2012-11-28 Oleg Raikhman <oleg@adapteva.com>
[official-gcc.git] / gcc / recog.c
blob3c56703b1f534ae1496a3776c2a9c04a9213a502
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "insn-codes.h"
45 #ifndef STACK_PUSH_CODE
46 #ifdef STACK_GROWS_DOWNWARD
47 #define STACK_PUSH_CODE PRE_DEC
48 #else
49 #define STACK_PUSH_CODE PRE_INC
50 #endif
51 #endif
53 #ifndef STACK_POP_CODE
54 #ifdef STACK_GROWS_DOWNWARD
55 #define STACK_POP_CODE POST_INC
56 #else
57 #define STACK_POP_CODE POST_DEC
58 #endif
59 #endif
61 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
62 static void validate_replace_src_1 (rtx *, void *);
63 static rtx split_insn (rtx);
65 /* Nonzero means allow operands to be volatile.
66 This should be 0 if you are generating rtl, such as if you are calling
67 the functions in optabs.c and expmed.c (most of the time).
68 This should be 1 if all valid insns need to be recognized,
69 such as in reginfo.c and final.c and reload.c.
71 init_recog and init_recog_no_volatile are responsible for setting this. */
73 int volatile_ok;
75 struct recog_data recog_data;
77 /* Contains a vector of operand_alternative structures for every operand.
78 Set up by preprocess_constraints. */
79 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
81 /* On return from `constrain_operands', indicate which alternative
82 was satisfied. */
84 int which_alternative;
86 /* Nonzero after end of reload pass.
87 Set to 1 or 0 by toplev.c.
88 Controls the significance of (SUBREG (MEM)). */
90 int reload_completed;
92 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
93 int epilogue_completed;
95 /* Initialize data used by the function `recog'.
96 This must be called once in the compilation of a function
97 before any insn recognition may be done in the function. */
99 void
100 init_recog_no_volatile (void)
102 volatile_ok = 0;
105 void
106 init_recog (void)
108 volatile_ok = 1;
112 /* Return true if labels in asm operands BODY are LABEL_REFs. */
114 static bool
115 asm_labels_ok (rtx body)
117 rtx asmop;
118 int i;
120 asmop = extract_asm_operands (body);
121 if (asmop == NULL_RTX)
122 return true;
124 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
125 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
126 return false;
128 return true;
131 /* Check that X is an insn-body for an `asm' with operands
132 and that the operands mentioned in it are legitimate. */
135 check_asm_operands (rtx x)
137 int noperands;
138 rtx *operands;
139 const char **constraints;
140 int i;
142 if (!asm_labels_ok (x))
143 return 0;
145 /* Post-reload, be more strict with things. */
146 if (reload_completed)
148 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
149 extract_insn (make_insn_raw (x));
150 constrain_operands (1);
151 return which_alternative >= 0;
154 noperands = asm_noperands (x);
155 if (noperands < 0)
156 return 0;
157 if (noperands == 0)
158 return 1;
160 operands = XALLOCAVEC (rtx, noperands);
161 constraints = XALLOCAVEC (const char *, noperands);
163 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
165 for (i = 0; i < noperands; i++)
167 const char *c = constraints[i];
168 if (c[0] == '%')
169 c++;
170 if (! asm_operand_ok (operands[i], c, constraints))
171 return 0;
174 return 1;
177 /* Static data for the next two routines. */
179 typedef struct change_t
181 rtx object;
182 int old_code;
183 rtx *loc;
184 rtx old;
185 bool unshare;
186 } change_t;
188 static change_t *changes;
189 static int changes_allocated;
191 static int num_changes = 0;
193 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
194 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
195 the change is simply made.
197 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
198 will be called with the address and mode as parameters. If OBJECT is
199 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
200 the change in place.
202 IN_GROUP is nonzero if this is part of a group of changes that must be
203 performed as a group. In that case, the changes will be stored. The
204 function `apply_change_group' will validate and apply the changes.
206 If IN_GROUP is zero, this is a single change. Try to recognize the insn
207 or validate the memory reference with the change applied. If the result
208 is not valid for the machine, suppress the change and return zero.
209 Otherwise, perform the change and return 1. */
211 static bool
212 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
214 rtx old = *loc;
216 if (old == new_rtx || rtx_equal_p (old, new_rtx))
217 return 1;
219 gcc_assert (in_group != 0 || num_changes == 0);
221 *loc = new_rtx;
223 /* Save the information describing this change. */
224 if (num_changes >= changes_allocated)
226 if (changes_allocated == 0)
227 /* This value allows for repeated substitutions inside complex
228 indexed addresses, or changes in up to 5 insns. */
229 changes_allocated = MAX_RECOG_OPERANDS * 5;
230 else
231 changes_allocated *= 2;
233 changes = XRESIZEVEC (change_t, changes, changes_allocated);
236 changes[num_changes].object = object;
237 changes[num_changes].loc = loc;
238 changes[num_changes].old = old;
239 changes[num_changes].unshare = unshare;
241 if (object && !MEM_P (object))
243 /* Set INSN_CODE to force rerecognition of insn. Save old code in
244 case invalid. */
245 changes[num_changes].old_code = INSN_CODE (object);
246 INSN_CODE (object) = -1;
249 num_changes++;
251 /* If we are making a group of changes, return 1. Otherwise, validate the
252 change group we made. */
254 if (in_group)
255 return 1;
256 else
257 return apply_change_group ();
260 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
261 UNSHARE to false. */
263 bool
264 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
266 return validate_change_1 (object, loc, new_rtx, in_group, false);
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to true. */
272 bool
273 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
275 return validate_change_1 (object, loc, new_rtx, in_group, true);
279 /* Keep X canonicalized if some changes have made it non-canonical; only
280 modifies the operands of X, not (for example) its code. Simplifications
281 are not the job of this routine.
283 Return true if anything was changed. */
284 bool
285 canonicalize_change_group (rtx insn, rtx x)
287 if (COMMUTATIVE_P (x)
288 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
290 /* Oops, the caller has made X no longer canonical.
291 Let's redo the changes in the correct order. */
292 rtx tem = XEXP (x, 0);
293 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
294 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
295 return true;
297 else
298 return false;
302 /* This subroutine of apply_change_group verifies whether the changes to INSN
303 were valid; i.e. whether INSN can still be recognized.
305 If IN_GROUP is true clobbers which have to be added in order to
306 match the instructions will be added to the current change group.
307 Otherwise the changes will take effect immediately. */
310 insn_invalid_p (rtx insn, bool in_group)
312 rtx pat = PATTERN (insn);
313 int num_clobbers = 0;
314 /* If we are before reload and the pattern is a SET, see if we can add
315 clobbers. */
316 int icode = recog (pat, insn,
317 (GET_CODE (pat) == SET
318 && ! reload_completed && ! reload_in_progress)
319 ? &num_clobbers : 0);
320 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
323 /* If this is an asm and the operand aren't legal, then fail. Likewise if
324 this is not an asm and the insn wasn't recognized. */
325 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
326 || (!is_asm && icode < 0))
327 return 1;
329 /* If we have to add CLOBBERs, fail if we have to add ones that reference
330 hard registers since our callers can't know if they are live or not.
331 Otherwise, add them. */
332 if (num_clobbers > 0)
334 rtx newpat;
336 if (added_clobbers_hard_reg_p (icode))
337 return 1;
339 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
340 XVECEXP (newpat, 0, 0) = pat;
341 add_clobbers (newpat, icode);
342 if (in_group)
343 validate_change (insn, &PATTERN (insn), newpat, 1);
344 else
345 PATTERN (insn) = pat = newpat;
348 /* After reload, verify that all constraints are satisfied. */
349 if (reload_completed)
351 extract_insn (insn);
353 if (! constrain_operands (1))
354 return 1;
357 INSN_CODE (insn) = icode;
358 return 0;
361 /* Return number of changes made and not validated yet. */
363 num_changes_pending (void)
365 return num_changes;
368 /* Tentatively apply the changes numbered NUM and up.
369 Return 1 if all changes are valid, zero otherwise. */
372 verify_changes (int num)
374 int i;
375 rtx last_validated = NULL_RTX;
377 /* The changes have been applied and all INSN_CODEs have been reset to force
378 rerecognition.
380 The changes are valid if we aren't given an object, or if we are
381 given a MEM and it still is a valid address, or if this is in insn
382 and it is recognized. In the latter case, if reload has completed,
383 we also require that the operands meet the constraints for
384 the insn. */
386 for (i = num; i < num_changes; i++)
388 rtx object = changes[i].object;
390 /* If there is no object to test or if it is the same as the one we
391 already tested, ignore it. */
392 if (object == 0 || object == last_validated)
393 continue;
395 if (MEM_P (object))
397 if (! memory_address_addr_space_p (GET_MODE (object),
398 XEXP (object, 0),
399 MEM_ADDR_SPACE (object)))
400 break;
402 else if (REG_P (changes[i].old)
403 && asm_noperands (PATTERN (object)) > 0
404 && REG_EXPR (changes[i].old) != NULL_TREE
405 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
406 && DECL_REGISTER (REG_EXPR (changes[i].old)))
408 /* Don't allow changes of hard register operands to inline
409 assemblies if they have been defined as register asm ("x"). */
410 break;
412 else if (DEBUG_INSN_P (object))
413 continue;
414 else if (insn_invalid_p (object, true))
416 rtx pat = PATTERN (object);
418 /* Perhaps we couldn't recognize the insn because there were
419 extra CLOBBERs at the end. If so, try to re-recognize
420 without the last CLOBBER (later iterations will cause each of
421 them to be eliminated, in turn). But don't do this if we
422 have an ASM_OPERAND. */
423 if (GET_CODE (pat) == PARALLEL
424 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
425 && asm_noperands (PATTERN (object)) < 0)
427 rtx newpat;
429 if (XVECLEN (pat, 0) == 2)
430 newpat = XVECEXP (pat, 0, 0);
431 else
433 int j;
435 newpat
436 = gen_rtx_PARALLEL (VOIDmode,
437 rtvec_alloc (XVECLEN (pat, 0) - 1));
438 for (j = 0; j < XVECLEN (newpat, 0); j++)
439 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
442 /* Add a new change to this group to replace the pattern
443 with this new pattern. Then consider this change
444 as having succeeded. The change we added will
445 cause the entire call to fail if things remain invalid.
447 Note that this can lose if a later change than the one
448 we are processing specified &XVECEXP (PATTERN (object), 0, X)
449 but this shouldn't occur. */
451 validate_change (object, &PATTERN (object), newpat, 1);
452 continue;
454 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
455 || GET_CODE (pat) == VAR_LOCATION)
456 /* If this insn is a CLOBBER or USE, it is always valid, but is
457 never recognized. */
458 continue;
459 else
460 break;
462 last_validated = object;
465 return (i == num_changes);
468 /* A group of changes has previously been issued with validate_change
469 and verified with verify_changes. Call df_insn_rescan for each of
470 the insn changed and clear num_changes. */
472 void
473 confirm_change_group (void)
475 int i;
476 rtx last_object = NULL;
478 for (i = 0; i < num_changes; i++)
480 rtx object = changes[i].object;
482 if (changes[i].unshare)
483 *changes[i].loc = copy_rtx (*changes[i].loc);
485 /* Avoid unnecessary rescanning when multiple changes to same instruction
486 are made. */
487 if (object)
489 if (object != last_object && last_object && INSN_P (last_object))
490 df_insn_rescan (last_object);
491 last_object = object;
495 if (last_object && INSN_P (last_object))
496 df_insn_rescan (last_object);
497 num_changes = 0;
500 /* Apply a group of changes previously issued with `validate_change'.
501 If all changes are valid, call confirm_change_group and return 1,
502 otherwise, call cancel_changes and return 0. */
505 apply_change_group (void)
507 if (verify_changes (0))
509 confirm_change_group ();
510 return 1;
512 else
514 cancel_changes (0);
515 return 0;
520 /* Return the number of changes so far in the current group. */
523 num_validated_changes (void)
525 return num_changes;
528 /* Retract the changes numbered NUM and up. */
530 void
531 cancel_changes (int num)
533 int i;
535 /* Back out all the changes. Do this in the opposite order in which
536 they were made. */
537 for (i = num_changes - 1; i >= num; i--)
539 *changes[i].loc = changes[i].old;
540 if (changes[i].object && !MEM_P (changes[i].object))
541 INSN_CODE (changes[i].object) = changes[i].old_code;
543 num_changes = num;
546 /* Reduce conditional compilation elsewhere. */
547 #ifndef HAVE_extv
548 #define HAVE_extv 0
549 #define CODE_FOR_extv CODE_FOR_nothing
550 #endif
551 #ifndef HAVE_extzv
552 #define HAVE_extzv 0
553 #define CODE_FOR_extzv CODE_FOR_nothing
554 #endif
556 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
557 rtx. */
559 static void
560 simplify_while_replacing (rtx *loc, rtx to, rtx object,
561 enum machine_mode op0_mode)
563 rtx x = *loc;
564 enum rtx_code code = GET_CODE (x);
565 rtx new_rtx;
567 if (SWAPPABLE_OPERANDS_P (x)
568 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
570 validate_unshare_change (object, loc,
571 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
572 : swap_condition (code),
573 GET_MODE (x), XEXP (x, 1),
574 XEXP (x, 0)), 1);
575 x = *loc;
576 code = GET_CODE (x);
579 switch (code)
581 case PLUS:
582 /* If we have a PLUS whose second operand is now a CONST_INT, use
583 simplify_gen_binary to try to simplify it.
584 ??? We may want later to remove this, once simplification is
585 separated from this function. */
586 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
587 validate_change (object, loc,
588 simplify_gen_binary
589 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
590 break;
591 case MINUS:
592 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
593 validate_change (object, loc,
594 simplify_gen_binary
595 (PLUS, GET_MODE (x), XEXP (x, 0),
596 simplify_gen_unary (NEG,
597 GET_MODE (x), XEXP (x, 1),
598 GET_MODE (x))), 1);
599 break;
600 case ZERO_EXTEND:
601 case SIGN_EXTEND:
602 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
604 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
605 op0_mode);
606 /* If any of the above failed, substitute in something that
607 we know won't be recognized. */
608 if (!new_rtx)
609 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
610 validate_change (object, loc, new_rtx, 1);
612 break;
613 case SUBREG:
614 /* All subregs possible to simplify should be simplified. */
615 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
616 SUBREG_BYTE (x));
618 /* Subregs of VOIDmode operands are incorrect. */
619 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
620 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
621 if (new_rtx)
622 validate_change (object, loc, new_rtx, 1);
623 break;
624 case ZERO_EXTRACT:
625 case SIGN_EXTRACT:
626 /* If we are replacing a register with memory, try to change the memory
627 to be the mode required for memory in extract operations (this isn't
628 likely to be an insertion operation; if it was, nothing bad will
629 happen, we might just fail in some cases). */
631 if (MEM_P (XEXP (x, 0))
632 && CONST_INT_P (XEXP (x, 1))
633 && CONST_INT_P (XEXP (x, 2))
634 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
635 MEM_ADDR_SPACE (XEXP (x, 0)))
636 && !MEM_VOLATILE_P (XEXP (x, 0)))
638 enum machine_mode wanted_mode = VOIDmode;
639 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
640 int pos = INTVAL (XEXP (x, 2));
642 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
644 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
645 if (wanted_mode == VOIDmode)
646 wanted_mode = word_mode;
648 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
650 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
651 if (wanted_mode == VOIDmode)
652 wanted_mode = word_mode;
655 /* If we have a narrower mode, we can do something. */
656 if (wanted_mode != VOIDmode
657 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
659 int offset = pos / BITS_PER_UNIT;
660 rtx newmem;
662 /* If the bytes and bits are counted differently, we
663 must adjust the offset. */
664 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
665 offset =
666 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
667 offset);
669 gcc_assert (GET_MODE_PRECISION (wanted_mode)
670 == GET_MODE_BITSIZE (wanted_mode));
671 pos %= GET_MODE_BITSIZE (wanted_mode);
673 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
675 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
676 validate_change (object, &XEXP (x, 0), newmem, 1);
680 break;
682 default:
683 break;
687 /* Replace every occurrence of FROM in X with TO. Mark each change with
688 validate_change passing OBJECT. */
690 static void
691 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
692 bool simplify)
694 int i, j;
695 const char *fmt;
696 rtx x = *loc;
697 enum rtx_code code;
698 enum machine_mode op0_mode = VOIDmode;
699 int prev_changes = num_changes;
701 if (!x)
702 return;
704 code = GET_CODE (x);
705 fmt = GET_RTX_FORMAT (code);
706 if (fmt[0] == 'e')
707 op0_mode = GET_MODE (XEXP (x, 0));
709 /* X matches FROM if it is the same rtx or they are both referring to the
710 same register in the same mode. Avoid calling rtx_equal_p unless the
711 operands look similar. */
713 if (x == from
714 || (REG_P (x) && REG_P (from)
715 && GET_MODE (x) == GET_MODE (from)
716 && REGNO (x) == REGNO (from))
717 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
718 && rtx_equal_p (x, from)))
720 validate_unshare_change (object, loc, to, 1);
721 return;
724 /* Call ourself recursively to perform the replacements.
725 We must not replace inside already replaced expression, otherwise we
726 get infinite recursion for replacements like (reg X)->(subreg (reg X))
727 done by regmove, so we must special case shared ASM_OPERANDS. */
729 if (GET_CODE (x) == PARALLEL)
731 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
733 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
734 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
736 /* Verify that operands are really shared. */
737 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
738 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
739 (x, 0, j))));
740 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
741 from, to, object, simplify);
743 else
744 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
745 simplify);
748 else
749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
751 if (fmt[i] == 'e')
752 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
753 else if (fmt[i] == 'E')
754 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
755 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
756 simplify);
759 /* If we didn't substitute, there is nothing more to do. */
760 if (num_changes == prev_changes)
761 return;
763 /* Allow substituted expression to have different mode. This is used by
764 regmove to change mode of pseudo register. */
765 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
766 op0_mode = GET_MODE (XEXP (x, 0));
768 /* Do changes needed to keep rtx consistent. Don't do any other
769 simplifications, as it is not our job. */
770 if (simplify)
771 simplify_while_replacing (loc, to, object, op0_mode);
774 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
775 with TO. After all changes have been made, validate by seeing
776 if INSN is still valid. */
779 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
781 validate_replace_rtx_1 (loc, from, to, insn, true);
782 return apply_change_group ();
785 /* Try replacing every occurrence of FROM in INSN with TO. After all
786 changes have been made, validate by seeing if INSN is still valid. */
789 validate_replace_rtx (rtx from, rtx to, rtx insn)
791 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
792 return apply_change_group ();
795 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
796 is a part of INSN. After all changes have been made, validate by seeing if
797 INSN is still valid.
798 validate_replace_rtx (from, to, insn) is equivalent to
799 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
802 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
804 validate_replace_rtx_1 (where, from, to, insn, true);
805 return apply_change_group ();
808 /* Same as above, but do not simplify rtx afterwards. */
810 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
811 rtx insn)
813 validate_replace_rtx_1 (where, from, to, insn, false);
814 return apply_change_group ();
818 /* Try replacing every occurrence of FROM in INSN with TO. This also
819 will replace in REG_EQUAL and REG_EQUIV notes. */
821 void
822 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
824 rtx note;
825 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
826 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
827 if (REG_NOTE_KIND (note) == REG_EQUAL
828 || REG_NOTE_KIND (note) == REG_EQUIV)
829 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
832 /* Function called by note_uses to replace used subexpressions. */
833 struct validate_replace_src_data
835 rtx from; /* Old RTX */
836 rtx to; /* New RTX */
837 rtx insn; /* Insn in which substitution is occurring. */
840 static void
841 validate_replace_src_1 (rtx *x, void *data)
843 struct validate_replace_src_data *d
844 = (struct validate_replace_src_data *) data;
846 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
849 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
850 SET_DESTs. */
852 void
853 validate_replace_src_group (rtx from, rtx to, rtx insn)
855 struct validate_replace_src_data d;
857 d.from = from;
858 d.to = to;
859 d.insn = insn;
860 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
863 /* Try simplify INSN.
864 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
865 pattern and return true if something was simplified. */
867 bool
868 validate_simplify_insn (rtx insn)
870 int i;
871 rtx pat = NULL;
872 rtx newpat = NULL;
874 pat = PATTERN (insn);
876 if (GET_CODE (pat) == SET)
878 newpat = simplify_rtx (SET_SRC (pat));
879 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
880 validate_change (insn, &SET_SRC (pat), newpat, 1);
881 newpat = simplify_rtx (SET_DEST (pat));
882 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
883 validate_change (insn, &SET_DEST (pat), newpat, 1);
885 else if (GET_CODE (pat) == PARALLEL)
886 for (i = 0; i < XVECLEN (pat, 0); i++)
888 rtx s = XVECEXP (pat, 0, i);
890 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
892 newpat = simplify_rtx (SET_SRC (s));
893 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
894 validate_change (insn, &SET_SRC (s), newpat, 1);
895 newpat = simplify_rtx (SET_DEST (s));
896 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
897 validate_change (insn, &SET_DEST (s), newpat, 1);
900 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
903 #ifdef HAVE_cc0
904 /* Return 1 if the insn using CC0 set by INSN does not contain
905 any ordered tests applied to the condition codes.
906 EQ and NE tests do not count. */
909 next_insn_tests_no_inequality (rtx insn)
911 rtx next = next_cc0_user (insn);
913 /* If there is no next insn, we have to take the conservative choice. */
914 if (next == 0)
915 return 0;
917 return (INSN_P (next)
918 && ! inequality_comparisons_p (PATTERN (next)));
920 #endif
922 /* Return 1 if OP is a valid general operand for machine mode MODE.
923 This is either a register reference, a memory reference,
924 or a constant. In the case of a memory reference, the address
925 is checked for general validity for the target machine.
927 Register and memory references must have mode MODE in order to be valid,
928 but some constants have no machine mode and are valid for any mode.
930 If MODE is VOIDmode, OP is checked for validity for whatever mode
931 it has.
933 The main use of this function is as a predicate in match_operand
934 expressions in the machine description. */
937 general_operand (rtx op, enum machine_mode mode)
939 enum rtx_code code = GET_CODE (op);
941 if (mode == VOIDmode)
942 mode = GET_MODE (op);
944 /* Don't accept CONST_INT or anything similar
945 if the caller wants something floating. */
946 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
947 && GET_MODE_CLASS (mode) != MODE_INT
948 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
949 return 0;
951 if (CONST_INT_P (op)
952 && mode != VOIDmode
953 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
954 return 0;
956 if (CONSTANT_P (op))
957 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
958 || mode == VOIDmode)
959 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
960 && targetm.legitimate_constant_p (mode == VOIDmode
961 ? GET_MODE (op)
962 : mode, op));
964 /* Except for certain constants with VOIDmode, already checked for,
965 OP's mode must match MODE if MODE specifies a mode. */
967 if (GET_MODE (op) != mode)
968 return 0;
970 if (code == SUBREG)
972 rtx sub = SUBREG_REG (op);
974 #ifdef INSN_SCHEDULING
975 /* On machines that have insn scheduling, we want all memory
976 reference to be explicit, so outlaw paradoxical SUBREGs.
977 However, we must allow them after reload so that they can
978 get cleaned up by cleanup_subreg_operands. */
979 if (!reload_completed && MEM_P (sub)
980 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
981 return 0;
982 #endif
983 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
984 may result in incorrect reference. We should simplify all valid
985 subregs of MEM anyway. But allow this after reload because we
986 might be called from cleanup_subreg_operands.
988 ??? This is a kludge. */
989 if (!reload_completed && SUBREG_BYTE (op) != 0
990 && MEM_P (sub))
991 return 0;
993 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
994 create such rtl, and we must reject it. */
995 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
996 /* LRA can use subreg to store a floating point value in an
997 integer mode. Although the floating point and the
998 integer modes need the same number of hard registers, the
999 size of floating point mode can be less than the integer
1000 mode. */
1001 && ! lra_in_progress
1002 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1003 return 0;
1005 op = sub;
1006 code = GET_CODE (op);
1009 if (code == REG)
1010 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1011 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1013 if (code == MEM)
1015 rtx y = XEXP (op, 0);
1017 if (! volatile_ok && MEM_VOLATILE_P (op))
1018 return 0;
1020 /* Use the mem's mode, since it will be reloaded thus. */
1021 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1022 return 1;
1025 return 0;
1028 /* Return 1 if OP is a valid memory address for a memory reference
1029 of mode MODE.
1031 The main use of this function is as a predicate in match_operand
1032 expressions in the machine description. */
1035 address_operand (rtx op, enum machine_mode mode)
1037 return memory_address_p (mode, op);
1040 /* Return 1 if OP is a register reference of mode MODE.
1041 If MODE is VOIDmode, accept a register in any mode.
1043 The main use of this function is as a predicate in match_operand
1044 expressions in the machine description. */
1047 register_operand (rtx op, enum machine_mode mode)
1049 if (GET_MODE (op) != mode && mode != VOIDmode)
1050 return 0;
1052 if (GET_CODE (op) == SUBREG)
1054 rtx sub = SUBREG_REG (op);
1056 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1057 because it is guaranteed to be reloaded into one.
1058 Just make sure the MEM is valid in itself.
1059 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1060 but currently it does result from (SUBREG (REG)...) where the
1061 reg went on the stack.) */
1062 if (! reload_completed && MEM_P (sub))
1063 return general_operand (op, mode);
1065 #ifdef CANNOT_CHANGE_MODE_CLASS
1066 if (REG_P (sub)
1067 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1068 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1069 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1070 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1071 return 0;
1072 #endif
1074 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1075 create such rtl, and we must reject it. */
1076 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1077 /* LRA can use subreg to store a floating point value in an
1078 integer mode. Although the floating point and the
1079 integer modes need the same number of hard registers, the
1080 size of floating point mode can be less than the integer
1081 mode. */
1082 && ! lra_in_progress
1083 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1084 return 0;
1086 op = sub;
1089 return (REG_P (op)
1090 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1091 || in_hard_reg_set_p (operand_reg_set,
1092 GET_MODE (op), REGNO (op))));
1095 /* Return 1 for a register in Pmode; ignore the tested mode. */
1098 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1100 return register_operand (op, Pmode);
1103 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1104 or a hard register. */
1107 scratch_operand (rtx op, enum machine_mode mode)
1109 if (GET_MODE (op) != mode && mode != VOIDmode)
1110 return 0;
1112 return (GET_CODE (op) == SCRATCH
1113 || (REG_P (op)
1114 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1117 /* Return 1 if OP is a valid immediate operand for mode MODE.
1119 The main use of this function is as a predicate in match_operand
1120 expressions in the machine description. */
1123 immediate_operand (rtx op, enum machine_mode mode)
1125 /* Don't accept CONST_INT or anything similar
1126 if the caller wants something floating. */
1127 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1128 && GET_MODE_CLASS (mode) != MODE_INT
1129 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1130 return 0;
1132 if (CONST_INT_P (op)
1133 && mode != VOIDmode
1134 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1135 return 0;
1137 return (CONSTANT_P (op)
1138 && (GET_MODE (op) == mode || mode == VOIDmode
1139 || GET_MODE (op) == VOIDmode)
1140 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1141 && targetm.legitimate_constant_p (mode == VOIDmode
1142 ? GET_MODE (op)
1143 : mode, op));
1146 /* Returns 1 if OP is an operand that is a CONST_INT. */
1149 const_int_operand (rtx op, enum machine_mode mode)
1151 if (!CONST_INT_P (op))
1152 return 0;
1154 if (mode != VOIDmode
1155 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1156 return 0;
1158 return 1;
1161 /* Returns 1 if OP is an operand that is a constant integer or constant
1162 floating-point number. */
1165 const_double_operand (rtx op, enum machine_mode mode)
1167 /* Don't accept CONST_INT or anything similar
1168 if the caller wants something floating. */
1169 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1170 && GET_MODE_CLASS (mode) != MODE_INT
1171 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1172 return 0;
1174 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1175 && (mode == VOIDmode || GET_MODE (op) == mode
1176 || GET_MODE (op) == VOIDmode));
1179 /* Return 1 if OP is a general operand that is not an immediate operand. */
1182 nonimmediate_operand (rtx op, enum machine_mode mode)
1184 return (general_operand (op, mode) && ! CONSTANT_P (op));
1187 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1190 nonmemory_operand (rtx op, enum machine_mode mode)
1192 if (CONSTANT_P (op))
1193 return immediate_operand (op, mode);
1195 if (GET_MODE (op) != mode && mode != VOIDmode)
1196 return 0;
1198 if (GET_CODE (op) == SUBREG)
1200 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1201 because it is guaranteed to be reloaded into one.
1202 Just make sure the MEM is valid in itself.
1203 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1204 but currently it does result from (SUBREG (REG)...) where the
1205 reg went on the stack.) */
1206 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1207 return general_operand (op, mode);
1208 op = SUBREG_REG (op);
1211 return (REG_P (op)
1212 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1213 || in_hard_reg_set_p (operand_reg_set,
1214 GET_MODE (op), REGNO (op))));
1217 /* Return 1 if OP is a valid operand that stands for pushing a
1218 value of mode MODE onto the stack.
1220 The main use of this function is as a predicate in match_operand
1221 expressions in the machine description. */
1224 push_operand (rtx op, enum machine_mode mode)
1226 unsigned int rounded_size = GET_MODE_SIZE (mode);
1228 #ifdef PUSH_ROUNDING
1229 rounded_size = PUSH_ROUNDING (rounded_size);
1230 #endif
1232 if (!MEM_P (op))
1233 return 0;
1235 if (mode != VOIDmode && GET_MODE (op) != mode)
1236 return 0;
1238 op = XEXP (op, 0);
1240 if (rounded_size == GET_MODE_SIZE (mode))
1242 if (GET_CODE (op) != STACK_PUSH_CODE)
1243 return 0;
1245 else
1247 if (GET_CODE (op) != PRE_MODIFY
1248 || GET_CODE (XEXP (op, 1)) != PLUS
1249 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1250 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1251 #ifdef STACK_GROWS_DOWNWARD
1252 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1253 #else
1254 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1255 #endif
1257 return 0;
1260 return XEXP (op, 0) == stack_pointer_rtx;
1263 /* Return 1 if OP is a valid operand that stands for popping a
1264 value of mode MODE off the stack.
1266 The main use of this function is as a predicate in match_operand
1267 expressions in the machine description. */
1270 pop_operand (rtx op, enum machine_mode mode)
1272 if (!MEM_P (op))
1273 return 0;
1275 if (mode != VOIDmode && GET_MODE (op) != mode)
1276 return 0;
1278 op = XEXP (op, 0);
1280 if (GET_CODE (op) != STACK_POP_CODE)
1281 return 0;
1283 return XEXP (op, 0) == stack_pointer_rtx;
1286 /* Return 1 if ADDR is a valid memory address
1287 for mode MODE in address space AS. */
1290 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1291 rtx addr, addr_space_t as)
1293 #ifdef GO_IF_LEGITIMATE_ADDRESS
1294 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1295 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1296 return 0;
1298 win:
1299 return 1;
1300 #else
1301 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1302 #endif
1305 /* Return 1 if OP is a valid memory reference with mode MODE,
1306 including a valid address.
1308 The main use of this function is as a predicate in match_operand
1309 expressions in the machine description. */
1312 memory_operand (rtx op, enum machine_mode mode)
1314 rtx inner;
1316 if (! reload_completed)
1317 /* Note that no SUBREG is a memory operand before end of reload pass,
1318 because (SUBREG (MEM...)) forces reloading into a register. */
1319 return MEM_P (op) && general_operand (op, mode);
1321 if (mode != VOIDmode && GET_MODE (op) != mode)
1322 return 0;
1324 inner = op;
1325 if (GET_CODE (inner) == SUBREG)
1326 inner = SUBREG_REG (inner);
1328 return (MEM_P (inner) && general_operand (op, mode));
1331 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1332 that is, a memory reference whose address is a general_operand. */
1335 indirect_operand (rtx op, enum machine_mode mode)
1337 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1338 if (! reload_completed
1339 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1341 int offset = SUBREG_BYTE (op);
1342 rtx inner = SUBREG_REG (op);
1344 if (mode != VOIDmode && GET_MODE (op) != mode)
1345 return 0;
1347 /* The only way that we can have a general_operand as the resulting
1348 address is if OFFSET is zero and the address already is an operand
1349 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1350 operand. */
1352 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1353 || (GET_CODE (XEXP (inner, 0)) == PLUS
1354 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1355 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1356 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1359 return (MEM_P (op)
1360 && memory_operand (op, mode)
1361 && general_operand (XEXP (op, 0), Pmode));
1364 /* Return 1 if this is an ordered comparison operator (not including
1365 ORDERED and UNORDERED). */
1368 ordered_comparison_operator (rtx op, enum machine_mode mode)
1370 if (mode != VOIDmode && GET_MODE (op) != mode)
1371 return false;
1372 switch (GET_CODE (op))
1374 case EQ:
1375 case NE:
1376 case LT:
1377 case LTU:
1378 case LE:
1379 case LEU:
1380 case GT:
1381 case GTU:
1382 case GE:
1383 case GEU:
1384 return true;
1385 default:
1386 return false;
1390 /* Return 1 if this is a comparison operator. This allows the use of
1391 MATCH_OPERATOR to recognize all the branch insns. */
1394 comparison_operator (rtx op, enum machine_mode mode)
1396 return ((mode == VOIDmode || GET_MODE (op) == mode)
1397 && COMPARISON_P (op));
1400 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1403 extract_asm_operands (rtx body)
1405 rtx tmp;
1406 switch (GET_CODE (body))
1408 case ASM_OPERANDS:
1409 return body;
1411 case SET:
1412 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1413 tmp = SET_SRC (body);
1414 if (GET_CODE (tmp) == ASM_OPERANDS)
1415 return tmp;
1416 break;
1418 case PARALLEL:
1419 tmp = XVECEXP (body, 0, 0);
1420 if (GET_CODE (tmp) == ASM_OPERANDS)
1421 return tmp;
1422 if (GET_CODE (tmp) == SET)
1424 tmp = SET_SRC (tmp);
1425 if (GET_CODE (tmp) == ASM_OPERANDS)
1426 return tmp;
1428 break;
1430 default:
1431 break;
1433 return NULL;
1436 /* If BODY is an insn body that uses ASM_OPERANDS,
1437 return the number of operands (both input and output) in the insn.
1438 Otherwise return -1. */
1441 asm_noperands (const_rtx body)
1443 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1444 int n_sets = 0;
1446 if (asm_op == NULL)
1447 return -1;
1449 if (GET_CODE (body) == SET)
1450 n_sets = 1;
1451 else if (GET_CODE (body) == PARALLEL)
1453 int i;
1454 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1456 /* Multiple output operands, or 1 output plus some clobbers:
1457 body is
1458 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1459 /* Count backwards through CLOBBERs to determine number of SETs. */
1460 for (i = XVECLEN (body, 0); i > 0; i--)
1462 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1463 break;
1464 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1465 return -1;
1468 /* N_SETS is now number of output operands. */
1469 n_sets = i;
1471 /* Verify that all the SETs we have
1472 came from a single original asm_operands insn
1473 (so that invalid combinations are blocked). */
1474 for (i = 0; i < n_sets; i++)
1476 rtx elt = XVECEXP (body, 0, i);
1477 if (GET_CODE (elt) != SET)
1478 return -1;
1479 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1480 return -1;
1481 /* If these ASM_OPERANDS rtx's came from different original insns
1482 then they aren't allowed together. */
1483 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1484 != ASM_OPERANDS_INPUT_VEC (asm_op))
1485 return -1;
1488 else
1490 /* 0 outputs, but some clobbers:
1491 body is [(asm_operands ...) (clobber (reg ...))...]. */
1492 /* Make sure all the other parallel things really are clobbers. */
1493 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1494 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1495 return -1;
1499 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1500 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1503 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1504 copy its operands (both input and output) into the vector OPERANDS,
1505 the locations of the operands within the insn into the vector OPERAND_LOCS,
1506 and the constraints for the operands into CONSTRAINTS.
1507 Write the modes of the operands into MODES.
1508 Return the assembler-template.
1510 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1511 we don't store that info. */
1513 const char *
1514 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1515 const char **constraints, enum machine_mode *modes,
1516 location_t *loc)
1518 int nbase = 0, n, i;
1519 rtx asmop;
1521 switch (GET_CODE (body))
1523 case ASM_OPERANDS:
1524 /* Zero output asm: BODY is (asm_operands ...). */
1525 asmop = body;
1526 break;
1528 case SET:
1529 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1530 asmop = SET_SRC (body);
1532 /* The output is in the SET.
1533 Its constraint is in the ASM_OPERANDS itself. */
1534 if (operands)
1535 operands[0] = SET_DEST (body);
1536 if (operand_locs)
1537 operand_locs[0] = &SET_DEST (body);
1538 if (constraints)
1539 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1540 if (modes)
1541 modes[0] = GET_MODE (SET_DEST (body));
1542 nbase = 1;
1543 break;
1545 case PARALLEL:
1547 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1549 asmop = XVECEXP (body, 0, 0);
1550 if (GET_CODE (asmop) == SET)
1552 asmop = SET_SRC (asmop);
1554 /* At least one output, plus some CLOBBERs. The outputs are in
1555 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1556 for (i = 0; i < nparallel; i++)
1558 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1559 break; /* Past last SET */
1560 if (operands)
1561 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1562 if (operand_locs)
1563 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1564 if (constraints)
1565 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1566 if (modes)
1567 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1569 nbase = i;
1571 break;
1574 default:
1575 gcc_unreachable ();
1578 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1579 for (i = 0; i < n; i++)
1581 if (operand_locs)
1582 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1583 if (operands)
1584 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1585 if (constraints)
1586 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1587 if (modes)
1588 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1590 nbase += n;
1592 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1593 for (i = 0; i < n; i++)
1595 if (operand_locs)
1596 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1597 if (operands)
1598 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1599 if (constraints)
1600 constraints[nbase + i] = "";
1601 if (modes)
1602 modes[nbase + i] = Pmode;
1605 if (loc)
1606 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1608 return ASM_OPERANDS_TEMPLATE (asmop);
1611 /* Check if an asm_operand matches its constraints.
1612 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1615 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1617 int result = 0;
1618 #ifdef AUTO_INC_DEC
1619 bool incdec_ok = false;
1620 #endif
1622 /* Use constrain_operands after reload. */
1623 gcc_assert (!reload_completed);
1625 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1626 many alternatives as required to match the other operands. */
1627 if (*constraint == '\0')
1628 result = 1;
1630 while (*constraint)
1632 char c = *constraint;
1633 int len;
1634 switch (c)
1636 case ',':
1637 constraint++;
1638 continue;
1639 case '=':
1640 case '+':
1641 case '*':
1642 case '%':
1643 case '!':
1644 case '#':
1645 case '&':
1646 case '?':
1647 break;
1649 case '0': case '1': case '2': case '3': case '4':
1650 case '5': case '6': case '7': case '8': case '9':
1651 /* If caller provided constraints pointer, look up
1652 the maching constraint. Otherwise, our caller should have
1653 given us the proper matching constraint, but we can't
1654 actually fail the check if they didn't. Indicate that
1655 results are inconclusive. */
1656 if (constraints)
1658 char *end;
1659 unsigned long match;
1661 match = strtoul (constraint, &end, 10);
1662 if (!result)
1663 result = asm_operand_ok (op, constraints[match], NULL);
1664 constraint = (const char *) end;
1666 else
1669 constraint++;
1670 while (ISDIGIT (*constraint));
1671 if (! result)
1672 result = -1;
1674 continue;
1676 case 'p':
1677 if (address_operand (op, VOIDmode))
1678 result = 1;
1679 break;
1681 case TARGET_MEM_CONSTRAINT:
1682 case 'V': /* non-offsettable */
1683 if (memory_operand (op, VOIDmode))
1684 result = 1;
1685 break;
1687 case 'o': /* offsettable */
1688 if (offsettable_nonstrict_memref_p (op))
1689 result = 1;
1690 break;
1692 case '<':
1693 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1694 excepting those that expand_call created. Further, on some
1695 machines which do not have generalized auto inc/dec, an inc/dec
1696 is not a memory_operand.
1698 Match any memory and hope things are resolved after reload. */
1700 if (MEM_P (op)
1701 && (1
1702 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1703 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1704 result = 1;
1705 #ifdef AUTO_INC_DEC
1706 incdec_ok = true;
1707 #endif
1708 break;
1710 case '>':
1711 if (MEM_P (op)
1712 && (1
1713 || GET_CODE (XEXP (op, 0)) == PRE_INC
1714 || GET_CODE (XEXP (op, 0)) == POST_INC))
1715 result = 1;
1716 #ifdef AUTO_INC_DEC
1717 incdec_ok = true;
1718 #endif
1719 break;
1721 case 'E':
1722 case 'F':
1723 if (CONST_DOUBLE_AS_FLOAT_P (op)
1724 || (GET_CODE (op) == CONST_VECTOR
1725 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1726 result = 1;
1727 break;
1729 case 'G':
1730 if (CONST_DOUBLE_AS_FLOAT_P (op)
1731 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1732 result = 1;
1733 break;
1734 case 'H':
1735 if (CONST_DOUBLE_AS_FLOAT_P (op)
1736 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1737 result = 1;
1738 break;
1740 case 's':
1741 if (CONST_SCALAR_INT_P (op))
1742 break;
1743 /* Fall through. */
1745 case 'i':
1746 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1747 result = 1;
1748 break;
1750 case 'n':
1751 if (CONST_SCALAR_INT_P (op))
1752 result = 1;
1753 break;
1755 case 'I':
1756 if (CONST_INT_P (op)
1757 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1758 result = 1;
1759 break;
1760 case 'J':
1761 if (CONST_INT_P (op)
1762 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1763 result = 1;
1764 break;
1765 case 'K':
1766 if (CONST_INT_P (op)
1767 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1768 result = 1;
1769 break;
1770 case 'L':
1771 if (CONST_INT_P (op)
1772 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1773 result = 1;
1774 break;
1775 case 'M':
1776 if (CONST_INT_P (op)
1777 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1778 result = 1;
1779 break;
1780 case 'N':
1781 if (CONST_INT_P (op)
1782 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1783 result = 1;
1784 break;
1785 case 'O':
1786 if (CONST_INT_P (op)
1787 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1788 result = 1;
1789 break;
1790 case 'P':
1791 if (CONST_INT_P (op)
1792 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1793 result = 1;
1794 break;
1796 case 'X':
1797 result = 1;
1798 break;
1800 case 'g':
1801 if (general_operand (op, VOIDmode))
1802 result = 1;
1803 break;
1805 default:
1806 /* For all other letters, we first check for a register class,
1807 otherwise it is an EXTRA_CONSTRAINT. */
1808 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1810 case 'r':
1811 if (GET_MODE (op) == BLKmode)
1812 break;
1813 if (register_operand (op, VOIDmode))
1814 result = 1;
1816 #ifdef EXTRA_CONSTRAINT_STR
1817 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1818 /* Every memory operand can be reloaded to fit. */
1819 result = result || memory_operand (op, VOIDmode);
1820 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1821 /* Every address operand can be reloaded to fit. */
1822 result = result || address_operand (op, VOIDmode);
1823 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1824 result = 1;
1825 #endif
1826 break;
1828 len = CONSTRAINT_LEN (c, constraint);
1830 constraint++;
1831 while (--len && *constraint);
1832 if (len)
1833 return 0;
1836 #ifdef AUTO_INC_DEC
1837 /* For operands without < or > constraints reject side-effects. */
1838 if (!incdec_ok && result && MEM_P (op))
1839 switch (GET_CODE (XEXP (op, 0)))
1841 case PRE_INC:
1842 case POST_INC:
1843 case PRE_DEC:
1844 case POST_DEC:
1845 case PRE_MODIFY:
1846 case POST_MODIFY:
1847 return 0;
1848 default:
1849 break;
1851 #endif
1853 return result;
1856 /* Given an rtx *P, if it is a sum containing an integer constant term,
1857 return the location (type rtx *) of the pointer to that constant term.
1858 Otherwise, return a null pointer. */
1860 rtx *
1861 find_constant_term_loc (rtx *p)
1863 rtx *tem;
1864 enum rtx_code code = GET_CODE (*p);
1866 /* If *P IS such a constant term, P is its location. */
1868 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1869 || code == CONST)
1870 return p;
1872 /* Otherwise, if not a sum, it has no constant term. */
1874 if (GET_CODE (*p) != PLUS)
1875 return 0;
1877 /* If one of the summands is constant, return its location. */
1879 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1880 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1881 return p;
1883 /* Otherwise, check each summand for containing a constant term. */
1885 if (XEXP (*p, 0) != 0)
1887 tem = find_constant_term_loc (&XEXP (*p, 0));
1888 if (tem != 0)
1889 return tem;
1892 if (XEXP (*p, 1) != 0)
1894 tem = find_constant_term_loc (&XEXP (*p, 1));
1895 if (tem != 0)
1896 return tem;
1899 return 0;
1902 /* Return 1 if OP is a memory reference
1903 whose address contains no side effects
1904 and remains valid after the addition
1905 of a positive integer less than the
1906 size of the object being referenced.
1908 We assume that the original address is valid and do not check it.
1910 This uses strict_memory_address_p as a subroutine, so
1911 don't use it before reload. */
1914 offsettable_memref_p (rtx op)
1916 return ((MEM_P (op))
1917 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1918 MEM_ADDR_SPACE (op)));
1921 /* Similar, but don't require a strictly valid mem ref:
1922 consider pseudo-regs valid as index or base regs. */
1925 offsettable_nonstrict_memref_p (rtx op)
1927 return ((MEM_P (op))
1928 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1929 MEM_ADDR_SPACE (op)));
1932 /* Return 1 if Y is a memory address which contains no side effects
1933 and would remain valid for address space AS after the addition of
1934 a positive integer less than the size of that mode.
1936 We assume that the original address is valid and do not check it.
1937 We do check that it is valid for narrower modes.
1939 If STRICTP is nonzero, we require a strictly valid address,
1940 for the sake of use in reload.c. */
1943 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1944 addr_space_t as)
1946 enum rtx_code ycode = GET_CODE (y);
1947 rtx z;
1948 rtx y1 = y;
1949 rtx *y2;
1950 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1951 (strictp ? strict_memory_address_addr_space_p
1952 : memory_address_addr_space_p);
1953 unsigned int mode_sz = GET_MODE_SIZE (mode);
1954 #ifdef POINTERS_EXTEND_UNSIGNED
1955 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1956 #endif
1958 if (CONSTANT_ADDRESS_P (y))
1959 return 1;
1961 /* Adjusting an offsettable address involves changing to a narrower mode.
1962 Make sure that's OK. */
1964 if (mode_dependent_address_p (y, as))
1965 return 0;
1967 /* ??? How much offset does an offsettable BLKmode reference need?
1968 Clearly that depends on the situation in which it's being used.
1969 However, the current situation in which we test 0xffffffff is
1970 less than ideal. Caveat user. */
1971 if (mode_sz == 0)
1972 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1974 /* If the expression contains a constant term,
1975 see if it remains valid when max possible offset is added. */
1977 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1979 int good;
1981 y1 = *y2;
1982 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1983 /* Use QImode because an odd displacement may be automatically invalid
1984 for any wider mode. But it should be valid for a single byte. */
1985 good = (*addressp) (QImode, y, as);
1987 /* In any case, restore old contents of memory. */
1988 *y2 = y1;
1989 return good;
1992 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1993 return 0;
1995 /* The offset added here is chosen as the maximum offset that
1996 any instruction could need to add when operating on something
1997 of the specified mode. We assume that if Y and Y+c are
1998 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1999 go inside a LO_SUM here, so we do so as well. */
2000 if (GET_CODE (y) == LO_SUM
2001 && mode != BLKmode
2002 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2003 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
2004 plus_constant (GET_MODE (y), XEXP (y, 1),
2005 mode_sz - 1));
2006 #ifdef POINTERS_EXTEND_UNSIGNED
2007 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2008 else if (POINTERS_EXTEND_UNSIGNED > 0
2009 && GET_CODE (y) == ZERO_EXTEND
2010 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2011 z = gen_rtx_ZERO_EXTEND (GET_MODE (y),
2012 plus_constant (pointer_mode, XEXP (y, 0),
2013 mode_sz - 1));
2014 #endif
2015 else
2016 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
2018 /* Use QImode because an odd displacement may be automatically invalid
2019 for any wider mode. But it should be valid for a single byte. */
2020 return (*addressp) (QImode, z, as);
2023 /* Return 1 if ADDR is an address-expression whose effect depends
2024 on the mode of the memory reference it is used in.
2026 ADDRSPACE is the address space associated with the address.
2028 Autoincrement addressing is a typical example of mode-dependence
2029 because the amount of the increment depends on the mode. */
2031 bool
2032 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2034 /* Auto-increment addressing with anything other than post_modify
2035 or pre_modify always introduces a mode dependency. Catch such
2036 cases now instead of deferring to the target. */
2037 if (GET_CODE (addr) == PRE_INC
2038 || GET_CODE (addr) == POST_INC
2039 || GET_CODE (addr) == PRE_DEC
2040 || GET_CODE (addr) == POST_DEC)
2041 return true;
2043 return targetm.mode_dependent_address_p (addr, addrspace);
2046 /* Like extract_insn, but save insn extracted and don't extract again, when
2047 called again for the same insn expecting that recog_data still contain the
2048 valid information. This is used primary by gen_attr infrastructure that
2049 often does extract insn again and again. */
2050 void
2051 extract_insn_cached (rtx insn)
2053 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2054 return;
2055 extract_insn (insn);
2056 recog_data.insn = insn;
2059 /* Do cached extract_insn, constrain_operands and complain about failures.
2060 Used by insn_attrtab. */
2061 void
2062 extract_constrain_insn_cached (rtx insn)
2064 extract_insn_cached (insn);
2065 if (which_alternative == -1
2066 && !constrain_operands (reload_completed))
2067 fatal_insn_not_found (insn);
2070 /* Do cached constrain_operands and complain about failures. */
2072 constrain_operands_cached (int strict)
2074 if (which_alternative == -1)
2075 return constrain_operands (strict);
2076 else
2077 return 1;
2080 /* Analyze INSN and fill in recog_data. */
2082 void
2083 extract_insn (rtx insn)
2085 int i;
2086 int icode;
2087 int noperands;
2088 rtx body = PATTERN (insn);
2090 recog_data.n_operands = 0;
2091 recog_data.n_alternatives = 0;
2092 recog_data.n_dups = 0;
2093 recog_data.is_asm = false;
2095 switch (GET_CODE (body))
2097 case USE:
2098 case CLOBBER:
2099 case ASM_INPUT:
2100 case ADDR_VEC:
2101 case ADDR_DIFF_VEC:
2102 case VAR_LOCATION:
2103 return;
2105 case SET:
2106 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2107 goto asm_insn;
2108 else
2109 goto normal_insn;
2110 case PARALLEL:
2111 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2112 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2113 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2114 goto asm_insn;
2115 else
2116 goto normal_insn;
2117 case ASM_OPERANDS:
2118 asm_insn:
2119 recog_data.n_operands = noperands = asm_noperands (body);
2120 if (noperands >= 0)
2122 /* This insn is an `asm' with operands. */
2124 /* expand_asm_operands makes sure there aren't too many operands. */
2125 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2127 /* Now get the operand values and constraints out of the insn. */
2128 decode_asm_operands (body, recog_data.operand,
2129 recog_data.operand_loc,
2130 recog_data.constraints,
2131 recog_data.operand_mode, NULL);
2132 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2133 if (noperands > 0)
2135 const char *p = recog_data.constraints[0];
2136 recog_data.n_alternatives = 1;
2137 while (*p)
2138 recog_data.n_alternatives += (*p++ == ',');
2140 recog_data.is_asm = true;
2141 break;
2143 fatal_insn_not_found (insn);
2145 default:
2146 normal_insn:
2147 /* Ordinary insn: recognize it, get the operands via insn_extract
2148 and get the constraints. */
2150 icode = recog_memoized (insn);
2151 if (icode < 0)
2152 fatal_insn_not_found (insn);
2154 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2155 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2156 recog_data.n_dups = insn_data[icode].n_dups;
2158 insn_extract (insn);
2160 for (i = 0; i < noperands; i++)
2162 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2163 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2164 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2165 /* VOIDmode match_operands gets mode from their real operand. */
2166 if (recog_data.operand_mode[i] == VOIDmode)
2167 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2170 for (i = 0; i < noperands; i++)
2171 recog_data.operand_type[i]
2172 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2173 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2174 : OP_IN);
2176 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2178 if (INSN_CODE (insn) < 0)
2179 for (i = 0; i < recog_data.n_alternatives; i++)
2180 recog_data.alternative_enabled_p[i] = true;
2181 else
2183 recog_data.insn = insn;
2184 for (i = 0; i < recog_data.n_alternatives; i++)
2186 which_alternative = i;
2187 recog_data.alternative_enabled_p[i]
2188 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2192 recog_data.insn = NULL;
2193 which_alternative = -1;
2196 /* After calling extract_insn, you can use this function to extract some
2197 information from the constraint strings into a more usable form.
2198 The collected data is stored in recog_op_alt. */
2199 void
2200 preprocess_constraints (void)
2202 int i;
2204 for (i = 0; i < recog_data.n_operands; i++)
2205 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2206 * sizeof (struct operand_alternative)));
2208 for (i = 0; i < recog_data.n_operands; i++)
2210 int j;
2211 struct operand_alternative *op_alt;
2212 const char *p = recog_data.constraints[i];
2214 op_alt = recog_op_alt[i];
2216 for (j = 0; j < recog_data.n_alternatives; j++)
2218 op_alt[j].cl = NO_REGS;
2219 op_alt[j].constraint = p;
2220 op_alt[j].matches = -1;
2221 op_alt[j].matched = -1;
2223 if (!recog_data.alternative_enabled_p[j])
2225 p = skip_alternative (p);
2226 continue;
2229 if (*p == '\0' || *p == ',')
2231 op_alt[j].anything_ok = 1;
2232 continue;
2235 for (;;)
2237 char c = *p;
2238 if (c == '#')
2240 c = *++p;
2241 while (c != ',' && c != '\0');
2242 if (c == ',' || c == '\0')
2244 p++;
2245 break;
2248 switch (c)
2250 case '=': case '+': case '*': case '%':
2251 case 'E': case 'F': case 'G': case 'H':
2252 case 's': case 'i': case 'n':
2253 case 'I': case 'J': case 'K': case 'L':
2254 case 'M': case 'N': case 'O': case 'P':
2255 /* These don't say anything we care about. */
2256 break;
2258 case '?':
2259 op_alt[j].reject += 6;
2260 break;
2261 case '!':
2262 op_alt[j].reject += 600;
2263 break;
2264 case '&':
2265 op_alt[j].earlyclobber = 1;
2266 break;
2268 case '0': case '1': case '2': case '3': case '4':
2269 case '5': case '6': case '7': case '8': case '9':
2271 char *end;
2272 op_alt[j].matches = strtoul (p, &end, 10);
2273 recog_op_alt[op_alt[j].matches][j].matched = i;
2274 p = end;
2276 continue;
2278 case TARGET_MEM_CONSTRAINT:
2279 op_alt[j].memory_ok = 1;
2280 break;
2281 case '<':
2282 op_alt[j].decmem_ok = 1;
2283 break;
2284 case '>':
2285 op_alt[j].incmem_ok = 1;
2286 break;
2287 case 'V':
2288 op_alt[j].nonoffmem_ok = 1;
2289 break;
2290 case 'o':
2291 op_alt[j].offmem_ok = 1;
2292 break;
2293 case 'X':
2294 op_alt[j].anything_ok = 1;
2295 break;
2297 case 'p':
2298 op_alt[j].is_address = 1;
2299 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2300 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2301 ADDRESS, SCRATCH)];
2302 break;
2304 case 'g':
2305 case 'r':
2306 op_alt[j].cl =
2307 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2308 break;
2310 default:
2311 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2313 op_alt[j].memory_ok = 1;
2314 break;
2316 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2318 op_alt[j].is_address = 1;
2319 op_alt[j].cl
2320 = (reg_class_subunion
2321 [(int) op_alt[j].cl]
2322 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2323 ADDRESS, SCRATCH)]);
2324 break;
2327 op_alt[j].cl
2328 = (reg_class_subunion
2329 [(int) op_alt[j].cl]
2330 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2331 break;
2333 p += CONSTRAINT_LEN (c, p);
2339 /* Check the operands of an insn against the insn's operand constraints
2340 and return 1 if they are valid.
2341 The information about the insn's operands, constraints, operand modes
2342 etc. is obtained from the global variables set up by extract_insn.
2344 WHICH_ALTERNATIVE is set to a number which indicates which
2345 alternative of constraints was matched: 0 for the first alternative,
2346 1 for the next, etc.
2348 In addition, when two operands are required to match
2349 and it happens that the output operand is (reg) while the
2350 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2351 make the output operand look like the input.
2352 This is because the output operand is the one the template will print.
2354 This is used in final, just before printing the assembler code and by
2355 the routines that determine an insn's attribute.
2357 If STRICT is a positive nonzero value, it means that we have been
2358 called after reload has been completed. In that case, we must
2359 do all checks strictly. If it is zero, it means that we have been called
2360 before reload has completed. In that case, we first try to see if we can
2361 find an alternative that matches strictly. If not, we try again, this
2362 time assuming that reload will fix up the insn. This provides a "best
2363 guess" for the alternative and is used to compute attributes of insns prior
2364 to reload. A negative value of STRICT is used for this internal call. */
2366 struct funny_match
2368 int this_op, other;
2372 constrain_operands (int strict)
2374 const char *constraints[MAX_RECOG_OPERANDS];
2375 int matching_operands[MAX_RECOG_OPERANDS];
2376 int earlyclobber[MAX_RECOG_OPERANDS];
2377 int c;
2379 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2380 int funny_match_index;
2382 which_alternative = 0;
2383 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2384 return 1;
2386 for (c = 0; c < recog_data.n_operands; c++)
2388 constraints[c] = recog_data.constraints[c];
2389 matching_operands[c] = -1;
2394 int seen_earlyclobber_at = -1;
2395 int opno;
2396 int lose = 0;
2397 funny_match_index = 0;
2399 if (!recog_data.alternative_enabled_p[which_alternative])
2401 int i;
2403 for (i = 0; i < recog_data.n_operands; i++)
2404 constraints[i] = skip_alternative (constraints[i]);
2406 which_alternative++;
2407 continue;
2410 for (opno = 0; opno < recog_data.n_operands; opno++)
2412 rtx op = recog_data.operand[opno];
2413 enum machine_mode mode = GET_MODE (op);
2414 const char *p = constraints[opno];
2415 int offset = 0;
2416 int win = 0;
2417 int val;
2418 int len;
2420 earlyclobber[opno] = 0;
2422 /* A unary operator may be accepted by the predicate, but it
2423 is irrelevant for matching constraints. */
2424 if (UNARY_P (op))
2425 op = XEXP (op, 0);
2427 if (GET_CODE (op) == SUBREG)
2429 if (REG_P (SUBREG_REG (op))
2430 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2431 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2432 GET_MODE (SUBREG_REG (op)),
2433 SUBREG_BYTE (op),
2434 GET_MODE (op));
2435 op = SUBREG_REG (op);
2438 /* An empty constraint or empty alternative
2439 allows anything which matched the pattern. */
2440 if (*p == 0 || *p == ',')
2441 win = 1;
2444 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2446 case '\0':
2447 len = 0;
2448 break;
2449 case ',':
2450 c = '\0';
2451 break;
2453 case '?': case '!': case '*': case '%':
2454 case '=': case '+':
2455 break;
2457 case '#':
2458 /* Ignore rest of this alternative as far as
2459 constraint checking is concerned. */
2461 p++;
2462 while (*p && *p != ',');
2463 len = 0;
2464 break;
2466 case '&':
2467 earlyclobber[opno] = 1;
2468 if (seen_earlyclobber_at < 0)
2469 seen_earlyclobber_at = opno;
2470 break;
2472 case '0': case '1': case '2': case '3': case '4':
2473 case '5': case '6': case '7': case '8': case '9':
2475 /* This operand must be the same as a previous one.
2476 This kind of constraint is used for instructions such
2477 as add when they take only two operands.
2479 Note that the lower-numbered operand is passed first.
2481 If we are not testing strictly, assume that this
2482 constraint will be satisfied. */
2484 char *end;
2485 int match;
2487 match = strtoul (p, &end, 10);
2488 p = end;
2490 if (strict < 0)
2491 val = 1;
2492 else
2494 rtx op1 = recog_data.operand[match];
2495 rtx op2 = recog_data.operand[opno];
2497 /* A unary operator may be accepted by the predicate,
2498 but it is irrelevant for matching constraints. */
2499 if (UNARY_P (op1))
2500 op1 = XEXP (op1, 0);
2501 if (UNARY_P (op2))
2502 op2 = XEXP (op2, 0);
2504 val = operands_match_p (op1, op2);
2507 matching_operands[opno] = match;
2508 matching_operands[match] = opno;
2510 if (val != 0)
2511 win = 1;
2513 /* If output is *x and input is *--x, arrange later
2514 to change the output to *--x as well, since the
2515 output op is the one that will be printed. */
2516 if (val == 2 && strict > 0)
2518 funny_match[funny_match_index].this_op = opno;
2519 funny_match[funny_match_index++].other = match;
2522 len = 0;
2523 break;
2525 case 'p':
2526 /* p is used for address_operands. When we are called by
2527 gen_reload, no one will have checked that the address is
2528 strictly valid, i.e., that all pseudos requiring hard regs
2529 have gotten them. */
2530 if (strict <= 0
2531 || (strict_memory_address_p (recog_data.operand_mode[opno],
2532 op)))
2533 win = 1;
2534 break;
2536 /* No need to check general_operand again;
2537 it was done in insn-recog.c. Well, except that reload
2538 doesn't check the validity of its replacements, but
2539 that should only matter when there's a bug. */
2540 case 'g':
2541 /* Anything goes unless it is a REG and really has a hard reg
2542 but the hard reg is not in the class GENERAL_REGS. */
2543 if (REG_P (op))
2545 if (strict < 0
2546 || GENERAL_REGS == ALL_REGS
2547 || (reload_in_progress
2548 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2549 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2550 win = 1;
2552 else if (strict < 0 || general_operand (op, mode))
2553 win = 1;
2554 break;
2556 case 'X':
2557 /* This is used for a MATCH_SCRATCH in the cases when
2558 we don't actually need anything. So anything goes
2559 any time. */
2560 win = 1;
2561 break;
2563 case TARGET_MEM_CONSTRAINT:
2564 /* Memory operands must be valid, to the extent
2565 required by STRICT. */
2566 if (MEM_P (op))
2568 if (strict > 0
2569 && !strict_memory_address_addr_space_p
2570 (GET_MODE (op), XEXP (op, 0),
2571 MEM_ADDR_SPACE (op)))
2572 break;
2573 if (strict == 0
2574 && !memory_address_addr_space_p
2575 (GET_MODE (op), XEXP (op, 0),
2576 MEM_ADDR_SPACE (op)))
2577 break;
2578 win = 1;
2580 /* Before reload, accept what reload can turn into mem. */
2581 else if (strict < 0 && CONSTANT_P (op))
2582 win = 1;
2583 /* During reload, accept a pseudo */
2584 else if (reload_in_progress && REG_P (op)
2585 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2586 win = 1;
2587 break;
2589 case '<':
2590 if (MEM_P (op)
2591 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2592 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2593 win = 1;
2594 break;
2596 case '>':
2597 if (MEM_P (op)
2598 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2599 || GET_CODE (XEXP (op, 0)) == POST_INC))
2600 win = 1;
2601 break;
2603 case 'E':
2604 case 'F':
2605 if (CONST_DOUBLE_AS_FLOAT_P (op)
2606 || (GET_CODE (op) == CONST_VECTOR
2607 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2608 win = 1;
2609 break;
2611 case 'G':
2612 case 'H':
2613 if (CONST_DOUBLE_AS_FLOAT_P (op)
2614 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2615 win = 1;
2616 break;
2618 case 's':
2619 if (CONST_SCALAR_INT_P (op))
2620 break;
2621 case 'i':
2622 if (CONSTANT_P (op))
2623 win = 1;
2624 break;
2626 case 'n':
2627 if (CONST_SCALAR_INT_P (op))
2628 win = 1;
2629 break;
2631 case 'I':
2632 case 'J':
2633 case 'K':
2634 case 'L':
2635 case 'M':
2636 case 'N':
2637 case 'O':
2638 case 'P':
2639 if (CONST_INT_P (op)
2640 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2641 win = 1;
2642 break;
2644 case 'V':
2645 if (MEM_P (op)
2646 && ((strict > 0 && ! offsettable_memref_p (op))
2647 || (strict < 0
2648 && !(CONSTANT_P (op) || MEM_P (op)))
2649 || (reload_in_progress
2650 && !(REG_P (op)
2651 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2652 win = 1;
2653 break;
2655 case 'o':
2656 if ((strict > 0 && offsettable_memref_p (op))
2657 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2658 /* Before reload, accept what reload can handle. */
2659 || (strict < 0
2660 && (CONSTANT_P (op) || MEM_P (op)))
2661 /* During reload, accept a pseudo */
2662 || (reload_in_progress && REG_P (op)
2663 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2664 win = 1;
2665 break;
2667 default:
2669 enum reg_class cl;
2671 cl = (c == 'r'
2672 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2673 if (cl != NO_REGS)
2675 if (strict < 0
2676 || (strict == 0
2677 && REG_P (op)
2678 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2679 || (strict == 0 && GET_CODE (op) == SCRATCH)
2680 || (REG_P (op)
2681 && reg_fits_class_p (op, cl, offset, mode)))
2682 win = 1;
2684 #ifdef EXTRA_CONSTRAINT_STR
2685 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2686 win = 1;
2688 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2689 /* Every memory operand can be reloaded to fit. */
2690 && ((strict < 0 && MEM_P (op))
2691 /* Before reload, accept what reload can turn
2692 into mem. */
2693 || (strict < 0 && CONSTANT_P (op))
2694 /* During reload, accept a pseudo */
2695 || (reload_in_progress && REG_P (op)
2696 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2697 win = 1;
2698 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2699 /* Every address operand can be reloaded to fit. */
2700 && strict < 0)
2701 win = 1;
2702 /* Cater to architectures like IA-64 that define extra memory
2703 constraints without using define_memory_constraint. */
2704 else if (reload_in_progress
2705 && REG_P (op)
2706 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2707 && reg_renumber[REGNO (op)] < 0
2708 && reg_equiv_mem (REGNO (op)) != 0
2709 && EXTRA_CONSTRAINT_STR
2710 (reg_equiv_mem (REGNO (op)), c, p))
2711 win = 1;
2712 #endif
2713 break;
2716 while (p += len, c);
2718 constraints[opno] = p;
2719 /* If this operand did not win somehow,
2720 this alternative loses. */
2721 if (! win)
2722 lose = 1;
2724 /* This alternative won; the operands are ok.
2725 Change whichever operands this alternative says to change. */
2726 if (! lose)
2728 int opno, eopno;
2730 /* See if any earlyclobber operand conflicts with some other
2731 operand. */
2733 if (strict > 0 && seen_earlyclobber_at >= 0)
2734 for (eopno = seen_earlyclobber_at;
2735 eopno < recog_data.n_operands;
2736 eopno++)
2737 /* Ignore earlyclobber operands now in memory,
2738 because we would often report failure when we have
2739 two memory operands, one of which was formerly a REG. */
2740 if (earlyclobber[eopno]
2741 && REG_P (recog_data.operand[eopno]))
2742 for (opno = 0; opno < recog_data.n_operands; opno++)
2743 if ((MEM_P (recog_data.operand[opno])
2744 || recog_data.operand_type[opno] != OP_OUT)
2745 && opno != eopno
2746 /* Ignore things like match_operator operands. */
2747 && *recog_data.constraints[opno] != 0
2748 && ! (matching_operands[opno] == eopno
2749 && operands_match_p (recog_data.operand[opno],
2750 recog_data.operand[eopno]))
2751 && ! safe_from_earlyclobber (recog_data.operand[opno],
2752 recog_data.operand[eopno]))
2753 lose = 1;
2755 if (! lose)
2757 while (--funny_match_index >= 0)
2759 recog_data.operand[funny_match[funny_match_index].other]
2760 = recog_data.operand[funny_match[funny_match_index].this_op];
2763 #ifdef AUTO_INC_DEC
2764 /* For operands without < or > constraints reject side-effects. */
2765 if (recog_data.is_asm)
2767 for (opno = 0; opno < recog_data.n_operands; opno++)
2768 if (MEM_P (recog_data.operand[opno]))
2769 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2771 case PRE_INC:
2772 case POST_INC:
2773 case PRE_DEC:
2774 case POST_DEC:
2775 case PRE_MODIFY:
2776 case POST_MODIFY:
2777 if (strchr (recog_data.constraints[opno], '<') == NULL
2778 && strchr (recog_data.constraints[opno], '>')
2779 == NULL)
2780 return 0;
2781 break;
2782 default:
2783 break;
2786 #endif
2787 return 1;
2791 which_alternative++;
2793 while (which_alternative < recog_data.n_alternatives);
2795 which_alternative = -1;
2796 /* If we are about to reject this, but we are not to test strictly,
2797 try a very loose test. Only return failure if it fails also. */
2798 if (strict == 0)
2799 return constrain_operands (-1);
2800 else
2801 return 0;
2804 /* Return true iff OPERAND (assumed to be a REG rtx)
2805 is a hard reg in class CLASS when its regno is offset by OFFSET
2806 and changed to mode MODE.
2807 If REG occupies multiple hard regs, all of them must be in CLASS. */
2809 bool
2810 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2811 enum machine_mode mode)
2813 unsigned int regno = REGNO (operand);
2815 if (cl == NO_REGS)
2816 return false;
2818 /* Regno must not be a pseudo register. Offset may be negative. */
2819 return (HARD_REGISTER_NUM_P (regno)
2820 && HARD_REGISTER_NUM_P (regno + offset)
2821 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2822 regno + offset));
2825 /* Split single instruction. Helper function for split_all_insns and
2826 split_all_insns_noflow. Return last insn in the sequence if successful,
2827 or NULL if unsuccessful. */
2829 static rtx
2830 split_insn (rtx insn)
2832 /* Split insns here to get max fine-grain parallelism. */
2833 rtx first = PREV_INSN (insn);
2834 rtx last = try_split (PATTERN (insn), insn, 1);
2835 rtx insn_set, last_set, note;
2837 if (last == insn)
2838 return NULL_RTX;
2840 /* If the original instruction was a single set that was known to be
2841 equivalent to a constant, see if we can say the same about the last
2842 instruction in the split sequence. The two instructions must set
2843 the same destination. */
2844 insn_set = single_set (insn);
2845 if (insn_set)
2847 last_set = single_set (last);
2848 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2850 note = find_reg_equal_equiv_note (insn);
2851 if (note && CONSTANT_P (XEXP (note, 0)))
2852 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2853 else if (CONSTANT_P (SET_SRC (insn_set)))
2854 set_unique_reg_note (last, REG_EQUAL,
2855 copy_rtx (SET_SRC (insn_set)));
2859 /* try_split returns the NOTE that INSN became. */
2860 SET_INSN_DELETED (insn);
2862 /* ??? Coddle to md files that generate subregs in post-reload
2863 splitters instead of computing the proper hard register. */
2864 if (reload_completed && first != last)
2866 first = NEXT_INSN (first);
2867 for (;;)
2869 if (INSN_P (first))
2870 cleanup_subreg_operands (first);
2871 if (first == last)
2872 break;
2873 first = NEXT_INSN (first);
2877 return last;
2880 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2882 void
2883 split_all_insns (void)
2885 sbitmap blocks;
2886 bool changed;
2887 basic_block bb;
2889 blocks = sbitmap_alloc (last_basic_block);
2890 bitmap_clear (blocks);
2891 changed = false;
2893 FOR_EACH_BB_REVERSE (bb)
2895 rtx insn, next;
2896 bool finish = false;
2898 rtl_profile_for_bb (bb);
2899 for (insn = BB_HEAD (bb); !finish ; insn = next)
2901 /* Can't use `next_real_insn' because that might go across
2902 CODE_LABELS and short-out basic blocks. */
2903 next = NEXT_INSN (insn);
2904 finish = (insn == BB_END (bb));
2905 if (INSN_P (insn))
2907 rtx set = single_set (insn);
2909 /* Don't split no-op move insns. These should silently
2910 disappear later in final. Splitting such insns would
2911 break the code that handles LIBCALL blocks. */
2912 if (set && set_noop_p (set))
2914 /* Nops get in the way while scheduling, so delete them
2915 now if register allocation has already been done. It
2916 is too risky to try to do this before register
2917 allocation, and there are unlikely to be very many
2918 nops then anyways. */
2919 if (reload_completed)
2920 delete_insn_and_edges (insn);
2922 else
2924 if (split_insn (insn))
2926 bitmap_set_bit (blocks, bb->index);
2927 changed = true;
2934 default_rtl_profile ();
2935 if (changed)
2936 find_many_sub_basic_blocks (blocks);
2938 #ifdef ENABLE_CHECKING
2939 verify_flow_info ();
2940 #endif
2942 sbitmap_free (blocks);
2945 /* Same as split_all_insns, but do not expect CFG to be available.
2946 Used by machine dependent reorg passes. */
2948 unsigned int
2949 split_all_insns_noflow (void)
2951 rtx next, insn;
2953 for (insn = get_insns (); insn; insn = next)
2955 next = NEXT_INSN (insn);
2956 if (INSN_P (insn))
2958 /* Don't split no-op move insns. These should silently
2959 disappear later in final. Splitting such insns would
2960 break the code that handles LIBCALL blocks. */
2961 rtx set = single_set (insn);
2962 if (set && set_noop_p (set))
2964 /* Nops get in the way while scheduling, so delete them
2965 now if register allocation has already been done. It
2966 is too risky to try to do this before register
2967 allocation, and there are unlikely to be very many
2968 nops then anyways.
2970 ??? Should we use delete_insn when the CFG isn't valid? */
2971 if (reload_completed)
2972 delete_insn_and_edges (insn);
2974 else
2975 split_insn (insn);
2978 return 0;
2981 #ifdef HAVE_peephole2
2982 struct peep2_insn_data
2984 rtx insn;
2985 regset live_before;
2988 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2989 static int peep2_current;
2991 static bool peep2_do_rebuild_jump_labels;
2992 static bool peep2_do_cleanup_cfg;
2994 /* The number of instructions available to match a peep2. */
2995 int peep2_current_count;
2997 /* A non-insn marker indicating the last insn of the block.
2998 The live_before regset for this element is correct, indicating
2999 DF_LIVE_OUT for the block. */
3000 #define PEEP2_EOB pc_rtx
3002 /* Wrap N to fit into the peep2_insn_data buffer. */
3004 static int
3005 peep2_buf_position (int n)
3007 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3008 n -= MAX_INSNS_PER_PEEP2 + 1;
3009 return n;
3012 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3013 does not exist. Used by the recognizer to find the next insn to match
3014 in a multi-insn pattern. */
3017 peep2_next_insn (int n)
3019 gcc_assert (n <= peep2_current_count);
3021 n = peep2_buf_position (peep2_current + n);
3023 return peep2_insn_data[n].insn;
3026 /* Return true if REGNO is dead before the Nth non-note insn
3027 after `current'. */
3030 peep2_regno_dead_p (int ofs, int regno)
3032 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3034 ofs = peep2_buf_position (peep2_current + ofs);
3036 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3038 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3041 /* Similarly for a REG. */
3044 peep2_reg_dead_p (int ofs, rtx reg)
3046 int regno, n;
3048 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3050 ofs = peep2_buf_position (peep2_current + ofs);
3052 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3054 regno = REGNO (reg);
3055 n = hard_regno_nregs[regno][GET_MODE (reg)];
3056 while (--n >= 0)
3057 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3058 return 0;
3059 return 1;
3062 /* Try to find a hard register of mode MODE, matching the register class in
3063 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3064 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3065 in which case the only condition is that the register must be available
3066 before CURRENT_INSN.
3067 Registers that already have bits set in REG_SET will not be considered.
3069 If an appropriate register is available, it will be returned and the
3070 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3071 returned. */
3074 peep2_find_free_register (int from, int to, const char *class_str,
3075 enum machine_mode mode, HARD_REG_SET *reg_set)
3077 static int search_ofs;
3078 enum reg_class cl;
3079 HARD_REG_SET live;
3080 df_ref *def_rec;
3081 int i;
3083 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3084 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3086 from = peep2_buf_position (peep2_current + from);
3087 to = peep2_buf_position (peep2_current + to);
3089 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3090 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3092 while (from != to)
3094 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3096 /* Don't use registers set or clobbered by the insn. */
3097 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3098 *def_rec; def_rec++)
3099 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3101 from = peep2_buf_position (from + 1);
3104 cl = (class_str[0] == 'r' ? GENERAL_REGS
3105 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3109 int raw_regno, regno, success, j;
3111 /* Distribute the free registers as much as possible. */
3112 raw_regno = search_ofs + i;
3113 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3114 raw_regno -= FIRST_PSEUDO_REGISTER;
3115 #ifdef REG_ALLOC_ORDER
3116 regno = reg_alloc_order[raw_regno];
3117 #else
3118 regno = raw_regno;
3119 #endif
3121 /* Don't allocate fixed registers. */
3122 if (fixed_regs[regno])
3123 continue;
3124 /* Don't allocate global registers. */
3125 if (global_regs[regno])
3126 continue;
3127 /* Make sure the register is of the right class. */
3128 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3129 continue;
3130 /* And can support the mode we need. */
3131 if (! HARD_REGNO_MODE_OK (regno, mode))
3132 continue;
3133 /* And that we don't create an extra save/restore. */
3134 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3135 continue;
3136 if (! targetm.hard_regno_scratch_ok (regno))
3137 continue;
3139 /* And we don't clobber traceback for noreturn functions. */
3140 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3141 && (! reload_completed || frame_pointer_needed))
3142 continue;
3144 success = 1;
3145 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3147 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3148 || TEST_HARD_REG_BIT (live, regno + j))
3150 success = 0;
3151 break;
3154 if (success)
3156 add_to_hard_reg_set (reg_set, mode, regno);
3158 /* Start the next search with the next register. */
3159 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3160 raw_regno = 0;
3161 search_ofs = raw_regno;
3163 return gen_rtx_REG (mode, regno);
3167 search_ofs = 0;
3168 return NULL_RTX;
3171 /* Forget all currently tracked instructions, only remember current
3172 LIVE regset. */
3174 static void
3175 peep2_reinit_state (regset live)
3177 int i;
3179 /* Indicate that all slots except the last holds invalid data. */
3180 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3181 peep2_insn_data[i].insn = NULL_RTX;
3182 peep2_current_count = 0;
3184 /* Indicate that the last slot contains live_after data. */
3185 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3186 peep2_current = MAX_INSNS_PER_PEEP2;
3188 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3191 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3192 starting at INSN. Perform the replacement, removing the old insns and
3193 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3194 if the replacement is rejected. */
3196 static rtx
3197 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3199 int i;
3200 rtx last, eh_note, as_note, before_try, x;
3201 rtx old_insn, new_insn;
3202 bool was_call = false;
3204 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3205 match more than one insn, or to be split into more than one insn. */
3206 old_insn = peep2_insn_data[peep2_current].insn;
3207 if (RTX_FRAME_RELATED_P (old_insn))
3209 bool any_note = false;
3210 rtx note;
3212 if (match_len != 0)
3213 return NULL;
3215 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3216 may be in the stream for the purpose of register allocation. */
3217 if (active_insn_p (attempt))
3218 new_insn = attempt;
3219 else
3220 new_insn = next_active_insn (attempt);
3221 if (next_active_insn (new_insn))
3222 return NULL;
3224 /* We have a 1-1 replacement. Copy over any frame-related info. */
3225 RTX_FRAME_RELATED_P (new_insn) = 1;
3227 /* Allow the backend to fill in a note during the split. */
3228 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3229 switch (REG_NOTE_KIND (note))
3231 case REG_FRAME_RELATED_EXPR:
3232 case REG_CFA_DEF_CFA:
3233 case REG_CFA_ADJUST_CFA:
3234 case REG_CFA_OFFSET:
3235 case REG_CFA_REGISTER:
3236 case REG_CFA_EXPRESSION:
3237 case REG_CFA_RESTORE:
3238 case REG_CFA_SET_VDRAP:
3239 any_note = true;
3240 break;
3241 default:
3242 break;
3245 /* If the backend didn't supply a note, copy one over. */
3246 if (!any_note)
3247 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3248 switch (REG_NOTE_KIND (note))
3250 case REG_FRAME_RELATED_EXPR:
3251 case REG_CFA_DEF_CFA:
3252 case REG_CFA_ADJUST_CFA:
3253 case REG_CFA_OFFSET:
3254 case REG_CFA_REGISTER:
3255 case REG_CFA_EXPRESSION:
3256 case REG_CFA_RESTORE:
3257 case REG_CFA_SET_VDRAP:
3258 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3259 any_note = true;
3260 break;
3261 default:
3262 break;
3265 /* If there still isn't a note, make sure the unwind info sees the
3266 same expression as before the split. */
3267 if (!any_note)
3269 rtx old_set, new_set;
3271 /* The old insn had better have been simple, or annotated. */
3272 old_set = single_set (old_insn);
3273 gcc_assert (old_set != NULL);
3275 new_set = single_set (new_insn);
3276 if (!new_set || !rtx_equal_p (new_set, old_set))
3277 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3280 /* Copy prologue/epilogue status. This is required in order to keep
3281 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3282 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3285 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3286 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3287 cfg-related call notes. */
3288 for (i = 0; i <= match_len; ++i)
3290 int j;
3291 rtx note;
3293 j = peep2_buf_position (peep2_current + i);
3294 old_insn = peep2_insn_data[j].insn;
3295 if (!CALL_P (old_insn))
3296 continue;
3297 was_call = true;
3299 new_insn = attempt;
3300 while (new_insn != NULL_RTX)
3302 if (CALL_P (new_insn))
3303 break;
3304 new_insn = NEXT_INSN (new_insn);
3307 gcc_assert (new_insn != NULL_RTX);
3309 CALL_INSN_FUNCTION_USAGE (new_insn)
3310 = CALL_INSN_FUNCTION_USAGE (old_insn);
3312 for (note = REG_NOTES (old_insn);
3313 note;
3314 note = XEXP (note, 1))
3315 switch (REG_NOTE_KIND (note))
3317 case REG_NORETURN:
3318 case REG_SETJMP:
3319 case REG_TM:
3320 add_reg_note (new_insn, REG_NOTE_KIND (note),
3321 XEXP (note, 0));
3322 break;
3323 default:
3324 /* Discard all other reg notes. */
3325 break;
3328 /* Croak if there is another call in the sequence. */
3329 while (++i <= match_len)
3331 j = peep2_buf_position (peep2_current + i);
3332 old_insn = peep2_insn_data[j].insn;
3333 gcc_assert (!CALL_P (old_insn));
3335 break;
3338 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3339 move those notes over to the new sequence. */
3340 as_note = NULL;
3341 for (i = match_len; i >= 0; --i)
3343 int j = peep2_buf_position (peep2_current + i);
3344 old_insn = peep2_insn_data[j].insn;
3346 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3347 if (as_note)
3348 break;
3351 i = peep2_buf_position (peep2_current + match_len);
3352 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3354 /* Replace the old sequence with the new. */
3355 last = emit_insn_after_setloc (attempt,
3356 peep2_insn_data[i].insn,
3357 INSN_LOCATION (peep2_insn_data[i].insn));
3358 before_try = PREV_INSN (insn);
3359 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3361 /* Re-insert the EH_REGION notes. */
3362 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3364 edge eh_edge;
3365 edge_iterator ei;
3367 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3368 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3369 break;
3371 if (eh_note)
3372 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3374 if (eh_edge)
3375 for (x = last; x != before_try; x = PREV_INSN (x))
3376 if (x != BB_END (bb)
3377 && (can_throw_internal (x)
3378 || can_nonlocal_goto (x)))
3380 edge nfte, nehe;
3381 int flags;
3383 nfte = split_block (bb, x);
3384 flags = (eh_edge->flags
3385 & (EDGE_EH | EDGE_ABNORMAL));
3386 if (CALL_P (x))
3387 flags |= EDGE_ABNORMAL_CALL;
3388 nehe = make_edge (nfte->src, eh_edge->dest,
3389 flags);
3391 nehe->probability = eh_edge->probability;
3392 nfte->probability
3393 = REG_BR_PROB_BASE - nehe->probability;
3395 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3396 bb = nfte->src;
3397 eh_edge = nehe;
3400 /* Converting possibly trapping insn to non-trapping is
3401 possible. Zap dummy outgoing edges. */
3402 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3405 /* Re-insert the ARGS_SIZE notes. */
3406 if (as_note)
3407 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3409 /* If we generated a jump instruction, it won't have
3410 JUMP_LABEL set. Recompute after we're done. */
3411 for (x = last; x != before_try; x = PREV_INSN (x))
3412 if (JUMP_P (x))
3414 peep2_do_rebuild_jump_labels = true;
3415 break;
3418 return last;
3421 /* After performing a replacement in basic block BB, fix up the life
3422 information in our buffer. LAST is the last of the insns that we
3423 emitted as a replacement. PREV is the insn before the start of
3424 the replacement. MATCH_LEN is the number of instructions that were
3425 matched, and which now need to be replaced in the buffer. */
3427 static void
3428 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3430 int i = peep2_buf_position (peep2_current + match_len + 1);
3431 rtx x;
3432 regset_head live;
3434 INIT_REG_SET (&live);
3435 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3437 gcc_assert (peep2_current_count >= match_len + 1);
3438 peep2_current_count -= match_len + 1;
3440 x = last;
3443 if (INSN_P (x))
3445 df_insn_rescan (x);
3446 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3448 peep2_current_count++;
3449 if (--i < 0)
3450 i = MAX_INSNS_PER_PEEP2;
3451 peep2_insn_data[i].insn = x;
3452 df_simulate_one_insn_backwards (bb, x, &live);
3453 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3456 x = PREV_INSN (x);
3458 while (x != prev);
3459 CLEAR_REG_SET (&live);
3461 peep2_current = i;
3464 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3465 Return true if we added it, false otherwise. The caller will try to match
3466 peepholes against the buffer if we return false; otherwise it will try to
3467 add more instructions to the buffer. */
3469 static bool
3470 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3472 int pos;
3474 /* Once we have filled the maximum number of insns the buffer can hold,
3475 allow the caller to match the insns against peepholes. We wait until
3476 the buffer is full in case the target has similar peepholes of different
3477 length; we always want to match the longest if possible. */
3478 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3479 return false;
3481 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3482 any other pattern, lest it change the semantics of the frame info. */
3483 if (RTX_FRAME_RELATED_P (insn))
3485 /* Let the buffer drain first. */
3486 if (peep2_current_count > 0)
3487 return false;
3488 /* Now the insn will be the only thing in the buffer. */
3491 pos = peep2_buf_position (peep2_current + peep2_current_count);
3492 peep2_insn_data[pos].insn = insn;
3493 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3494 peep2_current_count++;
3496 df_simulate_one_insn_forwards (bb, insn, live);
3497 return true;
3500 /* Perform the peephole2 optimization pass. */
3502 static void
3503 peephole2_optimize (void)
3505 rtx insn;
3506 bitmap live;
3507 int i;
3508 basic_block bb;
3510 peep2_do_cleanup_cfg = false;
3511 peep2_do_rebuild_jump_labels = false;
3513 df_set_flags (DF_LR_RUN_DCE);
3514 df_note_add_problem ();
3515 df_analyze ();
3517 /* Initialize the regsets we're going to use. */
3518 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3519 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3520 live = BITMAP_ALLOC (&reg_obstack);
3522 FOR_EACH_BB_REVERSE (bb)
3524 bool past_end = false;
3525 int pos;
3527 rtl_profile_for_bb (bb);
3529 /* Start up propagation. */
3530 bitmap_copy (live, DF_LR_IN (bb));
3531 df_simulate_initialize_forwards (bb, live);
3532 peep2_reinit_state (live);
3534 insn = BB_HEAD (bb);
3535 for (;;)
3537 rtx attempt, head;
3538 int match_len;
3540 if (!past_end && !NONDEBUG_INSN_P (insn))
3542 next_insn:
3543 insn = NEXT_INSN (insn);
3544 if (insn == NEXT_INSN (BB_END (bb)))
3545 past_end = true;
3546 continue;
3548 if (!past_end && peep2_fill_buffer (bb, insn, live))
3549 goto next_insn;
3551 /* If we did not fill an empty buffer, it signals the end of the
3552 block. */
3553 if (peep2_current_count == 0)
3554 break;
3556 /* The buffer filled to the current maximum, so try to match. */
3558 pos = peep2_buf_position (peep2_current + peep2_current_count);
3559 peep2_insn_data[pos].insn = PEEP2_EOB;
3560 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3562 /* Match the peephole. */
3563 head = peep2_insn_data[peep2_current].insn;
3564 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3565 if (attempt != NULL)
3567 rtx last = peep2_attempt (bb, head, match_len, attempt);
3568 if (last)
3570 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3571 continue;
3575 /* No match: advance the buffer by one insn. */
3576 peep2_current = peep2_buf_position (peep2_current + 1);
3577 peep2_current_count--;
3581 default_rtl_profile ();
3582 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3583 BITMAP_FREE (peep2_insn_data[i].live_before);
3584 BITMAP_FREE (live);
3585 if (peep2_do_rebuild_jump_labels)
3586 rebuild_jump_labels (get_insns ());
3588 #endif /* HAVE_peephole2 */
3590 /* Common predicates for use with define_bypass. */
3592 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3593 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3594 must be either a single_set or a PARALLEL with SETs inside. */
3597 store_data_bypass_p (rtx out_insn, rtx in_insn)
3599 rtx out_set, in_set;
3600 rtx out_pat, in_pat;
3601 rtx out_exp, in_exp;
3602 int i, j;
3604 in_set = single_set (in_insn);
3605 if (in_set)
3607 if (!MEM_P (SET_DEST (in_set)))
3608 return false;
3610 out_set = single_set (out_insn);
3611 if (out_set)
3613 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3614 return false;
3616 else
3618 out_pat = PATTERN (out_insn);
3620 if (GET_CODE (out_pat) != PARALLEL)
3621 return false;
3623 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3625 out_exp = XVECEXP (out_pat, 0, i);
3627 if (GET_CODE (out_exp) == CLOBBER)
3628 continue;
3630 gcc_assert (GET_CODE (out_exp) == SET);
3632 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3633 return false;
3637 else
3639 in_pat = PATTERN (in_insn);
3640 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3642 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3644 in_exp = XVECEXP (in_pat, 0, i);
3646 if (GET_CODE (in_exp) == CLOBBER)
3647 continue;
3649 gcc_assert (GET_CODE (in_exp) == SET);
3651 if (!MEM_P (SET_DEST (in_exp)))
3652 return false;
3654 out_set = single_set (out_insn);
3655 if (out_set)
3657 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3658 return false;
3660 else
3662 out_pat = PATTERN (out_insn);
3663 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3665 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3667 out_exp = XVECEXP (out_pat, 0, j);
3669 if (GET_CODE (out_exp) == CLOBBER)
3670 continue;
3672 gcc_assert (GET_CODE (out_exp) == SET);
3674 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3675 return false;
3681 return true;
3684 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3685 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3686 or multiple set; IN_INSN should be single_set for truth, but for convenience
3687 of insn categorization may be any JUMP or CALL insn. */
3690 if_test_bypass_p (rtx out_insn, rtx in_insn)
3692 rtx out_set, in_set;
3694 in_set = single_set (in_insn);
3695 if (! in_set)
3697 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3698 return false;
3701 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3702 return false;
3703 in_set = SET_SRC (in_set);
3705 out_set = single_set (out_insn);
3706 if (out_set)
3708 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3709 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3710 return false;
3712 else
3714 rtx out_pat;
3715 int i;
3717 out_pat = PATTERN (out_insn);
3718 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3720 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3722 rtx exp = XVECEXP (out_pat, 0, i);
3724 if (GET_CODE (exp) == CLOBBER)
3725 continue;
3727 gcc_assert (GET_CODE (exp) == SET);
3729 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3730 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3731 return false;
3735 return true;
3738 static bool
3739 gate_handle_peephole2 (void)
3741 return (optimize > 0 && flag_peephole2);
3744 static unsigned int
3745 rest_of_handle_peephole2 (void)
3747 #ifdef HAVE_peephole2
3748 peephole2_optimize ();
3749 #endif
3750 return 0;
3753 struct rtl_opt_pass pass_peephole2 =
3756 RTL_PASS,
3757 "peephole2", /* name */
3758 OPTGROUP_NONE, /* optinfo_flags */
3759 gate_handle_peephole2, /* gate */
3760 rest_of_handle_peephole2, /* execute */
3761 NULL, /* sub */
3762 NULL, /* next */
3763 0, /* static_pass_number */
3764 TV_PEEPHOLE2, /* tv_id */
3765 0, /* properties_required */
3766 0, /* properties_provided */
3767 0, /* properties_destroyed */
3768 0, /* todo_flags_start */
3769 TODO_df_finish | TODO_verify_rtl_sharing |
3770 0 /* todo_flags_finish */
3774 static unsigned int
3775 rest_of_handle_split_all_insns (void)
3777 split_all_insns ();
3778 return 0;
3781 struct rtl_opt_pass pass_split_all_insns =
3784 RTL_PASS,
3785 "split1", /* name */
3786 OPTGROUP_NONE, /* optinfo_flags */
3787 NULL, /* gate */
3788 rest_of_handle_split_all_insns, /* execute */
3789 NULL, /* sub */
3790 NULL, /* next */
3791 0, /* static_pass_number */
3792 TV_NONE, /* tv_id */
3793 0, /* properties_required */
3794 0, /* properties_provided */
3795 0, /* properties_destroyed */
3796 0, /* todo_flags_start */
3797 0 /* todo_flags_finish */
3801 static unsigned int
3802 rest_of_handle_split_after_reload (void)
3804 /* If optimizing, then go ahead and split insns now. */
3805 #ifndef STACK_REGS
3806 if (optimize > 0)
3807 #endif
3808 split_all_insns ();
3809 return 0;
3812 struct rtl_opt_pass pass_split_after_reload =
3815 RTL_PASS,
3816 "split2", /* name */
3817 OPTGROUP_NONE, /* optinfo_flags */
3818 NULL, /* gate */
3819 rest_of_handle_split_after_reload, /* execute */
3820 NULL, /* sub */
3821 NULL, /* next */
3822 0, /* static_pass_number */
3823 TV_NONE, /* tv_id */
3824 0, /* properties_required */
3825 0, /* properties_provided */
3826 0, /* properties_destroyed */
3827 0, /* todo_flags_start */
3828 0 /* todo_flags_finish */
3832 static bool
3833 gate_handle_split_before_regstack (void)
3835 #if HAVE_ATTR_length && defined (STACK_REGS)
3836 /* If flow2 creates new instructions which need splitting
3837 and scheduling after reload is not done, they might not be
3838 split until final which doesn't allow splitting
3839 if HAVE_ATTR_length. */
3840 # ifdef INSN_SCHEDULING
3841 return (optimize && !flag_schedule_insns_after_reload);
3842 # else
3843 return (optimize);
3844 # endif
3845 #else
3846 return 0;
3847 #endif
3850 static unsigned int
3851 rest_of_handle_split_before_regstack (void)
3853 split_all_insns ();
3854 return 0;
3857 struct rtl_opt_pass pass_split_before_regstack =
3860 RTL_PASS,
3861 "split3", /* name */
3862 OPTGROUP_NONE, /* optinfo_flags */
3863 gate_handle_split_before_regstack, /* gate */
3864 rest_of_handle_split_before_regstack, /* execute */
3865 NULL, /* sub */
3866 NULL, /* next */
3867 0, /* static_pass_number */
3868 TV_NONE, /* tv_id */
3869 0, /* properties_required */
3870 0, /* properties_provided */
3871 0, /* properties_destroyed */
3872 0, /* todo_flags_start */
3873 0 /* todo_flags_finish */
3877 static bool
3878 gate_handle_split_before_sched2 (void)
3880 #ifdef INSN_SCHEDULING
3881 return optimize > 0 && flag_schedule_insns_after_reload;
3882 #else
3883 return 0;
3884 #endif
3887 static unsigned int
3888 rest_of_handle_split_before_sched2 (void)
3890 #ifdef INSN_SCHEDULING
3891 split_all_insns ();
3892 #endif
3893 return 0;
3896 struct rtl_opt_pass pass_split_before_sched2 =
3899 RTL_PASS,
3900 "split4", /* name */
3901 OPTGROUP_NONE, /* optinfo_flags */
3902 gate_handle_split_before_sched2, /* gate */
3903 rest_of_handle_split_before_sched2, /* execute */
3904 NULL, /* sub */
3905 NULL, /* next */
3906 0, /* static_pass_number */
3907 TV_NONE, /* tv_id */
3908 0, /* properties_required */
3909 0, /* properties_provided */
3910 0, /* properties_destroyed */
3911 0, /* todo_flags_start */
3912 TODO_verify_flow /* todo_flags_finish */
3916 /* The placement of the splitting that we do for shorten_branches
3917 depends on whether regstack is used by the target or not. */
3918 static bool
3919 gate_do_final_split (void)
3921 #if HAVE_ATTR_length && !defined (STACK_REGS)
3922 return 1;
3923 #else
3924 return 0;
3925 #endif
3928 struct rtl_opt_pass pass_split_for_shorten_branches =
3931 RTL_PASS,
3932 "split5", /* name */
3933 OPTGROUP_NONE, /* optinfo_flags */
3934 gate_do_final_split, /* gate */
3935 split_all_insns_noflow, /* execute */
3936 NULL, /* sub */
3937 NULL, /* next */
3938 0, /* static_pass_number */
3939 TV_NONE, /* tv_id */
3940 0, /* properties_required */
3941 0, /* properties_provided */
3942 0, /* properties_destroyed */
3943 0, /* todo_flags_start */
3944 TODO_verify_rtl_sharing /* todo_flags_finish */