2012-11-28 Oleg Raikhman <oleg@adapteva.com>
[official-gcc.git] / gcc / function.c
blob9ef6f77f6e5cc9df120b5c2ebbb2d89db1c37827
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "langhooks.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "gimple.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
67 /* So we can assign to cfun in this file. */
68 #undef cfun
70 #ifndef STACK_ALIGNMENT_NEEDED
71 #define STACK_ALIGNMENT_NEEDED 1
72 #endif
74 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76 /* Some systems use __main in a way incompatible with its use in gcc, in these
77 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
78 give the same symbol without quotes for an alternative entry point. You
79 must define both, or neither. */
80 #ifndef NAME__MAIN
81 #define NAME__MAIN "__main"
82 #endif
84 /* Round a value to the lowest integer less than it that is a multiple of
85 the required alignment. Avoid using division in case the value is
86 negative. Assume the alignment is a power of two. */
87 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89 /* Similar, but round to the next highest integer that meets the
90 alignment. */
91 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93 /* Nonzero once virtual register instantiation has been done.
94 assign_stack_local uses frame_pointer_rtx when this is nonzero.
95 calls.c:emit_library_call_value_1 uses it to set up
96 post-instantiation libcalls. */
97 int virtuals_instantiated;
99 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
100 static GTY(()) int funcdef_no;
102 /* These variables hold pointers to functions to create and destroy
103 target specific, per-function data structures. */
104 struct machine_function * (*init_machine_status) (void);
106 /* The currently compiled function. */
107 struct function *cfun = 0;
109 /* These hashes record the prologue and epilogue insns. */
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t prologue_insn_hash;
112 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
113 htab_t epilogue_insn_hash;
116 htab_t types_used_by_vars_hash = NULL;
117 vec<tree, va_gc> *types_used_by_cur_var_decl;
119 /* Forward declarations. */
121 static struct temp_slot *find_temp_slot_from_address (rtx);
122 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
123 static void pad_below (struct args_size *, enum machine_mode, tree);
124 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
125 static int all_blocks (tree, tree *);
126 static tree *get_block_vector (tree, int *);
127 extern tree debug_find_var_in_block_tree (tree, tree);
128 /* We always define `record_insns' even if it's not used so that we
129 can always export `prologue_epilogue_contains'. */
130 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
131 static bool contains (const_rtx, htab_t);
132 static void prepare_function_start (void);
133 static void do_clobber_return_reg (rtx, void *);
134 static void do_use_return_reg (rtx, void *);
135 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
137 /* Stack of nested functions. */
138 /* Keep track of the cfun stack. */
140 typedef struct function *function_p;
142 static vec<function_p> function_context_stack;
144 /* Save the current context for compilation of a nested function.
145 This is called from language-specific code. */
147 void
148 push_function_context (void)
150 if (cfun == 0)
151 allocate_struct_function (NULL, false);
153 function_context_stack.safe_push (cfun);
154 set_cfun (NULL);
157 /* Restore the last saved context, at the end of a nested function.
158 This function is called from language-specific code. */
160 void
161 pop_function_context (void)
163 struct function *p = function_context_stack.pop ();
164 set_cfun (p);
165 current_function_decl = p->decl;
167 /* Reset variables that have known state during rtx generation. */
168 virtuals_instantiated = 0;
169 generating_concat_p = 1;
172 /* Clear out all parts of the state in F that can safely be discarded
173 after the function has been parsed, but not compiled, to let
174 garbage collection reclaim the memory. */
176 void
177 free_after_parsing (struct function *f)
179 f->language = 0;
182 /* Clear out all parts of the state in F that can safely be discarded
183 after the function has been compiled, to let garbage collection
184 reclaim the memory. */
186 void
187 free_after_compilation (struct function *f)
189 prologue_insn_hash = NULL;
190 epilogue_insn_hash = NULL;
192 free (crtl->emit.regno_pointer_align);
194 memset (crtl, 0, sizeof (struct rtl_data));
195 f->eh = NULL;
196 f->machine = NULL;
197 f->cfg = NULL;
199 regno_reg_rtx = NULL;
202 /* Return size needed for stack frame based on slots so far allocated.
203 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
204 the caller may have to do that. */
206 HOST_WIDE_INT
207 get_frame_size (void)
209 if (FRAME_GROWS_DOWNWARD)
210 return -frame_offset;
211 else
212 return frame_offset;
215 /* Issue an error message and return TRUE if frame OFFSET overflows in
216 the signed target pointer arithmetics for function FUNC. Otherwise
217 return FALSE. */
219 bool
220 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
222 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
224 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
225 /* Leave room for the fixed part of the frame. */
226 - 64 * UNITS_PER_WORD)
228 error_at (DECL_SOURCE_LOCATION (func),
229 "total size of local objects too large");
230 return TRUE;
233 return FALSE;
236 /* Return stack slot alignment in bits for TYPE and MODE. */
238 static unsigned int
239 get_stack_local_alignment (tree type, enum machine_mode mode)
241 unsigned int alignment;
243 if (mode == BLKmode)
244 alignment = BIGGEST_ALIGNMENT;
245 else
246 alignment = GET_MODE_ALIGNMENT (mode);
248 /* Allow the frond-end to (possibly) increase the alignment of this
249 stack slot. */
250 if (! type)
251 type = lang_hooks.types.type_for_mode (mode, 0);
253 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
256 /* Determine whether it is possible to fit a stack slot of size SIZE and
257 alignment ALIGNMENT into an area in the stack frame that starts at
258 frame offset START and has a length of LENGTH. If so, store the frame
259 offset to be used for the stack slot in *POFFSET and return true;
260 return false otherwise. This function will extend the frame size when
261 given a start/length pair that lies at the end of the frame. */
263 static bool
264 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
265 HOST_WIDE_INT size, unsigned int alignment,
266 HOST_WIDE_INT *poffset)
268 HOST_WIDE_INT this_frame_offset;
269 int frame_off, frame_alignment, frame_phase;
271 /* Calculate how many bytes the start of local variables is off from
272 stack alignment. */
273 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
274 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
275 frame_phase = frame_off ? frame_alignment - frame_off : 0;
277 /* Round the frame offset to the specified alignment. */
279 /* We must be careful here, since FRAME_OFFSET might be negative and
280 division with a negative dividend isn't as well defined as we might
281 like. So we instead assume that ALIGNMENT is a power of two and
282 use logical operations which are unambiguous. */
283 if (FRAME_GROWS_DOWNWARD)
284 this_frame_offset
285 = (FLOOR_ROUND (start + length - size - frame_phase,
286 (unsigned HOST_WIDE_INT) alignment)
287 + frame_phase);
288 else
289 this_frame_offset
290 = (CEIL_ROUND (start - frame_phase,
291 (unsigned HOST_WIDE_INT) alignment)
292 + frame_phase);
294 /* See if it fits. If this space is at the edge of the frame,
295 consider extending the frame to make it fit. Our caller relies on
296 this when allocating a new slot. */
297 if (frame_offset == start && this_frame_offset < frame_offset)
298 frame_offset = this_frame_offset;
299 else if (this_frame_offset < start)
300 return false;
301 else if (start + length == frame_offset
302 && this_frame_offset + size > start + length)
303 frame_offset = this_frame_offset + size;
304 else if (this_frame_offset + size > start + length)
305 return false;
307 *poffset = this_frame_offset;
308 return true;
311 /* Create a new frame_space structure describing free space in the stack
312 frame beginning at START and ending at END, and chain it into the
313 function's frame_space_list. */
315 static void
316 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
318 struct frame_space *space = ggc_alloc_frame_space ();
319 space->next = crtl->frame_space_list;
320 crtl->frame_space_list = space;
321 space->start = start;
322 space->length = end - start;
325 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
326 with machine mode MODE.
328 ALIGN controls the amount of alignment for the address of the slot:
329 0 means according to MODE,
330 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
331 -2 means use BITS_PER_UNIT,
332 positive specifies alignment boundary in bits.
334 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
335 alignment and ASLK_RECORD_PAD bit set if we should remember
336 extra space we allocated for alignment purposes. When we are
337 called from assign_stack_temp_for_type, it is not set so we don't
338 track the same stack slot in two independent lists.
340 We do not round to stack_boundary here. */
343 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
344 int align, int kind)
346 rtx x, addr;
347 int bigend_correction = 0;
348 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
349 unsigned int alignment, alignment_in_bits;
351 if (align == 0)
353 alignment = get_stack_local_alignment (NULL, mode);
354 alignment /= BITS_PER_UNIT;
356 else if (align == -1)
358 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
359 size = CEIL_ROUND (size, alignment);
361 else if (align == -2)
362 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
363 else
364 alignment = align / BITS_PER_UNIT;
366 alignment_in_bits = alignment * BITS_PER_UNIT;
368 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
369 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
371 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
372 alignment = alignment_in_bits / BITS_PER_UNIT;
375 if (SUPPORTS_STACK_ALIGNMENT)
377 if (crtl->stack_alignment_estimated < alignment_in_bits)
379 if (!crtl->stack_realign_processed)
380 crtl->stack_alignment_estimated = alignment_in_bits;
381 else
383 /* If stack is realigned and stack alignment value
384 hasn't been finalized, it is OK not to increase
385 stack_alignment_estimated. The bigger alignment
386 requirement is recorded in stack_alignment_needed
387 below. */
388 gcc_assert (!crtl->stack_realign_finalized);
389 if (!crtl->stack_realign_needed)
391 /* It is OK to reduce the alignment as long as the
392 requested size is 0 or the estimated stack
393 alignment >= mode alignment. */
394 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
395 || size == 0
396 || (crtl->stack_alignment_estimated
397 >= GET_MODE_ALIGNMENT (mode)));
398 alignment_in_bits = crtl->stack_alignment_estimated;
399 alignment = alignment_in_bits / BITS_PER_UNIT;
405 if (crtl->stack_alignment_needed < alignment_in_bits)
406 crtl->stack_alignment_needed = alignment_in_bits;
407 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
408 crtl->max_used_stack_slot_alignment = alignment_in_bits;
410 if (mode != BLKmode || size != 0)
412 if (kind & ASLK_RECORD_PAD)
414 struct frame_space **psp;
416 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
418 struct frame_space *space = *psp;
419 if (!try_fit_stack_local (space->start, space->length, size,
420 alignment, &slot_offset))
421 continue;
422 *psp = space->next;
423 if (slot_offset > space->start)
424 add_frame_space (space->start, slot_offset);
425 if (slot_offset + size < space->start + space->length)
426 add_frame_space (slot_offset + size,
427 space->start + space->length);
428 goto found_space;
432 else if (!STACK_ALIGNMENT_NEEDED)
434 slot_offset = frame_offset;
435 goto found_space;
438 old_frame_offset = frame_offset;
440 if (FRAME_GROWS_DOWNWARD)
442 frame_offset -= size;
443 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
445 if (kind & ASLK_RECORD_PAD)
447 if (slot_offset > frame_offset)
448 add_frame_space (frame_offset, slot_offset);
449 if (slot_offset + size < old_frame_offset)
450 add_frame_space (slot_offset + size, old_frame_offset);
453 else
455 frame_offset += size;
456 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
458 if (kind & ASLK_RECORD_PAD)
460 if (slot_offset > old_frame_offset)
461 add_frame_space (old_frame_offset, slot_offset);
462 if (slot_offset + size < frame_offset)
463 add_frame_space (slot_offset + size, frame_offset);
467 found_space:
468 /* On a big-endian machine, if we are allocating more space than we will use,
469 use the least significant bytes of those that are allocated. */
470 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
471 bigend_correction = size - GET_MODE_SIZE (mode);
473 /* If we have already instantiated virtual registers, return the actual
474 address relative to the frame pointer. */
475 if (virtuals_instantiated)
476 addr = plus_constant (Pmode, frame_pointer_rtx,
477 trunc_int_for_mode
478 (slot_offset + bigend_correction
479 + STARTING_FRAME_OFFSET, Pmode));
480 else
481 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
482 trunc_int_for_mode
483 (slot_offset + bigend_correction,
484 Pmode));
486 x = gen_rtx_MEM (mode, addr);
487 set_mem_align (x, alignment_in_bits);
488 MEM_NOTRAP_P (x) = 1;
490 stack_slot_list
491 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
493 if (frame_offset_overflow (frame_offset, current_function_decl))
494 frame_offset = 0;
496 return x;
499 /* Wrap up assign_stack_local_1 with last parameter as false. */
502 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
504 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
507 /* In order to evaluate some expressions, such as function calls returning
508 structures in memory, we need to temporarily allocate stack locations.
509 We record each allocated temporary in the following structure.
511 Associated with each temporary slot is a nesting level. When we pop up
512 one level, all temporaries associated with the previous level are freed.
513 Normally, all temporaries are freed after the execution of the statement
514 in which they were created. However, if we are inside a ({...}) grouping,
515 the result may be in a temporary and hence must be preserved. If the
516 result could be in a temporary, we preserve it if we can determine which
517 one it is in. If we cannot determine which temporary may contain the
518 result, all temporaries are preserved. A temporary is preserved by
519 pretending it was allocated at the previous nesting level. */
521 struct GTY(()) temp_slot {
522 /* Points to next temporary slot. */
523 struct temp_slot *next;
524 /* Points to previous temporary slot. */
525 struct temp_slot *prev;
526 /* The rtx to used to reference the slot. */
527 rtx slot;
528 /* The size, in units, of the slot. */
529 HOST_WIDE_INT size;
530 /* The type of the object in the slot, or zero if it doesn't correspond
531 to a type. We use this to determine whether a slot can be reused.
532 It can be reused if objects of the type of the new slot will always
533 conflict with objects of the type of the old slot. */
534 tree type;
535 /* The alignment (in bits) of the slot. */
536 unsigned int align;
537 /* Nonzero if this temporary is currently in use. */
538 char in_use;
539 /* Nesting level at which this slot is being used. */
540 int level;
541 /* The offset of the slot from the frame_pointer, including extra space
542 for alignment. This info is for combine_temp_slots. */
543 HOST_WIDE_INT base_offset;
544 /* The size of the slot, including extra space for alignment. This
545 info is for combine_temp_slots. */
546 HOST_WIDE_INT full_size;
549 /* A table of addresses that represent a stack slot. The table is a mapping
550 from address RTXen to a temp slot. */
551 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
552 static size_t n_temp_slots_in_use;
554 /* Entry for the above hash table. */
555 struct GTY(()) temp_slot_address_entry {
556 hashval_t hash;
557 rtx address;
558 struct temp_slot *temp_slot;
561 /* Removes temporary slot TEMP from LIST. */
563 static void
564 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
566 if (temp->next)
567 temp->next->prev = temp->prev;
568 if (temp->prev)
569 temp->prev->next = temp->next;
570 else
571 *list = temp->next;
573 temp->prev = temp->next = NULL;
576 /* Inserts temporary slot TEMP to LIST. */
578 static void
579 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
581 temp->next = *list;
582 if (*list)
583 (*list)->prev = temp;
584 temp->prev = NULL;
585 *list = temp;
588 /* Returns the list of used temp slots at LEVEL. */
590 static struct temp_slot **
591 temp_slots_at_level (int level)
593 if (level >= (int) vec_safe_length (used_temp_slots))
594 vec_safe_grow_cleared (used_temp_slots, level + 1);
596 return &(*used_temp_slots)[level];
599 /* Returns the maximal temporary slot level. */
601 static int
602 max_slot_level (void)
604 if (!used_temp_slots)
605 return -1;
607 return used_temp_slots->length () - 1;
610 /* Moves temporary slot TEMP to LEVEL. */
612 static void
613 move_slot_to_level (struct temp_slot *temp, int level)
615 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
616 insert_slot_to_list (temp, temp_slots_at_level (level));
617 temp->level = level;
620 /* Make temporary slot TEMP available. */
622 static void
623 make_slot_available (struct temp_slot *temp)
625 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
626 insert_slot_to_list (temp, &avail_temp_slots);
627 temp->in_use = 0;
628 temp->level = -1;
629 n_temp_slots_in_use--;
632 /* Compute the hash value for an address -> temp slot mapping.
633 The value is cached on the mapping entry. */
634 static hashval_t
635 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
637 int do_not_record = 0;
638 return hash_rtx (t->address, GET_MODE (t->address),
639 &do_not_record, NULL, false);
642 /* Return the hash value for an address -> temp slot mapping. */
643 static hashval_t
644 temp_slot_address_hash (const void *p)
646 const struct temp_slot_address_entry *t;
647 t = (const struct temp_slot_address_entry *) p;
648 return t->hash;
651 /* Compare two address -> temp slot mapping entries. */
652 static int
653 temp_slot_address_eq (const void *p1, const void *p2)
655 const struct temp_slot_address_entry *t1, *t2;
656 t1 = (const struct temp_slot_address_entry *) p1;
657 t2 = (const struct temp_slot_address_entry *) p2;
658 return exp_equiv_p (t1->address, t2->address, 0, true);
661 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
662 static void
663 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
665 void **slot;
666 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
667 t->address = address;
668 t->temp_slot = temp_slot;
669 t->hash = temp_slot_address_compute_hash (t);
670 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
671 *slot = t;
674 /* Remove an address -> temp slot mapping entry if the temp slot is
675 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
676 static int
677 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
679 const struct temp_slot_address_entry *t;
680 t = (const struct temp_slot_address_entry *) *slot;
681 if (! t->temp_slot->in_use)
682 htab_clear_slot (temp_slot_address_table, slot);
683 return 1;
686 /* Remove all mappings of addresses to unused temp slots. */
687 static void
688 remove_unused_temp_slot_addresses (void)
690 /* Use quicker clearing if there aren't any active temp slots. */
691 if (n_temp_slots_in_use)
692 htab_traverse (temp_slot_address_table,
693 remove_unused_temp_slot_addresses_1,
694 NULL);
695 else
696 htab_empty (temp_slot_address_table);
699 /* Find the temp slot corresponding to the object at address X. */
701 static struct temp_slot *
702 find_temp_slot_from_address (rtx x)
704 struct temp_slot *p;
705 struct temp_slot_address_entry tmp, *t;
707 /* First try the easy way:
708 See if X exists in the address -> temp slot mapping. */
709 tmp.address = x;
710 tmp.temp_slot = NULL;
711 tmp.hash = temp_slot_address_compute_hash (&tmp);
712 t = (struct temp_slot_address_entry *)
713 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
714 if (t)
715 return t->temp_slot;
717 /* If we have a sum involving a register, see if it points to a temp
718 slot. */
719 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
720 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
721 return p;
722 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
723 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
724 return p;
726 /* Last resort: Address is a virtual stack var address. */
727 if (GET_CODE (x) == PLUS
728 && XEXP (x, 0) == virtual_stack_vars_rtx
729 && CONST_INT_P (XEXP (x, 1)))
731 int i;
732 for (i = max_slot_level (); i >= 0; i--)
733 for (p = *temp_slots_at_level (i); p; p = p->next)
735 if (INTVAL (XEXP (x, 1)) >= p->base_offset
736 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
737 return p;
741 return NULL;
744 /* Allocate a temporary stack slot and record it for possible later
745 reuse.
747 MODE is the machine mode to be given to the returned rtx.
749 SIZE is the size in units of the space required. We do no rounding here
750 since assign_stack_local will do any required rounding.
752 TYPE is the type that will be used for the stack slot. */
755 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
756 tree type)
758 unsigned int align;
759 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
760 rtx slot;
762 /* If SIZE is -1 it means that somebody tried to allocate a temporary
763 of a variable size. */
764 gcc_assert (size != -1);
766 align = get_stack_local_alignment (type, mode);
768 /* Try to find an available, already-allocated temporary of the proper
769 mode which meets the size and alignment requirements. Choose the
770 smallest one with the closest alignment.
772 If assign_stack_temp is called outside of the tree->rtl expansion,
773 we cannot reuse the stack slots (that may still refer to
774 VIRTUAL_STACK_VARS_REGNUM). */
775 if (!virtuals_instantiated)
777 for (p = avail_temp_slots; p; p = p->next)
779 if (p->align >= align && p->size >= size
780 && GET_MODE (p->slot) == mode
781 && objects_must_conflict_p (p->type, type)
782 && (best_p == 0 || best_p->size > p->size
783 || (best_p->size == p->size && best_p->align > p->align)))
785 if (p->align == align && p->size == size)
787 selected = p;
788 cut_slot_from_list (selected, &avail_temp_slots);
789 best_p = 0;
790 break;
792 best_p = p;
797 /* Make our best, if any, the one to use. */
798 if (best_p)
800 selected = best_p;
801 cut_slot_from_list (selected, &avail_temp_slots);
803 /* If there are enough aligned bytes left over, make them into a new
804 temp_slot so that the extra bytes don't get wasted. Do this only
805 for BLKmode slots, so that we can be sure of the alignment. */
806 if (GET_MODE (best_p->slot) == BLKmode)
808 int alignment = best_p->align / BITS_PER_UNIT;
809 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
811 if (best_p->size - rounded_size >= alignment)
813 p = ggc_alloc_temp_slot ();
814 p->in_use = 0;
815 p->size = best_p->size - rounded_size;
816 p->base_offset = best_p->base_offset + rounded_size;
817 p->full_size = best_p->full_size - rounded_size;
818 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
819 p->align = best_p->align;
820 p->type = best_p->type;
821 insert_slot_to_list (p, &avail_temp_slots);
823 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
824 stack_slot_list);
826 best_p->size = rounded_size;
827 best_p->full_size = rounded_size;
832 /* If we still didn't find one, make a new temporary. */
833 if (selected == 0)
835 HOST_WIDE_INT frame_offset_old = frame_offset;
837 p = ggc_alloc_temp_slot ();
839 /* We are passing an explicit alignment request to assign_stack_local.
840 One side effect of that is assign_stack_local will not round SIZE
841 to ensure the frame offset remains suitably aligned.
843 So for requests which depended on the rounding of SIZE, we go ahead
844 and round it now. We also make sure ALIGNMENT is at least
845 BIGGEST_ALIGNMENT. */
846 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
847 p->slot = assign_stack_local_1 (mode,
848 (mode == BLKmode
849 ? CEIL_ROUND (size,
850 (int) align
851 / BITS_PER_UNIT)
852 : size),
853 align, 0);
855 p->align = align;
857 /* The following slot size computation is necessary because we don't
858 know the actual size of the temporary slot until assign_stack_local
859 has performed all the frame alignment and size rounding for the
860 requested temporary. Note that extra space added for alignment
861 can be either above or below this stack slot depending on which
862 way the frame grows. We include the extra space if and only if it
863 is above this slot. */
864 if (FRAME_GROWS_DOWNWARD)
865 p->size = frame_offset_old - frame_offset;
866 else
867 p->size = size;
869 /* Now define the fields used by combine_temp_slots. */
870 if (FRAME_GROWS_DOWNWARD)
872 p->base_offset = frame_offset;
873 p->full_size = frame_offset_old - frame_offset;
875 else
877 p->base_offset = frame_offset_old;
878 p->full_size = frame_offset - frame_offset_old;
881 selected = p;
884 p = selected;
885 p->in_use = 1;
886 p->type = type;
887 p->level = temp_slot_level;
888 n_temp_slots_in_use++;
890 pp = temp_slots_at_level (p->level);
891 insert_slot_to_list (p, pp);
892 insert_temp_slot_address (XEXP (p->slot, 0), p);
894 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
895 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
896 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
898 /* If we know the alias set for the memory that will be used, use
899 it. If there's no TYPE, then we don't know anything about the
900 alias set for the memory. */
901 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
902 set_mem_align (slot, align);
904 /* If a type is specified, set the relevant flags. */
905 if (type != 0)
906 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
907 MEM_NOTRAP_P (slot) = 1;
909 return slot;
912 /* Allocate a temporary stack slot and record it for possible later
913 reuse. First two arguments are same as in preceding function. */
916 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
918 return assign_stack_temp_for_type (mode, size, NULL_TREE);
921 /* Assign a temporary.
922 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
923 and so that should be used in error messages. In either case, we
924 allocate of the given type.
925 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
926 it is 0 if a register is OK.
927 DONT_PROMOTE is 1 if we should not promote values in register
928 to wider modes. */
931 assign_temp (tree type_or_decl, int memory_required,
932 int dont_promote ATTRIBUTE_UNUSED)
934 tree type, decl;
935 enum machine_mode mode;
936 #ifdef PROMOTE_MODE
937 int unsignedp;
938 #endif
940 if (DECL_P (type_or_decl))
941 decl = type_or_decl, type = TREE_TYPE (decl);
942 else
943 decl = NULL, type = type_or_decl;
945 mode = TYPE_MODE (type);
946 #ifdef PROMOTE_MODE
947 unsignedp = TYPE_UNSIGNED (type);
948 #endif
950 if (mode == BLKmode || memory_required)
952 HOST_WIDE_INT size = int_size_in_bytes (type);
953 rtx tmp;
955 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
956 problems with allocating the stack space. */
957 if (size == 0)
958 size = 1;
960 /* Unfortunately, we don't yet know how to allocate variable-sized
961 temporaries. However, sometimes we can find a fixed upper limit on
962 the size, so try that instead. */
963 else if (size == -1)
964 size = max_int_size_in_bytes (type);
966 /* The size of the temporary may be too large to fit into an integer. */
967 /* ??? Not sure this should happen except for user silliness, so limit
968 this to things that aren't compiler-generated temporaries. The
969 rest of the time we'll die in assign_stack_temp_for_type. */
970 if (decl && size == -1
971 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
973 error ("size of variable %q+D is too large", decl);
974 size = 1;
977 tmp = assign_stack_temp_for_type (mode, size, type);
978 return tmp;
981 #ifdef PROMOTE_MODE
982 if (! dont_promote)
983 mode = promote_mode (type, mode, &unsignedp);
984 #endif
986 return gen_reg_rtx (mode);
989 /* Combine temporary stack slots which are adjacent on the stack.
991 This allows for better use of already allocated stack space. This is only
992 done for BLKmode slots because we can be sure that we won't have alignment
993 problems in this case. */
995 static void
996 combine_temp_slots (void)
998 struct temp_slot *p, *q, *next, *next_q;
999 int num_slots;
1001 /* We can't combine slots, because the information about which slot
1002 is in which alias set will be lost. */
1003 if (flag_strict_aliasing)
1004 return;
1006 /* If there are a lot of temp slots, don't do anything unless
1007 high levels of optimization. */
1008 if (! flag_expensive_optimizations)
1009 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1010 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1011 return;
1013 for (p = avail_temp_slots; p; p = next)
1015 int delete_p = 0;
1017 next = p->next;
1019 if (GET_MODE (p->slot) != BLKmode)
1020 continue;
1022 for (q = p->next; q; q = next_q)
1024 int delete_q = 0;
1026 next_q = q->next;
1028 if (GET_MODE (q->slot) != BLKmode)
1029 continue;
1031 if (p->base_offset + p->full_size == q->base_offset)
1033 /* Q comes after P; combine Q into P. */
1034 p->size += q->size;
1035 p->full_size += q->full_size;
1036 delete_q = 1;
1038 else if (q->base_offset + q->full_size == p->base_offset)
1040 /* P comes after Q; combine P into Q. */
1041 q->size += p->size;
1042 q->full_size += p->full_size;
1043 delete_p = 1;
1044 break;
1046 if (delete_q)
1047 cut_slot_from_list (q, &avail_temp_slots);
1050 /* Either delete P or advance past it. */
1051 if (delete_p)
1052 cut_slot_from_list (p, &avail_temp_slots);
1056 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1057 slot that previously was known by OLD_RTX. */
1059 void
1060 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1062 struct temp_slot *p;
1064 if (rtx_equal_p (old_rtx, new_rtx))
1065 return;
1067 p = find_temp_slot_from_address (old_rtx);
1069 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1070 NEW_RTX is a register, see if one operand of the PLUS is a
1071 temporary location. If so, NEW_RTX points into it. Otherwise,
1072 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1073 in common between them. If so, try a recursive call on those
1074 values. */
1075 if (p == 0)
1077 if (GET_CODE (old_rtx) != PLUS)
1078 return;
1080 if (REG_P (new_rtx))
1082 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1083 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1084 return;
1086 else if (GET_CODE (new_rtx) != PLUS)
1087 return;
1089 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1092 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1093 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1095 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1096 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1098 return;
1101 /* Otherwise add an alias for the temp's address. */
1102 insert_temp_slot_address (new_rtx, p);
1105 /* If X could be a reference to a temporary slot, mark that slot as
1106 belonging to the to one level higher than the current level. If X
1107 matched one of our slots, just mark that one. Otherwise, we can't
1108 easily predict which it is, so upgrade all of them.
1110 This is called when an ({...}) construct occurs and a statement
1111 returns a value in memory. */
1113 void
1114 preserve_temp_slots (rtx x)
1116 struct temp_slot *p = 0, *next;
1118 if (x == 0)
1119 return;
1121 /* If X is a register that is being used as a pointer, see if we have
1122 a temporary slot we know it points to. */
1123 if (REG_P (x) && REG_POINTER (x))
1124 p = find_temp_slot_from_address (x);
1126 /* If X is not in memory or is at a constant address, it cannot be in
1127 a temporary slot. */
1128 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1129 return;
1131 /* First see if we can find a match. */
1132 if (p == 0)
1133 p = find_temp_slot_from_address (XEXP (x, 0));
1135 if (p != 0)
1137 if (p->level == temp_slot_level)
1138 move_slot_to_level (p, temp_slot_level - 1);
1139 return;
1142 /* Otherwise, preserve all non-kept slots at this level. */
1143 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1145 next = p->next;
1146 move_slot_to_level (p, temp_slot_level - 1);
1150 /* Free all temporaries used so far. This is normally called at the
1151 end of generating code for a statement. */
1153 void
1154 free_temp_slots (void)
1156 struct temp_slot *p, *next;
1157 bool some_available = false;
1159 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1161 next = p->next;
1162 make_slot_available (p);
1163 some_available = true;
1166 if (some_available)
1168 remove_unused_temp_slot_addresses ();
1169 combine_temp_slots ();
1173 /* Push deeper into the nesting level for stack temporaries. */
1175 void
1176 push_temp_slots (void)
1178 temp_slot_level++;
1181 /* Pop a temporary nesting level. All slots in use in the current level
1182 are freed. */
1184 void
1185 pop_temp_slots (void)
1187 free_temp_slots ();
1188 temp_slot_level--;
1191 /* Initialize temporary slots. */
1193 void
1194 init_temp_slots (void)
1196 /* We have not allocated any temporaries yet. */
1197 avail_temp_slots = 0;
1198 vec_alloc (used_temp_slots, 0);
1199 temp_slot_level = 0;
1200 n_temp_slots_in_use = 0;
1202 /* Set up the table to map addresses to temp slots. */
1203 if (! temp_slot_address_table)
1204 temp_slot_address_table = htab_create_ggc (32,
1205 temp_slot_address_hash,
1206 temp_slot_address_eq,
1207 NULL);
1208 else
1209 htab_empty (temp_slot_address_table);
1212 /* Functions and data structures to keep track of the values hard regs
1213 had at the start of the function. */
1215 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1216 and has_hard_reg_initial_val.. */
1217 typedef struct GTY(()) initial_value_pair {
1218 rtx hard_reg;
1219 rtx pseudo;
1220 } initial_value_pair;
1221 /* ??? This could be a VEC but there is currently no way to define an
1222 opaque VEC type. This could be worked around by defining struct
1223 initial_value_pair in function.h. */
1224 typedef struct GTY(()) initial_value_struct {
1225 int num_entries;
1226 int max_entries;
1227 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1228 } initial_value_struct;
1230 /* If a pseudo represents an initial hard reg (or expression), return
1231 it, else return NULL_RTX. */
1234 get_hard_reg_initial_reg (rtx reg)
1236 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1237 int i;
1239 if (ivs == 0)
1240 return NULL_RTX;
1242 for (i = 0; i < ivs->num_entries; i++)
1243 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1244 return ivs->entries[i].hard_reg;
1246 return NULL_RTX;
1249 /* Make sure that there's a pseudo register of mode MODE that stores the
1250 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1253 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1255 struct initial_value_struct *ivs;
1256 rtx rv;
1258 rv = has_hard_reg_initial_val (mode, regno);
1259 if (rv)
1260 return rv;
1262 ivs = crtl->hard_reg_initial_vals;
1263 if (ivs == 0)
1265 ivs = ggc_alloc_initial_value_struct ();
1266 ivs->num_entries = 0;
1267 ivs->max_entries = 5;
1268 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1269 crtl->hard_reg_initial_vals = ivs;
1272 if (ivs->num_entries >= ivs->max_entries)
1274 ivs->max_entries += 5;
1275 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1276 ivs->max_entries);
1279 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1280 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1282 return ivs->entries[ivs->num_entries++].pseudo;
1285 /* See if get_hard_reg_initial_val has been used to create a pseudo
1286 for the initial value of hard register REGNO in mode MODE. Return
1287 the associated pseudo if so, otherwise return NULL. */
1290 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1292 struct initial_value_struct *ivs;
1293 int i;
1295 ivs = crtl->hard_reg_initial_vals;
1296 if (ivs != 0)
1297 for (i = 0; i < ivs->num_entries; i++)
1298 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1299 && REGNO (ivs->entries[i].hard_reg) == regno)
1300 return ivs->entries[i].pseudo;
1302 return NULL_RTX;
1305 unsigned int
1306 emit_initial_value_sets (void)
1308 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1309 int i;
1310 rtx seq;
1312 if (ivs == 0)
1313 return 0;
1315 start_sequence ();
1316 for (i = 0; i < ivs->num_entries; i++)
1317 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1318 seq = get_insns ();
1319 end_sequence ();
1321 emit_insn_at_entry (seq);
1322 return 0;
1325 /* Return the hardreg-pseudoreg initial values pair entry I and
1326 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1327 bool
1328 initial_value_entry (int i, rtx *hreg, rtx *preg)
1330 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1331 if (!ivs || i >= ivs->num_entries)
1332 return false;
1334 *hreg = ivs->entries[i].hard_reg;
1335 *preg = ivs->entries[i].pseudo;
1336 return true;
1339 /* These routines are responsible for converting virtual register references
1340 to the actual hard register references once RTL generation is complete.
1342 The following four variables are used for communication between the
1343 routines. They contain the offsets of the virtual registers from their
1344 respective hard registers. */
1346 static int in_arg_offset;
1347 static int var_offset;
1348 static int dynamic_offset;
1349 static int out_arg_offset;
1350 static int cfa_offset;
1352 /* In most machines, the stack pointer register is equivalent to the bottom
1353 of the stack. */
1355 #ifndef STACK_POINTER_OFFSET
1356 #define STACK_POINTER_OFFSET 0
1357 #endif
1359 /* If not defined, pick an appropriate default for the offset of dynamically
1360 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1361 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1363 #ifndef STACK_DYNAMIC_OFFSET
1365 /* The bottom of the stack points to the actual arguments. If
1366 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1367 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1368 stack space for register parameters is not pushed by the caller, but
1369 rather part of the fixed stack areas and hence not included in
1370 `crtl->outgoing_args_size'. Nevertheless, we must allow
1371 for it when allocating stack dynamic objects. */
1373 #if defined(REG_PARM_STACK_SPACE)
1374 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1375 ((ACCUMULATE_OUTGOING_ARGS \
1376 ? (crtl->outgoing_args_size \
1377 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1378 : REG_PARM_STACK_SPACE (FNDECL))) \
1379 : 0) + (STACK_POINTER_OFFSET))
1380 #else
1381 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1382 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1383 + (STACK_POINTER_OFFSET))
1384 #endif
1385 #endif
1388 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1389 is a virtual register, return the equivalent hard register and set the
1390 offset indirectly through the pointer. Otherwise, return 0. */
1392 static rtx
1393 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1395 rtx new_rtx;
1396 HOST_WIDE_INT offset;
1398 if (x == virtual_incoming_args_rtx)
1400 if (stack_realign_drap)
1402 /* Replace virtual_incoming_args_rtx with internal arg
1403 pointer if DRAP is used to realign stack. */
1404 new_rtx = crtl->args.internal_arg_pointer;
1405 offset = 0;
1407 else
1408 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1410 else if (x == virtual_stack_vars_rtx)
1411 new_rtx = frame_pointer_rtx, offset = var_offset;
1412 else if (x == virtual_stack_dynamic_rtx)
1413 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1414 else if (x == virtual_outgoing_args_rtx)
1415 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1416 else if (x == virtual_cfa_rtx)
1418 #ifdef FRAME_POINTER_CFA_OFFSET
1419 new_rtx = frame_pointer_rtx;
1420 #else
1421 new_rtx = arg_pointer_rtx;
1422 #endif
1423 offset = cfa_offset;
1425 else if (x == virtual_preferred_stack_boundary_rtx)
1427 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1428 offset = 0;
1430 else
1431 return NULL_RTX;
1433 *poffset = offset;
1434 return new_rtx;
1437 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1438 Instantiate any virtual registers present inside of *LOC. The expression
1439 is simplified, as much as possible, but is not to be considered "valid"
1440 in any sense implied by the target. If any change is made, set CHANGED
1441 to true. */
1443 static int
1444 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1446 HOST_WIDE_INT offset;
1447 bool *changed = (bool *) data;
1448 rtx x, new_rtx;
1450 x = *loc;
1451 if (x == 0)
1452 return 0;
1454 switch (GET_CODE (x))
1456 case REG:
1457 new_rtx = instantiate_new_reg (x, &offset);
1458 if (new_rtx)
1460 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1461 if (changed)
1462 *changed = true;
1464 return -1;
1466 case PLUS:
1467 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1468 if (new_rtx)
1470 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1471 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1472 if (changed)
1473 *changed = true;
1474 return -1;
1477 /* FIXME -- from old code */
1478 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1479 we can commute the PLUS and SUBREG because pointers into the
1480 frame are well-behaved. */
1481 break;
1483 default:
1484 break;
1487 return 0;
1490 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1491 matches the predicate for insn CODE operand OPERAND. */
1493 static int
1494 safe_insn_predicate (int code, int operand, rtx x)
1496 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1499 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1500 registers present inside of insn. The result will be a valid insn. */
1502 static void
1503 instantiate_virtual_regs_in_insn (rtx insn)
1505 HOST_WIDE_INT offset;
1506 int insn_code, i;
1507 bool any_change = false;
1508 rtx set, new_rtx, x, seq;
1510 /* There are some special cases to be handled first. */
1511 set = single_set (insn);
1512 if (set)
1514 /* We're allowed to assign to a virtual register. This is interpreted
1515 to mean that the underlying register gets assigned the inverse
1516 transformation. This is used, for example, in the handling of
1517 non-local gotos. */
1518 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1519 if (new_rtx)
1521 start_sequence ();
1523 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1524 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1525 GEN_INT (-offset));
1526 x = force_operand (x, new_rtx);
1527 if (x != new_rtx)
1528 emit_move_insn (new_rtx, x);
1530 seq = get_insns ();
1531 end_sequence ();
1533 emit_insn_before (seq, insn);
1534 delete_insn (insn);
1535 return;
1538 /* Handle a straight copy from a virtual register by generating a
1539 new add insn. The difference between this and falling through
1540 to the generic case is avoiding a new pseudo and eliminating a
1541 move insn in the initial rtl stream. */
1542 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1543 if (new_rtx && offset != 0
1544 && REG_P (SET_DEST (set))
1545 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1547 start_sequence ();
1549 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1550 new_rtx, GEN_INT (offset), SET_DEST (set),
1551 1, OPTAB_LIB_WIDEN);
1552 if (x != SET_DEST (set))
1553 emit_move_insn (SET_DEST (set), x);
1555 seq = get_insns ();
1556 end_sequence ();
1558 emit_insn_before (seq, insn);
1559 delete_insn (insn);
1560 return;
1563 extract_insn (insn);
1564 insn_code = INSN_CODE (insn);
1566 /* Handle a plus involving a virtual register by determining if the
1567 operands remain valid if they're modified in place. */
1568 if (GET_CODE (SET_SRC (set)) == PLUS
1569 && recog_data.n_operands >= 3
1570 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1571 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1572 && CONST_INT_P (recog_data.operand[2])
1573 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1575 offset += INTVAL (recog_data.operand[2]);
1577 /* If the sum is zero, then replace with a plain move. */
1578 if (offset == 0
1579 && REG_P (SET_DEST (set))
1580 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1582 start_sequence ();
1583 emit_move_insn (SET_DEST (set), new_rtx);
1584 seq = get_insns ();
1585 end_sequence ();
1587 emit_insn_before (seq, insn);
1588 delete_insn (insn);
1589 return;
1592 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1594 /* Using validate_change and apply_change_group here leaves
1595 recog_data in an invalid state. Since we know exactly what
1596 we want to check, do those two by hand. */
1597 if (safe_insn_predicate (insn_code, 1, new_rtx)
1598 && safe_insn_predicate (insn_code, 2, x))
1600 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1601 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1602 any_change = true;
1604 /* Fall through into the regular operand fixup loop in
1605 order to take care of operands other than 1 and 2. */
1609 else
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1615 /* In the general case, we expect virtual registers to appear only in
1616 operands, and then only as either bare registers or inside memories. */
1617 for (i = 0; i < recog_data.n_operands; ++i)
1619 x = recog_data.operand[i];
1620 switch (GET_CODE (x))
1622 case MEM:
1624 rtx addr = XEXP (x, 0);
1625 bool changed = false;
1627 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1628 if (!changed)
1629 continue;
1631 start_sequence ();
1632 x = replace_equiv_address (x, addr);
1633 /* It may happen that the address with the virtual reg
1634 was valid (e.g. based on the virtual stack reg, which might
1635 be acceptable to the predicates with all offsets), whereas
1636 the address now isn't anymore, for instance when the address
1637 is still offsetted, but the base reg isn't virtual-stack-reg
1638 anymore. Below we would do a force_reg on the whole operand,
1639 but this insn might actually only accept memory. Hence,
1640 before doing that last resort, try to reload the address into
1641 a register, so this operand stays a MEM. */
1642 if (!safe_insn_predicate (insn_code, i, x))
1644 addr = force_reg (GET_MODE (addr), addr);
1645 x = replace_equiv_address (x, addr);
1647 seq = get_insns ();
1648 end_sequence ();
1649 if (seq)
1650 emit_insn_before (seq, insn);
1652 break;
1654 case REG:
1655 new_rtx = instantiate_new_reg (x, &offset);
1656 if (new_rtx == NULL)
1657 continue;
1658 if (offset == 0)
1659 x = new_rtx;
1660 else
1662 start_sequence ();
1664 /* Careful, special mode predicates may have stuff in
1665 insn_data[insn_code].operand[i].mode that isn't useful
1666 to us for computing a new value. */
1667 /* ??? Recognize address_operand and/or "p" constraints
1668 to see if (plus new offset) is a valid before we put
1669 this through expand_simple_binop. */
1670 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1671 GEN_INT (offset), NULL_RTX,
1672 1, OPTAB_LIB_WIDEN);
1673 seq = get_insns ();
1674 end_sequence ();
1675 emit_insn_before (seq, insn);
1677 break;
1679 case SUBREG:
1680 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1681 if (new_rtx == NULL)
1682 continue;
1683 if (offset != 0)
1685 start_sequence ();
1686 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1687 GEN_INT (offset), NULL_RTX,
1688 1, OPTAB_LIB_WIDEN);
1689 seq = get_insns ();
1690 end_sequence ();
1691 emit_insn_before (seq, insn);
1693 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1694 GET_MODE (new_rtx), SUBREG_BYTE (x));
1695 gcc_assert (x);
1696 break;
1698 default:
1699 continue;
1702 /* At this point, X contains the new value for the operand.
1703 Validate the new value vs the insn predicate. Note that
1704 asm insns will have insn_code -1 here. */
1705 if (!safe_insn_predicate (insn_code, i, x))
1707 start_sequence ();
1708 if (REG_P (x))
1710 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1711 x = copy_to_reg (x);
1713 else
1714 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1715 seq = get_insns ();
1716 end_sequence ();
1717 if (seq)
1718 emit_insn_before (seq, insn);
1721 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1722 any_change = true;
1725 if (any_change)
1727 /* Propagate operand changes into the duplicates. */
1728 for (i = 0; i < recog_data.n_dups; ++i)
1729 *recog_data.dup_loc[i]
1730 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1732 /* Force re-recognition of the instruction for validation. */
1733 INSN_CODE (insn) = -1;
1736 if (asm_noperands (PATTERN (insn)) >= 0)
1738 if (!check_asm_operands (PATTERN (insn)))
1740 error_for_asm (insn, "impossible constraint in %<asm%>");
1741 /* For asm goto, instead of fixing up all the edges
1742 just clear the template and clear input operands
1743 (asm goto doesn't have any output operands). */
1744 if (JUMP_P (insn))
1746 rtx asm_op = extract_asm_operands (PATTERN (insn));
1747 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1748 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1749 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1751 else
1752 delete_insn (insn);
1755 else
1757 if (recog_memoized (insn) < 0)
1758 fatal_insn_not_found (insn);
1762 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1763 do any instantiation required. */
1765 void
1766 instantiate_decl_rtl (rtx x)
1768 rtx addr;
1770 if (x == 0)
1771 return;
1773 /* If this is a CONCAT, recurse for the pieces. */
1774 if (GET_CODE (x) == CONCAT)
1776 instantiate_decl_rtl (XEXP (x, 0));
1777 instantiate_decl_rtl (XEXP (x, 1));
1778 return;
1781 /* If this is not a MEM, no need to do anything. Similarly if the
1782 address is a constant or a register that is not a virtual register. */
1783 if (!MEM_P (x))
1784 return;
1786 addr = XEXP (x, 0);
1787 if (CONSTANT_P (addr)
1788 || (REG_P (addr)
1789 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1790 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1791 return;
1793 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1796 /* Helper for instantiate_decls called via walk_tree: Process all decls
1797 in the given DECL_VALUE_EXPR. */
1799 static tree
1800 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1802 tree t = *tp;
1803 if (! EXPR_P (t))
1805 *walk_subtrees = 0;
1806 if (DECL_P (t))
1808 if (DECL_RTL_SET_P (t))
1809 instantiate_decl_rtl (DECL_RTL (t));
1810 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1811 && DECL_INCOMING_RTL (t))
1812 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1813 if ((TREE_CODE (t) == VAR_DECL
1814 || TREE_CODE (t) == RESULT_DECL)
1815 && DECL_HAS_VALUE_EXPR_P (t))
1817 tree v = DECL_VALUE_EXPR (t);
1818 walk_tree (&v, instantiate_expr, NULL, NULL);
1822 return NULL;
1825 /* Subroutine of instantiate_decls: Process all decls in the given
1826 BLOCK node and all its subblocks. */
1828 static void
1829 instantiate_decls_1 (tree let)
1831 tree t;
1833 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1835 if (DECL_RTL_SET_P (t))
1836 instantiate_decl_rtl (DECL_RTL (t));
1837 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1839 tree v = DECL_VALUE_EXPR (t);
1840 walk_tree (&v, instantiate_expr, NULL, NULL);
1844 /* Process all subblocks. */
1845 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1846 instantiate_decls_1 (t);
1849 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1850 all virtual registers in their DECL_RTL's. */
1852 static void
1853 instantiate_decls (tree fndecl)
1855 tree decl;
1856 unsigned ix;
1858 /* Process all parameters of the function. */
1859 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1861 instantiate_decl_rtl (DECL_RTL (decl));
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1863 if (DECL_HAS_VALUE_EXPR_P (decl))
1865 tree v = DECL_VALUE_EXPR (decl);
1866 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 if ((decl = DECL_RESULT (fndecl))
1871 && TREE_CODE (decl) == RESULT_DECL)
1873 if (DECL_RTL_SET_P (decl))
1874 instantiate_decl_rtl (DECL_RTL (decl));
1875 if (DECL_HAS_VALUE_EXPR_P (decl))
1877 tree v = DECL_VALUE_EXPR (decl);
1878 walk_tree (&v, instantiate_expr, NULL, NULL);
1882 /* Now process all variables defined in the function or its subblocks. */
1883 instantiate_decls_1 (DECL_INITIAL (fndecl));
1885 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1886 if (DECL_RTL_SET_P (decl))
1887 instantiate_decl_rtl (DECL_RTL (decl));
1888 vec_free (cfun->local_decls);
1891 /* Pass through the INSNS of function FNDECL and convert virtual register
1892 references to hard register references. */
1894 static unsigned int
1895 instantiate_virtual_regs (void)
1897 rtx insn;
1899 /* Compute the offsets to use for this function. */
1900 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1901 var_offset = STARTING_FRAME_OFFSET;
1902 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1903 out_arg_offset = STACK_POINTER_OFFSET;
1904 #ifdef FRAME_POINTER_CFA_OFFSET
1905 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1906 #else
1907 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1908 #endif
1910 /* Initialize recognition, indicating that volatile is OK. */
1911 init_recog ();
1913 /* Scan through all the insns, instantiating every virtual register still
1914 present. */
1915 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1916 if (INSN_P (insn))
1918 /* These patterns in the instruction stream can never be recognized.
1919 Fortunately, they shouldn't contain virtual registers either. */
1920 if (GET_CODE (PATTERN (insn)) == USE
1921 || GET_CODE (PATTERN (insn)) == CLOBBER
1922 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1923 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1924 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1925 continue;
1926 else if (DEBUG_INSN_P (insn))
1927 for_each_rtx (&INSN_VAR_LOCATION (insn),
1928 instantiate_virtual_regs_in_rtx, NULL);
1929 else
1930 instantiate_virtual_regs_in_insn (insn);
1932 if (INSN_DELETED_P (insn))
1933 continue;
1935 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1937 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1938 if (CALL_P (insn))
1939 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1940 instantiate_virtual_regs_in_rtx, NULL);
1943 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1944 instantiate_decls (current_function_decl);
1946 targetm.instantiate_decls ();
1948 /* Indicate that, from now on, assign_stack_local should use
1949 frame_pointer_rtx. */
1950 virtuals_instantiated = 1;
1952 return 0;
1955 struct rtl_opt_pass pass_instantiate_virtual_regs =
1958 RTL_PASS,
1959 "vregs", /* name */
1960 OPTGROUP_NONE, /* optinfo_flags */
1961 NULL, /* gate */
1962 instantiate_virtual_regs, /* execute */
1963 NULL, /* sub */
1964 NULL, /* next */
1965 0, /* static_pass_number */
1966 TV_NONE, /* tv_id */
1967 0, /* properties_required */
1968 0, /* properties_provided */
1969 0, /* properties_destroyed */
1970 0, /* todo_flags_start */
1971 0 /* todo_flags_finish */
1976 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1977 This means a type for which function calls must pass an address to the
1978 function or get an address back from the function.
1979 EXP may be a type node or an expression (whose type is tested). */
1982 aggregate_value_p (const_tree exp, const_tree fntype)
1984 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1985 int i, regno, nregs;
1986 rtx reg;
1988 if (fntype)
1989 switch (TREE_CODE (fntype))
1991 case CALL_EXPR:
1993 tree fndecl = get_callee_fndecl (fntype);
1994 fntype = (fndecl
1995 ? TREE_TYPE (fndecl)
1996 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1998 break;
1999 case FUNCTION_DECL:
2000 fntype = TREE_TYPE (fntype);
2001 break;
2002 case FUNCTION_TYPE:
2003 case METHOD_TYPE:
2004 break;
2005 case IDENTIFIER_NODE:
2006 fntype = NULL_TREE;
2007 break;
2008 default:
2009 /* We don't expect other tree types here. */
2010 gcc_unreachable ();
2013 if (VOID_TYPE_P (type))
2014 return 0;
2016 /* If a record should be passed the same as its first (and only) member
2017 don't pass it as an aggregate. */
2018 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2019 return aggregate_value_p (first_field (type), fntype);
2021 /* If the front end has decided that this needs to be passed by
2022 reference, do so. */
2023 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2024 && DECL_BY_REFERENCE (exp))
2025 return 1;
2027 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2028 if (fntype && TREE_ADDRESSABLE (fntype))
2029 return 1;
2031 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2032 and thus can't be returned in registers. */
2033 if (TREE_ADDRESSABLE (type))
2034 return 1;
2036 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2037 return 1;
2039 if (targetm.calls.return_in_memory (type, fntype))
2040 return 1;
2042 /* Make sure we have suitable call-clobbered regs to return
2043 the value in; if not, we must return it in memory. */
2044 reg = hard_function_value (type, 0, fntype, 0);
2046 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2047 it is OK. */
2048 if (!REG_P (reg))
2049 return 0;
2051 regno = REGNO (reg);
2052 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2053 for (i = 0; i < nregs; i++)
2054 if (! call_used_regs[regno + i])
2055 return 1;
2057 return 0;
2060 /* Return true if we should assign DECL a pseudo register; false if it
2061 should live on the local stack. */
2063 bool
2064 use_register_for_decl (const_tree decl)
2066 if (!targetm.calls.allocate_stack_slots_for_args())
2067 return true;
2069 /* Honor volatile. */
2070 if (TREE_SIDE_EFFECTS (decl))
2071 return false;
2073 /* Honor addressability. */
2074 if (TREE_ADDRESSABLE (decl))
2075 return false;
2077 /* Only register-like things go in registers. */
2078 if (DECL_MODE (decl) == BLKmode)
2079 return false;
2081 /* If -ffloat-store specified, don't put explicit float variables
2082 into registers. */
2083 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2084 propagates values across these stores, and it probably shouldn't. */
2085 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2086 return false;
2088 /* If we're not interested in tracking debugging information for
2089 this decl, then we can certainly put it in a register. */
2090 if (DECL_IGNORED_P (decl))
2091 return true;
2093 if (optimize)
2094 return true;
2096 if (!DECL_REGISTER (decl))
2097 return false;
2099 switch (TREE_CODE (TREE_TYPE (decl)))
2101 case RECORD_TYPE:
2102 case UNION_TYPE:
2103 case QUAL_UNION_TYPE:
2104 /* When not optimizing, disregard register keyword for variables with
2105 types containing methods, otherwise the methods won't be callable
2106 from the debugger. */
2107 if (TYPE_METHODS (TREE_TYPE (decl)))
2108 return false;
2109 break;
2110 default:
2111 break;
2114 return true;
2117 /* Return true if TYPE should be passed by invisible reference. */
2119 bool
2120 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2121 tree type, bool named_arg)
2123 if (type)
2125 /* If this type contains non-trivial constructors, then it is
2126 forbidden for the middle-end to create any new copies. */
2127 if (TREE_ADDRESSABLE (type))
2128 return true;
2130 /* GCC post 3.4 passes *all* variable sized types by reference. */
2131 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2132 return true;
2134 /* If a record type should be passed the same as its first (and only)
2135 member, use the type and mode of that member. */
2136 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2138 type = TREE_TYPE (first_field (type));
2139 mode = TYPE_MODE (type);
2143 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2144 type, named_arg);
2147 /* Return true if TYPE, which is passed by reference, should be callee
2148 copied instead of caller copied. */
2150 bool
2151 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2152 tree type, bool named_arg)
2154 if (type && TREE_ADDRESSABLE (type))
2155 return false;
2156 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2157 named_arg);
2160 /* Structures to communicate between the subroutines of assign_parms.
2161 The first holds data persistent across all parameters, the second
2162 is cleared out for each parameter. */
2164 struct assign_parm_data_all
2166 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2167 should become a job of the target or otherwise encapsulated. */
2168 CUMULATIVE_ARGS args_so_far_v;
2169 cumulative_args_t args_so_far;
2170 struct args_size stack_args_size;
2171 tree function_result_decl;
2172 tree orig_fnargs;
2173 rtx first_conversion_insn;
2174 rtx last_conversion_insn;
2175 HOST_WIDE_INT pretend_args_size;
2176 HOST_WIDE_INT extra_pretend_bytes;
2177 int reg_parm_stack_space;
2180 struct assign_parm_data_one
2182 tree nominal_type;
2183 tree passed_type;
2184 rtx entry_parm;
2185 rtx stack_parm;
2186 enum machine_mode nominal_mode;
2187 enum machine_mode passed_mode;
2188 enum machine_mode promoted_mode;
2189 struct locate_and_pad_arg_data locate;
2190 int partial;
2191 BOOL_BITFIELD named_arg : 1;
2192 BOOL_BITFIELD passed_pointer : 1;
2193 BOOL_BITFIELD on_stack : 1;
2194 BOOL_BITFIELD loaded_in_reg : 1;
2197 /* A subroutine of assign_parms. Initialize ALL. */
2199 static void
2200 assign_parms_initialize_all (struct assign_parm_data_all *all)
2202 tree fntype ATTRIBUTE_UNUSED;
2204 memset (all, 0, sizeof (*all));
2206 fntype = TREE_TYPE (current_function_decl);
2208 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2209 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2210 #else
2211 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2212 current_function_decl, -1);
2213 #endif
2214 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2216 #ifdef REG_PARM_STACK_SPACE
2217 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2218 #endif
2221 /* If ARGS contains entries with complex types, split the entry into two
2222 entries of the component type. Return a new list of substitutions are
2223 needed, else the old list. */
2225 static void
2226 split_complex_args (vec<tree> *args)
2228 unsigned i;
2229 tree p;
2231 FOR_EACH_VEC_ELT (*args, i, p)
2233 tree type = TREE_TYPE (p);
2234 if (TREE_CODE (type) == COMPLEX_TYPE
2235 && targetm.calls.split_complex_arg (type))
2237 tree decl;
2238 tree subtype = TREE_TYPE (type);
2239 bool addressable = TREE_ADDRESSABLE (p);
2241 /* Rewrite the PARM_DECL's type with its component. */
2242 p = copy_node (p);
2243 TREE_TYPE (p) = subtype;
2244 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2245 DECL_MODE (p) = VOIDmode;
2246 DECL_SIZE (p) = NULL;
2247 DECL_SIZE_UNIT (p) = NULL;
2248 /* If this arg must go in memory, put it in a pseudo here.
2249 We can't allow it to go in memory as per normal parms,
2250 because the usual place might not have the imag part
2251 adjacent to the real part. */
2252 DECL_ARTIFICIAL (p) = addressable;
2253 DECL_IGNORED_P (p) = addressable;
2254 TREE_ADDRESSABLE (p) = 0;
2255 layout_decl (p, 0);
2256 (*args)[i] = p;
2258 /* Build a second synthetic decl. */
2259 decl = build_decl (EXPR_LOCATION (p),
2260 PARM_DECL, NULL_TREE, subtype);
2261 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2262 DECL_ARTIFICIAL (decl) = addressable;
2263 DECL_IGNORED_P (decl) = addressable;
2264 layout_decl (decl, 0);
2265 args->safe_insert (++i, decl);
2270 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2271 the hidden struct return argument, and (abi willing) complex args.
2272 Return the new parameter list. */
2274 static vec<tree>
2275 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2277 tree fndecl = current_function_decl;
2278 tree fntype = TREE_TYPE (fndecl);
2279 vec<tree> fnargs = vNULL;
2280 tree arg;
2282 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2283 fnargs.safe_push (arg);
2285 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2287 /* If struct value address is treated as the first argument, make it so. */
2288 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2289 && ! cfun->returns_pcc_struct
2290 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2292 tree type = build_pointer_type (TREE_TYPE (fntype));
2293 tree decl;
2295 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2296 PARM_DECL, get_identifier (".result_ptr"), type);
2297 DECL_ARG_TYPE (decl) = type;
2298 DECL_ARTIFICIAL (decl) = 1;
2299 DECL_NAMELESS (decl) = 1;
2300 TREE_CONSTANT (decl) = 1;
2302 DECL_CHAIN (decl) = all->orig_fnargs;
2303 all->orig_fnargs = decl;
2304 fnargs.safe_insert (0, decl);
2306 all->function_result_decl = decl;
2309 /* If the target wants to split complex arguments into scalars, do so. */
2310 if (targetm.calls.split_complex_arg)
2311 split_complex_args (&fnargs);
2313 return fnargs;
2316 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2317 data for the parameter. Incorporate ABI specifics such as pass-by-
2318 reference and type promotion. */
2320 static void
2321 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2322 struct assign_parm_data_one *data)
2324 tree nominal_type, passed_type;
2325 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2326 int unsignedp;
2328 memset (data, 0, sizeof (*data));
2330 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2331 if (!cfun->stdarg)
2332 data->named_arg = 1; /* No variadic parms. */
2333 else if (DECL_CHAIN (parm))
2334 data->named_arg = 1; /* Not the last non-variadic parm. */
2335 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2336 data->named_arg = 1; /* Only variadic ones are unnamed. */
2337 else
2338 data->named_arg = 0; /* Treat as variadic. */
2340 nominal_type = TREE_TYPE (parm);
2341 passed_type = DECL_ARG_TYPE (parm);
2343 /* Look out for errors propagating this far. Also, if the parameter's
2344 type is void then its value doesn't matter. */
2345 if (TREE_TYPE (parm) == error_mark_node
2346 /* This can happen after weird syntax errors
2347 or if an enum type is defined among the parms. */
2348 || TREE_CODE (parm) != PARM_DECL
2349 || passed_type == NULL
2350 || VOID_TYPE_P (nominal_type))
2352 nominal_type = passed_type = void_type_node;
2353 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2354 goto egress;
2357 /* Find mode of arg as it is passed, and mode of arg as it should be
2358 during execution of this function. */
2359 passed_mode = TYPE_MODE (passed_type);
2360 nominal_mode = TYPE_MODE (nominal_type);
2362 /* If the parm is to be passed as a transparent union or record, use the
2363 type of the first field for the tests below. We have already verified
2364 that the modes are the same. */
2365 if ((TREE_CODE (passed_type) == UNION_TYPE
2366 || TREE_CODE (passed_type) == RECORD_TYPE)
2367 && TYPE_TRANSPARENT_AGGR (passed_type))
2368 passed_type = TREE_TYPE (first_field (passed_type));
2370 /* See if this arg was passed by invisible reference. */
2371 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2372 passed_type, data->named_arg))
2374 passed_type = nominal_type = build_pointer_type (passed_type);
2375 data->passed_pointer = true;
2376 passed_mode = nominal_mode = Pmode;
2379 /* Find mode as it is passed by the ABI. */
2380 unsignedp = TYPE_UNSIGNED (passed_type);
2381 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2382 TREE_TYPE (current_function_decl), 0);
2384 egress:
2385 data->nominal_type = nominal_type;
2386 data->passed_type = passed_type;
2387 data->nominal_mode = nominal_mode;
2388 data->passed_mode = passed_mode;
2389 data->promoted_mode = promoted_mode;
2392 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2394 static void
2395 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2396 struct assign_parm_data_one *data, bool no_rtl)
2398 int varargs_pretend_bytes = 0;
2400 targetm.calls.setup_incoming_varargs (all->args_so_far,
2401 data->promoted_mode,
2402 data->passed_type,
2403 &varargs_pretend_bytes, no_rtl);
2405 /* If the back-end has requested extra stack space, record how much is
2406 needed. Do not change pretend_args_size otherwise since it may be
2407 nonzero from an earlier partial argument. */
2408 if (varargs_pretend_bytes > 0)
2409 all->pretend_args_size = varargs_pretend_bytes;
2412 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2413 the incoming location of the current parameter. */
2415 static void
2416 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2417 struct assign_parm_data_one *data)
2419 HOST_WIDE_INT pretend_bytes = 0;
2420 rtx entry_parm;
2421 bool in_regs;
2423 if (data->promoted_mode == VOIDmode)
2425 data->entry_parm = data->stack_parm = const0_rtx;
2426 return;
2429 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2430 data->promoted_mode,
2431 data->passed_type,
2432 data->named_arg);
2434 if (entry_parm == 0)
2435 data->promoted_mode = data->passed_mode;
2437 /* Determine parm's home in the stack, in case it arrives in the stack
2438 or we should pretend it did. Compute the stack position and rtx where
2439 the argument arrives and its size.
2441 There is one complexity here: If this was a parameter that would
2442 have been passed in registers, but wasn't only because it is
2443 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2444 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2445 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2446 as it was the previous time. */
2447 in_regs = entry_parm != 0;
2448 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2449 in_regs = true;
2450 #endif
2451 if (!in_regs && !data->named_arg)
2453 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2455 rtx tem;
2456 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2457 data->promoted_mode,
2458 data->passed_type, true);
2459 in_regs = tem != NULL;
2463 /* If this parameter was passed both in registers and in the stack, use
2464 the copy on the stack. */
2465 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2466 data->passed_type))
2467 entry_parm = 0;
2469 if (entry_parm)
2471 int partial;
2473 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2474 data->promoted_mode,
2475 data->passed_type,
2476 data->named_arg);
2477 data->partial = partial;
2479 /* The caller might already have allocated stack space for the
2480 register parameters. */
2481 if (partial != 0 && all->reg_parm_stack_space == 0)
2483 /* Part of this argument is passed in registers and part
2484 is passed on the stack. Ask the prologue code to extend
2485 the stack part so that we can recreate the full value.
2487 PRETEND_BYTES is the size of the registers we need to store.
2488 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2489 stack space that the prologue should allocate.
2491 Internally, gcc assumes that the argument pointer is aligned
2492 to STACK_BOUNDARY bits. This is used both for alignment
2493 optimizations (see init_emit) and to locate arguments that are
2494 aligned to more than PARM_BOUNDARY bits. We must preserve this
2495 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2496 a stack boundary. */
2498 /* We assume at most one partial arg, and it must be the first
2499 argument on the stack. */
2500 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2502 pretend_bytes = partial;
2503 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2505 /* We want to align relative to the actual stack pointer, so
2506 don't include this in the stack size until later. */
2507 all->extra_pretend_bytes = all->pretend_args_size;
2511 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2512 entry_parm ? data->partial : 0, current_function_decl,
2513 &all->stack_args_size, &data->locate);
2515 /* Update parm_stack_boundary if this parameter is passed in the
2516 stack. */
2517 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2518 crtl->parm_stack_boundary = data->locate.boundary;
2520 /* Adjust offsets to include the pretend args. */
2521 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2522 data->locate.slot_offset.constant += pretend_bytes;
2523 data->locate.offset.constant += pretend_bytes;
2525 data->entry_parm = entry_parm;
2528 /* A subroutine of assign_parms. If there is actually space on the stack
2529 for this parm, count it in stack_args_size and return true. */
2531 static bool
2532 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2533 struct assign_parm_data_one *data)
2535 /* Trivially true if we've no incoming register. */
2536 if (data->entry_parm == NULL)
2538 /* Also true if we're partially in registers and partially not,
2539 since we've arranged to drop the entire argument on the stack. */
2540 else if (data->partial != 0)
2542 /* Also true if the target says that it's passed in both registers
2543 and on the stack. */
2544 else if (GET_CODE (data->entry_parm) == PARALLEL
2545 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2547 /* Also true if the target says that there's stack allocated for
2548 all register parameters. */
2549 else if (all->reg_parm_stack_space > 0)
2551 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2552 else
2553 return false;
2555 all->stack_args_size.constant += data->locate.size.constant;
2556 if (data->locate.size.var)
2557 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2559 return true;
2562 /* A subroutine of assign_parms. Given that this parameter is allocated
2563 stack space by the ABI, find it. */
2565 static void
2566 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2568 rtx offset_rtx, stack_parm;
2569 unsigned int align, boundary;
2571 /* If we're passing this arg using a reg, make its stack home the
2572 aligned stack slot. */
2573 if (data->entry_parm)
2574 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2575 else
2576 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2578 stack_parm = crtl->args.internal_arg_pointer;
2579 if (offset_rtx != const0_rtx)
2580 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2581 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2583 if (!data->passed_pointer)
2585 set_mem_attributes (stack_parm, parm, 1);
2586 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2587 while promoted mode's size is needed. */
2588 if (data->promoted_mode != BLKmode
2589 && data->promoted_mode != DECL_MODE (parm))
2591 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2592 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2594 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2595 data->promoted_mode);
2596 if (offset)
2597 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2602 boundary = data->locate.boundary;
2603 align = BITS_PER_UNIT;
2605 /* If we're padding upward, we know that the alignment of the slot
2606 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2607 intentionally forcing upward padding. Otherwise we have to come
2608 up with a guess at the alignment based on OFFSET_RTX. */
2609 if (data->locate.where_pad != downward || data->entry_parm)
2610 align = boundary;
2611 else if (CONST_INT_P (offset_rtx))
2613 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2614 align = align & -align;
2616 set_mem_align (stack_parm, align);
2618 if (data->entry_parm)
2619 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2621 data->stack_parm = stack_parm;
2624 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2625 always valid and contiguous. */
2627 static void
2628 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2630 rtx entry_parm = data->entry_parm;
2631 rtx stack_parm = data->stack_parm;
2633 /* If this parm was passed part in regs and part in memory, pretend it
2634 arrived entirely in memory by pushing the register-part onto the stack.
2635 In the special case of a DImode or DFmode that is split, we could put
2636 it together in a pseudoreg directly, but for now that's not worth
2637 bothering with. */
2638 if (data->partial != 0)
2640 /* Handle calls that pass values in multiple non-contiguous
2641 locations. The Irix 6 ABI has examples of this. */
2642 if (GET_CODE (entry_parm) == PARALLEL)
2643 emit_group_store (validize_mem (stack_parm), entry_parm,
2644 data->passed_type,
2645 int_size_in_bytes (data->passed_type));
2646 else
2648 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2649 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2650 data->partial / UNITS_PER_WORD);
2653 entry_parm = stack_parm;
2656 /* If we didn't decide this parm came in a register, by default it came
2657 on the stack. */
2658 else if (entry_parm == NULL)
2659 entry_parm = stack_parm;
2661 /* When an argument is passed in multiple locations, we can't make use
2662 of this information, but we can save some copying if the whole argument
2663 is passed in a single register. */
2664 else if (GET_CODE (entry_parm) == PARALLEL
2665 && data->nominal_mode != BLKmode
2666 && data->passed_mode != BLKmode)
2668 size_t i, len = XVECLEN (entry_parm, 0);
2670 for (i = 0; i < len; i++)
2671 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2672 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2673 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2674 == data->passed_mode)
2675 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2677 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2678 break;
2682 data->entry_parm = entry_parm;
2685 /* A subroutine of assign_parms. Reconstitute any values which were
2686 passed in multiple registers and would fit in a single register. */
2688 static void
2689 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2691 rtx entry_parm = data->entry_parm;
2693 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2694 This can be done with register operations rather than on the
2695 stack, even if we will store the reconstituted parameter on the
2696 stack later. */
2697 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2699 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2700 emit_group_store (parmreg, entry_parm, data->passed_type,
2701 GET_MODE_SIZE (GET_MODE (entry_parm)));
2702 entry_parm = parmreg;
2705 data->entry_parm = entry_parm;
2708 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2709 always valid and properly aligned. */
2711 static void
2712 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2714 rtx stack_parm = data->stack_parm;
2716 /* If we can't trust the parm stack slot to be aligned enough for its
2717 ultimate type, don't use that slot after entry. We'll make another
2718 stack slot, if we need one. */
2719 if (stack_parm
2720 && ((STRICT_ALIGNMENT
2721 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2722 || (data->nominal_type
2723 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2724 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2725 stack_parm = NULL;
2727 /* If parm was passed in memory, and we need to convert it on entry,
2728 don't store it back in that same slot. */
2729 else if (data->entry_parm == stack_parm
2730 && data->nominal_mode != BLKmode
2731 && data->nominal_mode != data->passed_mode)
2732 stack_parm = NULL;
2734 /* If stack protection is in effect for this function, don't leave any
2735 pointers in their passed stack slots. */
2736 else if (crtl->stack_protect_guard
2737 && (flag_stack_protect == 2
2738 || data->passed_pointer
2739 || POINTER_TYPE_P (data->nominal_type)))
2740 stack_parm = NULL;
2742 data->stack_parm = stack_parm;
2745 /* A subroutine of assign_parms. Return true if the current parameter
2746 should be stored as a BLKmode in the current frame. */
2748 static bool
2749 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2751 if (data->nominal_mode == BLKmode)
2752 return true;
2753 if (GET_MODE (data->entry_parm) == BLKmode)
2754 return true;
2756 #ifdef BLOCK_REG_PADDING
2757 /* Only assign_parm_setup_block knows how to deal with register arguments
2758 that are padded at the least significant end. */
2759 if (REG_P (data->entry_parm)
2760 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2761 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2762 == (BYTES_BIG_ENDIAN ? upward : downward)))
2763 return true;
2764 #endif
2766 return false;
2769 /* A subroutine of assign_parms. Arrange for the parameter to be
2770 present and valid in DATA->STACK_RTL. */
2772 static void
2773 assign_parm_setup_block (struct assign_parm_data_all *all,
2774 tree parm, struct assign_parm_data_one *data)
2776 rtx entry_parm = data->entry_parm;
2777 rtx stack_parm = data->stack_parm;
2778 HOST_WIDE_INT size;
2779 HOST_WIDE_INT size_stored;
2781 if (GET_CODE (entry_parm) == PARALLEL)
2782 entry_parm = emit_group_move_into_temps (entry_parm);
2784 size = int_size_in_bytes (data->passed_type);
2785 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2786 if (stack_parm == 0)
2788 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2789 stack_parm = assign_stack_local (BLKmode, size_stored,
2790 DECL_ALIGN (parm));
2791 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2792 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2793 set_mem_attributes (stack_parm, parm, 1);
2796 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2797 calls that pass values in multiple non-contiguous locations. */
2798 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2800 rtx mem;
2802 /* Note that we will be storing an integral number of words.
2803 So we have to be careful to ensure that we allocate an
2804 integral number of words. We do this above when we call
2805 assign_stack_local if space was not allocated in the argument
2806 list. If it was, this will not work if PARM_BOUNDARY is not
2807 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2808 if it becomes a problem. Exception is when BLKmode arrives
2809 with arguments not conforming to word_mode. */
2811 if (data->stack_parm == 0)
2813 else if (GET_CODE (entry_parm) == PARALLEL)
2815 else
2816 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2818 mem = validize_mem (stack_parm);
2820 /* Handle values in multiple non-contiguous locations. */
2821 if (GET_CODE (entry_parm) == PARALLEL)
2823 push_to_sequence2 (all->first_conversion_insn,
2824 all->last_conversion_insn);
2825 emit_group_store (mem, entry_parm, data->passed_type, size);
2826 all->first_conversion_insn = get_insns ();
2827 all->last_conversion_insn = get_last_insn ();
2828 end_sequence ();
2831 else if (size == 0)
2834 /* If SIZE is that of a mode no bigger than a word, just use
2835 that mode's store operation. */
2836 else if (size <= UNITS_PER_WORD)
2838 enum machine_mode mode
2839 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2841 if (mode != BLKmode
2842 #ifdef BLOCK_REG_PADDING
2843 && (size == UNITS_PER_WORD
2844 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2845 != (BYTES_BIG_ENDIAN ? upward : downward)))
2846 #endif
2849 rtx reg;
2851 /* We are really truncating a word_mode value containing
2852 SIZE bytes into a value of mode MODE. If such an
2853 operation requires no actual instructions, we can refer
2854 to the value directly in mode MODE, otherwise we must
2855 start with the register in word_mode and explicitly
2856 convert it. */
2857 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2858 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2859 else
2861 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2862 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2864 emit_move_insn (change_address (mem, mode, 0), reg);
2867 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2868 machine must be aligned to the left before storing
2869 to memory. Note that the previous test doesn't
2870 handle all cases (e.g. SIZE == 3). */
2871 else if (size != UNITS_PER_WORD
2872 #ifdef BLOCK_REG_PADDING
2873 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2874 == downward)
2875 #else
2876 && BYTES_BIG_ENDIAN
2877 #endif
2880 rtx tem, x;
2881 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2882 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2884 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2885 tem = change_address (mem, word_mode, 0);
2886 emit_move_insn (tem, x);
2888 else
2889 move_block_from_reg (REGNO (entry_parm), mem,
2890 size_stored / UNITS_PER_WORD);
2892 else
2893 move_block_from_reg (REGNO (entry_parm), mem,
2894 size_stored / UNITS_PER_WORD);
2896 else if (data->stack_parm == 0)
2898 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2899 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2900 BLOCK_OP_NORMAL);
2901 all->first_conversion_insn = get_insns ();
2902 all->last_conversion_insn = get_last_insn ();
2903 end_sequence ();
2906 data->stack_parm = stack_parm;
2907 SET_DECL_RTL (parm, stack_parm);
2910 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2911 parameter. Get it there. Perform all ABI specified conversions. */
2913 static void
2914 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2915 struct assign_parm_data_one *data)
2917 rtx parmreg, validated_mem;
2918 rtx equiv_stack_parm;
2919 enum machine_mode promoted_nominal_mode;
2920 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2921 bool did_conversion = false;
2922 bool need_conversion, moved;
2924 /* Store the parm in a pseudoregister during the function, but we may
2925 need to do it in a wider mode. Using 2 here makes the result
2926 consistent with promote_decl_mode and thus expand_expr_real_1. */
2927 promoted_nominal_mode
2928 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2929 TREE_TYPE (current_function_decl), 2);
2931 parmreg = gen_reg_rtx (promoted_nominal_mode);
2933 if (!DECL_ARTIFICIAL (parm))
2934 mark_user_reg (parmreg);
2936 /* If this was an item that we received a pointer to,
2937 set DECL_RTL appropriately. */
2938 if (data->passed_pointer)
2940 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2941 set_mem_attributes (x, parm, 1);
2942 SET_DECL_RTL (parm, x);
2944 else
2945 SET_DECL_RTL (parm, parmreg);
2947 assign_parm_remove_parallels (data);
2949 /* Copy the value into the register, thus bridging between
2950 assign_parm_find_data_types and expand_expr_real_1. */
2952 equiv_stack_parm = data->stack_parm;
2953 validated_mem = validize_mem (data->entry_parm);
2955 need_conversion = (data->nominal_mode != data->passed_mode
2956 || promoted_nominal_mode != data->promoted_mode);
2957 moved = false;
2959 if (need_conversion
2960 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2961 && data->nominal_mode == data->passed_mode
2962 && data->nominal_mode == GET_MODE (data->entry_parm))
2964 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2965 mode, by the caller. We now have to convert it to
2966 NOMINAL_MODE, if different. However, PARMREG may be in
2967 a different mode than NOMINAL_MODE if it is being stored
2968 promoted.
2970 If ENTRY_PARM is a hard register, it might be in a register
2971 not valid for operating in its mode (e.g., an odd-numbered
2972 register for a DFmode). In that case, moves are the only
2973 thing valid, so we can't do a convert from there. This
2974 occurs when the calling sequence allow such misaligned
2975 usages.
2977 In addition, the conversion may involve a call, which could
2978 clobber parameters which haven't been copied to pseudo
2979 registers yet.
2981 First, we try to emit an insn which performs the necessary
2982 conversion. We verify that this insn does not clobber any
2983 hard registers. */
2985 enum insn_code icode;
2986 rtx op0, op1;
2988 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2989 unsignedp);
2991 op0 = parmreg;
2992 op1 = validated_mem;
2993 if (icode != CODE_FOR_nothing
2994 && insn_operand_matches (icode, 0, op0)
2995 && insn_operand_matches (icode, 1, op1))
2997 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2998 rtx insn, insns, t = op1;
2999 HARD_REG_SET hardregs;
3001 start_sequence ();
3002 /* If op1 is a hard register that is likely spilled, first
3003 force it into a pseudo, otherwise combiner might extend
3004 its lifetime too much. */
3005 if (GET_CODE (t) == SUBREG)
3006 t = SUBREG_REG (t);
3007 if (REG_P (t)
3008 && HARD_REGISTER_P (t)
3009 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3010 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3012 t = gen_reg_rtx (GET_MODE (op1));
3013 emit_move_insn (t, op1);
3015 else
3016 t = op1;
3017 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3018 data->passed_mode, unsignedp);
3019 emit_insn (insn);
3020 insns = get_insns ();
3022 moved = true;
3023 CLEAR_HARD_REG_SET (hardregs);
3024 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3026 if (INSN_P (insn))
3027 note_stores (PATTERN (insn), record_hard_reg_sets,
3028 &hardregs);
3029 if (!hard_reg_set_empty_p (hardregs))
3030 moved = false;
3033 end_sequence ();
3035 if (moved)
3037 emit_insn (insns);
3038 if (equiv_stack_parm != NULL_RTX)
3039 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3040 equiv_stack_parm);
3045 if (moved)
3046 /* Nothing to do. */
3048 else if (need_conversion)
3050 /* We did not have an insn to convert directly, or the sequence
3051 generated appeared unsafe. We must first copy the parm to a
3052 pseudo reg, and save the conversion until after all
3053 parameters have been moved. */
3055 int save_tree_used;
3056 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3058 emit_move_insn (tempreg, validated_mem);
3060 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3061 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3063 if (GET_CODE (tempreg) == SUBREG
3064 && GET_MODE (tempreg) == data->nominal_mode
3065 && REG_P (SUBREG_REG (tempreg))
3066 && data->nominal_mode == data->passed_mode
3067 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3068 && GET_MODE_SIZE (GET_MODE (tempreg))
3069 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3071 /* The argument is already sign/zero extended, so note it
3072 into the subreg. */
3073 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3074 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3077 /* TREE_USED gets set erroneously during expand_assignment. */
3078 save_tree_used = TREE_USED (parm);
3079 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3080 TREE_USED (parm) = save_tree_used;
3081 all->first_conversion_insn = get_insns ();
3082 all->last_conversion_insn = get_last_insn ();
3083 end_sequence ();
3085 did_conversion = true;
3087 else
3088 emit_move_insn (parmreg, validated_mem);
3090 /* If we were passed a pointer but the actual value can safely live
3091 in a register, put it in one. */
3092 if (data->passed_pointer
3093 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3094 /* If by-reference argument was promoted, demote it. */
3095 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3096 || use_register_for_decl (parm)))
3098 /* We can't use nominal_mode, because it will have been set to
3099 Pmode above. We must use the actual mode of the parm. */
3100 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3101 mark_user_reg (parmreg);
3103 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3105 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3106 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3108 push_to_sequence2 (all->first_conversion_insn,
3109 all->last_conversion_insn);
3110 emit_move_insn (tempreg, DECL_RTL (parm));
3111 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3112 emit_move_insn (parmreg, tempreg);
3113 all->first_conversion_insn = get_insns ();
3114 all->last_conversion_insn = get_last_insn ();
3115 end_sequence ();
3117 did_conversion = true;
3119 else
3120 emit_move_insn (parmreg, DECL_RTL (parm));
3122 SET_DECL_RTL (parm, parmreg);
3124 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3125 now the parm. */
3126 data->stack_parm = NULL;
3129 /* Mark the register as eliminable if we did no conversion and it was
3130 copied from memory at a fixed offset, and the arg pointer was not
3131 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3132 offset formed an invalid address, such memory-equivalences as we
3133 make here would screw up life analysis for it. */
3134 if (data->nominal_mode == data->passed_mode
3135 && !did_conversion
3136 && data->stack_parm != 0
3137 && MEM_P (data->stack_parm)
3138 && data->locate.offset.var == 0
3139 && reg_mentioned_p (virtual_incoming_args_rtx,
3140 XEXP (data->stack_parm, 0)))
3142 rtx linsn = get_last_insn ();
3143 rtx sinsn, set;
3145 /* Mark complex types separately. */
3146 if (GET_CODE (parmreg) == CONCAT)
3148 enum machine_mode submode
3149 = GET_MODE_INNER (GET_MODE (parmreg));
3150 int regnor = REGNO (XEXP (parmreg, 0));
3151 int regnoi = REGNO (XEXP (parmreg, 1));
3152 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3153 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3154 GET_MODE_SIZE (submode));
3156 /* Scan backwards for the set of the real and
3157 imaginary parts. */
3158 for (sinsn = linsn; sinsn != 0;
3159 sinsn = prev_nonnote_insn (sinsn))
3161 set = single_set (sinsn);
3162 if (set == 0)
3163 continue;
3165 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3166 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3167 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3168 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3171 else
3172 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3175 /* For pointer data type, suggest pointer register. */
3176 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3177 mark_reg_pointer (parmreg,
3178 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3181 /* A subroutine of assign_parms. Allocate stack space to hold the current
3182 parameter. Get it there. Perform all ABI specified conversions. */
3184 static void
3185 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3186 struct assign_parm_data_one *data)
3188 /* Value must be stored in the stack slot STACK_PARM during function
3189 execution. */
3190 bool to_conversion = false;
3192 assign_parm_remove_parallels (data);
3194 if (data->promoted_mode != data->nominal_mode)
3196 /* Conversion is required. */
3197 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3199 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3201 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3202 to_conversion = true;
3204 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3205 TYPE_UNSIGNED (TREE_TYPE (parm)));
3207 if (data->stack_parm)
3209 int offset = subreg_lowpart_offset (data->nominal_mode,
3210 GET_MODE (data->stack_parm));
3211 /* ??? This may need a big-endian conversion on sparc64. */
3212 data->stack_parm
3213 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3214 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3215 set_mem_offset (data->stack_parm,
3216 MEM_OFFSET (data->stack_parm) + offset);
3220 if (data->entry_parm != data->stack_parm)
3222 rtx src, dest;
3224 if (data->stack_parm == 0)
3226 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3227 GET_MODE (data->entry_parm),
3228 TYPE_ALIGN (data->passed_type));
3229 data->stack_parm
3230 = assign_stack_local (GET_MODE (data->entry_parm),
3231 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3232 align);
3233 set_mem_attributes (data->stack_parm, parm, 1);
3236 dest = validize_mem (data->stack_parm);
3237 src = validize_mem (data->entry_parm);
3239 if (MEM_P (src))
3241 /* Use a block move to handle potentially misaligned entry_parm. */
3242 if (!to_conversion)
3243 push_to_sequence2 (all->first_conversion_insn,
3244 all->last_conversion_insn);
3245 to_conversion = true;
3247 emit_block_move (dest, src,
3248 GEN_INT (int_size_in_bytes (data->passed_type)),
3249 BLOCK_OP_NORMAL);
3251 else
3252 emit_move_insn (dest, src);
3255 if (to_conversion)
3257 all->first_conversion_insn = get_insns ();
3258 all->last_conversion_insn = get_last_insn ();
3259 end_sequence ();
3262 SET_DECL_RTL (parm, data->stack_parm);
3265 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3266 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3268 static void
3269 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3270 vec<tree> fnargs)
3272 tree parm;
3273 tree orig_fnargs = all->orig_fnargs;
3274 unsigned i = 0;
3276 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3278 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3279 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3281 rtx tmp, real, imag;
3282 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3284 real = DECL_RTL (fnargs[i]);
3285 imag = DECL_RTL (fnargs[i + 1]);
3286 if (inner != GET_MODE (real))
3288 real = gen_lowpart_SUBREG (inner, real);
3289 imag = gen_lowpart_SUBREG (inner, imag);
3292 if (TREE_ADDRESSABLE (parm))
3294 rtx rmem, imem;
3295 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3296 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3297 DECL_MODE (parm),
3298 TYPE_ALIGN (TREE_TYPE (parm)));
3300 /* split_complex_arg put the real and imag parts in
3301 pseudos. Move them to memory. */
3302 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3303 set_mem_attributes (tmp, parm, 1);
3304 rmem = adjust_address_nv (tmp, inner, 0);
3305 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3306 push_to_sequence2 (all->first_conversion_insn,
3307 all->last_conversion_insn);
3308 emit_move_insn (rmem, real);
3309 emit_move_insn (imem, imag);
3310 all->first_conversion_insn = get_insns ();
3311 all->last_conversion_insn = get_last_insn ();
3312 end_sequence ();
3314 else
3315 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3316 SET_DECL_RTL (parm, tmp);
3318 real = DECL_INCOMING_RTL (fnargs[i]);
3319 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3320 if (inner != GET_MODE (real))
3322 real = gen_lowpart_SUBREG (inner, real);
3323 imag = gen_lowpart_SUBREG (inner, imag);
3325 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3326 set_decl_incoming_rtl (parm, tmp, false);
3327 i++;
3332 /* Assign RTL expressions to the function's parameters. This may involve
3333 copying them into registers and using those registers as the DECL_RTL. */
3335 static void
3336 assign_parms (tree fndecl)
3338 struct assign_parm_data_all all;
3339 tree parm;
3340 vec<tree> fnargs;
3341 unsigned i;
3343 crtl->args.internal_arg_pointer
3344 = targetm.calls.internal_arg_pointer ();
3346 assign_parms_initialize_all (&all);
3347 fnargs = assign_parms_augmented_arg_list (&all);
3349 FOR_EACH_VEC_ELT (fnargs, i, parm)
3351 struct assign_parm_data_one data;
3353 /* Extract the type of PARM; adjust it according to ABI. */
3354 assign_parm_find_data_types (&all, parm, &data);
3356 /* Early out for errors and void parameters. */
3357 if (data.passed_mode == VOIDmode)
3359 SET_DECL_RTL (parm, const0_rtx);
3360 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3361 continue;
3364 /* Estimate stack alignment from parameter alignment. */
3365 if (SUPPORTS_STACK_ALIGNMENT)
3367 unsigned int align
3368 = targetm.calls.function_arg_boundary (data.promoted_mode,
3369 data.passed_type);
3370 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3371 align);
3372 if (TYPE_ALIGN (data.nominal_type) > align)
3373 align = MINIMUM_ALIGNMENT (data.nominal_type,
3374 TYPE_MODE (data.nominal_type),
3375 TYPE_ALIGN (data.nominal_type));
3376 if (crtl->stack_alignment_estimated < align)
3378 gcc_assert (!crtl->stack_realign_processed);
3379 crtl->stack_alignment_estimated = align;
3383 if (cfun->stdarg && !DECL_CHAIN (parm))
3384 assign_parms_setup_varargs (&all, &data, false);
3386 /* Find out where the parameter arrives in this function. */
3387 assign_parm_find_entry_rtl (&all, &data);
3389 /* Find out where stack space for this parameter might be. */
3390 if (assign_parm_is_stack_parm (&all, &data))
3392 assign_parm_find_stack_rtl (parm, &data);
3393 assign_parm_adjust_entry_rtl (&data);
3396 /* Record permanently how this parm was passed. */
3397 if (data.passed_pointer)
3399 rtx incoming_rtl
3400 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3401 data.entry_parm);
3402 set_decl_incoming_rtl (parm, incoming_rtl, true);
3404 else
3405 set_decl_incoming_rtl (parm, data.entry_parm, false);
3407 /* Update info on where next arg arrives in registers. */
3408 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3409 data.passed_type, data.named_arg);
3411 assign_parm_adjust_stack_rtl (&data);
3413 if (assign_parm_setup_block_p (&data))
3414 assign_parm_setup_block (&all, parm, &data);
3415 else if (data.passed_pointer || use_register_for_decl (parm))
3416 assign_parm_setup_reg (&all, parm, &data);
3417 else
3418 assign_parm_setup_stack (&all, parm, &data);
3421 if (targetm.calls.split_complex_arg)
3422 assign_parms_unsplit_complex (&all, fnargs);
3424 fnargs.release ();
3426 /* Output all parameter conversion instructions (possibly including calls)
3427 now that all parameters have been copied out of hard registers. */
3428 emit_insn (all.first_conversion_insn);
3430 /* Estimate reload stack alignment from scalar return mode. */
3431 if (SUPPORTS_STACK_ALIGNMENT)
3433 if (DECL_RESULT (fndecl))
3435 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3436 enum machine_mode mode = TYPE_MODE (type);
3438 if (mode != BLKmode
3439 && mode != VOIDmode
3440 && !AGGREGATE_TYPE_P (type))
3442 unsigned int align = GET_MODE_ALIGNMENT (mode);
3443 if (crtl->stack_alignment_estimated < align)
3445 gcc_assert (!crtl->stack_realign_processed);
3446 crtl->stack_alignment_estimated = align;
3452 /* If we are receiving a struct value address as the first argument, set up
3453 the RTL for the function result. As this might require code to convert
3454 the transmitted address to Pmode, we do this here to ensure that possible
3455 preliminary conversions of the address have been emitted already. */
3456 if (all.function_result_decl)
3458 tree result = DECL_RESULT (current_function_decl);
3459 rtx addr = DECL_RTL (all.function_result_decl);
3460 rtx x;
3462 if (DECL_BY_REFERENCE (result))
3464 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3465 x = addr;
3467 else
3469 SET_DECL_VALUE_EXPR (result,
3470 build1 (INDIRECT_REF, TREE_TYPE (result),
3471 all.function_result_decl));
3472 addr = convert_memory_address (Pmode, addr);
3473 x = gen_rtx_MEM (DECL_MODE (result), addr);
3474 set_mem_attributes (x, result, 1);
3477 DECL_HAS_VALUE_EXPR_P (result) = 1;
3479 SET_DECL_RTL (result, x);
3482 /* We have aligned all the args, so add space for the pretend args. */
3483 crtl->args.pretend_args_size = all.pretend_args_size;
3484 all.stack_args_size.constant += all.extra_pretend_bytes;
3485 crtl->args.size = all.stack_args_size.constant;
3487 /* Adjust function incoming argument size for alignment and
3488 minimum length. */
3490 #ifdef REG_PARM_STACK_SPACE
3491 crtl->args.size = MAX (crtl->args.size,
3492 REG_PARM_STACK_SPACE (fndecl));
3493 #endif
3495 crtl->args.size = CEIL_ROUND (crtl->args.size,
3496 PARM_BOUNDARY / BITS_PER_UNIT);
3498 #ifdef ARGS_GROW_DOWNWARD
3499 crtl->args.arg_offset_rtx
3500 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3501 : expand_expr (size_diffop (all.stack_args_size.var,
3502 size_int (-all.stack_args_size.constant)),
3503 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3504 #else
3505 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3506 #endif
3508 /* See how many bytes, if any, of its args a function should try to pop
3509 on return. */
3511 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3512 TREE_TYPE (fndecl),
3513 crtl->args.size);
3515 /* For stdarg.h function, save info about
3516 regs and stack space used by the named args. */
3518 crtl->args.info = all.args_so_far_v;
3520 /* Set the rtx used for the function return value. Put this in its
3521 own variable so any optimizers that need this information don't have
3522 to include tree.h. Do this here so it gets done when an inlined
3523 function gets output. */
3525 crtl->return_rtx
3526 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3527 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3529 /* If scalar return value was computed in a pseudo-reg, or was a named
3530 return value that got dumped to the stack, copy that to the hard
3531 return register. */
3532 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3534 tree decl_result = DECL_RESULT (fndecl);
3535 rtx decl_rtl = DECL_RTL (decl_result);
3537 if (REG_P (decl_rtl)
3538 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3539 : DECL_REGISTER (decl_result))
3541 rtx real_decl_rtl;
3543 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3544 fndecl, true);
3545 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3546 /* The delay slot scheduler assumes that crtl->return_rtx
3547 holds the hard register containing the return value, not a
3548 temporary pseudo. */
3549 crtl->return_rtx = real_decl_rtl;
3554 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3555 For all seen types, gimplify their sizes. */
3557 static tree
3558 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3560 tree t = *tp;
3562 *walk_subtrees = 0;
3563 if (TYPE_P (t))
3565 if (POINTER_TYPE_P (t))
3566 *walk_subtrees = 1;
3567 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3568 && !TYPE_SIZES_GIMPLIFIED (t))
3570 gimplify_type_sizes (t, (gimple_seq *) data);
3571 *walk_subtrees = 1;
3575 return NULL;
3578 /* Gimplify the parameter list for current_function_decl. This involves
3579 evaluating SAVE_EXPRs of variable sized parameters and generating code
3580 to implement callee-copies reference parameters. Returns a sequence of
3581 statements to add to the beginning of the function. */
3583 gimple_seq
3584 gimplify_parameters (void)
3586 struct assign_parm_data_all all;
3587 tree parm;
3588 gimple_seq stmts = NULL;
3589 vec<tree> fnargs;
3590 unsigned i;
3592 assign_parms_initialize_all (&all);
3593 fnargs = assign_parms_augmented_arg_list (&all);
3595 FOR_EACH_VEC_ELT (fnargs, i, parm)
3597 struct assign_parm_data_one data;
3599 /* Extract the type of PARM; adjust it according to ABI. */
3600 assign_parm_find_data_types (&all, parm, &data);
3602 /* Early out for errors and void parameters. */
3603 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3604 continue;
3606 /* Update info on where next arg arrives in registers. */
3607 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3608 data.passed_type, data.named_arg);
3610 /* ??? Once upon a time variable_size stuffed parameter list
3611 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3612 turned out to be less than manageable in the gimple world.
3613 Now we have to hunt them down ourselves. */
3614 walk_tree_without_duplicates (&data.passed_type,
3615 gimplify_parm_type, &stmts);
3617 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3619 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3620 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3623 if (data.passed_pointer)
3625 tree type = TREE_TYPE (data.passed_type);
3626 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3627 type, data.named_arg))
3629 tree local, t;
3631 /* For constant-sized objects, this is trivial; for
3632 variable-sized objects, we have to play games. */
3633 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3634 && !(flag_stack_check == GENERIC_STACK_CHECK
3635 && compare_tree_int (DECL_SIZE_UNIT (parm),
3636 STACK_CHECK_MAX_VAR_SIZE) > 0))
3638 local = create_tmp_var (type, get_name (parm));
3639 DECL_IGNORED_P (local) = 0;
3640 /* If PARM was addressable, move that flag over
3641 to the local copy, as its address will be taken,
3642 not the PARMs. Keep the parms address taken
3643 as we'll query that flag during gimplification. */
3644 if (TREE_ADDRESSABLE (parm))
3645 TREE_ADDRESSABLE (local) = 1;
3646 else if (TREE_CODE (type) == COMPLEX_TYPE
3647 || TREE_CODE (type) == VECTOR_TYPE)
3648 DECL_GIMPLE_REG_P (local) = 1;
3650 else
3652 tree ptr_type, addr;
3654 ptr_type = build_pointer_type (type);
3655 addr = create_tmp_reg (ptr_type, get_name (parm));
3656 DECL_IGNORED_P (addr) = 0;
3657 local = build_fold_indirect_ref (addr);
3659 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3660 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3661 size_int (DECL_ALIGN (parm)));
3663 /* The call has been built for a variable-sized object. */
3664 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3665 t = fold_convert (ptr_type, t);
3666 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3667 gimplify_and_add (t, &stmts);
3670 gimplify_assign (local, parm, &stmts);
3672 SET_DECL_VALUE_EXPR (parm, local);
3673 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3678 fnargs.release ();
3680 return stmts;
3683 /* Compute the size and offset from the start of the stacked arguments for a
3684 parm passed in mode PASSED_MODE and with type TYPE.
3686 INITIAL_OFFSET_PTR points to the current offset into the stacked
3687 arguments.
3689 The starting offset and size for this parm are returned in
3690 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3691 nonzero, the offset is that of stack slot, which is returned in
3692 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3693 padding required from the initial offset ptr to the stack slot.
3695 IN_REGS is nonzero if the argument will be passed in registers. It will
3696 never be set if REG_PARM_STACK_SPACE is not defined.
3698 FNDECL is the function in which the argument was defined.
3700 There are two types of rounding that are done. The first, controlled by
3701 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3702 argument list to be aligned to the specific boundary (in bits). This
3703 rounding affects the initial and starting offsets, but not the argument
3704 size.
3706 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3707 optionally rounds the size of the parm to PARM_BOUNDARY. The
3708 initial offset is not affected by this rounding, while the size always
3709 is and the starting offset may be. */
3711 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3712 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3713 callers pass in the total size of args so far as
3714 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3716 void
3717 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3718 int partial, tree fndecl ATTRIBUTE_UNUSED,
3719 struct args_size *initial_offset_ptr,
3720 struct locate_and_pad_arg_data *locate)
3722 tree sizetree;
3723 enum direction where_pad;
3724 unsigned int boundary, round_boundary;
3725 int reg_parm_stack_space = 0;
3726 int part_size_in_regs;
3728 #ifdef REG_PARM_STACK_SPACE
3729 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3731 /* If we have found a stack parm before we reach the end of the
3732 area reserved for registers, skip that area. */
3733 if (! in_regs)
3735 if (reg_parm_stack_space > 0)
3737 if (initial_offset_ptr->var)
3739 initial_offset_ptr->var
3740 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3741 ssize_int (reg_parm_stack_space));
3742 initial_offset_ptr->constant = 0;
3744 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3745 initial_offset_ptr->constant = reg_parm_stack_space;
3748 #endif /* REG_PARM_STACK_SPACE */
3750 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3752 sizetree
3753 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3754 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3755 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3756 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3757 type);
3758 locate->where_pad = where_pad;
3760 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3761 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3762 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3764 locate->boundary = boundary;
3766 if (SUPPORTS_STACK_ALIGNMENT)
3768 /* stack_alignment_estimated can't change after stack has been
3769 realigned. */
3770 if (crtl->stack_alignment_estimated < boundary)
3772 if (!crtl->stack_realign_processed)
3773 crtl->stack_alignment_estimated = boundary;
3774 else
3776 /* If stack is realigned and stack alignment value
3777 hasn't been finalized, it is OK not to increase
3778 stack_alignment_estimated. The bigger alignment
3779 requirement is recorded in stack_alignment_needed
3780 below. */
3781 gcc_assert (!crtl->stack_realign_finalized
3782 && crtl->stack_realign_needed);
3787 /* Remember if the outgoing parameter requires extra alignment on the
3788 calling function side. */
3789 if (crtl->stack_alignment_needed < boundary)
3790 crtl->stack_alignment_needed = boundary;
3791 if (crtl->preferred_stack_boundary < boundary)
3792 crtl->preferred_stack_boundary = boundary;
3794 #ifdef ARGS_GROW_DOWNWARD
3795 locate->slot_offset.constant = -initial_offset_ptr->constant;
3796 if (initial_offset_ptr->var)
3797 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3798 initial_offset_ptr->var);
3801 tree s2 = sizetree;
3802 if (where_pad != none
3803 && (!host_integerp (sizetree, 1)
3804 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3805 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3806 SUB_PARM_SIZE (locate->slot_offset, s2);
3809 locate->slot_offset.constant += part_size_in_regs;
3811 if (!in_regs
3812 #ifdef REG_PARM_STACK_SPACE
3813 || REG_PARM_STACK_SPACE (fndecl) > 0
3814 #endif
3816 pad_to_arg_alignment (&locate->slot_offset, boundary,
3817 &locate->alignment_pad);
3819 locate->size.constant = (-initial_offset_ptr->constant
3820 - locate->slot_offset.constant);
3821 if (initial_offset_ptr->var)
3822 locate->size.var = size_binop (MINUS_EXPR,
3823 size_binop (MINUS_EXPR,
3824 ssize_int (0),
3825 initial_offset_ptr->var),
3826 locate->slot_offset.var);
3828 /* Pad_below needs the pre-rounded size to know how much to pad
3829 below. */
3830 locate->offset = locate->slot_offset;
3831 if (where_pad == downward)
3832 pad_below (&locate->offset, passed_mode, sizetree);
3834 #else /* !ARGS_GROW_DOWNWARD */
3835 if (!in_regs
3836 #ifdef REG_PARM_STACK_SPACE
3837 || REG_PARM_STACK_SPACE (fndecl) > 0
3838 #endif
3840 pad_to_arg_alignment (initial_offset_ptr, boundary,
3841 &locate->alignment_pad);
3842 locate->slot_offset = *initial_offset_ptr;
3844 #ifdef PUSH_ROUNDING
3845 if (passed_mode != BLKmode)
3846 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3847 #endif
3849 /* Pad_below needs the pre-rounded size to know how much to pad below
3850 so this must be done before rounding up. */
3851 locate->offset = locate->slot_offset;
3852 if (where_pad == downward)
3853 pad_below (&locate->offset, passed_mode, sizetree);
3855 if (where_pad != none
3856 && (!host_integerp (sizetree, 1)
3857 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3858 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3860 ADD_PARM_SIZE (locate->size, sizetree);
3862 locate->size.constant -= part_size_in_regs;
3863 #endif /* ARGS_GROW_DOWNWARD */
3865 #ifdef FUNCTION_ARG_OFFSET
3866 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3867 #endif
3870 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3871 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3873 static void
3874 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3875 struct args_size *alignment_pad)
3877 tree save_var = NULL_TREE;
3878 HOST_WIDE_INT save_constant = 0;
3879 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3880 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3882 #ifdef SPARC_STACK_BOUNDARY_HACK
3883 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3884 the real alignment of %sp. However, when it does this, the
3885 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3886 if (SPARC_STACK_BOUNDARY_HACK)
3887 sp_offset = 0;
3888 #endif
3890 if (boundary > PARM_BOUNDARY)
3892 save_var = offset_ptr->var;
3893 save_constant = offset_ptr->constant;
3896 alignment_pad->var = NULL_TREE;
3897 alignment_pad->constant = 0;
3899 if (boundary > BITS_PER_UNIT)
3901 if (offset_ptr->var)
3903 tree sp_offset_tree = ssize_int (sp_offset);
3904 tree offset = size_binop (PLUS_EXPR,
3905 ARGS_SIZE_TREE (*offset_ptr),
3906 sp_offset_tree);
3907 #ifdef ARGS_GROW_DOWNWARD
3908 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3909 #else
3910 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3911 #endif
3913 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3914 /* ARGS_SIZE_TREE includes constant term. */
3915 offset_ptr->constant = 0;
3916 if (boundary > PARM_BOUNDARY)
3917 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3918 save_var);
3920 else
3922 offset_ptr->constant = -sp_offset +
3923 #ifdef ARGS_GROW_DOWNWARD
3924 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3925 #else
3926 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3927 #endif
3928 if (boundary > PARM_BOUNDARY)
3929 alignment_pad->constant = offset_ptr->constant - save_constant;
3934 static void
3935 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3937 if (passed_mode != BLKmode)
3939 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3940 offset_ptr->constant
3941 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3942 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3943 - GET_MODE_SIZE (passed_mode));
3945 else
3947 if (TREE_CODE (sizetree) != INTEGER_CST
3948 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3950 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3951 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3952 /* Add it in. */
3953 ADD_PARM_SIZE (*offset_ptr, s2);
3954 SUB_PARM_SIZE (*offset_ptr, sizetree);
3960 /* True if register REGNO was alive at a place where `setjmp' was
3961 called and was set more than once or is an argument. Such regs may
3962 be clobbered by `longjmp'. */
3964 static bool
3965 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3967 /* There appear to be cases where some local vars never reach the
3968 backend but have bogus regnos. */
3969 if (regno >= max_reg_num ())
3970 return false;
3972 return ((REG_N_SETS (regno) > 1
3973 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3974 && REGNO_REG_SET_P (setjmp_crosses, regno));
3977 /* Walk the tree of blocks describing the binding levels within a
3978 function and warn about variables the might be killed by setjmp or
3979 vfork. This is done after calling flow_analysis before register
3980 allocation since that will clobber the pseudo-regs to hard
3981 regs. */
3983 static void
3984 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3986 tree decl, sub;
3988 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3990 if (TREE_CODE (decl) == VAR_DECL
3991 && DECL_RTL_SET_P (decl)
3992 && REG_P (DECL_RTL (decl))
3993 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3994 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3995 " %<longjmp%> or %<vfork%>", decl);
3998 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3999 setjmp_vars_warning (setjmp_crosses, sub);
4002 /* Do the appropriate part of setjmp_vars_warning
4003 but for arguments instead of local variables. */
4005 static void
4006 setjmp_args_warning (bitmap setjmp_crosses)
4008 tree decl;
4009 for (decl = DECL_ARGUMENTS (current_function_decl);
4010 decl; decl = DECL_CHAIN (decl))
4011 if (DECL_RTL (decl) != 0
4012 && REG_P (DECL_RTL (decl))
4013 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4014 warning (OPT_Wclobbered,
4015 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4016 decl);
4019 /* Generate warning messages for variables live across setjmp. */
4021 void
4022 generate_setjmp_warnings (void)
4024 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4026 if (n_basic_blocks == NUM_FIXED_BLOCKS
4027 || bitmap_empty_p (setjmp_crosses))
4028 return;
4030 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4031 setjmp_args_warning (setjmp_crosses);
4035 /* Reverse the order of elements in the fragment chain T of blocks,
4036 and return the new head of the chain (old last element).
4037 In addition to that clear BLOCK_SAME_RANGE flags when needed
4038 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4039 its super fragment origin. */
4041 static tree
4042 block_fragments_nreverse (tree t)
4044 tree prev = 0, block, next, prev_super = 0;
4045 tree super = BLOCK_SUPERCONTEXT (t);
4046 if (BLOCK_FRAGMENT_ORIGIN (super))
4047 super = BLOCK_FRAGMENT_ORIGIN (super);
4048 for (block = t; block; block = next)
4050 next = BLOCK_FRAGMENT_CHAIN (block);
4051 BLOCK_FRAGMENT_CHAIN (block) = prev;
4052 if ((prev && !BLOCK_SAME_RANGE (prev))
4053 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4054 != prev_super))
4055 BLOCK_SAME_RANGE (block) = 0;
4056 prev_super = BLOCK_SUPERCONTEXT (block);
4057 BLOCK_SUPERCONTEXT (block) = super;
4058 prev = block;
4060 t = BLOCK_FRAGMENT_ORIGIN (t);
4061 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4062 != prev_super)
4063 BLOCK_SAME_RANGE (t) = 0;
4064 BLOCK_SUPERCONTEXT (t) = super;
4065 return prev;
4068 /* Reverse the order of elements in the chain T of blocks,
4069 and return the new head of the chain (old last element).
4070 Also do the same on subblocks and reverse the order of elements
4071 in BLOCK_FRAGMENT_CHAIN as well. */
4073 static tree
4074 blocks_nreverse_all (tree t)
4076 tree prev = 0, block, next;
4077 for (block = t; block; block = next)
4079 next = BLOCK_CHAIN (block);
4080 BLOCK_CHAIN (block) = prev;
4081 if (BLOCK_FRAGMENT_CHAIN (block)
4082 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4084 BLOCK_FRAGMENT_CHAIN (block)
4085 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4086 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4087 BLOCK_SAME_RANGE (block) = 0;
4089 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4090 prev = block;
4092 return prev;
4096 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4097 and create duplicate blocks. */
4098 /* ??? Need an option to either create block fragments or to create
4099 abstract origin duplicates of a source block. It really depends
4100 on what optimization has been performed. */
4102 void
4103 reorder_blocks (void)
4105 tree block = DECL_INITIAL (current_function_decl);
4106 vec<tree> block_stack;
4108 if (block == NULL_TREE)
4109 return;
4111 block_stack.create (10);
4113 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4114 clear_block_marks (block);
4116 /* Prune the old trees away, so that they don't get in the way. */
4117 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4118 BLOCK_CHAIN (block) = NULL_TREE;
4120 /* Recreate the block tree from the note nesting. */
4121 reorder_blocks_1 (get_insns (), block, &block_stack);
4122 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4124 block_stack.release ();
4127 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4129 void
4130 clear_block_marks (tree block)
4132 while (block)
4134 TREE_ASM_WRITTEN (block) = 0;
4135 clear_block_marks (BLOCK_SUBBLOCKS (block));
4136 block = BLOCK_CHAIN (block);
4140 static void
4141 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4143 rtx insn;
4144 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4146 for (insn = insns; insn; insn = NEXT_INSN (insn))
4148 if (NOTE_P (insn))
4150 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4152 tree block = NOTE_BLOCK (insn);
4153 tree origin;
4155 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4156 origin = block;
4158 if (prev_end)
4159 BLOCK_SAME_RANGE (prev_end) = 0;
4160 prev_end = NULL_TREE;
4162 /* If we have seen this block before, that means it now
4163 spans multiple address regions. Create a new fragment. */
4164 if (TREE_ASM_WRITTEN (block))
4166 tree new_block = copy_node (block);
4168 BLOCK_SAME_RANGE (new_block) = 0;
4169 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4170 BLOCK_FRAGMENT_CHAIN (new_block)
4171 = BLOCK_FRAGMENT_CHAIN (origin);
4172 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4174 NOTE_BLOCK (insn) = new_block;
4175 block = new_block;
4178 if (prev_beg == current_block && prev_beg)
4179 BLOCK_SAME_RANGE (block) = 1;
4181 prev_beg = origin;
4183 BLOCK_SUBBLOCKS (block) = 0;
4184 TREE_ASM_WRITTEN (block) = 1;
4185 /* When there's only one block for the entire function,
4186 current_block == block and we mustn't do this, it
4187 will cause infinite recursion. */
4188 if (block != current_block)
4190 tree super;
4191 if (block != origin)
4192 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4193 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4194 (origin))
4195 == current_block);
4196 if (p_block_stack->is_empty ())
4197 super = current_block;
4198 else
4200 super = p_block_stack->last ();
4201 gcc_assert (super == current_block
4202 || BLOCK_FRAGMENT_ORIGIN (super)
4203 == current_block);
4205 BLOCK_SUPERCONTEXT (block) = super;
4206 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4207 BLOCK_SUBBLOCKS (current_block) = block;
4208 current_block = origin;
4210 p_block_stack->safe_push (block);
4212 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4214 NOTE_BLOCK (insn) = p_block_stack->pop ();
4215 current_block = BLOCK_SUPERCONTEXT (current_block);
4216 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4217 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4218 prev_beg = NULL_TREE;
4219 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4220 ? NOTE_BLOCK (insn) : NULL_TREE;
4223 else
4225 prev_beg = NULL_TREE;
4226 if (prev_end)
4227 BLOCK_SAME_RANGE (prev_end) = 0;
4228 prev_end = NULL_TREE;
4233 /* Reverse the order of elements in the chain T of blocks,
4234 and return the new head of the chain (old last element). */
4236 tree
4237 blocks_nreverse (tree t)
4239 tree prev = 0, block, next;
4240 for (block = t; block; block = next)
4242 next = BLOCK_CHAIN (block);
4243 BLOCK_CHAIN (block) = prev;
4244 prev = block;
4246 return prev;
4249 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4250 by modifying the last node in chain 1 to point to chain 2. */
4252 tree
4253 block_chainon (tree op1, tree op2)
4255 tree t1;
4257 if (!op1)
4258 return op2;
4259 if (!op2)
4260 return op1;
4262 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4263 continue;
4264 BLOCK_CHAIN (t1) = op2;
4266 #ifdef ENABLE_TREE_CHECKING
4268 tree t2;
4269 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4270 gcc_assert (t2 != t1);
4272 #endif
4274 return op1;
4277 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4278 non-NULL, list them all into VECTOR, in a depth-first preorder
4279 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4280 blocks. */
4282 static int
4283 all_blocks (tree block, tree *vector)
4285 int n_blocks = 0;
4287 while (block)
4289 TREE_ASM_WRITTEN (block) = 0;
4291 /* Record this block. */
4292 if (vector)
4293 vector[n_blocks] = block;
4295 ++n_blocks;
4297 /* Record the subblocks, and their subblocks... */
4298 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4299 vector ? vector + n_blocks : 0);
4300 block = BLOCK_CHAIN (block);
4303 return n_blocks;
4306 /* Return a vector containing all the blocks rooted at BLOCK. The
4307 number of elements in the vector is stored in N_BLOCKS_P. The
4308 vector is dynamically allocated; it is the caller's responsibility
4309 to call `free' on the pointer returned. */
4311 static tree *
4312 get_block_vector (tree block, int *n_blocks_p)
4314 tree *block_vector;
4316 *n_blocks_p = all_blocks (block, NULL);
4317 block_vector = XNEWVEC (tree, *n_blocks_p);
4318 all_blocks (block, block_vector);
4320 return block_vector;
4323 static GTY(()) int next_block_index = 2;
4325 /* Set BLOCK_NUMBER for all the blocks in FN. */
4327 void
4328 number_blocks (tree fn)
4330 int i;
4331 int n_blocks;
4332 tree *block_vector;
4334 /* For SDB and XCOFF debugging output, we start numbering the blocks
4335 from 1 within each function, rather than keeping a running
4336 count. */
4337 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4338 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4339 next_block_index = 1;
4340 #endif
4342 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4344 /* The top-level BLOCK isn't numbered at all. */
4345 for (i = 1; i < n_blocks; ++i)
4346 /* We number the blocks from two. */
4347 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4349 free (block_vector);
4351 return;
4354 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4356 DEBUG_FUNCTION tree
4357 debug_find_var_in_block_tree (tree var, tree block)
4359 tree t;
4361 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4362 if (t == var)
4363 return block;
4365 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4367 tree ret = debug_find_var_in_block_tree (var, t);
4368 if (ret)
4369 return ret;
4372 return NULL_TREE;
4375 /* Keep track of whether we're in a dummy function context. If we are,
4376 we don't want to invoke the set_current_function hook, because we'll
4377 get into trouble if the hook calls target_reinit () recursively or
4378 when the initial initialization is not yet complete. */
4380 static bool in_dummy_function;
4382 /* Invoke the target hook when setting cfun. Update the optimization options
4383 if the function uses different options than the default. */
4385 static void
4386 invoke_set_current_function_hook (tree fndecl)
4388 if (!in_dummy_function)
4390 tree opts = ((fndecl)
4391 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4392 : optimization_default_node);
4394 if (!opts)
4395 opts = optimization_default_node;
4397 /* Change optimization options if needed. */
4398 if (optimization_current_node != opts)
4400 optimization_current_node = opts;
4401 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4404 targetm.set_current_function (fndecl);
4408 /* cfun should never be set directly; use this function. */
4410 void
4411 set_cfun (struct function *new_cfun)
4413 if (cfun != new_cfun)
4415 cfun = new_cfun;
4416 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4420 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4422 static vec<function_p> cfun_stack;
4424 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4425 current_function_decl accordingly. */
4427 void
4428 push_cfun (struct function *new_cfun)
4430 gcc_assert ((!cfun && !current_function_decl)
4431 || (cfun && current_function_decl == cfun->decl));
4432 cfun_stack.safe_push (cfun);
4433 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4434 set_cfun (new_cfun);
4437 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4439 void
4440 pop_cfun (void)
4442 struct function *new_cfun = cfun_stack.pop ();
4443 /* When in_dummy_function, we do have a cfun but current_function_decl is
4444 NULL. We also allow pushing NULL cfun and subsequently changing
4445 current_function_decl to something else and have both restored by
4446 pop_cfun. */
4447 gcc_checking_assert (in_dummy_function
4448 || !cfun
4449 || current_function_decl == cfun->decl);
4450 set_cfun (new_cfun);
4451 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4454 /* Return value of funcdef and increase it. */
4456 get_next_funcdef_no (void)
4458 return funcdef_no++;
4461 /* Return value of funcdef. */
4463 get_last_funcdef_no (void)
4465 return funcdef_no;
4468 /* Allocate a function structure for FNDECL and set its contents
4469 to the defaults. Set cfun to the newly-allocated object.
4470 Some of the helper functions invoked during initialization assume
4471 that cfun has already been set. Therefore, assign the new object
4472 directly into cfun and invoke the back end hook explicitly at the
4473 very end, rather than initializing a temporary and calling set_cfun
4474 on it.
4476 ABSTRACT_P is true if this is a function that will never be seen by
4477 the middle-end. Such functions are front-end concepts (like C++
4478 function templates) that do not correspond directly to functions
4479 placed in object files. */
4481 void
4482 allocate_struct_function (tree fndecl, bool abstract_p)
4484 tree result;
4485 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4487 cfun = ggc_alloc_cleared_function ();
4489 init_eh_for_function ();
4491 if (init_machine_status)
4492 cfun->machine = (*init_machine_status) ();
4494 #ifdef OVERRIDE_ABI_FORMAT
4495 OVERRIDE_ABI_FORMAT (fndecl);
4496 #endif
4498 if (fndecl != NULL_TREE)
4500 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4501 cfun->decl = fndecl;
4502 current_function_funcdef_no = get_next_funcdef_no ();
4504 result = DECL_RESULT (fndecl);
4505 if (!abstract_p && aggregate_value_p (result, fndecl))
4507 #ifdef PCC_STATIC_STRUCT_RETURN
4508 cfun->returns_pcc_struct = 1;
4509 #endif
4510 cfun->returns_struct = 1;
4513 cfun->stdarg = stdarg_p (fntype);
4515 /* Assume all registers in stdarg functions need to be saved. */
4516 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4517 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4519 /* ??? This could be set on a per-function basis by the front-end
4520 but is this worth the hassle? */
4521 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4524 invoke_set_current_function_hook (fndecl);
4527 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4528 instead of just setting it. */
4530 void
4531 push_struct_function (tree fndecl)
4533 /* When in_dummy_function we might be in the middle of a pop_cfun and
4534 current_function_decl and cfun may not match. */
4535 gcc_assert (in_dummy_function
4536 || (!cfun && !current_function_decl)
4537 || (cfun && current_function_decl == cfun->decl));
4538 cfun_stack.safe_push (cfun);
4539 current_function_decl = fndecl;
4540 allocate_struct_function (fndecl, false);
4543 /* Reset crtl and other non-struct-function variables to defaults as
4544 appropriate for emitting rtl at the start of a function. */
4546 static void
4547 prepare_function_start (void)
4549 gcc_assert (!crtl->emit.x_last_insn);
4550 init_temp_slots ();
4551 init_emit ();
4552 init_varasm_status ();
4553 init_expr ();
4554 default_rtl_profile ();
4556 if (flag_stack_usage_info)
4558 cfun->su = ggc_alloc_cleared_stack_usage ();
4559 cfun->su->static_stack_size = -1;
4562 cse_not_expected = ! optimize;
4564 /* Caller save not needed yet. */
4565 caller_save_needed = 0;
4567 /* We haven't done register allocation yet. */
4568 reg_renumber = 0;
4570 /* Indicate that we have not instantiated virtual registers yet. */
4571 virtuals_instantiated = 0;
4573 /* Indicate that we want CONCATs now. */
4574 generating_concat_p = 1;
4576 /* Indicate we have no need of a frame pointer yet. */
4577 frame_pointer_needed = 0;
4580 /* Initialize the rtl expansion mechanism so that we can do simple things
4581 like generate sequences. This is used to provide a context during global
4582 initialization of some passes. You must call expand_dummy_function_end
4583 to exit this context. */
4585 void
4586 init_dummy_function_start (void)
4588 gcc_assert (!in_dummy_function);
4589 in_dummy_function = true;
4590 push_struct_function (NULL_TREE);
4591 prepare_function_start ();
4594 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4595 and initialize static variables for generating RTL for the statements
4596 of the function. */
4598 void
4599 init_function_start (tree subr)
4601 if (subr && DECL_STRUCT_FUNCTION (subr))
4602 set_cfun (DECL_STRUCT_FUNCTION (subr));
4603 else
4604 allocate_struct_function (subr, false);
4605 prepare_function_start ();
4606 decide_function_section (subr);
4608 /* Warn if this value is an aggregate type,
4609 regardless of which calling convention we are using for it. */
4610 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4611 warning (OPT_Waggregate_return, "function returns an aggregate");
4615 void
4616 expand_main_function (void)
4618 #if (defined(INVOKE__main) \
4619 || (!defined(HAS_INIT_SECTION) \
4620 && !defined(INIT_SECTION_ASM_OP) \
4621 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4622 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4623 #endif
4626 /* Expand code to initialize the stack_protect_guard. This is invoked at
4627 the beginning of a function to be protected. */
4629 #ifndef HAVE_stack_protect_set
4630 # define HAVE_stack_protect_set 0
4631 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4632 #endif
4634 void
4635 stack_protect_prologue (void)
4637 tree guard_decl = targetm.stack_protect_guard ();
4638 rtx x, y;
4640 x = expand_normal (crtl->stack_protect_guard);
4641 y = expand_normal (guard_decl);
4643 /* Allow the target to copy from Y to X without leaking Y into a
4644 register. */
4645 if (HAVE_stack_protect_set)
4647 rtx insn = gen_stack_protect_set (x, y);
4648 if (insn)
4650 emit_insn (insn);
4651 return;
4655 /* Otherwise do a straight move. */
4656 emit_move_insn (x, y);
4659 /* Expand code to verify the stack_protect_guard. This is invoked at
4660 the end of a function to be protected. */
4662 #ifndef HAVE_stack_protect_test
4663 # define HAVE_stack_protect_test 0
4664 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4665 #endif
4667 void
4668 stack_protect_epilogue (void)
4670 tree guard_decl = targetm.stack_protect_guard ();
4671 rtx label = gen_label_rtx ();
4672 rtx x, y, tmp;
4674 x = expand_normal (crtl->stack_protect_guard);
4675 y = expand_normal (guard_decl);
4677 /* Allow the target to compare Y with X without leaking either into
4678 a register. */
4679 switch (HAVE_stack_protect_test != 0)
4681 case 1:
4682 tmp = gen_stack_protect_test (x, y, label);
4683 if (tmp)
4685 emit_insn (tmp);
4686 break;
4688 /* FALLTHRU */
4690 default:
4691 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4692 break;
4695 /* The noreturn predictor has been moved to the tree level. The rtl-level
4696 predictors estimate this branch about 20%, which isn't enough to get
4697 things moved out of line. Since this is the only extant case of adding
4698 a noreturn function at the rtl level, it doesn't seem worth doing ought
4699 except adding the prediction by hand. */
4700 tmp = get_last_insn ();
4701 if (JUMP_P (tmp))
4702 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4704 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4705 free_temp_slots ();
4706 emit_label (label);
4709 /* Start the RTL for a new function, and set variables used for
4710 emitting RTL.
4711 SUBR is the FUNCTION_DECL node.
4712 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4713 the function's parameters, which must be run at any return statement. */
4715 void
4716 expand_function_start (tree subr)
4718 /* Make sure volatile mem refs aren't considered
4719 valid operands of arithmetic insns. */
4720 init_recog_no_volatile ();
4722 crtl->profile
4723 = (profile_flag
4724 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4726 crtl->limit_stack
4727 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4729 /* Make the label for return statements to jump to. Do not special
4730 case machines with special return instructions -- they will be
4731 handled later during jump, ifcvt, or epilogue creation. */
4732 return_label = gen_label_rtx ();
4734 /* Initialize rtx used to return the value. */
4735 /* Do this before assign_parms so that we copy the struct value address
4736 before any library calls that assign parms might generate. */
4738 /* Decide whether to return the value in memory or in a register. */
4739 if (aggregate_value_p (DECL_RESULT (subr), subr))
4741 /* Returning something that won't go in a register. */
4742 rtx value_address = 0;
4744 #ifdef PCC_STATIC_STRUCT_RETURN
4745 if (cfun->returns_pcc_struct)
4747 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4748 value_address = assemble_static_space (size);
4750 else
4751 #endif
4753 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4754 /* Expect to be passed the address of a place to store the value.
4755 If it is passed as an argument, assign_parms will take care of
4756 it. */
4757 if (sv)
4759 value_address = gen_reg_rtx (Pmode);
4760 emit_move_insn (value_address, sv);
4763 if (value_address)
4765 rtx x = value_address;
4766 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4768 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4769 set_mem_attributes (x, DECL_RESULT (subr), 1);
4771 SET_DECL_RTL (DECL_RESULT (subr), x);
4774 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4775 /* If return mode is void, this decl rtl should not be used. */
4776 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4777 else
4779 /* Compute the return values into a pseudo reg, which we will copy
4780 into the true return register after the cleanups are done. */
4781 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4782 if (TYPE_MODE (return_type) != BLKmode
4783 && targetm.calls.return_in_msb (return_type))
4784 /* expand_function_end will insert the appropriate padding in
4785 this case. Use the return value's natural (unpadded) mode
4786 within the function proper. */
4787 SET_DECL_RTL (DECL_RESULT (subr),
4788 gen_reg_rtx (TYPE_MODE (return_type)));
4789 else
4791 /* In order to figure out what mode to use for the pseudo, we
4792 figure out what the mode of the eventual return register will
4793 actually be, and use that. */
4794 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4796 /* Structures that are returned in registers are not
4797 aggregate_value_p, so we may see a PARALLEL or a REG. */
4798 if (REG_P (hard_reg))
4799 SET_DECL_RTL (DECL_RESULT (subr),
4800 gen_reg_rtx (GET_MODE (hard_reg)));
4801 else
4803 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4804 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4808 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4809 result to the real return register(s). */
4810 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4813 /* Initialize rtx for parameters and local variables.
4814 In some cases this requires emitting insns. */
4815 assign_parms (subr);
4817 /* If function gets a static chain arg, store it. */
4818 if (cfun->static_chain_decl)
4820 tree parm = cfun->static_chain_decl;
4821 rtx local, chain, insn;
4823 local = gen_reg_rtx (Pmode);
4824 chain = targetm.calls.static_chain (current_function_decl, true);
4826 set_decl_incoming_rtl (parm, chain, false);
4827 SET_DECL_RTL (parm, local);
4828 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4830 insn = emit_move_insn (local, chain);
4832 /* Mark the register as eliminable, similar to parameters. */
4833 if (MEM_P (chain)
4834 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4835 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4838 /* If the function receives a non-local goto, then store the
4839 bits we need to restore the frame pointer. */
4840 if (cfun->nonlocal_goto_save_area)
4842 tree t_save;
4843 rtx r_save;
4845 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4846 gcc_assert (DECL_RTL_SET_P (var));
4848 t_save = build4 (ARRAY_REF,
4849 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4850 cfun->nonlocal_goto_save_area,
4851 integer_zero_node, NULL_TREE, NULL_TREE);
4852 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4853 gcc_assert (GET_MODE (r_save) == Pmode);
4855 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4856 update_nonlocal_goto_save_area ();
4859 /* The following was moved from init_function_start.
4860 The move is supposed to make sdb output more accurate. */
4861 /* Indicate the beginning of the function body,
4862 as opposed to parm setup. */
4863 emit_note (NOTE_INSN_FUNCTION_BEG);
4865 gcc_assert (NOTE_P (get_last_insn ()));
4867 parm_birth_insn = get_last_insn ();
4869 if (crtl->profile)
4871 #ifdef PROFILE_HOOK
4872 PROFILE_HOOK (current_function_funcdef_no);
4873 #endif
4876 /* If we are doing generic stack checking, the probe should go here. */
4877 if (flag_stack_check == GENERIC_STACK_CHECK)
4878 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4881 /* Undo the effects of init_dummy_function_start. */
4882 void
4883 expand_dummy_function_end (void)
4885 gcc_assert (in_dummy_function);
4887 /* End any sequences that failed to be closed due to syntax errors. */
4888 while (in_sequence_p ())
4889 end_sequence ();
4891 /* Outside function body, can't compute type's actual size
4892 until next function's body starts. */
4894 free_after_parsing (cfun);
4895 free_after_compilation (cfun);
4896 pop_cfun ();
4897 in_dummy_function = false;
4900 /* Call DOIT for each hard register used as a return value from
4901 the current function. */
4903 void
4904 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4906 rtx outgoing = crtl->return_rtx;
4908 if (! outgoing)
4909 return;
4911 if (REG_P (outgoing))
4912 (*doit) (outgoing, arg);
4913 else if (GET_CODE (outgoing) == PARALLEL)
4915 int i;
4917 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4919 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4921 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4922 (*doit) (x, arg);
4927 static void
4928 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4930 emit_clobber (reg);
4933 void
4934 clobber_return_register (void)
4936 diddle_return_value (do_clobber_return_reg, NULL);
4938 /* In case we do use pseudo to return value, clobber it too. */
4939 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4941 tree decl_result = DECL_RESULT (current_function_decl);
4942 rtx decl_rtl = DECL_RTL (decl_result);
4943 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4945 do_clobber_return_reg (decl_rtl, NULL);
4950 static void
4951 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4953 emit_use (reg);
4956 static void
4957 use_return_register (void)
4959 diddle_return_value (do_use_return_reg, NULL);
4962 /* Possibly warn about unused parameters. */
4963 void
4964 do_warn_unused_parameter (tree fn)
4966 tree decl;
4968 for (decl = DECL_ARGUMENTS (fn);
4969 decl; decl = DECL_CHAIN (decl))
4970 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4971 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4972 && !TREE_NO_WARNING (decl))
4973 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4976 static GTY(()) rtx initial_trampoline;
4978 /* Generate RTL for the end of the current function. */
4980 void
4981 expand_function_end (void)
4983 rtx clobber_after;
4985 /* If arg_pointer_save_area was referenced only from a nested
4986 function, we will not have initialized it yet. Do that now. */
4987 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4988 get_arg_pointer_save_area ();
4990 /* If we are doing generic stack checking and this function makes calls,
4991 do a stack probe at the start of the function to ensure we have enough
4992 space for another stack frame. */
4993 if (flag_stack_check == GENERIC_STACK_CHECK)
4995 rtx insn, seq;
4997 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4998 if (CALL_P (insn))
5000 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5001 start_sequence ();
5002 if (STACK_CHECK_MOVING_SP)
5003 anti_adjust_stack_and_probe (max_frame_size, true);
5004 else
5005 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5006 seq = get_insns ();
5007 end_sequence ();
5008 set_insn_locations (seq, prologue_location);
5009 emit_insn_before (seq, stack_check_probe_note);
5010 break;
5014 /* End any sequences that failed to be closed due to syntax errors. */
5015 while (in_sequence_p ())
5016 end_sequence ();
5018 clear_pending_stack_adjust ();
5019 do_pending_stack_adjust ();
5021 /* Output a linenumber for the end of the function.
5022 SDB depends on this. */
5023 set_curr_insn_location (input_location);
5025 /* Before the return label (if any), clobber the return
5026 registers so that they are not propagated live to the rest of
5027 the function. This can only happen with functions that drop
5028 through; if there had been a return statement, there would
5029 have either been a return rtx, or a jump to the return label.
5031 We delay actual code generation after the current_function_value_rtx
5032 is computed. */
5033 clobber_after = get_last_insn ();
5035 /* Output the label for the actual return from the function. */
5036 emit_label (return_label);
5038 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5040 /* Let except.c know where it should emit the call to unregister
5041 the function context for sjlj exceptions. */
5042 if (flag_exceptions)
5043 sjlj_emit_function_exit_after (get_last_insn ());
5045 else
5047 /* We want to ensure that instructions that may trap are not
5048 moved into the epilogue by scheduling, because we don't
5049 always emit unwind information for the epilogue. */
5050 if (cfun->can_throw_non_call_exceptions)
5051 emit_insn (gen_blockage ());
5054 /* If this is an implementation of throw, do what's necessary to
5055 communicate between __builtin_eh_return and the epilogue. */
5056 expand_eh_return ();
5058 /* If scalar return value was computed in a pseudo-reg, or was a named
5059 return value that got dumped to the stack, copy that to the hard
5060 return register. */
5061 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5063 tree decl_result = DECL_RESULT (current_function_decl);
5064 rtx decl_rtl = DECL_RTL (decl_result);
5066 if (REG_P (decl_rtl)
5067 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5068 : DECL_REGISTER (decl_result))
5070 rtx real_decl_rtl = crtl->return_rtx;
5072 /* This should be set in assign_parms. */
5073 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5075 /* If this is a BLKmode structure being returned in registers,
5076 then use the mode computed in expand_return. Note that if
5077 decl_rtl is memory, then its mode may have been changed,
5078 but that crtl->return_rtx has not. */
5079 if (GET_MODE (real_decl_rtl) == BLKmode)
5080 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5082 /* If a non-BLKmode return value should be padded at the least
5083 significant end of the register, shift it left by the appropriate
5084 amount. BLKmode results are handled using the group load/store
5085 machinery. */
5086 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5087 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5089 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5090 REGNO (real_decl_rtl)),
5091 decl_rtl);
5092 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5094 /* If a named return value dumped decl_return to memory, then
5095 we may need to re-do the PROMOTE_MODE signed/unsigned
5096 extension. */
5097 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5099 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5100 promote_function_mode (TREE_TYPE (decl_result),
5101 GET_MODE (decl_rtl), &unsignedp,
5102 TREE_TYPE (current_function_decl), 1);
5104 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5106 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5108 /* If expand_function_start has created a PARALLEL for decl_rtl,
5109 move the result to the real return registers. Otherwise, do
5110 a group load from decl_rtl for a named return. */
5111 if (GET_CODE (decl_rtl) == PARALLEL)
5112 emit_group_move (real_decl_rtl, decl_rtl);
5113 else
5114 emit_group_load (real_decl_rtl, decl_rtl,
5115 TREE_TYPE (decl_result),
5116 int_size_in_bytes (TREE_TYPE (decl_result)));
5118 /* In the case of complex integer modes smaller than a word, we'll
5119 need to generate some non-trivial bitfield insertions. Do that
5120 on a pseudo and not the hard register. */
5121 else if (GET_CODE (decl_rtl) == CONCAT
5122 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5123 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5125 int old_generating_concat_p;
5126 rtx tmp;
5128 old_generating_concat_p = generating_concat_p;
5129 generating_concat_p = 0;
5130 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5131 generating_concat_p = old_generating_concat_p;
5133 emit_move_insn (tmp, decl_rtl);
5134 emit_move_insn (real_decl_rtl, tmp);
5136 else
5137 emit_move_insn (real_decl_rtl, decl_rtl);
5141 /* If returning a structure, arrange to return the address of the value
5142 in a place where debuggers expect to find it.
5144 If returning a structure PCC style,
5145 the caller also depends on this value.
5146 And cfun->returns_pcc_struct is not necessarily set. */
5147 if (cfun->returns_struct
5148 || cfun->returns_pcc_struct)
5150 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5151 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5152 rtx outgoing;
5154 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5155 type = TREE_TYPE (type);
5156 else
5157 value_address = XEXP (value_address, 0);
5159 outgoing = targetm.calls.function_value (build_pointer_type (type),
5160 current_function_decl, true);
5162 /* Mark this as a function return value so integrate will delete the
5163 assignment and USE below when inlining this function. */
5164 REG_FUNCTION_VALUE_P (outgoing) = 1;
5166 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5167 value_address = convert_memory_address (GET_MODE (outgoing),
5168 value_address);
5170 emit_move_insn (outgoing, value_address);
5172 /* Show return register used to hold result (in this case the address
5173 of the result. */
5174 crtl->return_rtx = outgoing;
5177 /* Emit the actual code to clobber return register. */
5179 rtx seq;
5181 start_sequence ();
5182 clobber_return_register ();
5183 seq = get_insns ();
5184 end_sequence ();
5186 emit_insn_after (seq, clobber_after);
5189 /* Output the label for the naked return from the function. */
5190 if (naked_return_label)
5191 emit_label (naked_return_label);
5193 /* @@@ This is a kludge. We want to ensure that instructions that
5194 may trap are not moved into the epilogue by scheduling, because
5195 we don't always emit unwind information for the epilogue. */
5196 if (cfun->can_throw_non_call_exceptions
5197 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5198 emit_insn (gen_blockage ());
5200 /* If stack protection is enabled for this function, check the guard. */
5201 if (crtl->stack_protect_guard)
5202 stack_protect_epilogue ();
5204 /* If we had calls to alloca, and this machine needs
5205 an accurate stack pointer to exit the function,
5206 insert some code to save and restore the stack pointer. */
5207 if (! EXIT_IGNORE_STACK
5208 && cfun->calls_alloca)
5210 rtx tem = 0, seq;
5212 start_sequence ();
5213 emit_stack_save (SAVE_FUNCTION, &tem);
5214 seq = get_insns ();
5215 end_sequence ();
5216 emit_insn_before (seq, parm_birth_insn);
5218 emit_stack_restore (SAVE_FUNCTION, tem);
5221 /* ??? This should no longer be necessary since stupid is no longer with
5222 us, but there are some parts of the compiler (eg reload_combine, and
5223 sh mach_dep_reorg) that still try and compute their own lifetime info
5224 instead of using the general framework. */
5225 use_return_register ();
5229 get_arg_pointer_save_area (void)
5231 rtx ret = arg_pointer_save_area;
5233 if (! ret)
5235 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5236 arg_pointer_save_area = ret;
5239 if (! crtl->arg_pointer_save_area_init)
5241 rtx seq;
5243 /* Save the arg pointer at the beginning of the function. The
5244 generated stack slot may not be a valid memory address, so we
5245 have to check it and fix it if necessary. */
5246 start_sequence ();
5247 emit_move_insn (validize_mem (ret),
5248 crtl->args.internal_arg_pointer);
5249 seq = get_insns ();
5250 end_sequence ();
5252 push_topmost_sequence ();
5253 emit_insn_after (seq, entry_of_function ());
5254 pop_topmost_sequence ();
5256 crtl->arg_pointer_save_area_init = true;
5259 return ret;
5262 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5263 for the first time. */
5265 static void
5266 record_insns (rtx insns, rtx end, htab_t *hashp)
5268 rtx tmp;
5269 htab_t hash = *hashp;
5271 if (hash == NULL)
5272 *hashp = hash
5273 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5275 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5277 void **slot = htab_find_slot (hash, tmp, INSERT);
5278 gcc_assert (*slot == NULL);
5279 *slot = tmp;
5283 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5284 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5285 insn, then record COPY as well. */
5287 void
5288 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5290 htab_t hash;
5291 void **slot;
5293 hash = epilogue_insn_hash;
5294 if (!hash || !htab_find (hash, insn))
5296 hash = prologue_insn_hash;
5297 if (!hash || !htab_find (hash, insn))
5298 return;
5301 slot = htab_find_slot (hash, copy, INSERT);
5302 gcc_assert (*slot == NULL);
5303 *slot = copy;
5306 /* Set the location of the insn chain starting at INSN to LOC. */
5307 static void
5308 set_insn_locations (rtx insn, int loc)
5310 while (insn != NULL_RTX)
5312 if (INSN_P (insn))
5313 INSN_LOCATION (insn) = loc;
5314 insn = NEXT_INSN (insn);
5318 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5319 we can be running after reorg, SEQUENCE rtl is possible. */
5321 static bool
5322 contains (const_rtx insn, htab_t hash)
5324 if (hash == NULL)
5325 return false;
5327 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5329 int i;
5330 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5331 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5332 return true;
5333 return false;
5336 return htab_find (hash, insn) != NULL;
5340 prologue_epilogue_contains (const_rtx insn)
5342 if (contains (insn, prologue_insn_hash))
5343 return 1;
5344 if (contains (insn, epilogue_insn_hash))
5345 return 1;
5346 return 0;
5349 #ifdef HAVE_simple_return
5351 /* Return true if INSN requires the stack frame to be set up.
5352 PROLOGUE_USED contains the hard registers used in the function
5353 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5354 prologue to set up for the function. */
5355 bool
5356 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5357 HARD_REG_SET set_up_by_prologue)
5359 df_ref *df_rec;
5360 HARD_REG_SET hardregs;
5361 unsigned regno;
5363 if (CALL_P (insn))
5364 return !SIBLING_CALL_P (insn);
5366 /* We need a frame to get the unique CFA expected by the unwinder. */
5367 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5368 return true;
5370 CLEAR_HARD_REG_SET (hardregs);
5371 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5373 rtx dreg = DF_REF_REG (*df_rec);
5375 if (!REG_P (dreg))
5376 continue;
5378 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5379 REGNO (dreg));
5381 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5382 return true;
5383 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5384 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5385 if (TEST_HARD_REG_BIT (hardregs, regno)
5386 && df_regs_ever_live_p (regno))
5387 return true;
5389 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5391 rtx reg = DF_REF_REG (*df_rec);
5393 if (!REG_P (reg))
5394 continue;
5396 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5397 REGNO (reg));
5399 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5400 return true;
5402 return false;
5405 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5406 and if BB is its only predecessor. Return that block if so,
5407 otherwise return null. */
5409 static basic_block
5410 next_block_for_reg (basic_block bb, int regno, int end_regno)
5412 edge e, live_edge;
5413 edge_iterator ei;
5414 bitmap live;
5415 int i;
5417 live_edge = NULL;
5418 FOR_EACH_EDGE (e, ei, bb->succs)
5420 live = df_get_live_in (e->dest);
5421 for (i = regno; i < end_regno; i++)
5422 if (REGNO_REG_SET_P (live, i))
5424 if (live_edge && live_edge != e)
5425 return NULL;
5426 live_edge = e;
5430 /* We can sometimes encounter dead code. Don't try to move it
5431 into the exit block. */
5432 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5433 return NULL;
5435 /* Reject targets of abnormal edges. This is needed for correctness
5436 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5437 exception edges even though it is generally treated as call-saved
5438 for the majority of the compilation. Moving across abnormal edges
5439 isn't going to be interesting for shrink-wrap usage anyway. */
5440 if (live_edge->flags & EDGE_ABNORMAL)
5441 return NULL;
5443 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5444 return NULL;
5446 return live_edge->dest;
5449 /* Try to move INSN from BB to a successor. Return true on success.
5450 USES and DEFS are the set of registers that are used and defined
5451 after INSN in BB. */
5453 static bool
5454 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5455 const HARD_REG_SET uses,
5456 const HARD_REG_SET defs)
5458 rtx set, src, dest;
5459 bitmap live_out, live_in, bb_uses, bb_defs;
5460 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5461 basic_block next_block;
5463 /* Look for a simple register copy. */
5464 set = single_set (insn);
5465 if (!set)
5466 return false;
5467 src = SET_SRC (set);
5468 dest = SET_DEST (set);
5469 if (!REG_P (dest) || !REG_P (src))
5470 return false;
5472 /* Make sure that the source register isn't defined later in BB. */
5473 sregno = REGNO (src);
5474 end_sregno = END_REGNO (src);
5475 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5476 return false;
5478 /* Make sure that the destination register isn't referenced later in BB. */
5479 dregno = REGNO (dest);
5480 end_dregno = END_REGNO (dest);
5481 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5482 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5483 return false;
5485 /* See whether there is a successor block to which we could move INSN. */
5486 next_block = next_block_for_reg (bb, dregno, end_dregno);
5487 if (!next_block)
5488 return false;
5490 /* At this point we are committed to moving INSN, but let's try to
5491 move it as far as we can. */
5494 live_out = df_get_live_out (bb);
5495 live_in = df_get_live_in (next_block);
5496 bb = next_block;
5498 /* Check whether BB uses DEST or clobbers DEST. We need to add
5499 INSN to BB if so. Either way, DEST is no longer live on entry,
5500 except for any part that overlaps SRC (next loop). */
5501 bb_uses = &DF_LR_BB_INFO (bb)->use;
5502 bb_defs = &DF_LR_BB_INFO (bb)->def;
5503 for (i = dregno; i < end_dregno; i++)
5505 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5506 next_block = NULL;
5507 CLEAR_REGNO_REG_SET (live_out, i);
5508 CLEAR_REGNO_REG_SET (live_in, i);
5511 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5512 Either way, SRC is now live on entry. */
5513 for (i = sregno; i < end_sregno; i++)
5515 if (REGNO_REG_SET_P (bb_defs, i))
5516 next_block = NULL;
5517 SET_REGNO_REG_SET (live_out, i);
5518 SET_REGNO_REG_SET (live_in, i);
5521 /* If we don't need to add the move to BB, look for a single
5522 successor block. */
5523 if (next_block)
5524 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5526 while (next_block);
5528 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5529 (next loop). */
5530 for (i = dregno; i < end_dregno; i++)
5532 CLEAR_REGNO_REG_SET (bb_uses, i);
5533 SET_REGNO_REG_SET (bb_defs, i);
5536 /* BB now uses SRC. */
5537 for (i = sregno; i < end_sregno; i++)
5538 SET_REGNO_REG_SET (bb_uses, i);
5540 emit_insn_after (PATTERN (insn), bb_note (bb));
5541 delete_insn (insn);
5542 return true;
5545 /* Look for register copies in the first block of the function, and move
5546 them down into successor blocks if the register is used only on one
5547 path. This exposes more opportunities for shrink-wrapping. These
5548 kinds of sets often occur when incoming argument registers are moved
5549 to call-saved registers because their values are live across one or
5550 more calls during the function. */
5552 static void
5553 prepare_shrink_wrap (basic_block entry_block)
5555 rtx insn, curr, x;
5556 HARD_REG_SET uses, defs;
5557 df_ref *ref;
5559 CLEAR_HARD_REG_SET (uses);
5560 CLEAR_HARD_REG_SET (defs);
5561 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5562 if (NONDEBUG_INSN_P (insn)
5563 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5565 /* Add all defined registers to DEFs. */
5566 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5568 x = DF_REF_REG (*ref);
5569 if (REG_P (x) && HARD_REGISTER_P (x))
5570 SET_HARD_REG_BIT (defs, REGNO (x));
5573 /* Add all used registers to USESs. */
5574 for (ref = DF_INSN_USES (insn); *ref; ref++)
5576 x = DF_REF_REG (*ref);
5577 if (REG_P (x) && HARD_REGISTER_P (x))
5578 SET_HARD_REG_BIT (uses, REGNO (x));
5583 #endif
5585 #ifdef HAVE_return
5586 /* Insert use of return register before the end of BB. */
5588 static void
5589 emit_use_return_register_into_block (basic_block bb)
5591 rtx seq;
5592 start_sequence ();
5593 use_return_register ();
5594 seq = get_insns ();
5595 end_sequence ();
5596 emit_insn_before (seq, BB_END (bb));
5600 /* Create a return pattern, either simple_return or return, depending on
5601 simple_p. */
5603 static rtx
5604 gen_return_pattern (bool simple_p)
5606 #ifdef HAVE_simple_return
5607 return simple_p ? gen_simple_return () : gen_return ();
5608 #else
5609 gcc_assert (!simple_p);
5610 return gen_return ();
5611 #endif
5614 /* Insert an appropriate return pattern at the end of block BB. This
5615 also means updating block_for_insn appropriately. SIMPLE_P is
5616 the same as in gen_return_pattern and passed to it. */
5618 static void
5619 emit_return_into_block (bool simple_p, basic_block bb)
5621 rtx jump, pat;
5622 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5623 pat = PATTERN (jump);
5624 if (GET_CODE (pat) == PARALLEL)
5625 pat = XVECEXP (pat, 0, 0);
5626 gcc_assert (ANY_RETURN_P (pat));
5627 JUMP_LABEL (jump) = pat;
5629 #endif
5631 /* Set JUMP_LABEL for a return insn. */
5633 void
5634 set_return_jump_label (rtx returnjump)
5636 rtx pat = PATTERN (returnjump);
5637 if (GET_CODE (pat) == PARALLEL)
5638 pat = XVECEXP (pat, 0, 0);
5639 if (ANY_RETURN_P (pat))
5640 JUMP_LABEL (returnjump) = pat;
5641 else
5642 JUMP_LABEL (returnjump) = ret_rtx;
5645 #ifdef HAVE_simple_return
5646 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5647 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5648 static void
5649 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5650 bitmap_head *need_prologue)
5652 edge_iterator ei;
5653 edge e;
5654 rtx insn = BB_END (bb);
5656 /* We know BB has a single successor, so there is no need to copy a
5657 simple jump at the end of BB. */
5658 if (simplejump_p (insn))
5659 insn = PREV_INSN (insn);
5661 start_sequence ();
5662 duplicate_insn_chain (BB_HEAD (bb), insn);
5663 if (dump_file)
5665 unsigned count = 0;
5666 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5667 if (active_insn_p (insn))
5668 ++count;
5669 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5670 bb->index, copy_bb->index, count);
5672 insn = get_insns ();
5673 end_sequence ();
5674 emit_insn_before (insn, before);
5676 /* Redirect all the paths that need no prologue into copy_bb. */
5677 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5678 if (!bitmap_bit_p (need_prologue, e->src->index))
5680 int freq = EDGE_FREQUENCY (e);
5681 copy_bb->count += e->count;
5682 copy_bb->frequency += EDGE_FREQUENCY (e);
5683 e->dest->count -= e->count;
5684 if (e->dest->count < 0)
5685 e->dest->count = 0;
5686 e->dest->frequency -= freq;
5687 if (e->dest->frequency < 0)
5688 e->dest->frequency = 0;
5689 redirect_edge_and_branch_force (e, copy_bb);
5690 continue;
5692 else
5693 ei_next (&ei);
5695 #endif
5697 #if defined (HAVE_return) || defined (HAVE_simple_return)
5698 /* Return true if there are any active insns between HEAD and TAIL. */
5699 static bool
5700 active_insn_between (rtx head, rtx tail)
5702 while (tail)
5704 if (active_insn_p (tail))
5705 return true;
5706 if (tail == head)
5707 return false;
5708 tail = PREV_INSN (tail);
5710 return false;
5713 /* LAST_BB is a block that exits, and empty of active instructions.
5714 Examine its predecessors for jumps that can be converted to
5715 (conditional) returns. */
5716 static vec<edge>
5717 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5718 vec<edge> unconverted ATTRIBUTE_UNUSED)
5720 int i;
5721 basic_block bb;
5722 rtx label;
5723 edge_iterator ei;
5724 edge e;
5725 vec<basic_block> src_bbs;
5727 src_bbs.create (EDGE_COUNT (last_bb->preds));
5728 FOR_EACH_EDGE (e, ei, last_bb->preds)
5729 if (e->src != ENTRY_BLOCK_PTR)
5730 src_bbs.quick_push (e->src);
5732 label = BB_HEAD (last_bb);
5734 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5736 rtx jump = BB_END (bb);
5738 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5739 continue;
5741 e = find_edge (bb, last_bb);
5743 /* If we have an unconditional jump, we can replace that
5744 with a simple return instruction. */
5745 if (simplejump_p (jump))
5747 /* The use of the return register might be present in the exit
5748 fallthru block. Either:
5749 - removing the use is safe, and we should remove the use in
5750 the exit fallthru block, or
5751 - removing the use is not safe, and we should add it here.
5752 For now, we conservatively choose the latter. Either of the
5753 2 helps in crossjumping. */
5754 emit_use_return_register_into_block (bb);
5756 emit_return_into_block (simple_p, bb);
5757 delete_insn (jump);
5760 /* If we have a conditional jump branching to the last
5761 block, we can try to replace that with a conditional
5762 return instruction. */
5763 else if (condjump_p (jump))
5765 rtx dest;
5767 if (simple_p)
5768 dest = simple_return_rtx;
5769 else
5770 dest = ret_rtx;
5771 if (!redirect_jump (jump, dest, 0))
5773 #ifdef HAVE_simple_return
5774 if (simple_p)
5776 if (dump_file)
5777 fprintf (dump_file,
5778 "Failed to redirect bb %d branch.\n", bb->index);
5779 unconverted.safe_push (e);
5781 #endif
5782 continue;
5785 /* See comment in simplejump_p case above. */
5786 emit_use_return_register_into_block (bb);
5788 /* If this block has only one successor, it both jumps
5789 and falls through to the fallthru block, so we can't
5790 delete the edge. */
5791 if (single_succ_p (bb))
5792 continue;
5794 else
5796 #ifdef HAVE_simple_return
5797 if (simple_p)
5799 if (dump_file)
5800 fprintf (dump_file,
5801 "Failed to redirect bb %d branch.\n", bb->index);
5802 unconverted.safe_push (e);
5804 #endif
5805 continue;
5808 /* Fix up the CFG for the successful change we just made. */
5809 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5810 e->flags &= ~EDGE_CROSSING;
5812 src_bbs.release ();
5813 return unconverted;
5816 /* Emit a return insn for the exit fallthru block. */
5817 static basic_block
5818 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5820 basic_block last_bb = exit_fallthru_edge->src;
5822 if (JUMP_P (BB_END (last_bb)))
5824 last_bb = split_edge (exit_fallthru_edge);
5825 exit_fallthru_edge = single_succ_edge (last_bb);
5827 emit_barrier_after (BB_END (last_bb));
5828 emit_return_into_block (simple_p, last_bb);
5829 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5830 return last_bb;
5832 #endif
5835 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5836 this into place with notes indicating where the prologue ends and where
5837 the epilogue begins. Update the basic block information when possible.
5839 Notes on epilogue placement:
5840 There are several kinds of edges to the exit block:
5841 * a single fallthru edge from LAST_BB
5842 * possibly, edges from blocks containing sibcalls
5843 * possibly, fake edges from infinite loops
5845 The epilogue is always emitted on the fallthru edge from the last basic
5846 block in the function, LAST_BB, into the exit block.
5848 If LAST_BB is empty except for a label, it is the target of every
5849 other basic block in the function that ends in a return. If a
5850 target has a return or simple_return pattern (possibly with
5851 conditional variants), these basic blocks can be changed so that a
5852 return insn is emitted into them, and their target is adjusted to
5853 the real exit block.
5855 Notes on shrink wrapping: We implement a fairly conservative
5856 version of shrink-wrapping rather than the textbook one. We only
5857 generate a single prologue and a single epilogue. This is
5858 sufficient to catch a number of interesting cases involving early
5859 exits.
5861 First, we identify the blocks that require the prologue to occur before
5862 them. These are the ones that modify a call-saved register, or reference
5863 any of the stack or frame pointer registers. To simplify things, we then
5864 mark everything reachable from these blocks as also requiring a prologue.
5865 This takes care of loops automatically, and avoids the need to examine
5866 whether MEMs reference the frame, since it is sufficient to check for
5867 occurrences of the stack or frame pointer.
5869 We then compute the set of blocks for which the need for a prologue
5870 is anticipatable (borrowing terminology from the shrink-wrapping
5871 description in Muchnick's book). These are the blocks which either
5872 require a prologue themselves, or those that have only successors
5873 where the prologue is anticipatable. The prologue needs to be
5874 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5875 is not. For the moment, we ensure that only one such edge exists.
5877 The epilogue is placed as described above, but we make a
5878 distinction between inserting return and simple_return patterns
5879 when modifying other blocks that end in a return. Blocks that end
5880 in a sibcall omit the sibcall_epilogue if the block is not in
5881 ANTIC. */
5883 static void
5884 thread_prologue_and_epilogue_insns (void)
5886 bool inserted;
5887 #ifdef HAVE_simple_return
5888 vec<edge> unconverted_simple_returns = vNULL;
5889 bool nonempty_prologue;
5890 bitmap_head bb_flags;
5891 unsigned max_grow_size;
5892 #endif
5893 rtx returnjump;
5894 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5895 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5896 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5897 edge_iterator ei;
5899 df_analyze ();
5901 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5903 inserted = false;
5904 seq = NULL_RTX;
5905 epilogue_end = NULL_RTX;
5906 returnjump = NULL_RTX;
5908 /* Can't deal with multiple successors of the entry block at the
5909 moment. Function should always have at least one entry
5910 point. */
5911 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5912 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5913 orig_entry_edge = entry_edge;
5915 split_prologue_seq = NULL_RTX;
5916 if (flag_split_stack
5917 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5918 == NULL))
5920 #ifndef HAVE_split_stack_prologue
5921 gcc_unreachable ();
5922 #else
5923 gcc_assert (HAVE_split_stack_prologue);
5925 start_sequence ();
5926 emit_insn (gen_split_stack_prologue ());
5927 split_prologue_seq = get_insns ();
5928 end_sequence ();
5930 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5931 set_insn_locations (split_prologue_seq, prologue_location);
5932 #endif
5935 prologue_seq = NULL_RTX;
5936 #ifdef HAVE_prologue
5937 if (HAVE_prologue)
5939 start_sequence ();
5940 seq = gen_prologue ();
5941 emit_insn (seq);
5943 /* Insert an explicit USE for the frame pointer
5944 if the profiling is on and the frame pointer is required. */
5945 if (crtl->profile && frame_pointer_needed)
5946 emit_use (hard_frame_pointer_rtx);
5948 /* Retain a map of the prologue insns. */
5949 record_insns (seq, NULL, &prologue_insn_hash);
5950 emit_note (NOTE_INSN_PROLOGUE_END);
5952 /* Ensure that instructions are not moved into the prologue when
5953 profiling is on. The call to the profiling routine can be
5954 emitted within the live range of a call-clobbered register. */
5955 if (!targetm.profile_before_prologue () && crtl->profile)
5956 emit_insn (gen_blockage ());
5958 prologue_seq = get_insns ();
5959 end_sequence ();
5960 set_insn_locations (prologue_seq, prologue_location);
5962 #endif
5964 #ifdef HAVE_simple_return
5965 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5967 /* Try to perform a kind of shrink-wrapping, making sure the
5968 prologue/epilogue is emitted only around those parts of the
5969 function that require it. */
5971 nonempty_prologue = false;
5972 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5973 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5975 nonempty_prologue = true;
5976 break;
5979 if (flag_shrink_wrap && HAVE_simple_return
5980 && (targetm.profile_before_prologue () || !crtl->profile)
5981 && nonempty_prologue && !crtl->calls_eh_return)
5983 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5984 struct hard_reg_set_container set_up_by_prologue;
5985 rtx p_insn;
5986 vec<basic_block> vec;
5987 basic_block bb;
5988 bitmap_head bb_antic_flags;
5989 bitmap_head bb_on_list;
5990 bitmap_head bb_tail;
5992 if (dump_file)
5993 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5995 /* Compute the registers set and used in the prologue. */
5996 CLEAR_HARD_REG_SET (prologue_clobbered);
5997 CLEAR_HARD_REG_SET (prologue_used);
5998 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6000 HARD_REG_SET this_used;
6001 if (!NONDEBUG_INSN_P (p_insn))
6002 continue;
6004 CLEAR_HARD_REG_SET (this_used);
6005 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6006 &this_used);
6007 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6008 IOR_HARD_REG_SET (prologue_used, this_used);
6009 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6010 &prologue_clobbered);
6013 prepare_shrink_wrap (entry_edge->dest);
6015 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6016 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6017 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6019 /* Find the set of basic blocks that require a stack frame,
6020 and blocks that are too big to be duplicated. */
6022 vec.create (n_basic_blocks);
6024 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6025 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6026 STACK_POINTER_REGNUM);
6027 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6028 if (frame_pointer_needed)
6029 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6030 HARD_FRAME_POINTER_REGNUM);
6031 if (pic_offset_table_rtx)
6032 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6033 PIC_OFFSET_TABLE_REGNUM);
6034 if (stack_realign_drap && crtl->drap_reg)
6035 add_to_hard_reg_set (&set_up_by_prologue.set,
6036 GET_MODE (crtl->drap_reg),
6037 REGNO (crtl->drap_reg));
6038 if (targetm.set_up_by_prologue)
6039 targetm.set_up_by_prologue (&set_up_by_prologue);
6041 /* We don't use a different max size depending on
6042 optimize_bb_for_speed_p because increasing shrink-wrapping
6043 opportunities by duplicating tail blocks can actually result
6044 in an overall decrease in code size. */
6045 max_grow_size = get_uncond_jump_length ();
6046 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6048 FOR_EACH_BB (bb)
6050 rtx insn;
6051 unsigned size = 0;
6053 FOR_BB_INSNS (bb, insn)
6054 if (NONDEBUG_INSN_P (insn))
6056 if (requires_stack_frame_p (insn, prologue_used,
6057 set_up_by_prologue.set))
6059 if (bb == entry_edge->dest)
6060 goto fail_shrinkwrap;
6061 bitmap_set_bit (&bb_flags, bb->index);
6062 vec.quick_push (bb);
6063 break;
6065 else if (size <= max_grow_size)
6067 size += get_attr_min_length (insn);
6068 if (size > max_grow_size)
6069 bitmap_set_bit (&bb_on_list, bb->index);
6074 /* Blocks that really need a prologue, or are too big for tails. */
6075 bitmap_ior_into (&bb_on_list, &bb_flags);
6077 /* For every basic block that needs a prologue, mark all blocks
6078 reachable from it, so as to ensure they are also seen as
6079 requiring a prologue. */
6080 while (!vec.is_empty ())
6082 basic_block tmp_bb = vec.pop ();
6084 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6085 if (e->dest != EXIT_BLOCK_PTR
6086 && bitmap_set_bit (&bb_flags, e->dest->index))
6087 vec.quick_push (e->dest);
6090 /* Find the set of basic blocks that need no prologue, have a
6091 single successor, can be duplicated, meet a max size
6092 requirement, and go to the exit via like blocks. */
6093 vec.quick_push (EXIT_BLOCK_PTR);
6094 while (!vec.is_empty ())
6096 basic_block tmp_bb = vec.pop ();
6098 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6099 if (single_succ_p (e->src)
6100 && !bitmap_bit_p (&bb_on_list, e->src->index)
6101 && can_duplicate_block_p (e->src))
6103 edge pe;
6104 edge_iterator pei;
6106 /* If there is predecessor of e->src which doesn't
6107 need prologue and the edge is complex,
6108 we might not be able to redirect the branch
6109 to a copy of e->src. */
6110 FOR_EACH_EDGE (pe, pei, e->src->preds)
6111 if ((pe->flags & EDGE_COMPLEX) != 0
6112 && !bitmap_bit_p (&bb_flags, pe->src->index))
6113 break;
6114 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6115 vec.quick_push (e->src);
6119 /* Now walk backwards from every block that is marked as needing
6120 a prologue to compute the bb_antic_flags bitmap. Exclude
6121 tail blocks; They can be duplicated to be used on paths not
6122 needing a prologue. */
6123 bitmap_clear (&bb_on_list);
6124 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6125 FOR_EACH_BB (bb)
6127 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6128 continue;
6129 FOR_EACH_EDGE (e, ei, bb->preds)
6130 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6131 && bitmap_set_bit (&bb_on_list, e->src->index))
6132 vec.quick_push (e->src);
6134 while (!vec.is_empty ())
6136 basic_block tmp_bb = vec.pop ();
6137 bool all_set = true;
6139 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6140 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6141 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6143 all_set = false;
6144 break;
6147 if (all_set)
6149 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6150 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6151 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6152 && bitmap_set_bit (&bb_on_list, e->src->index))
6153 vec.quick_push (e->src);
6156 /* Find exactly one edge that leads to a block in ANTIC from
6157 a block that isn't. */
6158 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6159 FOR_EACH_BB (bb)
6161 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6162 continue;
6163 FOR_EACH_EDGE (e, ei, bb->preds)
6164 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6166 if (entry_edge != orig_entry_edge)
6168 entry_edge = orig_entry_edge;
6169 if (dump_file)
6170 fprintf (dump_file, "More than one candidate edge.\n");
6171 goto fail_shrinkwrap;
6173 if (dump_file)
6174 fprintf (dump_file, "Found candidate edge for "
6175 "shrink-wrapping, %d->%d.\n", e->src->index,
6176 e->dest->index);
6177 entry_edge = e;
6181 if (entry_edge != orig_entry_edge)
6183 /* Test whether the prologue is known to clobber any register
6184 (other than FP or SP) which are live on the edge. */
6185 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6186 if (frame_pointer_needed)
6187 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6188 REG_SET_TO_HARD_REG_SET (live_on_edge,
6189 df_get_live_in (entry_edge->dest));
6190 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6192 entry_edge = orig_entry_edge;
6193 if (dump_file)
6194 fprintf (dump_file,
6195 "Shrink-wrapping aborted due to clobber.\n");
6198 if (entry_edge != orig_entry_edge)
6200 crtl->shrink_wrapped = true;
6201 if (dump_file)
6202 fprintf (dump_file, "Performing shrink-wrapping.\n");
6204 /* Find tail blocks reachable from both blocks needing a
6205 prologue and blocks not needing a prologue. */
6206 if (!bitmap_empty_p (&bb_tail))
6207 FOR_EACH_BB (bb)
6209 bool some_pro, some_no_pro;
6210 if (!bitmap_bit_p (&bb_tail, bb->index))
6211 continue;
6212 some_pro = some_no_pro = false;
6213 FOR_EACH_EDGE (e, ei, bb->preds)
6215 if (bitmap_bit_p (&bb_flags, e->src->index))
6216 some_pro = true;
6217 else
6218 some_no_pro = true;
6220 if (some_pro && some_no_pro)
6221 vec.quick_push (bb);
6222 else
6223 bitmap_clear_bit (&bb_tail, bb->index);
6225 /* Find the head of each tail. */
6226 while (!vec.is_empty ())
6228 basic_block tbb = vec.pop ();
6230 if (!bitmap_bit_p (&bb_tail, tbb->index))
6231 continue;
6233 while (single_succ_p (tbb))
6235 tbb = single_succ (tbb);
6236 bitmap_clear_bit (&bb_tail, tbb->index);
6239 /* Now duplicate the tails. */
6240 if (!bitmap_empty_p (&bb_tail))
6241 FOR_EACH_BB_REVERSE (bb)
6243 basic_block copy_bb, tbb;
6244 rtx insert_point;
6245 int eflags;
6247 if (!bitmap_clear_bit (&bb_tail, bb->index))
6248 continue;
6250 /* Create a copy of BB, instructions and all, for
6251 use on paths that don't need a prologue.
6252 Ideal placement of the copy is on a fall-thru edge
6253 or after a block that would jump to the copy. */
6254 FOR_EACH_EDGE (e, ei, bb->preds)
6255 if (!bitmap_bit_p (&bb_flags, e->src->index)
6256 && single_succ_p (e->src))
6257 break;
6258 if (e)
6260 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6261 NULL_RTX, e->src);
6262 BB_COPY_PARTITION (copy_bb, e->src);
6264 else
6266 /* Otherwise put the copy at the end of the function. */
6267 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6268 EXIT_BLOCK_PTR->prev_bb);
6269 BB_COPY_PARTITION (copy_bb, bb);
6272 insert_point = emit_note_after (NOTE_INSN_DELETED,
6273 BB_END (copy_bb));
6274 emit_barrier_after (BB_END (copy_bb));
6276 tbb = bb;
6277 while (1)
6279 dup_block_and_redirect (tbb, copy_bb, insert_point,
6280 &bb_flags);
6281 tbb = single_succ (tbb);
6282 if (tbb == EXIT_BLOCK_PTR)
6283 break;
6284 e = split_block (copy_bb, PREV_INSN (insert_point));
6285 copy_bb = e->dest;
6288 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6289 We have yet to add a simple_return to the tails,
6290 as we'd like to first convert_jumps_to_returns in
6291 case the block is no longer used after that. */
6292 eflags = EDGE_FAKE;
6293 if (CALL_P (PREV_INSN (insert_point))
6294 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6295 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6296 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6298 /* verify_flow_info doesn't like a note after a
6299 sibling call. */
6300 delete_insn (insert_point);
6301 if (bitmap_empty_p (&bb_tail))
6302 break;
6306 fail_shrinkwrap:
6307 bitmap_clear (&bb_tail);
6308 bitmap_clear (&bb_antic_flags);
6309 bitmap_clear (&bb_on_list);
6310 vec.release ();
6312 #endif
6314 if (split_prologue_seq != NULL_RTX)
6316 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6317 inserted = true;
6319 if (prologue_seq != NULL_RTX)
6321 insert_insn_on_edge (prologue_seq, entry_edge);
6322 inserted = true;
6325 /* If the exit block has no non-fake predecessors, we don't need
6326 an epilogue. */
6327 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6328 if ((e->flags & EDGE_FAKE) == 0)
6329 break;
6330 if (e == NULL)
6331 goto epilogue_done;
6333 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6335 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6337 /* If we're allowed to generate a simple return instruction, then by
6338 definition we don't need a full epilogue. If the last basic
6339 block before the exit block does not contain active instructions,
6340 examine its predecessors and try to emit (conditional) return
6341 instructions. */
6342 #ifdef HAVE_simple_return
6343 if (entry_edge != orig_entry_edge)
6345 if (optimize)
6347 unsigned i, last;
6349 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6350 (but won't remove). Stop at end of current preds. */
6351 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6352 for (i = 0; i < last; i++)
6354 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6355 if (LABEL_P (BB_HEAD (e->src))
6356 && !bitmap_bit_p (&bb_flags, e->src->index)
6357 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6358 unconverted_simple_returns
6359 = convert_jumps_to_returns (e->src, true,
6360 unconverted_simple_returns);
6364 if (exit_fallthru_edge != NULL
6365 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6366 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6368 basic_block last_bb;
6370 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6371 returnjump = BB_END (last_bb);
6372 exit_fallthru_edge = NULL;
6375 #endif
6376 #ifdef HAVE_return
6377 if (HAVE_return)
6379 if (exit_fallthru_edge == NULL)
6380 goto epilogue_done;
6382 if (optimize)
6384 basic_block last_bb = exit_fallthru_edge->src;
6386 if (LABEL_P (BB_HEAD (last_bb))
6387 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6388 convert_jumps_to_returns (last_bb, false, vNULL);
6390 if (EDGE_COUNT (last_bb->preds) != 0
6391 && single_succ_p (last_bb))
6393 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6394 epilogue_end = returnjump = BB_END (last_bb);
6395 #ifdef HAVE_simple_return
6396 /* Emitting the return may add a basic block.
6397 Fix bb_flags for the added block. */
6398 if (last_bb != exit_fallthru_edge->src)
6399 bitmap_set_bit (&bb_flags, last_bb->index);
6400 #endif
6401 goto epilogue_done;
6405 #endif
6407 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6408 this marker for the splits of EH_RETURN patterns, and nothing else
6409 uses the flag in the meantime. */
6410 epilogue_completed = 1;
6412 #ifdef HAVE_eh_return
6413 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6414 some targets, these get split to a special version of the epilogue
6415 code. In order to be able to properly annotate these with unwind
6416 info, try to split them now. If we get a valid split, drop an
6417 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6418 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6420 rtx prev, last, trial;
6422 if (e->flags & EDGE_FALLTHRU)
6423 continue;
6424 last = BB_END (e->src);
6425 if (!eh_returnjump_p (last))
6426 continue;
6428 prev = PREV_INSN (last);
6429 trial = try_split (PATTERN (last), last, 1);
6430 if (trial == last)
6431 continue;
6433 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6434 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6436 #endif
6438 /* If nothing falls through into the exit block, we don't need an
6439 epilogue. */
6441 if (exit_fallthru_edge == NULL)
6442 goto epilogue_done;
6444 #ifdef HAVE_epilogue
6445 if (HAVE_epilogue)
6447 start_sequence ();
6448 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6449 seq = gen_epilogue ();
6450 if (seq)
6451 emit_jump_insn (seq);
6453 /* Retain a map of the epilogue insns. */
6454 record_insns (seq, NULL, &epilogue_insn_hash);
6455 set_insn_locations (seq, epilogue_location);
6457 seq = get_insns ();
6458 returnjump = get_last_insn ();
6459 end_sequence ();
6461 insert_insn_on_edge (seq, exit_fallthru_edge);
6462 inserted = true;
6464 if (JUMP_P (returnjump))
6465 set_return_jump_label (returnjump);
6467 else
6468 #endif
6470 basic_block cur_bb;
6472 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6473 goto epilogue_done;
6474 /* We have a fall-through edge to the exit block, the source is not
6475 at the end of the function, and there will be an assembler epilogue
6476 at the end of the function.
6477 We can't use force_nonfallthru here, because that would try to
6478 use return. Inserting a jump 'by hand' is extremely messy, so
6479 we take advantage of cfg_layout_finalize using
6480 fixup_fallthru_exit_predecessor. */
6481 cfg_layout_initialize (0);
6482 FOR_EACH_BB (cur_bb)
6483 if (cur_bb->index >= NUM_FIXED_BLOCKS
6484 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6485 cur_bb->aux = cur_bb->next_bb;
6486 cfg_layout_finalize ();
6489 epilogue_done:
6491 default_rtl_profile ();
6493 if (inserted)
6495 sbitmap blocks;
6497 commit_edge_insertions ();
6499 /* Look for basic blocks within the prologue insns. */
6500 blocks = sbitmap_alloc (last_basic_block);
6501 bitmap_clear (blocks);
6502 bitmap_set_bit (blocks, entry_edge->dest->index);
6503 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6504 find_many_sub_basic_blocks (blocks);
6505 sbitmap_free (blocks);
6507 /* The epilogue insns we inserted may cause the exit edge to no longer
6508 be fallthru. */
6509 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6511 if (((e->flags & EDGE_FALLTHRU) != 0)
6512 && returnjump_p (BB_END (e->src)))
6513 e->flags &= ~EDGE_FALLTHRU;
6517 #ifdef HAVE_simple_return
6518 /* If there were branches to an empty LAST_BB which we tried to
6519 convert to conditional simple_returns, but couldn't for some
6520 reason, create a block to hold a simple_return insn and redirect
6521 those remaining edges. */
6522 if (!unconverted_simple_returns.is_empty ())
6524 basic_block simple_return_block_hot = NULL;
6525 basic_block simple_return_block_cold = NULL;
6526 edge pending_edge_hot = NULL;
6527 edge pending_edge_cold = NULL;
6528 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6529 int i;
6531 gcc_assert (entry_edge != orig_entry_edge);
6533 /* See if we can reuse the last insn that was emitted for the
6534 epilogue. */
6535 if (returnjump != NULL_RTX
6536 && JUMP_LABEL (returnjump) == simple_return_rtx)
6538 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6539 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6540 simple_return_block_hot = e->dest;
6541 else
6542 simple_return_block_cold = e->dest;
6545 /* Also check returns we might need to add to tail blocks. */
6546 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6547 if (EDGE_COUNT (e->src->preds) != 0
6548 && (e->flags & EDGE_FAKE) != 0
6549 && !bitmap_bit_p (&bb_flags, e->src->index))
6551 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6552 pending_edge_hot = e;
6553 else
6554 pending_edge_cold = e;
6557 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6559 basic_block *pdest_bb;
6560 edge pending;
6562 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6564 pdest_bb = &simple_return_block_hot;
6565 pending = pending_edge_hot;
6567 else
6569 pdest_bb = &simple_return_block_cold;
6570 pending = pending_edge_cold;
6573 if (*pdest_bb == NULL && pending != NULL)
6575 emit_return_into_block (true, pending->src);
6576 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6577 *pdest_bb = pending->src;
6579 else if (*pdest_bb == NULL)
6581 basic_block bb;
6582 rtx start;
6584 bb = create_basic_block (NULL, NULL, exit_pred);
6585 BB_COPY_PARTITION (bb, e->src);
6586 start = emit_jump_insn_after (gen_simple_return (),
6587 BB_END (bb));
6588 JUMP_LABEL (start) = simple_return_rtx;
6589 emit_barrier_after (start);
6591 *pdest_bb = bb;
6592 make_edge (bb, EXIT_BLOCK_PTR, 0);
6594 redirect_edge_and_branch_force (e, *pdest_bb);
6596 unconverted_simple_returns.release ();
6599 if (entry_edge != orig_entry_edge)
6601 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6602 if (EDGE_COUNT (e->src->preds) != 0
6603 && (e->flags & EDGE_FAKE) != 0
6604 && !bitmap_bit_p (&bb_flags, e->src->index))
6606 emit_return_into_block (true, e->src);
6607 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6610 #endif
6612 #ifdef HAVE_sibcall_epilogue
6613 /* Emit sibling epilogues before any sibling call sites. */
6614 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6616 basic_block bb = e->src;
6617 rtx insn = BB_END (bb);
6618 rtx ep_seq;
6620 if (!CALL_P (insn)
6621 || ! SIBLING_CALL_P (insn)
6622 #ifdef HAVE_simple_return
6623 || (entry_edge != orig_entry_edge
6624 && !bitmap_bit_p (&bb_flags, bb->index))
6625 #endif
6628 ei_next (&ei);
6629 continue;
6632 ep_seq = gen_sibcall_epilogue ();
6633 if (ep_seq)
6635 start_sequence ();
6636 emit_note (NOTE_INSN_EPILOGUE_BEG);
6637 emit_insn (ep_seq);
6638 seq = get_insns ();
6639 end_sequence ();
6641 /* Retain a map of the epilogue insns. Used in life analysis to
6642 avoid getting rid of sibcall epilogue insns. Do this before we
6643 actually emit the sequence. */
6644 record_insns (seq, NULL, &epilogue_insn_hash);
6645 set_insn_locations (seq, epilogue_location);
6647 emit_insn_before (seq, insn);
6649 ei_next (&ei);
6651 #endif
6653 #ifdef HAVE_epilogue
6654 if (epilogue_end)
6656 rtx insn, next;
6658 /* Similarly, move any line notes that appear after the epilogue.
6659 There is no need, however, to be quite so anal about the existence
6660 of such a note. Also possibly move
6661 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6662 info generation. */
6663 for (insn = epilogue_end; insn; insn = next)
6665 next = NEXT_INSN (insn);
6666 if (NOTE_P (insn)
6667 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6668 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6671 #endif
6673 #ifdef HAVE_simple_return
6674 bitmap_clear (&bb_flags);
6675 #endif
6677 /* Threading the prologue and epilogue changes the artificial refs
6678 in the entry and exit blocks. */
6679 epilogue_completed = 1;
6680 df_update_entry_exit_and_calls ();
6683 /* Reposition the prologue-end and epilogue-begin notes after
6684 instruction scheduling. */
6686 void
6687 reposition_prologue_and_epilogue_notes (void)
6689 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6690 || defined (HAVE_sibcall_epilogue)
6691 /* Since the hash table is created on demand, the fact that it is
6692 non-null is a signal that it is non-empty. */
6693 if (prologue_insn_hash != NULL)
6695 size_t len = htab_elements (prologue_insn_hash);
6696 rtx insn, last = NULL, note = NULL;
6698 /* Scan from the beginning until we reach the last prologue insn. */
6699 /* ??? While we do have the CFG intact, there are two problems:
6700 (1) The prologue can contain loops (typically probing the stack),
6701 which means that the end of the prologue isn't in the first bb.
6702 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6703 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6705 if (NOTE_P (insn))
6707 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6708 note = insn;
6710 else if (contains (insn, prologue_insn_hash))
6712 last = insn;
6713 if (--len == 0)
6714 break;
6718 if (last)
6720 if (note == NULL)
6722 /* Scan forward looking for the PROLOGUE_END note. It should
6723 be right at the beginning of the block, possibly with other
6724 insn notes that got moved there. */
6725 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6727 if (NOTE_P (note)
6728 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6729 break;
6733 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6734 if (LABEL_P (last))
6735 last = NEXT_INSN (last);
6736 reorder_insns (note, note, last);
6740 if (epilogue_insn_hash != NULL)
6742 edge_iterator ei;
6743 edge e;
6745 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6747 rtx insn, first = NULL, note = NULL;
6748 basic_block bb = e->src;
6750 /* Scan from the beginning until we reach the first epilogue insn. */
6751 FOR_BB_INSNS (bb, insn)
6753 if (NOTE_P (insn))
6755 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6757 note = insn;
6758 if (first != NULL)
6759 break;
6762 else if (first == NULL && contains (insn, epilogue_insn_hash))
6764 first = insn;
6765 if (note != NULL)
6766 break;
6770 if (note)
6772 /* If the function has a single basic block, and no real
6773 epilogue insns (e.g. sibcall with no cleanup), the
6774 epilogue note can get scheduled before the prologue
6775 note. If we have frame related prologue insns, having
6776 them scanned during the epilogue will result in a crash.
6777 In this case re-order the epilogue note to just before
6778 the last insn in the block. */
6779 if (first == NULL)
6780 first = BB_END (bb);
6782 if (PREV_INSN (first) != note)
6783 reorder_insns (note, note, PREV_INSN (first));
6787 #endif /* HAVE_prologue or HAVE_epilogue */
6790 /* Returns the name of function declared by FNDECL. */
6791 const char *
6792 fndecl_name (tree fndecl)
6794 if (fndecl == NULL)
6795 return "(nofn)";
6796 return lang_hooks.decl_printable_name (fndecl, 2);
6799 /* Returns the name of function FN. */
6800 const char *
6801 function_name (struct function *fn)
6803 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6804 return fndecl_name (fndecl);
6807 /* Returns the name of the current function. */
6808 const char *
6809 current_function_name (void)
6811 return function_name (cfun);
6815 static unsigned int
6816 rest_of_handle_check_leaf_regs (void)
6818 #ifdef LEAF_REGISTERS
6819 crtl->uses_only_leaf_regs
6820 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6821 #endif
6822 return 0;
6825 /* Insert a TYPE into the used types hash table of CFUN. */
6827 static void
6828 used_types_insert_helper (tree type, struct function *func)
6830 if (type != NULL && func != NULL)
6832 void **slot;
6834 if (func->used_types_hash == NULL)
6835 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6836 htab_eq_pointer, NULL);
6837 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6838 if (*slot == NULL)
6839 *slot = type;
6843 /* Given a type, insert it into the used hash table in cfun. */
6844 void
6845 used_types_insert (tree t)
6847 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6848 if (TYPE_NAME (t))
6849 break;
6850 else
6851 t = TREE_TYPE (t);
6852 if (TREE_CODE (t) == ERROR_MARK)
6853 return;
6854 if (TYPE_NAME (t) == NULL_TREE
6855 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6856 t = TYPE_MAIN_VARIANT (t);
6857 if (debug_info_level > DINFO_LEVEL_NONE)
6859 if (cfun)
6860 used_types_insert_helper (t, cfun);
6861 else
6863 /* So this might be a type referenced by a global variable.
6864 Record that type so that we can later decide to emit its
6865 debug information. */
6866 vec_safe_push (types_used_by_cur_var_decl, t);
6871 /* Helper to Hash a struct types_used_by_vars_entry. */
6873 static hashval_t
6874 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6876 gcc_assert (entry && entry->var_decl && entry->type);
6878 return iterative_hash_object (entry->type,
6879 iterative_hash_object (entry->var_decl, 0));
6882 /* Hash function of the types_used_by_vars_entry hash table. */
6884 hashval_t
6885 types_used_by_vars_do_hash (const void *x)
6887 const struct types_used_by_vars_entry *entry =
6888 (const struct types_used_by_vars_entry *) x;
6890 return hash_types_used_by_vars_entry (entry);
6893 /*Equality function of the types_used_by_vars_entry hash table. */
6896 types_used_by_vars_eq (const void *x1, const void *x2)
6898 const struct types_used_by_vars_entry *e1 =
6899 (const struct types_used_by_vars_entry *) x1;
6900 const struct types_used_by_vars_entry *e2 =
6901 (const struct types_used_by_vars_entry *)x2;
6903 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6906 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6908 void
6909 types_used_by_var_decl_insert (tree type, tree var_decl)
6911 if (type != NULL && var_decl != NULL)
6913 void **slot;
6914 struct types_used_by_vars_entry e;
6915 e.var_decl = var_decl;
6916 e.type = type;
6917 if (types_used_by_vars_hash == NULL)
6918 types_used_by_vars_hash =
6919 htab_create_ggc (37, types_used_by_vars_do_hash,
6920 types_used_by_vars_eq, NULL);
6921 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6922 hash_types_used_by_vars_entry (&e), INSERT);
6923 if (*slot == NULL)
6925 struct types_used_by_vars_entry *entry;
6926 entry = ggc_alloc_types_used_by_vars_entry ();
6927 entry->type = type;
6928 entry->var_decl = var_decl;
6929 *slot = entry;
6934 struct rtl_opt_pass pass_leaf_regs =
6937 RTL_PASS,
6938 "*leaf_regs", /* name */
6939 OPTGROUP_NONE, /* optinfo_flags */
6940 NULL, /* gate */
6941 rest_of_handle_check_leaf_regs, /* execute */
6942 NULL, /* sub */
6943 NULL, /* next */
6944 0, /* static_pass_number */
6945 TV_NONE, /* tv_id */
6946 0, /* properties_required */
6947 0, /* properties_provided */
6948 0, /* properties_destroyed */
6949 0, /* todo_flags_start */
6950 0 /* todo_flags_finish */
6954 static unsigned int
6955 rest_of_handle_thread_prologue_and_epilogue (void)
6957 if (optimize)
6958 cleanup_cfg (CLEANUP_EXPENSIVE);
6960 /* On some machines, the prologue and epilogue code, or parts thereof,
6961 can be represented as RTL. Doing so lets us schedule insns between
6962 it and the rest of the code and also allows delayed branch
6963 scheduling to operate in the epilogue. */
6964 thread_prologue_and_epilogue_insns ();
6966 /* The stack usage info is finalized during prologue expansion. */
6967 if (flag_stack_usage_info)
6968 output_stack_usage ();
6970 return 0;
6973 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6976 RTL_PASS,
6977 "pro_and_epilogue", /* name */
6978 OPTGROUP_NONE, /* optinfo_flags */
6979 NULL, /* gate */
6980 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6981 NULL, /* sub */
6982 NULL, /* next */
6983 0, /* static_pass_number */
6984 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6985 0, /* properties_required */
6986 0, /* properties_provided */
6987 0, /* properties_destroyed */
6988 TODO_verify_flow, /* todo_flags_start */
6989 TODO_df_verify |
6990 TODO_df_finish | TODO_verify_rtl_sharing |
6991 TODO_ggc_collect /* todo_flags_finish */
6996 /* This mini-pass fixes fall-out from SSA in asm statements that have
6997 in-out constraints. Say you start with
6999 orig = inout;
7000 asm ("": "+mr" (inout));
7001 use (orig);
7003 which is transformed very early to use explicit output and match operands:
7005 orig = inout;
7006 asm ("": "=mr" (inout) : "0" (inout));
7007 use (orig);
7009 Or, after SSA and copyprop,
7011 asm ("": "=mr" (inout_2) : "0" (inout_1));
7012 use (inout_1);
7014 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7015 they represent two separate values, so they will get different pseudo
7016 registers during expansion. Then, since the two operands need to match
7017 per the constraints, but use different pseudo registers, reload can
7018 only register a reload for these operands. But reloads can only be
7019 satisfied by hardregs, not by memory, so we need a register for this
7020 reload, just because we are presented with non-matching operands.
7021 So, even though we allow memory for this operand, no memory can be
7022 used for it, just because the two operands don't match. This can
7023 cause reload failures on register-starved targets.
7025 So it's a symptom of reload not being able to use memory for reloads
7026 or, alternatively it's also a symptom of both operands not coming into
7027 reload as matching (in which case the pseudo could go to memory just
7028 fine, as the alternative allows it, and no reload would be necessary).
7029 We fix the latter problem here, by transforming
7031 asm ("": "=mr" (inout_2) : "0" (inout_1));
7033 back to
7035 inout_2 = inout_1;
7036 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7038 static void
7039 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7041 int i;
7042 bool changed = false;
7043 rtx op = SET_SRC (p_sets[0]);
7044 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7045 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7046 bool *output_matched = XALLOCAVEC (bool, noutputs);
7048 memset (output_matched, 0, noutputs * sizeof (bool));
7049 for (i = 0; i < ninputs; i++)
7051 rtx input, output, insns;
7052 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7053 char *end;
7054 int match, j;
7056 if (*constraint == '%')
7057 constraint++;
7059 match = strtoul (constraint, &end, 10);
7060 if (end == constraint)
7061 continue;
7063 gcc_assert (match < noutputs);
7064 output = SET_DEST (p_sets[match]);
7065 input = RTVEC_ELT (inputs, i);
7066 /* Only do the transformation for pseudos. */
7067 if (! REG_P (output)
7068 || rtx_equal_p (output, input)
7069 || (GET_MODE (input) != VOIDmode
7070 && GET_MODE (input) != GET_MODE (output)))
7071 continue;
7073 /* We can't do anything if the output is also used as input,
7074 as we're going to overwrite it. */
7075 for (j = 0; j < ninputs; j++)
7076 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7077 break;
7078 if (j != ninputs)
7079 continue;
7081 /* Avoid changing the same input several times. For
7082 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7083 only change in once (to out1), rather than changing it
7084 first to out1 and afterwards to out2. */
7085 if (i > 0)
7087 for (j = 0; j < noutputs; j++)
7088 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7089 break;
7090 if (j != noutputs)
7091 continue;
7093 output_matched[match] = true;
7095 start_sequence ();
7096 emit_move_insn (output, input);
7097 insns = get_insns ();
7098 end_sequence ();
7099 emit_insn_before (insns, insn);
7101 /* Now replace all mentions of the input with output. We can't
7102 just replace the occurrence in inputs[i], as the register might
7103 also be used in some other input (or even in an address of an
7104 output), which would mean possibly increasing the number of
7105 inputs by one (namely 'output' in addition), which might pose
7106 a too complicated problem for reload to solve. E.g. this situation:
7108 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7110 Here 'input' is used in two occurrences as input (once for the
7111 input operand, once for the address in the second output operand).
7112 If we would replace only the occurrence of the input operand (to
7113 make the matching) we would be left with this:
7115 output = input
7116 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7118 Now we suddenly have two different input values (containing the same
7119 value, but different pseudos) where we formerly had only one.
7120 With more complicated asms this might lead to reload failures
7121 which wouldn't have happen without this pass. So, iterate over
7122 all operands and replace all occurrences of the register used. */
7123 for (j = 0; j < noutputs; j++)
7124 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7125 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7126 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7127 input, output);
7128 for (j = 0; j < ninputs; j++)
7129 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7130 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7131 input, output);
7133 changed = true;
7136 if (changed)
7137 df_insn_rescan (insn);
7140 static unsigned
7141 rest_of_match_asm_constraints (void)
7143 basic_block bb;
7144 rtx insn, pat, *p_sets;
7145 int noutputs;
7147 if (!crtl->has_asm_statement)
7148 return 0;
7150 df_set_flags (DF_DEFER_INSN_RESCAN);
7151 FOR_EACH_BB (bb)
7153 FOR_BB_INSNS (bb, insn)
7155 if (!INSN_P (insn))
7156 continue;
7158 pat = PATTERN (insn);
7159 if (GET_CODE (pat) == PARALLEL)
7160 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7161 else if (GET_CODE (pat) == SET)
7162 p_sets = &PATTERN (insn), noutputs = 1;
7163 else
7164 continue;
7166 if (GET_CODE (*p_sets) == SET
7167 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7168 match_asm_constraints_1 (insn, p_sets, noutputs);
7172 return TODO_df_finish;
7175 struct rtl_opt_pass pass_match_asm_constraints =
7178 RTL_PASS,
7179 "asmcons", /* name */
7180 OPTGROUP_NONE, /* optinfo_flags */
7181 NULL, /* gate */
7182 rest_of_match_asm_constraints, /* execute */
7183 NULL, /* sub */
7184 NULL, /* next */
7185 0, /* static_pass_number */
7186 TV_NONE, /* tv_id */
7187 0, /* properties_required */
7188 0, /* properties_provided */
7189 0, /* properties_destroyed */
7190 0, /* todo_flags_start */
7191 0 /* todo_flags_finish */
7196 #include "gt-function.h"