Implement -mmemcpy-strategy= and -mmemset-strategy= options
[official-gcc.git] / gcc / ada / s-tassta.adb
blob487bf8d5340a81c895e3e5f0cbe13d2d57a0dd3b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
36 pragma Partition_Elaboration_Policy (Concurrent);
37 -- This package only implements the concurrent elaboration policy. This pragma
38 -- will enforce it (and detect conflicts with user specified policy).
40 with Ada.Exceptions;
41 with Ada.Unchecked_Deallocation;
43 with System.Interrupt_Management;
44 with System.Tasking.Debug;
45 with System.Address_Image;
46 with System.Task_Primitives;
47 with System.Task_Primitives.Operations;
48 with System.Tasking.Utilities;
49 with System.Tasking.Queuing;
50 with System.Tasking.Rendezvous;
51 with System.OS_Primitives;
52 with System.Secondary_Stack;
53 with System.Storage_Elements;
54 with System.Restrictions;
55 with System.Standard_Library;
56 with System.Traces.Tasking;
57 with System.Stack_Usage;
59 with System.Soft_Links;
60 -- These are procedure pointers to non-tasking routines that use task
61 -- specific data. In the absence of tasking, these routines refer to global
62 -- data. In the presence of tasking, they must be replaced with pointers to
63 -- task-specific versions. Also used for Create_TSD, Destroy_TSD, Get_Current
64 -- _Excep, Finalize_Library_Objects, Task_Termination, Handler.
66 with System.Tasking.Initialization;
67 pragma Elaborate_All (System.Tasking.Initialization);
68 -- This insures that tasking is initialized if any tasks are created
70 package body System.Tasking.Stages is
72 package STPO renames System.Task_Primitives.Operations;
73 package SSL renames System.Soft_Links;
74 package SSE renames System.Storage_Elements;
75 package SST renames System.Secondary_Stack;
77 use Ada.Exceptions;
79 use Parameters;
80 use Task_Primitives;
81 use Task_Primitives.Operations;
82 use Task_Info;
84 use System.Traces;
85 use System.Traces.Tasking;
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 procedure Free is new
92 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
94 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
95 -- This procedure outputs the task specific message for exception
96 -- tracing purposes.
98 procedure Task_Wrapper (Self_ID : Task_Id);
99 pragma Convention (C, Task_Wrapper);
100 -- This is the procedure that is called by the GNULL from the new context
101 -- when a task is created. It waits for activation and then calls the task
102 -- body procedure. When the task body procedure completes, it terminates
103 -- the task.
105 -- The Task_Wrapper's address will be provided to the underlying threads
106 -- library as the task entry point. Convention C is what makes most sense
107 -- for that purpose (Export C would make the function globally visible,
108 -- and affect the link name on which GDB depends). This will in addition
109 -- trigger an automatic stack alignment suitable for GCC's assumptions if
110 -- need be.
112 -- "Vulnerable_..." in the procedure names below means they must be called
113 -- with abort deferred.
115 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
116 -- Complete the calling task. This procedure must be called with
117 -- abort deferred. It should only be called by Complete_Task and
118 -- Finalize_Global_Tasks (for the environment task).
120 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
121 -- Complete the current master of the calling task. This procedure
122 -- must be called with abort deferred. It should only be called by
123 -- Vulnerable_Complete_Task and Complete_Master.
125 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
126 -- Signal to Self_ID's activator that Self_ID has completed activation.
127 -- This procedure must be called with abort deferred.
129 procedure Abort_Dependents (Self_ID : Task_Id);
130 -- Abort all the direct dependents of Self at its current master nesting
131 -- level, plus all of their dependents, transitively. RTS_Lock should be
132 -- locked by the caller.
134 procedure Vulnerable_Free_Task (T : Task_Id);
135 -- Recover all runtime system storage associated with the task T. This
136 -- should only be called after T has terminated and will no longer be
137 -- referenced.
139 -- For tasks created by an allocator that fails, due to an exception, it is
140 -- called from Expunge_Unactivated_Tasks.
142 -- Different code is used at master completion, in Terminate_Dependents,
143 -- due to a need for tighter synchronization with the master.
145 ----------------------
146 -- Abort_Dependents --
147 ----------------------
149 procedure Abort_Dependents (Self_ID : Task_Id) is
150 C : Task_Id;
151 P : Task_Id;
153 begin
154 C := All_Tasks_List;
155 while C /= null loop
156 P := C.Common.Parent;
157 while P /= null loop
158 if P = Self_ID then
160 -- ??? C is supposed to take care of its own dependents, so
161 -- there should be no need to worry about them. Need to double
162 -- check this.
164 if C.Master_of_Task = Self_ID.Master_Within then
165 Utilities.Abort_One_Task (Self_ID, C);
166 C.Dependents_Aborted := True;
167 end if;
169 exit;
170 end if;
172 P := P.Common.Parent;
173 end loop;
175 C := C.Common.All_Tasks_Link;
176 end loop;
178 Self_ID.Dependents_Aborted := True;
179 end Abort_Dependents;
181 -----------------
182 -- Abort_Tasks --
183 -----------------
185 procedure Abort_Tasks (Tasks : Task_List) is
186 begin
187 Utilities.Abort_Tasks (Tasks);
188 end Abort_Tasks;
190 --------------------
191 -- Activate_Tasks --
192 --------------------
194 -- Note that locks of activator and activated task are both locked here.
195 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
196 -- to be synchronized. This is safe from deadlock because the activator is
197 -- always created before the activated task. That satisfies our
198 -- in-order-of-creation ATCB locking policy.
200 -- At one point, we may also lock the parent, if the parent is different
201 -- from the activator. That is also consistent with the lock ordering
202 -- policy, since the activator cannot be created before the parent.
204 -- Since we are holding both the activator's lock, and Task_Wrapper locks
205 -- that before it does anything more than initialize the low-level ATCB
206 -- components, it should be safe to wait to update the counts until we see
207 -- that the thread creation is successful.
209 -- If the thread creation fails, we do need to close the entries of the
210 -- task. The first phase, of dequeuing calls, only requires locking the
211 -- acceptor's ATCB, but the waking up of the callers requires locking the
212 -- caller's ATCB. We cannot safely do this while we are holding other
213 -- locks. Therefore, the queue-clearing operation is done in a separate
214 -- pass over the activation chain.
216 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
217 Self_ID : constant Task_Id := STPO.Self;
218 P : Task_Id;
219 C : Task_Id;
220 Next_C, Last_C : Task_Id;
221 Activate_Prio : System.Any_Priority;
222 Success : Boolean;
223 All_Elaborated : Boolean := True;
225 begin
226 -- If pragma Detect_Blocking is active, then we must check whether this
227 -- potentially blocking operation is called from a protected action.
229 if System.Tasking.Detect_Blocking
230 and then Self_ID.Common.Protected_Action_Nesting > 0
231 then
232 raise Program_Error with "potentially blocking operation";
233 end if;
235 pragma Debug
236 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
238 Initialization.Defer_Abort_Nestable (Self_ID);
240 pragma Assert (Self_ID.Common.Wait_Count = 0);
242 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
243 -- we finish activating the chain.
245 Lock_RTS;
247 -- Check that all task bodies have been elaborated
249 C := Chain_Access.T_ID;
250 Last_C := null;
251 while C /= null loop
252 if C.Common.Elaborated /= null
253 and then not C.Common.Elaborated.all
254 then
255 All_Elaborated := False;
256 end if;
258 -- Reverse the activation chain so that tasks are activated in the
259 -- same order they're declared.
261 Next_C := C.Common.Activation_Link;
262 C.Common.Activation_Link := Last_C;
263 Last_C := C;
264 C := Next_C;
265 end loop;
267 Chain_Access.T_ID := Last_C;
269 if not All_Elaborated then
270 Unlock_RTS;
271 Initialization.Undefer_Abort_Nestable (Self_ID);
272 raise Program_Error with "Some tasks have not been elaborated";
273 end if;
275 -- Activate all the tasks in the chain. Creation of the thread of
276 -- control was deferred until activation. So create it now.
278 C := Chain_Access.T_ID;
279 while C /= null loop
280 if C.Common.State /= Terminated then
281 pragma Assert (C.Common.State = Unactivated);
283 P := C.Common.Parent;
284 Write_Lock (P);
285 Write_Lock (C);
287 Activate_Prio :=
288 (if C.Common.Base_Priority < Get_Priority (Self_ID)
289 then Get_Priority (Self_ID)
290 else C.Common.Base_Priority);
292 System.Task_Primitives.Operations.Create_Task
293 (C, Task_Wrapper'Address,
294 Parameters.Size_Type
295 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
296 Activate_Prio, Success);
298 -- There would be a race between the created task and the creator
299 -- to do the following initialization, if we did not have a
300 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
301 -- racing ahead.
303 if Success then
304 C.Common.State := Activating;
305 C.Awake_Count := 1;
306 C.Alive_Count := 1;
307 P.Awake_Count := P.Awake_Count + 1;
308 P.Alive_Count := P.Alive_Count + 1;
310 if P.Common.State = Master_Completion_Sleep and then
311 C.Master_of_Task = P.Master_Within
312 then
313 pragma Assert (Self_ID /= P);
314 P.Common.Wait_Count := P.Common.Wait_Count + 1;
315 end if;
317 for J in System.Tasking.Debug.Known_Tasks'Range loop
318 if System.Tasking.Debug.Known_Tasks (J) = null then
319 System.Tasking.Debug.Known_Tasks (J) := C;
320 C.Known_Tasks_Index := J;
321 exit;
322 end if;
323 end loop;
325 if Global_Task_Debug_Event_Set then
326 Debug.Signal_Debug_Event
327 (Debug.Debug_Event_Activating, C);
328 end if;
330 C.Common.State := Runnable;
332 Unlock (C);
333 Unlock (P);
335 else
336 -- No need to set Awake_Count, State, etc. here since the loop
337 -- below will do that for any Unactivated tasks.
339 Unlock (C);
340 Unlock (P);
341 Self_ID.Common.Activation_Failed := True;
342 end if;
343 end if;
345 C := C.Common.Activation_Link;
346 end loop;
348 if not Single_Lock then
349 Unlock_RTS;
350 end if;
352 -- Close the entries of any tasks that failed thread creation, and count
353 -- those that have not finished activation.
355 Write_Lock (Self_ID);
356 Self_ID.Common.State := Activator_Sleep;
358 C := Chain_Access.T_ID;
359 while C /= null loop
360 Write_Lock (C);
362 if C.Common.State = Unactivated then
363 C.Common.Activator := null;
364 C.Common.State := Terminated;
365 C.Callable := False;
366 Utilities.Cancel_Queued_Entry_Calls (C);
368 elsif C.Common.Activator /= null then
369 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
370 end if;
372 Unlock (C);
373 P := C.Common.Activation_Link;
374 C.Common.Activation_Link := null;
375 C := P;
376 end loop;
378 -- Wait for the activated tasks to complete activation. It is
379 -- unsafe to abort any of these tasks until the count goes to zero.
381 loop
382 exit when Self_ID.Common.Wait_Count = 0;
383 Sleep (Self_ID, Activator_Sleep);
384 end loop;
386 Self_ID.Common.State := Runnable;
387 Unlock (Self_ID);
389 if Single_Lock then
390 Unlock_RTS;
391 end if;
393 -- Remove the tasks from the chain
395 Chain_Access.T_ID := null;
396 Initialization.Undefer_Abort_Nestable (Self_ID);
398 if Self_ID.Common.Activation_Failed then
399 Self_ID.Common.Activation_Failed := False;
400 raise Tasking_Error with "Failure during activation";
401 end if;
402 end Activate_Tasks;
404 -------------------------
405 -- Complete_Activation --
406 -------------------------
408 procedure Complete_Activation is
409 Self_ID : constant Task_Id := STPO.Self;
411 begin
412 Initialization.Defer_Abort_Nestable (Self_ID);
414 if Single_Lock then
415 Lock_RTS;
416 end if;
418 Vulnerable_Complete_Activation (Self_ID);
420 if Single_Lock then
421 Unlock_RTS;
422 end if;
424 Initialization.Undefer_Abort_Nestable (Self_ID);
426 -- ??? Why do we need to allow for nested deferral here?
428 if Runtime_Traces then
429 Send_Trace_Info (T_Activate);
430 end if;
431 end Complete_Activation;
433 ---------------------
434 -- Complete_Master --
435 ---------------------
437 procedure Complete_Master is
438 Self_ID : constant Task_Id := STPO.Self;
439 begin
440 pragma Assert
441 (Self_ID.Deferral_Level > 0
442 or else not System.Restrictions.Abort_Allowed);
443 Vulnerable_Complete_Master (Self_ID);
444 end Complete_Master;
446 -------------------
447 -- Complete_Task --
448 -------------------
450 -- See comments on Vulnerable_Complete_Task for details
452 procedure Complete_Task is
453 Self_ID : constant Task_Id := STPO.Self;
455 begin
456 pragma Assert
457 (Self_ID.Deferral_Level > 0
458 or else not System.Restrictions.Abort_Allowed);
460 Vulnerable_Complete_Task (Self_ID);
462 -- All of our dependents have terminated. Never undefer abort again!
464 end Complete_Task;
466 -----------------
467 -- Create_Task --
468 -----------------
470 -- Compiler interface only. Do not call from within the RTS. This must be
471 -- called to create a new task.
473 procedure Create_Task
474 (Priority : Integer;
475 Size : System.Parameters.Size_Type;
476 Task_Info : System.Task_Info.Task_Info_Type;
477 CPU : Integer;
478 Relative_Deadline : Ada.Real_Time.Time_Span;
479 Domain : Dispatching_Domain_Access;
480 Num_Entries : Task_Entry_Index;
481 Master : Master_Level;
482 State : Task_Procedure_Access;
483 Discriminants : System.Address;
484 Elaborated : Access_Boolean;
485 Chain : in out Activation_Chain;
486 Task_Image : String;
487 Created_Task : out Task_Id)
489 T, P : Task_Id;
490 Self_ID : constant Task_Id := STPO.Self;
491 Success : Boolean;
492 Base_Priority : System.Any_Priority;
493 Len : Natural;
494 Base_CPU : System.Multiprocessors.CPU_Range;
496 use type System.Multiprocessors.CPU_Range;
498 pragma Unreferenced (Relative_Deadline);
499 -- EDF scheduling is not supported by any of the target platforms so
500 -- this parameter is not passed any further.
502 begin
503 -- If Master is greater than the current master, it means that Master
504 -- has already awaited its dependent tasks. This raises Program_Error,
505 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
507 if Self_ID.Master_of_Task /= Foreign_Task_Level
508 and then Master > Self_ID.Master_Within
509 then
510 raise Program_Error with
511 "create task after awaiting termination";
512 end if;
514 -- If pragma Detect_Blocking is active must be checked whether this
515 -- potentially blocking operation is called from a protected action.
517 if System.Tasking.Detect_Blocking
518 and then Self_ID.Common.Protected_Action_Nesting > 0
519 then
520 raise Program_Error with "potentially blocking operation";
521 end if;
523 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
525 Base_Priority :=
526 (if Priority = Unspecified_Priority
527 then Self_ID.Common.Base_Priority
528 else System.Any_Priority (Priority));
530 -- Legal values of CPU are the special Unspecified_CPU value which is
531 -- inserted by the compiler for tasks without CPU aspect, and those in
532 -- the range of CPU_Range but no greater than Number_Of_CPUs. Otherwise
533 -- the task is defined to have failed, and it becomes a completed task
534 -- (RM D.16(14/3)).
536 if CPU /= Unspecified_CPU
537 and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
538 or else
539 CPU > Integer (System.Multiprocessors.CPU_Range'Last)
540 or else
541 CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
542 then
543 raise Tasking_Error with "CPU not in range";
545 -- Normal CPU affinity
547 else
548 -- When the application code says nothing about the task affinity
549 -- (task without CPU aspect) then the compiler inserts the
550 -- Unspecified_CPU value which indicates to the run-time library that
551 -- the task will activate and execute on the same processor as its
552 -- activating task if the activating task is assigned a processor
553 -- (RM D.16(14/3)).
555 Base_CPU :=
556 (if CPU = Unspecified_CPU
557 then Self_ID.Common.Base_CPU
558 else System.Multiprocessors.CPU_Range (CPU));
559 end if;
561 -- Find parent P of new Task, via master level number
563 P := Self_ID;
565 if P /= null then
566 while P.Master_of_Task >= Master loop
567 P := P.Common.Parent;
568 exit when P = null;
569 end loop;
570 end if;
572 Initialization.Defer_Abort_Nestable (Self_ID);
574 begin
575 T := New_ATCB (Num_Entries);
576 exception
577 when others =>
578 Initialization.Undefer_Abort_Nestable (Self_ID);
579 raise Storage_Error with "Cannot allocate task";
580 end;
582 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
583 -- point, it is possible that we may be part of a family of tasks that
584 -- is being aborted.
586 Lock_RTS;
587 Write_Lock (Self_ID);
589 -- Now, we must check that we have not been aborted. If so, we should
590 -- give up on creating this task, and simply return.
592 if not Self_ID.Callable then
593 pragma Assert (Self_ID.Pending_ATC_Level = 0);
594 pragma Assert (Self_ID.Pending_Action);
595 pragma Assert
596 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
598 Unlock (Self_ID);
599 Unlock_RTS;
600 Initialization.Undefer_Abort_Nestable (Self_ID);
602 -- ??? Should never get here
604 pragma Assert (False);
605 raise Standard'Abort_Signal;
606 end if;
608 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
609 Base_Priority, Base_CPU, Domain, Task_Info, Size, T, Success);
611 if not Success then
612 Free (T);
613 Unlock (Self_ID);
614 Unlock_RTS;
615 Initialization.Undefer_Abort_Nestable (Self_ID);
616 raise Storage_Error with "Failed to initialize task";
617 end if;
619 if Master = Foreign_Task_Level + 2 then
621 -- This should not happen, except when a foreign task creates non
622 -- library-level Ada tasks. In this case, we pretend the master is
623 -- a regular library level task, otherwise the run-time will get
624 -- confused when waiting for these tasks to terminate.
626 T.Master_of_Task := Library_Task_Level;
628 else
629 T.Master_of_Task := Master;
630 end if;
632 T.Master_Within := T.Master_of_Task + 1;
634 for L in T.Entry_Calls'Range loop
635 T.Entry_Calls (L).Self := T;
636 T.Entry_Calls (L).Level := L;
637 end loop;
639 if Task_Image'Length = 0 then
640 T.Common.Task_Image_Len := 0;
641 else
642 Len := 1;
643 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
645 -- Remove unwanted blank space generated by 'Image
647 for J in Task_Image'First + 1 .. Task_Image'Last loop
648 if Task_Image (J) /= ' '
649 or else Task_Image (J - 1) /= '('
650 then
651 Len := Len + 1;
652 T.Common.Task_Image (Len) := Task_Image (J);
653 exit when Len = T.Common.Task_Image'Last;
654 end if;
655 end loop;
657 T.Common.Task_Image_Len := Len;
658 end if;
660 -- The task inherits the dispatching domain of the parent only if no
661 -- specific domain has been defined in the spec of the task (using the
662 -- dispatching domain pragma or aspect).
664 if T.Common.Domain /= null then
665 null;
666 elsif T.Common.Activator /= null then
667 T.Common.Domain := T.Common.Activator.Common.Domain;
668 else
669 T.Common.Domain := System.Tasking.System_Domain;
670 end if;
672 Unlock (Self_ID);
673 Unlock_RTS;
675 -- The CPU associated to the task (if any) must belong to the
676 -- dispatching domain.
678 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
679 and then
680 (Base_CPU not in T.Common.Domain'Range
681 or else not T.Common.Domain (Base_CPU))
682 then
683 Initialization.Undefer_Abort_Nestable (Self_ID);
684 raise Tasking_Error with "CPU not in dispatching domain";
685 end if;
687 -- To handle the interaction between pragma CPU and dispatching domains
688 -- we need to signal that this task is being allocated to a processor.
689 -- This is needed only for tasks belonging to the system domain (the
690 -- creation of new dispatching domains can only take processors from the
691 -- system domain) and only before the environment task calls the main
692 -- procedure (dispatching domains cannot be created after this).
694 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
695 and then T.Common.Domain = System.Tasking.System_Domain
696 and then not System.Tasking.Dispatching_Domains_Frozen
697 then
698 -- Increase the number of tasks attached to the CPU to which this
699 -- task is being moved.
701 Dispatching_Domain_Tasks (Base_CPU) :=
702 Dispatching_Domain_Tasks (Base_CPU) + 1;
703 end if;
705 -- Create TSD as early as possible in the creation of a task, since it
706 -- may be used by the operation of Ada code within the task.
708 SSL.Create_TSD (T.Common.Compiler_Data);
709 T.Common.Activation_Link := Chain.T_ID;
710 Chain.T_ID := T;
711 Initialization.Initialize_Attributes_Link.all (T);
712 Created_Task := T;
713 Initialization.Undefer_Abort_Nestable (Self_ID);
715 if Runtime_Traces then
716 Send_Trace_Info (T_Create, T);
717 end if;
718 end Create_Task;
720 --------------------
721 -- Current_Master --
722 --------------------
724 function Current_Master return Master_Level is
725 begin
726 return STPO.Self.Master_Within;
727 end Current_Master;
729 ------------------
730 -- Enter_Master --
731 ------------------
733 procedure Enter_Master is
734 Self_ID : constant Task_Id := STPO.Self;
735 begin
736 Self_ID.Master_Within := Self_ID.Master_Within + 1;
737 end Enter_Master;
739 -------------------------------
740 -- Expunge_Unactivated_Tasks --
741 -------------------------------
743 -- See procedure Close_Entries for the general case
745 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
746 Self_ID : constant Task_Id := STPO.Self;
747 C : Task_Id;
748 Call : Entry_Call_Link;
749 Temp : Task_Id;
751 begin
752 pragma Debug
753 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
755 Initialization.Defer_Abort_Nestable (Self_ID);
757 -- ???
758 -- Experimentation has shown that abort is sometimes (but not always)
759 -- already deferred when this is called.
761 -- That may indicate an error. Find out what is going on
763 C := Chain.T_ID;
764 while C /= null loop
765 pragma Assert (C.Common.State = Unactivated);
767 Temp := C.Common.Activation_Link;
769 if C.Common.State = Unactivated then
770 Lock_RTS;
771 Write_Lock (C);
773 for J in 1 .. C.Entry_Num loop
774 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
775 pragma Assert (Call = null);
776 end loop;
778 Unlock (C);
780 Initialization.Remove_From_All_Tasks_List (C);
781 Unlock_RTS;
783 Vulnerable_Free_Task (C);
784 C := Temp;
785 end if;
786 end loop;
788 Chain.T_ID := null;
789 Initialization.Undefer_Abort_Nestable (Self_ID);
790 end Expunge_Unactivated_Tasks;
792 ---------------------------
793 -- Finalize_Global_Tasks --
794 ---------------------------
796 -- ???
797 -- We have a potential problem here if finalization of global objects does
798 -- anything with signals or the timer server, since by that time those
799 -- servers have terminated.
801 -- It is hard to see how that would occur
803 -- However, a better solution might be to do all this finalization
804 -- using the global finalization chain.
806 procedure Finalize_Global_Tasks is
807 Self_ID : constant Task_Id := STPO.Self;
809 Ignore_1 : Boolean;
810 Ignore_2 : Boolean;
811 pragma Unreferenced (Ignore_1, Ignore_2);
813 function State
814 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
815 pragma Import (C, State, "__gnat_get_interrupt_state");
816 -- Get interrupt state for interrupt number Int. Defined in init.c
818 Default : constant Character := 's';
819 -- 's' Interrupt_State pragma set state to System (use "default"
820 -- system handler)
822 begin
823 if Self_ID.Deferral_Level = 0 then
824 -- ???
825 -- In principle, we should be able to predict whether abort is
826 -- already deferred here (and it should not be deferred yet but in
827 -- practice it seems Finalize_Global_Tasks is being called sometimes,
828 -- from RTS code for exceptions, with abort already deferred.
830 Initialization.Defer_Abort_Nestable (Self_ID);
832 -- Never undefer again!!!
833 end if;
835 -- This code is only executed by the environment task
837 pragma Assert (Self_ID = Environment_Task);
839 -- Set Environment_Task'Callable to false to notify library-level tasks
840 -- that it is waiting for them.
842 Self_ID.Callable := False;
844 -- Exit level 2 master, for normal tasks in library-level packages
846 Complete_Master;
848 -- Force termination of "independent" library-level server tasks
850 Lock_RTS;
852 Abort_Dependents (Self_ID);
854 if not Single_Lock then
855 Unlock_RTS;
856 end if;
858 -- We need to explicitly wait for the task to be terminated here
859 -- because on true concurrent system, we may end this procedure before
860 -- the tasks are really terminated.
862 Write_Lock (Self_ID);
864 -- If the Abort_Task signal is set to system, it means that we may not
865 -- have been able to abort all independent tasks (in particular
866 -- Server_Task may be blocked, waiting for a signal), in which case,
867 -- do not wait for Independent_Task_Count to go down to 0.
869 if State
870 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
871 then
872 loop
873 exit when Utilities.Independent_Task_Count = 0;
875 -- We used to yield here, but this did not take into account low
876 -- priority tasks that would cause dead lock in some cases (true
877 -- FIFO scheduling).
879 Timed_Sleep
880 (Self_ID, 0.01, System.OS_Primitives.Relative,
881 Self_ID.Common.State, Ignore_1, Ignore_2);
882 end loop;
883 end if;
885 -- ??? On multi-processor environments, it seems that the above loop
886 -- isn't sufficient, so we need to add an additional delay.
888 Timed_Sleep
889 (Self_ID, 0.01, System.OS_Primitives.Relative,
890 Self_ID.Common.State, Ignore_1, Ignore_2);
892 Unlock (Self_ID);
894 if Single_Lock then
895 Unlock_RTS;
896 end if;
898 -- Complete the environment task
900 Vulnerable_Complete_Task (Self_ID);
902 -- Handle normal task termination by the environment task, but only
903 -- for the normal task termination. In the case of Abnormal and
904 -- Unhandled_Exception they must have been handled before, and the
905 -- task termination soft link must have been changed so the task
906 -- termination routine is not executed twice.
908 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
910 -- Finalize all library-level controlled objects
912 if not SSL."=" (SSL.Finalize_Library_Objects, null) then
913 SSL.Finalize_Library_Objects.all;
914 end if;
916 -- Reset the soft links to non-tasking
918 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
919 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
920 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
921 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
922 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
923 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
924 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
925 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
926 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
927 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
929 -- Don't bother trying to finalize Initialization.Global_Task_Lock
930 -- and System.Task_Primitives.RTS_Lock.
932 end Finalize_Global_Tasks;
934 ---------------
935 -- Free_Task --
936 ---------------
938 procedure Free_Task (T : Task_Id) is
939 Self_Id : constant Task_Id := Self;
941 begin
942 if T.Common.State = Terminated then
944 -- It is not safe to call Abort_Defer or Write_Lock at this stage
946 Initialization.Task_Lock (Self_Id);
948 Lock_RTS;
949 Initialization.Finalize_Attributes_Link.all (T);
950 Initialization.Remove_From_All_Tasks_List (T);
951 Unlock_RTS;
953 Initialization.Task_Unlock (Self_Id);
955 System.Task_Primitives.Operations.Finalize_TCB (T);
957 else
958 -- If the task is not terminated, then mark the task as to be freed
959 -- upon termination.
961 T.Free_On_Termination := True;
962 end if;
963 end Free_Task;
965 ---------------------------
966 -- Move_Activation_Chain --
967 ---------------------------
969 procedure Move_Activation_Chain
970 (From, To : Activation_Chain_Access;
971 New_Master : Master_ID)
973 Self_ID : constant Task_Id := STPO.Self;
974 C : Task_Id;
976 begin
977 pragma Debug
978 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
980 -- Nothing to do if From is empty, and we can check that without
981 -- deferring aborts.
983 C := From.all.T_ID;
985 if C = null then
986 return;
987 end if;
989 Initialization.Defer_Abort (Self_ID);
991 -- Loop through the From chain, changing their Master_of_Task fields,
992 -- and to find the end of the chain.
994 loop
995 C.Master_of_Task := New_Master;
996 exit when C.Common.Activation_Link = null;
997 C := C.Common.Activation_Link;
998 end loop;
1000 -- Hook From in at the start of To
1002 C.Common.Activation_Link := To.all.T_ID;
1003 To.all.T_ID := From.all.T_ID;
1005 -- Set From to empty
1007 From.all.T_ID := null;
1009 Initialization.Undefer_Abort (Self_ID);
1010 end Move_Activation_Chain;
1012 ------------------
1013 -- Task_Wrapper --
1014 ------------------
1016 -- The task wrapper is a procedure that is called first for each task body
1017 -- and which in turn calls the compiler-generated task body procedure.
1018 -- The wrapper's main job is to do initialization for the task. It also
1019 -- has some locally declared objects that serve as per-task local data.
1020 -- Task finalization is done by Complete_Task, which is called from an
1021 -- at-end handler that the compiler generates.
1023 procedure Task_Wrapper (Self_ID : Task_Id) is
1024 use type SSE.Storage_Offset;
1025 use System.Standard_Library;
1026 use System.Stack_Usage;
1028 Bottom_Of_Stack : aliased Integer;
1030 Task_Alternate_Stack :
1031 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
1032 -- The alternate signal stack for this task, if any
1034 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1035 -- Whether to use above alternate signal stack for stack overflows
1037 Secondary_Stack_Size :
1038 constant SSE.Storage_Offset :=
1039 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size *
1040 SSE.Storage_Offset (Parameters.Sec_Stack_Percentage) / 100;
1042 Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size);
1043 -- Actual area allocated for secondary stack
1045 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
1046 -- Address of secondary stack. In the fixed secondary stack case, this
1047 -- value is not modified, causing a warning, hence the bracketing with
1048 -- Warnings (Off/On). But why is so much *more* bracketed???
1050 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1051 -- Structured Exception Registration table (2 words)
1053 procedure Install_SEH_Handler (Addr : System.Address);
1054 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1055 -- Install the SEH (Structured Exception Handling) handler
1057 Cause : Cause_Of_Termination := Normal;
1058 -- Indicates the reason why this task terminates. Normal corresponds to
1059 -- a task terminating due to completing the last statement of its body,
1060 -- or as a result of waiting on a terminate alternative. If the task
1061 -- terminates because it is being aborted then Cause will be set
1062 -- to Abnormal. If the task terminates because of an exception
1063 -- raised by the execution of its task body, then Cause is set
1064 -- to Unhandled_Exception.
1066 EO : Exception_Occurrence;
1067 -- If the task terminates because of an exception raised by the
1068 -- execution of its task body, then EO will contain the associated
1069 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1071 TH : Termination_Handler := null;
1072 -- Pointer to the protected procedure to be executed upon task
1073 -- termination.
1075 procedure Search_Fall_Back_Handler (ID : Task_Id);
1076 -- Procedure that searches recursively a fall-back handler through the
1077 -- master relationship. If the handler is found, its pointer is stored
1078 -- in TH. It stops when the handler is found or when the ID is null.
1080 ------------------------------
1081 -- Search_Fall_Back_Handler --
1082 ------------------------------
1084 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1085 begin
1086 -- A null Task_Id indicates that we have reached the root of the
1087 -- task hierarchy and no handler has been found.
1089 if ID = null then
1090 return;
1092 -- If there is a fall back handler, store its pointer for later
1093 -- execution.
1095 elsif ID.Common.Fall_Back_Handler /= null then
1096 TH := ID.Common.Fall_Back_Handler;
1098 -- Otherwise look for a fall back handler in the parent
1100 else
1101 Search_Fall_Back_Handler (ID.Common.Parent);
1102 end if;
1103 end Search_Fall_Back_Handler;
1105 -- Start of processing for Task_Wrapper
1107 begin
1108 pragma Assert (Self_ID.Deferral_Level = 1);
1110 -- Assume a size of the stack taken at this stage
1112 if not Parameters.Sec_Stack_Dynamic then
1113 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1114 Secondary_Stack'Address;
1115 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1116 end if;
1118 if Use_Alternate_Stack then
1119 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1120 end if;
1122 -- Set the guard page at the bottom of the stack. The call to unprotect
1123 -- the page is done in Terminate_Task
1125 Stack_Guard (Self_ID, True);
1127 -- Initialize low-level TCB components, that cannot be initialized by
1128 -- the creator. Enter_Task sets Self_ID.LL.Thread.
1130 Enter_Task (Self_ID);
1132 -- Initialize dynamic stack usage
1134 if System.Stack_Usage.Is_Enabled then
1135 declare
1136 Guard_Page_Size : constant := 16 * 1024;
1137 -- Part of the stack used as a guard page. This is an OS dependent
1138 -- value, so we need to use the maximum. This value is only used
1139 -- when the stack address is known, that is currently Windows.
1141 Small_Overflow_Guard : constant := 12 * 1024;
1142 -- Note: this used to be 4K, but was changed to 12K, since
1143 -- smaller values resulted in segmentation faults from dynamic
1144 -- stack analysis.
1146 Big_Overflow_Guard : constant := 64 * 1024 + 8 * 1024;
1147 Small_Stack_Limit : constant := 64 * 1024;
1148 -- ??? These three values are experimental, and seem to work on
1149 -- most platforms. They still need to be analyzed further. They
1150 -- also need documentation, what are they and why does the logic
1151 -- differ depending on whether the stack is large or small???
1153 Pattern_Size : Natural :=
1154 Natural (Self_ID.Common.
1155 Compiler_Data.Pri_Stack_Info.Size);
1156 -- Size of the pattern
1158 Stack_Base : Address;
1159 -- Address of the base of the stack
1161 begin
1162 Stack_Base := Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base;
1164 if Stack_Base = Null_Address then
1166 -- On many platforms, we don't know the real stack base
1167 -- address. Estimate it using an address in the frame.
1169 Stack_Base := Bottom_Of_Stack'Address;
1171 -- Also reduce the size of the stack to take into account the
1172 -- secondary stack array declared in this frame. This is for
1173 -- sure very conservative.
1175 if not Parameters.Sec_Stack_Dynamic then
1176 Pattern_Size :=
1177 Pattern_Size - Natural (Secondary_Stack_Size);
1178 end if;
1180 -- Adjustments for inner frames
1182 Pattern_Size := Pattern_Size -
1183 (if Pattern_Size < Small_Stack_Limit
1184 then Small_Overflow_Guard
1185 else Big_Overflow_Guard);
1186 else
1187 -- Reduce by the size of the final guard page
1189 Pattern_Size := Pattern_Size - Guard_Page_Size;
1190 end if;
1192 STPO.Lock_RTS;
1193 Initialize_Analyzer
1194 (Self_ID.Common.Analyzer,
1195 Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len),
1196 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1197 SSE.To_Integer (Stack_Base),
1198 Pattern_Size);
1199 STPO.Unlock_RTS;
1200 Fill_Stack (Self_ID.Common.Analyzer);
1201 end;
1202 end if;
1204 -- We setup the SEH (Structured Exception Handling) handler if supported
1205 -- on the target.
1207 Install_SEH_Handler (SEH_Table'Address);
1209 -- Initialize exception occurrence
1211 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1213 -- We lock RTS_Lock to wait for activator to finish activating the rest
1214 -- of the chain, so that everyone in the chain comes out in priority
1215 -- order.
1217 -- This also protects the value of
1218 -- Self_ID.Common.Activator.Common.Wait_Count.
1220 Lock_RTS;
1221 Unlock_RTS;
1223 if not System.Restrictions.Abort_Allowed then
1225 -- If Abort is not allowed, reset the deferral level since it will
1226 -- not get changed by the generated code. Keeping a default value
1227 -- of one would prevent some operations (e.g. select or delay) to
1228 -- proceed successfully.
1230 Self_ID.Deferral_Level := 0;
1231 end if;
1233 if Global_Task_Debug_Event_Set then
1234 Debug.Signal_Debug_Event (Debug.Debug_Event_Run, Self_ID);
1235 end if;
1237 begin
1238 -- We are separating the following portion of the code in order to
1239 -- place the exception handlers in a different block. In this way,
1240 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1241 -- set Self in Enter_Task
1243 -- Call the task body procedure
1245 -- The task body is called with abort still deferred. That
1246 -- eliminates a dangerous window, for which we had to patch-up in
1247 -- Terminate_Task.
1249 -- During the expansion of the task body, we insert an RTS-call
1250 -- to Abort_Undefer, at the first point where abort should be
1251 -- allowed.
1253 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1254 Initialization.Defer_Abort_Nestable (Self_ID);
1256 exception
1257 -- We can't call Terminate_Task in the exception handlers below,
1258 -- since there may be (e.g. in the case of GCC exception handling)
1259 -- clean ups associated with the exception handler that need to
1260 -- access task specific data.
1262 -- Defer abort so that this task can't be aborted while exiting
1264 when Standard'Abort_Signal =>
1265 Initialization.Defer_Abort_Nestable (Self_ID);
1267 -- Update the cause that motivated the task termination so that
1268 -- the appropriate information is passed to the task termination
1269 -- procedure. Task termination as a result of waiting on a
1270 -- terminate alternative is a normal termination, although it is
1271 -- implemented using the abort mechanisms.
1273 if Self_ID.Terminate_Alternative then
1274 Cause := Normal;
1276 if Global_Task_Debug_Event_Set then
1277 Debug.Signal_Debug_Event
1278 (Debug.Debug_Event_Terminated, Self_ID);
1279 end if;
1280 else
1281 Cause := Abnormal;
1283 if Global_Task_Debug_Event_Set then
1284 Debug.Signal_Debug_Event
1285 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1286 end if;
1287 end if;
1289 when others =>
1290 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1292 Initialization.Defer_Abort_Nestable (Self_ID);
1294 -- Perform the task specific exception tracing duty. We handle
1295 -- these outputs here and not in the common notification routine
1296 -- because we need access to tasking related data and we don't
1297 -- want to drag dependencies against tasking related units in the
1298 -- the common notification units. Additionally, no trace is ever
1299 -- triggered from the common routine for the Unhandled_Raise case
1300 -- in tasks, since an exception never appears unhandled in this
1301 -- context because of this handler.
1303 if Exception_Trace = Unhandled_Raise then
1304 Trace_Unhandled_Exception_In_Task (Self_ID);
1305 end if;
1307 -- Update the cause that motivated the task termination so that
1308 -- the appropriate information is passed to the task termination
1309 -- procedure, as well as the associated Exception_Occurrence.
1311 Cause := Unhandled_Exception;
1313 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1315 if Global_Task_Debug_Event_Set then
1316 Debug.Signal_Debug_Event
1317 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1318 end if;
1319 end;
1321 -- Look for a task termination handler. This code is for all tasks but
1322 -- the environment task. The task termination code for the environment
1323 -- task is executed by SSL.Task_Termination_Handler.
1325 if Single_Lock then
1326 Lock_RTS;
1327 end if;
1329 Write_Lock (Self_ID);
1331 if Self_ID.Common.Specific_Handler /= null then
1332 TH := Self_ID.Common.Specific_Handler;
1333 else
1334 -- Look for a fall-back handler following the master relationship
1335 -- for the task. As specified in ARM C.7.3 par. 9/2, "the fall-back
1336 -- handler applies only to the dependent tasks of the task". Hence,
1337 -- if the terminating tasks (Self_ID) had a fall-back handler, it
1338 -- would not apply to itself, so we start the search with the parent.
1340 Search_Fall_Back_Handler (Self_ID.Common.Parent);
1341 end if;
1343 Unlock (Self_ID);
1345 if Single_Lock then
1346 Unlock_RTS;
1347 end if;
1349 -- Execute the task termination handler if we found it
1351 if TH /= null then
1352 begin
1353 TH.all (Cause, Self_ID, EO);
1355 exception
1357 -- RM-C.7.3 requires all exceptions raised here to be ignored
1359 when others =>
1360 null;
1361 end;
1362 end if;
1364 if System.Stack_Usage.Is_Enabled then
1365 Compute_Result (Self_ID.Common.Analyzer);
1366 Report_Result (Self_ID.Common.Analyzer);
1367 end if;
1369 Terminate_Task (Self_ID);
1370 end Task_Wrapper;
1372 --------------------
1373 -- Terminate_Task --
1374 --------------------
1376 -- Before we allow the thread to exit, we must clean up. This is a delicate
1377 -- job. We must wake up the task's master, who may immediately try to
1378 -- deallocate the ATCB from the current task WHILE IT IS STILL EXECUTING.
1380 -- To avoid this, the parent task must be blocked up to the latest
1381 -- statement executed. The trouble is that we have another step that we
1382 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1383 -- We have to postpone that until the end because compiler-generated code
1384 -- is likely to try to access that data at just about any point.
1386 -- We can't call Destroy_TSD while we are holding any other locks, because
1387 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1388 -- that to be the outermost lock. Our first "solution" was to just lock
1389 -- Global_Task_Lock in addition to the other locks, and force the parent to
1390 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1391 -- Complete_Task for the parent-side of the code that has the matching
1392 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1393 -- since the operation Task_Unlock continued to access the ATCB after
1394 -- unlocking, after which the parent was observed to race ahead, deallocate
1395 -- the ATCB, and then reallocate it to another task. The call to
1396 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1397 -- the data of the new task that reused the ATCB! To solve this problem, we
1398 -- introduced the new operation Final_Task_Unlock.
1400 procedure Terminate_Task (Self_ID : Task_Id) is
1401 Environment_Task : constant Task_Id := STPO.Environment_Task;
1402 Master_of_Task : Integer;
1403 Deallocate : Boolean;
1405 begin
1406 Debug.Task_Termination_Hook;
1408 if Runtime_Traces then
1409 Send_Trace_Info (T_Terminate);
1410 end if;
1412 -- Since GCC cannot allocate stack chunks efficiently without reordering
1413 -- some of the allocations, we have to handle this unexpected situation
1414 -- here. Normally we never have to call Vulnerable_Complete_Task here.
1416 if Self_ID.Common.Activator /= null then
1417 Vulnerable_Complete_Task (Self_ID);
1418 end if;
1420 Initialization.Task_Lock (Self_ID);
1422 if Single_Lock then
1423 Lock_RTS;
1424 end if;
1426 Master_of_Task := Self_ID.Master_of_Task;
1428 -- Check if the current task is an independent task If so, decrement
1429 -- the Independent_Task_Count value.
1431 if Master_of_Task = Independent_Task_Level then
1432 if Single_Lock then
1433 Utilities.Independent_Task_Count :=
1434 Utilities.Independent_Task_Count - 1;
1436 else
1437 Write_Lock (Environment_Task);
1438 Utilities.Independent_Task_Count :=
1439 Utilities.Independent_Task_Count - 1;
1440 Unlock (Environment_Task);
1441 end if;
1442 end if;
1444 -- Unprotect the guard page if needed
1446 Stack_Guard (Self_ID, False);
1448 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1449 Deallocate := Self_ID.Free_On_Termination;
1451 if Single_Lock then
1452 Unlock_RTS;
1453 end if;
1455 pragma Assert (Check_Exit (Self_ID));
1457 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1458 Initialization.Final_Task_Unlock (Self_ID);
1460 -- WARNING: past this point, this thread must assume that the ATCB has
1461 -- been deallocated, and can't access it anymore (which is why we have
1462 -- saved the Free_On_Termination flag in a temporary variable).
1464 if Deallocate then
1465 Free_Task (Self_ID);
1466 end if;
1468 if Master_of_Task > 0 then
1469 STPO.Exit_Task;
1470 end if;
1471 end Terminate_Task;
1473 ----------------
1474 -- Terminated --
1475 ----------------
1477 function Terminated (T : Task_Id) return Boolean is
1478 Self_ID : constant Task_Id := STPO.Self;
1479 Result : Boolean;
1481 begin
1482 Initialization.Defer_Abort_Nestable (Self_ID);
1484 if Single_Lock then
1485 Lock_RTS;
1486 end if;
1488 Write_Lock (T);
1489 Result := T.Common.State = Terminated;
1490 Unlock (T);
1492 if Single_Lock then
1493 Unlock_RTS;
1494 end if;
1496 Initialization.Undefer_Abort_Nestable (Self_ID);
1497 return Result;
1498 end Terminated;
1500 ----------------------------------------
1501 -- Trace_Unhandled_Exception_In_Task --
1502 ----------------------------------------
1504 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1505 procedure To_Stderr (S : String);
1506 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1508 use System.Soft_Links;
1509 use System.Standard_Library;
1511 function To_Address is new
1512 Ada.Unchecked_Conversion
1513 (Task_Id, System.Task_Primitives.Task_Address);
1515 function Tailored_Exception_Information
1516 (E : Exception_Occurrence) return String;
1517 pragma Import
1518 (Ada, Tailored_Exception_Information,
1519 "__gnat_tailored_exception_information");
1521 Excep : constant Exception_Occurrence_Access :=
1522 SSL.Get_Current_Excep.all;
1524 begin
1525 -- This procedure is called by the task outermost handler in
1526 -- Task_Wrapper below, so only once the task stack has been fully
1527 -- unwound. The common notification routine has been called at the
1528 -- raise point already.
1530 -- Lock to prevent unsynchronized output
1532 Initialization.Task_Lock (Self_Id);
1533 To_Stderr ("task ");
1535 if Self_Id.Common.Task_Image_Len /= 0 then
1536 To_Stderr
1537 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1538 To_Stderr ("_");
1539 end if;
1541 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1542 To_Stderr (" terminated by unhandled exception");
1543 To_Stderr ((1 => ASCII.LF));
1544 To_Stderr (Tailored_Exception_Information (Excep.all));
1545 Initialization.Task_Unlock (Self_Id);
1546 end Trace_Unhandled_Exception_In_Task;
1548 ------------------------------------
1549 -- Vulnerable_Complete_Activation --
1550 ------------------------------------
1552 -- As in several other places, the locks of the activator and activated
1553 -- task are both locked here. This follows our deadlock prevention lock
1554 -- ordering policy, since the activated task must be created after the
1555 -- activator.
1557 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1558 Activator : constant Task_Id := Self_ID.Common.Activator;
1560 begin
1561 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1563 Write_Lock (Activator);
1564 Write_Lock (Self_ID);
1566 pragma Assert (Self_ID.Common.Activator /= null);
1568 -- Remove dangling reference to Activator, since a task may outlive its
1569 -- activator.
1571 Self_ID.Common.Activator := null;
1573 -- Wake up the activator, if it is waiting for a chain of tasks to
1574 -- activate, and we are the last in the chain to complete activation.
1576 if Activator.Common.State = Activator_Sleep then
1577 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1579 if Activator.Common.Wait_Count = 0 then
1580 Wakeup (Activator, Activator_Sleep);
1581 end if;
1582 end if;
1584 -- The activator raises a Tasking_Error if any task it is activating
1585 -- is completed before the activation is done. However, if the reason
1586 -- for the task completion is an abort, we do not raise an exception.
1587 -- See RM 9.2(5).
1589 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1590 Activator.Common.Activation_Failed := True;
1591 end if;
1593 Unlock (Self_ID);
1594 Unlock (Activator);
1596 -- After the activation, active priority should be the same as base
1597 -- priority. We must unlock the Activator first, though, since it
1598 -- should not wait if we have lower priority.
1600 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1601 Write_Lock (Self_ID);
1602 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1603 Unlock (Self_ID);
1604 end if;
1605 end Vulnerable_Complete_Activation;
1607 --------------------------------
1608 -- Vulnerable_Complete_Master --
1609 --------------------------------
1611 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1612 C : Task_Id;
1613 P : Task_Id;
1614 CM : constant Master_Level := Self_ID.Master_Within;
1615 T : aliased Task_Id;
1617 To_Be_Freed : Task_Id;
1618 -- This is a list of ATCBs to be freed, after we have released all RTS
1619 -- locks. This is necessary because of the locking order rules, since
1620 -- the storage manager uses Global_Task_Lock.
1622 pragma Warnings (Off);
1623 function Check_Unactivated_Tasks return Boolean;
1624 pragma Warnings (On);
1625 -- Temporary error-checking code below. This is part of the checks
1626 -- added in the new run time. Call it only inside a pragma Assert.
1628 -----------------------------
1629 -- Check_Unactivated_Tasks --
1630 -----------------------------
1632 function Check_Unactivated_Tasks return Boolean is
1633 begin
1634 if not Single_Lock then
1635 Lock_RTS;
1636 end if;
1638 Write_Lock (Self_ID);
1640 C := All_Tasks_List;
1641 while C /= null loop
1642 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1643 return False;
1644 end if;
1646 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1647 Write_Lock (C);
1649 if C.Common.State = Unactivated then
1650 return False;
1651 end if;
1653 Unlock (C);
1654 end if;
1656 C := C.Common.All_Tasks_Link;
1657 end loop;
1659 Unlock (Self_ID);
1661 if not Single_Lock then
1662 Unlock_RTS;
1663 end if;
1665 return True;
1666 end Check_Unactivated_Tasks;
1668 -- Start of processing for Vulnerable_Complete_Master
1670 begin
1671 pragma Debug
1672 (Debug.Trace (Self_ID, "V_Complete_Master", 'C'));
1674 pragma Assert (Self_ID.Common.Wait_Count = 0);
1675 pragma Assert
1676 (Self_ID.Deferral_Level > 0
1677 or else not System.Restrictions.Abort_Allowed);
1679 -- Count how many active dependent tasks this master currently has, and
1680 -- record this in Wait_Count.
1682 -- This count should start at zero, since it is initialized to zero for
1683 -- new tasks, and the task should not exit the sleep-loops that use this
1684 -- count until the count reaches zero.
1686 -- While we're counting, if we run across any unactivated tasks that
1687 -- belong to this master, we summarily terminate them as required by
1688 -- RM-9.2(6).
1690 Lock_RTS;
1691 Write_Lock (Self_ID);
1693 C := All_Tasks_List;
1694 while C /= null loop
1696 -- Terminate unactivated (never-to-be activated) tasks
1698 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1700 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1701 -- = CM. The only case where C is pending activation by this
1702 -- task, but the master of C is not CM is in Ada 2005, when C is
1703 -- part of a return object of a build-in-place function.
1705 pragma Assert (C.Common.State = Unactivated);
1707 Write_Lock (C);
1708 C.Common.Activator := null;
1709 C.Common.State := Terminated;
1710 C.Callable := False;
1711 Utilities.Cancel_Queued_Entry_Calls (C);
1712 Unlock (C);
1713 end if;
1715 -- Count it if dependent on this master
1717 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1718 Write_Lock (C);
1720 if C.Awake_Count /= 0 then
1721 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1722 end if;
1724 Unlock (C);
1725 end if;
1727 C := C.Common.All_Tasks_Link;
1728 end loop;
1730 Self_ID.Common.State := Master_Completion_Sleep;
1731 Unlock (Self_ID);
1733 if not Single_Lock then
1734 Unlock_RTS;
1735 end if;
1737 -- Wait until dependent tasks are all terminated or ready to terminate.
1738 -- While waiting, the task may be awakened if the task's priority needs
1739 -- changing, or this master is aborted. In the latter case, we abort the
1740 -- dependents, and resume waiting until Wait_Count goes to zero.
1742 Write_Lock (Self_ID);
1744 loop
1745 exit when Self_ID.Common.Wait_Count = 0;
1747 -- Here is a difference as compared to Complete_Master
1749 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1750 and then not Self_ID.Dependents_Aborted
1751 then
1752 if Single_Lock then
1753 Abort_Dependents (Self_ID);
1754 else
1755 Unlock (Self_ID);
1756 Lock_RTS;
1757 Abort_Dependents (Self_ID);
1758 Unlock_RTS;
1759 Write_Lock (Self_ID);
1760 end if;
1761 else
1762 Sleep (Self_ID, Master_Completion_Sleep);
1763 end if;
1764 end loop;
1766 Self_ID.Common.State := Runnable;
1767 Unlock (Self_ID);
1769 -- Dependents are all terminated or on terminate alternatives. Now,
1770 -- force those on terminate alternatives to terminate, by aborting them.
1772 pragma Assert (Check_Unactivated_Tasks);
1774 if Self_ID.Alive_Count > 1 then
1775 -- ???
1776 -- Consider finding a way to skip the following extra steps if there
1777 -- are no dependents with terminate alternatives. This could be done
1778 -- by adding another count to the ATCB, similar to Awake_Count, but
1779 -- keeping track of tasks that are on terminate alternatives.
1781 pragma Assert (Self_ID.Common.Wait_Count = 0);
1783 -- Force any remaining dependents to terminate by aborting them
1785 if not Single_Lock then
1786 Lock_RTS;
1787 end if;
1789 Abort_Dependents (Self_ID);
1791 -- Above, when we "abort" the dependents we are simply using this
1792 -- operation for convenience. We are not required to support the full
1793 -- abort-statement semantics; in particular, we are not required to
1794 -- immediately cancel any queued or in-service entry calls. That is
1795 -- good, because if we tried to cancel a call we would need to lock
1796 -- the caller, in order to wake the caller up. Our anti-deadlock
1797 -- rules prevent us from doing that without releasing the locks on C
1798 -- and Self_ID. Releasing and retaking those locks would be wasteful
1799 -- at best, and should not be considered further without more
1800 -- detailed analysis of potential concurrent accesses to the ATCBs
1801 -- of C and Self_ID.
1803 -- Count how many "alive" dependent tasks this master currently has,
1804 -- and record this in Wait_Count. This count should start at zero,
1805 -- since it is initialized to zero for new tasks, and the task should
1806 -- not exit the sleep-loops that use this count until the count
1807 -- reaches zero.
1809 pragma Assert (Self_ID.Common.Wait_Count = 0);
1811 Write_Lock (Self_ID);
1813 C := All_Tasks_List;
1814 while C /= null loop
1815 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1816 Write_Lock (C);
1818 pragma Assert (C.Awake_Count = 0);
1820 if C.Alive_Count > 0 then
1821 pragma Assert (C.Terminate_Alternative);
1822 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1823 end if;
1825 Unlock (C);
1826 end if;
1828 C := C.Common.All_Tasks_Link;
1829 end loop;
1831 Self_ID.Common.State := Master_Phase_2_Sleep;
1832 Unlock (Self_ID);
1834 if not Single_Lock then
1835 Unlock_RTS;
1836 end if;
1838 -- Wait for all counted tasks to finish terminating themselves
1840 Write_Lock (Self_ID);
1842 loop
1843 exit when Self_ID.Common.Wait_Count = 0;
1844 Sleep (Self_ID, Master_Phase_2_Sleep);
1845 end loop;
1847 Self_ID.Common.State := Runnable;
1848 Unlock (Self_ID);
1849 end if;
1851 -- We don't wake up for abort here. We are already terminating just as
1852 -- fast as we can, so there is no point.
1854 -- Remove terminated tasks from the list of Self_ID's dependents, but
1855 -- don't free their ATCBs yet, because of lock order restrictions, which
1856 -- don't allow us to call "free" or "malloc" while holding any other
1857 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1858 -- called To_Be_Freed.
1860 if not Single_Lock then
1861 Lock_RTS;
1862 end if;
1864 C := All_Tasks_List;
1865 P := null;
1866 while C /= null loop
1868 -- If Free_On_Termination is set, do nothing here, and let the
1869 -- task free itself if not already done, otherwise we risk a race
1870 -- condition where Vulnerable_Free_Task is called in the loop below,
1871 -- while the task calls Free_Task itself, in Terminate_Task.
1873 if C.Common.Parent = Self_ID
1874 and then C.Master_of_Task >= CM
1875 and then not C.Free_On_Termination
1876 then
1877 if P /= null then
1878 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1879 else
1880 All_Tasks_List := C.Common.All_Tasks_Link;
1881 end if;
1883 T := C.Common.All_Tasks_Link;
1884 C.Common.All_Tasks_Link := To_Be_Freed;
1885 To_Be_Freed := C;
1886 C := T;
1888 else
1889 P := C;
1890 C := C.Common.All_Tasks_Link;
1891 end if;
1892 end loop;
1894 Unlock_RTS;
1896 -- Free all the ATCBs on the list To_Be_Freed
1898 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1899 -- any interrupt entries are detached from them they should no longer
1900 -- be referenced.
1902 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1903 -- avoid a race between a terminating task and its parent. The parent
1904 -- might try to deallocate the ACTB out from underneath the exiting
1905 -- task. Note that Free will also lock Global_Task_Lock, but that is
1906 -- OK, since this is the *one* lock for which we have a mechanism to
1907 -- support nested locking. See Task_Wrapper and its finalizer for more
1908 -- explanation.
1910 -- ???
1911 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1912 -- references to terminated library-level tasks, which could otherwise
1913 -- occur during finalization of library-level objects. A better solution
1914 -- might be to hook task objects into the finalization chain and
1915 -- deallocate the ATCB when the task object is deallocated. However,
1916 -- this change is not likely to gain anything significant, since all
1917 -- this storage should be recovered en-masse when the process exits.
1919 while To_Be_Freed /= null loop
1920 T := To_Be_Freed;
1921 To_Be_Freed := T.Common.All_Tasks_Link;
1923 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1924 -- need to check if the Interrupt_Manager_ID is null.
1926 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1927 declare
1928 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1929 -- Corresponds to the entry index of System.Interrupts.
1930 -- Interrupt_Manager.Detach_Interrupt_Entries. Be sure
1931 -- to update this value when changing Interrupt_Manager specs.
1933 type Param_Type is access all Task_Id;
1935 Param : aliased Param_Type := T'Access;
1937 begin
1938 System.Tasking.Rendezvous.Call_Simple
1939 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1940 Param'Address);
1941 end;
1942 end if;
1944 if (T.Common.Parent /= null
1945 and then T.Common.Parent.Common.Parent /= null)
1946 or else T.Master_of_Task > Library_Task_Level
1947 then
1948 Initialization.Task_Lock (Self_ID);
1950 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1951 -- has not been called yet (case of an unactivated task).
1953 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1954 SSL.Destroy_TSD (T.Common.Compiler_Data);
1955 end if;
1957 Vulnerable_Free_Task (T);
1958 Initialization.Task_Unlock (Self_ID);
1959 end if;
1960 end loop;
1962 -- It might seem nice to let the terminated task deallocate its own
1963 -- ATCB. That would not cover the case of unactivated tasks. It also
1964 -- would force us to keep the underlying thread around past termination,
1965 -- since references to the ATCB are possible past termination.
1967 -- Currently, we get rid of the thread as soon as the task terminates,
1968 -- and let the parent recover the ATCB later.
1970 -- Some day, if we want to recover the ATCB earlier, at task
1971 -- termination, we could consider using "fat task IDs", that include the
1972 -- serial number with the ATCB pointer, to catch references to tasks
1973 -- that no longer have ATCBs. It is not clear how much this would gain,
1974 -- since the user-level task object would still be occupying storage.
1976 -- Make next master level up active. We don't need to lock the ATCB,
1977 -- since the value is only updated by each task for itself.
1979 Self_ID.Master_Within := CM - 1;
1980 end Vulnerable_Complete_Master;
1982 ------------------------------
1983 -- Vulnerable_Complete_Task --
1984 ------------------------------
1986 -- Complete the calling task
1988 -- This procedure must be called with abort deferred. It should only be
1989 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
1990 -- task).
1992 -- The effect is similar to that of Complete_Master. Differences include
1993 -- the closing of entries here, and computation of the number of active
1994 -- dependent tasks in Complete_Master.
1996 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
1997 -- because that does its own locking, and because we do not need the lock
1998 -- to test Self_ID.Common.Activator. That value should only be read and
1999 -- modified by Self.
2001 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
2002 begin
2003 pragma Assert
2004 (Self_ID.Deferral_Level > 0
2005 or else not System.Restrictions.Abort_Allowed);
2006 pragma Assert (Self_ID = Self);
2007 pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1
2008 or else
2009 Self_ID.Master_Within = Self_ID.Master_of_Task + 2);
2010 pragma Assert (Self_ID.Common.Wait_Count = 0);
2011 pragma Assert (Self_ID.Open_Accepts = null);
2012 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
2014 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
2016 if Single_Lock then
2017 Lock_RTS;
2018 end if;
2020 Write_Lock (Self_ID);
2021 Self_ID.Callable := False;
2023 -- In theory, Self should have no pending entry calls left on its
2024 -- call-stack. Each async. select statement should clean its own call,
2025 -- and blocking entry calls should defer abort until the calls are
2026 -- cancelled, then clean up.
2028 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
2029 Unlock (Self_ID);
2031 if Self_ID.Common.Activator /= null then
2032 Vulnerable_Complete_Activation (Self_ID);
2033 end if;
2035 if Single_Lock then
2036 Unlock_RTS;
2037 end if;
2039 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
2040 -- dependent tasks for which we need to wait. Otherwise we just exit.
2042 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
2043 Vulnerable_Complete_Master (Self_ID);
2044 end if;
2045 end Vulnerable_Complete_Task;
2047 --------------------------
2048 -- Vulnerable_Free_Task --
2049 --------------------------
2051 -- Recover all runtime system storage associated with the task T. This
2052 -- should only be called after T has terminated and will no longer be
2053 -- referenced.
2055 -- For tasks created by an allocator that fails, due to an exception, it
2056 -- is called from Expunge_Unactivated_Tasks.
2058 -- For tasks created by elaboration of task object declarations it is
2059 -- called from the finalization code of the Task_Wrapper procedure.
2061 procedure Vulnerable_Free_Task (T : Task_Id) is
2062 begin
2063 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
2065 if Single_Lock then
2066 Lock_RTS;
2067 end if;
2069 Write_Lock (T);
2070 Initialization.Finalize_Attributes_Link.all (T);
2071 Unlock (T);
2073 if Single_Lock then
2074 Unlock_RTS;
2075 end if;
2077 System.Task_Primitives.Operations.Finalize_TCB (T);
2078 end Vulnerable_Free_Task;
2080 -- Package elaboration code
2082 begin
2083 -- Establish the Adafinal softlink
2085 -- This is not done inside the central RTS initialization routine
2086 -- to avoid with'ing this package from System.Tasking.Initialization.
2088 SSL.Adafinal := Finalize_Global_Tasks'Access;
2090 -- Establish soft links for subprograms that manipulate master_id's.
2091 -- This cannot be done when the RTS is initialized, because of various
2092 -- elaboration constraints.
2094 SSL.Current_Master := Stages.Current_Master'Access;
2095 SSL.Enter_Master := Stages.Enter_Master'Access;
2096 SSL.Complete_Master := Stages.Complete_Master'Access;
2097 end System.Tasking.Stages;