Implement -mmemcpy-strategy= and -mmemset-strategy= options
[official-gcc.git] / gcc / ada / par-ch5.adb
blobe9b0a2c8e95cdde3472ac68a092f4fda9f3a8fe1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R . C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 pragma Style_Checks (All_Checks);
27 -- Turn off subprogram body ordering check. Subprograms are in order by RM
28 -- section rather than alphabetical.
30 with Sinfo.CN; use Sinfo.CN;
32 separate (Par)
33 package body Ch5 is
35 -- Local functions, used only in this chapter
37 function P_Case_Statement return Node_Id;
38 function P_Case_Statement_Alternative return Node_Id;
39 function P_Exit_Statement return Node_Id;
40 function P_Goto_Statement return Node_Id;
41 function P_If_Statement return Node_Id;
42 function P_Label return Node_Id;
43 function P_Null_Statement return Node_Id;
45 function P_Assignment_Statement (LHS : Node_Id) return Node_Id;
46 -- Parse assignment statement. On entry, the caller has scanned the left
47 -- hand side (passed in as Lhs), and the colon-equal (or some symbol
48 -- taken to be an error equivalent such as equal).
50 function P_Begin_Statement (Block_Name : Node_Id := Empty) return Node_Id;
51 -- Parse begin-end statement. If Block_Name is non-Empty on entry, it is
52 -- the N_Identifier node for the label on the block. If Block_Name is
53 -- Empty on entry (the default), then the block statement is unlabeled.
55 function P_Declare_Statement (Block_Name : Node_Id := Empty) return Node_Id;
56 -- Parse declare block. If Block_Name is non-Empty on entry, it is
57 -- the N_Identifier node for the label on the block. If Block_Name is
58 -- Empty on entry (the default), then the block statement is unlabeled.
60 function P_For_Statement (Loop_Name : Node_Id := Empty) return Node_Id;
61 -- Parse for statement. If Loop_Name is non-Empty on entry, it is
62 -- the N_Identifier node for the label on the loop. If Loop_Name is
63 -- Empty on entry (the default), then the for statement is unlabeled.
65 function P_Iterator_Specification (Def_Id : Node_Id) return Node_Id;
66 -- Parse an iterator specification. The defining identifier has already
67 -- been scanned, as it is the common prefix between loop and iterator
68 -- specification.
70 function P_Loop_Statement (Loop_Name : Node_Id := Empty) return Node_Id;
71 -- Parse loop statement. If Loop_Name is non-Empty on entry, it is
72 -- the N_Identifier node for the label on the loop. If Loop_Name is
73 -- Empty on entry (the default), then the loop statement is unlabeled.
75 function P_While_Statement (Loop_Name : Node_Id := Empty) return Node_Id;
76 -- Parse while statement. If Loop_Name is non-Empty on entry, it is
77 -- the N_Identifier node for the label on the loop. If Loop_Name is
78 -- Empty on entry (the default), then the while statement is unlabeled.
80 function Set_Loop_Block_Name (L : Character) return Name_Id;
81 -- Given a letter 'L' for a loop or 'B' for a block, returns a name
82 -- of the form L_nn or B_nn where nn is a serial number obtained by
83 -- incrementing the variable Loop_Block_Count.
85 procedure Then_Scan;
86 -- Scan past THEN token, testing for illegal junk after it
88 ---------------------------------
89 -- 5.1 Sequence of Statements --
90 ---------------------------------
92 -- SEQUENCE_OF_STATEMENTS ::= STATEMENT {STATEMENT} {LABEL}
93 -- Note: the final label is an Ada 2012 addition.
95 -- STATEMENT ::=
96 -- {LABEL} SIMPLE_STATEMENT | {LABEL} COMPOUND_STATEMENT
98 -- SIMPLE_STATEMENT ::= NULL_STATEMENT
99 -- | ASSIGNMENT_STATEMENT | EXIT_STATEMENT
100 -- | GOTO_STATEMENT | PROCEDURE_CALL_STATEMENT
101 -- | RETURN_STATEMENT | ENTRY_CALL_STATEMENT
102 -- | REQUEUE_STATEMENT | DELAY_STATEMENT
103 -- | ABORT_STATEMENT | RAISE_STATEMENT
104 -- | CODE_STATEMENT
106 -- COMPOUND_STATEMENT ::=
107 -- IF_STATEMENT | CASE_STATEMENT
108 -- | LOOP_STATEMENT | BLOCK_STATEMENT
109 -- | ACCEPT_STATEMENT | SELECT_STATEMENT
111 -- This procedure scans a sequence of statements. The caller sets SS_Flags
112 -- to indicate acceptable termination conditions for the sequence:
114 -- SS_Flags.Eftm Terminate on ELSIF
115 -- SS_Flags.Eltm Terminate on ELSE
116 -- SS_Flags.Extm Terminate on EXCEPTION
117 -- SS_Flags.Ortm Terminate on OR
118 -- SS_Flags.Tatm Terminate on THEN ABORT (Token = ABORT on return)
119 -- SS_Flags.Whtm Terminate on WHEN
120 -- SS_Flags.Unco Unconditional terminate after scanning one statement
122 -- In addition, the scan is always terminated by encountering END or the
123 -- end of file (EOF) condition. If one of the six above terminators is
124 -- encountered with the corresponding SS_Flags flag not set, then the
125 -- action taken is as follows:
127 -- If the keyword occurs to the left of the expected column of the end
128 -- for the current sequence (as recorded in the current end context),
129 -- then it is assumed to belong to an outer context, and is considered
130 -- to terminate the sequence of statements.
132 -- If the keyword occurs to the right of, or in the expected column of
133 -- the end for the current sequence, then an error message is output,
134 -- the keyword together with its associated context is skipped, and
135 -- the statement scan continues until another terminator is found.
137 -- Note that the first action means that control can return to the caller
138 -- with Token set to a terminator other than one of those specified by the
139 -- SS parameter. The caller should treat such a case as equivalent to END.
141 -- In addition, the flag SS_Flags.Sreq is set to True to indicate that at
142 -- least one real statement (other than a pragma) is required in the
143 -- statement sequence. During the processing of the sequence, this
144 -- flag is manipulated to indicate the current status of the requirement
145 -- for a statement. For example, it is turned off by the occurrence of a
146 -- statement, and back on by a label (which requires a following statement)
148 -- Error recovery: cannot raise Error_Resync. If an error occurs during
149 -- parsing a statement, then the scan pointer is advanced past the next
150 -- semicolon and the parse continues.
152 function P_Sequence_Of_Statements (SS_Flags : SS_Rec) return List_Id is
154 Statement_Required : Boolean;
155 -- This flag indicates if a subsequent statement (other than a pragma)
156 -- is required. It is initialized from the Sreq flag, and modified as
157 -- statements are scanned (a statement turns it off, and a label turns
158 -- it back on again since a statement must follow a label).
159 -- Note : this final requirement is lifted in Ada 2012.
161 Statement_Seen : Boolean;
162 -- In Ada 2012, a label can end a sequence of statements, but the
163 -- sequence cannot contain only labels. This flag is set whenever a
164 -- label is encountered, to enforce this rule at the end of a sequence.
166 Declaration_Found : Boolean := False;
167 -- This flag is set True if a declaration is encountered, so that the
168 -- error message about declarations in the statement part is only
169 -- given once for a given sequence of statements.
171 Scan_State_Label : Saved_Scan_State;
172 Scan_State : Saved_Scan_State;
174 Statement_List : List_Id;
175 Block_Label : Name_Id;
176 Id_Node : Node_Id;
177 Name_Node : Node_Id;
179 procedure Junk_Declaration;
180 -- Procedure called to handle error of declaration encountered in
181 -- statement sequence.
183 procedure Test_Statement_Required;
184 -- Flag error if Statement_Required flag set
186 ----------------------
187 -- Junk_Declaration --
188 ----------------------
190 procedure Junk_Declaration is
191 begin
192 if (not Declaration_Found) or All_Errors_Mode then
193 Error_Msg_SC -- CODEFIX
194 ("declarations must come before BEGIN");
195 Declaration_Found := True;
196 end if;
198 Skip_Declaration (Statement_List);
199 end Junk_Declaration;
201 -----------------------------
202 -- Test_Statement_Required --
203 -----------------------------
205 procedure Test_Statement_Required is
206 function All_Pragmas return Boolean;
207 -- Return True if statement list is all pragmas
209 -----------------
210 -- All_Pragmas --
211 -----------------
213 function All_Pragmas return Boolean is
214 S : Node_Id;
215 begin
216 S := First (Statement_List);
217 while Present (S) loop
218 if Nkind (S) /= N_Pragma then
219 return False;
220 else
221 Next (S);
222 end if;
223 end loop;
225 return True;
226 end All_Pragmas;
228 -- Start of processing for Test_Statement_Required
230 begin
231 if Statement_Required then
233 -- Check no statement required after label in Ada 2012, and that
234 -- it is OK to have nothing but pragmas in a statement sequence.
236 if Ada_Version >= Ada_2012
237 and then not Is_Empty_List (Statement_List)
238 and then
239 ((Nkind (Last (Statement_List)) = N_Label
240 and then Statement_Seen)
241 or else All_Pragmas)
242 then
243 declare
244 Null_Stm : constant Node_Id :=
245 Make_Null_Statement (Token_Ptr);
246 begin
247 Set_Comes_From_Source (Null_Stm, False);
248 Append_To (Statement_List, Null_Stm);
249 end;
251 -- If not Ada 2012, or not special case above, give error message
253 else
254 Error_Msg_BC -- CODEFIX
255 ("statement expected");
256 end if;
257 end if;
258 end Test_Statement_Required;
260 -- Start of processing for P_Sequence_Of_Statements
262 begin
263 Statement_List := New_List;
264 Statement_Required := SS_Flags.Sreq;
265 Statement_Seen := False;
267 loop
268 Ignore (Tok_Semicolon);
270 begin
271 if Style_Check then
272 Style.Check_Indentation;
273 end if;
275 -- Deal with reserved identifier (in assignment or call)
277 if Is_Reserved_Identifier then
278 Save_Scan_State (Scan_State); -- at possible bad identifier
279 Scan; -- and scan past it
281 -- We have an reserved word which is spelled in identifier
282 -- style, so the question is whether it really is intended
283 -- to be an identifier.
286 -- If followed by a semicolon, then it is an identifier,
287 -- with the exception of the cases tested for below.
289 (Token = Tok_Semicolon
290 and then Prev_Token /= Tok_Return
291 and then Prev_Token /= Tok_Null
292 and then Prev_Token /= Tok_Raise
293 and then Prev_Token /= Tok_End
294 and then Prev_Token /= Tok_Exit)
296 -- If followed by colon, colon-equal, or dot, then we
297 -- definitely have an identifier (could not be reserved)
299 or else Token = Tok_Colon
300 or else Token = Tok_Colon_Equal
301 or else Token = Tok_Dot
303 -- Left paren means we have an identifier except for those
304 -- reserved words that can legitimately be followed by a
305 -- left paren.
307 or else
308 (Token = Tok_Left_Paren
309 and then Prev_Token /= Tok_Case
310 and then Prev_Token /= Tok_Delay
311 and then Prev_Token /= Tok_If
312 and then Prev_Token /= Tok_Elsif
313 and then Prev_Token /= Tok_Return
314 and then Prev_Token /= Tok_When
315 and then Prev_Token /= Tok_While
316 and then Prev_Token /= Tok_Separate)
317 then
318 -- Here we have an apparent reserved identifier and the
319 -- token past it is appropriate to this usage (and would
320 -- be a definite error if this is not an identifier). What
321 -- we do is to use P_Identifier to fix up the identifier,
322 -- and then fall into the normal processing.
324 Restore_Scan_State (Scan_State); -- back to the ID
325 Scan_Reserved_Identifier (Force_Msg => False);
327 -- Not a reserved identifier after all (or at least we can't
328 -- be sure that it is), so reset the scan and continue.
330 else
331 Restore_Scan_State (Scan_State); -- back to the reserved word
332 end if;
333 end if;
335 -- Now look to see what kind of statement we have
337 case Token is
339 -- Case of end or EOF
341 when Tok_End | Tok_EOF =>
343 -- These tokens always terminate the statement sequence
345 Test_Statement_Required;
346 exit;
348 -- Case of ELSIF
350 when Tok_Elsif =>
352 -- Terminate if Eftm set or if the ELSIF is to the left
353 -- of the expected column of the end for this sequence
355 if SS_Flags.Eftm
356 or else Start_Column < Scope.Table (Scope.Last).Ecol
357 then
358 Test_Statement_Required;
359 exit;
361 -- Otherwise complain and skip past ELSIF Condition then
363 else
364 Error_Msg_SC ("ELSIF not allowed here");
365 Scan; -- past ELSIF
366 Discard_Junk_Node (P_Expression_No_Right_Paren);
367 Then_Scan;
368 Statement_Required := False;
369 end if;
371 -- Case of ELSE
373 when Tok_Else =>
375 -- Terminate if Eltm set or if the else is to the left
376 -- of the expected column of the end for this sequence
378 if SS_Flags.Eltm
379 or else Start_Column < Scope.Table (Scope.Last).Ecol
380 then
381 Test_Statement_Required;
382 exit;
384 -- Otherwise complain and skip past else
386 else
387 Error_Msg_SC ("ELSE not allowed here");
388 Scan; -- past ELSE
389 Statement_Required := False;
390 end if;
392 -- Case of exception
394 when Tok_Exception =>
395 Test_Statement_Required;
397 -- If Extm not set and the exception is not to the left of
398 -- the expected column of the end for this sequence, then we
399 -- assume it belongs to the current sequence, even though it
400 -- is not permitted.
402 if not SS_Flags.Extm and then
403 Start_Column >= Scope.Table (Scope.Last).Ecol
405 then
406 Error_Msg_SC ("exception handler not permitted here");
407 Scan; -- past EXCEPTION
408 Discard_Junk_List (Parse_Exception_Handlers);
409 end if;
411 -- Always return, in the case where we scanned out handlers
412 -- that we did not expect, Parse_Exception_Handlers returned
413 -- with Token being either end or EOF, so we are OK.
415 exit;
417 -- Case of OR
419 when Tok_Or =>
421 -- Terminate if Ortm set or if the or is to the left of the
422 -- expected column of the end for this sequence.
424 if SS_Flags.Ortm
425 or else Start_Column < Scope.Table (Scope.Last).Ecol
426 then
427 Test_Statement_Required;
428 exit;
430 -- Otherwise complain and skip past or
432 else
433 Error_Msg_SC ("OR not allowed here");
434 Scan; -- past or
435 Statement_Required := False;
436 end if;
438 -- Case of THEN (deal also with THEN ABORT)
440 when Tok_Then =>
441 Save_Scan_State (Scan_State); -- at THEN
442 Scan; -- past THEN
444 -- Terminate if THEN ABORT allowed (ATC case)
446 exit when SS_Flags.Tatm and then Token = Tok_Abort;
448 -- Otherwise we treat THEN as some kind of mess where we did
449 -- not see the associated IF, but we pick up assuming it had
450 -- been there!
452 Restore_Scan_State (Scan_State); -- to THEN
453 Append_To (Statement_List, P_If_Statement);
454 Statement_Required := False;
456 -- Case of WHEN (error because we are not in a case)
458 when Tok_When | Tok_Others =>
460 -- Terminate if Whtm set or if the WHEN is to the left of
461 -- the expected column of the end for this sequence.
463 if SS_Flags.Whtm
464 or else Start_Column < Scope.Table (Scope.Last).Ecol
465 then
466 Test_Statement_Required;
467 exit;
469 -- Otherwise complain and skip when Choice {| Choice} =>
471 else
472 Error_Msg_SC ("WHEN not allowed here");
473 Scan; -- past when
474 Discard_Junk_List (P_Discrete_Choice_List);
475 TF_Arrow;
476 Statement_Required := False;
477 end if;
479 -- Cases of statements starting with an identifier
481 when Tok_Identifier =>
482 Check_Bad_Layout;
484 -- Save scan pointers and line number in case block label
486 Id_Node := Token_Node;
487 Block_Label := Token_Name;
488 Save_Scan_State (Scan_State_Label); -- at possible label
489 Scan; -- past Id
491 -- Check for common case of assignment, since it occurs
492 -- frequently, and we want to process it efficiently.
494 if Token = Tok_Colon_Equal then
495 Scan; -- past the colon-equal
496 Append_To (Statement_List,
497 P_Assignment_Statement (Id_Node));
498 Statement_Required := False;
500 -- Check common case of procedure call, another case that
501 -- we want to speed up as much as possible.
503 elsif Token = Tok_Semicolon then
504 Change_Name_To_Procedure_Call_Statement (Id_Node);
505 Append_To (Statement_List, Id_Node);
506 Scan; -- past semicolon
507 Statement_Required := False;
509 -- Check for case of "go to" in place of "goto"
511 elsif Token = Tok_Identifier
512 and then Block_Label = Name_Go
513 and then Token_Name = Name_To
514 then
515 Error_Msg_SP -- CODEFIX
516 ("goto is one word");
517 Append_To (Statement_List, P_Goto_Statement);
518 Statement_Required := False;
520 -- Check common case of = used instead of :=, just so we
521 -- give a better error message for this special misuse.
523 elsif Token = Tok_Equal then
524 T_Colon_Equal; -- give := expected message
525 Append_To (Statement_List,
526 P_Assignment_Statement (Id_Node));
527 Statement_Required := False;
529 -- Check case of loop label or block label
531 elsif Token = Tok_Colon
532 or else (Token in Token_Class_Labeled_Stmt
533 and then not Token_Is_At_Start_Of_Line)
534 then
535 T_Colon; -- past colon (if there, or msg for missing one)
537 -- Test for more than one label
539 loop
540 exit when Token /= Tok_Identifier;
541 Save_Scan_State (Scan_State); -- at second Id
542 Scan; -- past Id
544 if Token = Tok_Colon then
545 Error_Msg_SP
546 ("only one label allowed on block or loop");
547 Scan; -- past colon on extra label
549 -- Use the second label as the "real" label
551 Scan_State_Label := Scan_State;
553 -- We will set Error_name as the Block_Label since
554 -- we really don't know which of the labels might
555 -- be used at the end of the loop or block!
557 Block_Label := Error_Name;
559 -- If Id with no colon, then backup to point to the
560 -- Id and we will issue the message below when we try
561 -- to scan out the statement as some other form.
563 else
564 Restore_Scan_State (Scan_State); -- to second Id
565 exit;
566 end if;
567 end loop;
569 -- Loop_Statement (labeled Loop_Statement)
571 if Token = Tok_Loop then
572 Append_To (Statement_List,
573 P_Loop_Statement (Id_Node));
575 -- While statement (labeled loop statement with WHILE)
577 elsif Token = Tok_While then
578 Append_To (Statement_List,
579 P_While_Statement (Id_Node));
581 -- Declare statement (labeled block statement with
582 -- DECLARE part)
584 elsif Token = Tok_Declare then
585 Append_To (Statement_List,
586 P_Declare_Statement (Id_Node));
588 -- Begin statement (labeled block statement with no
589 -- DECLARE part)
591 elsif Token = Tok_Begin then
592 Append_To (Statement_List,
593 P_Begin_Statement (Id_Node));
595 -- For statement (labeled loop statement with FOR)
597 elsif Token = Tok_For then
598 Append_To (Statement_List,
599 P_For_Statement (Id_Node));
601 -- Improper statement follows label. If we have an
602 -- expression token, then assume the colon was part
603 -- of a misplaced declaration.
605 elsif Token not in Token_Class_Eterm then
606 Restore_Scan_State (Scan_State_Label);
607 Junk_Declaration;
609 -- Otherwise complain we have inappropriate statement
611 else
612 Error_Msg_AP
613 ("loop or block statement must follow label");
614 end if;
616 Statement_Required := False;
618 -- Here we have an identifier followed by something
619 -- other than a colon, semicolon or assignment symbol.
620 -- The only valid possibility is a name extension symbol
622 elsif Token in Token_Class_Namext then
623 Restore_Scan_State (Scan_State_Label); -- to Id
624 Name_Node := P_Name;
626 -- Skip junk right parens in this context
628 Ignore (Tok_Right_Paren);
630 -- Check context following call
632 if Token = Tok_Colon_Equal then
633 Scan; -- past colon equal
634 Append_To (Statement_List,
635 P_Assignment_Statement (Name_Node));
636 Statement_Required := False;
638 -- Check common case of = used instead of :=
640 elsif Token = Tok_Equal then
641 T_Colon_Equal; -- give := expected message
642 Append_To (Statement_List,
643 P_Assignment_Statement (Name_Node));
644 Statement_Required := False;
646 -- Check apostrophe cases
648 elsif Token = Tok_Apostrophe then
649 Append_To (Statement_List,
650 P_Code_Statement (Name_Node));
651 Statement_Required := False;
653 -- The only other valid item after a name is ; which
654 -- means that the item we just scanned was a call.
656 elsif Token = Tok_Semicolon then
657 Change_Name_To_Procedure_Call_Statement (Name_Node);
658 Append_To (Statement_List, Name_Node);
659 Scan; -- past semicolon
660 Statement_Required := False;
662 -- A slash following an identifier or a selected
663 -- component in this situation is most likely a period
664 -- (see location of keys on keyboard).
666 elsif Token = Tok_Slash
667 and then (Nkind (Name_Node) = N_Identifier
668 or else
669 Nkind (Name_Node) = N_Selected_Component)
670 then
671 Error_Msg_SC -- CODEFIX
672 ("""/"" should be "".""");
673 Statement_Required := False;
674 raise Error_Resync;
676 -- Else we have a missing semicolon
678 else
679 TF_Semicolon;
680 Statement_Required := False;
681 end if;
683 -- If junk after identifier, check if identifier is an
684 -- instance of an incorrectly spelled keyword. If so, we
685 -- do nothing. The Bad_Spelling_Of will have reset Token
686 -- to the appropriate keyword, so the next time round the
687 -- loop we will process the modified token. Note that we
688 -- check for ELSIF before ELSE here. That's not accidental.
689 -- We don't want to identify a misspelling of ELSE as
690 -- ELSIF, and in particular we do not want to treat ELSEIF
691 -- as ELSE IF.
693 else
694 Restore_Scan_State (Scan_State_Label); -- to identifier
696 if Bad_Spelling_Of (Tok_Abort)
697 or else Bad_Spelling_Of (Tok_Accept)
698 or else Bad_Spelling_Of (Tok_Case)
699 or else Bad_Spelling_Of (Tok_Declare)
700 or else Bad_Spelling_Of (Tok_Delay)
701 or else Bad_Spelling_Of (Tok_Elsif)
702 or else Bad_Spelling_Of (Tok_Else)
703 or else Bad_Spelling_Of (Tok_End)
704 or else Bad_Spelling_Of (Tok_Exception)
705 or else Bad_Spelling_Of (Tok_Exit)
706 or else Bad_Spelling_Of (Tok_For)
707 or else Bad_Spelling_Of (Tok_Goto)
708 or else Bad_Spelling_Of (Tok_If)
709 or else Bad_Spelling_Of (Tok_Loop)
710 or else Bad_Spelling_Of (Tok_Or)
711 or else Bad_Spelling_Of (Tok_Pragma)
712 or else Bad_Spelling_Of (Tok_Raise)
713 or else Bad_Spelling_Of (Tok_Requeue)
714 or else Bad_Spelling_Of (Tok_Return)
715 or else Bad_Spelling_Of (Tok_Select)
716 or else Bad_Spelling_Of (Tok_When)
717 or else Bad_Spelling_Of (Tok_While)
718 then
719 null;
721 -- If not a bad spelling, then we really have junk
723 else
724 Scan; -- past identifier again
726 -- If next token is first token on line, then we
727 -- consider that we were missing a semicolon after
728 -- the identifier, and process it as a procedure
729 -- call with no parameters.
731 if Token_Is_At_Start_Of_Line then
732 Change_Name_To_Procedure_Call_Statement (Id_Node);
733 Append_To (Statement_List, Id_Node);
734 T_Semicolon; -- to give error message
735 Statement_Required := False;
737 -- Otherwise we give a missing := message and
738 -- simply abandon the junk that is there now.
740 else
741 T_Colon_Equal; -- give := expected message
742 raise Error_Resync;
743 end if;
745 end if;
746 end if;
748 -- Statement starting with operator symbol. This could be
749 -- a call, a name starting an assignment, or a qualified
750 -- expression.
752 when Tok_Operator_Symbol =>
753 Check_Bad_Layout;
754 Name_Node := P_Name;
756 -- An attempt at a range attribute or a qualified expression
757 -- must be illegal here (a code statement cannot possibly
758 -- allow qualification by a function name).
760 if Token = Tok_Apostrophe then
761 Error_Msg_SC ("apostrophe illegal here");
762 raise Error_Resync;
763 end if;
765 -- Scan possible assignment if we have a name
767 if Expr_Form = EF_Name
768 and then Token = Tok_Colon_Equal
769 then
770 Scan; -- past colon equal
771 Append_To (Statement_List,
772 P_Assignment_Statement (Name_Node));
773 else
774 Change_Name_To_Procedure_Call_Statement (Name_Node);
775 Append_To (Statement_List, Name_Node);
776 end if;
778 TF_Semicolon;
779 Statement_Required := False;
781 -- Label starting with << which must precede real statement
782 -- Note: in Ada 2012, the label may end the sequence.
784 when Tok_Less_Less =>
785 if Present (Last (Statement_List))
786 and then Nkind (Last (Statement_List)) /= N_Label
787 then
788 Statement_Seen := True;
789 end if;
791 Append_To (Statement_List, P_Label);
792 Statement_Required := True;
794 -- Pragma appearing as a statement in a statement sequence
796 when Tok_Pragma =>
797 Check_Bad_Layout;
798 Append_To (Statement_List, P_Pragma);
800 -- Abort_Statement
802 when Tok_Abort =>
803 Check_Bad_Layout;
804 Append_To (Statement_List, P_Abort_Statement);
805 Statement_Required := False;
807 -- Accept_Statement
809 when Tok_Accept =>
810 Check_Bad_Layout;
811 Append_To (Statement_List, P_Accept_Statement);
812 Statement_Required := False;
814 -- Begin_Statement (Block_Statement with no declare, no label)
816 when Tok_Begin =>
817 Check_Bad_Layout;
818 Append_To (Statement_List, P_Begin_Statement);
819 Statement_Required := False;
821 -- Case_Statement
823 when Tok_Case =>
824 Check_Bad_Layout;
825 Append_To (Statement_List, P_Case_Statement);
826 Statement_Required := False;
828 -- Block_Statement with DECLARE and no label
830 when Tok_Declare =>
831 Check_Bad_Layout;
832 Append_To (Statement_List, P_Declare_Statement);
833 Statement_Required := False;
835 -- Delay_Statement
837 when Tok_Delay =>
838 Check_Bad_Layout;
839 Append_To (Statement_List, P_Delay_Statement);
840 Statement_Required := False;
842 -- Exit_Statement
844 when Tok_Exit =>
845 Check_Bad_Layout;
846 Append_To (Statement_List, P_Exit_Statement);
847 Statement_Required := False;
849 -- Loop_Statement with FOR and no label
851 when Tok_For =>
852 Check_Bad_Layout;
853 Append_To (Statement_List, P_For_Statement);
854 Statement_Required := False;
856 -- Goto_Statement
858 when Tok_Goto =>
859 Check_Bad_Layout;
860 Append_To (Statement_List, P_Goto_Statement);
861 Statement_Required := False;
863 -- If_Statement
865 when Tok_If =>
866 Check_Bad_Layout;
867 Append_To (Statement_List, P_If_Statement);
868 Statement_Required := False;
870 -- Loop_Statement
872 when Tok_Loop =>
873 Check_Bad_Layout;
874 Append_To (Statement_List, P_Loop_Statement);
875 Statement_Required := False;
877 -- Null_Statement
879 when Tok_Null =>
880 Check_Bad_Layout;
881 Append_To (Statement_List, P_Null_Statement);
882 Statement_Required := False;
884 -- Raise_Statement
886 when Tok_Raise =>
887 Check_Bad_Layout;
888 Append_To (Statement_List, P_Raise_Statement);
889 Statement_Required := False;
891 -- Requeue_Statement
893 when Tok_Requeue =>
894 Check_Bad_Layout;
895 Append_To (Statement_List, P_Requeue_Statement);
896 Statement_Required := False;
898 -- Return_Statement
900 when Tok_Return =>
901 Check_Bad_Layout;
902 Append_To (Statement_List, P_Return_Statement);
903 Statement_Required := False;
905 -- Select_Statement
907 when Tok_Select =>
908 Check_Bad_Layout;
909 Append_To (Statement_List, P_Select_Statement);
910 Statement_Required := False;
912 -- While_Statement (Block_Statement with while and no loop)
914 when Tok_While =>
915 Check_Bad_Layout;
916 Append_To (Statement_List, P_While_Statement);
917 Statement_Required := False;
919 -- Anything else is some kind of junk, signal an error message
920 -- and then raise Error_Resync, to merge with the normal
921 -- handling of a bad statement.
923 when others =>
925 if Token in Token_Class_Declk then
926 Junk_Declaration;
928 else
929 Error_Msg_BC -- CODEFIX
930 ("statement expected");
931 raise Error_Resync;
932 end if;
933 end case;
935 -- On error resynchronization, skip past next semicolon, and, since
936 -- we are still in the statement loop, look for next statement. We
937 -- set Statement_Required False to avoid an unnecessary error message
938 -- complaining that no statement was found (i.e. we consider the
939 -- junk to satisfy the requirement for a statement being present).
941 exception
942 when Error_Resync =>
943 Resync_Past_Semicolon_Or_To_Loop_Or_Then;
944 Statement_Required := False;
945 end;
947 exit when SS_Flags.Unco;
949 end loop;
951 return Statement_List;
953 end P_Sequence_Of_Statements;
955 --------------------
956 -- 5.1 Statement --
957 --------------------
959 ---------------------------
960 -- 5.1 Simple Statement --
961 ---------------------------
963 -- Parsed by P_Sequence_Of_Statements (5.1)
965 -----------------------------
966 -- 5.1 Compound Statement --
967 -----------------------------
969 -- Parsed by P_Sequence_Of_Statements (5.1)
971 -------------------------
972 -- 5.1 Null Statement --
973 -------------------------
975 -- NULL_STATEMENT ::= null;
977 -- The caller has already checked that the current token is null
979 -- Error recovery: cannot raise Error_Resync
981 function P_Null_Statement return Node_Id is
982 Null_Stmt_Node : Node_Id;
984 begin
985 Null_Stmt_Node := New_Node (N_Null_Statement, Token_Ptr);
986 Scan; -- past NULL
987 TF_Semicolon;
988 return Null_Stmt_Node;
989 end P_Null_Statement;
991 ----------------
992 -- 5.1 Label --
993 ----------------
995 -- LABEL ::= <<label_STATEMENT_IDENTIFIER>>
997 -- STATEMENT_IDENTIFIER ::= DIRECT_NAME
999 -- The IDENTIFIER of a STATEMENT_IDENTIFIER shall be an identifier
1000 -- (not an OPERATOR_SYMBOL)
1002 -- The caller has already checked that the current token is <<
1004 -- Error recovery: can raise Error_Resync
1006 function P_Label return Node_Id is
1007 Label_Node : Node_Id;
1009 begin
1010 Label_Node := New_Node (N_Label, Token_Ptr);
1011 Scan; -- past <<
1012 Set_Identifier (Label_Node, P_Identifier (C_Greater_Greater));
1013 T_Greater_Greater;
1014 Append_Elmt (Label_Node, Label_List);
1015 return Label_Node;
1016 end P_Label;
1018 -------------------------------
1019 -- 5.1 Statement Identifier --
1020 -------------------------------
1022 -- Statement label is parsed by P_Label (5.1)
1024 -- Loop label is parsed by P_Loop_Statement (5.5), P_For_Statement (5.5)
1025 -- or P_While_Statement (5.5)
1027 -- Block label is parsed by P_Begin_Statement (5.6) or
1028 -- P_Declare_Statement (5.6)
1030 -------------------------------
1031 -- 5.2 Assignment Statement --
1032 -------------------------------
1034 -- ASSIGNMENT_STATEMENT ::=
1035 -- variable_NAME := EXPRESSION;
1037 -- Error recovery: can raise Error_Resync
1039 function P_Assignment_Statement (LHS : Node_Id) return Node_Id is
1040 Assign_Node : Node_Id;
1042 begin
1043 Assign_Node := New_Node (N_Assignment_Statement, Prev_Token_Ptr);
1044 Set_Name (Assign_Node, LHS);
1045 Set_Expression (Assign_Node, P_Expression_No_Right_Paren);
1046 TF_Semicolon;
1047 return Assign_Node;
1048 end P_Assignment_Statement;
1050 -----------------------
1051 -- 5.3 If Statement --
1052 -----------------------
1054 -- IF_STATEMENT ::=
1055 -- if CONDITION then
1056 -- SEQUENCE_OF_STATEMENTS
1057 -- {elsif CONDITION then
1058 -- SEQUENCE_OF_STATEMENTS}
1059 -- [else
1060 -- SEQUENCE_OF_STATEMENTS]
1061 -- end if;
1063 -- The caller has checked that the initial token is IF (or in the error
1064 -- case of a mysterious THEN, the initial token may simply be THEN, in
1065 -- which case, no condition (or IF) was scanned).
1067 -- Error recovery: can raise Error_Resync
1069 function P_If_Statement return Node_Id is
1070 If_Node : Node_Id;
1071 Elsif_Node : Node_Id;
1072 Loc : Source_Ptr;
1074 procedure Add_Elsif_Part;
1075 -- An internal procedure used to scan out a single ELSIF part. On entry
1076 -- the ELSIF (or an ELSE which has been determined should be ELSIF) is
1077 -- scanned out and is in Prev_Token.
1079 procedure Check_If_Column;
1080 -- An internal procedure used to check that THEN, ELSE, or ELSIF
1081 -- appear in the right place if column checking is enabled (i.e. if
1082 -- they are the first token on the line, then they must appear in
1083 -- the same column as the opening IF).
1085 procedure Check_Then_Column;
1086 -- This procedure carries out the style checks for a THEN token
1087 -- Note that the caller has set Loc to the Source_Ptr value for
1088 -- the previous IF or ELSIF token. These checks apply only to a
1089 -- THEN at the start of a line.
1091 function Else_Should_Be_Elsif return Boolean;
1092 -- An internal routine used to do a special error recovery check when
1093 -- an ELSE is encountered. It determines if the ELSE should be treated
1094 -- as an ELSIF. A positive decision (TRUE returned, is made if the ELSE
1095 -- is followed by a sequence of tokens, starting on the same line as
1096 -- the ELSE, which are not expression terminators, followed by a THEN.
1097 -- On entry, the ELSE has been scanned out.
1099 procedure Add_Elsif_Part is
1100 begin
1101 if No (Elsif_Parts (If_Node)) then
1102 Set_Elsif_Parts (If_Node, New_List);
1103 end if;
1105 Elsif_Node := New_Node (N_Elsif_Part, Prev_Token_Ptr);
1106 Loc := Prev_Token_Ptr;
1107 Set_Condition (Elsif_Node, P_Condition);
1108 Check_Then_Column;
1109 Then_Scan;
1110 Set_Then_Statements
1111 (Elsif_Node, P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq));
1112 Append (Elsif_Node, Elsif_Parts (If_Node));
1113 end Add_Elsif_Part;
1115 procedure Check_If_Column is
1116 begin
1117 if RM_Column_Check and then Token_Is_At_Start_Of_Line
1118 and then Start_Column /= Scope.Table (Scope.Last).Ecol
1119 then
1120 Error_Msg_Col := Scope.Table (Scope.Last).Ecol;
1121 Error_Msg_SC ("(style) this token should be@");
1122 end if;
1123 end Check_If_Column;
1125 procedure Check_Then_Column is
1126 begin
1127 if Token_Is_At_Start_Of_Line and then Token = Tok_Then then
1128 Check_If_Column;
1130 if Style_Check then
1131 Style.Check_Then (Loc);
1132 end if;
1133 end if;
1134 end Check_Then_Column;
1136 function Else_Should_Be_Elsif return Boolean is
1137 Scan_State : Saved_Scan_State;
1139 begin
1140 if Token_Is_At_Start_Of_Line then
1141 return False;
1143 else
1144 Save_Scan_State (Scan_State);
1146 loop
1147 if Token in Token_Class_Eterm then
1148 Restore_Scan_State (Scan_State);
1149 return False;
1150 else
1151 Scan; -- past non-expression terminating token
1153 if Token = Tok_Then then
1154 Restore_Scan_State (Scan_State);
1155 return True;
1156 end if;
1157 end if;
1158 end loop;
1159 end if;
1160 end Else_Should_Be_Elsif;
1162 -- Start of processing for P_If_Statement
1164 begin
1165 If_Node := New_Node (N_If_Statement, Token_Ptr);
1167 Push_Scope_Stack;
1168 Scope.Table (Scope.Last).Etyp := E_If;
1169 Scope.Table (Scope.Last).Ecol := Start_Column;
1170 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1171 Scope.Table (Scope.Last).Labl := Error;
1172 Scope.Table (Scope.Last).Node := If_Node;
1174 if Token = Tok_If then
1175 Loc := Token_Ptr;
1176 Scan; -- past IF
1177 Set_Condition (If_Node, P_Condition);
1179 -- Deal with misuse of IF expression => used instead
1180 -- of WHEN expression =>
1182 if Token = Tok_Arrow then
1183 Error_Msg_SC -- CODEFIX
1184 ("THEN expected");
1185 Scan; -- past the arrow
1186 Pop_Scope_Stack; -- remove unneeded entry
1187 raise Error_Resync;
1188 end if;
1190 Check_Then_Column;
1192 else
1193 Error_Msg_SC ("no IF for this THEN");
1194 Set_Condition (If_Node, Error);
1195 end if;
1197 Then_Scan;
1199 Set_Then_Statements
1200 (If_Node, P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq));
1202 -- This loop scans out else and elsif parts
1204 loop
1205 if Token = Tok_Elsif then
1206 Check_If_Column;
1208 if Present (Else_Statements (If_Node)) then
1209 Error_Msg_SP ("ELSIF cannot appear after ELSE");
1210 end if;
1212 Scan; -- past ELSIF
1213 Add_Elsif_Part;
1215 elsif Token = Tok_Else then
1216 Check_If_Column;
1217 Scan; -- past ELSE
1219 if Else_Should_Be_Elsif then
1220 Error_Msg_SP -- CODEFIX
1221 ("ELSE should be ELSIF");
1222 Add_Elsif_Part;
1224 else
1225 -- Here we have an else that really is an else
1227 if Present (Else_Statements (If_Node)) then
1228 Error_Msg_SP ("only one ELSE part allowed");
1229 Append_List
1230 (P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq),
1231 Else_Statements (If_Node));
1232 else
1233 Set_Else_Statements
1234 (If_Node, P_Sequence_Of_Statements (SS_Eftm_Eltm_Sreq));
1235 end if;
1236 end if;
1238 -- If anything other than ELSE or ELSIF, exit the loop. The token
1239 -- had better be END (and in fact it had better be END IF), but
1240 -- we will let End_Statements take care of checking that.
1242 else
1243 exit;
1244 end if;
1245 end loop;
1247 End_Statements;
1248 return If_Node;
1250 end P_If_Statement;
1252 --------------------
1253 -- 5.3 Condition --
1254 --------------------
1256 -- CONDITION ::= boolean_EXPRESSION
1258 function P_Condition return Node_Id is
1259 Cond : Node_Id;
1261 begin
1262 Cond := P_Expression_No_Right_Paren;
1264 -- It is never possible for := to follow a condition, so if we get
1265 -- a := we assume it is a mistyped equality. Note that we do not try
1266 -- to reconstruct the tree correctly in this case, but we do at least
1267 -- give an accurate error message.
1269 if Token = Tok_Colon_Equal then
1270 while Token = Tok_Colon_Equal loop
1271 Error_Msg_SC -- CODEFIX
1272 (""":="" should be ""=""");
1273 Scan; -- past junk :=
1274 Discard_Junk_Node (P_Expression_No_Right_Paren);
1275 end loop;
1277 return Cond;
1279 -- Otherwise check for redundant parentheses
1281 -- If the condition is a conditional or a quantified expression, it is
1282 -- parenthesized in the context of a condition, because of a separate
1283 -- syntax rule.
1285 else
1286 if Style_Check and then Paren_Count (Cond) > 0 then
1287 if not Nkind_In (Cond, N_If_Expression,
1288 N_Case_Expression,
1289 N_Quantified_Expression)
1290 or else Paren_Count (Cond) > 1
1291 then
1292 Style.Check_Xtra_Parens (First_Sloc (Cond));
1293 end if;
1294 end if;
1296 -- And return the result
1298 return Cond;
1299 end if;
1300 end P_Condition;
1302 -------------------------
1303 -- 5.4 Case Statement --
1304 -------------------------
1306 -- CASE_STATEMENT ::=
1307 -- case EXPRESSION is
1308 -- CASE_STATEMENT_ALTERNATIVE
1309 -- {CASE_STATEMENT_ALTERNATIVE}
1310 -- end case;
1312 -- The caller has checked that the first token is CASE
1314 -- Can raise Error_Resync
1316 function P_Case_Statement return Node_Id is
1317 Case_Node : Node_Id;
1318 Alternatives_List : List_Id;
1319 First_When_Loc : Source_Ptr;
1321 begin
1322 Case_Node := New_Node (N_Case_Statement, Token_Ptr);
1324 Push_Scope_Stack;
1325 Scope.Table (Scope.Last).Etyp := E_Case;
1326 Scope.Table (Scope.Last).Ecol := Start_Column;
1327 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1328 Scope.Table (Scope.Last).Labl := Error;
1329 Scope.Table (Scope.Last).Node := Case_Node;
1331 Scan; -- past CASE
1332 Set_Expression (Case_Node, P_Expression_No_Right_Paren);
1333 TF_Is;
1335 -- Prepare to parse case statement alternatives
1337 Alternatives_List := New_List;
1338 P_Pragmas_Opt (Alternatives_List);
1339 First_When_Loc := Token_Ptr;
1341 -- Loop through case statement alternatives
1343 loop
1344 -- If we have a WHEN or OTHERS, then that's fine keep going. Note
1345 -- that it is a semantic check to ensure the proper use of OTHERS
1347 if Token = Tok_When or else Token = Tok_Others then
1348 Append (P_Case_Statement_Alternative, Alternatives_List);
1350 -- If we have an END, then probably we are at the end of the case
1351 -- but we only exit if Check_End thinks the END was reasonable.
1353 elsif Token = Tok_End then
1354 exit when Check_End;
1356 -- Here if token is other than WHEN, OTHERS or END. We definitely
1357 -- have an error, but the question is whether or not to get out of
1358 -- the case statement. We don't want to get out early, or we will
1359 -- get a slew of junk error messages for subsequent when tokens.
1361 -- If the token is not at the start of the line, or if it is indented
1362 -- with respect to the current case statement, then the best guess is
1363 -- that we are still supposed to be inside the case statement. We
1364 -- complain about the missing WHEN, and discard the junk statements.
1366 elsif not Token_Is_At_Start_Of_Line
1367 or else Start_Column > Scope.Table (Scope.Last).Ecol
1368 then
1369 Error_Msg_BC ("WHEN (case statement alternative) expected");
1371 -- Here is a possibility for infinite looping if we don't make
1372 -- progress. So try to process statements, otherwise exit
1374 declare
1375 Error_Ptr : constant Source_Ptr := Scan_Ptr;
1376 begin
1377 Discard_Junk_List (P_Sequence_Of_Statements (SS_Whtm));
1378 exit when Scan_Ptr = Error_Ptr and then Check_End;
1379 end;
1381 -- Here we have a junk token at the start of the line and it is
1382 -- not indented. If Check_End thinks there is a missing END, then
1383 -- we will get out of the case, otherwise we keep going.
1385 else
1386 exit when Check_End;
1387 end if;
1388 end loop;
1390 -- Make sure we have at least one alternative
1392 if No (First_Non_Pragma (Alternatives_List)) then
1393 Error_Msg
1394 ("WHEN expected, must have at least one alternative in case",
1395 First_When_Loc);
1396 return Error;
1398 else
1399 Set_Alternatives (Case_Node, Alternatives_List);
1400 return Case_Node;
1401 end if;
1402 end P_Case_Statement;
1404 -------------------------------------
1405 -- 5.4 Case Statement Alternative --
1406 -------------------------------------
1408 -- CASE_STATEMENT_ALTERNATIVE ::=
1409 -- when DISCRETE_CHOICE_LIST =>
1410 -- SEQUENCE_OF_STATEMENTS
1412 -- The caller has checked that the initial token is WHEN or OTHERS
1413 -- Error recovery: can raise Error_Resync
1415 function P_Case_Statement_Alternative return Node_Id is
1416 Case_Alt_Node : Node_Id;
1418 begin
1419 if Style_Check then
1420 Style.Check_Indentation;
1421 end if;
1423 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Token_Ptr);
1424 T_When; -- past WHEN (or give error in OTHERS case)
1425 Set_Discrete_Choices (Case_Alt_Node, P_Discrete_Choice_List);
1426 TF_Arrow;
1427 Set_Statements (Case_Alt_Node, P_Sequence_Of_Statements (SS_Sreq_Whtm));
1428 return Case_Alt_Node;
1429 end P_Case_Statement_Alternative;
1431 -------------------------
1432 -- 5.5 Loop Statement --
1433 -------------------------
1435 -- LOOP_STATEMENT ::=
1436 -- [LOOP_STATEMENT_IDENTIFIER:]
1437 -- [ITERATION_SCHEME] loop
1438 -- SEQUENCE_OF_STATEMENTS
1439 -- end loop [loop_IDENTIFIER];
1441 -- ITERATION_SCHEME ::=
1442 -- while CONDITION
1443 -- | for LOOP_PARAMETER_SPECIFICATION
1445 -- The parsing of loop statements is handled by one of three functions
1446 -- P_Loop_Statement, P_For_Statement or P_While_Statement depending
1447 -- on the initial keyword in the construct (excluding the identifier)
1449 -- P_Loop_Statement
1451 -- This function parses the case where no iteration scheme is present
1453 -- The caller has checked that the initial token is LOOP. The parameter
1454 -- is the node identifiers for the loop label if any (or is set to Empty
1455 -- if there is no loop label).
1457 -- Error recovery : cannot raise Error_Resync
1459 function P_Loop_Statement (Loop_Name : Node_Id := Empty) return Node_Id is
1460 Loop_Node : Node_Id;
1461 Created_Name : Node_Id;
1463 begin
1464 Push_Scope_Stack;
1465 Scope.Table (Scope.Last).Labl := Loop_Name;
1466 Scope.Table (Scope.Last).Ecol := Start_Column;
1467 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1468 Scope.Table (Scope.Last).Etyp := E_Loop;
1470 Loop_Node := New_Node (N_Loop_Statement, Token_Ptr);
1471 TF_Loop;
1473 if No (Loop_Name) then
1474 Created_Name :=
1475 Make_Identifier (Sloc (Loop_Node), Set_Loop_Block_Name ('L'));
1476 Set_Comes_From_Source (Created_Name, False);
1477 Set_Has_Created_Identifier (Loop_Node, True);
1478 Set_Identifier (Loop_Node, Created_Name);
1479 Scope.Table (Scope.Last).Labl := Created_Name;
1480 else
1481 Set_Identifier (Loop_Node, Loop_Name);
1482 end if;
1484 Append_Elmt (Loop_Node, Label_List);
1485 Set_Statements (Loop_Node, P_Sequence_Of_Statements (SS_Sreq));
1486 End_Statements (Loop_Node);
1487 return Loop_Node;
1488 end P_Loop_Statement;
1490 -- P_For_Statement
1492 -- This function parses a loop statement with a FOR iteration scheme
1494 -- The caller has checked that the initial token is FOR. The parameter
1495 -- is the node identifier for the block label if any (or is set to Empty
1496 -- if there is no block label).
1498 -- Note: the caller fills in the Identifier field if a label was present
1500 -- Error recovery: can raise Error_Resync
1502 function P_For_Statement (Loop_Name : Node_Id := Empty) return Node_Id is
1503 Loop_Node : Node_Id;
1504 Iter_Scheme_Node : Node_Id;
1505 Loop_For_Flag : Boolean;
1506 Created_Name : Node_Id;
1507 Spec : Node_Id;
1509 begin
1510 Push_Scope_Stack;
1511 Scope.Table (Scope.Last).Labl := Loop_Name;
1512 Scope.Table (Scope.Last).Ecol := Start_Column;
1513 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1514 Scope.Table (Scope.Last).Etyp := E_Loop;
1516 Loop_For_Flag := (Prev_Token = Tok_Loop);
1517 Scan; -- past FOR
1518 Iter_Scheme_Node := New_Node (N_Iteration_Scheme, Token_Ptr);
1519 Spec := P_Loop_Parameter_Specification;
1521 if Nkind (Spec) = N_Loop_Parameter_Specification then
1522 Set_Loop_Parameter_Specification (Iter_Scheme_Node, Spec);
1523 else
1524 Set_Iterator_Specification (Iter_Scheme_Node, Spec);
1525 end if;
1527 -- The following is a special test so that a miswritten for loop such
1528 -- as "loop for I in 1..10;" is handled nicely, without making an extra
1529 -- entry in the scope stack. We don't bother to actually fix up the
1530 -- tree in this case since it's not worth the effort. Instead we just
1531 -- eat up the loop junk, leaving the entry for what now looks like an
1532 -- unmodified loop intact.
1534 if Loop_For_Flag and then Token = Tok_Semicolon then
1535 Error_Msg_SC ("LOOP belongs here, not before FOR");
1536 Pop_Scope_Stack;
1537 return Error;
1539 -- Normal case
1541 else
1542 Loop_Node := New_Node (N_Loop_Statement, Token_Ptr);
1544 if No (Loop_Name) then
1545 Created_Name :=
1546 Make_Identifier (Sloc (Loop_Node), Set_Loop_Block_Name ('L'));
1547 Set_Comes_From_Source (Created_Name, False);
1548 Set_Has_Created_Identifier (Loop_Node, True);
1549 Set_Identifier (Loop_Node, Created_Name);
1550 Scope.Table (Scope.Last).Labl := Created_Name;
1551 else
1552 Set_Identifier (Loop_Node, Loop_Name);
1553 end if;
1555 TF_Loop;
1556 Set_Statements (Loop_Node, P_Sequence_Of_Statements (SS_Sreq));
1557 End_Statements (Loop_Node);
1558 Set_Iteration_Scheme (Loop_Node, Iter_Scheme_Node);
1559 Append_Elmt (Loop_Node, Label_List);
1560 return Loop_Node;
1561 end if;
1562 end P_For_Statement;
1564 -- P_While_Statement
1566 -- This procedure scans a loop statement with a WHILE iteration scheme
1568 -- The caller has checked that the initial token is WHILE. The parameter
1569 -- is the node identifier for the block label if any (or is set to Empty
1570 -- if there is no block label).
1572 -- Error recovery: cannot raise Error_Resync
1574 function P_While_Statement (Loop_Name : Node_Id := Empty) return Node_Id is
1575 Loop_Node : Node_Id;
1576 Iter_Scheme_Node : Node_Id;
1577 Loop_While_Flag : Boolean;
1578 Created_Name : Node_Id;
1580 begin
1581 Push_Scope_Stack;
1582 Scope.Table (Scope.Last).Labl := Loop_Name;
1583 Scope.Table (Scope.Last).Ecol := Start_Column;
1584 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1585 Scope.Table (Scope.Last).Etyp := E_Loop;
1587 Loop_While_Flag := (Prev_Token = Tok_Loop);
1588 Iter_Scheme_Node := New_Node (N_Iteration_Scheme, Token_Ptr);
1589 Scan; -- past WHILE
1590 Set_Condition (Iter_Scheme_Node, P_Condition);
1592 -- The following is a special test so that a miswritten for loop such
1593 -- as "loop while I > 10;" is handled nicely, without making an extra
1594 -- entry in the scope stack. We don't bother to actually fix up the
1595 -- tree in this case since it's not worth the effort. Instead we just
1596 -- eat up the loop junk, leaving the entry for what now looks like an
1597 -- unmodified loop intact.
1599 if Loop_While_Flag and then Token = Tok_Semicolon then
1600 Error_Msg_SC ("LOOP belongs here, not before WHILE");
1601 Pop_Scope_Stack;
1602 return Error;
1604 -- Normal case
1606 else
1607 Loop_Node := New_Node (N_Loop_Statement, Token_Ptr);
1608 TF_Loop;
1610 if No (Loop_Name) then
1611 Created_Name :=
1612 Make_Identifier (Sloc (Loop_Node), Set_Loop_Block_Name ('L'));
1613 Set_Comes_From_Source (Created_Name, False);
1614 Set_Has_Created_Identifier (Loop_Node, True);
1615 Set_Identifier (Loop_Node, Created_Name);
1616 Scope.Table (Scope.Last).Labl := Created_Name;
1617 else
1618 Set_Identifier (Loop_Node, Loop_Name);
1619 end if;
1621 Set_Statements (Loop_Node, P_Sequence_Of_Statements (SS_Sreq));
1622 End_Statements (Loop_Node);
1623 Set_Iteration_Scheme (Loop_Node, Iter_Scheme_Node);
1624 Append_Elmt (Loop_Node, Label_List);
1625 return Loop_Node;
1626 end if;
1627 end P_While_Statement;
1629 ---------------------------------------
1630 -- 5.5 Loop Parameter Specification --
1631 ---------------------------------------
1633 -- LOOP_PARAMETER_SPECIFICATION ::=
1634 -- DEFINING_IDENTIFIER in [reverse] DISCRETE_SUBTYPE_DEFINITION
1636 -- Error recovery: cannot raise Error_Resync
1638 function P_Loop_Parameter_Specification return Node_Id is
1639 Loop_Param_Specification_Node : Node_Id;
1641 ID_Node : Node_Id;
1642 Scan_State : Saved_Scan_State;
1644 begin
1646 Save_Scan_State (Scan_State);
1647 ID_Node := P_Defining_Identifier (C_In);
1649 -- If the next token is OF, it indicates an Ada 2012 iterator. If the
1650 -- next token is a colon, this is also an Ada 2012 iterator, including
1651 -- a subtype indication for the loop parameter. Otherwise we parse the
1652 -- construct as a loop parameter specification. Note that the form
1653 -- "for A in B" is ambiguous, and must be resolved semantically: if B
1654 -- is a discrete subtype this is a loop specification, but if it is an
1655 -- expression it is an iterator specification. Ambiguity is resolved
1656 -- during analysis of the loop parameter specification.
1658 if Token = Tok_Of or else Token = Tok_Colon then
1659 if Ada_Version < Ada_2012 then
1660 Error_Msg_SC ("iterator is an Ada 2012 feature");
1661 end if;
1663 return P_Iterator_Specification (ID_Node);
1664 end if;
1666 -- The span of the Loop_Parameter_Specification starts at the
1667 -- defining identifier.
1669 Loop_Param_Specification_Node :=
1670 New_Node (N_Loop_Parameter_Specification, Sloc (ID_Node));
1671 Set_Defining_Identifier (Loop_Param_Specification_Node, ID_Node);
1673 if Token = Tok_Left_Paren then
1674 Error_Msg_SC ("subscripted loop parameter not allowed");
1675 Restore_Scan_State (Scan_State);
1676 Discard_Junk_Node (P_Name);
1678 elsif Token = Tok_Dot then
1679 Error_Msg_SC ("selected loop parameter not allowed");
1680 Restore_Scan_State (Scan_State);
1681 Discard_Junk_Node (P_Name);
1682 end if;
1684 T_In;
1686 if Token = Tok_Reverse then
1687 Scan; -- past REVERSE
1688 Set_Reverse_Present (Loop_Param_Specification_Node, True);
1689 end if;
1691 Set_Discrete_Subtype_Definition
1692 (Loop_Param_Specification_Node, P_Discrete_Subtype_Definition);
1693 return Loop_Param_Specification_Node;
1695 exception
1696 when Error_Resync =>
1697 return Error;
1698 end P_Loop_Parameter_Specification;
1700 ----------------------------------
1701 -- 5.5.1 Iterator_Specification --
1702 ----------------------------------
1704 function P_Iterator_Specification (Def_Id : Node_Id) return Node_Id is
1705 Node1 : Node_Id;
1707 begin
1708 Node1 := New_Node (N_Iterator_Specification, Sloc (Def_Id));
1709 Set_Defining_Identifier (Node1, Def_Id);
1711 if Token = Tok_Colon then
1712 Scan; -- past :
1713 Set_Subtype_Indication (Node1, P_Subtype_Indication);
1714 end if;
1716 if Token = Tok_Of then
1717 Set_Of_Present (Node1);
1718 Scan; -- past OF
1720 elsif Token = Tok_In then
1721 Scan; -- past IN
1723 else
1724 return Error;
1725 end if;
1727 if Token = Tok_Reverse then
1728 Scan; -- past REVERSE
1729 Set_Reverse_Present (Node1, True);
1730 end if;
1732 Set_Name (Node1, P_Name);
1733 return Node1;
1734 end P_Iterator_Specification;
1736 --------------------------
1737 -- 5.6 Block Statement --
1738 --------------------------
1740 -- BLOCK_STATEMENT ::=
1741 -- [block_STATEMENT_IDENTIFIER:]
1742 -- [declare
1743 -- DECLARATIVE_PART]
1744 -- begin
1745 -- HANDLED_SEQUENCE_OF_STATEMENTS
1746 -- end [block_IDENTIFIER];
1748 -- The parsing of block statements is handled by one of the two functions
1749 -- P_Declare_Statement or P_Begin_Statement depending on whether or not
1750 -- a declare section is present
1752 -- P_Declare_Statement
1754 -- This function parses a block statement with DECLARE present
1756 -- The caller has checked that the initial token is DECLARE
1758 -- Error recovery: cannot raise Error_Resync
1760 function P_Declare_Statement
1761 (Block_Name : Node_Id := Empty)
1762 return Node_Id
1764 Block_Node : Node_Id;
1765 Created_Name : Node_Id;
1767 begin
1768 Block_Node := New_Node (N_Block_Statement, Token_Ptr);
1770 Push_Scope_Stack;
1771 Scope.Table (Scope.Last).Etyp := E_Name;
1772 Scope.Table (Scope.Last).Lreq := Present (Block_Name);
1773 Scope.Table (Scope.Last).Ecol := Start_Column;
1774 Scope.Table (Scope.Last).Labl := Block_Name;
1775 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1777 Scan; -- past DECLARE
1779 if No (Block_Name) then
1780 Created_Name :=
1781 Make_Identifier (Sloc (Block_Node), Set_Loop_Block_Name ('B'));
1782 Set_Comes_From_Source (Created_Name, False);
1783 Set_Has_Created_Identifier (Block_Node, True);
1784 Set_Identifier (Block_Node, Created_Name);
1785 Scope.Table (Scope.Last).Labl := Created_Name;
1786 else
1787 Set_Identifier (Block_Node, Block_Name);
1788 end if;
1790 Append_Elmt (Block_Node, Label_List);
1791 Parse_Decls_Begin_End (Block_Node);
1792 return Block_Node;
1793 end P_Declare_Statement;
1795 -- P_Begin_Statement
1797 -- This function parses a block statement with no DECLARE present
1799 -- The caller has checked that the initial token is BEGIN
1801 -- Error recovery: cannot raise Error_Resync
1803 function P_Begin_Statement
1804 (Block_Name : Node_Id := Empty)
1805 return Node_Id
1807 Block_Node : Node_Id;
1808 Created_Name : Node_Id;
1810 begin
1811 Block_Node := New_Node (N_Block_Statement, Token_Ptr);
1813 Push_Scope_Stack;
1814 Scope.Table (Scope.Last).Etyp := E_Name;
1815 Scope.Table (Scope.Last).Lreq := Present (Block_Name);
1816 Scope.Table (Scope.Last).Ecol := Start_Column;
1817 Scope.Table (Scope.Last).Labl := Block_Name;
1818 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1820 if No (Block_Name) then
1821 Created_Name :=
1822 Make_Identifier (Sloc (Block_Node), Set_Loop_Block_Name ('B'));
1823 Set_Comes_From_Source (Created_Name, False);
1824 Set_Has_Created_Identifier (Block_Node, True);
1825 Set_Identifier (Block_Node, Created_Name);
1826 Scope.Table (Scope.Last).Labl := Created_Name;
1827 else
1828 Set_Identifier (Block_Node, Block_Name);
1829 end if;
1831 Append_Elmt (Block_Node, Label_List);
1833 Scope.Table (Scope.Last).Ecol := Start_Column;
1834 Scope.Table (Scope.Last).Sloc := Token_Ptr;
1835 Scan; -- past BEGIN
1836 Set_Handled_Statement_Sequence
1837 (Block_Node, P_Handled_Sequence_Of_Statements);
1838 End_Statements (Handled_Statement_Sequence (Block_Node));
1839 return Block_Node;
1840 end P_Begin_Statement;
1842 -------------------------
1843 -- 5.7 Exit Statement --
1844 -------------------------
1846 -- EXIT_STATEMENT ::=
1847 -- exit [loop_NAME] [when CONDITION];
1849 -- The caller has checked that the initial token is EXIT
1851 -- Error recovery: can raise Error_Resync
1853 function P_Exit_Statement return Node_Id is
1854 Exit_Node : Node_Id;
1856 function Missing_Semicolon_On_Exit return Boolean;
1857 -- This function deals with the following specialized situation
1859 -- when 'x' =>
1860 -- exit [identifier]
1861 -- when 'y' =>
1863 -- This looks like a messed up EXIT WHEN, when in fact the problem
1864 -- is a missing semicolon. It is called with Token pointing to the
1865 -- WHEN token, and returns True if a semicolon is missing before
1866 -- the WHEN as in the above example.
1868 -------------------------------
1869 -- Missing_Semicolon_On_Exit --
1870 -------------------------------
1872 function Missing_Semicolon_On_Exit return Boolean is
1873 State : Saved_Scan_State;
1875 begin
1876 if not Token_Is_At_Start_Of_Line then
1877 return False;
1879 elsif Scope.Table (Scope.Last).Etyp /= E_Case then
1880 return False;
1882 else
1883 Save_Scan_State (State);
1884 Scan; -- past WHEN
1885 Scan; -- past token after WHEN
1887 if Token = Tok_Arrow then
1888 Restore_Scan_State (State);
1889 return True;
1890 else
1891 Restore_Scan_State (State);
1892 return False;
1893 end if;
1894 end if;
1895 end Missing_Semicolon_On_Exit;
1897 -- Start of processing for P_Exit_Statement
1899 begin
1900 Exit_Node := New_Node (N_Exit_Statement, Token_Ptr);
1901 Scan; -- past EXIT
1903 if Token = Tok_Identifier then
1904 Set_Name (Exit_Node, P_Qualified_Simple_Name);
1906 elsif Style_Check then
1907 -- This EXIT has no name, so check that
1908 -- the innermost loop is unnamed too.
1910 Check_No_Exit_Name :
1911 for J in reverse 1 .. Scope.Last loop
1912 if Scope.Table (J).Etyp = E_Loop then
1913 if Present (Scope.Table (J).Labl)
1914 and then Comes_From_Source (Scope.Table (J).Labl)
1915 then
1916 -- Innermost loop in fact had a name, style check fails
1918 Style.No_Exit_Name (Scope.Table (J).Labl);
1919 end if;
1921 exit Check_No_Exit_Name;
1922 end if;
1923 end loop Check_No_Exit_Name;
1924 end if;
1926 if Token = Tok_When and then not Missing_Semicolon_On_Exit then
1927 Scan; -- past WHEN
1928 Set_Condition (Exit_Node, P_Condition);
1930 -- Allow IF instead of WHEN, giving error message
1932 elsif Token = Tok_If then
1933 T_When;
1934 Scan; -- past IF used in place of WHEN
1935 Set_Condition (Exit_Node, P_Expression_No_Right_Paren);
1936 end if;
1938 TF_Semicolon;
1939 return Exit_Node;
1940 end P_Exit_Statement;
1942 -------------------------
1943 -- 5.8 Goto Statement --
1944 -------------------------
1946 -- GOTO_STATEMENT ::= goto label_NAME;
1948 -- The caller has checked that the initial token is GOTO (or TO in the
1949 -- error case where GO and TO were incorrectly separated).
1951 -- Error recovery: can raise Error_Resync
1953 function P_Goto_Statement return Node_Id is
1954 Goto_Node : Node_Id;
1956 begin
1957 Goto_Node := New_Node (N_Goto_Statement, Token_Ptr);
1958 Scan; -- past GOTO (or TO)
1959 Set_Name (Goto_Node, P_Qualified_Simple_Name_Resync);
1960 Append_Elmt (Goto_Node, Goto_List);
1961 No_Constraint;
1962 TF_Semicolon;
1963 return Goto_Node;
1964 end P_Goto_Statement;
1966 ---------------------------
1967 -- Parse_Decls_Begin_End --
1968 ---------------------------
1970 -- This function parses the construct:
1972 -- DECLARATIVE_PART
1973 -- begin
1974 -- HANDLED_SEQUENCE_OF_STATEMENTS
1975 -- end [NAME];
1977 -- The caller has built the scope stack entry, and created the node to
1978 -- whose Declarations and Handled_Statement_Sequence fields are to be
1979 -- set. On return these fields are filled in (except in the case of a
1980 -- task body, where the handled statement sequence is optional, and may
1981 -- thus be Empty), and the scan is positioned past the End sequence.
1983 -- If the BEGIN is missing, then the parent node is used to help construct
1984 -- an appropriate missing BEGIN message. Possibilities for the parent are:
1986 -- N_Block_Statement declare block
1987 -- N_Entry_Body entry body
1988 -- N_Package_Body package body (begin part optional)
1989 -- N_Subprogram_Body procedure or function body
1990 -- N_Task_Body task body
1992 -- Note: in the case of a block statement, there is definitely a DECLARE
1993 -- present (because a Begin statement without a DECLARE is handled by the
1994 -- P_Begin_Statement procedure, which does not call Parse_Decls_Begin_End.
1996 -- Error recovery: cannot raise Error_Resync
1998 procedure Parse_Decls_Begin_End (Parent : Node_Id) is
1999 Body_Decl : Node_Id;
2000 Decls : List_Id;
2001 Parent_Nkind : Node_Kind;
2002 Spec_Node : Node_Id;
2003 HSS : Node_Id;
2005 procedure Missing_Begin (Msg : String);
2006 -- Called to post a missing begin message. In the normal case this is
2007 -- posted at the start of the current token. A special case arises when
2008 -- P_Declarative_Items has previously found a missing begin, in which
2009 -- case we replace the original error message.
2011 procedure Set_Null_HSS (Parent : Node_Id);
2012 -- Construct an empty handled statement sequence and install in Parent
2013 -- Leaves HSS set to reference the newly constructed statement sequence.
2015 -------------------
2016 -- Missing_Begin --
2017 -------------------
2019 procedure Missing_Begin (Msg : String) is
2020 begin
2021 if Missing_Begin_Msg = No_Error_Msg then
2022 Error_Msg_BC (Msg);
2023 else
2024 Change_Error_Text (Missing_Begin_Msg, Msg);
2026 -- Purge any messages issued after than, since a missing begin
2027 -- can cause a lot of havoc, and it is better not to dump these
2028 -- cascaded messages on the user.
2030 Purge_Messages (Get_Location (Missing_Begin_Msg), Prev_Token_Ptr);
2031 end if;
2032 end Missing_Begin;
2034 ------------------
2035 -- Set_Null_HSS --
2036 ------------------
2038 procedure Set_Null_HSS (Parent : Node_Id) is
2039 Null_Stm : Node_Id;
2041 begin
2042 Null_Stm :=
2043 Make_Null_Statement (Token_Ptr);
2044 Set_Comes_From_Source (Null_Stm, False);
2046 HSS :=
2047 Make_Handled_Sequence_Of_Statements (Token_Ptr,
2048 Statements => New_List (Null_Stm));
2049 Set_Comes_From_Source (HSS, False);
2051 Set_Handled_Statement_Sequence (Parent, HSS);
2052 end Set_Null_HSS;
2054 -- Start of processing for Parse_Decls_Begin_End
2056 begin
2057 Decls := P_Declarative_Part;
2059 if Ada_Version = Ada_83 then
2060 Check_Later_Vs_Basic_Declarations (Decls, During_Parsing => True);
2061 end if;
2063 -- Here is where we deal with the case of IS used instead of semicolon.
2064 -- Specifically, if the last declaration in the declarative part is a
2065 -- subprogram body still marked as having a bad IS, then this is where
2066 -- we decide that the IS should really have been a semicolon and that
2067 -- the body should have been a declaration. Note that if the bad IS
2068 -- had turned out to be OK (i.e. a decent begin/end was found for it),
2069 -- then the Bad_Is_Detected flag would have been reset by now.
2071 Body_Decl := Last (Decls);
2073 if Present (Body_Decl)
2074 and then Nkind (Body_Decl) = N_Subprogram_Body
2075 and then Bad_Is_Detected (Body_Decl)
2076 then
2077 -- OK, we have the case of a bad IS, so we need to fix up the tree.
2078 -- What we have now is a subprogram body with attached declarations
2079 -- and a possible statement sequence.
2081 -- First step is to take the declarations that were part of the bogus
2082 -- subprogram body and append them to the outer declaration chain.
2083 -- In other words we append them past the body (which we will later
2084 -- convert into a declaration).
2086 Append_List (Declarations (Body_Decl), Decls);
2088 -- Now take the handled statement sequence of the bogus body and
2089 -- set it as the statement sequence for the outer construct. Note
2090 -- that it may be empty (we specially allowed a missing BEGIN for
2091 -- a subprogram body marked as having a bad IS -- see below).
2093 Set_Handled_Statement_Sequence (Parent,
2094 Handled_Statement_Sequence (Body_Decl));
2096 -- Next step is to convert the old body node to a declaration node
2098 Spec_Node := Specification (Body_Decl);
2099 Change_Node (Body_Decl, N_Subprogram_Declaration);
2100 Set_Specification (Body_Decl, Spec_Node);
2102 -- Final step is to put the declarations for the parent where
2103 -- they belong, and then fall through the IF to scan out the
2104 -- END statements.
2106 Set_Declarations (Parent, Decls);
2108 -- This is the normal case (i.e. any case except the bad IS case)
2109 -- If we have a BEGIN, then scan out the sequence of statements, and
2110 -- also reset the expected column for the END to match the BEGIN.
2112 else
2113 Set_Declarations (Parent, Decls);
2115 if Token = Tok_Begin then
2116 if Style_Check then
2117 Style.Check_Indentation;
2118 end if;
2120 Error_Msg_Col := Scope.Table (Scope.Last).Ecol;
2122 if RM_Column_Check
2123 and then Token_Is_At_Start_Of_Line
2124 and then Start_Column /= Error_Msg_Col
2125 then
2126 Error_Msg_SC ("(style) BEGIN in wrong column, should be@");
2128 else
2129 Scope.Table (Scope.Last).Ecol := Start_Column;
2130 end if;
2132 Scope.Table (Scope.Last).Sloc := Token_Ptr;
2133 Scan; -- past BEGIN
2134 Set_Handled_Statement_Sequence (Parent,
2135 P_Handled_Sequence_Of_Statements);
2137 -- No BEGIN present
2139 else
2140 Parent_Nkind := Nkind (Parent);
2142 -- A special check for the missing IS case. If we have a
2143 -- subprogram body that was marked as having a suspicious
2144 -- IS, and the current token is END, then we simply confirm
2145 -- the suspicion, and do not require a BEGIN to be present
2147 if Parent_Nkind = N_Subprogram_Body
2148 and then Token = Tok_End
2149 and then Scope.Table (Scope.Last).Etyp = E_Suspicious_Is
2150 then
2151 Scope.Table (Scope.Last).Etyp := E_Bad_Is;
2153 -- Otherwise BEGIN is not required for a package body, so we
2154 -- don't mind if it is missing, but we do construct a dummy
2155 -- one (so that we have somewhere to set End_Label).
2157 -- However if we have something other than a BEGIN which
2158 -- looks like it might be statements, then we signal a missing
2159 -- BEGIN for these cases as well. We define "something which
2160 -- looks like it might be statements" as a token other than
2161 -- END, EOF, or a token which starts declarations.
2163 elsif Parent_Nkind = N_Package_Body
2164 and then (Token = Tok_End
2165 or else Token = Tok_EOF
2166 or else Token in Token_Class_Declk)
2167 then
2168 Set_Null_HSS (Parent);
2170 -- These are cases in which a BEGIN is required and not present
2172 else
2173 Set_Null_HSS (Parent);
2175 -- Prepare to issue error message
2177 Error_Msg_Sloc := Scope.Table (Scope.Last).Sloc;
2178 Error_Msg_Node_1 := Scope.Table (Scope.Last).Labl;
2180 -- Now issue appropriate message
2182 if Parent_Nkind = N_Block_Statement then
2183 Missing_Begin ("missing BEGIN for DECLARE#!");
2185 elsif Parent_Nkind = N_Entry_Body then
2186 Missing_Begin ("missing BEGIN for ENTRY#!");
2188 elsif Parent_Nkind = N_Subprogram_Body then
2189 if Nkind (Specification (Parent))
2190 = N_Function_Specification
2191 then
2192 Missing_Begin ("missing BEGIN for function&#!");
2193 else
2194 Missing_Begin ("missing BEGIN for procedure&#!");
2195 end if;
2197 -- The case for package body arises only when
2198 -- we have possible statement junk present.
2200 elsif Parent_Nkind = N_Package_Body then
2201 Missing_Begin ("missing BEGIN for package body&#!");
2203 else
2204 pragma Assert (Parent_Nkind = N_Task_Body);
2205 Missing_Begin ("missing BEGIN for task body&#!");
2206 end if;
2208 -- Here we pick up the statements after the BEGIN that
2209 -- should have been present but was not. We don't insist
2210 -- on statements being present if P_Declarative_Part had
2211 -- already found a missing BEGIN, since it might have
2212 -- swallowed a lone statement into the declarative part.
2214 if Missing_Begin_Msg /= No_Error_Msg
2215 and then Token = Tok_End
2216 then
2217 null;
2218 else
2219 Set_Handled_Statement_Sequence (Parent,
2220 P_Handled_Sequence_Of_Statements);
2221 end if;
2222 end if;
2223 end if;
2224 end if;
2226 -- Here with declarations and handled statement sequence scanned
2228 if Present (Handled_Statement_Sequence (Parent)) then
2229 End_Statements (Handled_Statement_Sequence (Parent));
2230 else
2231 End_Statements;
2232 end if;
2234 -- We know that End_Statements removed an entry from the scope stack
2235 -- (because it is required to do so under all circumstances). We can
2236 -- therefore reference the entry it removed one past the stack top.
2237 -- What we are interested in is whether it was a case of a bad IS.
2239 if Scope.Table (Scope.Last + 1).Etyp = E_Bad_Is then
2240 Error_Msg -- CODEFIX
2241 ("|IS should be "";""", Scope.Table (Scope.Last + 1).S_Is);
2242 Set_Bad_Is_Detected (Parent, True);
2243 end if;
2245 end Parse_Decls_Begin_End;
2247 -------------------------
2248 -- Set_Loop_Block_Name --
2249 -------------------------
2251 function Set_Loop_Block_Name (L : Character) return Name_Id is
2252 begin
2253 Name_Buffer (1) := L;
2254 Name_Buffer (2) := '_';
2255 Name_Len := 2;
2256 Loop_Block_Count := Loop_Block_Count + 1;
2257 Add_Nat_To_Name_Buffer (Loop_Block_Count);
2258 return Name_Find;
2259 end Set_Loop_Block_Name;
2261 ---------------
2262 -- Then_Scan --
2263 ---------------
2265 procedure Then_Scan is
2266 begin
2267 TF_Then;
2269 while Token = Tok_Then loop
2270 Error_Msg_SC -- CODEFIX
2271 ("redundant THEN");
2272 TF_Then;
2273 end loop;
2275 if Token = Tok_And or else Token = Tok_Or then
2276 Error_Msg_SC ("unexpected logical operator");
2277 Scan; -- past logical operator
2279 if (Prev_Token = Tok_And and then Token = Tok_Then)
2280 or else
2281 (Prev_Token = Tok_Or and then Token = Tok_Else)
2282 then
2283 Scan;
2284 end if;
2286 Discard_Junk_Node (P_Expression);
2287 end if;
2289 if Token = Tok_Then then
2290 Scan;
2291 end if;
2292 end Then_Scan;
2294 end Ch5;