551 -- Compare elements of two lists for conformance. Elements have to be
8552 -- conformant, and actuals inserted as default parameters do not match
8553 -- explicit actuals with the same value.
8555 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8556 -- Compare an operator node with a function call
8558 ---------
8559 -- FCL --
8560 ---------
8562 function FCL (L1, L2 : List_Id) return Boolean is
8563 N1, N2 : Node_Id;
8565 begin
8566 if L1 = No_List then
8567 N1 := Empty;
8568 else
8569 N1 := First (L1);
8570 end if;
8572 if L2 = No_List then
8573 N2 := Empty;
8574 else
8575 N2 := First (L2);
8576 end if;
8578 -- Compare two lists, skipping rewrite insertions (we want to compare
8579 -- the original trees, not the expanded versions!)
8581 loop
8582 if Is_Rewrite_Insertion (N1) then
8583 Next (N1);
8584 elsif Is_Rewrite_Insertion (N2) then
8585 Next (N2);
8586 elsif No (N1) then
8587 return No (N2);
8588 elsif No (N2) then
8589 return False;
8590 elsif not FCE (N1, N2) then
8591 return False;
8592 else
8593 Next (N1);
8594 Next (N2);
8595 end if;
8596 end loop;
8597 end FCL;
8599 ---------
8600 -- FCO --
8601 ---------
8603 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8604 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8605 Act : Node_Id;
8607 begin
8608 if No (Actuals)
8609 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8610 then
8611 return False;
8613 else
8614 Act := First (Actuals);
8616 if Nkind (Op_Node) in N_Binary_Op then
8617 if not FCE (Left_Opnd (Op_Node), Act) then
8618 return False;
8619 end if;
8621 Next (Act);
8622 end if;
8624 return Present (Act)
8625 and then FCE (Right_Opnd (Op_Node), Act)
8626 and then No (Next (Act));
8627 end if;
8628 end FCO;
8630 -- Start of processing for Fully_Conformant_Expressions
8632 begin
8633 -- Non-conformant if paren count does not match. Note: if some idiot
8634 -- complains that we don't do this right for more than 3 levels of
8635 -- parentheses, they will be treated with the respect they deserve!
8637 if Paren_Count (E1) /= Paren_Count (E2) then
8638 return False;
8640 -- If same entities are referenced, then they are conformant even if
8641 -- they have different forms (RM 8.3.1(19-20)).
8643 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8644 if Present (Entity (E1)) then
8645 return Entity (E1) = Entity (E2)
8646 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8647 and then Ekind (Entity (E1)) = E_Discriminant
8648 and then Ekind (Entity (E2)) = E_In_Parameter);
8650 elsif Nkind (E1) = N_Expanded_Name
8651 and then Nkind (E2) = N_Expanded_Name
8652 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8653 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8654 then
8655 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8657 else
8658 -- Identifiers in component associations don't always have
8659 -- entities, but their names must conform.
8661 return Nkind (E1) = N_Identifier
8662 and then Nkind (E2) = N_Identifier
8663 and then Chars (E1) = Chars (E2);
8664 end if;
8666 elsif Nkind (E1) = N_Character_Literal
8667 and then Nkind (E2) = N_Expanded_Name
8668 then
8669 return Nkind (Selector_Name (E2)) = N_Character_Literal
8670 and then Chars (E1) = Chars (Selector_Name (E2));
8672 elsif Nkind (E2) = N_Character_Literal
8673 and then Nkind (E1) = N_Expanded_Name
8674 then
8675 return Nkind (Selector_Name (E1)) = N_Character_Literal
8676 and then Chars (E2) = Chars (Selector_Name (E1));
8678 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8679 return FCO (E1, E2);
8681 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8682 return FCO (E2, E1);
8684 -- Otherwise we must have the same syntactic entity
8686 elsif Nkind (E1) /= Nkind (E2) then
8687 return False;
8689 -- At this point, we specialize by node type
8691 else
8692 case Nkind (E1) is
8694 when N_Aggregate =>
8695 return
8696 FCL (Expressions (E1), Expressions (E2))
8697 and then
8698 FCL (Component_Associations (E1),
8699 Component_Associations (E2));
8701 when N_Allocator =>
8702 if Nkind (Expression (E1)) = N_Qualified_Expression
8703 or else
8704 Nkind (Expression (E2)) = N_Qualified_Expression
8705 then
8706 return FCE (Expression (E1), Expression (E2));
8708 -- Check that the subtype marks and any constraints
8709 -- are conformant
8711 else
8712 declare
8713 Indic1 : constant Node_Id := Expression (E1);
8714 Indic2 : constant Node_Id := Expression (E2);
8715 Elt1 : Node_Id;
8716 Elt2 : Node_Id;
8718 begin
8719 if Nkind (Indic1) /= N_Subtype_Indication then
8720 return
8721 Nkind (Indic2) /= N_Subtype_Indication
8722 and then Entity (Indic1) = Entity (Indic2);
8724 elsif Nkind (Indic2) /= N_Subtype_Indication then
8725 return
8726 Nkind (Indic1) /= N_Subtype_Indication
8727 and then Entity (Indic1) = Entity (Indic2);
8729 else
8730 if Entity (Subtype_Mark (Indic1)) /=
8731 Entity (Subtype_Mark (Indic2))
8732 then
8733 return False;
8734 end if;
8736 Elt1 := First (Constraints (Constraint (Indic1)));
8737 Elt2 := First (Constraints (Constraint (Indic2)));
8738 while Present (Elt1) and then Present (Elt2) loop
8739 if not FCE (Elt1, Elt2) then
8740 return False;
8741 end if;
8743 Next (Elt1);
8744 Next (Elt2);
8745 end loop;
8747 return True;
8748 end if;
8749 end;
8750 end if;
8752 when N_Attribute_Reference =>
8753 return
8754 Attribute_Name (E1) = Attribute_Name (E2)
8755 and then FCL (Expressions (E1), Expressions (E2));
8757 when N_Binary_Op =>
8758 return
8759 Entity (E1) = Entity (E2)
8760 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
8761 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
8763 when N_Short_Circuit | N_Membership_Test =>
8764 return
8765 FCE (Left_Opnd (E1), Left_Opnd (E2))
8766 and then
8767 FCE (Right_Opnd (E1), Right_Opnd (E2));
8769 when N_Case_Expression =>
8770 declare
8771 Alt1 : Node_Id;
8772 Alt2 : Node_Id;
8774 begin
8775 if not FCE (Expression (E1), Expression (E2)) then
8776 return False;
8778 else
8779 Alt1 := First (Alternatives (E1));
8780 Alt2 := First (Alternatives (E2));
8781 loop
8782 if Present (Alt1) /= Present (Alt2) then
8783 return False;
8784 elsif No (Alt1) then
8785 return True;
8786 end if;
8788 if not FCE (Expression (Alt1), Expression (Alt2))
8789 or else not FCL (Discrete_Choices (Alt1),
8790 Discrete_Choices (Alt2))
8791 then
8792 return False;
8793 end if;
8795 Next (Alt1);
8796 Next (Alt2);
8797 end loop;
8798 end if;
8799 end;
8801 when N_Character_Literal =>
8802 return
8803 Char_Literal_Value (E1) = Char_Literal_Value (E2);
8805 when N_Component_Association =>
8806 return
8807 FCL (Choices (E1), Choices (E2))
8808 and then
8809 FCE (Expression (E1), Expression (E2));
8811 when N_Explicit_Dereference =>
8812 return
8813 FCE (Prefix (E1), Prefix (E2));
8815 when N_Extension_Aggregate =>
8816 return
8817 FCL (Expressions (E1), Expressions (E2))
8818 and then Null_Record_Present (E1) =
8819 Null_Record_Present (E2)
8820 and then FCL (Component_Associations (E1),
8821 Component_Associations (E2));
8823 when N_Function_Call =>
8824 return
8825 FCE (Name (E1), Name (E2))
8826 and then
8827 FCL (Parameter_Associations (E1),
8828 Parameter_Associations (E2));
8830 when N_If_Expression =>
8831 return
8832 FCL (Expressions (E1), Expressions (E2));
8834 when N_Indexed_Component =>
8835 return
8836 FCE (Prefix (E1), Prefix (E2))
8837 and then
8838 FCL (Expressions (E1), Expressions (E2));
8840 when N_Integer_Literal =>
8841 return (Intval (E1) = Intval (E2));
8843 when N_Null =>
8844 return True;
8846 when N_Operator_Symbol =>
8847 return
8848 Chars (E1) = Chars (E2);
8850 when N_Others_Choice =>
8851 return True;
8853 when N_Parameter_Association =>
8854 return
8855 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
8856 and then FCE (Explicit_Actual_Parameter (E1),
8857 Explicit_Actual_Parameter (E2));
8859 when N_Qualified_Expression =>
8860 return
8861 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8862 and then
8863 FCE (Expression (E1), Expression (E2));
8865 when N_Quantified_Expression =>
8866 if not FCE (Condition (E1), Condition (E2)) then
8867 return False;
8868 end if;
8870 if Present (Loop_Parameter_Specification (E1))
8871 and then Present (Loop_Parameter_Specification (E2))
8872 then
8873 declare
8874 L1 : constant Node_Id :=
8875 Loop_Parameter_Specification (E1);
8876 L2 : constant Node_Id :=
8877 Loop_Parameter_Specification (E2);
8879 begin
8880 return
8881 Reverse_Present (L1) = Reverse_Present (L2)
8882 and then
8883 FCE (Defining_Identifier (L1),
8884 Defining_Identifier (L2))
8885 and then
8886 FCE (Discrete_Subtype_Definition (L1),
8887 Discrete_Subtype_Definition (L2));
8888 end;
8890 elsif Present (Iterator_Specification (E1))
8891 and then Present (Iterator_Specification (E2))
8892 then
8893 declare
8894 I1 : constant Node_Id := Iterator_Specification (E1);
8895 I2 : constant Node_Id := Iterator_Specification (E2);
8897 begin
8898 return
8899 FCE (Defining_Identifier (I1),
8900 Defining_Identifier (I2))
8901 and then
8902 Of_Present (I1) = Of_Present (I2)
8903 and then
8904 Reverse_Present (I1) = Reverse_Present (I2)
8905 and then FCE (Name (I1), Name (I2))
8906 and then FCE (Subtype_Indication (I1),
8907 Subtype_Indication (I2));
8908 end;
8910 -- The quantified expressions used different specifications to
8911 -- walk their respective ranges.
8913 else
8914 return False;
8915 end if;
8917 when N_Range =>
8918 return
8919 FCE (Low_Bound (E1), Low_Bound (E2))
8920 and then
8921 FCE (High_Bound (E1), High_Bound (E2));
8923 when N_Real_Literal =>
8924 return (Realval (E1) = Realval (E2));
8926 when N_Selected_Component =>
8927 return
8928 FCE (Prefix (E1), Prefix (E2))
8929 and then
8930 FCE (Selector_Name (E1), Selector_Name (E2));
8932 when N_Slice =>
8933 return
8934 FCE (Prefix (E1), Prefix (E2))
8935 and then
8936 FCE (Discrete_Range (E1), Discrete_Range (E2));
8938 when N_String_Literal =>
8939 declare
8940 S1 : constant String_Id := Strval (E1);
8941 S2 : constant String_Id := Strval (E2);
8942 L1 : constant Nat := String_Length (S1);
8943 L2 : constant Nat := String_Length (S2);
8945 begin
8946 if L1 /= L2 then
8947 return False;
8949 else
8950 for J in 1 .. L1 loop
8951 if Get_String_Char (S1, J) /=
8952 Get_String_Char (S2, J)
8953 then
8954 return False;
8955 end if;
8956 end loop;
8958 return True;
8959 end if;
8960 end;
8962 when N_Type_Conversion =>
8963 return
8964 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8965 and then
8966 FCE (Expression (E1), Expression (E2));
8968 when N_Unary_Op =>
8969 return
8970 Entity (E1) = Entity (E2)
8971 and then
8972 FCE (Right_Opnd (E1), Right_Opnd (E2));
8974 when N_Unchecked_Type_Conversion =>
8975 return
8976 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8977 and then
8978 FCE (Expression (E1), Expression (E2));
8980 -- All other node types cannot appear in this context. Strictly
8981 -- we should raise a fatal internal error. Instead we just ignore
8982 -- the nodes. This means that if anyone makes a mistake in the
8983 -- expander and mucks an expression tree irretrievably, the result
8984 -- will be a failure to detect a (probably very obscure) case
8985 -- of non-conformance, which is better than bombing on some
8986 -- case where two expressions do in fact conform.
8988 when others =>
8989 return True;
8991 end case;
8992 end if;
8993 end Fully_Conformant_Expressions;
8995 ----------------------------------------
8996 -- Fully_Conformant_Discrete_Subtypes --
8997 ----------------------------------------
8999 function Fully_Conformant_Discrete_Subtypes
9000 (Given_S1 : Node_Id;
9001 Given_S2 : Node_Id) return Boolean
9003 S1 : constant Node_Id := Original_Node (Given_S1);
9004 S2 : constant Node_Id := Original_Node (Given_S2);
9006 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9007 -- Special-case for a bound given by a discriminant, which in the body
9008 -- is replaced with the discriminal of the enclosing type.
9010 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9011 -- Check both bounds
9013 -----------------------
9014 -- Conforming_Bounds --
9015 -----------------------
9017 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9018 begin
9019 if Is_Entity_Name (B1)
9020 and then Is_Entity_Name (B2)
9021 and then Ekind (Entity (B1)) = E_Discriminant
9022 then
9023 return Chars (B1) = Chars (B2);
9025 else
9026 return Fully_Conformant_Expressions (B1, B2);
9027 end if;
9028 end Conforming_Bounds;
9030 -----------------------
9031 -- Conforming_Ranges --
9032 -----------------------
9034 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9035 begin
9036 return
9037 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9038 and then
9039 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9040 end Conforming_Ranges;
9042 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9044 begin
9045 if Nkind (S1) /= Nkind (S2) then
9046 return False;
9048 elsif Is_Entity_Name (S1) then
9049 return Entity (S1) = Entity (S2);
9051 elsif Nkind (S1) = N_Range then
9052 return Conforming_Ranges (S1, S2);
9054 elsif Nkind (S1) = N_Subtype_Indication then
9055 return
9056 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9057 and then
9058 Conforming_Ranges
9059 (Range_Expression (Constraint (S1)),
9060 Range_Expression (Constraint (S2)));
9061 else
9062 return True;
9063 end if;
9064 end Fully_Conformant_Discrete_Subtypes;
9066 --------------------
9067 -- Install_Entity --
9068 --------------------
9070 procedure Install_Entity (E : Entity_Id) is
9071 Prev : constant Entity_Id := Current_Entity (E);
9072 begin
9073 Set_Is_Immediately_Visible (E);
9074 Set_Current_Entity (E);
9075 Set_Homonym (E, Prev);
9076 end Install_Entity;
9078 ---------------------
9079 -- Install_Formals --
9080 ---------------------
9082 procedure Install_Formals (Id : Entity_Id) is
9083 F : Entity_Id;
9084 begin
9085 F := First_Formal (Id);
9086 while Present (F) loop
9087 Install_Entity (F);
9088 Next_Formal (F);
9089 end loop;
9090 end Install_Formals;
9092 -----------------------------
9093 -- Is_Interface_Conformant --
9094 -----------------------------
9096 function Is_Interface_Conformant
9097 (Tagged_Type : Entity_Id;
9098 Iface_Prim : Entity_Id;
9099 Prim : Entity_Id) return Boolean
9101 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
9102 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9104 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9105 -- Return the controlling formal of Prim
9107 ------------------------
9108 -- Controlling_Formal --
9109 ------------------------
9111 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9112 E : Entity_Id := First_Entity (Prim);
9114 begin
9115 while Present (E) loop
9116 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9117 return E;
9118 end if;
9120 Next_Entity (E);
9121 end loop;
9123 return Empty;
9124 end Controlling_Formal;
9126 -- Local variables
9128 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9129 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9131 -- Start of processing for Is_Interface_Conformant
9133 begin
9134 pragma Assert (Is_Subprogram (Iface_Prim)
9135 and then Is_Subprogram (Prim)
9136 and then Is_Dispatching_Operation (Iface_Prim)
9137 and then Is_Dispatching_Operation (Prim));
9139 pragma Assert (Is_Interface (Iface)
9140 or else (Present (Alias (Iface_Prim))
9141 and then
9142 Is_Interface
9143 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9145 if Prim = Iface_Prim
9146 or else not Is_Subprogram (Prim)
9147 or else Ekind (Prim) /= Ekind (Iface_Prim)
9148 or else not Is_Dispatching_Operation (Prim)
9149 or else Scope (Prim) /= Scope (Tagged_Type)
9150 or else No (Typ)
9151 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9152 or else not Primitive_Names_Match (Iface_Prim, Prim)
9153 then
9154 return False;
9156 -- The mode of the controlling formals must match
9158 elsif Present (Iface_Ctrl_F)
9159 and then Present (Prim_Ctrl_F)
9160 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9161 then
9162 return False;
9164 -- Case of a procedure, or a function whose result type matches the
9165 -- result type of the interface primitive, or a function that has no
9166 -- controlling result (I or access I).
9168 elsif Ekind (Iface_Prim) = E_Procedure
9169 or else Etype (Prim) = Etype (Iface_Prim)
9170 or else not Has_Controlling_Result (Prim)
9171 then
9172 return Type_Conformant
9173 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9175 -- Case of a function returning an interface, or an access to one. Check
9176 -- that the return types correspond.
9178 elsif Implements_Interface (Typ, Iface) then
9179 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9181 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9182 then
9183 return False;
9184 else
9185 return
9186 Type_Conformant (Prim, Iface_Prim,
9187 Skip_Controlling_Formals => True);
9188 end if;
9190 else
9191 return False;
9192 end if;
9193 end Is_Interface_Conformant;
9195 ---------------------------------
9196 -- Is_Non_Overriding_Operation --
9197 ---------------------------------
9199 function Is_Non_Overriding_Operation
9200 (Prev_E : Entity_Id;
9201 New_E : Entity_Id) return Boolean
9203 Formal : Entity_Id;
9204 F_Typ : Entity_Id;
9205 G_Typ : Entity_Id := Empty;
9207 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9208 -- If F_Type is a derived type associated with a generic actual subtype,
9209 -- then return its Generic_Parent_Type attribute, else return Empty.
9211 function Types_Correspond
9212 (P_Type : Entity_Id;
9213 N_Type : Entity_Id) return Boolean;
9214 -- Returns true if and only if the types (or designated types in the
9215 -- case of anonymous access types) are the same or N_Type is derived
9216 -- directly or indirectly from P_Type.
9218 -----------------------------
9219 -- Get_Generic_Parent_Type --
9220 -----------------------------
9222 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9223 G_Typ : Entity_Id;
9224 Defn : Node_Id;
9225 Indic : Node_Id;
9227 begin
9228 if Is_Derived_Type (F_Typ)
9229 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9230 then
9231 -- The tree must be traversed to determine the parent subtype in
9232 -- the generic unit, which unfortunately isn't always available
9233 -- via semantic attributes. ??? (Note: The use of Original_Node
9234 -- is needed for cases where a full derived type has been
9235 -- rewritten.)
9237 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9238 if Nkind (Defn) = N_Derived_Type_Definition then
9239 Indic := Subtype_Indication (Defn);
9241 if Nkind (Indic) = N_Subtype_Indication then
9242 G_Typ := Entity (Subtype_Mark (Indic));
9243 else
9244 G_Typ := Entity (Indic);
9245 end if;
9247 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9248 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9249 then
9250 return Generic_Parent_Type (Parent (G_Typ));
9251 end if;
9252 end if;
9253 end if;
9255 return Empty;
9256 end Get_Generic_Parent_Type;
9258 ----------------------
9259 -- Types_Correspond --
9260 ----------------------
9262 function Types_Correspond
9263 (P_Type : Entity_Id;
9264 N_Type : Entity_Id) return Boolean
9266 Prev_Type : Entity_Id := Base_Type (P_Type);
9267 New_Type : Entity_Id := Base_Type (N_Type);
9269 begin
9270 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9271 Prev_Type := Designated_Type (Prev_Type);
9272 end if;
9274 if Ekind (New_Type) = E_Anonymous_Access_Type then
9275 New_Type := Designated_Type (New_Type);
9276 end if;
9278 if Prev_Type = New_Type then
9279 return True;
9281 elsif not Is_Class_Wide_Type (New_Type) then
9282 while Etype (New_Type) /= New_Type loop
9283 New_Type := Etype (New_Type);
9284 if New_Type = Prev_Type then
9285 return True;
9286 end if;
9287 end loop;
9288 end if;
9289 return False;
9290 end Types_Correspond;
9292 -- Start of processing for Is_Non_Overriding_Operation
9294 begin
9295 -- In the case where both operations are implicit derived subprograms
9296 -- then neither overrides the other. This can only occur in certain
9297 -- obscure cases (e.g., derivation from homographs created in a generic
9298 -- instantiation).
9300 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9301 return True;
9303 elsif Ekind (Current_Scope) = E_Package
9304 and then Is_Generic_Instance (Current_Scope)
9305 and then In_Private_Part (Current_Scope)
9306 and then Comes_From_Source (New_E)
9307 then
9308 -- We examine the formals and result type of the inherited operation,
9309 -- to determine whether their type is derived from (the instance of)
9310 -- a generic type. The first such formal or result type is the one
9311 -- tested.
9313 Formal := First_Formal (Prev_E);
9314 while Present (Formal) loop
9315 F_Typ := Base_Type (Etype (Formal));
9317 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9318 F_Typ := Designated_Type (F_Typ);
9319 end if;
9321 G_Typ := Get_Generic_Parent_Type (F_Typ);
9322 exit when Present (G_Typ);
9324 Next_Formal (Formal);
9325 end loop;
9327 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9328 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9329 end if;
9331 if No (G_Typ) then
9332 return False;
9333 end if;
9335 -- If the generic type is a private type, then the original operation
9336 -- was not overriding in the generic, because there was no primitive
9337 -- operation to override.
9339 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9340 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9341 N_Formal_Private_Type_Definition
9342 then
9343 return True;
9345 -- The generic parent type is the ancestor of a formal derived
9346 -- type declaration. We need to check whether it has a primitive
9347 -- operation that should be overridden by New_E in the generic.
9349 else
9350 declare
9351 P_Formal : Entity_Id;
9352 N_Formal : Entity_Id;
9353 P_Typ : Entity_Id;
9354 N_Typ : Entity_Id;
9355 P_Prim : Entity_Id;
9356 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9358 begin
9359 while Present (Prim_Elt) loop
9360 P_Prim := Node (Prim_Elt);
9362 if Chars (P_Prim) = Chars (New_E)
9363 and then Ekind (P_Prim) = Ekind (New_E)
9364 then
9365 P_Formal := First_Formal (P_Prim);
9366 N_Formal := First_Formal (New_E);
9367 while Present (P_Formal) and then Present (N_Formal) loop
9368 P_Typ := Etype (P_Formal);
9369 N_Typ := Etype (N_Formal);
9371 if not Types_Correspond (P_Typ, N_Typ) then
9372 exit;
9373 end if;
9375 Next_Entity (P_Formal);
9376 Next_Entity (N_Formal);
9377 end loop;
9379 -- Found a matching primitive operation belonging to the
9380 -- formal ancestor type, so the new subprogram is
9381 -- overriding.
9383 if No (P_Formal)
9384 and then No (N_Formal)
9385 and then (Ekind (New_E) /= E_Function
9386 or else
9387 Types_Correspond
9388 (Etype (P_Prim), Etype (New_E)))
9389 then
9390 return False;
9391 end if;
9392 end if;
9394 Next_Elmt (Prim_Elt);
9395 end loop;
9397 -- If no match found, then the new subprogram does not override
9398 -- in the generic (nor in the instance).
9400 -- If the type in question is not abstract, and the subprogram
9401 -- is, this will be an error if the new operation is in the
9402 -- private part of the instance. Emit a warning now, which will
9403 -- make the subsequent error message easier to understand.
9405 if not Is_Abstract_Type (F_Typ)
9406 and then Is_Abstract_Subprogram (Prev_E)
9407 and then In_Private_Part (Current_Scope)
9408 then
9409 Error_Msg_Node_2 := F_Typ;
9410 Error_Msg_NE
9411 ("private operation& in generic unit does not override " &
9412 "any primitive operation of& (RM 12.3 (18))??",
9413 New_E, New_E);
9414 end if;
9416 return True;
9417 end;
9418 end if;
9419 else
9420 return False;
9421 end if;
9422 end Is_Non_Overriding_Operation;
9424 -------------------------------------
9425 -- List_Inherited_Pre_Post_Aspects --
9426 -------------------------------------
9428 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9429 begin
9430 if Opt.List_Inherited_Aspects
9431 and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
9432 then
9433 declare
9434 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
9435 P : Node_Id;
9437 begin
9438 for J in Inherited'Range loop
9439 P := Pre_Post_Conditions (Contract (Inherited (J)));
9440 while Present (P) loop
9441 Error_Msg_Sloc := Sloc (P);
9443 if Class_Present (P) and then not Split_PPC (P) then
9444 if Pragma_Name (P) = Name_Precondition then
9445 Error_Msg_N
9446 ("info: & inherits `Pre''Class` aspect from #?L?",
9448 else
9449 Error_Msg_N
9450 ("info: & inherits `Post''Class` aspect from #?L?",
9452 end if;
9453 end if;
9455 P := Next_Pragma (P);
9456 end loop;
9457 end loop;
9458 end;
9459 end if;
9460 end List_Inherited_Pre_Post_Aspects;
9462 ------------------------------
9463 -- Make_Inequality_Operator --
9464 ------------------------------
9466 -- S is the defining identifier of an equality operator. We build a
9467 -- subprogram declaration with the right signature. This operation is
9468 -- intrinsic, because it is always expanded as the negation of the
9469 -- call to the equality function.
9471 procedure Make_Inequality_Operator (S : Entity_Id) is
9472 Loc : constant Source_Ptr := Sloc (S);
9473 Decl : Node_Id;
9474 Formals : List_Id;
9475 Op_Name : Entity_Id;
9477 FF : constant Entity_Id := First_Formal (S);
9478 NF : constant Entity_Id := Next_Formal (FF);
9480 begin
9481 -- Check that equality was properly defined, ignore call if not
9483 if No (NF) then
9484 return;
9485 end if;
9487 declare
9488 A : constant Entity_Id :=
9489 Make_Defining_Identifier (Sloc (FF),
9490 Chars => Chars (FF));
9492 B : constant Entity_Id :=
9493 Make_Defining_Identifier (Sloc (NF),
9494 Chars => Chars (NF));
9496 begin
9497 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9499 Formals := New_List (
9500 Make_Parameter_Specification (Loc,
9501 Defining_Identifier => A,
9502 Parameter_Type =>
9503 New_Reference_To (Etype (First_Formal (S)),
9504 Sloc (Etype (First_Formal (S))))),
9506 Make_Parameter_Specification (Loc,
9507 Defining_Identifier => B,
9508 Parameter_Type =>
9509 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
9510 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9512 Decl :=
9513 Make_Subprogram_Declaration (Loc,
9514 Specification =>
9515 Make_Function_Specification (Loc,
9516 Defining_Unit_Name => Op_Name,
9517 Parameter_Specifications => Formals,
9518 Result_Definition =>
9519 New_Reference_To (Standard_Boolean, Loc)));
9521 -- Insert inequality right after equality if it is explicit or after
9522 -- the derived type when implicit. These entities are created only
9523 -- for visibility purposes, and eventually replaced in the course
9524 -- of expansion, so they do not need to be attached to the tree and
9525 -- seen by the back-end. Keeping them internal also avoids spurious
9526 -- freezing problems. The declaration is inserted in the tree for
9527 -- analysis, and removed afterwards. If the equality operator comes
9528 -- from an explicit declaration, attach the inequality immediately
9529 -- after. Else the equality is inherited from a derived type
9530 -- declaration, so insert inequality after that declaration.
9532 if No (Alias (S)) then
9533 Insert_After (Unit_Declaration_Node (S), Decl);
9534 elsif Is_List_Member (Parent (S)) then
9535 Insert_After (Parent (S), Decl);
9536 else
9537 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9538 end if;
9540 Mark_Rewrite_Insertion (Decl);
9541 Set_Is_Intrinsic_Subprogram (Op_Name);
9542 Analyze (Decl);
9543 Remove (Decl);
9544 Set_Has_Completion (Op_Name);
9545 Set_Corresponding_Equality (Op_Name, S);
9546 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9547 end;
9548 end Make_Inequality_Operator;
9550 ----------------------
9551 -- May_Need_Actuals --
9552 ----------------------
9554 procedure May_Need_Actuals (Fun : Entity_Id) is
9555 F : Entity_Id;
9556 B : Boolean;
9558 begin
9559 F := First_Formal (Fun);
9560 B := True;
9561 while Present (F) loop
9562 if No (Default_Value (F)) then
9563 B := False;
9564 exit;
9565 end if;
9567 Next_Formal (F);
9568 end loop;
9570 Set_Needs_No_Actuals (Fun, B);
9571 end May_Need_Actuals;
9573 ---------------------
9574 -- Mode_Conformant --
9575 ---------------------
9577 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9578 Result : Boolean;
9579 begin
9580 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9581 return Result;
9582 end Mode_Conformant;
9584 ---------------------------
9585 -- New_Overloaded_Entity --
9586 ---------------------------
9588 procedure New_Overloaded_Entity
9589 (S : Entity_Id;
9590 Derived_Type : Entity_Id := Empty)
9592 Overridden_Subp : Entity_Id := Empty;
9593 -- Set if the current scope has an operation that is type-conformant
9594 -- with S, and becomes hidden by S.
9596 Is_Primitive_Subp : Boolean;
9597 -- Set to True if the new subprogram is primitive
9599 E : Entity_Id;
9600 -- Entity that S overrides
9602 Prev_Vis : Entity_Id := Empty;
9603 -- Predecessor of E in Homonym chain
9605 procedure Check_For_Primitive_Subprogram
9606 (Is_Primitive : out Boolean;
9607 Is_Overriding : Boolean := False);
9608 -- If the subprogram being analyzed is a primitive operation of the type
9609 -- of a formal or result, set the Has_Primitive_Operations flag on the
9610 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9611 -- corresponding flag on the entity itself for later use.
9613 procedure Check_Synchronized_Overriding
9614 (Def_Id : Entity_Id;
9615 Overridden_Subp : out Entity_Id);
9616 -- First determine if Def_Id is an entry or a subprogram either defined
9617 -- in the scope of a task or protected type, or is a primitive of such
9618 -- a type. Check whether Def_Id overrides a subprogram of an interface
9619 -- implemented by the synchronized type, return the overridden entity
9620 -- or Empty.
9622 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9623 -- Check that E is declared in the private part of the current package,
9624 -- or in the package body, where it may hide a previous declaration.
9625 -- We can't use In_Private_Part by itself because this flag is also
9626 -- set when freezing entities, so we must examine the place of the
9627 -- declaration in the tree, and recognize wrapper packages as well.
9629 function Is_Overriding_Alias
9630 (Old_E : Entity_Id;
9631 New_E : Entity_Id) return Boolean;
9632 -- Check whether new subprogram and old subprogram are both inherited
9633 -- from subprograms that have distinct dispatch table entries. This can
9634 -- occur with derivations from instances with accidental homonyms. The
9635 -- function is conservative given that the converse is only true within
9636 -- instances that contain accidental overloadings.
9638 ------------------------------------
9639 -- Check_For_Primitive_Subprogram --
9640 ------------------------------------
9642 procedure Check_For_Primitive_Subprogram
9643 (Is_Primitive : out Boolean;
9644 Is_Overriding : Boolean := False)
9646 Formal : Entity_Id;
9647 F_Typ : Entity_Id;
9648 B_Typ : Entity_Id;
9650 function Visible_Part_Type (T : Entity_Id) return Boolean;
9651 -- Returns true if T is declared in the visible part of the current
9652 -- package scope; otherwise returns false. Assumes that T is declared
9653 -- in a package.
9655 procedure Check_Private_Overriding (T : Entity_Id);
9656 -- Checks that if a primitive abstract subprogram of a visible
9657 -- abstract type is declared in a private part, then it must override
9658 -- an abstract subprogram declared in the visible part. Also checks
9659 -- that if a primitive function with a controlling result is declared
9660 -- in a private part, then it must override a function declared in
9661 -- the visible part.
9663 ------------------------------
9664 -- Check_Private_Overriding --
9665 ------------------------------
9667 procedure Check_Private_Overriding (T : Entity_Id) is
9668 begin
9669 if Is_Package_Or_Generic_Package (Current_Scope)
9670 and then In_Private_Part (Current_Scope)
9671 and then Visible_Part_Type (T)
9672 and then not In_Instance
9673 then
9674 if Is_Abstract_Type (T)
9675 and then Is_Abstract_Subprogram (S)
9676 and then (not Is_Overriding
9677 or else not Is_Abstract_Subprogram (E))
9678 then
9679 Error_Msg_N
9680 ("abstract subprograms must be visible "
9681 & "(RM 3.9.3(10))!", S);
9683 elsif Ekind (S) = E_Function and then not Is_Overriding then
9684 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
9685 Error_Msg_N
9686 ("private function with tagged result must"
9687 & " override visible-part function", S);
9688 Error_Msg_N
9689 ("\move subprogram to the visible part"
9690 & " (RM 3.9.3(10))", S);
9692 -- AI05-0073: extend this test to the case of a function
9693 -- with a controlling access result.
9695 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
9696 and then Is_Tagged_Type (Designated_Type (Etype (S)))
9697 and then
9698 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
9699 and then Ada_Version >= Ada_2012
9700 then
9701 Error_Msg_N
9702 ("private function with controlling access result "
9703 & "must override visible-part function", S);
9704 Error_Msg_N
9705 ("\move subprogram to the visible part"
9706 & " (RM 3.9.3(10))", S);
9707 end if;
9708 end if;
9709 end if;
9710 end Check_Private_Overriding;
9712 -----------------------
9713 -- Visible_Part_Type --
9714 -----------------------
9716 function Visible_Part_Type (T : Entity_Id) return Boolean is
9717 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
9718 N : Node_Id;
9720 begin
9721 -- If the entity is a private type, then it must be declared in a
9722 -- visible part.
9724 if Ekind (T) in Private_Kind then
9725 return True;
9726 end if;
9728 -- Otherwise, we traverse the visible part looking for its
9729 -- corresponding declaration. We cannot use the declaration
9730 -- node directly because in the private part the entity of a
9731 -- private type is the one in the full view, which does not
9732 -- indicate that it is the completion of something visible.
9734 N := First (Visible_Declarations (Specification (P)));
9735 while Present (N) loop
9736 if Nkind (N) = N_Full_Type_Declaration
9737 and then Present (Defining_Identifier (N))
9738 and then T = Defining_Identifier (N)
9739 then
9740 return True;
9742 elsif Nkind_In (N, N_Private_Type_Declaration,
9743 N_Private_Extension_Declaration)
9744 and then Present (Defining_Identifier (N))
9745 and then T = Full_View (Defining_Identifier (N))
9746 then
9747 return True;
9748 end if;
9750 Next (N);
9751 end loop;
9753 return False;
9754 end Visible_Part_Type;
9756 -- Start of processing for Check_For_Primitive_Subprogram
9758 begin
9759 Is_Primitive := False;
9761 if not Comes_From_Source (S) then
9762 null;
9764 -- If subprogram is at library level, it is not primitive operation
9766 elsif Current_Scope = Standard_Standard then
9767 null;
9769 elsif (Is_Package_Or_Generic_Package (Current_Scope)
9770 and then not In_Package_Body (Current_Scope))
9771 or else Is_Overriding
9772 then
9773 -- For function, check return type
9775 if Ekind (S) = E_Function then
9776 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
9777 F_Typ := Designated_Type (Etype (S));
9778 else
9779 F_Typ := Etype (S);
9780 end if;
9782 B_Typ := Base_Type (F_Typ);
9784 if Scope (B_Typ) = Current_Scope
9785 and then not Is_Class_Wide_Type (B_Typ)
9786 and then not Is_Generic_Type (B_Typ)
9787 then
9788 Is_Primitive := True;
9789 Set_Has_Primitive_Operations (B_Typ);
9790 Set_Is_Primitive (S);
9791 Check_Private_Overriding (B_Typ);
9792 end if;
9793 end if;
9795 -- For all subprograms, check formals
9797 Formal := First_Formal (S);
9798 while Present (Formal) loop
9799 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
9800 F_Typ := Designated_Type (Etype (Formal));
9801 else
9802 F_Typ := Etype (Formal);
9803 end if;
9805 B_Typ := Base_Type (F_Typ);
9807 if Ekind (B_Typ) = E_Access_Subtype then
9808 B_Typ := Base_Type (B_Typ);
9809 end if;
9811 if Scope (B_Typ) = Current_Scope
9812 and then not Is_Class_Wide_Type (B_Typ)
9813 and then not Is_Generic_Type (B_Typ)
9814 then
9815 Is_Primitive := True;
9816 Set_Is_Primitive (S);
9817 Set_Has_Primitive_Operations (B_Typ);
9818 Check_Private_Overriding (B_Typ);
9819 end if;
9821 Next_Formal (Formal);
9822 end loop;
9824 -- Special case: An equality function can be redefined for a type
9825 -- occurring in a declarative part, and won't otherwise be treated as
9826 -- a primitive because it doesn't occur in a package spec and doesn't
9827 -- override an inherited subprogram. It's important that we mark it
9828 -- primitive so it can be returned by Collect_Primitive_Operations
9829 -- and be used in composing the equality operation of later types
9830 -- that have a component of the type.
9832 elsif Chars (S) = Name_Op_Eq
9833 and then Etype (S) = Standard_Boolean
9834 then
9835 B_Typ := Base_Type (Etype (First_Formal (S)));
9837 if Scope (B_Typ) = Current_Scope
9838 and then
9839 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
9840 and then not Is_Limited_Type (B_Typ)
9841 then
9842 Is_Primitive := True;
9843 Set_Is_Primitive (S);
9844 Set_Has_Primitive_Operations (B_Typ);
9845 Check_Private_Overriding (B_Typ);
9846 end if;
9847 end if;
9848 end Check_For_Primitive_Subprogram;
9850 -----------------------------------
9851 -- Check_Synchronized_Overriding --
9852 -----------------------------------
9854 procedure Check_Synchronized_Overriding
9855 (Def_Id : Entity_Id;
9856 Overridden_Subp : out Entity_Id)
9858 Ifaces_List : Elist_Id;
9859 In_Scope : Boolean;
9860 Typ : Entity_Id;
9862 function Matches_Prefixed_View_Profile
9863 (Prim_Params : List_Id;
9864 Iface_Params : List_Id) return Boolean;
9865 -- Determine whether a subprogram's parameter profile Prim_Params
9866 -- matches that of a potentially overridden interface subprogram
9867 -- Iface_Params. Also determine if the type of first parameter of
9868 -- Iface_Params is an implemented interface.
9870 -----------------------------------
9871 -- Matches_Prefixed_View_Profile --
9872 -----------------------------------
9874 function Matches_Prefixed_View_Profile
9875 (Prim_Params : List_Id;
9876 Iface_Params : List_Id) return Boolean
9878 Iface_Id : Entity_Id;
9879 Iface_Param : Node_Id;
9880 Iface_Typ : Entity_Id;
9881 Prim_Id : Entity_Id;
9882 Prim_Param : Node_Id;
9883 Prim_Typ : Entity_Id;
9885 function Is_Implemented
9886 (Ifaces_List : Elist_Id;
9887 Iface : Entity_Id) return Boolean;
9888 -- Determine if Iface is implemented by the current task or
9889 -- protected type.
9891 --------------------
9892 -- Is_Implemented --
9893 --------------------
9895 function Is_Implemented
9896 (Ifaces_List : Elist_Id;
9897 Iface : Entity_Id) return Boolean
9899 Iface_Elmt : Elmt_Id;
9901 begin
9902 Iface_Elmt := First_Elmt (Ifaces_List);
9903 while Present (Iface_Elmt) loop
9904 if Node (Iface_Elmt) = Iface then
9905 return True;
9906 end if;
9908 Next_Elmt (Iface_Elmt);
9909 end loop;
9911 return False;
9912 end Is_Implemented;
9914 -- Start of processing for Matches_Prefixed_View_Profile
9916 begin
9917 Iface_Param := First (Iface_Params);
9918 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
9920 if Is_Access_Type (Iface_Typ) then
9921 Iface_Typ := Designated_Type (Iface_Typ);
9922 end if;
9924 Prim_Param := First (Prim_Params);
9926 -- The first parameter of the potentially overridden subprogram
9927 -- must be an interface implemented by Prim.
9929 if not Is_Interface (Iface_Typ)
9930 or else not Is_Implemented (Ifaces_List, Iface_Typ)
9931 then
9932 return False;
9933 end if;
9935 -- The checks on the object parameters are done, move onto the
9936 -- rest of the parameters.
9938 if not In_Scope then
9939 Prim_Param := Next (Prim_Param);
9940 end if;
9942 Iface_Param := Next (Iface_Param);
9943 while Present (Iface_Param) and then Present (Prim_Param) loop
9944 Iface_Id := Defining_Identifier (Iface_Param);
9945 Iface_Typ := Find_Parameter_Type (Iface_Param);
9947 Prim_Id := Defining_Identifier (Prim_Param);
9948 Prim_Typ := Find_Parameter_Type (Prim_Param);
9950 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
9951 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
9952 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
9953 then
9954 Iface_Typ := Designated_Type (Iface_Typ);
9955 Prim_Typ := Designated_Type (Prim_Typ);
9956 end if;
9958 -- Case of multiple interface types inside a parameter profile
9960 -- (Obj_Param : in out Iface; ...; Param : Iface)
9962 -- If the interface type is implemented, then the matching type
9963 -- in the primitive should be the implementing record type.
9965 if Ekind (Iface_Typ) = E_Record_Type
9966 and then Is_Interface (Iface_Typ)
9967 and then Is_Implemented (Ifaces_List, Iface_Typ)
9968 then
9969 if Prim_Typ /= Typ then
9970 return False;
9971 end if;
9973 -- The two parameters must be both mode and subtype conformant
9975 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9976 or else not
9977 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9978 then
9979 return False;
9980 end if;
9982 Next (Iface_Param);
9983 Next (Prim_Param);
9984 end loop;
9986 -- One of the two lists contains more parameters than the other
9988 if Present (Iface_Param) or else Present (Prim_Param) then
9989 return False;
9990 end if;
9992 return True;
9993 end Matches_Prefixed_View_Profile;
9995 -- Start of processing for Check_Synchronized_Overriding
9997 begin
9998 Overridden_Subp := Empty;
10000 -- Def_Id must be an entry or a subprogram. We should skip predefined
10001 -- primitives internally generated by the frontend; however at this
10002 -- stage predefined primitives are still not fully decorated. As a
10003 -- minor optimization we skip here internally generated subprograms.
10005 if (Ekind (Def_Id) /= E_Entry
10006 and then Ekind (Def_Id) /= E_Function
10007 and then Ekind (Def_Id) /= E_Procedure)
10008 or else not Comes_From_Source (Def_Id)
10009 then
10010 return;
10011 end if;
10013 -- Search for the concurrent declaration since it contains the list
10014 -- of all implemented interfaces. In this case, the subprogram is
10015 -- declared within the scope of a protected or a task type.
10017 if Present (Scope (Def_Id))
10018 and then Is_Concurrent_Type (Scope (Def_Id))
10019 and then not Is_Generic_Actual_Type (Scope (Def_Id))
10020 then
10021 Typ := Scope (Def_Id);
10022 In_Scope := True;
10024 -- The enclosing scope is not a synchronized type and the subprogram
10025 -- has no formals.
10027 elsif No (First_Formal (Def_Id)) then
10028 return;
10030 -- The subprogram has formals and hence it may be a primitive of a
10031 -- concurrent type.
10033 else
10034 Typ := Etype (First_Formal (Def_Id));
10036 if Is_Access_Type (Typ) then
10037 Typ := Directly_Designated_Type (Typ);
10038 end if;
10040 if Is_Concurrent_Type (Typ)
10041 and then not Is_Generic_Actual_Type (Typ)
10042 then
10043 In_Scope := False;
10045 -- This case occurs when the concurrent type is declared within
10046 -- a generic unit. As a result the corresponding record has been
10047 -- built and used as the type of the first formal, we just have
10048 -- to retrieve the corresponding concurrent type.
10050 elsif Is_Concurrent_Record_Type (Typ)
10051 and then not Is_Class_Wide_Type (Typ)
10052 and then Present (Corresponding_Concurrent_Type (Typ))
10053 then
10054 Typ := Corresponding_Concurrent_Type (Typ);
10055 In_Scope := False;
10057 else
10058 return;
10059 end if;
10060 end if;
10062 -- There is no overriding to check if is an inherited operation in a
10063 -- type derivation on for a generic actual.
10065 Collect_Interfaces (Typ, Ifaces_List);
10067 if Is_Empty_Elmt_List (Ifaces_List) then
10068 return;
10069 end if;
10071 -- Determine whether entry or subprogram Def_Id overrides a primitive
10072 -- operation that belongs to one of the interfaces in Ifaces_List.
10074 declare
10075 Candidate : Entity_Id := Empty;
10076 Hom : Entity_Id := Empty;
10077 Iface_Typ : Entity_Id;
10078 Subp : Entity_Id := Empty;
10080 begin
10081 -- Traverse the homonym chain, looking for a potentially
10082 -- overridden subprogram that belongs to an implemented
10083 -- interface.
10085 Hom := Current_Entity_In_Scope (Def_Id);
10086 while Present (Hom) loop
10087 Subp := Hom;
10089 if Subp = Def_Id
10090 or else not Is_Overloadable (Subp)
10091 or else not Is_Primitive (Subp)
10092 or else not Is_Dispatching_Operation (Subp)
10093 or else not Present (Find_Dispatching_Type (Subp))
10094 or else not Is_Interface (Find_Dispatching_Type (Subp))
10095 then
10096 null;
10098 -- Entries and procedures can override abstract or null
10099 -- interface procedures.
10101 elsif (Ekind (Def_Id) = E_Procedure
10102 or else Ekind (Def_Id) = E_Entry)
10103 and then Ekind (Subp) = E_Procedure
10104 and then Matches_Prefixed_View_Profile
10105 (Parameter_Specifications (Parent (Def_Id)),
10106 Parameter_Specifications (Parent (Subp)))
10107 then
10108 Candidate := Subp;
10110 -- For an overridden subprogram Subp, check whether the mode
10111 -- of its first parameter is correct depending on the kind
10112 -- of synchronized type.
10114 declare
10115 Formal : constant Node_Id := First_Formal (Candidate);
10117 begin
10118 -- In order for an entry or a protected procedure to
10119 -- override, the first parameter of the overridden
10120 -- routine must be of mode "out", "in out" or
10121 -- access-to-variable.
10123 if Ekind_In (Candidate, E_Entry, E_Procedure)
10124 and then Is_Protected_Type (Typ)
10125 and then Ekind (Formal) /= E_In_Out_Parameter
10126 and then Ekind (Formal) /= E_Out_Parameter
10127 and then Nkind (Parameter_Type (Parent (Formal))) /=
10128 N_Access_Definition
10129 then
10130 null;
10132 -- All other cases are OK since a task entry or routine
10133 -- does not have a restriction on the mode of the first
10134 -- parameter of the overridden interface routine.
10136 else
10137 Overridden_Subp := Candidate;
10138 return;
10139 end if;
10140 end;
10142 -- Functions can override abstract interface functions
10144 elsif Ekind (Def_Id) = E_Function
10145 and then Ekind (Subp) = E_Function
10146 and then Matches_Prefixed_View_Profile
10147 (Parameter_Specifications (Parent (Def_Id)),
10148 Parameter_Specifications (Parent (Subp)))
10149 and then Etype (Result_Definition (Parent (Def_Id))) =
10150 Etype (Result_Definition (Parent (Subp)))
10151 then
10152 Overridden_Subp := Subp;
10153 return;
10154 end if;
10156 Hom := Homonym (Hom);
10157 end loop;
10159 -- After examining all candidates for overriding, we are left with
10160 -- the best match which is a mode incompatible interface routine.
10161 -- Do not emit an error if the Expander is active since this error
10162 -- will be detected later on after all concurrent types are
10163 -- expanded and all wrappers are built. This check is meant for
10164 -- spec-only compilations.
10166 if Present (Candidate) and then not Expander_Active then
10167 Iface_Typ :=
10168 Find_Parameter_Type (Parent (First_Formal (Candidate)));
10170 -- Def_Id is primitive of a protected type, declared inside the
10171 -- type, and the candidate is primitive of a limited or
10172 -- synchronized interface.
10174 if In_Scope
10175 and then Is_Protected_Type (Typ)
10176 and then
10177 (Is_Limited_Interface (Iface_Typ)
10178 or else Is_Protected_Interface (Iface_Typ)
10179 or else Is_Synchronized_Interface (Iface_Typ)
10180 or else Is_Task_Interface (Iface_Typ))
10181 then
10182 Error_Msg_PT (Parent (Typ), Candidate);
10183 end if;
10184 end if;
10186 Overridden_Subp := Candidate;
10187 return;
10188 end;
10189 end Check_Synchronized_Overriding;
10191 ----------------------------
10192 -- Is_Private_Declaration --
10193 ----------------------------
10195 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10196 Priv_Decls : List_Id;
10197 Decl : constant Node_Id := Unit_Declaration_Node (E);
10199 begin
10200 if Is_Package_Or_Generic_Package (Current_Scope)
10201 and then In_Private_Part (Current_Scope)
10202 then
10203 Priv_Decls :=
10204 Private_Declarations
10205 (Specification (Unit_Declaration_Node (Current_Scope)));
10207 return In_Package_Body (Current_Scope)
10208 or else
10209 (Is_List_Member (Decl)
10210 and then List_Containing (Decl) = Priv_Decls)
10211 or else (Nkind (Parent (Decl)) = N_Package_Specification
10212 and then not
10213 Is_Compilation_Unit
10214 (Defining_Entity (Parent (Decl)))
10215 and then List_Containing (Parent (Parent (Decl))) =
10216 Priv_Decls);
10217 else
10218 return False;
10219 end if;
10220 end Is_Private_Declaration;
10222 --------------------------
10223 -- Is_Overriding_Alias --
10224 --------------------------
10226 function Is_Overriding_Alias
10227 (Old_E : Entity_Id;
10228 New_E : Entity_Id) return Boolean
10230 AO : constant Entity_Id := Alias (Old_E);
10231 AN : constant Entity_Id := Alias (New_E);
10233 begin
10234 return Scope (AO) /= Scope (AN)
10235 or else No (DTC_Entity (AO))
10236 or else No (DTC_Entity (AN))
10237 or else DT_Position (AO) = DT_Position (AN);
10238 end Is_Overriding_Alias;
10240 -- Start of processing for New_Overloaded_Entity
10242 begin
10243 -- We need to look for an entity that S may override. This must be a
10244 -- homonym in the current scope, so we look for the first homonym of
10245 -- S in the current scope as the starting point for the search.
10247 E := Current_Entity_In_Scope (S);
10249 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10250 -- They are directly added to the list of primitive operations of
10251 -- Derived_Type, unless this is a rederivation in the private part
10252 -- of an operation that was already derived in the visible part of
10253 -- the current package.
10255 if Ada_Version >= Ada_2005
10256 and then Present (Derived_Type)
10257 and then Present (Alias (S))
10258 and then Is_Dispatching_Operation (Alias (S))
10259 and then Present (Find_Dispatching_Type (Alias (S)))
10260 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10261 then
10262 -- For private types, when the full-view is processed we propagate to
10263 -- the full view the non-overridden entities whose attribute "alias"
10264 -- references an interface primitive. These entities were added by
10265 -- Derive_Subprograms to ensure that interface primitives are
10266 -- covered.
10268 -- Inside_Freeze_Actions is non zero when S corresponds with an
10269 -- internal entity that links an interface primitive with its
10270 -- covering primitive through attribute Interface_Alias (see
10271 -- Add_Internal_Interface_Entities).
10273 if Inside_Freezing_Actions = 0
10274 and then Is_Package_Or_Generic_Package (Current_Scope)
10275 and then In_Private_Part (Current_Scope)
10276 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10277 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10278 and then Full_View (Defining_Identifier (Parent (E)))
10279 = Defining_Identifier (Parent (S))
10280 and then Alias (E) = Alias (S)
10281 then
10282 Check_Operation_From_Private_View (S, E);
10283 Set_Is_Dispatching_Operation (S);
10285 -- Common case
10287 else
10288 Enter_Overloaded_Entity (S);
10289 Check_Dispatching_Operation (S, Empty);
10290 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10291 end if;
10293 return;
10294 end if;
10296 -- If there is no homonym then this is definitely not overriding
10298 if No (E) then
10299 Enter_Overloaded_Entity (S);
10300 Check_Dispatching_Operation (S, Empty);
10301 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10303 -- If subprogram has an explicit declaration, check whether it has an
10304 -- overriding indicator.
10306 if Comes_From_Source (S) then
10307 Check_Synchronized_Overriding (S, Overridden_Subp);
10309 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10310 -- it may have overridden some hidden inherited primitive. Update
10311 -- Overridden_Subp to avoid spurious errors when checking the
10312 -- overriding indicator.
10314 if Ada_Version >= Ada_2012
10315 and then No (Overridden_Subp)
10316 and then Is_Dispatching_Operation (S)
10317 and then Present (Overridden_Operation (S))
10318 then
10319 Overridden_Subp := Overridden_Operation (S);
10320 end if;
10322 Check_Overriding_Indicator
10323 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10324 end if;
10326 -- If there is a homonym that is not overloadable, then we have an
10327 -- error, except for the special cases checked explicitly below.
10329 elsif not Is_Overloadable (E) then
10331 -- Check for spurious conflict produced by a subprogram that has the
10332 -- same name as that of the enclosing generic package. The conflict
10333 -- occurs within an instance, between the subprogram and the renaming
10334 -- declaration for the package. After the subprogram, the package
10335 -- renaming declaration becomes hidden.
10337 if Ekind (E) = E_Package
10338 and then Present (Renamed_Object (E))
10339 and then Renamed_Object (E) = Current_Scope
10340 and then Nkind (Parent (Renamed_Object (E))) =
10341 N_Package_Specification
10342 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10343 then
10344 Set_Is_Hidden (E);
10345 Set_Is_Immediately_Visible (E, False);
10346 Enter_Overloaded_Entity (S);
10347 Set_Homonym (S, Homonym (E));
10348 Check_Dispatching_Operation (S, Empty);
10349 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10351 -- If the subprogram is implicit it is hidden by the previous
10352 -- declaration. However if it is dispatching, it must appear in the
10353 -- dispatch table anyway, because it can be dispatched to even if it
10354 -- cannot be called directly.
10356 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10357 Set_Scope (S, Current_Scope);
10359 if Is_Dispatching_Operation (Alias (S)) then
10360 Check_Dispatching_Operation (S, Empty);
10361 end if;
10363 return;
10365 else
10366 Error_Msg_Sloc := Sloc (E);
10368 -- Generate message, with useful additional warning if in generic
10370 if Is_Generic_Unit (E) then
10371 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10372 Error_Msg_N ("\& conflicts with declaration#", S);
10373 else
10374 Error_Msg_N ("& conflicts with declaration#", S);
10375 end if;
10377 return;
10378 end if;
10380 -- E exists and is overloadable
10382 else
10383 Check_Synchronized_Overriding (S, Overridden_Subp);
10385 -- Loop through E and its homonyms to determine if any of them is
10386 -- the candidate for overriding by S.
10388 while Present (E) loop
10390 -- Definitely not interesting if not in the current scope
10392 if Scope (E) /= Current_Scope then
10393 null;
10395 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10396 -- procedures locate the internally generated spec. We enforce
10397 -- mode conformance since a tagged type may inherit from
10398 -- interfaces several null primitives which differ only in
10399 -- the mode of the formals.
10401 elsif not Comes_From_Source (S)
10402 and then Is_Null_Procedure (S)
10403 and then not Mode_Conformant (E, S)
10404 then
10405 null;
10407 -- Check if we have type conformance
10409 elsif Type_Conformant (E, S) then
10411 -- If the old and new entities have the same profile and one
10412 -- is not the body of the other, then this is an error, unless
10413 -- one of them is implicitly declared.
10415 -- There are some cases when both can be implicit, for example
10416 -- when both a literal and a function that overrides it are
10417 -- inherited in a derivation, or when an inherited operation
10418 -- of a tagged full type overrides the inherited operation of
10419 -- a private extension. Ada 83 had a special rule for the
10420 -- literal case. In Ada 95, the later implicit operation hides
10421 -- the former, and the literal is always the former. In the
10422 -- odd case where both are derived operations declared at the
10423 -- same point, both operations should be declared, and in that
10424 -- case we bypass the following test and proceed to the next
10425 -- part. This can only occur for certain obscure cases in
10426 -- instances, when an operation on a type derived from a formal
10427 -- private type does not override a homograph inherited from
10428 -- the actual. In subsequent derivations of such a type, the
10429 -- DT positions of these operations remain distinct, if they
10430 -- have been set.
10432 if Present (Alias (S))
10433 and then (No (Alias (E))
10434 or else Comes_From_Source (E)
10435 or else Is_Abstract_Subprogram (S)
10436 or else
10437 (Is_Dispatching_Operation (E)
10438 and then Is_Overriding_Alias (E, S)))
10439 and then Ekind (E) /= E_Enumeration_Literal
10440 then
10441 -- When an derived operation is overloaded it may be due to
10442 -- the fact that the full view of a private extension
10443 -- re-inherits. It has to be dealt with.
10445 if Is_Package_Or_Generic_Package (Current_Scope)
10446 and then In_Private_Part (Current_Scope)
10447 then
10448 Check_Operation_From_Private_View (S, E);
10449 end if;
10451 -- In any case the implicit operation remains hidden by the
10452 -- existing declaration, which is overriding. Indicate that
10453 -- E overrides the operation from which S is inherited.
10455 if Present (Alias (S)) then
10456 Set_Overridden_Operation (E, Alias (S));
10457 else
10458 Set_Overridden_Operation (E, S);
10459 end if;
10461 if Comes_From_Source (E) then
10462 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10463 end if;
10465 return;
10467 -- Within an instance, the renaming declarations for actual
10468 -- subprograms may become ambiguous, but they do not hide each
10469 -- other.
10471 elsif Ekind (E) /= E_Entry
10472 and then not Comes_From_Source (E)
10473 and then not Is_Generic_Instance (E)
10474 and then (Present (Alias (E))
10475 or else Is_Intrinsic_Subprogram (E))
10476 and then (not In_Instance
10477 or else No (Parent (E))
10478 or else Nkind (Unit_Declaration_Node (E)) /=
10479 N_Subprogram_Renaming_Declaration)
10480 then
10481 -- A subprogram child unit is not allowed to override an
10482 -- inherited subprogram (10.1.1(20)).
10484 if Is_Child_Unit (S) then
10485 Error_Msg_N
10486 ("child unit overrides inherited subprogram in parent",
10488 return;
10489 end if;
10491 if Is_Non_Overriding_Operation (E, S) then
10492 Enter_Overloaded_Entity (S);
10494 if No (Derived_Type)
10495 or else Is_Tagged_Type (Derived_Type)
10496 then
10497 Check_Dispatching_Operation (S, Empty);
10498 end if;
10500 return;
10501 end if;
10503 -- E is a derived operation or an internal operator which
10504 -- is being overridden. Remove E from further visibility.
10505 -- Furthermore, if E is a dispatching operation, it must be
10506 -- replaced in the list of primitive operations of its type
10507 -- (see Override_Dispatching_Operation).
10509 Overridden_Subp := E;
10511 declare
10512 Prev : Entity_Id;
10514 begin
10515 Prev := First_Entity (Current_Scope);
10516 while Present (Prev) and then Next_Entity (Prev) /= E loop
10517 Next_Entity (Prev);
10518 end loop;
10520 -- It is possible for E to be in the current scope and
10521 -- yet not in the entity chain. This can only occur in a
10522 -- generic context where E is an implicit concatenation
10523 -- in the formal part, because in a generic body the
10524 -- entity chain starts with the formals.
10526 pragma Assert
10527 (Present (Prev) or else Chars (E) = Name_Op_Concat);
10529 -- E must be removed both from the entity_list of the
10530 -- current scope, and from the visibility chain
10532 if Debug_Flag_E then
10533 Write_Str ("Override implicit operation ");
10534 Write_Int (Int (E));
10535 Write_Eol;
10536 end if;
10538 -- If E is a predefined concatenation, it stands for four
10539 -- different operations. As a result, a single explicit
10540 -- declaration does not hide it. In a possible ambiguous
10541 -- situation, Disambiguate chooses the user-defined op,
10542 -- so it is correct to retain the previous internal one.
10544 if Chars (E) /= Name_Op_Concat
10545 or else Ekind (E) /= E_Operator
10546 then
10547 -- For nondispatching derived operations that are
10548 -- overridden by a subprogram declared in the private
10549 -- part of a package, we retain the derived subprogram
10550 -- but mark it as not immediately visible. If the
10551 -- derived operation was declared in the visible part
10552 -- then this ensures that it will still be visible
10553 -- outside the package with the proper signature
10554 -- (calls from outside must also be directed to this
10555 -- version rather than the overriding one, unlike the
10556 -- dispatching case). Calls from inside the package
10557 -- will still resolve to the overriding subprogram
10558 -- since the derived one is marked as not visible
10559 -- within the package.
10561 -- If the private operation is dispatching, we achieve
10562 -- the overriding by keeping the implicit operation
10563 -- but setting its alias to be the overriding one. In
10564 -- this fashion the proper body is executed in all
10565 -- cases, but the original signature is used outside
10566 -- of the package.
10568 -- If the overriding is not in the private part, we
10569 -- remove the implicit operation altogether.
10571 if Is_Private_Declaration (S) then
10572 if not Is_Dispatching_Operation (E) then
10573 Set_Is_Immediately_Visible (E, False);
10574 else
10575 -- Work done in Override_Dispatching_Operation,
10576 -- so nothing else needs to be done here.
10578 null;
10579 end if;
10581 else
10582 -- Find predecessor of E in Homonym chain
10584 if E = Current_Entity (E) then
10585 Prev_Vis := Empty;
10586 else
10587 Prev_Vis := Current_Entity (E);
10588 while Homonym (Prev_Vis) /= E loop
10589 Prev_Vis := Homonym (Prev_Vis);
10590 end loop;
10591 end if;
10593 if Prev_Vis /= Empty then
10595 -- Skip E in the visibility chain
10597 Set_Homonym (Prev_Vis, Homonym (E));
10599 else
10600 Set_Name_Entity_Id (Chars (E), Homonym (E));
10601 end if;
10603 Set_Next_Entity (Prev, Next_Entity (E));
10605 if No (Next_Entity (Prev)) then
10606 Set_Last_Entity (Current_Scope, Prev);
10607 end if;
10608 end if;
10609 end if;
10611 Enter_Overloaded_Entity (S);
10613 -- For entities generated by Derive_Subprograms the
10614 -- overridden operation is the inherited primitive
10615 -- (which is available through the attribute alias).
10617 if not (Comes_From_Source (E))
10618 and then Is_Dispatching_Operation (E)
10619 and then Find_Dispatching_Type (E) =
10620 Find_Dispatching_Type (S)
10621 and then Present (Alias (E))
10622 and then Comes_From_Source (Alias (E))
10623 then
10624 Set_Overridden_Operation (S, Alias (E));
10626 -- Normal case of setting entity as overridden
10628 -- Note: Static_Initialization and Overridden_Operation
10629 -- attributes use the same field in subprogram entities.
10630 -- Static_Initialization is only defined for internal
10631 -- initialization procedures, where Overridden_Operation
10632 -- is irrelevant. Therefore the setting of this attribute
10633 -- must check whether the target is an init_proc.
10635 elsif not Is_Init_Proc (S) then
10636 Set_Overridden_Operation (S, E);
10637 end if;
10639 Check_Overriding_Indicator (S, E, Is_Primitive => True);
10641 -- If S is a user-defined subprogram or a null procedure
10642 -- expanded to override an inherited null procedure, or a
10643 -- predefined dispatching primitive then indicate that E
10644 -- overrides the operation from which S is inherited.
10646 if Comes_From_Source (S)
10647 or else
10648 (Present (Parent (S))
10649 and then
10650 Nkind (Parent (S)) = N_Procedure_Specification
10651 and then
10652 Null_Present (Parent (S)))
10653 or else
10654 (Present (Alias (E))
10655 and then
10656 Is_Predefined_Dispatching_Operation (Alias (E)))
10657 then
10658 if Present (Alias (E)) then
10659 Set_Overridden_Operation (S, Alias (E));
10660 end if;
10661 end if;
10663 if Is_Dispatching_Operation (E) then
10665 -- An overriding dispatching subprogram inherits the
10666 -- convention of the overridden subprogram (AI-117).
10668 Set_Convention (S, Convention (E));
10669 Check_Dispatching_Operation (S, E);
10671 else
10672 Check_Dispatching_Operation (S, Empty);
10673 end if;
10675 Check_For_Primitive_Subprogram
10676 (Is_Primitive_Subp, Is_Overriding => True);
10677 goto Check_Inequality;
10678 end;
10680 -- Apparent redeclarations in instances can occur when two
10681 -- formal types get the same actual type. The subprograms in
10682 -- in the instance are legal, even if not callable from the
10683 -- outside. Calls from within are disambiguated elsewhere.
10684 -- For dispatching operations in the visible part, the usual
10685 -- rules apply, and operations with the same profile are not
10686 -- legal (B830001).
10688 elsif (In_Instance_Visible_Part
10689 and then not Is_Dispatching_Operation (E))
10690 or else In_Instance_Not_Visible
10691 then
10692 null;
10694 -- Here we have a real error (identical profile)
10696 else
10697 Error_Msg_Sloc := Sloc (E);
10699 -- Avoid cascaded errors if the entity appears in
10700 -- subsequent calls.
10702 Set_Scope (S, Current_Scope);
10704 -- Generate error, with extra useful warning for the case
10705 -- of a generic instance with no completion.
10707 if Is_Generic_Instance (S)
10708 and then not Has_Completion (E)
10709 then
10710 Error_Msg_N
10711 ("instantiation cannot provide body for&", S);
10712 Error_Msg_N ("\& conflicts with declaration#", S);
10713 else
10714 Error_Msg_N ("& conflicts with declaration#", S);
10715 end if;
10717 return;
10718 end if;
10720 else
10721 -- If one subprogram has an access parameter and the other
10722 -- a parameter of an access type, calls to either might be
10723 -- ambiguous. Verify that parameters match except for the
10724 -- access parameter.
10726 if May_Hide_Profile then
10727 declare
10728 F1 : Entity_Id;
10729 F2 : Entity_Id;
10731 begin
10732 F1 := First_Formal (S);
10733 F2 := First_Formal (E);
10734 while Present (F1) and then Present (F2) loop
10735 if Is_Access_Type (Etype (F1)) then
10736 if not Is_Access_Type (Etype (F2))
10737 or else not Conforming_Types
10738 (Designated_Type (Etype (F1)),
10739 Designated_Type (Etype (F2)),
10740 Type_Conformant)
10741 then
10742 May_Hide_Profile := False;
10743 end if;
10745 elsif
10746 not Conforming_Types
10747 (Etype (F1), Etype (F2), Type_Conformant)
10748 then
10749 May_Hide_Profile := False;
10750 end if;
10752 Next_Formal (F1);
10753 Next_Formal (F2);
10754 end loop;
10756 if May_Hide_Profile
10757 and then No (F1)
10758 and then No (F2)
10759 then
10760 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
10761 end if;
10762 end;
10763 end if;
10764 end if;
10766 E := Homonym (E);
10767 end loop;
10769 -- On exit, we know that S is a new entity
10771 Enter_Overloaded_Entity (S);
10772 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10773 Check_Overriding_Indicator
10774 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10776 -- Overloading is not allowed in SPARK, except for operators
10778 if Nkind (S) /= N_Defining_Operator_Symbol then
10779 Error_Msg_Sloc := Sloc (Homonym (S));
10780 Check_SPARK_Restriction
10781 ("overloading not allowed with entity#", S);
10782 end if;
10784 -- If S is a derived operation for an untagged type then by
10785 -- definition it's not a dispatching operation (even if the parent
10786 -- operation was dispatching), so Check_Dispatching_Operation is not
10787 -- called in that case.
10789 if No (Derived_Type)
10790 or else Is_Tagged_Type (Derived_Type)
10791 then
10792 Check_Dispatching_Operation (S, Empty);
10793 end if;
10794 end if;
10796 -- If this is a user-defined equality operator that is not a derived
10797 -- subprogram, create the corresponding inequality. If the operation is
10798 -- dispatching, the expansion is done elsewhere, and we do not create
10799 -- an explicit inequality operation.
10801 <<Check_Inequality>>
10802 if Chars (S) = Name_Op_Eq
10803 and then Etype (S) = Standard_Boolean
10804 and then Present (Parent (S))
10805 and then not Is_Dispatching_Operation (S)
10806 then
10807 Make_Inequality_Operator (S);
10809 if Ada_Version >= Ada_2012 then
10810 Check_Untagged_Equality (S);
10811 end if;
10812 end if;
10813 end New_Overloaded_Entity;
10815 ---------------------
10816 -- Process_Formals --
10817 ---------------------
10819 procedure Process_Formals
10820 (T : List_Id;
10821 Related_Nod : Node_Id)
10823 Param_Spec : Node_Id;
10824 Formal : Entity_Id;
10825 Formal_Type : Entity_Id;
10826 Default : Node_Id;
10827 Ptype : Entity_Id;
10829 Num_Out_Params : Nat := 0;
10830 First_Out_Param : Entity_Id := Empty;
10831 -- Used for setting Is_Only_Out_Parameter
10833 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
10834 -- Determine whether an access type designates a type coming from a
10835 -- limited view.
10837 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
10838 -- Check whether the default has a class-wide type. After analysis the
10839 -- default has the type of the formal, so we must also check explicitly
10840 -- for an access attribute.
10842 -------------------------------
10843 -- Designates_From_With_Type --
10844 -------------------------------
10846 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
10847 Desig : Entity_Id := Typ;
10849 begin
10850 if Is_Access_Type (Desig) then
10851 Desig := Directly_Designated_Type (Desig);
10852 end if;
10854 if Is_Class_Wide_Type (Desig) then
10855 Desig := Root_Type (Desig);
10856 end if;
10858 return
10859 Ekind (Desig) = E_Incomplete_Type and then From_With_Type (Desig);
10860 end Designates_From_With_Type;
10862 ---------------------------
10863 -- Is_Class_Wide_Default --
10864 ---------------------------
10866 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
10867 begin
10868 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
10869 or else (Nkind (D) = N_Attribute_Reference
10870 and then Attribute_Name (D) = Name_Access
10871 and then Is_Class_Wide_Type (Etype (Prefix (D))));
10872 end Is_Class_Wide_Default;
10874 -- Start of processing for Process_Formals
10876 begin
10877 -- In order to prevent premature use of the formals in the same formal
10878 -- part, the Ekind is left undefined until all default expressions are
10879 -- analyzed. The Ekind is established in a separate loop at the end.
10881 Param_Spec := First (T);
10882 while Present (Param_Spec) loop
10883 Formal := Defining_Identifier (Param_Spec);
10884 Set_Never_Set_In_Source (Formal, True);
10885 Enter_Name (Formal);
10887 -- Case of ordinary parameters
10889 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
10890 Find_Type (Parameter_Type (Param_Spec));
10891 Ptype := Parameter_Type (Param_Spec);
10893 if Ptype = Error then
10894 goto Continue;
10895 end if;
10897 Formal_Type := Entity (Ptype);
10899 if Is_Incomplete_Type (Formal_Type)
10900 or else
10901 (Is_Class_Wide_Type (Formal_Type)
10902 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
10903 then
10904 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10905 -- primitive operations, as long as their completion is
10906 -- in the same declarative part. If in the private part
10907 -- this means that the type cannot be a Taft-amendment type.
10908 -- Check is done on package exit. For access to subprograms,
10909 -- the use is legal for Taft-amendment types.
10911 -- Ada 2012: tagged incomplete types are allowed as generic
10912 -- formal types. They do not introduce dependencies and the
10913 -- corresponding generic subprogram does not have a delayed
10914 -- freeze, because it does not need a freeze node.
10916 if Is_Tagged_Type (Formal_Type) then
10917 if Ekind (Scope (Current_Scope)) = E_Package
10918 and then not From_With_Type (Formal_Type)
10919 and then not Is_Generic_Type (Formal_Type)
10920 and then not Is_Class_Wide_Type (Formal_Type)
10921 then
10922 if not Nkind_In
10923 (Parent (T), N_Access_Function_Definition,
10924 N_Access_Procedure_Definition)
10925 then
10926 Append_Elmt
10927 (Current_Scope,
10928 Private_Dependents (Base_Type (Formal_Type)));
10930 -- Freezing is delayed to ensure that Register_Prim
10931 -- will get called for this operation, which is needed
10932 -- in cases where static dispatch tables aren't built.
10933 -- (Note that the same is done for controlling access
10934 -- parameter cases in function Access_Definition.)
10936 Set_Has_Delayed_Freeze (Current_Scope);
10937 end if;
10938 end if;
10940 -- Special handling of Value_Type for CIL case
10942 elsif Is_Value_Type (Formal_Type) then
10943 null;
10945 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10946 N_Access_Procedure_Definition)
10947 then
10948 -- AI05-0151: Tagged incomplete types are allowed in all
10949 -- formal parts. Untagged incomplete types are not allowed
10950 -- in bodies.
10952 if Ada_Version >= Ada_2012 then
10953 if Is_Tagged_Type (Formal_Type) then
10954 null;
10956 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
10957 N_Entry_Body,
10958 N_Subprogram_Body)
10959 then
10960 Error_Msg_NE
10961 ("invalid use of untagged incomplete type&",
10962 Ptype, Formal_Type);
10963 end if;
10965 else
10966 Error_Msg_NE
10967 ("invalid use of incomplete type&",
10968 Param_Spec, Formal_Type);
10970 -- Further checks on the legality of incomplete types
10971 -- in formal parts are delayed until the freeze point
10972 -- of the enclosing subprogram or access to subprogram.
10973 end if;
10974 end if;
10976 elsif Ekind (Formal_Type) = E_Void then
10977 Error_Msg_NE
10978 ("premature use of&",
10979 Parameter_Type (Param_Spec), Formal_Type);
10980 end if;
10982 -- Ada 2012 (AI-142): Handle aliased parameters
10984 if Ada_Version >= Ada_2012
10985 and then Aliased_Present (Param_Spec)
10986 then
10987 Set_Is_Aliased (Formal);
10988 end if;
10990 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10991 -- declaration corresponding to the null-excluding type of the
10992 -- formal in the enclosing scope. Finally, replace the parameter
10993 -- type of the formal with the internal subtype.
10995 if Ada_Version >= Ada_2005
10996 and then Null_Exclusion_Present (Param_Spec)
10997 then
10998 if not Is_Access_Type (Formal_Type) then
10999 Error_Msg_N
11000 ("`NOT NULL` allowed only for an access type", Param_Spec);
11002 else
11003 if Can_Never_Be_Null (Formal_Type)
11004 and then Comes_From_Source (Related_Nod)
11005 then
11006 Error_Msg_NE
11007 ("`NOT NULL` not allowed (& already excludes null)",
11008 Param_Spec, Formal_Type);
11009 end if;
11011 Formal_Type :=
11012 Create_Null_Excluding_Itype
11013 (T => Formal_Type,
11014 Related_Nod => Related_Nod,
11015 Scope_Id => Scope (Current_Scope));
11017 -- If the designated type of the itype is an itype that is
11018 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11019 -- on the access subtype, to prevent order-of-elaboration
11020 -- issues in the backend.
11022 -- Example:
11023 -- type T is access procedure;
11024 -- procedure Op (O : not null T);
11026 if Is_Itype (Directly_Designated_Type (Formal_Type))
11027 and then
11028 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11029 then
11030 Set_Has_Delayed_Freeze (Formal_Type);
11031 end if;
11032 end if;
11033 end if;
11035 -- An access formal type
11037 else
11038 Formal_Type :=
11039 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11041 -- No need to continue if we already notified errors
11043 if not Present (Formal_Type) then
11044 return;
11045 end if;
11047 -- Ada 2005 (AI-254)
11049 declare
11050 AD : constant Node_Id :=
11051 Access_To_Subprogram_Definition
11052 (Parameter_Type (Param_Spec));
11053 begin
11054 if Present (AD) and then Protected_Present (AD) then
11055 Formal_Type :=
11056 Replace_Anonymous_Access_To_Protected_Subprogram
11057 (Param_Spec);
11058 end if;
11059 end;
11060 end if;
11062 Set_Etype (Formal, Formal_Type);
11064 -- Deal with default expression if present
11066 Default := Expression (Param_Spec);
11068 if Present (Default) then
11069 Check_SPARK_Restriction
11070 ("default expression is not allowed", Default);
11072 if Out_Present (Param_Spec) then
11073 Error_Msg_N
11074 ("default initialization only allowed for IN parameters",
11075 Param_Spec);
11076 end if;
11078 -- Do the special preanalysis of the expression (see section on
11079 -- "Handling of Default Expressions" in the spec of package Sem).
11081 Preanalyze_Spec_Expression (Default, Formal_Type);
11083 -- An access to constant cannot be the default for
11084 -- an access parameter that is an access to variable.
11086 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11087 and then not Is_Access_Constant (Formal_Type)
11088 and then Is_Access_Type (Etype (Default))
11089 and then Is_Access_Constant (Etype (Default))
11090 then
11091 Error_Msg_N
11092 ("formal that is access to variable cannot be initialized " &
11093 "with an access-to-constant expression", Default);
11094 end if;
11096 -- Check that the designated type of an access parameter's default
11097 -- is not a class-wide type unless the parameter's designated type
11098 -- is also class-wide.
11100 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11101 and then not Designates_From_With_Type (Formal_Type)
11102 and then Is_Class_Wide_Default (Default)
11103 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11104 then
11105 Error_Msg_N
11106 ("access to class-wide expression not allowed here", Default);
11107 end if;
11109 -- Check incorrect use of dynamically tagged expressions
11111 if Is_Tagged_Type (Formal_Type) then
11112 Check_Dynamically_Tagged_Expression
11113 (Expr => Default,
11114 Typ => Formal_Type,
11115 Related_Nod => Default);
11116 end if;
11117 end if;
11119 -- Ada 2005 (AI-231): Static checks
11121 if Ada_Version >= Ada_2005
11122 and then Is_Access_Type (Etype (Formal))
11123 and then Can_Never_Be_Null (Etype (Formal))
11124 then
11125 Null_Exclusion_Static_Checks (Param_Spec);
11126 end if;
11128 <<Continue>>
11129 Next (Param_Spec);
11130 end loop;
11132 -- If this is the formal part of a function specification, analyze the
11133 -- subtype mark in the context where the formals are visible but not
11134 -- yet usable, and may hide outer homographs.
11136 if Nkind (Related_Nod) = N_Function_Specification then
11137 Analyze_Return_Type (Related_Nod);
11138 end if;
11140 -- Now set the kind (mode) of each formal
11142 Param_Spec := First (T);
11143 while Present (Param_Spec) loop
11144 Formal := Defining_Identifier (Param_Spec);
11145 Set_Formal_Mode (Formal);
11147 if Ekind (Formal) = E_In_Parameter then
11148 Set_Default_Value (Formal, Expression (Param_Spec));
11150 if Present (Expression (Param_Spec)) then
11151 Default := Expression (Param_Spec);
11153 if Is_Scalar_Type (Etype (Default)) then
11154 if Nkind (Parameter_Type (Param_Spec)) /=
11155 N_Access_Definition
11156 then
11157 Formal_Type := Entity (Parameter_Type (Param_Spec));
11158 else
11159 Formal_Type :=
11160 Access_Definition
11161 (Related_Nod, Parameter_Type (Param_Spec));
11162 end if;
11164 Apply_Scalar_Range_Check (Default, Formal_Type);
11165 end if;
11166 end if;
11168 elsif Ekind (Formal) = E_Out_Parameter then
11169 Num_Out_Params := Num_Out_Params + 1;
11171 if Num_Out_Params = 1 then
11172 First_Out_Param := Formal;
11173 end if;
11175 elsif Ekind (Formal) = E_In_Out_Parameter then
11176 Num_Out_Params := Num_Out_Params + 1;
11177 end if;
11179 -- Skip remaining processing if formal type was in error
11181 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11182 goto Next_Parameter;
11183 end if;
11185 -- Force call by reference if aliased
11187 if Is_Aliased (Formal) then
11188 Set_Mechanism (Formal, By_Reference);
11190 -- Warn if user asked this to be passed by copy
11192 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
11193 Error_Msg_N
11194 ("cannot pass aliased parameter & by copy?", Formal);
11195 end if;
11197 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11199 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
11200 Set_Mechanism (Formal, By_Copy);
11202 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
11203 Set_Mechanism (Formal, By_Reference);
11204 end if;
11206 <<Next_Parameter>>
11207 Next (Param_Spec);
11208 end loop;
11210 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11211 Set_Is_Only_Out_Parameter (First_Out_Param);
11212 end if;
11213 end Process_Formals;
11215 ------------------
11216 -- Process_PPCs --
11217 ------------------
11219 procedure Process_PPCs
11220 (N : Node_Id;
11221 Spec_Id : Entity_Id;
11222 Body_Id : Entity_Id)
11224 Loc : constant Source_Ptr := Sloc (N);
11225 Prag : Node_Id;
11226 Parms : List_Id;
11228 Designator : Entity_Id;
11229 -- Subprogram designator, set from Spec_Id if present, else Body_Id
11231 Precond : Node_Id := Empty;
11232 -- Set non-Empty if we prepend precondition to the declarations. This
11233 -- is used to hook up inherited preconditions (adding the condition
11234 -- expression with OR ELSE, and adding the message).
11236 Inherited_Precond : Node_Id;
11237 -- Precondition inherited from parent subprogram
11239 Inherited : constant Subprogram_List :=
11240 Inherited_Subprograms (Spec_Id);
11241 -- List of subprograms inherited by this subprogram
11243 Plist : List_Id := No_List;
11244 -- List of generated postconditions
11246 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
11247 -- Append a node to a list. If there is no list, create a new one. When
11248 -- the item denotes a pragma, it is added to the list only when it is
11249 -- enabled.
11251 procedure Check_Access_Invariants (E : Entity_Id);
11252 -- If the subprogram returns an access to a type with invariants, or
11253 -- has access parameters whose designated type has an invariant, then
11254 -- under the same visibility conditions as for other invariant checks,
11255 -- the type invariant must be applied to the returned value.
11257 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id;
11258 -- Prag contains an analyzed precondition or postcondition pragma. This
11259 -- function copies the pragma, changes it to the corresponding Check
11260 -- pragma and returns the Check pragma as the result. If Pspec is non-
11261 -- empty, this is the case of inheriting a PPC, where we must change
11262 -- references to parameters of the inherited subprogram to point to the
11263 -- corresponding parameters of the current subprogram.
11265 function Has_Checked_Predicate (Typ : Entity_Id) return Boolean;
11266 -- Determine whether type Typ has or inherits at least one predicate
11267 -- aspect or pragma, for which the applicable policy is Checked.
11269 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
11270 -- Determine whether the body of procedure Proc_Id contains a sole null
11271 -- statement, possibly followed by an optional return.
11273 procedure Insert_After_Last_Declaration (Nod : Node_Id);
11274 -- Insert node Nod after the last declaration of the context
11276 function Is_Public_Subprogram_For (T : Entity_Id) return Boolean;
11277 -- T is the entity for a private type for which invariants are defined.
11278 -- This function returns True if the procedure corresponding to the
11279 -- value of Designator is a public procedure from the point of view of
11280 -- this type (i.e. its spec is in the visible part of the package that
11281 -- contains the declaration of the private type). A True value means
11282 -- that an invariant check is required (for an IN OUT parameter, or
11283 -- the returned value of a function.
11285 -------------------------
11286 -- Append_Enabled_Item --
11287 -------------------------
11289 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
11290 begin
11291 -- Do not chain ignored or disabled pragmas
11293 if Nkind (Item) = N_Pragma
11294 and then (Is_Ignored (Item) or else Is_Disabled (Item))
11295 then
11296 null;
11298 -- Add the item
11300 else
11301 if No (List) then
11302 List := New_List;
11303 end if;
11305 Append (Item, List);
11306 end if;
11307 end Append_Enabled_Item;
11309 -----------------------------
11310 -- Check_Access_Invariants --
11311 -----------------------------
11313 procedure Check_Access_Invariants (E : Entity_Id) is
11314 Call : Node_Id;
11315 Obj : Node_Id;
11316 Typ : Entity_Id;
11318 begin
11319 if Is_Access_Type (Etype (E))
11320 and then not Is_Access_Constant (Etype (E))
11321 then
11322 Typ := Designated_Type (Etype (E));
11324 if Has_Invariants (Typ)
11325 and then Present (Invariant_Procedure (Typ))
11326 and then not Has_Null_Body (Invariant_Procedure (Typ))
11327 and then Is_Public_Subprogram_For (Typ)
11328 then
11329 Obj :=
11330 Make_Explicit_Dereference (Loc,
11331 Prefix => New_Occurrence_Of (E, Loc));
11332 Set_Etype (Obj, Typ);
11334 Call := Make_Invariant_Call (Obj);
11336 Append_Enabled_Item
11337 (Make_If_Statement (Loc,
11338 Condition =>
11339 Make_Op_Ne (Loc,
11340 Left_Opnd => Make_Null (Loc),
11341 Right_Opnd => New_Occurrence_Of (E, Loc)),
11342 Then_Statements => New_List (Call)),
11343 List => Plist);
11344 end if;
11345 end if;
11346 end Check_Access_Invariants;
11348 --------------
11349 -- Grab_PPC --
11350 --------------
11352 function Grab_PPC (Pspec : Entity_Id := Empty) return Node_Id is
11353 Nam : constant Name_Id := Pragma_Name (Prag);
11354 Map : Elist_Id;
11355 CP : Node_Id;
11357 Ename : Name_Id;
11358 -- Effective name of pragma (maybe Pre/Post rather than Precondition/
11359 -- Postcodition if the pragma came from a Pre/Post aspect). We need
11360 -- the name right when we generate the Check pragma, since we want
11361 -- the right set of check policies to apply.
11363 begin
11364 -- Prepare map if this is the case where we have to map entities of
11365 -- arguments in the overridden subprogram to corresponding entities
11366 -- of the current subprogram.
11368 if No (Pspec) then
11369 Map := No_Elist;
11371 else
11372 declare
11373 PF : Entity_Id;
11374 CF : Entity_Id;
11376 begin
11377 Map := New_Elmt_List;
11378 PF := First_Formal (Pspec);
11379 CF := First_Formal (Designator);
11380 while Present (PF) loop
11381 Append_Elmt (PF, Map);
11382 Append_Elmt (CF, Map);
11383 Next_Formal (PF);
11384 Next_Formal (CF);
11385 end loop;
11386 end;
11387 end if;
11389 -- Now we can copy the tree, doing any required substitutions
11391 CP := New_Copy_Tree (Prag, Map => Map, New_Scope => Current_Scope);
11393 -- Set Analyzed to false, since we want to reanalyze the check
11394 -- procedure. Note that it is only at the outer level that we
11395 -- do this fiddling, for the spec cases, the already preanalyzed
11396 -- parameters are not affected.
11398 Set_Analyzed (CP, False);
11400 -- We also make sure Comes_From_Source is False for the copy
11402 Set_Comes_From_Source (CP, False);
11404 -- For a postcondition pragma within a generic, preserve the pragma
11405 -- for later expansion. This is also used when an error was detected,
11406 -- thus setting Expander_Active to False.
11408 if Nam = Name_Postcondition
11409 and then not Expander_Active
11410 then
11411 return CP;
11412 end if;
11414 -- Get effective name of aspect
11416 if Present (Corresponding_Aspect (Prag)) then
11417 Ename := Chars (Identifier (Corresponding_Aspect (Prag)));
11418 else
11419 Ename := Nam;
11420 end if;
11422 -- Change copy of pragma into corresponding pragma Check
11424 Prepend_To (Pragma_Argument_Associations (CP),
11425 Make_Pragma_Argument_Association (Sloc (Prag),
11426 Expression => Make_Identifier (Loc, Ename)));
11427 Set_Pragma_Identifier (CP, Make_Identifier (Sloc (Prag), Name_Check));
11429 -- If this is inherited case and the current message starts with
11430 -- "failed p", we change it to "failed inherited p...".
11432 if Present (Pspec) then
11433 declare
11434 Msg : constant Node_Id :=
11435 Last (Pragma_Argument_Associations (CP));
11437 begin
11438 if Chars (Msg) = Name_Message then
11439 String_To_Name_Buffer (Strval (Expression (Msg)));
11441 if Name_Buffer (1 .. 8) = "failed p" then
11442 Insert_Str_In_Name_Buffer ("inherited ", 8);
11443 Set_Strval
11444 (Expression (Last (Pragma_Argument_Associations (CP))),
11445 String_From_Name_Buffer);
11446 end if;
11447 end if;
11448 end;
11449 end if;
11451 -- Return the check pragma
11453 return CP;
11454 end Grab_PPC;
11456 ---------------------------
11457 -- Has_Checked_Predicate --
11458 ---------------------------
11460 function Has_Checked_Predicate (Typ : Entity_Id) return Boolean is
11461 Anc : Entity_Id;
11462 Pred : Node_Id;
11464 begin
11465 -- Climb the ancestor type chain staring from the input. This is done
11466 -- because the input type may lack aspect/pragma predicate and simply
11467 -- inherit those from its ancestor.
11469 -- Note that predicate pragmas include all three cases of predicate
11470 -- aspects (Predicate, Dynamic_Predicate, Static_Predicate), so this
11471 -- routine checks for all three cases.
11473 Anc := Typ;
11474 while Present (Anc) loop
11475 Pred := Get_Pragma (Anc, Pragma_Predicate);
11477 if Present (Pred) and then not Is_Ignored (Pred) then
11478 return True;
11479 end if;
11481 Anc := Nearest_Ancestor (Anc);
11482 end loop;
11484 return False;
11485 end Has_Checked_Predicate;
11487 -------------------
11488 -- Has_Null_Body --
11489 -------------------
11491 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
11492 Body_Id : Entity_Id;
11493 Decl : Node_Id;
11494 Spec : Node_Id;
11495 Stmt1 : Node_Id;
11496 Stmt2 : Node_Id;
11498 begin
11499 Spec := Parent (Proc_Id);
11500 Decl := Parent (Spec);
11502 -- Retrieve the entity of the invariant procedure body
11504 if Nkind (Spec) = N_Procedure_Specification
11505 and then Nkind (Decl) = N_Subprogram_Declaration
11506 then
11507 Body_Id := Corresponding_Body (Decl);
11509 -- The body acts as a spec
11511 else
11512 Body_Id := Proc_Id;
11513 end if;
11515 -- The body will be generated later
11517 if No (Body_Id) then
11518 return False;
11519 end if;
11521 Spec := Parent (Body_Id);
11522 Decl := Parent (Spec);
11524 pragma Assert
11525 (Nkind (Spec) = N_Procedure_Specification
11526 and then Nkind (Decl) = N_Subprogram_Body);
11528 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
11530 -- Look for a null statement followed by an optional return statement
11532 if Nkind (Stmt1) = N_Null_Statement then
11533 Stmt2 := Next (Stmt1);
11535 if Present (Stmt2) then
11536 return Nkind (Stmt2) = N_Simple_Return_Statement;
11537 else
11538 return True;
11539 end if;
11540 end if;
11542 return False;
11543 end Has_Null_Body;
11545 -----------------------------------
11546 -- Insert_After_Last_Declaration --
11547 -----------------------------------
11549 procedure Insert_After_Last_Declaration (Nod : Node_Id) is
11550 Decls : constant List_Id := Declarations (N);
11552 begin
11553 if No (Decls) then
11554 Set_Declarations (N, New_List (Nod));
11555 else
11556 Append_To (Decls, Nod);
11557 end if;
11558 end Insert_After_Last_Declaration;
11560 ------------------------------
11561 -- Is_Public_Subprogram_For --
11562 ------------------------------
11564 -- The type T is a private type, its declaration is therefore in
11565 -- the list of public declarations of some package. The test for a
11566 -- public subprogram is that its declaration is in this same list
11567 -- of declarations for the same package (note that all the public
11568 -- declarations are in one list, and all the private declarations
11569 -- in another, so this deals with the public/private distinction).
11571 function Is_Public_Subprogram_For (T : Entity_Id) return Boolean is
11572 DD : constant Node_Id := Unit_Declaration_Node (Designator);
11573 -- The subprogram declaration for the subprogram in question
11575 TL : constant List_Id :=
11576 Visible_Declarations
11577 (Specification (Unit_Declaration_Node (Scope (T))));
11578 -- The list of declarations containing the private declaration of
11579 -- the type. We know it is a private type, so we know its scope is
11580 -- the package in question, and we know it must be in the visible
11581 -- declarations of this package.
11583 begin
11584 -- If the subprogram declaration is not a list member, it must be
11585 -- an Init_Proc, in which case we want to consider it to be a
11586 -- public subprogram, since we do get initializations to deal with.
11587 -- Other internally generated subprograms are not public.
11589 if not Is_List_Member (DD)
11590 and then Is_Init_Proc (Defining_Entity (DD))
11591 then
11592 return True;
11594 -- The declaration may have been generated for an expression function
11595 -- so check whether that function comes from source.
11597 elsif not Comes_From_Source (DD)
11598 and then
11599 (Nkind (Original_Node (DD)) /= N_Expression_Function
11600 or else not Comes_From_Source (Defining_Entity (DD)))
11601 then
11602 return False;
11604 -- Otherwise we test whether the subprogram is declared in the
11605 -- visible declarations of the package containing the type.
11607 else
11608 return TL = List_Containing (DD);
11609 end if;
11610 end Is_Public_Subprogram_For;
11612 -- Local variables
11614 Formal : Node_Id;
11615 Formal_Typ : Entity_Id;
11616 Func_Typ : Entity_Id;
11617 Post_Proc : Entity_Id;
11618 Result : Node_Id;
11620 -- Start of processing for Process_PPCs
11622 begin
11623 -- Capture designator from spec if present, else from body
11625 if Present (Spec_Id) then
11626 Designator := Spec_Id;
11627 else
11628 Designator := Body_Id;
11629 end if;
11631 -- Do not process a predicate function as its body will contain a
11632 -- recursive call to itself and blow up the stack.
11634 if Ekind (Designator) = E_Function
11635 and then Is_Predicate_Function (Designator)
11636 then
11637 return;
11639 -- Internally generated subprograms, such as type-specific functions,
11640 -- don't get assertion checks.
11642 elsif Get_TSS_Name (Designator) /= TSS_Null then
11643 return;
11644 end if;
11646 -- Grab preconditions from spec
11648 if Present (Spec_Id) then
11650 -- Loop through PPC pragmas from spec. Note that preconditions from
11651 -- the body will be analyzed and converted when we scan the body
11652 -- declarations below.
11654 Prag := Pre_Post_Conditions (Contract (Spec_Id));
11655 while Present (Prag) loop
11656 if Pragma_Name (Prag) = Name_Precondition then
11658 -- For Pre (or Precondition pragma), we simply prepend the
11659 -- pragma to the list of declarations right away so that it
11660 -- will be executed at the start of the procedure. Note that
11661 -- this processing reverses the order of the list, which is
11662 -- what we want since new entries were chained to the head of
11663 -- the list. There can be more than one precondition when we
11664 -- use pragma Precondition.
11666 if not Class_Present (Prag) then
11667 Prepend (Grab_PPC, Declarations (N));
11669 -- For Pre'Class there can only be one pragma, and we save
11670 -- it in Precond for now. We will add inherited Pre'Class
11671 -- stuff before inserting this pragma in the declarations.
11672 else
11673 Precond := Grab_PPC;
11674 end if;
11675 end if;
11677 Prag := Next_Pragma (Prag);
11678 end loop;
11680 -- Now deal with inherited preconditions
11682 for J in Inherited'Range loop
11683 Prag := Pre_Post_Conditions (Contract (Inherited (J)));
11685 while Present (Prag) loop
11686 if Pragma_Name (Prag) = Name_Precondition
11687 and then Class_Present (Prag)
11688 then
11689 Inherited_Precond := Grab_PPC (Inherited (J));
11691 -- No precondition so far, so establish this as the first
11693 if No (Precond) then
11694 Precond := Inherited_Precond;
11696 -- Here we already have a precondition, add inherited one
11698 else
11699 -- Add new precondition to old one using OR ELSE
11701 declare
11702 New_Expr : constant Node_Id :=
11703 Get_Pragma_Arg
11704 (Next (First (Pragma_Argument_Associations
11705 (Inherited_Precond))));
11706 Old_Expr : constant Node_Id :=
11707 Get_Pragma_Arg
11708 (Next (First (Pragma_Argument_Associations
11709 (Precond))));
11711 begin
11712 if Paren_Count (Old_Expr) = 0 then
11713 Set_Paren_Count (Old_Expr, 1);
11714 end if;
11716 if Paren_Count (New_Expr) = 0 then
11717 Set_Paren_Count (New_Expr, 1);
11718 end if;
11720 Rewrite (Old_Expr,
11721 Make_Or_Else (Sloc (Old_Expr),
11722 Left_Opnd => Relocate_Node (Old_Expr),
11723 Right_Opnd => New_Expr));
11724 end;
11726 -- Add new message in the form:
11728 -- failed precondition from bla
11729 -- also failed inherited precondition from bla
11730 -- ...
11732 -- Skip this if exception locations are suppressed
11734 if not Exception_Locations_Suppressed then
11735 declare
11736 New_Msg : constant Node_Id :=
11737 Get_Pragma_Arg
11738 (Last
11739 (Pragma_Argument_Associations
11740 (Inherited_Precond)));
11741 Old_Msg : constant Node_Id :=
11742 Get_Pragma_Arg
11743 (Last
11744 (Pragma_Argument_Associations
11745 (Precond)));
11746 begin
11747 Start_String (Strval (Old_Msg));
11748 Store_String_Chars (ASCII.LF & " also ");
11749 Store_String_Chars (Strval (New_Msg));
11750 Set_Strval (Old_Msg, End_String);
11751 end;
11752 end if;
11753 end if;
11754 end if;
11756 Prag := Next_Pragma (Prag);
11757 end loop;
11758 end loop;
11760 -- If we have built a precondition for Pre'Class (including any
11761 -- Pre'Class aspects inherited from parent subprograms), then we
11762 -- insert this composite precondition at this stage.
11764 if Present (Precond) then
11765 Prepend (Precond, Declarations (N));
11766 end if;
11767 end if;
11769 -- Build postconditions procedure if needed and prepend the following
11770 -- declaration to the start of the declarations for the subprogram.
11772 -- procedure _postconditions [(_Result : resulttype)] is
11773 -- begin
11774 -- pragma Check (Postcondition, condition [,message]);
11775 -- pragma Check (Postcondition, condition [,message]);
11776 -- ...
11777 -- Invariant_Procedure (_Result) ...
11778 -- Invariant_Procedure (Arg1)
11779 -- ...
11780 -- end;
11782 -- First we deal with the postconditions in the body
11784 if Is_Non_Empty_List (Declarations (N)) then
11786 -- Loop through declarations
11788 Prag := First (Declarations (N));
11789 while Present (Prag) loop
11790 if Nkind (Prag) = N_Pragma then
11792 -- Capture postcondition pragmas
11794 if Pragma_Name (Prag) = Name_Postcondition then
11795 Analyze (Prag);
11797 -- If expansion is disabled, as in a generic unit, save
11798 -- pragma for later expansion.
11800 if not Expander_Active then
11801 Prepend (Grab_PPC, Declarations (N));
11802 else
11803 Append_Enabled_Item (Grab_PPC, Plist);
11804 end if;
11805 end if;
11807 Next (Prag);
11809 -- Not a pragma, if comes from source, then end scan
11811 elsif Comes_From_Source (Prag) then
11812 exit;
11814 -- Skip stuff not coming from source
11816 else
11817 Next (Prag);
11818 end if;
11819 end loop;
11820 end if;
11822 -- Now deal with any postconditions from the spec
11824 if Present (Spec_Id) then
11825 Spec_Postconditions : declare
11826 procedure Process_Contract_Cases (Spec : Node_Id);
11827 -- This processes the Contract_Test_Cases from Spec, processing
11828 -- any contract-cases from the list. The caller has checked that
11829 -- Contract_Test_Cases is non-Empty.
11831 procedure Process_Post_Conditions
11832 (Spec : Node_Id;
11833 Class : Boolean);
11834 -- This processes the Pre_Post_Conditions from Spec, processing
11835 -- any postconditions from the list. If Class is True, then only
11836 -- postconditions marked with Class_Present are considered. The
11837 -- caller has checked that Pre_Post_Conditions is non-Empty.
11839 ----------------------------
11840 -- Process_Contract_Cases --
11841 ----------------------------
11843 procedure Process_Contract_Cases (Spec : Node_Id) is
11844 begin
11845 -- Loop through Contract_Cases pragmas from spec
11847 Prag := Contract_Test_Cases (Contract (Spec));
11848 loop
11849 if Pragma_Name (Prag) = Name_Contract_Cases then
11850 Expand_Contract_Cases
11851 (CCs => Prag,
11852 Subp_Id => Spec_Id,
11853 Decls => Declarations (N),
11854 Stmts => Plist);
11855 end if;
11857 Prag := Next_Pragma (Prag);
11858 exit when No (Prag);
11859 end loop;
11860 end Process_Contract_Cases;
11862 -----------------------------
11863 -- Process_Post_Conditions --
11864 -----------------------------
11866 procedure Process_Post_Conditions
11867 (Spec : Node_Id;
11868 Class : Boolean)
11870 Pspec : Node_Id;
11872 begin
11873 if Class then
11874 Pspec := Spec;
11875 else
11876 Pspec := Empty;
11877 end if;
11879 -- Loop through PPC pragmas from spec
11881 Prag := Pre_Post_Conditions (Contract (Spec));
11882 loop
11883 if Pragma_Name (Prag) = Name_Postcondition
11884 and then (not Class or else Class_Present (Prag))
11885 then
11886 if not Expander_Active then
11887 Prepend (Grab_PPC (Pspec), Declarations (N));
11888 else
11889 Append_Enabled_Item (Grab_PPC (Pspec), Plist);
11890 end if;
11891 end if;
11893 Prag := Next_Pragma (Prag);
11894 exit when No (Prag);
11895 end loop;
11896 end Process_Post_Conditions;
11898 -- Start of processing for Spec_Postconditions
11900 begin
11901 -- Process postconditions expressed as contract-cases
11903 if Present (Contract_Test_Cases (Contract (Spec_Id))) then
11904 Process_Contract_Cases (Spec_Id);
11905 end if;
11907 -- Process spec postconditions
11909 if Present (Pre_Post_Conditions (Contract (Spec_Id))) then
11910 Process_Post_Conditions (Spec_Id, Class => False);
11911 end if;
11913 -- Process inherited postconditions
11915 for J in Inherited'Range loop
11916 if Present (Pre_Post_Conditions (Contract (Inherited (J)))) then
11917 Process_Post_Conditions (Inherited (J), Class => True);
11918 end if;
11919 end loop;
11920 end Spec_Postconditions;
11921 end if;
11923 -- Add an invariant call to check the result of a function
11925 if Ekind (Designator) /= E_Procedure and then Expander_Active then
11926 Func_Typ := Etype (Designator);
11927 Result := Make_Defining_Identifier (Loc, Name_uResult);
11929 Set_Etype (Result, Func_Typ);
11931 -- Add argument for return
11933 Parms := New_List (
11934 Make_Parameter_Specification (Loc,
11935 Defining_Identifier => Result,
11936 Parameter_Type => New_Occurrence_Of (Func_Typ, Loc)));
11938 -- Add invariant call if returning type with invariants and this is a
11939 -- public function, i.e. a function declared in the visible part of
11940 -- the package defining the private type.
11942 if Has_Invariants (Func_Typ)
11943 and then Present (Invariant_Procedure (Func_Typ))
11944 and then not Has_Null_Body (Invariant_Procedure (Func_Typ))
11945 and then Is_Public_Subprogram_For (Func_Typ)
11946 then
11947 Append_Enabled_Item
11948 (Make_Invariant_Call (New_Occurrence_Of (Result, Loc)), Plist);
11949 end if;
11951 -- Same if return value is an access to type with invariants
11953 Check_Access_Invariants (Result);
11955 -- Procedure case
11957 else
11958 Parms := No_List;
11959 end if;
11961 -- Add invariant calls and predicate calls for parameters. Note that
11962 -- this is done for functions as well, since in Ada 2012 they can have
11963 -- IN OUT args.
11965 if Expander_Active then
11966 Formal := First_Formal (Designator);
11967 while Present (Formal) loop
11968 if Ekind (Formal) /= E_In_Parameter
11969 or else Is_Access_Type (Etype (Formal))
11970 then
11971 Formal_Typ := Etype (Formal);
11973 if Has_Invariants (Formal_Typ)
11974 and then Present (Invariant_Procedure (Formal_Typ))
11975 and then not Has_Null_Body (Invariant_Procedure (Formal_Typ))
11976 and then Is_Public_Subprogram_For (Formal_Typ)
11977 then
11978 Append_Enabled_Item
11979 (Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
11980 Plist);
11981 end if;
11983 Check_Access_Invariants (Formal);
11985 if Has_Predicates (Formal_Typ)
11986 and then Present (Predicate_Function (Formal_Typ))
11987 and then Has_Checked_Predicate (Formal_Typ)
11988 then
11989 Append_Enabled_Item
11990 (Make_Predicate_Check
11991 (Formal_Typ, New_Occurrence_Of (Formal, Loc)),
11992 Plist);
11993 end if;
11994 end if;
11996 Next_Formal (Formal);
11997 end loop;
11998 end if;
12000 -- Build and insert postcondition procedure
12002 if Expander_Active and then Present (Plist) then
12003 Post_Proc :=
12004 Make_Defining_Identifier (Loc, Chars => Name_uPostconditions);
12006 -- Insert the corresponding body of a post condition pragma after the
12007 -- last declaration of the context. This ensures that the body will
12008 -- not cause any premature freezing as it may mention types:
12010 -- procedure Proc (Obj : Array_Typ) is
12011 -- procedure _postconditions is
12012 -- begin
12013 -- ... Obj ...
12014 -- end _postconditions;
12016 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
12017 -- begin
12019 -- In the example above, Obj is of type T but the incorrect placement
12020 -- of _postconditions will cause a crash in gigi due to an out of
12021 -- order reference. The body of _postconditions must be placed after
12022 -- the declaration of Temp to preserve correct visibility.
12024 Insert_After_Last_Declaration (
12025 Make_Subprogram_Body (Loc,
12026 Specification =>
12027 Make_Procedure_Specification (Loc,
12028 Defining_Unit_Name => Post_Proc,
12029 Parameter_Specifications => Parms),
12031 Declarations => Empty_List,
12033 Handled_Statement_Sequence =>
12034 Make_Handled_Sequence_Of_Statements (Loc,
12035 Statements => Plist)));
12037 Set_Ekind (Post_Proc, E_Procedure);
12039 -- If this is a procedure, set the Postcondition_Proc attribute on
12040 -- the proper defining entity for the subprogram.
12042 if Ekind (Designator) = E_Procedure then
12043 Set_Postcondition_Proc (Designator, Post_Proc);
12044 end if;
12046 Set_Has_Postconditions (Designator);
12047 end if;
12048 end Process_PPCs;
12050 ----------------------------
12051 -- Reference_Body_Formals --
12052 ----------------------------
12054 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
12055 Fs : Entity_Id;
12056 Fb : Entity_Id;
12058 begin
12059 if Error_Posted (Spec) then
12060 return;
12061 end if;
12063 -- Iterate over both lists. They may be of different lengths if the two
12064 -- specs are not conformant.
12066 Fs := First_Formal (Spec);
12067 Fb := First_Formal (Bod);
12068 while Present (Fs) and then Present (Fb) loop
12069 Generate_Reference (Fs, Fb, 'b');
12071 if Style_Check then
12072 Style.Check_Identifier (Fb, Fs);
12073 end if;
12075 Set_Spec_Entity (Fb, Fs);
12076 Set_Referenced (Fs, False);
12077 Next_Formal (Fs);
12078 Next_Formal (Fb);
12079 end loop;
12080 end Reference_Body_Formals;
12082 -------------------------
12083 -- Set_Actual_Subtypes --
12084 -------------------------
12086 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
12087 Decl : Node_Id;
12088 Formal : Entity_Id;
12089 T : Entity_Id;
12090 First_Stmt : Node_Id := Empty;
12091 AS_Needed : Boolean;
12093 begin
12094 -- If this is an empty initialization procedure, no need to create
12095 -- actual subtypes (small optimization).
12097 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
12098 return;
12099 end if;
12101 Formal := First_Formal (Subp);
12102 while Present (Formal) loop
12103 T := Etype (Formal);
12105 -- We never need an actual subtype for a constrained formal
12107 if Is_Constrained (T) then
12108 AS_Needed := False;
12110 -- If we have unknown discriminants, then we do not need an actual
12111 -- subtype, or more accurately we cannot figure it out! Note that
12112 -- all class-wide types have unknown discriminants.
12114 elsif Has_Unknown_Discriminants (T) then
12115 AS_Needed := False;
12117 -- At this stage we have an unconstrained type that may need an
12118 -- actual subtype. For sure the actual subtype is needed if we have
12119 -- an unconstrained array type.
12121 elsif Is_Array_Type (T) then
12122 AS_Needed := True;
12124 -- The only other case needing an actual subtype is an unconstrained
12125 -- record type which is an IN parameter (we cannot generate actual
12126 -- subtypes for the OUT or IN OUT case, since an assignment can
12127 -- change the discriminant values. However we exclude the case of
12128 -- initialization procedures, since discriminants are handled very
12129 -- specially in this context, see the section entitled "Handling of
12130 -- Discriminants" in Einfo.
12132 -- We also exclude the case of Discrim_SO_Functions (functions used
12133 -- in front end layout mode for size/offset values), since in such
12134 -- functions only discriminants are referenced, and not only are such
12135 -- subtypes not needed, but they cannot always be generated, because
12136 -- of order of elaboration issues.
12138 elsif Is_Record_Type (T)
12139 and then Ekind (Formal) = E_In_Parameter
12140 and then Chars (Formal) /= Name_uInit
12141 and then not Is_Unchecked_Union (T)
12142 and then not Is_Discrim_SO_Function (Subp)
12143 then
12144 AS_Needed := True;
12146 -- All other cases do not need an actual subtype
12148 else
12149 AS_Needed := False;
12150 end if;
12152 -- Generate actual subtypes for unconstrained arrays and
12153 -- unconstrained discriminated records.
12155 if AS_Needed then
12156 if Nkind (N) = N_Accept_Statement then
12158 -- If expansion is active, the formal is replaced by a local
12159 -- variable that renames the corresponding entry of the
12160 -- parameter block, and it is this local variable that may
12161 -- require an actual subtype.
12163 if Full_Expander_Active then
12164 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
12165 else
12166 Decl := Build_Actual_Subtype (T, Formal);
12167 end if;
12169 if Present (Handled_Statement_Sequence (N)) then
12170 First_Stmt :=
12171 First (Statements (Handled_Statement_Sequence (N)));
12172 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
12173 Mark_Rewrite_Insertion (Decl);
12174 else
12175 -- If the accept statement has no body, there will be no
12176 -- reference to the actuals, so no need to compute actual
12177 -- subtypes.
12179 return;
12180 end if;
12182 else
12183 Decl := Build_Actual_Subtype (T, Formal);
12184 Prepend (Decl, Declarations (N));
12185 Mark_Rewrite_Insertion (Decl);
12186 end if;
12188 -- The declaration uses the bounds of an existing object, and
12189 -- therefore needs no constraint checks.
12191 Analyze (Decl, Suppress => All_Checks);
12193 -- We need to freeze manually the generated type when it is
12194 -- inserted anywhere else than in a declarative part.
12196 if Present (First_Stmt) then
12197 Insert_List_Before_And_Analyze (First_Stmt,
12198 Freeze_Entity (Defining_Identifier (Decl), N));
12199 end if;
12201 if Nkind (N) = N_Accept_Statement
12202 and then Full_Expander_Active
12203 then
12204 Set_Actual_Subtype (Renamed_Object (Formal),
12205 Defining_Identifier (Decl));
12206 else
12207 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
12208 end if;
12209 end if;
12211 Next_Formal (Formal);
12212 end loop;
12213 end Set_Actual_Subtypes;
12215 ---------------------
12216 -- Set_Formal_Mode --
12217 ---------------------
12219 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
12220 Spec : constant Node_Id := Parent (Formal_Id);
12222 begin
12223 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
12224 -- since we ensure that corresponding actuals are always valid at the
12225 -- point of the call.
12227 if Out_Present (Spec) then
12228 if Ekind (Scope (Formal_Id)) = E_Function
12229 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
12230 then
12231 -- [IN] OUT parameters allowed for functions in Ada 2012
12233 if Ada_Version >= Ada_2012 then
12235 -- Even in Ada 2012 operators can only have IN parameters
12237 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
12238 Error_Msg_N ("operators can only have IN parameters", Spec);
12239 end if;
12241 if In_Present (Spec) then
12242 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12243 else
12244 Set_Ekind (Formal_Id, E_Out_Parameter);
12245 end if;
12247 -- But not in earlier versions of Ada
12249 else
12250 Error_Msg_N ("functions can only have IN parameters", Spec);
12251 Set_Ekind (Formal_Id, E_In_Parameter);
12252 end if;
12254 elsif In_Present (Spec) then
12255 Set_Ekind (Formal_Id, E_In_Out_Parameter);
12257 else
12258 Set_Ekind (Formal_Id, E_Out_Parameter);
12259 Set_Never_Set_In_Source (Formal_Id, True);
12260 Set_Is_True_Constant (Formal_Id, False);
12261 Set_Current_Value (Formal_Id, Empty);
12262 end if;
12264 else
12265 Set_Ekind (Formal_Id, E_In_Parameter);
12266 end if;
12268 -- Set Is_Known_Non_Null for access parameters since the language
12269 -- guarantees that access parameters are always non-null. We also set
12270 -- Can_Never_Be_Null, since there is no way to change the value.
12272 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
12274 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
12275 -- null; In Ada 2005, only if then null_exclusion is explicit.
12277 if Ada_Version < Ada_2005
12278 or else Can_Never_Be_Null (Etype (Formal_Id))
12279 then
12280 Set_Is_Known_Non_Null (Formal_Id);
12281 Set_Can_Never_Be_Null (Formal_Id);
12282 end if;
12284 -- Ada 2005 (AI-231): Null-exclusion access subtype
12286 elsif Is_Access_Type (Etype (Formal_Id))
12287 and then Can_Never_Be_Null (Etype (Formal_Id))
12288 then
12289 Set_Is_Known_Non_Null (Formal_Id);
12291 -- We can also set Can_Never_Be_Null (thus preventing some junk
12292 -- access checks) for the case of an IN parameter, which cannot
12293 -- be changed, or for an IN OUT parameter, which can be changed but
12294 -- not to a null value. But for an OUT parameter, the initial value
12295 -- passed in can be null, so we can't set this flag in that case.
12297 if Ekind (Formal_Id) /= E_Out_Parameter then
12298 Set_Can_Never_Be_Null (Formal_Id);
12299 end if;
12300 end if;
12302 Set_Mechanism (Formal_Id, Default_Mechanism);
12303 Set_Formal_Validity (Formal_Id);
12304 end Set_Formal_Mode;
12306 -------------------------
12307 -- Set_Formal_Validity --
12308 -------------------------
12310 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12311 begin
12312 -- If no validity checking, then we cannot assume anything about the
12313 -- validity of parameters, since we do not know there is any checking
12314 -- of the validity on the call side.
12316 if not Validity_Checks_On then
12317 return;
12319 -- If validity checking for parameters is enabled, this means we are
12320 -- not supposed to make any assumptions about argument values.
12322 elsif Validity_Check_Parameters then
12323 return;
12325 -- If we are checking in parameters, we will assume that the caller is
12326 -- also checking parameters, so we can assume the parameter is valid.
12328 elsif Ekind (Formal_Id) = E_In_Parameter
12329 and then Validity_Check_In_Params
12330 then
12331 Set_Is_Known_Valid (Formal_Id, True);
12333 -- Similar treatment for IN OUT parameters
12335 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12336 and then Validity_Check_In_Out_Params
12337 then
12338 Set_Is_Known_Valid (Formal_Id, True);
12339 end if;
12340 end Set_Formal_Validity;
12342 ------------------------
12343 -- Subtype_Conformant --
12344 ------------------------
12346 function Subtype_Conformant
12347 (New_Id : Entity_Id;
12348 Old_Id : Entity_Id;
12349 Skip_Controlling_Formals : Boolean := False) return Boolean
12351 Result : Boolean;
12352 begin
12353 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12354 Skip_Controlling_Formals => Skip_Controlling_Formals);
12355 return Result;
12356 end Subtype_Conformant;
12358 ---------------------
12359 -- Type_Conformant --
12360 ---------------------
12362 function Type_Conformant
12363 (New_Id : Entity_Id;
12364 Old_Id : Entity_Id;
12365 Skip_Controlling_Formals : Boolean := False) return Boolean
12367 Result : Boolean;
12368 begin
12369 May_Hide_Profile := False;
12371 Check_Conformance
12372 (New_Id, Old_Id, Type_Conformant, False, Result,
12373 Skip_Controlling_Formals => Skip_Controlling_Formals);
12374 return Result;
12375 end Type_Conformant;
12377 -------------------------------
12378 -- Valid_Operator_Definition --
12379 -------------------------------
12381 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12382 N : Integer := 0;
12383 F : Entity_Id;
12384 Id : constant Name_Id := Chars (Designator);
12385 N_OK : Boolean;
12387 begin
12388 F := First_Formal (Designator);
12389 while Present (F) loop
12390 N := N + 1;
12392 if Present (Default_Value (F)) then
12393 Error_Msg_N
12394 ("default values not allowed for operator parameters",
12395 Parent (F));
12396 end if;
12398 Next_Formal (F);
12399 end loop;
12401 -- Verify that user-defined operators have proper number of arguments
12402 -- First case of operators which can only be unary
12404 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12405 N_OK := (N = 1);
12407 -- Case of operators which can be unary or binary
12409 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12410 N_OK := (N in 1 .. 2);
12412 -- All other operators can only be binary
12414 else
12415 N_OK := (N = 2);
12416 end if;
12418 if not N_OK then
12419 Error_Msg_N
12420 ("incorrect number of arguments for operator", Designator);
12421 end if;
12423 if Id = Name_Op_Ne
12424 and then Base_Type (Etype (Designator)) = Standard_Boolean
12425 and then not Is_Intrinsic_Subprogram (Designator)
12426 then
12427 Error_Msg_N
12428 ("explicit definition of inequality not allowed", Designator);
12429 end if;
12430 end Valid_Operator_Definition;
12432 end Sem_Ch6;