2012-11-28 Oleg Raikhman <oleg@adapteva.com>
[official-gcc.git] / gcc / ipa-inline.c
blob501358828c56db876be9f35fc590a51e2163c4a9
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
30 on).
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
35 inlining.
37 inlining heuristics
39 The inliner itself is split into two passes:
41 pass_early_inlining
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
56 flattening.
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
61 optimizers.
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
69 pass_ipa_inline
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "tree.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
100 #include "flags.h"
101 #include "cgraph.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "params.h"
105 #include "fibheap.h"
106 #include "intl.h"
107 #include "tree-pass.h"
108 #include "coverage.h"
109 #include "ggc.h"
110 #include "rtl.h"
111 #include "tree-flow.h"
112 #include "ipa-prop.h"
113 #include "except.h"
114 #include "target.h"
115 #include "ipa-inline.h"
116 #include "ipa-utils.h"
118 /* Statistics we collect about inlining algorithm. */
119 static int overall_size;
120 static gcov_type max_count;
122 /* Return false when inlining edge E would lead to violating
123 limits on function unit growth or stack usage growth.
125 The relative function body growth limit is present generally
126 to avoid problems with non-linear behavior of the compiler.
127 To allow inlining huge functions into tiny wrapper, the limit
128 is always based on the bigger of the two functions considered.
130 For stack growth limits we always base the growth in stack usage
131 of the callers. We want to prevent applications from segfaulting
132 on stack overflow when functions with huge stack frames gets
133 inlined. */
135 static bool
136 caller_growth_limits (struct cgraph_edge *e)
138 struct cgraph_node *to = e->caller;
139 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
140 int newsize;
141 int limit = 0;
142 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
143 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
145 /* Look for function e->caller is inlined to. While doing
146 so work out the largest function body on the way. As
147 described above, we want to base our function growth
148 limits based on that. Not on the self size of the
149 outer function, not on the self size of inline code
150 we immediately inline to. This is the most relaxed
151 interpretation of the rule "do not grow large functions
152 too much in order to prevent compiler from exploding". */
153 while (true)
155 info = inline_summary (to);
156 if (limit < info->self_size)
157 limit = info->self_size;
158 if (stack_size_limit < info->estimated_self_stack_size)
159 stack_size_limit = info->estimated_self_stack_size;
160 if (to->global.inlined_to)
161 to = to->callers->caller;
162 else
163 break;
166 what_info = inline_summary (what);
168 if (limit < what_info->self_size)
169 limit = what_info->self_size;
171 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
173 /* Check the size after inlining against the function limits. But allow
174 the function to shrink if it went over the limits by forced inlining. */
175 newsize = estimate_size_after_inlining (to, e);
176 if (newsize >= info->size
177 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
178 && newsize > limit)
180 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
181 return false;
184 if (!what_info->estimated_stack_size)
185 return true;
187 /* FIXME: Stack size limit often prevents inlining in Fortran programs
188 due to large i/o datastructures used by the Fortran front-end.
189 We ought to ignore this limit when we know that the edge is executed
190 on every invocation of the caller (i.e. its call statement dominates
191 exit block). We do not track this information, yet. */
192 stack_size_limit += ((gcov_type)stack_size_limit
193 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
195 inlined_stack = (outer_info->stack_frame_offset
196 + outer_info->estimated_self_stack_size
197 + what_info->estimated_stack_size);
198 /* Check new stack consumption with stack consumption at the place
199 stack is used. */
200 if (inlined_stack > stack_size_limit
201 /* If function already has large stack usage from sibling
202 inline call, we can inline, too.
203 This bit overoptimistically assume that we are good at stack
204 packing. */
205 && inlined_stack > info->estimated_stack_size
206 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
208 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
209 return false;
211 return true;
214 /* Dump info about why inlining has failed. */
216 static void
217 report_inline_failed_reason (struct cgraph_edge *e)
219 if (dump_file)
221 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
222 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
223 xstrdup (cgraph_node_name (e->callee)), e->callee->uid,
224 cgraph_inline_failed_string (e->inline_failed));
228 /* Decide if we can inline the edge and possibly update
229 inline_failed reason.
230 We check whether inlining is possible at all and whether
231 caller growth limits allow doing so.
233 if REPORT is true, output reason to the dump file. */
235 static bool
236 can_inline_edge_p (struct cgraph_edge *e, bool report)
238 bool inlinable = true;
239 enum availability avail;
240 struct cgraph_node *callee
241 = cgraph_function_or_thunk_node (e->callee, &avail);
242 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->symbol.decl);
243 tree callee_tree
244 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->symbol.decl) : NULL;
245 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->symbol.decl);
246 struct function *callee_cfun
247 = callee ? DECL_STRUCT_FUNCTION (callee->symbol.decl) : NULL;
249 if (!caller_cfun && e->caller->clone_of)
250 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->symbol.decl);
252 if (!callee_cfun && callee && callee->clone_of)
253 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->symbol.decl);
255 gcc_assert (e->inline_failed);
257 if (!callee || !callee->analyzed)
259 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
260 inlinable = false;
262 else if (!inline_summary (callee)->inlinable)
264 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
265 inlinable = false;
267 else if (avail <= AVAIL_OVERWRITABLE)
269 e->inline_failed = CIF_OVERWRITABLE;
270 return false;
272 else if (e->call_stmt_cannot_inline_p)
274 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
275 inlinable = false;
277 /* Don't inline if the functions have different EH personalities. */
278 else if (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
279 && DECL_FUNCTION_PERSONALITY (callee->symbol.decl)
280 && (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
281 != DECL_FUNCTION_PERSONALITY (callee->symbol.decl)))
283 e->inline_failed = CIF_EH_PERSONALITY;
284 inlinable = false;
286 /* TM pure functions should not be inlined into non-TM_pure
287 functions. */
288 else if (is_tm_pure (callee->symbol.decl)
289 && !is_tm_pure (e->caller->symbol.decl))
291 e->inline_failed = CIF_UNSPECIFIED;
292 inlinable = false;
294 /* Don't inline if the callee can throw non-call exceptions but the
295 caller cannot.
296 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
297 Move the flag into cgraph node or mirror it in the inline summary. */
298 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
299 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
301 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
302 inlinable = false;
304 /* Check compatibility of target optimization options. */
305 else if (!targetm.target_option.can_inline_p (e->caller->symbol.decl,
306 callee->symbol.decl))
308 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
309 inlinable = false;
311 /* Check if caller growth allows the inlining. */
312 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)
313 && !lookup_attribute ("flatten",
314 DECL_ATTRIBUTES
315 (e->caller->global.inlined_to
316 ? e->caller->global.inlined_to->symbol.decl
317 : e->caller->symbol.decl))
318 && !caller_growth_limits (e))
319 inlinable = false;
320 /* Don't inline a function with a higher optimization level than the
321 caller. FIXME: this is really just tip of iceberg of handling
322 optimization attribute. */
323 else if (caller_tree != callee_tree)
325 struct cl_optimization *caller_opt
326 = TREE_OPTIMIZATION ((caller_tree)
327 ? caller_tree
328 : optimization_default_node);
330 struct cl_optimization *callee_opt
331 = TREE_OPTIMIZATION ((callee_tree)
332 ? callee_tree
333 : optimization_default_node);
335 if (((caller_opt->x_optimize > callee_opt->x_optimize)
336 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
337 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
338 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->symbol.decl))
340 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
341 inlinable = false;
345 if (!inlinable && report)
346 report_inline_failed_reason (e);
347 return inlinable;
351 /* Return true if the edge E is inlinable during early inlining. */
353 static bool
354 can_early_inline_edge_p (struct cgraph_edge *e)
356 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
357 NULL);
358 /* Early inliner might get called at WPA stage when IPA pass adds new
359 function. In this case we can not really do any of early inlining
360 because function bodies are missing. */
361 if (!gimple_has_body_p (callee->symbol.decl))
363 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
364 return false;
366 /* In early inliner some of callees may not be in SSA form yet
367 (i.e. the callgraph is cyclic and we did not process
368 the callee by early inliner, yet). We don't have CIF code for this
369 case; later we will re-do the decision in the real inliner. */
370 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->symbol.decl))
371 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
373 if (dump_file)
374 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
375 return false;
377 if (!can_inline_edge_p (e, true))
378 return false;
379 return true;
383 /* Return number of calls in N. Ignore cheap builtins. */
385 static int
386 num_calls (struct cgraph_node *n)
388 struct cgraph_edge *e;
389 int num = 0;
391 for (e = n->callees; e; e = e->next_callee)
392 if (!is_inexpensive_builtin (e->callee->symbol.decl))
393 num++;
394 return num;
398 /* Return true if we are interested in inlining small function. */
400 static bool
401 want_early_inline_function_p (struct cgraph_edge *e)
403 bool want_inline = true;
404 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
406 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
408 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
409 && !flag_inline_small_functions)
411 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
412 report_inline_failed_reason (e);
413 want_inline = false;
415 else
417 int growth = estimate_edge_growth (e);
418 int n;
420 if (growth <= 0)
422 else if (!cgraph_maybe_hot_edge_p (e)
423 && growth > 0)
425 if (dump_file)
426 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
427 "call is cold and code would grow by %i\n",
428 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
429 xstrdup (cgraph_node_name (callee)), callee->uid,
430 growth);
431 want_inline = false;
433 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
435 if (dump_file)
436 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
437 "growth %i exceeds --param early-inlining-insns\n",
438 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
439 xstrdup (cgraph_node_name (callee)), callee->uid,
440 growth);
441 want_inline = false;
443 else if ((n = num_calls (callee)) != 0
444 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
446 if (dump_file)
447 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
448 "growth %i exceeds --param early-inlining-insns "
449 "divided by number of calls\n",
450 xstrdup (cgraph_node_name (e->caller)), e->caller->uid,
451 xstrdup (cgraph_node_name (callee)), callee->uid,
452 growth);
453 want_inline = false;
456 return want_inline;
459 /* Compute time of the edge->caller + edge->callee execution when inlining
460 does not happen. */
462 inline gcov_type
463 compute_uninlined_call_time (struct inline_summary *callee_info,
464 struct cgraph_edge *edge)
466 gcov_type uninlined_call_time =
467 RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1),
468 CGRAPH_FREQ_BASE);
469 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
470 ? edge->caller->global.inlined_to
471 : edge->caller)->time;
472 return uninlined_call_time + caller_time;
475 /* Same as compute_uinlined_call_time but compute time when inlining
476 does happen. */
478 inline gcov_type
479 compute_inlined_call_time (struct cgraph_edge *edge,
480 int edge_time)
482 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
483 ? edge->caller->global.inlined_to
484 : edge->caller)->time;
485 gcov_type time = (caller_time
486 + RDIV (((gcov_type) edge_time
487 - inline_edge_summary (edge)->call_stmt_time)
488 * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE));
489 /* Possible one roundoff error, but watch for overflows. */
490 gcc_checking_assert (time >= INT_MIN / 2);
491 if (time < 0)
492 time = 0;
493 return time;
496 /* Return true if the speedup for inlining E is bigger than
497 PARAM_MAX_INLINE_MIN_SPEEDUP. */
499 static bool
500 big_speedup_p (struct cgraph_edge *e)
502 gcov_type time = compute_uninlined_call_time (inline_summary (e->callee),
504 gcov_type inlined_time = compute_inlined_call_time (e,
505 estimate_edge_time (e));
506 if (time - inlined_time
507 > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100))
508 return true;
509 return false;
512 /* Return true if we are interested in inlining small function.
513 When REPORT is true, report reason to dump file. */
515 static bool
516 want_inline_small_function_p (struct cgraph_edge *e, bool report)
518 bool want_inline = true;
519 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
521 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
523 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
524 && !flag_inline_small_functions)
526 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
527 want_inline = false;
529 else
531 int growth = estimate_edge_growth (e);
532 inline_hints hints = estimate_edge_hints (e);
533 bool big_speedup = big_speedup_p (e);
535 if (growth <= 0)
537 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
538 hints suggests that inlining given function is very profitable. */
539 else if (DECL_DECLARED_INLINE_P (callee->symbol.decl)
540 && growth >= MAX_INLINE_INSNS_SINGLE
541 && !big_speedup
542 && !(hints & (INLINE_HINT_indirect_call
543 | INLINE_HINT_loop_iterations
544 | INLINE_HINT_array_index
545 | INLINE_HINT_loop_stride)))
547 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
548 want_inline = false;
550 /* Before giving up based on fact that caller size will grow, allow
551 functions that are called few times and eliminating the offline
552 copy will lead to overall code size reduction.
553 Not all of these will be handled by subsequent inlining of functions
554 called once: in particular weak functions are not handled or funcitons
555 that inline to multiple calls but a lot of bodies is optimized out.
556 Finally we want to inline earlier to allow inlining of callbacks.
558 This is slightly wrong on aggressive side: it is entirely possible
559 that function is called many times with a context where inlining
560 reduces code size and few times with a context where inlining increase
561 code size. Resoluting growth estimate will be negative even if it
562 would make more sense to keep offline copy and do not inline into the
563 call sites that makes the code size grow.
565 When badness orders the calls in a way that code reducing calls come
566 first, this situation is not a problem at all: after inlining all
567 "good" calls, we will realize that keeping the function around is
568 better. */
569 else if (growth <= MAX_INLINE_INSNS_SINGLE
570 /* Unlike for functions called once, we play unsafe with
571 COMDATs. We can allow that since we know functions
572 in consideration are small (and thus risk is small) and
573 moreover grow estimates already accounts that COMDAT
574 functions may or may not disappear when eliminated from
575 current unit. With good probability making aggressive
576 choice in all units is going to make overall program
577 smaller.
579 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
580 instead of
581 cgraph_will_be_removed_from_program_if_no_direct_calls */
582 && !DECL_EXTERNAL (callee->symbol.decl)
583 && cgraph_can_remove_if_no_direct_calls_p (callee)
584 && estimate_growth (callee) <= 0)
586 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
587 && !flag_inline_functions)
589 e->inline_failed = CIF_NOT_DECLARED_INLINED;
590 want_inline = false;
592 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
593 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
594 inlining given function is very profitable. */
595 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
596 && !big_speedup
597 && growth >= ((hints & (INLINE_HINT_indirect_call
598 | INLINE_HINT_loop_iterations
599 | INLINE_HINT_array_index
600 | INLINE_HINT_loop_stride))
601 ? MAX (MAX_INLINE_INSNS_AUTO,
602 MAX_INLINE_INSNS_SINGLE)
603 : MAX_INLINE_INSNS_AUTO))
605 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
606 want_inline = false;
608 /* If call is cold, do not inline when function body would grow. */
609 else if (!cgraph_maybe_hot_edge_p (e))
611 e->inline_failed = CIF_UNLIKELY_CALL;
612 want_inline = false;
615 if (!want_inline && report)
616 report_inline_failed_reason (e);
617 return want_inline;
620 /* EDGE is self recursive edge.
621 We hand two cases - when function A is inlining into itself
622 or when function A is being inlined into another inliner copy of function
623 A within function B.
625 In first case OUTER_NODE points to the toplevel copy of A, while
626 in the second case OUTER_NODE points to the outermost copy of A in B.
628 In both cases we want to be extra selective since
629 inlining the call will just introduce new recursive calls to appear. */
631 static bool
632 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
633 struct cgraph_node *outer_node,
634 bool peeling,
635 int depth)
637 char const *reason = NULL;
638 bool want_inline = true;
639 int caller_freq = CGRAPH_FREQ_BASE;
640 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
642 if (DECL_DECLARED_INLINE_P (edge->caller->symbol.decl))
643 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
645 if (!cgraph_maybe_hot_edge_p (edge))
647 reason = "recursive call is cold";
648 want_inline = false;
650 else if (max_count && !outer_node->count)
652 reason = "not executed in profile";
653 want_inline = false;
655 else if (depth > max_depth)
657 reason = "--param max-inline-recursive-depth exceeded.";
658 want_inline = false;
661 if (outer_node->global.inlined_to)
662 caller_freq = outer_node->callers->frequency;
664 if (!want_inline)
666 /* Inlining of self recursive function into copy of itself within other function
667 is transformation similar to loop peeling.
669 Peeling is profitable if we can inline enough copies to make probability
670 of actual call to the self recursive function very small. Be sure that
671 the probability of recursion is small.
673 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
674 This way the expected number of recision is at most max_depth. */
675 else if (peeling)
677 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
678 / max_depth);
679 int i;
680 for (i = 1; i < depth; i++)
681 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
682 if (max_count
683 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
684 >= max_prob))
686 reason = "profile of recursive call is too large";
687 want_inline = false;
689 if (!max_count
690 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
691 >= max_prob))
693 reason = "frequency of recursive call is too large";
694 want_inline = false;
697 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
698 depth is large. We reduce function call overhead and increase chances that
699 things fit in hardware return predictor.
701 Recursive inlining might however increase cost of stack frame setup
702 actually slowing down functions whose recursion tree is wide rather than
703 deep.
705 Deciding reliably on when to do recursive inlining without profile feedback
706 is tricky. For now we disable recursive inlining when probability of self
707 recursion is low.
709 Recursive inlining of self recursive call within loop also results in large loop
710 depths that generally optimize badly. We may want to throttle down inlining
711 in those cases. In particular this seems to happen in one of libstdc++ rb tree
712 methods. */
713 else
715 if (max_count
716 && (edge->count * 100 / outer_node->count
717 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
719 reason = "profile of recursive call is too small";
720 want_inline = false;
722 else if (!max_count
723 && (edge->frequency * 100 / caller_freq
724 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
726 reason = "frequency of recursive call is too small";
727 want_inline = false;
730 if (!want_inline && dump_file)
731 fprintf (dump_file, " not inlining recursively: %s\n", reason);
732 return want_inline;
735 /* Return true when NODE has caller other than EDGE.
736 Worker for cgraph_for_node_and_aliases. */
738 static bool
739 check_caller_edge (struct cgraph_node *node, void *edge)
741 return (node->callers
742 && node->callers != edge);
746 /* Decide if inlining NODE would reduce unit size by eliminating
747 the offline copy of function.
748 When COLD is true the cold calls are considered, too. */
750 static bool
751 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
753 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
754 struct cgraph_edge *e;
755 bool has_hot_call = false;
757 /* Does it have callers? */
758 if (!node->callers)
759 return false;
760 /* Already inlined? */
761 if (function->global.inlined_to)
762 return false;
763 if (cgraph_function_or_thunk_node (node, NULL) != node)
764 return false;
765 /* Inlining into all callers would increase size? */
766 if (estimate_growth (node) > 0)
767 return false;
768 /* Maybe other aliases has more direct calls. */
769 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
770 return false;
771 /* All inlines must be possible. */
772 for (e = node->callers; e; e = e->next_caller)
774 if (!can_inline_edge_p (e, true))
775 return false;
776 if (!has_hot_call && cgraph_maybe_hot_edge_p (e))
777 has_hot_call = 1;
780 if (!cold && !has_hot_call)
781 return false;
782 return true;
785 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
787 /* Return relative time improvement for inlining EDGE in range
788 1...RELATIVE_TIME_BENEFIT_RANGE */
790 static inline int
791 relative_time_benefit (struct inline_summary *callee_info,
792 struct cgraph_edge *edge,
793 int edge_time)
795 gcov_type relbenefit;
796 gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
797 gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time);
799 /* Inlining into extern inline function is not a win. */
800 if (DECL_EXTERNAL (edge->caller->global.inlined_to
801 ? edge->caller->global.inlined_to->symbol.decl
802 : edge->caller->symbol.decl))
803 return 1;
805 /* Watch overflows. */
806 gcc_checking_assert (uninlined_call_time >= 0);
807 gcc_checking_assert (inlined_call_time >= 0);
808 gcc_checking_assert (uninlined_call_time >= inlined_call_time);
810 /* Compute relative time benefit, i.e. how much the call becomes faster.
811 ??? perhaps computing how much the caller+calle together become faster
812 would lead to more realistic results. */
813 if (!uninlined_call_time)
814 uninlined_call_time = 1;
815 relbenefit =
816 RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE,
817 uninlined_call_time);
818 relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE);
819 gcc_checking_assert (relbenefit >= 0);
820 relbenefit = MAX (relbenefit, 1);
821 return relbenefit;
825 /* A cost model driving the inlining heuristics in a way so the edges with
826 smallest badness are inlined first. After each inlining is performed
827 the costs of all caller edges of nodes affected are recomputed so the
828 metrics may accurately depend on values such as number of inlinable callers
829 of the function or function body size. */
831 static int
832 edge_badness (struct cgraph_edge *edge, bool dump)
834 gcov_type badness;
835 int growth, edge_time;
836 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
837 NULL);
838 struct inline_summary *callee_info = inline_summary (callee);
839 inline_hints hints;
841 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
842 return INT_MIN;
844 growth = estimate_edge_growth (edge);
845 edge_time = estimate_edge_time (edge);
846 hints = estimate_edge_hints (edge);
847 gcc_checking_assert (edge_time >= 0);
848 gcc_checking_assert (edge_time <= callee_info->time);
849 gcc_checking_assert (growth <= callee_info->size);
851 if (dump)
853 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
854 xstrdup (cgraph_node_name (edge->caller)),
855 edge->caller->uid,
856 xstrdup (cgraph_node_name (callee)),
857 edge->callee->uid);
858 fprintf (dump_file, " size growth %i, time %i ",
859 growth,
860 edge_time);
861 dump_inline_hints (dump_file, hints);
862 if (big_speedup_p (edge))
863 fprintf (dump_file, " big_speedup");
864 fprintf (dump_file, "\n");
867 /* Always prefer inlining saving code size. */
868 if (growth <= 0)
870 badness = INT_MIN / 2 + growth;
871 if (dump)
872 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
873 growth);
876 /* When profiling is available, compute badness as:
878 relative_edge_count * relative_time_benefit
879 goodness = -------------------------------------------
880 growth_f_caller
881 badness = -goodness
883 The fraction is upside down, because on edge counts and time beneits
884 the bounds are known. Edge growth is essentially unlimited. */
886 else if (max_count)
888 int relbenefit = relative_time_benefit (callee_info, edge, edge_time);
889 badness =
890 ((int)
891 ((double) edge->count * INT_MIN / 2 / max_count / RELATIVE_TIME_BENEFIT_RANGE) *
892 relbenefit) / growth;
894 /* Be sure that insanity of the profile won't lead to increasing counts
895 in the scalling and thus to overflow in the computation above. */
896 gcc_assert (max_count >= edge->count);
897 if (dump)
899 fprintf (dump_file,
900 " %i (relative %f): profile info. Relative count %f"
901 " * Relative benefit %f\n",
902 (int) badness, (double) badness / INT_MIN,
903 (double) edge->count / max_count,
904 relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE);
908 /* When function local profile is available. Compute badness as:
910 relative_time_benefit
911 goodness = ---------------------------------
912 growth_of_caller * overall_growth
914 badness = - goodness
916 compensated by the inline hints.
918 else if (flag_guess_branch_prob)
920 badness = (relative_time_benefit (callee_info, edge, edge_time)
921 * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE));
922 badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth)));
923 gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16);
924 if ((hints & (INLINE_HINT_indirect_call
925 | INLINE_HINT_loop_iterations
926 | INLINE_HINT_array_index
927 | INLINE_HINT_loop_stride))
928 || callee_info->growth <= 0)
929 badness *= 8;
930 if (hints & (INLINE_HINT_same_scc))
931 badness /= 16;
932 else if (hints & (INLINE_HINT_in_scc))
933 badness /= 8;
934 else if (hints & (INLINE_HINT_cross_module))
935 badness /= 2;
936 gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2);
937 if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32)
938 badness *= 16;
939 if (dump)
941 fprintf (dump_file,
942 " %i: guessed profile. frequency %f,"
943 " benefit %f%%, time w/o inlining %i, time w inlining %i"
944 " overall growth %i (current) %i (original)\n",
945 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
946 relative_time_benefit (callee_info, edge, edge_time) * 100.0
947 / RELATIVE_TIME_BENEFIT_RANGE,
948 (int)compute_uninlined_call_time (callee_info, edge),
949 (int)compute_inlined_call_time (edge, edge_time),
950 estimate_growth (callee),
951 callee_info->growth);
954 /* When function local profile is not available or it does not give
955 useful information (ie frequency is zero), base the cost on
956 loop nest and overall size growth, so we optimize for overall number
957 of functions fully inlined in program. */
958 else
960 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
961 badness = growth * 256;
963 /* Decrease badness if call is nested. */
964 if (badness > 0)
965 badness >>= nest;
966 else
968 badness <<= nest;
970 if (dump)
971 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
972 nest);
975 /* Ensure that we did not overflow in all the fixed point math above. */
976 gcc_assert (badness >= INT_MIN);
977 gcc_assert (badness <= INT_MAX - 1);
978 /* Make recursive inlining happen always after other inlining is done. */
979 if (cgraph_edge_recursive_p (edge))
980 return badness + 1;
981 else
982 return badness;
985 /* Recompute badness of EDGE and update its key in HEAP if needed. */
986 static inline void
987 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
989 int badness = edge_badness (edge, false);
990 if (edge->aux)
992 fibnode_t n = (fibnode_t) edge->aux;
993 gcc_checking_assert (n->data == edge);
995 /* fibheap_replace_key only decrease the keys.
996 When we increase the key we do not update heap
997 and instead re-insert the element once it becomes
998 a minimum of heap. */
999 if (badness < n->key)
1001 if (dump_file && (dump_flags & TDF_DETAILS))
1003 fprintf (dump_file,
1004 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
1005 xstrdup (cgraph_node_name (edge->caller)),
1006 edge->caller->uid,
1007 xstrdup (cgraph_node_name (edge->callee)),
1008 edge->callee->uid,
1009 (int)n->key,
1010 badness);
1012 fibheap_replace_key (heap, n, badness);
1013 gcc_checking_assert (n->key == badness);
1016 else
1018 if (dump_file && (dump_flags & TDF_DETAILS))
1020 fprintf (dump_file,
1021 " enqueuing call %s/%i -> %s/%i, badness %i\n",
1022 xstrdup (cgraph_node_name (edge->caller)),
1023 edge->caller->uid,
1024 xstrdup (cgraph_node_name (edge->callee)),
1025 edge->callee->uid,
1026 badness);
1028 edge->aux = fibheap_insert (heap, badness, edge);
1033 /* NODE was inlined.
1034 All caller edges needs to be resetted because
1035 size estimates change. Similarly callees needs reset
1036 because better context may be known. */
1038 static void
1039 reset_edge_caches (struct cgraph_node *node)
1041 struct cgraph_edge *edge;
1042 struct cgraph_edge *e = node->callees;
1043 struct cgraph_node *where = node;
1044 int i;
1045 struct ipa_ref *ref;
1047 if (where->global.inlined_to)
1048 where = where->global.inlined_to;
1050 /* WHERE body size has changed, the cached growth is invalid. */
1051 reset_node_growth_cache (where);
1053 for (edge = where->callers; edge; edge = edge->next_caller)
1054 if (edge->inline_failed)
1055 reset_edge_growth_cache (edge);
1056 for (i = 0; ipa_ref_list_referring_iterate (&where->symbol.ref_list,
1057 i, ref); i++)
1058 if (ref->use == IPA_REF_ALIAS)
1059 reset_edge_caches (ipa_ref_referring_node (ref));
1061 if (!e)
1062 return;
1064 while (true)
1065 if (!e->inline_failed && e->callee->callees)
1066 e = e->callee->callees;
1067 else
1069 if (e->inline_failed)
1070 reset_edge_growth_cache (e);
1071 if (e->next_callee)
1072 e = e->next_callee;
1073 else
1077 if (e->caller == node)
1078 return;
1079 e = e->caller->callers;
1081 while (!e->next_callee);
1082 e = e->next_callee;
1087 /* Recompute HEAP nodes for each of caller of NODE.
1088 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1089 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1090 it is inlinable. Otherwise check all edges. */
1092 static void
1093 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1094 bitmap updated_nodes,
1095 struct cgraph_edge *check_inlinablity_for)
1097 struct cgraph_edge *edge;
1098 int i;
1099 struct ipa_ref *ref;
1101 if ((!node->alias && !inline_summary (node)->inlinable)
1102 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1103 || node->global.inlined_to)
1104 return;
1105 if (!bitmap_set_bit (updated_nodes, node->uid))
1106 return;
1108 for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list,
1109 i, ref); i++)
1110 if (ref->use == IPA_REF_ALIAS)
1112 struct cgraph_node *alias = ipa_ref_referring_node (ref);
1113 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1116 for (edge = node->callers; edge; edge = edge->next_caller)
1117 if (edge->inline_failed)
1119 if (!check_inlinablity_for
1120 || check_inlinablity_for == edge)
1122 if (can_inline_edge_p (edge, false)
1123 && want_inline_small_function_p (edge, false))
1124 update_edge_key (heap, edge);
1125 else if (edge->aux)
1127 report_inline_failed_reason (edge);
1128 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1129 edge->aux = NULL;
1132 else if (edge->aux)
1133 update_edge_key (heap, edge);
1137 /* Recompute HEAP nodes for each uninlined call in NODE.
1138 This is used when we know that edge badnesses are going only to increase
1139 (we introduced new call site) and thus all we need is to insert newly
1140 created edges into heap. */
1142 static void
1143 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1144 bitmap updated_nodes)
1146 struct cgraph_edge *e = node->callees;
1148 if (!e)
1149 return;
1150 while (true)
1151 if (!e->inline_failed && e->callee->callees)
1152 e = e->callee->callees;
1153 else
1155 enum availability avail;
1156 struct cgraph_node *callee;
1157 /* We do not reset callee growth cache here. Since we added a new call,
1158 growth chould have just increased and consequentely badness metric
1159 don't need updating. */
1160 if (e->inline_failed
1161 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1162 && inline_summary (callee)->inlinable
1163 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1164 && !bitmap_bit_p (updated_nodes, callee->uid))
1166 if (can_inline_edge_p (e, false)
1167 && want_inline_small_function_p (e, false))
1168 update_edge_key (heap, e);
1169 else if (e->aux)
1171 report_inline_failed_reason (e);
1172 fibheap_delete_node (heap, (fibnode_t) e->aux);
1173 e->aux = NULL;
1176 if (e->next_callee)
1177 e = e->next_callee;
1178 else
1182 if (e->caller == node)
1183 return;
1184 e = e->caller->callers;
1186 while (!e->next_callee);
1187 e = e->next_callee;
1192 /* Enqueue all recursive calls from NODE into priority queue depending on
1193 how likely we want to recursively inline the call. */
1195 static void
1196 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1197 fibheap_t heap)
1199 struct cgraph_edge *e;
1200 enum availability avail;
1202 for (e = where->callees; e; e = e->next_callee)
1203 if (e->callee == node
1204 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1205 && avail > AVAIL_OVERWRITABLE))
1207 /* When profile feedback is available, prioritize by expected number
1208 of calls. */
1209 fibheap_insert (heap,
1210 !max_count ? -e->frequency
1211 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1214 for (e = where->callees; e; e = e->next_callee)
1215 if (!e->inline_failed)
1216 lookup_recursive_calls (node, e->callee, heap);
1219 /* Decide on recursive inlining: in the case function has recursive calls,
1220 inline until body size reaches given argument. If any new indirect edges
1221 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1222 is NULL. */
1224 static bool
1225 recursive_inlining (struct cgraph_edge *edge,
1226 vec<cgraph_edge_p> *new_edges)
1228 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1229 fibheap_t heap;
1230 struct cgraph_node *node;
1231 struct cgraph_edge *e;
1232 struct cgraph_node *master_clone = NULL, *next;
1233 int depth = 0;
1234 int n = 0;
1236 node = edge->caller;
1237 if (node->global.inlined_to)
1238 node = node->global.inlined_to;
1240 if (DECL_DECLARED_INLINE_P (node->symbol.decl))
1241 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1243 /* Make sure that function is small enough to be considered for inlining. */
1244 if (estimate_size_after_inlining (node, edge) >= limit)
1245 return false;
1246 heap = fibheap_new ();
1247 lookup_recursive_calls (node, node, heap);
1248 if (fibheap_empty (heap))
1250 fibheap_delete (heap);
1251 return false;
1254 if (dump_file)
1255 fprintf (dump_file,
1256 " Performing recursive inlining on %s\n",
1257 cgraph_node_name (node));
1259 /* Do the inlining and update list of recursive call during process. */
1260 while (!fibheap_empty (heap))
1262 struct cgraph_edge *curr
1263 = (struct cgraph_edge *) fibheap_extract_min (heap);
1264 struct cgraph_node *cnode, *dest = curr->callee;
1266 if (!can_inline_edge_p (curr, true))
1267 continue;
1269 /* MASTER_CLONE is produced in the case we already started modified
1270 the function. Be sure to redirect edge to the original body before
1271 estimating growths otherwise we will be seeing growths after inlining
1272 the already modified body. */
1273 if (master_clone)
1275 cgraph_redirect_edge_callee (curr, master_clone);
1276 reset_edge_growth_cache (curr);
1279 if (estimate_size_after_inlining (node, curr) > limit)
1281 cgraph_redirect_edge_callee (curr, dest);
1282 reset_edge_growth_cache (curr);
1283 break;
1286 depth = 1;
1287 for (cnode = curr->caller;
1288 cnode->global.inlined_to; cnode = cnode->callers->caller)
1289 if (node->symbol.decl
1290 == cgraph_function_or_thunk_node (curr->callee, NULL)->symbol.decl)
1291 depth++;
1293 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1295 cgraph_redirect_edge_callee (curr, dest);
1296 reset_edge_growth_cache (curr);
1297 continue;
1300 if (dump_file)
1302 fprintf (dump_file,
1303 " Inlining call of depth %i", depth);
1304 if (node->count)
1306 fprintf (dump_file, " called approx. %.2f times per call",
1307 (double)curr->count / node->count);
1309 fprintf (dump_file, "\n");
1311 if (!master_clone)
1313 /* We need original clone to copy around. */
1314 master_clone = cgraph_clone_node (node, node->symbol.decl,
1315 node->count, CGRAPH_FREQ_BASE,
1316 false, vNULL, true);
1317 for (e = master_clone->callees; e; e = e->next_callee)
1318 if (!e->inline_failed)
1319 clone_inlined_nodes (e, true, false, NULL);
1320 cgraph_redirect_edge_callee (curr, master_clone);
1321 reset_edge_growth_cache (curr);
1324 inline_call (curr, false, new_edges, &overall_size, true);
1325 lookup_recursive_calls (node, curr->callee, heap);
1326 n++;
1329 if (!fibheap_empty (heap) && dump_file)
1330 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1331 fibheap_delete (heap);
1333 if (!master_clone)
1334 return false;
1336 if (dump_file)
1337 fprintf (dump_file,
1338 "\n Inlined %i times, "
1339 "body grown from size %i to %i, time %i to %i\n", n,
1340 inline_summary (master_clone)->size, inline_summary (node)->size,
1341 inline_summary (master_clone)->time, inline_summary (node)->time);
1343 /* Remove master clone we used for inlining. We rely that clones inlined
1344 into master clone gets queued just before master clone so we don't
1345 need recursion. */
1346 for (node = cgraph_first_function (); node != master_clone;
1347 node = next)
1349 next = cgraph_next_function (node);
1350 if (node->global.inlined_to == master_clone)
1351 cgraph_remove_node (node);
1353 cgraph_remove_node (master_clone);
1354 return true;
1358 /* Given whole compilation unit estimate of INSNS, compute how large we can
1359 allow the unit to grow. */
1361 static int
1362 compute_max_insns (int insns)
1364 int max_insns = insns;
1365 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1366 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1368 return ((HOST_WIDEST_INT) max_insns
1369 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1373 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1375 static void
1376 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges)
1378 while (new_edges.length () > 0)
1380 struct cgraph_edge *edge = new_edges.pop ();
1382 gcc_assert (!edge->aux);
1383 if (edge->inline_failed
1384 && can_inline_edge_p (edge, true)
1385 && want_inline_small_function_p (edge, true))
1386 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1391 /* We use greedy algorithm for inlining of small functions:
1392 All inline candidates are put into prioritized heap ordered in
1393 increasing badness.
1395 The inlining of small functions is bounded by unit growth parameters. */
1397 static void
1398 inline_small_functions (void)
1400 struct cgraph_node *node;
1401 struct cgraph_edge *edge;
1402 fibheap_t edge_heap = fibheap_new ();
1403 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1404 int min_size, max_size;
1405 vec<cgraph_edge_p> new_indirect_edges = vNULL;
1406 int initial_size = 0;
1407 struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1409 if (flag_indirect_inlining)
1410 new_indirect_edges.create (8);
1412 /* Compute overall unit size and other global parameters used by badness
1413 metrics. */
1415 max_count = 0;
1416 ipa_reduced_postorder (order, true, true, NULL);
1417 free (order);
1419 FOR_EACH_DEFINED_FUNCTION (node)
1420 if (!node->global.inlined_to)
1422 if (cgraph_function_with_gimple_body_p (node)
1423 || node->thunk.thunk_p)
1425 struct inline_summary *info = inline_summary (node);
1426 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->symbol.aux;
1428 if (!DECL_EXTERNAL (node->symbol.decl))
1429 initial_size += info->size;
1430 info->growth = estimate_growth (node);
1431 if (dfs && dfs->next_cycle)
1433 struct cgraph_node *n2;
1434 int id = dfs->scc_no + 1;
1435 for (n2 = node; n2;
1436 n2 = ((struct ipa_dfs_info *) node->symbol.aux)->next_cycle)
1438 struct inline_summary *info2 = inline_summary (n2);
1439 if (info2->scc_no)
1440 break;
1441 info2->scc_no = id;
1446 for (edge = node->callers; edge; edge = edge->next_caller)
1447 if (max_count < edge->count)
1448 max_count = edge->count;
1450 ipa_free_postorder_info ();
1451 initialize_growth_caches ();
1453 if (dump_file)
1454 fprintf (dump_file,
1455 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1456 initial_size);
1458 overall_size = initial_size;
1459 max_size = compute_max_insns (overall_size);
1460 min_size = overall_size;
1462 /* Populate the heeap with all edges we might inline. */
1464 FOR_EACH_DEFINED_FUNCTION (node)
1465 if (!node->global.inlined_to)
1467 if (dump_file)
1468 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1469 cgraph_node_name (node), node->uid);
1471 for (edge = node->callers; edge; edge = edge->next_caller)
1472 if (edge->inline_failed
1473 && can_inline_edge_p (edge, true)
1474 && want_inline_small_function_p (edge, true)
1475 && edge->inline_failed)
1477 gcc_assert (!edge->aux);
1478 update_edge_key (edge_heap, edge);
1482 gcc_assert (in_lto_p
1483 || !max_count
1484 || (profile_info && flag_branch_probabilities));
1486 while (!fibheap_empty (edge_heap))
1488 int old_size = overall_size;
1489 struct cgraph_node *where, *callee;
1490 int badness = fibheap_min_key (edge_heap);
1491 int current_badness;
1492 int cached_badness;
1493 int growth;
1495 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1496 gcc_assert (edge->aux);
1497 edge->aux = NULL;
1498 if (!edge->inline_failed)
1499 continue;
1501 /* Be sure that caches are maintained consistent.
1502 We can not make this ENABLE_CHECKING only because it cause different
1503 updates of the fibheap queue. */
1504 cached_badness = edge_badness (edge, false);
1505 reset_edge_growth_cache (edge);
1506 reset_node_growth_cache (edge->callee);
1508 /* When updating the edge costs, we only decrease badness in the keys.
1509 Increases of badness are handled lazilly; when we see key with out
1510 of date value on it, we re-insert it now. */
1511 current_badness = edge_badness (edge, false);
1512 gcc_assert (cached_badness == current_badness);
1513 gcc_assert (current_badness >= badness);
1514 if (current_badness != badness)
1516 edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1517 continue;
1520 if (!can_inline_edge_p (edge, true))
1521 continue;
1523 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1524 growth = estimate_edge_growth (edge);
1525 if (dump_file)
1527 fprintf (dump_file,
1528 "\nConsidering %s with %i size\n",
1529 cgraph_node_name (callee),
1530 inline_summary (callee)->size);
1531 fprintf (dump_file,
1532 " to be inlined into %s in %s:%i\n"
1533 " Estimated growth after inlined into all is %+i insns.\n"
1534 " Estimated badness is %i, frequency %.2f.\n",
1535 cgraph_node_name (edge->caller),
1536 flag_wpa ? "unknown"
1537 : gimple_filename ((const_gimple) edge->call_stmt),
1538 flag_wpa ? -1
1539 : gimple_lineno ((const_gimple) edge->call_stmt),
1540 estimate_growth (callee),
1541 badness,
1542 edge->frequency / (double)CGRAPH_FREQ_BASE);
1543 if (edge->count)
1544 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1545 edge->count);
1546 if (dump_flags & TDF_DETAILS)
1547 edge_badness (edge, true);
1550 if (overall_size + growth > max_size
1551 && !DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1553 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1554 report_inline_failed_reason (edge);
1555 continue;
1558 if (!want_inline_small_function_p (edge, true))
1559 continue;
1561 /* Heuristics for inlining small functions works poorly for
1562 recursive calls where we do efect similar to loop unrolling.
1563 When inliing such edge seems profitable, leave decision on
1564 specific inliner. */
1565 if (cgraph_edge_recursive_p (edge))
1567 where = edge->caller;
1568 if (where->global.inlined_to)
1569 where = where->global.inlined_to;
1570 if (!recursive_inlining (edge,
1571 flag_indirect_inlining
1572 ? &new_indirect_edges : NULL))
1574 edge->inline_failed = CIF_RECURSIVE_INLINING;
1575 continue;
1577 reset_edge_caches (where);
1578 /* Recursive inliner inlines all recursive calls of the function
1579 at once. Consequently we need to update all callee keys. */
1580 if (flag_indirect_inlining)
1581 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1582 update_callee_keys (edge_heap, where, updated_nodes);
1584 else
1586 struct cgraph_node *outer_node = NULL;
1587 int depth = 0;
1589 /* Consider the case where self recursive function A is inlined into B.
1590 This is desired optimization in some cases, since it leads to effect
1591 similar of loop peeling and we might completely optimize out the
1592 recursive call. However we must be extra selective. */
1594 where = edge->caller;
1595 while (where->global.inlined_to)
1597 if (where->symbol.decl == callee->symbol.decl)
1598 outer_node = where, depth++;
1599 where = where->callers->caller;
1601 if (outer_node
1602 && !want_inline_self_recursive_call_p (edge, outer_node,
1603 true, depth))
1605 edge->inline_failed
1606 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->symbol.decl)
1607 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1608 continue;
1610 else if (depth && dump_file)
1611 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1613 gcc_checking_assert (!callee->global.inlined_to);
1614 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1615 if (flag_indirect_inlining)
1616 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1618 reset_edge_caches (edge->callee);
1619 reset_node_growth_cache (callee);
1621 update_callee_keys (edge_heap, where, updated_nodes);
1623 where = edge->caller;
1624 if (where->global.inlined_to)
1625 where = where->global.inlined_to;
1627 /* Our profitability metric can depend on local properties
1628 such as number of inlinable calls and size of the function body.
1629 After inlining these properties might change for the function we
1630 inlined into (since it's body size changed) and for the functions
1631 called by function we inlined (since number of it inlinable callers
1632 might change). */
1633 update_caller_keys (edge_heap, where, updated_nodes, NULL);
1634 bitmap_clear (updated_nodes);
1636 if (dump_file)
1638 fprintf (dump_file,
1639 " Inlined into %s which now has time %i and size %i,"
1640 "net change of %+i.\n",
1641 cgraph_node_name (edge->caller),
1642 inline_summary (edge->caller)->time,
1643 inline_summary (edge->caller)->size,
1644 overall_size - old_size);
1646 if (min_size > overall_size)
1648 min_size = overall_size;
1649 max_size = compute_max_insns (min_size);
1651 if (dump_file)
1652 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1656 free_growth_caches ();
1657 new_indirect_edges.release ();
1658 fibheap_delete (edge_heap);
1659 if (dump_file)
1660 fprintf (dump_file,
1661 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1662 initial_size, overall_size,
1663 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1664 BITMAP_FREE (updated_nodes);
1667 /* Flatten NODE. Performed both during early inlining and
1668 at IPA inlining time. */
1670 static void
1671 flatten_function (struct cgraph_node *node, bool early)
1673 struct cgraph_edge *e;
1675 /* We shouldn't be called recursively when we are being processed. */
1676 gcc_assert (node->symbol.aux == NULL);
1678 node->symbol.aux = (void *) node;
1680 for (e = node->callees; e; e = e->next_callee)
1682 struct cgraph_node *orig_callee;
1683 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1685 /* We've hit cycle? It is time to give up. */
1686 if (callee->symbol.aux)
1688 if (dump_file)
1689 fprintf (dump_file,
1690 "Not inlining %s into %s to avoid cycle.\n",
1691 xstrdup (cgraph_node_name (callee)),
1692 xstrdup (cgraph_node_name (e->caller)));
1693 e->inline_failed = CIF_RECURSIVE_INLINING;
1694 continue;
1697 /* When the edge is already inlined, we just need to recurse into
1698 it in order to fully flatten the leaves. */
1699 if (!e->inline_failed)
1701 flatten_function (callee, early);
1702 continue;
1705 /* Flatten attribute needs to be processed during late inlining. For
1706 extra code quality we however do flattening during early optimization,
1707 too. */
1708 if (!early
1709 ? !can_inline_edge_p (e, true)
1710 : !can_early_inline_edge_p (e))
1711 continue;
1713 if (cgraph_edge_recursive_p (e))
1715 if (dump_file)
1716 fprintf (dump_file, "Not inlining: recursive call.\n");
1717 continue;
1720 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->symbol.decl))
1721 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
1723 if (dump_file)
1724 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1725 continue;
1728 /* Inline the edge and flatten the inline clone. Avoid
1729 recursing through the original node if the node was cloned. */
1730 if (dump_file)
1731 fprintf (dump_file, " Inlining %s into %s.\n",
1732 xstrdup (cgraph_node_name (callee)),
1733 xstrdup (cgraph_node_name (e->caller)));
1734 orig_callee = callee;
1735 inline_call (e, true, NULL, NULL, false);
1736 if (e->callee != orig_callee)
1737 orig_callee->symbol.aux = (void *) node;
1738 flatten_function (e->callee, early);
1739 if (e->callee != orig_callee)
1740 orig_callee->symbol.aux = NULL;
1743 node->symbol.aux = NULL;
1744 if (!node->global.inlined_to)
1745 inline_update_overall_summary (node);
1748 /* Decide on the inlining. We do so in the topological order to avoid
1749 expenses on updating data structures. */
1751 static unsigned int
1752 ipa_inline (void)
1754 struct cgraph_node *node;
1755 int nnodes;
1756 struct cgraph_node **order =
1757 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1758 int i;
1760 if (in_lto_p && optimize)
1761 ipa_update_after_lto_read ();
1763 if (dump_file)
1764 dump_inline_summaries (dump_file);
1766 nnodes = ipa_reverse_postorder (order);
1768 FOR_EACH_FUNCTION (node)
1769 node->symbol.aux = 0;
1771 if (dump_file)
1772 fprintf (dump_file, "\nFlattening functions:\n");
1774 /* In the first pass handle functions to be flattened. Do this with
1775 a priority so none of our later choices will make this impossible. */
1776 for (i = nnodes - 1; i >= 0; i--)
1778 node = order[i];
1780 /* Handle nodes to be flattened.
1781 Ideally when processing callees we stop inlining at the
1782 entry of cycles, possibly cloning that entry point and
1783 try to flatten itself turning it into a self-recursive
1784 function. */
1785 if (lookup_attribute ("flatten",
1786 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
1788 if (dump_file)
1789 fprintf (dump_file,
1790 "Flattening %s\n", cgraph_node_name (node));
1791 flatten_function (node, false);
1795 inline_small_functions ();
1796 symtab_remove_unreachable_nodes (true, dump_file);
1797 free (order);
1799 /* Inline functions with a property that after inlining into all callers the
1800 code size will shrink because the out-of-line copy is eliminated.
1801 We do this regardless on the callee size as long as function growth limits
1802 are met. */
1803 if (flag_inline_functions_called_once)
1805 int cold;
1806 if (dump_file)
1807 fprintf (dump_file,
1808 "\nDeciding on functions to be inlined into all callers:\n");
1810 /* Inlining one function called once has good chance of preventing
1811 inlining other function into the same callee. Ideally we should
1812 work in priority order, but probably inlining hot functions first
1813 is good cut without the extra pain of maintaining the queue.
1815 ??? this is not really fitting the bill perfectly: inlining function
1816 into callee often leads to better optimization of callee due to
1817 increased context for optimization.
1818 For example if main() function calls a function that outputs help
1819 and then function that does the main optmization, we should inline
1820 the second with priority even if both calls are cold by themselves.
1822 We probably want to implement new predicate replacing our use of
1823 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1824 to be hot. */
1825 for (cold = 0; cold <= 1; cold ++)
1827 FOR_EACH_DEFINED_FUNCTION (node)
1829 if (want_inline_function_to_all_callers_p (node, cold))
1831 int num_calls = 0;
1832 struct cgraph_edge *e;
1833 for (e = node->callers; e; e = e->next_caller)
1834 num_calls++;
1835 while (node->callers && !node->global.inlined_to)
1837 struct cgraph_node *caller = node->callers->caller;
1839 if (dump_file)
1841 fprintf (dump_file,
1842 "\nInlining %s size %i.\n",
1843 cgraph_node_name (node),
1844 inline_summary (node)->size);
1845 fprintf (dump_file,
1846 " Called once from %s %i insns.\n",
1847 cgraph_node_name (node->callers->caller),
1848 inline_summary (node->callers->caller)->size);
1851 inline_call (node->callers, true, NULL, NULL, true);
1852 if (dump_file)
1853 fprintf (dump_file,
1854 " Inlined into %s which now has %i size\n",
1855 cgraph_node_name (caller),
1856 inline_summary (caller)->size);
1857 if (!num_calls--)
1859 if (dump_file)
1860 fprintf (dump_file, "New calls found; giving up.\n");
1861 break;
1869 /* Free ipa-prop structures if they are no longer needed. */
1870 if (optimize)
1871 ipa_free_all_structures_after_iinln ();
1873 if (dump_file)
1874 fprintf (dump_file,
1875 "\nInlined %i calls, eliminated %i functions\n\n",
1876 ncalls_inlined, nfunctions_inlined);
1878 if (dump_file)
1879 dump_inline_summaries (dump_file);
1880 /* In WPA we use inline summaries for partitioning process. */
1881 if (!flag_wpa)
1882 inline_free_summary ();
1883 return 0;
1886 /* Inline always-inline function calls in NODE. */
1888 static bool
1889 inline_always_inline_functions (struct cgraph_node *node)
1891 struct cgraph_edge *e;
1892 bool inlined = false;
1894 for (e = node->callees; e; e = e->next_callee)
1896 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1897 if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1898 continue;
1900 if (cgraph_edge_recursive_p (e))
1902 if (dump_file)
1903 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1904 cgraph_node_name (e->callee));
1905 e->inline_failed = CIF_RECURSIVE_INLINING;
1906 continue;
1909 if (!can_early_inline_edge_p (e))
1910 continue;
1912 if (dump_file)
1913 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1914 xstrdup (cgraph_node_name (e->callee)),
1915 xstrdup (cgraph_node_name (e->caller)));
1916 inline_call (e, true, NULL, NULL, false);
1917 inlined = true;
1919 if (inlined)
1920 inline_update_overall_summary (node);
1922 return inlined;
1925 /* Decide on the inlining. We do so in the topological order to avoid
1926 expenses on updating data structures. */
1928 static bool
1929 early_inline_small_functions (struct cgraph_node *node)
1931 struct cgraph_edge *e;
1932 bool inlined = false;
1934 for (e = node->callees; e; e = e->next_callee)
1936 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1937 if (!inline_summary (callee)->inlinable
1938 || !e->inline_failed)
1939 continue;
1941 /* Do not consider functions not declared inline. */
1942 if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
1943 && !flag_inline_small_functions
1944 && !flag_inline_functions)
1945 continue;
1947 if (dump_file)
1948 fprintf (dump_file, "Considering inline candidate %s.\n",
1949 cgraph_node_name (callee));
1951 if (!can_early_inline_edge_p (e))
1952 continue;
1954 if (cgraph_edge_recursive_p (e))
1956 if (dump_file)
1957 fprintf (dump_file, " Not inlining: recursive call.\n");
1958 continue;
1961 if (!want_early_inline_function_p (e))
1962 continue;
1964 if (dump_file)
1965 fprintf (dump_file, " Inlining %s into %s.\n",
1966 xstrdup (cgraph_node_name (callee)),
1967 xstrdup (cgraph_node_name (e->caller)));
1968 inline_call (e, true, NULL, NULL, true);
1969 inlined = true;
1972 return inlined;
1975 /* Do inlining of small functions. Doing so early helps profiling and other
1976 passes to be somewhat more effective and avoids some code duplication in
1977 later real inlining pass for testcases with very many function calls. */
1978 static unsigned int
1979 early_inliner (void)
1981 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1982 struct cgraph_edge *edge;
1983 unsigned int todo = 0;
1984 int iterations = 0;
1985 bool inlined = false;
1987 if (seen_error ())
1988 return 0;
1990 /* Do nothing if datastructures for ipa-inliner are already computed. This
1991 happens when some pass decides to construct new function and
1992 cgraph_add_new_function calls lowering passes and early optimization on
1993 it. This may confuse ourself when early inliner decide to inline call to
1994 function clone, because function clones don't have parameter list in
1995 ipa-prop matching their signature. */
1996 if (ipa_node_params_vector.exists ())
1997 return 0;
1999 #ifdef ENABLE_CHECKING
2000 verify_cgraph_node (node);
2001 #endif
2003 /* Even when not optimizing or not inlining inline always-inline
2004 functions. */
2005 inlined = inline_always_inline_functions (node);
2007 if (!optimize
2008 || flag_no_inline
2009 || !flag_early_inlining
2010 /* Never inline regular functions into always-inline functions
2011 during incremental inlining. This sucks as functions calling
2012 always inline functions will get less optimized, but at the
2013 same time inlining of functions calling always inline
2014 function into an always inline function might introduce
2015 cycles of edges to be always inlined in the callgraph.
2017 We might want to be smarter and just avoid this type of inlining. */
2018 || DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl))
2020 else if (lookup_attribute ("flatten",
2021 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
2023 /* When the function is marked to be flattened, recursively inline
2024 all calls in it. */
2025 if (dump_file)
2026 fprintf (dump_file,
2027 "Flattening %s\n", cgraph_node_name (node));
2028 flatten_function (node, true);
2029 inlined = true;
2031 else
2033 /* We iterate incremental inlining to get trivial cases of indirect
2034 inlining. */
2035 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2036 && early_inline_small_functions (node))
2038 timevar_push (TV_INTEGRATION);
2039 todo |= optimize_inline_calls (current_function_decl);
2041 /* Technically we ought to recompute inline parameters so the new
2042 iteration of early inliner works as expected. We however have
2043 values approximately right and thus we only need to update edge
2044 info that might be cleared out for newly discovered edges. */
2045 for (edge = node->callees; edge; edge = edge->next_callee)
2047 struct inline_edge_summary *es = inline_edge_summary (edge);
2048 es->call_stmt_size
2049 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2050 es->call_stmt_time
2051 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2052 if (edge->callee->symbol.decl
2053 && !gimple_check_call_matching_types (edge->call_stmt,
2054 edge->callee->symbol.decl))
2055 edge->call_stmt_cannot_inline_p = true;
2057 timevar_pop (TV_INTEGRATION);
2058 iterations++;
2059 inlined = false;
2061 if (dump_file)
2062 fprintf (dump_file, "Iterations: %i\n", iterations);
2065 if (inlined)
2067 timevar_push (TV_INTEGRATION);
2068 todo |= optimize_inline_calls (current_function_decl);
2069 timevar_pop (TV_INTEGRATION);
2072 cfun->always_inline_functions_inlined = true;
2074 return todo;
2077 struct gimple_opt_pass pass_early_inline =
2080 GIMPLE_PASS,
2081 "einline", /* name */
2082 OPTGROUP_INLINE, /* optinfo_flags */
2083 NULL, /* gate */
2084 early_inliner, /* execute */
2085 NULL, /* sub */
2086 NULL, /* next */
2087 0, /* static_pass_number */
2088 TV_EARLY_INLINING, /* tv_id */
2089 PROP_ssa, /* properties_required */
2090 0, /* properties_provided */
2091 0, /* properties_destroyed */
2092 0, /* todo_flags_start */
2093 0 /* todo_flags_finish */
2098 /* When to run IPA inlining. Inlining of always-inline functions
2099 happens during early inlining.
2101 Enable inlining unconditoinally at -flto. We need size estimates to
2102 drive partitioning. */
2104 static bool
2105 gate_ipa_inline (void)
2107 return optimize || flag_lto || flag_wpa;
2110 struct ipa_opt_pass_d pass_ipa_inline =
2113 IPA_PASS,
2114 "inline", /* name */
2115 OPTGROUP_INLINE, /* optinfo_flags */
2116 gate_ipa_inline, /* gate */
2117 ipa_inline, /* execute */
2118 NULL, /* sub */
2119 NULL, /* next */
2120 0, /* static_pass_number */
2121 TV_IPA_INLINING, /* tv_id */
2122 0, /* properties_required */
2123 0, /* properties_provided */
2124 0, /* properties_destroyed */
2125 TODO_remove_functions, /* todo_flags_finish */
2126 TODO_dump_symtab
2127 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
2129 inline_generate_summary, /* generate_summary */
2130 inline_write_summary, /* write_summary */
2131 inline_read_summary, /* read_summary */
2132 NULL, /* write_optimization_summary */
2133 NULL, /* read_optimization_summary */
2134 NULL, /* stmt_fixup */
2135 0, /* TODOs */
2136 inline_transform, /* function_transform */
2137 NULL, /* variable_transform */