* trans-types.c (gfc_type_for_mode): Return NULL for unknown modes.
[official-gcc.git] / gcc / optabs.c
blob0e8bb31984fa4e3d67ed6f9e41511200b10ad236
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
55 See expr.h for documentation of these optabs. */
57 optab optab_table[OTI_MAX];
59 rtx libfunc_table[LTI_MAX];
61 /* Tables of patterns for converting one mode to another. */
62 convert_optab convert_optab_table[CTI_MAX];
64 /* Contains the optab used for each rtx code. */
65 optab code_to_optab[NUM_RTX_CODE + 1];
67 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
68 gives the gen_function to make a branch to test that condition. */
70 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
72 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
73 gives the insn code to make a store-condition insn
74 to test that condition. */
76 enum insn_code setcc_gen_code[NUM_RTX_CODE];
78 #ifdef HAVE_conditional_move
79 /* Indexed by the machine mode, gives the insn code to make a conditional
80 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
81 setcc_gen_code to cut down on the number of named patterns. Consider a day
82 when a lot more rtx codes are conditional (eg: for the ARM). */
84 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
85 #endif
87 /* The insn generating function can not take an rtx_code argument.
88 TRAP_RTX is used as an rtx argument. Its code is replaced with
89 the code to be used in the trap insn and all other fields are ignored. */
90 static GTY(()) rtx trap_rtx;
92 static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
93 static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
94 int);
95 static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
96 enum machine_mode, int,
97 enum optab_methods, enum mode_class,
98 optab);
99 static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int, enum optab_methods,
101 enum mode_class, optab);
102 static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose);
105 static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
106 int *);
107 static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
108 static optab new_optab (void);
109 static convert_optab new_convert_optab (void);
110 static inline optab init_optab (enum rtx_code);
111 static inline optab init_optabv (enum rtx_code);
112 static inline convert_optab init_convert_optab (enum rtx_code);
113 static void init_libfuncs (optab, int, int, const char *, int);
114 static void init_integral_libfuncs (optab, const char *, int);
115 static void init_floating_libfuncs (optab, const char *, int);
116 static void init_interclass_conv_libfuncs (convert_optab, const char *,
117 enum mode_class, enum mode_class);
118 static void init_intraclass_conv_libfuncs (convert_optab, const char *,
119 enum mode_class, bool);
120 static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx);
122 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *);
124 static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
125 enum optab_methods);
126 static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
127 static rtx widen_clz (enum machine_mode, rtx, rtx);
128 static rtx expand_parity (enum machine_mode, rtx, rtx);
130 #ifndef HAVE_conditional_trap
131 #define HAVE_conditional_trap 0
132 #define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133 #endif
135 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
136 the result of operation CODE applied to OP0 (and OP1 if it is a binary
137 operation).
139 If the last insn does not set TARGET, don't do anything, but return 1.
141 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142 don't add the REG_EQUAL note but return 0. Our caller can then try
143 again, ensuring that TARGET is not one of the operands. */
145 static int
146 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
148 rtx last_insn, insn, set;
149 rtx note;
151 if (! insns
152 || ! INSN_P (insns)
153 || NEXT_INSN (insns) == NULL_RTX)
154 abort ();
156 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
157 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
158 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
159 && GET_RTX_CLASS (code) != RTX_COMPARE
160 && GET_RTX_CLASS (code) != RTX_UNARY)
161 return 1;
163 if (GET_CODE (target) == ZERO_EXTRACT)
164 return 1;
166 for (last_insn = insns;
167 NEXT_INSN (last_insn) != NULL_RTX;
168 last_insn = NEXT_INSN (last_insn))
171 set = single_set (last_insn);
172 if (set == NULL_RTX)
173 return 1;
175 if (! rtx_equal_p (SET_DEST (set), target)
176 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
177 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
178 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
179 return 1;
181 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
182 besides the last insn. */
183 if (reg_overlap_mentioned_p (target, op0)
184 || (op1 && reg_overlap_mentioned_p (target, op1)))
186 insn = PREV_INSN (last_insn);
187 while (insn != NULL_RTX)
189 if (reg_set_p (target, insn))
190 return 0;
192 insn = PREV_INSN (insn);
196 if (GET_RTX_CLASS (code) == RTX_UNARY)
197 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
198 else
199 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
201 set_unique_reg_note (last_insn, REG_EQUAL, note);
203 return 1;
206 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
207 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
208 not actually do a sign-extend or zero-extend, but can leave the
209 higher-order bits of the result rtx undefined, for example, in the case
210 of logical operations, but not right shifts. */
212 static rtx
213 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
214 int unsignedp, int no_extend)
216 rtx result;
218 /* If we don't have to extend and this is a constant, return it. */
219 if (no_extend && GET_MODE (op) == VOIDmode)
220 return op;
222 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
223 extend since it will be more efficient to do so unless the signedness of
224 a promoted object differs from our extension. */
225 if (! no_extend
226 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
227 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
228 return convert_modes (mode, oldmode, op, unsignedp);
230 /* If MODE is no wider than a single word, we return a paradoxical
231 SUBREG. */
232 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
233 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
235 /* Otherwise, get an object of MODE, clobber it, and set the low-order
236 part to OP. */
238 result = gen_reg_rtx (mode);
239 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
240 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
241 return result;
244 /* Generate code to perform a straightforward complex divide. */
246 static int
247 expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
248 rtx realr, rtx imagr, enum machine_mode submode,
249 int unsignedp, enum optab_methods methods,
250 enum mode_class class, optab binoptab)
252 rtx divisor;
253 rtx real_t, imag_t;
254 rtx temp1, temp2;
255 rtx res;
256 optab this_add_optab = add_optab;
257 optab this_sub_optab = sub_optab;
258 optab this_neg_optab = neg_optab;
259 optab this_mul_optab = smul_optab;
261 if (binoptab == sdivv_optab)
263 this_add_optab = addv_optab;
264 this_sub_optab = subv_optab;
265 this_neg_optab = negv_optab;
266 this_mul_optab = smulv_optab;
269 /* Don't fetch these from memory more than once. */
270 real0 = force_reg (submode, real0);
271 real1 = force_reg (submode, real1);
273 if (imag0 != 0)
274 imag0 = force_reg (submode, imag0);
276 imag1 = force_reg (submode, imag1);
278 /* Divisor: c*c + d*d. */
279 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
280 NULL_RTX, unsignedp, methods);
282 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
283 NULL_RTX, unsignedp, methods);
285 if (temp1 == 0 || temp2 == 0)
286 return 0;
288 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
289 NULL_RTX, unsignedp, methods);
290 if (divisor == 0)
291 return 0;
293 if (imag0 == 0)
295 /* Mathematically, ((a)(c-id))/divisor. */
296 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
298 /* Calculate the dividend. */
299 real_t = expand_binop (submode, this_mul_optab, real0, real1,
300 NULL_RTX, unsignedp, methods);
302 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
303 NULL_RTX, unsignedp, methods);
305 if (real_t == 0 || imag_t == 0)
306 return 0;
308 imag_t = expand_unop (submode, this_neg_optab, imag_t,
309 NULL_RTX, unsignedp);
311 else
313 /* Mathematically, ((a+ib)(c-id))/divider. */
314 /* Calculate the dividend. */
315 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
316 NULL_RTX, unsignedp, methods);
318 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
319 NULL_RTX, unsignedp, methods);
321 if (temp1 == 0 || temp2 == 0)
322 return 0;
324 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
325 NULL_RTX, unsignedp, methods);
327 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
328 NULL_RTX, unsignedp, methods);
330 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
331 NULL_RTX, unsignedp, methods);
333 if (temp1 == 0 || temp2 == 0)
334 return 0;
336 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
337 NULL_RTX, unsignedp, methods);
339 if (real_t == 0 || imag_t == 0)
340 return 0;
343 if (class == MODE_COMPLEX_FLOAT)
344 res = expand_binop (submode, binoptab, real_t, divisor,
345 realr, unsignedp, methods);
346 else
347 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
348 real_t, divisor, realr, unsignedp);
350 if (res == 0)
351 return 0;
353 if (res != realr)
354 emit_move_insn (realr, res);
356 if (class == MODE_COMPLEX_FLOAT)
357 res = expand_binop (submode, binoptab, imag_t, divisor,
358 imagr, unsignedp, methods);
359 else
360 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
361 imag_t, divisor, imagr, unsignedp);
363 if (res == 0)
364 return 0;
366 if (res != imagr)
367 emit_move_insn (imagr, res);
369 return 1;
372 /* Generate code to perform a wide-input-range-acceptable complex divide. */
374 static int
375 expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
376 rtx imagr, enum machine_mode submode, int unsignedp,
377 enum optab_methods methods, enum mode_class class,
378 optab binoptab)
380 rtx ratio, divisor;
381 rtx real_t, imag_t;
382 rtx temp1, temp2, lab1, lab2;
383 enum machine_mode mode;
384 rtx res;
385 optab this_add_optab = add_optab;
386 optab this_sub_optab = sub_optab;
387 optab this_neg_optab = neg_optab;
388 optab this_mul_optab = smul_optab;
390 if (binoptab == sdivv_optab)
392 this_add_optab = addv_optab;
393 this_sub_optab = subv_optab;
394 this_neg_optab = negv_optab;
395 this_mul_optab = smulv_optab;
398 /* Don't fetch these from memory more than once. */
399 real0 = force_reg (submode, real0);
400 real1 = force_reg (submode, real1);
402 if (imag0 != 0)
403 imag0 = force_reg (submode, imag0);
405 imag1 = force_reg (submode, imag1);
407 /* XXX What's an "unsigned" complex number? */
408 if (unsignedp)
410 temp1 = real1;
411 temp2 = imag1;
413 else
415 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
416 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
419 if (temp1 == 0 || temp2 == 0)
420 return 0;
422 mode = GET_MODE (temp1);
423 lab1 = gen_label_rtx ();
424 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
425 mode, unsignedp, lab1);
427 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
429 if (class == MODE_COMPLEX_FLOAT)
430 ratio = expand_binop (submode, binoptab, imag1, real1,
431 NULL_RTX, unsignedp, methods);
432 else
433 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
434 imag1, real1, NULL_RTX, unsignedp);
436 if (ratio == 0)
437 return 0;
439 /* Calculate divisor. */
441 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
442 NULL_RTX, unsignedp, methods);
444 if (temp1 == 0)
445 return 0;
447 divisor = expand_binop (submode, this_add_optab, temp1, real1,
448 NULL_RTX, unsignedp, methods);
450 if (divisor == 0)
451 return 0;
453 /* Calculate dividend. */
455 if (imag0 == 0)
457 real_t = real0;
459 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
461 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
462 NULL_RTX, unsignedp, methods);
464 if (imag_t == 0)
465 return 0;
467 imag_t = expand_unop (submode, this_neg_optab, imag_t,
468 NULL_RTX, unsignedp);
470 if (real_t == 0 || imag_t == 0)
471 return 0;
473 else
475 /* Compute (a+ib)/(c+id) as
476 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
478 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
479 NULL_RTX, unsignedp, methods);
481 if (temp1 == 0)
482 return 0;
484 real_t = expand_binop (submode, this_add_optab, temp1, real0,
485 NULL_RTX, unsignedp, methods);
487 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
488 NULL_RTX, unsignedp, methods);
490 if (temp1 == 0)
491 return 0;
493 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
494 NULL_RTX, unsignedp, methods);
496 if (real_t == 0 || imag_t == 0)
497 return 0;
500 if (class == MODE_COMPLEX_FLOAT)
501 res = expand_binop (submode, binoptab, real_t, divisor,
502 realr, unsignedp, methods);
503 else
504 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
505 real_t, divisor, realr, unsignedp);
507 if (res == 0)
508 return 0;
510 if (res != realr)
511 emit_move_insn (realr, res);
513 if (class == MODE_COMPLEX_FLOAT)
514 res = expand_binop (submode, binoptab, imag_t, divisor,
515 imagr, unsignedp, methods);
516 else
517 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
518 imag_t, divisor, imagr, unsignedp);
520 if (res == 0)
521 return 0;
523 if (res != imagr)
524 emit_move_insn (imagr, res);
526 lab2 = gen_label_rtx ();
527 emit_jump_insn (gen_jump (lab2));
528 emit_barrier ();
530 emit_label (lab1);
532 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
534 if (class == MODE_COMPLEX_FLOAT)
535 ratio = expand_binop (submode, binoptab, real1, imag1,
536 NULL_RTX, unsignedp, methods);
537 else
538 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
539 real1, imag1, NULL_RTX, unsignedp);
541 if (ratio == 0)
542 return 0;
544 /* Calculate divisor. */
546 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
547 NULL_RTX, unsignedp, methods);
549 if (temp1 == 0)
550 return 0;
552 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
553 NULL_RTX, unsignedp, methods);
555 if (divisor == 0)
556 return 0;
558 /* Calculate dividend. */
560 if (imag0 == 0)
562 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
564 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
565 NULL_RTX, unsignedp, methods);
567 imag_t = expand_unop (submode, this_neg_optab, real0,
568 NULL_RTX, unsignedp);
570 if (real_t == 0 || imag_t == 0)
571 return 0;
573 else
575 /* Compute (a+ib)/(c+id) as
576 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
578 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
579 NULL_RTX, unsignedp, methods);
581 if (temp1 == 0)
582 return 0;
584 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
585 NULL_RTX, unsignedp, methods);
587 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
588 NULL_RTX, unsignedp, methods);
590 if (temp1 == 0)
591 return 0;
593 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
594 NULL_RTX, unsignedp, methods);
596 if (real_t == 0 || imag_t == 0)
597 return 0;
600 if (class == MODE_COMPLEX_FLOAT)
601 res = expand_binop (submode, binoptab, real_t, divisor,
602 realr, unsignedp, methods);
603 else
604 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
605 real_t, divisor, realr, unsignedp);
607 if (res == 0)
608 return 0;
610 if (res != realr)
611 emit_move_insn (realr, res);
613 if (class == MODE_COMPLEX_FLOAT)
614 res = expand_binop (submode, binoptab, imag_t, divisor,
615 imagr, unsignedp, methods);
616 else
617 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
618 imag_t, divisor, imagr, unsignedp);
620 if (res == 0)
621 return 0;
623 if (res != imagr)
624 emit_move_insn (imagr, res);
626 emit_label (lab2);
628 return 1;
631 /* Return the optab used for computing the operation given by
632 the tree code, CODE. This function is not always usable (for
633 example, it cannot give complete results for multiplication
634 or division) but probably ought to be relied on more widely
635 throughout the expander. */
636 optab
637 optab_for_tree_code (enum tree_code code, tree type)
639 bool trapv;
640 switch (code)
642 case BIT_AND_EXPR:
643 return and_optab;
645 case BIT_IOR_EXPR:
646 return ior_optab;
648 case BIT_NOT_EXPR:
649 return one_cmpl_optab;
651 case BIT_XOR_EXPR:
652 return xor_optab;
654 case TRUNC_MOD_EXPR:
655 case CEIL_MOD_EXPR:
656 case FLOOR_MOD_EXPR:
657 case ROUND_MOD_EXPR:
658 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
660 case RDIV_EXPR:
661 case TRUNC_DIV_EXPR:
662 case CEIL_DIV_EXPR:
663 case FLOOR_DIV_EXPR:
664 case ROUND_DIV_EXPR:
665 case EXACT_DIV_EXPR:
666 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
668 case LSHIFT_EXPR:
669 return ashl_optab;
671 case RSHIFT_EXPR:
672 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
674 case LROTATE_EXPR:
675 return rotl_optab;
677 case RROTATE_EXPR:
678 return rotr_optab;
680 case MAX_EXPR:
681 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
683 case MIN_EXPR:
684 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
686 default:
687 break;
690 trapv = flag_trapv && INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type);
691 switch (code)
693 case PLUS_EXPR:
694 return trapv ? addv_optab : add_optab;
696 case MINUS_EXPR:
697 return trapv ? subv_optab : sub_optab;
699 case MULT_EXPR:
700 return trapv ? smulv_optab : smul_optab;
702 case NEGATE_EXPR:
703 return trapv ? negv_optab : neg_optab;
705 case ABS_EXPR:
706 return trapv ? absv_optab : abs_optab;
708 default:
709 return NULL;
714 /* Wrapper around expand_binop which takes an rtx code to specify
715 the operation to perform, not an optab pointer. All other
716 arguments are the same. */
718 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
719 rtx op1, rtx target, int unsignedp,
720 enum optab_methods methods)
722 optab binop = code_to_optab[(int) code];
723 if (binop == 0)
724 abort ();
726 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
729 /* Generate code to perform an operation specified by BINOPTAB
730 on operands OP0 and OP1, with result having machine-mode MODE.
732 UNSIGNEDP is for the case where we have to widen the operands
733 to perform the operation. It says to use zero-extension.
735 If TARGET is nonzero, the value
736 is generated there, if it is convenient to do so.
737 In all cases an rtx is returned for the locus of the value;
738 this may or may not be TARGET. */
741 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
742 rtx target, int unsignedp, enum optab_methods methods)
744 enum optab_methods next_methods
745 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
746 ? OPTAB_WIDEN : methods);
747 enum mode_class class;
748 enum machine_mode wider_mode;
749 rtx temp;
750 int commutative_op = 0;
751 int shift_op = (binoptab->code == ASHIFT
752 || binoptab->code == ASHIFTRT
753 || binoptab->code == LSHIFTRT
754 || binoptab->code == ROTATE
755 || binoptab->code == ROTATERT);
756 rtx entry_last = get_last_insn ();
757 rtx last;
759 class = GET_MODE_CLASS (mode);
761 if (flag_force_mem)
763 /* Load duplicate non-volatile operands once. */
764 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
766 op0 = force_not_mem (op0);
767 op1 = op0;
769 else
771 op0 = force_not_mem (op0);
772 op1 = force_not_mem (op1);
776 /* If subtracting an integer constant, convert this into an addition of
777 the negated constant. */
779 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
781 op1 = negate_rtx (mode, op1);
782 binoptab = add_optab;
785 /* If we are inside an appropriately-short loop and we are optimizing,
786 force expensive constants into a register. */
787 if (CONSTANT_P (op0) && optimize
788 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
789 op0 = force_reg (mode, op0);
791 if (CONSTANT_P (op1) && optimize
792 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
793 op1 = force_reg (mode, op1);
795 /* Record where to delete back to if we backtrack. */
796 last = get_last_insn ();
798 /* If operation is commutative,
799 try to make the first operand a register.
800 Even better, try to make it the same as the target.
801 Also try to make the last operand a constant. */
802 if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
803 || binoptab == smul_widen_optab
804 || binoptab == umul_widen_optab
805 || binoptab == smul_highpart_optab
806 || binoptab == umul_highpart_optab)
808 commutative_op = 1;
810 if (((target == 0 || REG_P (target))
811 ? ((REG_P (op1)
812 && !REG_P (op0))
813 || target == op1)
814 : rtx_equal_p (op1, target))
815 || GET_CODE (op0) == CONST_INT)
817 temp = op1;
818 op1 = op0;
819 op0 = temp;
823 /* If we can do it with a three-operand insn, do so. */
825 if (methods != OPTAB_MUST_WIDEN
826 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
828 int icode = (int) binoptab->handlers[(int) mode].insn_code;
829 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
830 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
831 rtx pat;
832 rtx xop0 = op0, xop1 = op1;
834 if (target)
835 temp = target;
836 else
837 temp = gen_reg_rtx (mode);
839 /* If it is a commutative operator and the modes would match
840 if we would swap the operands, we can save the conversions. */
841 if (commutative_op)
843 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
844 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
846 rtx tmp;
848 tmp = op0; op0 = op1; op1 = tmp;
849 tmp = xop0; xop0 = xop1; xop1 = tmp;
853 /* In case the insn wants input operands in modes different from
854 those of the actual operands, convert the operands. It would
855 seem that we don't need to convert CONST_INTs, but we do, so
856 that they're properly zero-extended, sign-extended or truncated
857 for their mode. */
859 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
860 xop0 = convert_modes (mode0,
861 GET_MODE (op0) != VOIDmode
862 ? GET_MODE (op0)
863 : mode,
864 xop0, unsignedp);
866 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
867 xop1 = convert_modes (mode1,
868 GET_MODE (op1) != VOIDmode
869 ? GET_MODE (op1)
870 : mode,
871 xop1, unsignedp);
873 /* Now, if insn's predicates don't allow our operands, put them into
874 pseudo regs. */
876 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
877 && mode0 != VOIDmode)
878 xop0 = copy_to_mode_reg (mode0, xop0);
880 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
881 && mode1 != VOIDmode)
882 xop1 = copy_to_mode_reg (mode1, xop1);
884 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
885 temp = gen_reg_rtx (mode);
887 pat = GEN_FCN (icode) (temp, xop0, xop1);
888 if (pat)
890 /* If PAT is composed of more than one insn, try to add an appropriate
891 REG_EQUAL note to it. If we can't because TEMP conflicts with an
892 operand, call ourselves again, this time without a target. */
893 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
894 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
896 delete_insns_since (last);
897 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
898 unsignedp, methods);
901 emit_insn (pat);
902 return temp;
904 else
905 delete_insns_since (last);
908 /* If this is a multiply, see if we can do a widening operation that
909 takes operands of this mode and makes a wider mode. */
911 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
912 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
913 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
914 != CODE_FOR_nothing))
916 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
917 unsignedp ? umul_widen_optab : smul_widen_optab,
918 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
920 if (temp != 0)
922 if (GET_MODE_CLASS (mode) == MODE_INT)
923 return gen_lowpart (mode, temp);
924 else
925 return convert_to_mode (mode, temp, unsignedp);
929 /* Look for a wider mode of the same class for which we think we
930 can open-code the operation. Check for a widening multiply at the
931 wider mode as well. */
933 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
934 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
935 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
936 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
938 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
939 || (binoptab == smul_optab
940 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
941 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
942 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
943 != CODE_FOR_nothing)))
945 rtx xop0 = op0, xop1 = op1;
946 int no_extend = 0;
948 /* For certain integer operations, we need not actually extend
949 the narrow operands, as long as we will truncate
950 the results to the same narrowness. */
952 if ((binoptab == ior_optab || binoptab == and_optab
953 || binoptab == xor_optab
954 || binoptab == add_optab || binoptab == sub_optab
955 || binoptab == smul_optab || binoptab == ashl_optab)
956 && class == MODE_INT)
957 no_extend = 1;
959 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
961 /* The second operand of a shift must always be extended. */
962 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
963 no_extend && binoptab != ashl_optab);
965 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
966 unsignedp, OPTAB_DIRECT);
967 if (temp)
969 if (class != MODE_INT)
971 if (target == 0)
972 target = gen_reg_rtx (mode);
973 convert_move (target, temp, 0);
974 return target;
976 else
977 return gen_lowpart (mode, temp);
979 else
980 delete_insns_since (last);
984 /* These can be done a word at a time. */
985 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
986 && class == MODE_INT
987 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
988 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
990 int i;
991 rtx insns;
992 rtx equiv_value;
994 /* If TARGET is the same as one of the operands, the REG_EQUAL note
995 won't be accurate, so use a new target. */
996 if (target == 0 || target == op0 || target == op1)
997 target = gen_reg_rtx (mode);
999 start_sequence ();
1001 /* Do the actual arithmetic. */
1002 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1004 rtx target_piece = operand_subword (target, i, 1, mode);
1005 rtx x = expand_binop (word_mode, binoptab,
1006 operand_subword_force (op0, i, mode),
1007 operand_subword_force (op1, i, mode),
1008 target_piece, unsignedp, next_methods);
1010 if (x == 0)
1011 break;
1013 if (target_piece != x)
1014 emit_move_insn (target_piece, x);
1017 insns = get_insns ();
1018 end_sequence ();
1020 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1022 if (binoptab->code != UNKNOWN)
1023 equiv_value
1024 = gen_rtx_fmt_ee (binoptab->code, mode,
1025 copy_rtx (op0), copy_rtx (op1));
1026 else
1027 equiv_value = 0;
1029 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1030 return target;
1034 /* Synthesize double word shifts from single word shifts. */
1035 if ((binoptab == lshr_optab || binoptab == ashl_optab
1036 || binoptab == ashr_optab)
1037 && class == MODE_INT
1038 && GET_CODE (op1) == CONST_INT
1039 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1040 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1041 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1042 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1044 rtx insns, inter, equiv_value;
1045 rtx into_target, outof_target;
1046 rtx into_input, outof_input;
1047 int shift_count, left_shift, outof_word;
1049 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1050 won't be accurate, so use a new target. */
1051 if (target == 0 || target == op0 || target == op1)
1052 target = gen_reg_rtx (mode);
1054 start_sequence ();
1056 shift_count = INTVAL (op1);
1058 /* OUTOF_* is the word we are shifting bits away from, and
1059 INTO_* is the word that we are shifting bits towards, thus
1060 they differ depending on the direction of the shift and
1061 WORDS_BIG_ENDIAN. */
1063 left_shift = binoptab == ashl_optab;
1064 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1066 outof_target = operand_subword (target, outof_word, 1, mode);
1067 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1069 outof_input = operand_subword_force (op0, outof_word, mode);
1070 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1072 if (shift_count >= BITS_PER_WORD)
1074 inter = expand_binop (word_mode, binoptab,
1075 outof_input,
1076 GEN_INT (shift_count - BITS_PER_WORD),
1077 into_target, unsignedp, next_methods);
1079 if (inter != 0 && inter != into_target)
1080 emit_move_insn (into_target, inter);
1082 /* For a signed right shift, we must fill the word we are shifting
1083 out of with copies of the sign bit. Otherwise it is zeroed. */
1084 if (inter != 0 && binoptab != ashr_optab)
1085 inter = CONST0_RTX (word_mode);
1086 else if (inter != 0)
1087 inter = expand_binop (word_mode, binoptab,
1088 outof_input,
1089 GEN_INT (BITS_PER_WORD - 1),
1090 outof_target, unsignedp, next_methods);
1092 if (inter != 0 && inter != outof_target)
1093 emit_move_insn (outof_target, inter);
1095 else
1097 rtx carries;
1098 optab reverse_unsigned_shift, unsigned_shift;
1100 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1101 we must do a logical shift in the opposite direction of the
1102 desired shift. */
1104 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1106 /* For a shift of less than BITS_PER_WORD, to compute the word
1107 shifted towards, we need to unsigned shift the orig value of
1108 that word. */
1110 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1112 carries = expand_binop (word_mode, reverse_unsigned_shift,
1113 outof_input,
1114 GEN_INT (BITS_PER_WORD - shift_count),
1115 0, unsignedp, next_methods);
1117 if (carries == 0)
1118 inter = 0;
1119 else
1120 inter = expand_binop (word_mode, unsigned_shift, into_input,
1121 op1, 0, unsignedp, next_methods);
1123 if (inter != 0)
1124 inter = expand_binop (word_mode, ior_optab, carries, inter,
1125 into_target, unsignedp, next_methods);
1127 if (inter != 0 && inter != into_target)
1128 emit_move_insn (into_target, inter);
1130 if (inter != 0)
1131 inter = expand_binop (word_mode, binoptab, outof_input,
1132 op1, outof_target, unsignedp, next_methods);
1134 if (inter != 0 && inter != outof_target)
1135 emit_move_insn (outof_target, inter);
1138 insns = get_insns ();
1139 end_sequence ();
1141 if (inter != 0)
1143 if (binoptab->code != UNKNOWN)
1144 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1145 else
1146 equiv_value = 0;
1148 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1149 return target;
1153 /* Synthesize double word rotates from single word shifts. */
1154 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1155 && class == MODE_INT
1156 && GET_CODE (op1) == CONST_INT
1157 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1158 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1159 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1161 rtx insns, equiv_value;
1162 rtx into_target, outof_target;
1163 rtx into_input, outof_input;
1164 rtx inter;
1165 int shift_count, left_shift, outof_word;
1167 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1168 won't be accurate, so use a new target. Do this also if target is not
1169 a REG, first because having a register instead may open optimization
1170 opportunities, and second because if target and op0 happen to be MEMs
1171 designating the same location, we would risk clobbering it too early
1172 in the code sequence we generate below. */
1173 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1174 target = gen_reg_rtx (mode);
1176 start_sequence ();
1178 shift_count = INTVAL (op1);
1180 /* OUTOF_* is the word we are shifting bits away from, and
1181 INTO_* is the word that we are shifting bits towards, thus
1182 they differ depending on the direction of the shift and
1183 WORDS_BIG_ENDIAN. */
1185 left_shift = (binoptab == rotl_optab);
1186 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1188 outof_target = operand_subword (target, outof_word, 1, mode);
1189 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1191 outof_input = operand_subword_force (op0, outof_word, mode);
1192 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1194 if (shift_count == BITS_PER_WORD)
1196 /* This is just a word swap. */
1197 emit_move_insn (outof_target, into_input);
1198 emit_move_insn (into_target, outof_input);
1199 inter = const0_rtx;
1201 else
1203 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1204 rtx first_shift_count, second_shift_count;
1205 optab reverse_unsigned_shift, unsigned_shift;
1207 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1208 ? lshr_optab : ashl_optab);
1210 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1211 ? ashl_optab : lshr_optab);
1213 if (shift_count > BITS_PER_WORD)
1215 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1216 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1218 else
1220 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1221 second_shift_count = GEN_INT (shift_count);
1224 into_temp1 = expand_binop (word_mode, unsigned_shift,
1225 outof_input, first_shift_count,
1226 NULL_RTX, unsignedp, next_methods);
1227 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1228 into_input, second_shift_count,
1229 NULL_RTX, unsignedp, next_methods);
1231 if (into_temp1 != 0 && into_temp2 != 0)
1232 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1233 into_target, unsignedp, next_methods);
1234 else
1235 inter = 0;
1237 if (inter != 0 && inter != into_target)
1238 emit_move_insn (into_target, inter);
1240 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1241 into_input, first_shift_count,
1242 NULL_RTX, unsignedp, next_methods);
1243 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1244 outof_input, second_shift_count,
1245 NULL_RTX, unsignedp, next_methods);
1247 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1248 inter = expand_binop (word_mode, ior_optab,
1249 outof_temp1, outof_temp2,
1250 outof_target, unsignedp, next_methods);
1252 if (inter != 0 && inter != outof_target)
1253 emit_move_insn (outof_target, inter);
1256 insns = get_insns ();
1257 end_sequence ();
1259 if (inter != 0)
1261 if (binoptab->code != UNKNOWN)
1262 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1263 else
1264 equiv_value = 0;
1266 /* We can't make this a no conflict block if this is a word swap,
1267 because the word swap case fails if the input and output values
1268 are in the same register. */
1269 if (shift_count != BITS_PER_WORD)
1270 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1271 else
1272 emit_insn (insns);
1275 return target;
1279 /* These can be done a word at a time by propagating carries. */
1280 if ((binoptab == add_optab || binoptab == sub_optab)
1281 && class == MODE_INT
1282 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1283 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1285 unsigned int i;
1286 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1287 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1288 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1289 rtx xop0, xop1, xtarget;
1291 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1292 value is one of those, use it. Otherwise, use 1 since it is the
1293 one easiest to get. */
1294 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1295 int normalizep = STORE_FLAG_VALUE;
1296 #else
1297 int normalizep = 1;
1298 #endif
1300 /* Prepare the operands. */
1301 xop0 = force_reg (mode, op0);
1302 xop1 = force_reg (mode, op1);
1304 xtarget = gen_reg_rtx (mode);
1306 if (target == 0 || !REG_P (target))
1307 target = xtarget;
1309 /* Indicate for flow that the entire target reg is being set. */
1310 if (REG_P (target))
1311 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1313 /* Do the actual arithmetic. */
1314 for (i = 0; i < nwords; i++)
1316 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1317 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1318 rtx op0_piece = operand_subword_force (xop0, index, mode);
1319 rtx op1_piece = operand_subword_force (xop1, index, mode);
1320 rtx x;
1322 /* Main add/subtract of the input operands. */
1323 x = expand_binop (word_mode, binoptab,
1324 op0_piece, op1_piece,
1325 target_piece, unsignedp, next_methods);
1326 if (x == 0)
1327 break;
1329 if (i + 1 < nwords)
1331 /* Store carry from main add/subtract. */
1332 carry_out = gen_reg_rtx (word_mode);
1333 carry_out = emit_store_flag_force (carry_out,
1334 (binoptab == add_optab
1335 ? LT : GT),
1336 x, op0_piece,
1337 word_mode, 1, normalizep);
1340 if (i > 0)
1342 rtx newx;
1344 /* Add/subtract previous carry to main result. */
1345 newx = expand_binop (word_mode,
1346 normalizep == 1 ? binoptab : otheroptab,
1347 x, carry_in,
1348 NULL_RTX, 1, next_methods);
1350 if (i + 1 < nwords)
1352 /* Get out carry from adding/subtracting carry in. */
1353 rtx carry_tmp = gen_reg_rtx (word_mode);
1354 carry_tmp = emit_store_flag_force (carry_tmp,
1355 (binoptab == add_optab
1356 ? LT : GT),
1357 newx, x,
1358 word_mode, 1, normalizep);
1360 /* Logical-ior the two poss. carry together. */
1361 carry_out = expand_binop (word_mode, ior_optab,
1362 carry_out, carry_tmp,
1363 carry_out, 0, next_methods);
1364 if (carry_out == 0)
1365 break;
1367 emit_move_insn (target_piece, newx);
1370 carry_in = carry_out;
1373 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1375 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1376 || ! rtx_equal_p (target, xtarget))
1378 rtx temp = emit_move_insn (target, xtarget);
1380 set_unique_reg_note (temp,
1381 REG_EQUAL,
1382 gen_rtx_fmt_ee (binoptab->code, mode,
1383 copy_rtx (xop0),
1384 copy_rtx (xop1)));
1386 else
1387 target = xtarget;
1389 return target;
1392 else
1393 delete_insns_since (last);
1396 /* If we want to multiply two two-word values and have normal and widening
1397 multiplies of single-word values, we can do this with three smaller
1398 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1399 because we are not operating on one word at a time.
1401 The multiplication proceeds as follows:
1402 _______________________
1403 [__op0_high_|__op0_low__]
1404 _______________________
1405 * [__op1_high_|__op1_low__]
1406 _______________________________________________
1407 _______________________
1408 (1) [__op0_low__*__op1_low__]
1409 _______________________
1410 (2a) [__op0_low__*__op1_high_]
1411 _______________________
1412 (2b) [__op0_high_*__op1_low__]
1413 _______________________
1414 (3) [__op0_high_*__op1_high_]
1417 This gives a 4-word result. Since we are only interested in the
1418 lower 2 words, partial result (3) and the upper words of (2a) and
1419 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1420 calculated using non-widening multiplication.
1422 (1), however, needs to be calculated with an unsigned widening
1423 multiplication. If this operation is not directly supported we
1424 try using a signed widening multiplication and adjust the result.
1425 This adjustment works as follows:
1427 If both operands are positive then no adjustment is needed.
1429 If the operands have different signs, for example op0_low < 0 and
1430 op1_low >= 0, the instruction treats the most significant bit of
1431 op0_low as a sign bit instead of a bit with significance
1432 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1433 with 2**BITS_PER_WORD - op0_low, and two's complements the
1434 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1435 the result.
1437 Similarly, if both operands are negative, we need to add
1438 (op0_low + op1_low) * 2**BITS_PER_WORD.
1440 We use a trick to adjust quickly. We logically shift op0_low right
1441 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1442 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1443 logical shift exists, we do an arithmetic right shift and subtract
1444 the 0 or -1. */
1446 if (binoptab == smul_optab
1447 && class == MODE_INT
1448 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1449 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1450 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1451 && ((umul_widen_optab->handlers[(int) mode].insn_code
1452 != CODE_FOR_nothing)
1453 || (smul_widen_optab->handlers[(int) mode].insn_code
1454 != CODE_FOR_nothing)))
1456 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1457 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1458 rtx op0_high = operand_subword_force (op0, high, mode);
1459 rtx op0_low = operand_subword_force (op0, low, mode);
1460 rtx op1_high = operand_subword_force (op1, high, mode);
1461 rtx op1_low = operand_subword_force (op1, low, mode);
1462 rtx product = 0;
1463 rtx op0_xhigh = NULL_RTX;
1464 rtx op1_xhigh = NULL_RTX;
1466 /* If the target is the same as one of the inputs, don't use it. This
1467 prevents problems with the REG_EQUAL note. */
1468 if (target == op0 || target == op1
1469 || (target != 0 && !REG_P (target)))
1470 target = 0;
1472 /* Multiply the two lower words to get a double-word product.
1473 If unsigned widening multiplication is available, use that;
1474 otherwise use the signed form and compensate. */
1476 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1478 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1479 target, 1, OPTAB_DIRECT);
1481 /* If we didn't succeed, delete everything we did so far. */
1482 if (product == 0)
1483 delete_insns_since (last);
1484 else
1485 op0_xhigh = op0_high, op1_xhigh = op1_high;
1488 if (product == 0
1489 && smul_widen_optab->handlers[(int) mode].insn_code
1490 != CODE_FOR_nothing)
1492 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1493 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1494 target, 1, OPTAB_DIRECT);
1495 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1496 NULL_RTX, 1, next_methods);
1497 if (op0_xhigh)
1498 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1499 op0_xhigh, op0_xhigh, 0, next_methods);
1500 else
1502 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1503 NULL_RTX, 0, next_methods);
1504 if (op0_xhigh)
1505 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1506 op0_xhigh, op0_xhigh, 0,
1507 next_methods);
1510 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1511 NULL_RTX, 1, next_methods);
1512 if (op1_xhigh)
1513 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1514 op1_xhigh, op1_xhigh, 0, next_methods);
1515 else
1517 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1518 NULL_RTX, 0, next_methods);
1519 if (op1_xhigh)
1520 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1521 op1_xhigh, op1_xhigh, 0,
1522 next_methods);
1526 /* If we have been able to directly compute the product of the
1527 low-order words of the operands and perform any required adjustments
1528 of the operands, we proceed by trying two more multiplications
1529 and then computing the appropriate sum.
1531 We have checked above that the required addition is provided.
1532 Full-word addition will normally always succeed, especially if
1533 it is provided at all, so we don't worry about its failure. The
1534 multiplication may well fail, however, so we do handle that. */
1536 if (product && op0_xhigh && op1_xhigh)
1538 rtx product_high = operand_subword (product, high, 1, mode);
1539 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1540 NULL_RTX, 0, OPTAB_DIRECT);
1542 if (!REG_P (product_high))
1543 product_high = force_reg (word_mode, product_high);
1545 if (temp != 0)
1546 temp = expand_binop (word_mode, add_optab, temp, product_high,
1547 product_high, 0, next_methods);
1549 if (temp != 0 && temp != product_high)
1550 emit_move_insn (product_high, temp);
1552 if (temp != 0)
1553 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1554 NULL_RTX, 0, OPTAB_DIRECT);
1556 if (temp != 0)
1557 temp = expand_binop (word_mode, add_optab, temp,
1558 product_high, product_high,
1559 0, next_methods);
1561 if (temp != 0 && temp != product_high)
1562 emit_move_insn (product_high, temp);
1564 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1566 if (temp != 0)
1568 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1570 temp = emit_move_insn (product, product);
1571 set_unique_reg_note (temp,
1572 REG_EQUAL,
1573 gen_rtx_fmt_ee (MULT, mode,
1574 copy_rtx (op0),
1575 copy_rtx (op1)));
1578 return product;
1582 /* If we get here, we couldn't do it for some reason even though we
1583 originally thought we could. Delete anything we've emitted in
1584 trying to do it. */
1586 delete_insns_since (last);
1589 /* Open-code the vector operations if we have no hardware support
1590 for them. */
1591 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1592 return expand_vector_binop (mode, binoptab, op0, op1, target,
1593 unsignedp, methods);
1595 /* We need to open-code the complex type operations: '+, -, * and /' */
1597 /* At this point we allow operations between two similar complex
1598 numbers, and also if one of the operands is not a complex number
1599 but rather of MODE_FLOAT or MODE_INT. However, the caller
1600 must make sure that the MODE of the non-complex operand matches
1601 the SUBMODE of the complex operand. */
1603 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1605 rtx real0 = 0, imag0 = 0;
1606 rtx real1 = 0, imag1 = 0;
1607 rtx realr, imagr, res;
1608 rtx seq, result;
1609 int ok = 0;
1611 /* Find the correct mode for the real and imaginary parts. */
1612 enum machine_mode submode = GET_MODE_INNER (mode);
1614 if (submode == BLKmode)
1615 abort ();
1617 start_sequence ();
1619 if (GET_MODE (op0) == mode)
1621 real0 = gen_realpart (submode, op0);
1622 imag0 = gen_imagpart (submode, op0);
1624 else
1625 real0 = op0;
1627 if (GET_MODE (op1) == mode)
1629 real1 = gen_realpart (submode, op1);
1630 imag1 = gen_imagpart (submode, op1);
1632 else
1633 real1 = op1;
1635 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1636 abort ();
1638 result = gen_reg_rtx (mode);
1639 realr = gen_realpart (submode, result);
1640 imagr = gen_imagpart (submode, result);
1642 switch (binoptab->code)
1644 case PLUS:
1645 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1646 case MINUS:
1647 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1648 res = expand_binop (submode, binoptab, real0, real1,
1649 realr, unsignedp, methods);
1651 if (res == 0)
1652 break;
1653 else if (res != realr)
1654 emit_move_insn (realr, res);
1656 if (imag0 != 0 && imag1 != 0)
1657 res = expand_binop (submode, binoptab, imag0, imag1,
1658 imagr, unsignedp, methods);
1659 else if (imag0 != 0)
1660 res = imag0;
1661 else if (binoptab->code == MINUS)
1662 res = expand_unop (submode,
1663 binoptab == subv_optab ? negv_optab : neg_optab,
1664 imag1, imagr, unsignedp);
1665 else
1666 res = imag1;
1668 if (res == 0)
1669 break;
1670 else if (res != imagr)
1671 emit_move_insn (imagr, res);
1673 ok = 1;
1674 break;
1676 case MULT:
1677 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1679 if (imag0 != 0 && imag1 != 0)
1681 rtx temp1, temp2;
1683 /* Don't fetch these from memory more than once. */
1684 real0 = force_reg (submode, real0);
1685 real1 = force_reg (submode, real1);
1686 imag0 = force_reg (submode, imag0);
1687 imag1 = force_reg (submode, imag1);
1689 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1690 unsignedp, methods);
1692 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1693 unsignedp, methods);
1695 if (temp1 == 0 || temp2 == 0)
1696 break;
1698 res = (expand_binop
1699 (submode,
1700 binoptab == smulv_optab ? subv_optab : sub_optab,
1701 temp1, temp2, realr, unsignedp, methods));
1703 if (res == 0)
1704 break;
1705 else if (res != realr)
1706 emit_move_insn (realr, res);
1708 temp1 = expand_binop (submode, binoptab, real0, imag1,
1709 NULL_RTX, unsignedp, methods);
1711 /* Avoid expanding redundant multiplication for the common
1712 case of squaring a complex number. */
1713 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1714 temp2 = temp1;
1715 else
1716 temp2 = expand_binop (submode, binoptab, real1, imag0,
1717 NULL_RTX, unsignedp, methods);
1719 if (temp1 == 0 || temp2 == 0)
1720 break;
1722 res = (expand_binop
1723 (submode,
1724 binoptab == smulv_optab ? addv_optab : add_optab,
1725 temp1, temp2, imagr, unsignedp, methods));
1727 if (res == 0)
1728 break;
1729 else if (res != imagr)
1730 emit_move_insn (imagr, res);
1732 ok = 1;
1734 else
1736 /* Don't fetch these from memory more than once. */
1737 real0 = force_reg (submode, real0);
1738 real1 = force_reg (submode, real1);
1740 res = expand_binop (submode, binoptab, real0, real1,
1741 realr, unsignedp, methods);
1742 if (res == 0)
1743 break;
1744 else if (res != realr)
1745 emit_move_insn (realr, res);
1747 if (imag0 != 0)
1748 res = expand_binop (submode, binoptab,
1749 real1, imag0, imagr, unsignedp, methods);
1750 else
1751 res = expand_binop (submode, binoptab,
1752 real0, imag1, imagr, unsignedp, methods);
1754 if (res == 0)
1755 break;
1756 else if (res != imagr)
1757 emit_move_insn (imagr, res);
1759 ok = 1;
1761 break;
1763 case DIV:
1764 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1766 if (imag1 == 0)
1768 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1770 /* Don't fetch these from memory more than once. */
1771 real1 = force_reg (submode, real1);
1773 /* Simply divide the real and imaginary parts by `c' */
1774 if (class == MODE_COMPLEX_FLOAT)
1775 res = expand_binop (submode, binoptab, real0, real1,
1776 realr, unsignedp, methods);
1777 else
1778 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1779 real0, real1, realr, unsignedp);
1781 if (res == 0)
1782 break;
1783 else if (res != realr)
1784 emit_move_insn (realr, res);
1786 if (class == MODE_COMPLEX_FLOAT)
1787 res = expand_binop (submode, binoptab, imag0, real1,
1788 imagr, unsignedp, methods);
1789 else
1790 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1791 imag0, real1, imagr, unsignedp);
1793 if (res == 0)
1794 break;
1795 else if (res != imagr)
1796 emit_move_insn (imagr, res);
1798 ok = 1;
1800 else
1802 switch (flag_complex_divide_method)
1804 case 0:
1805 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1806 realr, imagr, submode,
1807 unsignedp, methods,
1808 class, binoptab);
1809 break;
1811 case 1:
1812 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1813 realr, imagr, submode,
1814 unsignedp, methods,
1815 class, binoptab);
1816 break;
1818 default:
1819 abort ();
1822 break;
1824 default:
1825 abort ();
1828 seq = get_insns ();
1829 end_sequence ();
1831 if (ok)
1833 rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode,
1834 copy_rtx (op0), copy_rtx (op1));
1835 emit_no_conflict_block (seq, result, op0, op1, equiv);
1836 return result;
1840 /* It can't be open-coded in this mode.
1841 Use a library call if one is available and caller says that's ok. */
1843 if (binoptab->handlers[(int) mode].libfunc
1844 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1846 rtx insns;
1847 rtx op1x = op1;
1848 enum machine_mode op1_mode = mode;
1849 rtx value;
1851 start_sequence ();
1853 if (shift_op)
1855 op1_mode = word_mode;
1856 /* Specify unsigned here,
1857 since negative shift counts are meaningless. */
1858 op1x = convert_to_mode (word_mode, op1, 1);
1861 if (GET_MODE (op0) != VOIDmode
1862 && GET_MODE (op0) != mode)
1863 op0 = convert_to_mode (mode, op0, unsignedp);
1865 /* Pass 1 for NO_QUEUE so we don't lose any increments
1866 if the libcall is cse'd or moved. */
1867 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1868 NULL_RTX, LCT_CONST, mode, 2,
1869 op0, mode, op1x, op1_mode);
1871 insns = get_insns ();
1872 end_sequence ();
1874 target = gen_reg_rtx (mode);
1875 emit_libcall_block (insns, target, value,
1876 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1878 return target;
1881 delete_insns_since (last);
1883 /* It can't be done in this mode. Can we do it in a wider mode? */
1885 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1886 || methods == OPTAB_MUST_WIDEN))
1888 /* Caller says, don't even try. */
1889 delete_insns_since (entry_last);
1890 return 0;
1893 /* Compute the value of METHODS to pass to recursive calls.
1894 Don't allow widening to be tried recursively. */
1896 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1898 /* Look for a wider mode of the same class for which it appears we can do
1899 the operation. */
1901 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1903 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1904 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1906 if ((binoptab->handlers[(int) wider_mode].insn_code
1907 != CODE_FOR_nothing)
1908 || (methods == OPTAB_LIB
1909 && binoptab->handlers[(int) wider_mode].libfunc))
1911 rtx xop0 = op0, xop1 = op1;
1912 int no_extend = 0;
1914 /* For certain integer operations, we need not actually extend
1915 the narrow operands, as long as we will truncate
1916 the results to the same narrowness. */
1918 if ((binoptab == ior_optab || binoptab == and_optab
1919 || binoptab == xor_optab
1920 || binoptab == add_optab || binoptab == sub_optab
1921 || binoptab == smul_optab || binoptab == ashl_optab)
1922 && class == MODE_INT)
1923 no_extend = 1;
1925 xop0 = widen_operand (xop0, wider_mode, mode,
1926 unsignedp, no_extend);
1928 /* The second operand of a shift must always be extended. */
1929 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1930 no_extend && binoptab != ashl_optab);
1932 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1933 unsignedp, methods);
1934 if (temp)
1936 if (class != MODE_INT)
1938 if (target == 0)
1939 target = gen_reg_rtx (mode);
1940 convert_move (target, temp, 0);
1941 return target;
1943 else
1944 return gen_lowpart (mode, temp);
1946 else
1947 delete_insns_since (last);
1952 delete_insns_since (entry_last);
1953 return 0;
1956 /* Like expand_binop, but for open-coding vectors binops. */
1958 static rtx
1959 expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1960 rtx op1, rtx target, int unsignedp,
1961 enum optab_methods methods)
1963 enum machine_mode submode, tmode;
1964 int size, elts, subsize, subbitsize, i;
1965 rtx t, a, b, res, seq;
1966 enum mode_class class;
1968 class = GET_MODE_CLASS (mode);
1970 size = GET_MODE_SIZE (mode);
1971 submode = GET_MODE_INNER (mode);
1973 /* Search for the widest vector mode with the same inner mode that is
1974 still narrower than MODE and that allows to open-code this operator.
1975 Note, if we find such a mode and the handler later decides it can't
1976 do the expansion, we'll be called recursively with the narrower mode. */
1977 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1978 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1979 tmode = GET_MODE_WIDER_MODE (tmode))
1981 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1982 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1983 submode = tmode;
1986 switch (binoptab->code)
1988 case AND:
1989 case IOR:
1990 case XOR:
1991 tmode = int_mode_for_mode (mode);
1992 if (tmode != BLKmode)
1993 submode = tmode;
1994 case PLUS:
1995 case MINUS:
1996 case MULT:
1997 case DIV:
1998 subsize = GET_MODE_SIZE (submode);
1999 subbitsize = GET_MODE_BITSIZE (submode);
2000 elts = size / subsize;
2002 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
2003 but that we operate on more than one element at a time. */
2004 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
2005 return 0;
2007 start_sequence ();
2009 /* Errors can leave us with a const0_rtx as operand. */
2010 if (GET_MODE (op0) != mode)
2011 op0 = copy_to_mode_reg (mode, op0);
2012 if (GET_MODE (op1) != mode)
2013 op1 = copy_to_mode_reg (mode, op1);
2015 if (!target)
2016 target = gen_reg_rtx (mode);
2018 for (i = 0; i < elts; ++i)
2020 /* If this is part of a register, and not the first item in the
2021 word, we can't store using a SUBREG - that would clobber
2022 previous results.
2023 And storing with a SUBREG is only possible for the least
2024 significant part, hence we can't do it for big endian
2025 (unless we want to permute the evaluation order. */
2026 if (REG_P (target)
2027 && (BYTES_BIG_ENDIAN
2028 ? subsize < UNITS_PER_WORD
2029 : ((i * subsize) % UNITS_PER_WORD) != 0))
2030 t = NULL_RTX;
2031 else
2032 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2033 if (CONSTANT_P (op0))
2034 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2035 else
2036 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2037 NULL_RTX, submode, submode);
2038 if (CONSTANT_P (op1))
2039 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
2040 else
2041 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
2042 NULL_RTX, submode, submode);
2044 if (binoptab->code == DIV)
2046 if (class == MODE_VECTOR_FLOAT)
2047 res = expand_binop (submode, binoptab, a, b, t,
2048 unsignedp, methods);
2049 else
2050 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
2051 a, b, t, unsignedp);
2053 else
2054 res = expand_binop (submode, binoptab, a, b, t,
2055 unsignedp, methods);
2057 if (res == 0)
2058 break;
2060 if (t)
2061 emit_move_insn (t, res);
2062 else
2063 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
2065 break;
2067 default:
2068 abort ();
2071 seq = get_insns ();
2072 end_sequence ();
2073 emit_insn (seq);
2075 return target;
2078 /* Like expand_unop but for open-coding vector unops. */
2080 static rtx
2081 expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
2082 rtx target, int unsignedp)
2084 enum machine_mode submode, tmode;
2085 int size, elts, subsize, subbitsize, i;
2086 rtx t, a, res, seq;
2088 size = GET_MODE_SIZE (mode);
2089 submode = GET_MODE_INNER (mode);
2091 /* Search for the widest vector mode with the same inner mode that is
2092 still narrower than MODE and that allows to open-code this operator.
2093 Note, if we find such a mode and the handler later decides it can't
2094 do the expansion, we'll be called recursively with the narrower mode. */
2095 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2096 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2097 tmode = GET_MODE_WIDER_MODE (tmode))
2099 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2100 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2101 submode = tmode;
2103 /* If there is no negate operation, try doing a subtract from zero. */
2104 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2105 /* Avoid infinite recursion when an
2106 error has left us with the wrong mode. */
2107 && GET_MODE (op0) == mode)
2109 rtx temp;
2110 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2111 target, unsignedp, OPTAB_DIRECT);
2112 if (temp)
2113 return temp;
2116 if (unoptab == one_cmpl_optab)
2118 tmode = int_mode_for_mode (mode);
2119 if (tmode != BLKmode)
2120 submode = tmode;
2123 subsize = GET_MODE_SIZE (submode);
2124 subbitsize = GET_MODE_BITSIZE (submode);
2125 elts = size / subsize;
2127 /* Errors can leave us with a const0_rtx as operand. */
2128 if (GET_MODE (op0) != mode)
2129 op0 = copy_to_mode_reg (mode, op0);
2131 if (!target)
2132 target = gen_reg_rtx (mode);
2134 start_sequence ();
2136 for (i = 0; i < elts; ++i)
2138 /* If this is part of a register, and not the first item in the
2139 word, we can't store using a SUBREG - that would clobber
2140 previous results.
2141 And storing with a SUBREG is only possible for the least
2142 significant part, hence we can't do it for big endian
2143 (unless we want to permute the evaluation order. */
2144 if (REG_P (target)
2145 && (BYTES_BIG_ENDIAN
2146 ? subsize < UNITS_PER_WORD
2147 : ((i * subsize) % UNITS_PER_WORD) != 0))
2148 t = NULL_RTX;
2149 else
2150 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2151 if (CONSTANT_P (op0))
2152 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2153 else
2154 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2155 t, submode, submode);
2157 res = expand_unop (submode, unoptab, a, t, unsignedp);
2159 if (t)
2160 emit_move_insn (t, res);
2161 else
2162 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
2165 seq = get_insns ();
2166 end_sequence ();
2167 emit_insn (seq);
2169 return target;
2172 /* Expand a binary operator which has both signed and unsigned forms.
2173 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2174 signed operations.
2176 If we widen unsigned operands, we may use a signed wider operation instead
2177 of an unsigned wider operation, since the result would be the same. */
2180 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2181 rtx op0, rtx op1, rtx target, int unsignedp,
2182 enum optab_methods methods)
2184 rtx temp;
2185 optab direct_optab = unsignedp ? uoptab : soptab;
2186 struct optab wide_soptab;
2188 /* Do it without widening, if possible. */
2189 temp = expand_binop (mode, direct_optab, op0, op1, target,
2190 unsignedp, OPTAB_DIRECT);
2191 if (temp || methods == OPTAB_DIRECT)
2192 return temp;
2194 /* Try widening to a signed int. Make a fake signed optab that
2195 hides any signed insn for direct use. */
2196 wide_soptab = *soptab;
2197 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2198 wide_soptab.handlers[(int) mode].libfunc = 0;
2200 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2201 unsignedp, OPTAB_WIDEN);
2203 /* For unsigned operands, try widening to an unsigned int. */
2204 if (temp == 0 && unsignedp)
2205 temp = expand_binop (mode, uoptab, op0, op1, target,
2206 unsignedp, OPTAB_WIDEN);
2207 if (temp || methods == OPTAB_WIDEN)
2208 return temp;
2210 /* Use the right width lib call if that exists. */
2211 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2212 if (temp || methods == OPTAB_LIB)
2213 return temp;
2215 /* Must widen and use a lib call, use either signed or unsigned. */
2216 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2217 unsignedp, methods);
2218 if (temp != 0)
2219 return temp;
2220 if (unsignedp)
2221 return expand_binop (mode, uoptab, op0, op1, target,
2222 unsignedp, methods);
2223 return 0;
2226 /* Generate code to perform an operation specified by UNOPPTAB
2227 on operand OP0, with two results to TARG0 and TARG1.
2228 We assume that the order of the operands for the instruction
2229 is TARG0, TARG1, OP0.
2231 Either TARG0 or TARG1 may be zero, but what that means is that
2232 the result is not actually wanted. We will generate it into
2233 a dummy pseudo-reg and discard it. They may not both be zero.
2235 Returns 1 if this operation can be performed; 0 if not. */
2238 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2239 int unsignedp)
2241 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2242 enum mode_class class;
2243 enum machine_mode wider_mode;
2244 rtx entry_last = get_last_insn ();
2245 rtx last;
2247 class = GET_MODE_CLASS (mode);
2249 if (flag_force_mem)
2250 op0 = force_not_mem (op0);
2252 if (!targ0)
2253 targ0 = gen_reg_rtx (mode);
2254 if (!targ1)
2255 targ1 = gen_reg_rtx (mode);
2257 /* Record where to go back to if we fail. */
2258 last = get_last_insn ();
2260 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2262 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2263 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2264 rtx pat;
2265 rtx xop0 = op0;
2267 if (GET_MODE (xop0) != VOIDmode
2268 && GET_MODE (xop0) != mode0)
2269 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2271 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2272 if (! (*insn_data[icode].operand[2].predicate) (xop0, mode0))
2273 xop0 = copy_to_mode_reg (mode0, xop0);
2275 /* We could handle this, but we should always be called with a pseudo
2276 for our targets and all insns should take them as outputs. */
2277 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2278 || ! (*insn_data[icode].operand[1].predicate) (targ1, mode))
2279 abort ();
2281 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2282 if (pat)
2284 emit_insn (pat);
2285 return 1;
2287 else
2288 delete_insns_since (last);
2291 /* It can't be done in this mode. Can we do it in a wider mode? */
2293 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2295 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2296 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2298 if (unoptab->handlers[(int) wider_mode].insn_code
2299 != CODE_FOR_nothing)
2301 rtx t0 = gen_reg_rtx (wider_mode);
2302 rtx t1 = gen_reg_rtx (wider_mode);
2303 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2305 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2307 convert_move (targ0, t0, unsignedp);
2308 convert_move (targ1, t1, unsignedp);
2309 return 1;
2311 else
2312 delete_insns_since (last);
2317 delete_insns_since (entry_last);
2318 return 0;
2321 /* Generate code to perform an operation specified by BINOPTAB
2322 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2323 We assume that the order of the operands for the instruction
2324 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2325 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2327 Either TARG0 or TARG1 may be zero, but what that means is that
2328 the result is not actually wanted. We will generate it into
2329 a dummy pseudo-reg and discard it. They may not both be zero.
2331 Returns 1 if this operation can be performed; 0 if not. */
2334 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2335 int unsignedp)
2337 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2338 enum mode_class class;
2339 enum machine_mode wider_mode;
2340 rtx entry_last = get_last_insn ();
2341 rtx last;
2343 class = GET_MODE_CLASS (mode);
2345 if (flag_force_mem)
2347 op0 = force_not_mem (op0);
2348 op1 = force_not_mem (op1);
2351 /* If we are inside an appropriately-short loop and we are optimizing,
2352 force expensive constants into a register. */
2353 if (CONSTANT_P (op0) && optimize
2354 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2355 op0 = force_reg (mode, op0);
2357 if (CONSTANT_P (op1) && optimize
2358 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2359 op1 = force_reg (mode, op1);
2361 if (!targ0)
2362 targ0 = gen_reg_rtx (mode);
2363 if (!targ1)
2364 targ1 = gen_reg_rtx (mode);
2366 /* Record where to go back to if we fail. */
2367 last = get_last_insn ();
2369 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2371 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2372 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2373 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2374 rtx pat;
2375 rtx xop0 = op0, xop1 = op1;
2377 /* In case the insn wants input operands in modes different from
2378 those of the actual operands, convert the operands. It would
2379 seem that we don't need to convert CONST_INTs, but we do, so
2380 that they're properly zero-extended, sign-extended or truncated
2381 for their mode. */
2383 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2384 xop0 = convert_modes (mode0,
2385 GET_MODE (op0) != VOIDmode
2386 ? GET_MODE (op0)
2387 : mode,
2388 xop0, unsignedp);
2390 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2391 xop1 = convert_modes (mode1,
2392 GET_MODE (op1) != VOIDmode
2393 ? GET_MODE (op1)
2394 : mode,
2395 xop1, unsignedp);
2397 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2398 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2399 xop0 = copy_to_mode_reg (mode0, xop0);
2401 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2402 xop1 = copy_to_mode_reg (mode1, xop1);
2404 /* We could handle this, but we should always be called with a pseudo
2405 for our targets and all insns should take them as outputs. */
2406 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2407 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2408 abort ();
2410 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2411 if (pat)
2413 emit_insn (pat);
2414 return 1;
2416 else
2417 delete_insns_since (last);
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2422 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2425 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2427 if (binoptab->handlers[(int) wider_mode].insn_code
2428 != CODE_FOR_nothing)
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2442 else
2443 delete_insns_since (last);
2448 delete_insns_since (entry_last);
2449 return 0;
2452 /* Expand the two-valued library call indicated by BINOPTAB, but
2453 preserve only one of the values. If TARG0 is non-NULL, the first
2454 value is placed into TARG0; otherwise the second value is placed
2455 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2456 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2457 This routine assumes that the value returned by the library call is
2458 as if the return value was of an integral mode twice as wide as the
2459 mode of OP0. Returns 1 if the call was successful. */
2461 bool
2462 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2463 rtx targ0, rtx targ1, enum rtx_code code)
2465 enum machine_mode mode;
2466 enum machine_mode libval_mode;
2467 rtx libval;
2468 rtx insns;
2470 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2471 if (!((targ0 != NULL_RTX) ^ (targ1 != NULL_RTX)))
2472 abort ();
2474 mode = GET_MODE (op0);
2475 if (!binoptab->handlers[(int) mode].libfunc)
2476 return false;
2478 /* The value returned by the library function will have twice as
2479 many bits as the nominal MODE. */
2480 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2481 MODE_INT);
2482 start_sequence ();
2483 libval = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
2484 NULL_RTX, LCT_CONST,
2485 libval_mode, 2,
2486 op0, mode,
2487 op1, mode);
2488 /* Get the part of VAL containing the value that we want. */
2489 libval = simplify_gen_subreg (mode, libval, libval_mode,
2490 targ0 ? 0 : GET_MODE_SIZE (mode));
2491 insns = get_insns ();
2492 end_sequence ();
2493 /* Move the into the desired location. */
2494 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2495 gen_rtx_fmt_ee (code, mode, op0, op1));
2497 return true;
2501 /* Wrapper around expand_unop which takes an rtx code to specify
2502 the operation to perform, not an optab pointer. All other
2503 arguments are the same. */
2505 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2506 rtx target, int unsignedp)
2508 optab unop = code_to_optab[(int) code];
2509 if (unop == 0)
2510 abort ();
2512 return expand_unop (mode, unop, op0, target, unsignedp);
2515 /* Try calculating
2516 (clz:narrow x)
2518 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2519 static rtx
2520 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2522 enum mode_class class = GET_MODE_CLASS (mode);
2523 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2525 enum machine_mode wider_mode;
2526 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2527 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2529 if (clz_optab->handlers[(int) wider_mode].insn_code
2530 != CODE_FOR_nothing)
2532 rtx xop0, temp, last;
2534 last = get_last_insn ();
2536 if (target == 0)
2537 target = gen_reg_rtx (mode);
2538 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2539 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2540 if (temp != 0)
2541 temp = expand_binop (wider_mode, sub_optab, temp,
2542 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2543 - GET_MODE_BITSIZE (mode)),
2544 target, true, OPTAB_DIRECT);
2545 if (temp == 0)
2546 delete_insns_since (last);
2548 return temp;
2552 return 0;
2555 /* Try calculating (parity x) as (and (popcount x) 1), where
2556 popcount can also be done in a wider mode. */
2557 static rtx
2558 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2560 enum mode_class class = GET_MODE_CLASS (mode);
2561 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2563 enum machine_mode wider_mode;
2564 for (wider_mode = mode; wider_mode != VOIDmode;
2565 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2567 if (popcount_optab->handlers[(int) wider_mode].insn_code
2568 != CODE_FOR_nothing)
2570 rtx xop0, temp, last;
2572 last = get_last_insn ();
2574 if (target == 0)
2575 target = gen_reg_rtx (mode);
2576 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2577 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2578 true);
2579 if (temp != 0)
2580 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2581 target, true, OPTAB_DIRECT);
2582 if (temp == 0)
2583 delete_insns_since (last);
2585 return temp;
2589 return 0;
2592 /* Generate code to perform an operation specified by UNOPTAB
2593 on operand OP0, with result having machine-mode MODE.
2595 UNSIGNEDP is for the case where we have to widen the operands
2596 to perform the operation. It says to use zero-extension.
2598 If TARGET is nonzero, the value
2599 is generated there, if it is convenient to do so.
2600 In all cases an rtx is returned for the locus of the value;
2601 this may or may not be TARGET. */
2604 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2605 int unsignedp)
2607 enum mode_class class;
2608 enum machine_mode wider_mode;
2609 rtx temp;
2610 rtx last = get_last_insn ();
2611 rtx pat;
2613 class = GET_MODE_CLASS (mode);
2615 if (flag_force_mem)
2616 op0 = force_not_mem (op0);
2618 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2620 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2621 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2622 rtx xop0 = op0;
2624 if (target)
2625 temp = target;
2626 else
2627 temp = gen_reg_rtx (mode);
2629 if (GET_MODE (xop0) != VOIDmode
2630 && GET_MODE (xop0) != mode0)
2631 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2633 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2635 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2636 xop0 = copy_to_mode_reg (mode0, xop0);
2638 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2639 temp = gen_reg_rtx (mode);
2641 pat = GEN_FCN (icode) (temp, xop0);
2642 if (pat)
2644 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2645 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2647 delete_insns_since (last);
2648 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2651 emit_insn (pat);
2653 return temp;
2655 else
2656 delete_insns_since (last);
2659 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2661 /* Widening clz needs special treatment. */
2662 if (unoptab == clz_optab)
2664 temp = widen_clz (mode, op0, target);
2665 if (temp)
2666 return temp;
2667 else
2668 goto try_libcall;
2671 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2672 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2673 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2675 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2677 rtx xop0 = op0;
2679 /* For certain operations, we need not actually extend
2680 the narrow operand, as long as we will truncate the
2681 results to the same narrowness. */
2683 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2684 (unoptab == neg_optab
2685 || unoptab == one_cmpl_optab)
2686 && class == MODE_INT);
2688 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2689 unsignedp);
2691 if (temp)
2693 if (class != MODE_INT)
2695 if (target == 0)
2696 target = gen_reg_rtx (mode);
2697 convert_move (target, temp, 0);
2698 return target;
2700 else
2701 return gen_lowpart (mode, temp);
2703 else
2704 delete_insns_since (last);
2708 /* These can be done a word at a time. */
2709 if (unoptab == one_cmpl_optab
2710 && class == MODE_INT
2711 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2712 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2714 int i;
2715 rtx insns;
2717 if (target == 0 || target == op0)
2718 target = gen_reg_rtx (mode);
2720 start_sequence ();
2722 /* Do the actual arithmetic. */
2723 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2725 rtx target_piece = operand_subword (target, i, 1, mode);
2726 rtx x = expand_unop (word_mode, unoptab,
2727 operand_subword_force (op0, i, mode),
2728 target_piece, unsignedp);
2730 if (target_piece != x)
2731 emit_move_insn (target_piece, x);
2734 insns = get_insns ();
2735 end_sequence ();
2737 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2738 gen_rtx_fmt_e (unoptab->code, mode,
2739 copy_rtx (op0)));
2740 return target;
2743 /* Open-code the complex negation operation. */
2744 else if (unoptab->code == NEG
2745 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2747 rtx target_piece;
2748 rtx x;
2749 rtx seq;
2751 /* Find the correct mode for the real and imaginary parts. */
2752 enum machine_mode submode = GET_MODE_INNER (mode);
2754 if (submode == BLKmode)
2755 abort ();
2757 if (target == 0)
2758 target = gen_reg_rtx (mode);
2760 start_sequence ();
2762 target_piece = gen_imagpart (submode, target);
2763 x = expand_unop (submode, unoptab,
2764 gen_imagpart (submode, op0),
2765 target_piece, unsignedp);
2766 if (target_piece != x)
2767 emit_move_insn (target_piece, x);
2769 target_piece = gen_realpart (submode, target);
2770 x = expand_unop (submode, unoptab,
2771 gen_realpart (submode, op0),
2772 target_piece, unsignedp);
2773 if (target_piece != x)
2774 emit_move_insn (target_piece, x);
2776 seq = get_insns ();
2777 end_sequence ();
2779 emit_no_conflict_block (seq, target, op0, 0,
2780 gen_rtx_fmt_e (unoptab->code, mode,
2781 copy_rtx (op0)));
2782 return target;
2785 /* Try negating floating point values by flipping the sign bit. */
2786 if (unoptab->code == NEG && class == MODE_FLOAT
2787 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2789 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2790 enum machine_mode imode = int_mode_for_mode (mode);
2791 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2793 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2795 HOST_WIDE_INT hi, lo;
2796 rtx last = get_last_insn ();
2798 /* Handle targets with different FP word orders. */
2799 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2801 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2802 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2803 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2806 if (bitpos < HOST_BITS_PER_WIDE_INT)
2808 hi = 0;
2809 lo = (HOST_WIDE_INT) 1 << bitpos;
2811 else
2813 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2814 lo = 0;
2816 temp = expand_binop (imode, xor_optab,
2817 gen_lowpart (imode, op0),
2818 immed_double_const (lo, hi, imode),
2819 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2820 if (temp != 0)
2822 rtx insn;
2823 if (target == 0)
2824 target = gen_reg_rtx (mode);
2825 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2826 set_unique_reg_note (insn, REG_EQUAL,
2827 gen_rtx_fmt_e (NEG, mode,
2828 copy_rtx (op0)));
2829 return target;
2831 delete_insns_since (last);
2835 /* Try calculating parity (x) as popcount (x) % 2. */
2836 if (unoptab == parity_optab)
2838 temp = expand_parity (mode, op0, target);
2839 if (temp)
2840 return temp;
2843 /* If there is no negation pattern, try subtracting from zero. */
2844 if (unoptab == neg_optab && class == MODE_INT)
2846 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2847 target, unsignedp, OPTAB_DIRECT);
2848 if (temp)
2849 return temp;
2852 try_libcall:
2853 /* Now try a library call in this mode. */
2854 if (unoptab->handlers[(int) mode].libfunc)
2856 rtx insns;
2857 rtx value;
2858 enum machine_mode outmode = mode;
2860 /* All of these functions return small values. Thus we choose to
2861 have them return something that isn't a double-word. */
2862 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2863 || unoptab == popcount_optab || unoptab == parity_optab)
2864 outmode
2865 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
2867 start_sequence ();
2869 /* Pass 1 for NO_QUEUE so we don't lose any increments
2870 if the libcall is cse'd or moved. */
2871 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2872 NULL_RTX, LCT_CONST, outmode,
2873 1, op0, mode);
2874 insns = get_insns ();
2875 end_sequence ();
2877 target = gen_reg_rtx (outmode);
2878 emit_libcall_block (insns, target, value,
2879 gen_rtx_fmt_e (unoptab->code, mode, op0));
2881 return target;
2884 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2885 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2887 /* It can't be done in this mode. Can we do it in a wider mode? */
2889 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2891 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2892 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2894 if ((unoptab->handlers[(int) wider_mode].insn_code
2895 != CODE_FOR_nothing)
2896 || unoptab->handlers[(int) wider_mode].libfunc)
2898 rtx xop0 = op0;
2900 /* For certain operations, we need not actually extend
2901 the narrow operand, as long as we will truncate the
2902 results to the same narrowness. */
2904 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2905 (unoptab == neg_optab
2906 || unoptab == one_cmpl_optab)
2907 && class == MODE_INT);
2909 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2910 unsignedp);
2912 /* If we are generating clz using wider mode, adjust the
2913 result. */
2914 if (unoptab == clz_optab && temp != 0)
2915 temp = expand_binop (wider_mode, sub_optab, temp,
2916 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2917 - GET_MODE_BITSIZE (mode)),
2918 target, true, OPTAB_DIRECT);
2920 if (temp)
2922 if (class != MODE_INT)
2924 if (target == 0)
2925 target = gen_reg_rtx (mode);
2926 convert_move (target, temp, 0);
2927 return target;
2929 else
2930 return gen_lowpart (mode, temp);
2932 else
2933 delete_insns_since (last);
2938 /* If there is no negate operation, try doing a subtract from zero.
2939 The US Software GOFAST library needs this. FIXME: This is *wrong*
2940 for floating-point operations due to negative zeros! */
2941 if (unoptab->code == NEG)
2943 rtx temp;
2944 temp = expand_binop (mode,
2945 unoptab == negv_optab ? subv_optab : sub_optab,
2946 CONST0_RTX (mode), op0,
2947 target, unsignedp, OPTAB_LIB_WIDEN);
2948 if (temp)
2949 return temp;
2952 return 0;
2955 /* Emit code to compute the absolute value of OP0, with result to
2956 TARGET if convenient. (TARGET may be 0.) The return value says
2957 where the result actually is to be found.
2959 MODE is the mode of the operand; the mode of the result is
2960 different but can be deduced from MODE.
2965 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2966 int result_unsignedp)
2968 rtx temp;
2970 if (! flag_trapv)
2971 result_unsignedp = 1;
2973 /* First try to do it with a special abs instruction. */
2974 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2975 op0, target, 0);
2976 if (temp != 0)
2977 return temp;
2979 /* For floating point modes, try clearing the sign bit. */
2980 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2981 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2983 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2984 enum machine_mode imode = int_mode_for_mode (mode);
2985 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2987 if (imode != BLKmode && bitpos >= 0)
2989 HOST_WIDE_INT hi, lo;
2990 rtx last = get_last_insn ();
2992 /* Handle targets with different FP word orders. */
2993 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2995 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2996 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2997 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
3000 if (bitpos < HOST_BITS_PER_WIDE_INT)
3002 hi = 0;
3003 lo = (HOST_WIDE_INT) 1 << bitpos;
3005 else
3007 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
3008 lo = 0;
3010 temp = expand_binop (imode, and_optab,
3011 gen_lowpart (imode, op0),
3012 immed_double_const (~lo, ~hi, imode),
3013 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3014 if (temp != 0)
3016 rtx insn;
3017 if (target == 0)
3018 target = gen_reg_rtx (mode);
3019 insn = emit_move_insn (target, gen_lowpart (mode, temp));
3020 set_unique_reg_note (insn, REG_EQUAL,
3021 gen_rtx_fmt_e (ABS, mode,
3022 copy_rtx (op0)));
3023 return target;
3025 delete_insns_since (last);
3029 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3030 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3032 rtx last = get_last_insn ();
3034 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3035 if (temp != 0)
3036 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3037 OPTAB_WIDEN);
3039 if (temp != 0)
3040 return temp;
3042 delete_insns_since (last);
3045 /* If this machine has expensive jumps, we can do integer absolute
3046 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3047 where W is the width of MODE. */
3049 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
3051 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3052 size_int (GET_MODE_BITSIZE (mode) - 1),
3053 NULL_RTX, 0);
3055 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3056 OPTAB_LIB_WIDEN);
3057 if (temp != 0)
3058 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3059 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3061 if (temp != 0)
3062 return temp;
3065 return NULL_RTX;
3069 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3070 int result_unsignedp, int safe)
3072 rtx temp, op1;
3074 if (! flag_trapv)
3075 result_unsignedp = 1;
3077 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3078 if (temp != 0)
3079 return temp;
3081 /* If that does not win, use conditional jump and negate. */
3083 /* It is safe to use the target if it is the same
3084 as the source if this is also a pseudo register */
3085 if (op0 == target && REG_P (op0)
3086 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3087 safe = 1;
3089 op1 = gen_label_rtx ();
3090 if (target == 0 || ! safe
3091 || GET_MODE (target) != mode
3092 || (MEM_P (target) && MEM_VOLATILE_P (target))
3093 || (REG_P (target)
3094 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3095 target = gen_reg_rtx (mode);
3097 emit_move_insn (target, op0);
3098 NO_DEFER_POP;
3100 /* If this mode is an integer too wide to compare properly,
3101 compare word by word. Rely on CSE to optimize constant cases. */
3102 if (GET_MODE_CLASS (mode) == MODE_INT
3103 && ! can_compare_p (GE, mode, ccp_jump))
3104 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
3105 NULL_RTX, op1);
3106 else
3107 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3108 NULL_RTX, NULL_RTX, op1);
3110 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3111 target, target, 0);
3112 if (op0 != target)
3113 emit_move_insn (target, op0);
3114 emit_label (op1);
3115 OK_DEFER_POP;
3116 return target;
3119 /* Emit code to compute the absolute value of OP0, with result to
3120 TARGET if convenient. (TARGET may be 0.) The return value says
3121 where the result actually is to be found.
3123 MODE is the mode of the operand; the mode of the result is
3124 different but can be deduced from MODE.
3126 UNSIGNEDP is relevant for complex integer modes. */
3129 expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
3130 int unsignedp)
3132 enum mode_class class = GET_MODE_CLASS (mode);
3133 enum machine_mode wider_mode;
3134 rtx temp;
3135 rtx entry_last = get_last_insn ();
3136 rtx last;
3137 rtx pat;
3138 optab this_abs_optab;
3140 /* Find the correct mode for the real and imaginary parts. */
3141 enum machine_mode submode = GET_MODE_INNER (mode);
3143 if (submode == BLKmode)
3144 abort ();
3146 if (flag_force_mem)
3147 op0 = force_not_mem (op0);
3149 last = get_last_insn ();
3151 this_abs_optab = ! unsignedp && flag_trapv
3152 && (GET_MODE_CLASS(mode) == MODE_INT)
3153 ? absv_optab : abs_optab;
3155 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3157 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
3158 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3159 rtx xop0 = op0;
3161 if (target)
3162 temp = target;
3163 else
3164 temp = gen_reg_rtx (submode);
3166 if (GET_MODE (xop0) != VOIDmode
3167 && GET_MODE (xop0) != mode0)
3168 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3170 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3172 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
3173 xop0 = copy_to_mode_reg (mode0, xop0);
3175 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
3176 temp = gen_reg_rtx (submode);
3178 pat = GEN_FCN (icode) (temp, xop0);
3179 if (pat)
3181 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3182 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
3183 NULL_RTX))
3185 delete_insns_since (last);
3186 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
3187 unsignedp);
3190 emit_insn (pat);
3192 return temp;
3194 else
3195 delete_insns_since (last);
3198 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3200 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3201 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3203 if (this_abs_optab->handlers[(int) wider_mode].insn_code
3204 != CODE_FOR_nothing)
3206 rtx xop0 = op0;
3208 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3209 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3211 if (temp)
3213 if (class != MODE_COMPLEX_INT)
3215 if (target == 0)
3216 target = gen_reg_rtx (submode);
3217 convert_move (target, temp, 0);
3218 return target;
3220 else
3221 return gen_lowpart (submode, temp);
3223 else
3224 delete_insns_since (last);
3228 /* Open-code the complex absolute-value operation
3229 if we can open-code sqrt. Otherwise it's not worth while. */
3230 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3231 && ! flag_trapv)
3233 rtx real, imag, total;
3235 real = gen_realpart (submode, op0);
3236 imag = gen_imagpart (submode, op0);
3238 /* Square both parts. */
3239 real = expand_mult (submode, real, real, NULL_RTX, 0);
3240 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3242 /* Sum the parts. */
3243 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
3244 0, OPTAB_LIB_WIDEN);
3246 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3247 target = expand_unop (submode, sqrt_optab, total, target, 0);
3248 if (target == 0)
3249 delete_insns_since (last);
3250 else
3251 return target;
3254 /* Now try a library call in this mode. */
3255 if (this_abs_optab->handlers[(int) mode].libfunc)
3257 rtx insns;
3258 rtx value;
3260 start_sequence ();
3262 /* Pass 1 for NO_QUEUE so we don't lose any increments
3263 if the libcall is cse'd or moved. */
3264 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
3265 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
3266 insns = get_insns ();
3267 end_sequence ();
3269 target = gen_reg_rtx (submode);
3270 emit_libcall_block (insns, target, value,
3271 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
3273 return target;
3276 /* It can't be done in this mode. Can we do it in a wider mode? */
3278 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3279 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3281 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
3282 != CODE_FOR_nothing)
3283 || this_abs_optab->handlers[(int) wider_mode].libfunc)
3285 rtx xop0 = op0;
3287 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3289 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3291 if (temp)
3293 if (class != MODE_COMPLEX_INT)
3295 if (target == 0)
3296 target = gen_reg_rtx (submode);
3297 convert_move (target, temp, 0);
3298 return target;
3300 else
3301 return gen_lowpart (submode, temp);
3303 else
3304 delete_insns_since (last);
3308 delete_insns_since (entry_last);
3309 return 0;
3312 /* Generate an instruction whose insn-code is INSN_CODE,
3313 with two operands: an output TARGET and an input OP0.
3314 TARGET *must* be nonzero, and the output is always stored there.
3315 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3316 the value that is stored into TARGET. */
3318 void
3319 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3321 rtx temp;
3322 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3323 rtx pat;
3325 temp = target;
3327 /* Sign and zero extension from memory is often done specially on
3328 RISC machines, so forcing into a register here can pessimize
3329 code. */
3330 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
3331 op0 = force_not_mem (op0);
3333 /* Now, if insn does not accept our operands, put them into pseudos. */
3335 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
3336 op0 = copy_to_mode_reg (mode0, op0);
3338 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
3339 || (flag_force_mem && MEM_P (temp)))
3340 temp = gen_reg_rtx (GET_MODE (temp));
3342 pat = GEN_FCN (icode) (temp, op0);
3344 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3345 add_equal_note (pat, temp, code, op0, NULL_RTX);
3347 emit_insn (pat);
3349 if (temp != target)
3350 emit_move_insn (target, temp);
3353 /* Emit code to perform a series of operations on a multi-word quantity, one
3354 word at a time.
3356 Such a block is preceded by a CLOBBER of the output, consists of multiple
3357 insns, each setting one word of the output, and followed by a SET copying
3358 the output to itself.
3360 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3361 note indicating that it doesn't conflict with the (also multi-word)
3362 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3363 notes.
3365 INSNS is a block of code generated to perform the operation, not including
3366 the CLOBBER and final copy. All insns that compute intermediate values
3367 are first emitted, followed by the block as described above.
3369 TARGET, OP0, and OP1 are the output and inputs of the operations,
3370 respectively. OP1 may be zero for a unary operation.
3372 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3373 on the last insn.
3375 If TARGET is not a register, INSNS is simply emitted with no special
3376 processing. Likewise if anything in INSNS is not an INSN or if
3377 there is a libcall block inside INSNS.
3379 The final insn emitted is returned. */
3382 emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
3384 rtx prev, next, first, last, insn;
3386 if (!REG_P (target) || reload_in_progress)
3387 return emit_insn (insns);
3388 else
3389 for (insn = insns; insn; insn = NEXT_INSN (insn))
3390 if (!NONJUMP_INSN_P (insn)
3391 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3392 return emit_insn (insns);
3394 /* First emit all insns that do not store into words of the output and remove
3395 these from the list. */
3396 for (insn = insns; insn; insn = next)
3398 rtx set = 0, note;
3399 int i;
3401 next = NEXT_INSN (insn);
3403 /* Some ports (cris) create a libcall regions at their own. We must
3404 avoid any potential nesting of LIBCALLs. */
3405 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3406 remove_note (insn, note);
3407 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3408 remove_note (insn, note);
3410 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3411 || GET_CODE (PATTERN (insn)) == CLOBBER)
3412 set = PATTERN (insn);
3413 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3415 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3416 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3418 set = XVECEXP (PATTERN (insn), 0, i);
3419 break;
3423 if (set == 0)
3424 abort ();
3426 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3428 if (PREV_INSN (insn))
3429 NEXT_INSN (PREV_INSN (insn)) = next;
3430 else
3431 insns = next;
3433 if (next)
3434 PREV_INSN (next) = PREV_INSN (insn);
3436 add_insn (insn);
3440 prev = get_last_insn ();
3442 /* Now write the CLOBBER of the output, followed by the setting of each
3443 of the words, followed by the final copy. */
3444 if (target != op0 && target != op1)
3445 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3447 for (insn = insns; insn; insn = next)
3449 next = NEXT_INSN (insn);
3450 add_insn (insn);
3452 if (op1 && REG_P (op1))
3453 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3454 REG_NOTES (insn));
3456 if (op0 && REG_P (op0))
3457 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3458 REG_NOTES (insn));
3461 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3462 != CODE_FOR_nothing)
3464 last = emit_move_insn (target, target);
3465 if (equiv)
3466 set_unique_reg_note (last, REG_EQUAL, equiv);
3468 else
3470 last = get_last_insn ();
3472 /* Remove any existing REG_EQUAL note from "last", or else it will
3473 be mistaken for a note referring to the full contents of the
3474 alleged libcall value when found together with the REG_RETVAL
3475 note added below. An existing note can come from an insn
3476 expansion at "last". */
3477 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3480 if (prev == 0)
3481 first = get_insns ();
3482 else
3483 first = NEXT_INSN (prev);
3485 /* Encapsulate the block so it gets manipulated as a unit. */
3486 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3487 REG_NOTES (first));
3488 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3490 return last;
3493 /* Emit code to make a call to a constant function or a library call.
3495 INSNS is a list containing all insns emitted in the call.
3496 These insns leave the result in RESULT. Our block is to copy RESULT
3497 to TARGET, which is logically equivalent to EQUIV.
3499 We first emit any insns that set a pseudo on the assumption that these are
3500 loading constants into registers; doing so allows them to be safely cse'ed
3501 between blocks. Then we emit all the other insns in the block, followed by
3502 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3503 note with an operand of EQUIV.
3505 Moving assignments to pseudos outside of the block is done to improve
3506 the generated code, but is not required to generate correct code,
3507 hence being unable to move an assignment is not grounds for not making
3508 a libcall block. There are two reasons why it is safe to leave these
3509 insns inside the block: First, we know that these pseudos cannot be
3510 used in generated RTL outside the block since they are created for
3511 temporary purposes within the block. Second, CSE will not record the
3512 values of anything set inside a libcall block, so we know they must
3513 be dead at the end of the block.
3515 Except for the first group of insns (the ones setting pseudos), the
3516 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3518 void
3519 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3521 rtx final_dest = target;
3522 rtx prev, next, first, last, insn;
3524 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3525 into a MEM later. Protect the libcall block from this change. */
3526 if (! REG_P (target) || REG_USERVAR_P (target))
3527 target = gen_reg_rtx (GET_MODE (target));
3529 /* If we're using non-call exceptions, a libcall corresponding to an
3530 operation that may trap may also trap. */
3531 if (flag_non_call_exceptions && may_trap_p (equiv))
3533 for (insn = insns; insn; insn = NEXT_INSN (insn))
3534 if (CALL_P (insn))
3536 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3538 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3539 remove_note (insn, note);
3542 else
3543 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3544 reg note to indicate that this call cannot throw or execute a nonlocal
3545 goto (unless there is already a REG_EH_REGION note, in which case
3546 we update it). */
3547 for (insn = insns; insn; insn = NEXT_INSN (insn))
3548 if (CALL_P (insn))
3550 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3552 if (note != 0)
3553 XEXP (note, 0) = constm1_rtx;
3554 else
3555 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
3556 REG_NOTES (insn));
3559 /* First emit all insns that set pseudos. Remove them from the list as
3560 we go. Avoid insns that set pseudos which were referenced in previous
3561 insns. These can be generated by move_by_pieces, for example,
3562 to update an address. Similarly, avoid insns that reference things
3563 set in previous insns. */
3565 for (insn = insns; insn; insn = next)
3567 rtx set = single_set (insn);
3568 rtx note;
3570 /* Some ports (cris) create a libcall regions at their own. We must
3571 avoid any potential nesting of LIBCALLs. */
3572 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3573 remove_note (insn, note);
3574 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3575 remove_note (insn, note);
3577 next = NEXT_INSN (insn);
3579 if (set != 0 && REG_P (SET_DEST (set))
3580 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3581 && (insn == insns
3582 || ((! INSN_P(insns)
3583 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3584 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3585 && ! modified_in_p (SET_SRC (set), insns)
3586 && ! modified_between_p (SET_SRC (set), insns, insn))))
3588 if (PREV_INSN (insn))
3589 NEXT_INSN (PREV_INSN (insn)) = next;
3590 else
3591 insns = next;
3593 if (next)
3594 PREV_INSN (next) = PREV_INSN (insn);
3596 add_insn (insn);
3599 /* Some ports use a loop to copy large arguments onto the stack.
3600 Don't move anything outside such a loop. */
3601 if (LABEL_P (insn))
3602 break;
3605 prev = get_last_insn ();
3607 /* Write the remaining insns followed by the final copy. */
3609 for (insn = insns; insn; insn = next)
3611 next = NEXT_INSN (insn);
3613 add_insn (insn);
3616 last = emit_move_insn (target, result);
3617 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3618 != CODE_FOR_nothing)
3619 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3620 else
3622 /* Remove any existing REG_EQUAL note from "last", or else it will
3623 be mistaken for a note referring to the full contents of the
3624 libcall value when found together with the REG_RETVAL note added
3625 below. An existing note can come from an insn expansion at
3626 "last". */
3627 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3630 if (final_dest != target)
3631 emit_move_insn (final_dest, target);
3633 if (prev == 0)
3634 first = get_insns ();
3635 else
3636 first = NEXT_INSN (prev);
3638 /* Encapsulate the block so it gets manipulated as a unit. */
3639 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3641 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3642 when the encapsulated region would not be in one basic block,
3643 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3645 bool attach_libcall_retval_notes = true;
3646 next = NEXT_INSN (last);
3647 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3648 if (control_flow_insn_p (insn))
3650 attach_libcall_retval_notes = false;
3651 break;
3654 if (attach_libcall_retval_notes)
3656 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3657 REG_NOTES (first));
3658 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3659 REG_NOTES (last));
3664 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3665 PURPOSE describes how this comparison will be used. CODE is the rtx
3666 comparison code we will be using.
3668 ??? Actually, CODE is slightly weaker than that. A target is still
3669 required to implement all of the normal bcc operations, but not
3670 required to implement all (or any) of the unordered bcc operations. */
3673 can_compare_p (enum rtx_code code, enum machine_mode mode,
3674 enum can_compare_purpose purpose)
3678 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3680 if (purpose == ccp_jump)
3681 return bcc_gen_fctn[(int) code] != NULL;
3682 else if (purpose == ccp_store_flag)
3683 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3684 else
3685 /* There's only one cmov entry point, and it's allowed to fail. */
3686 return 1;
3688 if (purpose == ccp_jump
3689 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3690 return 1;
3691 if (purpose == ccp_cmov
3692 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3693 return 1;
3694 if (purpose == ccp_store_flag
3695 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3696 return 1;
3698 mode = GET_MODE_WIDER_MODE (mode);
3700 while (mode != VOIDmode);
3702 return 0;
3705 /* This function is called when we are going to emit a compare instruction that
3706 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3708 *PMODE is the mode of the inputs (in case they are const_int).
3709 *PUNSIGNEDP nonzero says that the operands are unsigned;
3710 this matters if they need to be widened.
3712 If they have mode BLKmode, then SIZE specifies the size of both operands.
3714 This function performs all the setup necessary so that the caller only has
3715 to emit a single comparison insn. This setup can involve doing a BLKmode
3716 comparison or emitting a library call to perform the comparison if no insn
3717 is available to handle it.
3718 The values which are passed in through pointers can be modified; the caller
3719 should perform the comparison on the modified values. */
3721 static void
3722 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3723 enum machine_mode *pmode, int *punsignedp,
3724 enum can_compare_purpose purpose)
3726 enum machine_mode mode = *pmode;
3727 rtx x = *px, y = *py;
3728 int unsignedp = *punsignedp;
3729 enum mode_class class;
3731 class = GET_MODE_CLASS (mode);
3733 /* They could both be VOIDmode if both args are immediate constants,
3734 but we should fold that at an earlier stage.
3735 With no special code here, this will call abort,
3736 reminding the programmer to implement such folding. */
3738 if (mode != BLKmode && flag_force_mem)
3740 /* Load duplicate non-volatile operands once. */
3741 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3743 x = force_not_mem (x);
3744 y = x;
3746 else
3748 x = force_not_mem (x);
3749 y = force_not_mem (y);
3753 /* If we are inside an appropriately-short loop and we are optimizing,
3754 force expensive constants into a register. */
3755 if (CONSTANT_P (x) && optimize
3756 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3757 x = force_reg (mode, x);
3759 if (CONSTANT_P (y) && optimize
3760 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3761 y = force_reg (mode, y);
3763 #ifdef HAVE_cc0
3764 /* Abort if we have a non-canonical comparison. The RTL documentation
3765 states that canonical comparisons are required only for targets which
3766 have cc0. */
3767 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3768 abort ();
3769 #endif
3771 /* Don't let both operands fail to indicate the mode. */
3772 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3773 x = force_reg (mode, x);
3775 /* Handle all BLKmode compares. */
3777 if (mode == BLKmode)
3779 enum machine_mode cmp_mode, result_mode;
3780 enum insn_code cmp_code;
3781 tree length_type;
3782 rtx libfunc;
3783 rtx result;
3784 rtx opalign
3785 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3787 if (size == 0)
3788 abort ();
3790 /* Try to use a memory block compare insn - either cmpstr
3791 or cmpmem will do. */
3792 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3793 cmp_mode != VOIDmode;
3794 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3796 cmp_code = cmpmem_optab[cmp_mode];
3797 if (cmp_code == CODE_FOR_nothing)
3798 cmp_code = cmpstr_optab[cmp_mode];
3799 if (cmp_code == CODE_FOR_nothing)
3800 continue;
3802 /* Must make sure the size fits the insn's mode. */
3803 if ((GET_CODE (size) == CONST_INT
3804 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3805 || (GET_MODE_BITSIZE (GET_MODE (size))
3806 > GET_MODE_BITSIZE (cmp_mode)))
3807 continue;
3809 result_mode = insn_data[cmp_code].operand[0].mode;
3810 result = gen_reg_rtx (result_mode);
3811 size = convert_to_mode (cmp_mode, size, 1);
3812 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3814 *px = result;
3815 *py = const0_rtx;
3816 *pmode = result_mode;
3817 return;
3820 /* Otherwise call a library function, memcmp. */
3821 libfunc = memcmp_libfunc;
3822 length_type = sizetype;
3823 result_mode = TYPE_MODE (integer_type_node);
3824 cmp_mode = TYPE_MODE (length_type);
3825 size = convert_to_mode (TYPE_MODE (length_type), size,
3826 TYPE_UNSIGNED (length_type));
3828 result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
3829 result_mode, 3,
3830 XEXP (x, 0), Pmode,
3831 XEXP (y, 0), Pmode,
3832 size, cmp_mode);
3833 *px = result;
3834 *py = const0_rtx;
3835 *pmode = result_mode;
3836 return;
3839 /* Don't allow operands to the compare to trap, as that can put the
3840 compare and branch in different basic blocks. */
3841 if (flag_non_call_exceptions)
3843 if (may_trap_p (x))
3844 x = force_reg (mode, x);
3845 if (may_trap_p (y))
3846 y = force_reg (mode, y);
3849 *px = x;
3850 *py = y;
3851 if (can_compare_p (*pcomparison, mode, purpose))
3852 return;
3854 /* Handle a lib call just for the mode we are using. */
3856 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3858 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3859 rtx result;
3861 /* If we want unsigned, and this mode has a distinct unsigned
3862 comparison routine, use that. */
3863 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3864 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3866 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3867 word_mode, 2, x, mode, y, mode);
3869 *px = result;
3870 *pmode = word_mode;
3871 if (TARGET_LIB_INT_CMP_BIASED)
3872 /* Integer comparison returns a result that must be compared
3873 against 1, so that even if we do an unsigned compare
3874 afterward, there is still a value that can represent the
3875 result "less than". */
3876 *py = const1_rtx;
3877 else
3879 *py = const0_rtx;
3880 *punsignedp = 1;
3882 return;
3885 if (class == MODE_FLOAT)
3886 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3888 else
3889 abort ();
3892 /* Before emitting an insn with code ICODE, make sure that X, which is going
3893 to be used for operand OPNUM of the insn, is converted from mode MODE to
3894 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3895 that it is accepted by the operand predicate. Return the new value. */
3898 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3899 enum machine_mode wider_mode, int unsignedp)
3901 if (mode != wider_mode)
3902 x = convert_modes (wider_mode, mode, x, unsignedp);
3904 if (! (*insn_data[icode].operand[opnum].predicate)
3905 (x, insn_data[icode].operand[opnum].mode))
3907 if (no_new_pseudos)
3908 return NULL_RTX;
3909 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3912 return x;
3915 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3916 we can do the comparison.
3917 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3918 be NULL_RTX which indicates that only a comparison is to be generated. */
3920 static void
3921 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3922 enum rtx_code comparison, int unsignedp, rtx label)
3924 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3925 enum mode_class class = GET_MODE_CLASS (mode);
3926 enum machine_mode wider_mode = mode;
3928 /* Try combined insns first. */
3931 enum insn_code icode;
3932 PUT_MODE (test, wider_mode);
3934 if (label)
3936 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3938 if (icode != CODE_FOR_nothing
3939 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3941 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3942 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3943 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3944 return;
3948 /* Handle some compares against zero. */
3949 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3950 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3952 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3953 emit_insn (GEN_FCN (icode) (x));
3954 if (label)
3955 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3956 return;
3959 /* Handle compares for which there is a directly suitable insn. */
3961 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3962 if (icode != CODE_FOR_nothing)
3964 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3965 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3966 emit_insn (GEN_FCN (icode) (x, y));
3967 if (label)
3968 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3969 return;
3972 if (class != MODE_INT && class != MODE_FLOAT
3973 && class != MODE_COMPLEX_FLOAT)
3974 break;
3976 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3978 while (wider_mode != VOIDmode);
3980 abort ();
3983 /* Generate code to compare X with Y so that the condition codes are
3984 set and to jump to LABEL if the condition is true. If X is a
3985 constant and Y is not a constant, then the comparison is swapped to
3986 ensure that the comparison RTL has the canonical form.
3988 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3989 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3990 the proper branch condition code.
3992 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3994 MODE is the mode of the inputs (in case they are const_int).
3996 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3997 be passed unchanged to emit_cmp_insn, then potentially converted into an
3998 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
4000 void
4001 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4002 enum machine_mode mode, int unsignedp, rtx label)
4004 rtx op0 = x, op1 = y;
4006 /* Swap operands and condition to ensure canonical RTL. */
4007 if (swap_commutative_operands_p (x, y))
4009 /* If we're not emitting a branch, this means some caller
4010 is out of sync. */
4011 if (! label)
4012 abort ();
4014 op0 = y, op1 = x;
4015 comparison = swap_condition (comparison);
4018 #ifdef HAVE_cc0
4019 /* If OP0 is still a constant, then both X and Y must be constants. Force
4020 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
4021 RTL. */
4022 if (CONSTANT_P (op0))
4023 op0 = force_reg (mode, op0);
4024 #endif
4026 if (unsignedp)
4027 comparison = unsigned_condition (comparison);
4029 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
4030 ccp_jump);
4031 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
4034 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
4036 void
4037 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4038 enum machine_mode mode, int unsignedp)
4040 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
4043 /* Emit a library call comparison between floating point X and Y.
4044 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4046 static void
4047 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
4048 enum machine_mode *pmode, int *punsignedp)
4050 enum rtx_code comparison = *pcomparison;
4051 enum rtx_code swapped = swap_condition (comparison);
4052 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4053 rtx x = *px;
4054 rtx y = *py;
4055 enum machine_mode orig_mode = GET_MODE (x);
4056 enum machine_mode mode;
4057 rtx value, target, insns, equiv;
4058 rtx libfunc = 0;
4059 bool reversed_p = false;
4061 for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
4063 if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
4064 break;
4066 if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
4068 rtx tmp;
4069 tmp = x; x = y; y = tmp;
4070 comparison = swapped;
4071 break;
4074 if ((libfunc = code_to_optab[reversed]->handlers[mode].libfunc)
4075 && FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, reversed))
4077 comparison = reversed;
4078 reversed_p = true;
4079 break;
4083 if (mode == VOIDmode)
4084 abort ();
4086 if (mode != orig_mode)
4088 x = convert_to_mode (mode, x, 0);
4089 y = convert_to_mode (mode, y, 0);
4092 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4093 the RTL. The allows the RTL optimizers to delete the libcall if the
4094 condition can be determined at compile-time. */
4095 if (comparison == UNORDERED)
4097 rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
4098 equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
4099 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4100 temp, const_true_rtx, equiv);
4102 else
4104 equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
4105 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4107 rtx true_rtx, false_rtx;
4109 switch (comparison)
4111 case EQ:
4112 true_rtx = const0_rtx;
4113 false_rtx = const_true_rtx;
4114 break;
4116 case NE:
4117 true_rtx = const_true_rtx;
4118 false_rtx = const0_rtx;
4119 break;
4121 case GT:
4122 true_rtx = const1_rtx;
4123 false_rtx = const0_rtx;
4124 break;
4126 case GE:
4127 true_rtx = const0_rtx;
4128 false_rtx = constm1_rtx;
4129 break;
4131 case LT:
4132 true_rtx = constm1_rtx;
4133 false_rtx = const0_rtx;
4134 break;
4136 case LE:
4137 true_rtx = const0_rtx;
4138 false_rtx = const1_rtx;
4139 break;
4141 default:
4142 abort ();
4144 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4145 equiv, true_rtx, false_rtx);
4149 start_sequence ();
4150 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4151 word_mode, 2, x, mode, y, mode);
4152 insns = get_insns ();
4153 end_sequence ();
4155 target = gen_reg_rtx (word_mode);
4156 emit_libcall_block (insns, target, value, equiv);
4158 if (comparison == UNORDERED
4159 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4160 comparison = reversed_p ? EQ : NE;
4162 *px = target;
4163 *py = const0_rtx;
4164 *pmode = word_mode;
4165 *pcomparison = comparison;
4166 *punsignedp = 0;
4169 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4171 void
4172 emit_indirect_jump (rtx loc)
4174 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4175 (loc, Pmode)))
4176 loc = copy_to_mode_reg (Pmode, loc);
4178 emit_jump_insn (gen_indirect_jump (loc));
4179 emit_barrier ();
4182 #ifdef HAVE_conditional_move
4184 /* Emit a conditional move instruction if the machine supports one for that
4185 condition and machine mode.
4187 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4188 the mode to use should they be constants. If it is VOIDmode, they cannot
4189 both be constants.
4191 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4192 should be stored there. MODE is the mode to use should they be constants.
4193 If it is VOIDmode, they cannot both be constants.
4195 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4196 is not supported. */
4199 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4200 enum machine_mode cmode, rtx op2, rtx op3,
4201 enum machine_mode mode, int unsignedp)
4203 rtx tem, subtarget, comparison, insn;
4204 enum insn_code icode;
4205 enum rtx_code reversed;
4207 /* If one operand is constant, make it the second one. Only do this
4208 if the other operand is not constant as well. */
4210 if (swap_commutative_operands_p (op0, op1))
4212 tem = op0;
4213 op0 = op1;
4214 op1 = tem;
4215 code = swap_condition (code);
4218 /* get_condition will prefer to generate LT and GT even if the old
4219 comparison was against zero, so undo that canonicalization here since
4220 comparisons against zero are cheaper. */
4221 if (code == LT && op1 == const1_rtx)
4222 code = LE, op1 = const0_rtx;
4223 else if (code == GT && op1 == constm1_rtx)
4224 code = GE, op1 = const0_rtx;
4226 if (cmode == VOIDmode)
4227 cmode = GET_MODE (op0);
4229 if (swap_commutative_operands_p (op2, op3)
4230 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4231 != UNKNOWN))
4233 tem = op2;
4234 op2 = op3;
4235 op3 = tem;
4236 code = reversed;
4239 if (mode == VOIDmode)
4240 mode = GET_MODE (op2);
4242 icode = movcc_gen_code[mode];
4244 if (icode == CODE_FOR_nothing)
4245 return 0;
4247 if (flag_force_mem)
4249 op2 = force_not_mem (op2);
4250 op3 = force_not_mem (op3);
4253 if (!target)
4254 target = gen_reg_rtx (mode);
4256 subtarget = target;
4258 /* If the insn doesn't accept these operands, put them in pseudos. */
4260 if (! (*insn_data[icode].operand[0].predicate)
4261 (subtarget, insn_data[icode].operand[0].mode))
4262 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4264 if (! (*insn_data[icode].operand[2].predicate)
4265 (op2, insn_data[icode].operand[2].mode))
4266 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4268 if (! (*insn_data[icode].operand[3].predicate)
4269 (op3, insn_data[icode].operand[3].mode))
4270 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4272 /* Everything should now be in the suitable form, so emit the compare insn
4273 and then the conditional move. */
4275 comparison
4276 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4278 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4279 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4280 return NULL and let the caller figure out how best to deal with this
4281 situation. */
4282 if (GET_CODE (comparison) != code)
4283 return NULL_RTX;
4285 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4287 /* If that failed, then give up. */
4288 if (insn == 0)
4289 return 0;
4291 emit_insn (insn);
4293 if (subtarget != target)
4294 convert_move (target, subtarget, 0);
4296 return target;
4299 /* Return nonzero if a conditional move of mode MODE is supported.
4301 This function is for combine so it can tell whether an insn that looks
4302 like a conditional move is actually supported by the hardware. If we
4303 guess wrong we lose a bit on optimization, but that's it. */
4304 /* ??? sparc64 supports conditionally moving integers values based on fp
4305 comparisons, and vice versa. How do we handle them? */
4308 can_conditionally_move_p (enum machine_mode mode)
4310 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4311 return 1;
4313 return 0;
4316 #endif /* HAVE_conditional_move */
4318 /* Emit a conditional addition instruction if the machine supports one for that
4319 condition and machine mode.
4321 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4322 the mode to use should they be constants. If it is VOIDmode, they cannot
4323 both be constants.
4325 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4326 should be stored there. MODE is the mode to use should they be constants.
4327 If it is VOIDmode, they cannot both be constants.
4329 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4330 is not supported. */
4333 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4334 enum machine_mode cmode, rtx op2, rtx op3,
4335 enum machine_mode mode, int unsignedp)
4337 rtx tem, subtarget, comparison, insn;
4338 enum insn_code icode;
4339 enum rtx_code reversed;
4341 /* If one operand is constant, make it the second one. Only do this
4342 if the other operand is not constant as well. */
4344 if (swap_commutative_operands_p (op0, op1))
4346 tem = op0;
4347 op0 = op1;
4348 op1 = tem;
4349 code = swap_condition (code);
4352 /* get_condition will prefer to generate LT and GT even if the old
4353 comparison was against zero, so undo that canonicalization here since
4354 comparisons against zero are cheaper. */
4355 if (code == LT && op1 == const1_rtx)
4356 code = LE, op1 = const0_rtx;
4357 else if (code == GT && op1 == constm1_rtx)
4358 code = GE, op1 = const0_rtx;
4360 if (cmode == VOIDmode)
4361 cmode = GET_MODE (op0);
4363 if (swap_commutative_operands_p (op2, op3)
4364 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4365 != UNKNOWN))
4367 tem = op2;
4368 op2 = op3;
4369 op3 = tem;
4370 code = reversed;
4373 if (mode == VOIDmode)
4374 mode = GET_MODE (op2);
4376 icode = addcc_optab->handlers[(int) mode].insn_code;
4378 if (icode == CODE_FOR_nothing)
4379 return 0;
4381 if (flag_force_mem)
4383 op2 = force_not_mem (op2);
4384 op3 = force_not_mem (op3);
4387 if (!target)
4388 target = gen_reg_rtx (mode);
4390 /* If the insn doesn't accept these operands, put them in pseudos. */
4392 if (! (*insn_data[icode].operand[0].predicate)
4393 (target, insn_data[icode].operand[0].mode))
4394 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4395 else
4396 subtarget = target;
4398 if (! (*insn_data[icode].operand[2].predicate)
4399 (op2, insn_data[icode].operand[2].mode))
4400 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4402 if (! (*insn_data[icode].operand[3].predicate)
4403 (op3, insn_data[icode].operand[3].mode))
4404 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4406 /* Everything should now be in the suitable form, so emit the compare insn
4407 and then the conditional move. */
4409 comparison
4410 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4412 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4413 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4414 return NULL and let the caller figure out how best to deal with this
4415 situation. */
4416 if (GET_CODE (comparison) != code)
4417 return NULL_RTX;
4419 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4421 /* If that failed, then give up. */
4422 if (insn == 0)
4423 return 0;
4425 emit_insn (insn);
4427 if (subtarget != target)
4428 convert_move (target, subtarget, 0);
4430 return target;
4433 /* These functions attempt to generate an insn body, rather than
4434 emitting the insn, but if the gen function already emits them, we
4435 make no attempt to turn them back into naked patterns. */
4437 /* Generate and return an insn body to add Y to X. */
4440 gen_add2_insn (rtx x, rtx y)
4442 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4444 if (! ((*insn_data[icode].operand[0].predicate)
4445 (x, insn_data[icode].operand[0].mode))
4446 || ! ((*insn_data[icode].operand[1].predicate)
4447 (x, insn_data[icode].operand[1].mode))
4448 || ! ((*insn_data[icode].operand[2].predicate)
4449 (y, insn_data[icode].operand[2].mode)))
4450 abort ();
4452 return (GEN_FCN (icode) (x, x, y));
4455 /* Generate and return an insn body to add r1 and c,
4456 storing the result in r0. */
4458 gen_add3_insn (rtx r0, rtx r1, rtx c)
4460 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4462 if (icode == CODE_FOR_nothing
4463 || ! ((*insn_data[icode].operand[0].predicate)
4464 (r0, insn_data[icode].operand[0].mode))
4465 || ! ((*insn_data[icode].operand[1].predicate)
4466 (r1, insn_data[icode].operand[1].mode))
4467 || ! ((*insn_data[icode].operand[2].predicate)
4468 (c, insn_data[icode].operand[2].mode)))
4469 return NULL_RTX;
4471 return (GEN_FCN (icode) (r0, r1, c));
4475 have_add2_insn (rtx x, rtx y)
4477 int icode;
4479 if (GET_MODE (x) == VOIDmode)
4480 abort ();
4482 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4484 if (icode == CODE_FOR_nothing)
4485 return 0;
4487 if (! ((*insn_data[icode].operand[0].predicate)
4488 (x, insn_data[icode].operand[0].mode))
4489 || ! ((*insn_data[icode].operand[1].predicate)
4490 (x, insn_data[icode].operand[1].mode))
4491 || ! ((*insn_data[icode].operand[2].predicate)
4492 (y, insn_data[icode].operand[2].mode)))
4493 return 0;
4495 return 1;
4498 /* Generate and return an insn body to subtract Y from X. */
4501 gen_sub2_insn (rtx x, rtx y)
4503 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4505 if (! ((*insn_data[icode].operand[0].predicate)
4506 (x, insn_data[icode].operand[0].mode))
4507 || ! ((*insn_data[icode].operand[1].predicate)
4508 (x, insn_data[icode].operand[1].mode))
4509 || ! ((*insn_data[icode].operand[2].predicate)
4510 (y, insn_data[icode].operand[2].mode)))
4511 abort ();
4513 return (GEN_FCN (icode) (x, x, y));
4516 /* Generate and return an insn body to subtract r1 and c,
4517 storing the result in r0. */
4519 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4521 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4523 if (icode == CODE_FOR_nothing
4524 || ! ((*insn_data[icode].operand[0].predicate)
4525 (r0, insn_data[icode].operand[0].mode))
4526 || ! ((*insn_data[icode].operand[1].predicate)
4527 (r1, insn_data[icode].operand[1].mode))
4528 || ! ((*insn_data[icode].operand[2].predicate)
4529 (c, insn_data[icode].operand[2].mode)))
4530 return NULL_RTX;
4532 return (GEN_FCN (icode) (r0, r1, c));
4536 have_sub2_insn (rtx x, rtx y)
4538 int icode;
4540 if (GET_MODE (x) == VOIDmode)
4541 abort ();
4543 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4545 if (icode == CODE_FOR_nothing)
4546 return 0;
4548 if (! ((*insn_data[icode].operand[0].predicate)
4549 (x, insn_data[icode].operand[0].mode))
4550 || ! ((*insn_data[icode].operand[1].predicate)
4551 (x, insn_data[icode].operand[1].mode))
4552 || ! ((*insn_data[icode].operand[2].predicate)
4553 (y, insn_data[icode].operand[2].mode)))
4554 return 0;
4556 return 1;
4559 /* Generate the body of an instruction to copy Y into X.
4560 It may be a list of insns, if one insn isn't enough. */
4563 gen_move_insn (rtx x, rtx y)
4565 rtx seq;
4567 start_sequence ();
4568 emit_move_insn_1 (x, y);
4569 seq = get_insns ();
4570 end_sequence ();
4571 return seq;
4574 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4575 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4576 no such operation exists, CODE_FOR_nothing will be returned. */
4578 enum insn_code
4579 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4580 int unsignedp)
4582 convert_optab tab;
4583 #ifdef HAVE_ptr_extend
4584 if (unsignedp < 0)
4585 return CODE_FOR_ptr_extend;
4586 #endif
4588 tab = unsignedp ? zext_optab : sext_optab;
4589 return tab->handlers[to_mode][from_mode].insn_code;
4592 /* Generate the body of an insn to extend Y (with mode MFROM)
4593 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4596 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4597 enum machine_mode mfrom, int unsignedp)
4599 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4600 return GEN_FCN (icode) (x, y);
4603 /* can_fix_p and can_float_p say whether the target machine
4604 can directly convert a given fixed point type to
4605 a given floating point type, or vice versa.
4606 The returned value is the CODE_FOR_... value to use,
4607 or CODE_FOR_nothing if these modes cannot be directly converted.
4609 *TRUNCP_PTR is set to 1 if it is necessary to output
4610 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4612 static enum insn_code
4613 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4614 int unsignedp, int *truncp_ptr)
4616 convert_optab tab;
4617 enum insn_code icode;
4619 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4620 icode = tab->handlers[fixmode][fltmode].insn_code;
4621 if (icode != CODE_FOR_nothing)
4623 *truncp_ptr = 0;
4624 return icode;
4627 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4628 for this to work. We need to rework the fix* and ftrunc* patterns
4629 and documentation. */
4630 tab = unsignedp ? ufix_optab : sfix_optab;
4631 icode = tab->handlers[fixmode][fltmode].insn_code;
4632 if (icode != CODE_FOR_nothing
4633 && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
4635 *truncp_ptr = 1;
4636 return icode;
4639 *truncp_ptr = 0;
4640 return CODE_FOR_nothing;
4643 static enum insn_code
4644 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4645 int unsignedp)
4647 convert_optab tab;
4649 tab = unsignedp ? ufloat_optab : sfloat_optab;
4650 return tab->handlers[fltmode][fixmode].insn_code;
4653 /* Generate code to convert FROM to floating point
4654 and store in TO. FROM must be fixed point and not VOIDmode.
4655 UNSIGNEDP nonzero means regard FROM as unsigned.
4656 Normally this is done by correcting the final value
4657 if it is negative. */
4659 void
4660 expand_float (rtx to, rtx from, int unsignedp)
4662 enum insn_code icode;
4663 rtx target = to;
4664 enum machine_mode fmode, imode;
4666 /* Crash now, because we won't be able to decide which mode to use. */
4667 if (GET_MODE (from) == VOIDmode)
4668 abort ();
4670 /* Look for an insn to do the conversion. Do it in the specified
4671 modes if possible; otherwise convert either input, output or both to
4672 wider mode. If the integer mode is wider than the mode of FROM,
4673 we can do the conversion signed even if the input is unsigned. */
4675 for (fmode = GET_MODE (to); fmode != VOIDmode;
4676 fmode = GET_MODE_WIDER_MODE (fmode))
4677 for (imode = GET_MODE (from); imode != VOIDmode;
4678 imode = GET_MODE_WIDER_MODE (imode))
4680 int doing_unsigned = unsignedp;
4682 if (fmode != GET_MODE (to)
4683 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4684 continue;
4686 icode = can_float_p (fmode, imode, unsignedp);
4687 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4688 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4690 if (icode != CODE_FOR_nothing)
4692 if (imode != GET_MODE (from))
4693 from = convert_to_mode (imode, from, unsignedp);
4695 if (fmode != GET_MODE (to))
4696 target = gen_reg_rtx (fmode);
4698 emit_unop_insn (icode, target, from,
4699 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4701 if (target != to)
4702 convert_move (to, target, 0);
4703 return;
4707 /* Unsigned integer, and no way to convert directly.
4708 Convert as signed, then conditionally adjust the result. */
4709 if (unsignedp)
4711 rtx label = gen_label_rtx ();
4712 rtx temp;
4713 REAL_VALUE_TYPE offset;
4715 if (flag_force_mem)
4716 from = force_not_mem (from);
4718 /* Look for a usable floating mode FMODE wider than the source and at
4719 least as wide as the target. Using FMODE will avoid rounding woes
4720 with unsigned values greater than the signed maximum value. */
4722 for (fmode = GET_MODE (to); fmode != VOIDmode;
4723 fmode = GET_MODE_WIDER_MODE (fmode))
4724 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4725 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4726 break;
4728 if (fmode == VOIDmode)
4730 /* There is no such mode. Pretend the target is wide enough. */
4731 fmode = GET_MODE (to);
4733 /* Avoid double-rounding when TO is narrower than FROM. */
4734 if ((significand_size (fmode) + 1)
4735 < GET_MODE_BITSIZE (GET_MODE (from)))
4737 rtx temp1;
4738 rtx neglabel = gen_label_rtx ();
4740 /* Don't use TARGET if it isn't a register, is a hard register,
4741 or is the wrong mode. */
4742 if (!REG_P (target)
4743 || REGNO (target) < FIRST_PSEUDO_REGISTER
4744 || GET_MODE (target) != fmode)
4745 target = gen_reg_rtx (fmode);
4747 imode = GET_MODE (from);
4748 do_pending_stack_adjust ();
4750 /* Test whether the sign bit is set. */
4751 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4752 0, neglabel);
4754 /* The sign bit is not set. Convert as signed. */
4755 expand_float (target, from, 0);
4756 emit_jump_insn (gen_jump (label));
4757 emit_barrier ();
4759 /* The sign bit is set.
4760 Convert to a usable (positive signed) value by shifting right
4761 one bit, while remembering if a nonzero bit was shifted
4762 out; i.e., compute (from & 1) | (from >> 1). */
4764 emit_label (neglabel);
4765 temp = expand_binop (imode, and_optab, from, const1_rtx,
4766 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4767 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4768 NULL_RTX, 1);
4769 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4770 OPTAB_LIB_WIDEN);
4771 expand_float (target, temp, 0);
4773 /* Multiply by 2 to undo the shift above. */
4774 temp = expand_binop (fmode, add_optab, target, target,
4775 target, 0, OPTAB_LIB_WIDEN);
4776 if (temp != target)
4777 emit_move_insn (target, temp);
4779 do_pending_stack_adjust ();
4780 emit_label (label);
4781 goto done;
4785 /* If we are about to do some arithmetic to correct for an
4786 unsigned operand, do it in a pseudo-register. */
4788 if (GET_MODE (to) != fmode
4789 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4790 target = gen_reg_rtx (fmode);
4792 /* Convert as signed integer to floating. */
4793 expand_float (target, from, 0);
4795 /* If FROM is negative (and therefore TO is negative),
4796 correct its value by 2**bitwidth. */
4798 do_pending_stack_adjust ();
4799 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4800 0, label);
4803 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4804 temp = expand_binop (fmode, add_optab, target,
4805 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4806 target, 0, OPTAB_LIB_WIDEN);
4807 if (temp != target)
4808 emit_move_insn (target, temp);
4810 do_pending_stack_adjust ();
4811 emit_label (label);
4812 goto done;
4815 /* No hardware instruction available; call a library routine. */
4817 rtx libfunc;
4818 rtx insns;
4819 rtx value;
4820 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4822 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4823 from = convert_to_mode (SImode, from, unsignedp);
4825 if (flag_force_mem)
4826 from = force_not_mem (from);
4828 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4829 if (!libfunc)
4830 abort ();
4832 start_sequence ();
4834 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4835 GET_MODE (to), 1, from,
4836 GET_MODE (from));
4837 insns = get_insns ();
4838 end_sequence ();
4840 emit_libcall_block (insns, target, value,
4841 gen_rtx_FLOAT (GET_MODE (to), from));
4844 done:
4846 /* Copy result to requested destination
4847 if we have been computing in a temp location. */
4849 if (target != to)
4851 if (GET_MODE (target) == GET_MODE (to))
4852 emit_move_insn (to, target);
4853 else
4854 convert_move (to, target, 0);
4858 /* Generate code to convert FROM to fixed point and store in TO. FROM
4859 must be floating point. */
4861 void
4862 expand_fix (rtx to, rtx from, int unsignedp)
4864 enum insn_code icode;
4865 rtx target = to;
4866 enum machine_mode fmode, imode;
4867 int must_trunc = 0;
4869 /* We first try to find a pair of modes, one real and one integer, at
4870 least as wide as FROM and TO, respectively, in which we can open-code
4871 this conversion. If the integer mode is wider than the mode of TO,
4872 we can do the conversion either signed or unsigned. */
4874 for (fmode = GET_MODE (from); fmode != VOIDmode;
4875 fmode = GET_MODE_WIDER_MODE (fmode))
4876 for (imode = GET_MODE (to); imode != VOIDmode;
4877 imode = GET_MODE_WIDER_MODE (imode))
4879 int doing_unsigned = unsignedp;
4881 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4882 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4883 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4885 if (icode != CODE_FOR_nothing)
4887 if (fmode != GET_MODE (from))
4888 from = convert_to_mode (fmode, from, 0);
4890 if (must_trunc)
4892 rtx temp = gen_reg_rtx (GET_MODE (from));
4893 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4894 temp, 0);
4897 if (imode != GET_MODE (to))
4898 target = gen_reg_rtx (imode);
4900 emit_unop_insn (icode, target, from,
4901 doing_unsigned ? UNSIGNED_FIX : FIX);
4902 if (target != to)
4903 convert_move (to, target, unsignedp);
4904 return;
4908 /* For an unsigned conversion, there is one more way to do it.
4909 If we have a signed conversion, we generate code that compares
4910 the real value to the largest representable positive number. If if
4911 is smaller, the conversion is done normally. Otherwise, subtract
4912 one plus the highest signed number, convert, and add it back.
4914 We only need to check all real modes, since we know we didn't find
4915 anything with a wider integer mode.
4917 This code used to extend FP value into mode wider than the destination.
4918 This is not needed. Consider, for instance conversion from SFmode
4919 into DImode.
4921 The hot path trought the code is dealing with inputs smaller than 2^63
4922 and doing just the conversion, so there is no bits to lose.
4924 In the other path we know the value is positive in the range 2^63..2^64-1
4925 inclusive. (as for other imput overflow happens and result is undefined)
4926 So we know that the most important bit set in mantissa corresponds to
4927 2^63. The subtraction of 2^63 should not generate any rounding as it
4928 simply clears out that bit. The rest is trivial. */
4930 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4931 for (fmode = GET_MODE (from); fmode != VOIDmode;
4932 fmode = GET_MODE_WIDER_MODE (fmode))
4933 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4934 &must_trunc))
4936 int bitsize;
4937 REAL_VALUE_TYPE offset;
4938 rtx limit, lab1, lab2, insn;
4940 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4941 real_2expN (&offset, bitsize - 1);
4942 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4943 lab1 = gen_label_rtx ();
4944 lab2 = gen_label_rtx ();
4946 if (flag_force_mem)
4947 from = force_not_mem (from);
4949 if (fmode != GET_MODE (from))
4950 from = convert_to_mode (fmode, from, 0);
4952 /* See if we need to do the subtraction. */
4953 do_pending_stack_adjust ();
4954 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4955 0, lab1);
4957 /* If not, do the signed "fix" and branch around fixup code. */
4958 expand_fix (to, from, 0);
4959 emit_jump_insn (gen_jump (lab2));
4960 emit_barrier ();
4962 /* Otherwise, subtract 2**(N-1), convert to signed number,
4963 then add 2**(N-1). Do the addition using XOR since this
4964 will often generate better code. */
4965 emit_label (lab1);
4966 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4967 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4968 expand_fix (to, target, 0);
4969 target = expand_binop (GET_MODE (to), xor_optab, to,
4970 gen_int_mode
4971 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4972 GET_MODE (to)),
4973 to, 1, OPTAB_LIB_WIDEN);
4975 if (target != to)
4976 emit_move_insn (to, target);
4978 emit_label (lab2);
4980 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4981 != CODE_FOR_nothing)
4983 /* Make a place for a REG_NOTE and add it. */
4984 insn = emit_move_insn (to, to);
4985 set_unique_reg_note (insn,
4986 REG_EQUAL,
4987 gen_rtx_fmt_e (UNSIGNED_FIX,
4988 GET_MODE (to),
4989 copy_rtx (from)));
4992 return;
4995 /* We can't do it with an insn, so use a library call. But first ensure
4996 that the mode of TO is at least as wide as SImode, since those are the
4997 only library calls we know about. */
4999 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5001 target = gen_reg_rtx (SImode);
5003 expand_fix (target, from, unsignedp);
5005 else
5007 rtx insns;
5008 rtx value;
5009 rtx libfunc;
5011 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5012 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
5013 if (!libfunc)
5014 abort ();
5016 if (flag_force_mem)
5017 from = force_not_mem (from);
5019 start_sequence ();
5021 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5022 GET_MODE (to), 1, from,
5023 GET_MODE (from));
5024 insns = get_insns ();
5025 end_sequence ();
5027 emit_libcall_block (insns, target, value,
5028 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5029 GET_MODE (to), from));
5032 if (target != to)
5034 if (GET_MODE (to) == GET_MODE (target))
5035 emit_move_insn (to, target);
5036 else
5037 convert_move (to, target, 0);
5041 /* Report whether we have an instruction to perform the operation
5042 specified by CODE on operands of mode MODE. */
5044 have_insn_for (enum rtx_code code, enum machine_mode mode)
5046 return (code_to_optab[(int) code] != 0
5047 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5048 != CODE_FOR_nothing));
5051 /* Create a blank optab. */
5052 static optab
5053 new_optab (void)
5055 int i;
5056 optab op = ggc_alloc (sizeof (struct optab));
5057 for (i = 0; i < NUM_MACHINE_MODES; i++)
5059 op->handlers[i].insn_code = CODE_FOR_nothing;
5060 op->handlers[i].libfunc = 0;
5063 return op;
5066 static convert_optab
5067 new_convert_optab (void)
5069 int i, j;
5070 convert_optab op = ggc_alloc (sizeof (struct convert_optab));
5071 for (i = 0; i < NUM_MACHINE_MODES; i++)
5072 for (j = 0; j < NUM_MACHINE_MODES; j++)
5074 op->handlers[i][j].insn_code = CODE_FOR_nothing;
5075 op->handlers[i][j].libfunc = 0;
5077 return op;
5080 /* Same, but fill in its code as CODE, and write it into the
5081 code_to_optab table. */
5082 static inline optab
5083 init_optab (enum rtx_code code)
5085 optab op = new_optab ();
5086 op->code = code;
5087 code_to_optab[(int) code] = op;
5088 return op;
5091 /* Same, but fill in its code as CODE, and do _not_ write it into
5092 the code_to_optab table. */
5093 static inline optab
5094 init_optabv (enum rtx_code code)
5096 optab op = new_optab ();
5097 op->code = code;
5098 return op;
5101 /* Conversion optabs never go in the code_to_optab table. */
5102 static inline convert_optab
5103 init_convert_optab (enum rtx_code code)
5105 convert_optab op = new_convert_optab ();
5106 op->code = code;
5107 return op;
5110 /* Initialize the libfunc fields of an entire group of entries in some
5111 optab. Each entry is set equal to a string consisting of a leading
5112 pair of underscores followed by a generic operation name followed by
5113 a mode name (downshifted to lowercase) followed by a single character
5114 representing the number of operands for the given operation (which is
5115 usually one of the characters '2', '3', or '4').
5117 OPTABLE is the table in which libfunc fields are to be initialized.
5118 FIRST_MODE is the first machine mode index in the given optab to
5119 initialize.
5120 LAST_MODE is the last machine mode index in the given optab to
5121 initialize.
5122 OPNAME is the generic (string) name of the operation.
5123 SUFFIX is the character which specifies the number of operands for
5124 the given generic operation.
5127 static void
5128 init_libfuncs (optab optable, int first_mode, int last_mode,
5129 const char *opname, int suffix)
5131 int mode;
5132 unsigned opname_len = strlen (opname);
5134 for (mode = first_mode; (int) mode <= (int) last_mode;
5135 mode = (enum machine_mode) ((int) mode + 1))
5137 const char *mname = GET_MODE_NAME (mode);
5138 unsigned mname_len = strlen (mname);
5139 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5140 char *p;
5141 const char *q;
5143 p = libfunc_name;
5144 *p++ = '_';
5145 *p++ = '_';
5146 for (q = opname; *q; )
5147 *p++ = *q++;
5148 for (q = mname; *q; q++)
5149 *p++ = TOLOWER (*q);
5150 *p++ = suffix;
5151 *p = '\0';
5153 optable->handlers[(int) mode].libfunc
5154 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
5158 /* Initialize the libfunc fields of an entire group of entries in some
5159 optab which correspond to all integer mode operations. The parameters
5160 have the same meaning as similarly named ones for the `init_libfuncs'
5161 routine. (See above). */
5163 static void
5164 init_integral_libfuncs (optab optable, const char *opname, int suffix)
5166 int maxsize = 2*BITS_PER_WORD;
5167 if (maxsize < LONG_LONG_TYPE_SIZE)
5168 maxsize = LONG_LONG_TYPE_SIZE;
5169 init_libfuncs (optable, word_mode,
5170 mode_for_size (maxsize, MODE_INT, 0),
5171 opname, suffix);
5174 /* Initialize the libfunc fields of an entire group of entries in some
5175 optab which correspond to all real mode operations. The parameters
5176 have the same meaning as similarly named ones for the `init_libfuncs'
5177 routine. (See above). */
5179 static void
5180 init_floating_libfuncs (optab optable, const char *opname, int suffix)
5182 init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
5185 /* Initialize the libfunc fields of an entire group of entries of an
5186 inter-mode-class conversion optab. The string formation rules are
5187 similar to the ones for init_libfuncs, above, but instead of having
5188 a mode name and an operand count these functions have two mode names
5189 and no operand count. */
5190 static void
5191 init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
5192 enum mode_class from_class,
5193 enum mode_class to_class)
5195 enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
5196 enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
5197 size_t opname_len = strlen (opname);
5198 size_t max_mname_len = 0;
5200 enum machine_mode fmode, tmode;
5201 const char *fname, *tname;
5202 const char *q;
5203 char *libfunc_name, *suffix;
5204 char *p;
5206 for (fmode = first_from_mode;
5207 fmode != VOIDmode;
5208 fmode = GET_MODE_WIDER_MODE (fmode))
5209 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
5211 for (tmode = first_to_mode;
5212 tmode != VOIDmode;
5213 tmode = GET_MODE_WIDER_MODE (tmode))
5214 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
5216 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5217 libfunc_name[0] = '_';
5218 libfunc_name[1] = '_';
5219 memcpy (&libfunc_name[2], opname, opname_len);
5220 suffix = libfunc_name + opname_len + 2;
5222 for (fmode = first_from_mode; fmode != VOIDmode;
5223 fmode = GET_MODE_WIDER_MODE (fmode))
5224 for (tmode = first_to_mode; tmode != VOIDmode;
5225 tmode = GET_MODE_WIDER_MODE (tmode))
5227 fname = GET_MODE_NAME (fmode);
5228 tname = GET_MODE_NAME (tmode);
5230 p = suffix;
5231 for (q = fname; *q; p++, q++)
5232 *p = TOLOWER (*q);
5233 for (q = tname; *q; p++, q++)
5234 *p = TOLOWER (*q);
5236 *p = '\0';
5238 tab->handlers[tmode][fmode].libfunc
5239 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5240 p - libfunc_name));
5244 /* Initialize the libfunc fields of an entire group of entries of an
5245 intra-mode-class conversion optab. The string formation rules are
5246 similar to the ones for init_libfunc, above. WIDENING says whether
5247 the optab goes from narrow to wide modes or vice versa. These functions
5248 have two mode names _and_ an operand count. */
5249 static void
5250 init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
5251 enum mode_class class, bool widening)
5253 enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
5254 size_t opname_len = strlen (opname);
5255 size_t max_mname_len = 0;
5257 enum machine_mode nmode, wmode;
5258 const char *nname, *wname;
5259 const char *q;
5260 char *libfunc_name, *suffix;
5261 char *p;
5263 for (nmode = first_mode; nmode != VOIDmode;
5264 nmode = GET_MODE_WIDER_MODE (nmode))
5265 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
5267 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5268 libfunc_name[0] = '_';
5269 libfunc_name[1] = '_';
5270 memcpy (&libfunc_name[2], opname, opname_len);
5271 suffix = libfunc_name + opname_len + 2;
5273 for (nmode = first_mode; nmode != VOIDmode;
5274 nmode = GET_MODE_WIDER_MODE (nmode))
5275 for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
5276 wmode = GET_MODE_WIDER_MODE (wmode))
5278 nname = GET_MODE_NAME (nmode);
5279 wname = GET_MODE_NAME (wmode);
5281 p = suffix;
5282 for (q = widening ? nname : wname; *q; p++, q++)
5283 *p = TOLOWER (*q);
5284 for (q = widening ? wname : nname; *q; p++, q++)
5285 *p = TOLOWER (*q);
5287 *p++ = '2';
5288 *p = '\0';
5290 tab->handlers[widening ? wmode : nmode]
5291 [widening ? nmode : wmode].libfunc
5292 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5293 p - libfunc_name));
5299 init_one_libfunc (const char *name)
5301 rtx symbol;
5303 /* Create a FUNCTION_DECL that can be passed to
5304 targetm.encode_section_info. */
5305 /* ??? We don't have any type information except for this is
5306 a function. Pretend this is "int foo()". */
5307 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5308 build_function_type (integer_type_node, NULL_TREE));
5309 DECL_ARTIFICIAL (decl) = 1;
5310 DECL_EXTERNAL (decl) = 1;
5311 TREE_PUBLIC (decl) = 1;
5313 symbol = XEXP (DECL_RTL (decl), 0);
5315 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5316 are the flags assigned by targetm.encode_section_info. */
5317 SYMBOL_REF_DECL (symbol) = 0;
5319 return symbol;
5322 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5323 MODE to NAME, which should be either 0 or a string constant. */
5324 void
5325 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5327 if (name)
5328 optable->handlers[mode].libfunc = init_one_libfunc (name);
5329 else
5330 optable->handlers[mode].libfunc = 0;
5333 /* Call this to reset the function entry for one conversion optab
5334 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5335 either 0 or a string constant. */
5336 void
5337 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5338 enum machine_mode fmode, const char *name)
5340 if (name)
5341 optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
5342 else
5343 optable->handlers[tmode][fmode].libfunc = 0;
5346 /* Call this once to initialize the contents of the optabs
5347 appropriately for the current target machine. */
5349 void
5350 init_optabs (void)
5352 unsigned int i;
5354 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5356 for (i = 0; i < NUM_RTX_CODE; i++)
5357 setcc_gen_code[i] = CODE_FOR_nothing;
5359 #ifdef HAVE_conditional_move
5360 for (i = 0; i < NUM_MACHINE_MODES; i++)
5361 movcc_gen_code[i] = CODE_FOR_nothing;
5362 #endif
5364 add_optab = init_optab (PLUS);
5365 addv_optab = init_optabv (PLUS);
5366 sub_optab = init_optab (MINUS);
5367 subv_optab = init_optabv (MINUS);
5368 smul_optab = init_optab (MULT);
5369 smulv_optab = init_optabv (MULT);
5370 smul_highpart_optab = init_optab (UNKNOWN);
5371 umul_highpart_optab = init_optab (UNKNOWN);
5372 smul_widen_optab = init_optab (UNKNOWN);
5373 umul_widen_optab = init_optab (UNKNOWN);
5374 sdiv_optab = init_optab (DIV);
5375 sdivv_optab = init_optabv (DIV);
5376 sdivmod_optab = init_optab (UNKNOWN);
5377 udiv_optab = init_optab (UDIV);
5378 udivmod_optab = init_optab (UNKNOWN);
5379 smod_optab = init_optab (MOD);
5380 umod_optab = init_optab (UMOD);
5381 fmod_optab = init_optab (UNKNOWN);
5382 drem_optab = init_optab (UNKNOWN);
5383 ftrunc_optab = init_optab (UNKNOWN);
5384 and_optab = init_optab (AND);
5385 ior_optab = init_optab (IOR);
5386 xor_optab = init_optab (XOR);
5387 ashl_optab = init_optab (ASHIFT);
5388 ashr_optab = init_optab (ASHIFTRT);
5389 lshr_optab = init_optab (LSHIFTRT);
5390 rotl_optab = init_optab (ROTATE);
5391 rotr_optab = init_optab (ROTATERT);
5392 smin_optab = init_optab (SMIN);
5393 smax_optab = init_optab (SMAX);
5394 umin_optab = init_optab (UMIN);
5395 umax_optab = init_optab (UMAX);
5396 pow_optab = init_optab (UNKNOWN);
5397 atan2_optab = init_optab (UNKNOWN);
5399 /* These three have codes assigned exclusively for the sake of
5400 have_insn_for. */
5401 mov_optab = init_optab (SET);
5402 movstrict_optab = init_optab (STRICT_LOW_PART);
5403 cmp_optab = init_optab (COMPARE);
5405 ucmp_optab = init_optab (UNKNOWN);
5406 tst_optab = init_optab (UNKNOWN);
5408 eq_optab = init_optab (EQ);
5409 ne_optab = init_optab (NE);
5410 gt_optab = init_optab (GT);
5411 ge_optab = init_optab (GE);
5412 lt_optab = init_optab (LT);
5413 le_optab = init_optab (LE);
5414 unord_optab = init_optab (UNORDERED);
5416 neg_optab = init_optab (NEG);
5417 negv_optab = init_optabv (NEG);
5418 abs_optab = init_optab (ABS);
5419 absv_optab = init_optabv (ABS);
5420 addcc_optab = init_optab (UNKNOWN);
5421 one_cmpl_optab = init_optab (NOT);
5422 ffs_optab = init_optab (FFS);
5423 clz_optab = init_optab (CLZ);
5424 ctz_optab = init_optab (CTZ);
5425 popcount_optab = init_optab (POPCOUNT);
5426 parity_optab = init_optab (PARITY);
5427 sqrt_optab = init_optab (SQRT);
5428 floor_optab = init_optab (UNKNOWN);
5429 ceil_optab = init_optab (UNKNOWN);
5430 round_optab = init_optab (UNKNOWN);
5431 btrunc_optab = init_optab (UNKNOWN);
5432 nearbyint_optab = init_optab (UNKNOWN);
5433 sincos_optab = init_optab (UNKNOWN);
5434 sin_optab = init_optab (UNKNOWN);
5435 asin_optab = init_optab (UNKNOWN);
5436 cos_optab = init_optab (UNKNOWN);
5437 acos_optab = init_optab (UNKNOWN);
5438 exp_optab = init_optab (UNKNOWN);
5439 exp10_optab = init_optab (UNKNOWN);
5440 exp2_optab = init_optab (UNKNOWN);
5441 expm1_optab = init_optab (UNKNOWN);
5442 logb_optab = init_optab (UNKNOWN);
5443 ilogb_optab = init_optab (UNKNOWN);
5444 log_optab = init_optab (UNKNOWN);
5445 log10_optab = init_optab (UNKNOWN);
5446 log2_optab = init_optab (UNKNOWN);
5447 log1p_optab = init_optab (UNKNOWN);
5448 tan_optab = init_optab (UNKNOWN);
5449 atan_optab = init_optab (UNKNOWN);
5450 strlen_optab = init_optab (UNKNOWN);
5451 cbranch_optab = init_optab (UNKNOWN);
5452 cmov_optab = init_optab (UNKNOWN);
5453 cstore_optab = init_optab (UNKNOWN);
5454 push_optab = init_optab (UNKNOWN);
5456 vec_extract_optab = init_optab (UNKNOWN);
5457 vec_set_optab = init_optab (UNKNOWN);
5458 vec_init_optab = init_optab (UNKNOWN);
5459 /* Conversions. */
5460 sext_optab = init_convert_optab (SIGN_EXTEND);
5461 zext_optab = init_convert_optab (ZERO_EXTEND);
5462 trunc_optab = init_convert_optab (TRUNCATE);
5463 sfix_optab = init_convert_optab (FIX);
5464 ufix_optab = init_convert_optab (UNSIGNED_FIX);
5465 sfixtrunc_optab = init_convert_optab (UNKNOWN);
5466 ufixtrunc_optab = init_convert_optab (UNKNOWN);
5467 sfloat_optab = init_convert_optab (FLOAT);
5468 ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
5470 for (i = 0; i < NUM_MACHINE_MODES; i++)
5472 movmem_optab[i] = CODE_FOR_nothing;
5473 clrmem_optab[i] = CODE_FOR_nothing;
5474 cmpstr_optab[i] = CODE_FOR_nothing;
5475 cmpmem_optab[i] = CODE_FOR_nothing;
5477 #ifdef HAVE_SECONDARY_RELOADS
5478 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5479 #endif
5482 /* Fill in the optabs with the insns we support. */
5483 init_all_optabs ();
5485 /* Initialize the optabs with the names of the library functions. */
5486 init_integral_libfuncs (add_optab, "add", '3');
5487 init_floating_libfuncs (add_optab, "add", '3');
5488 init_integral_libfuncs (addv_optab, "addv", '3');
5489 init_floating_libfuncs (addv_optab, "add", '3');
5490 init_integral_libfuncs (sub_optab, "sub", '3');
5491 init_floating_libfuncs (sub_optab, "sub", '3');
5492 init_integral_libfuncs (subv_optab, "subv", '3');
5493 init_floating_libfuncs (subv_optab, "sub", '3');
5494 init_integral_libfuncs (smul_optab, "mul", '3');
5495 init_floating_libfuncs (smul_optab, "mul", '3');
5496 init_integral_libfuncs (smulv_optab, "mulv", '3');
5497 init_floating_libfuncs (smulv_optab, "mul", '3');
5498 init_integral_libfuncs (sdiv_optab, "div", '3');
5499 init_floating_libfuncs (sdiv_optab, "div", '3');
5500 init_integral_libfuncs (sdivv_optab, "divv", '3');
5501 init_integral_libfuncs (udiv_optab, "udiv", '3');
5502 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5503 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5504 init_integral_libfuncs (smod_optab, "mod", '3');
5505 init_integral_libfuncs (umod_optab, "umod", '3');
5506 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5507 init_integral_libfuncs (and_optab, "and", '3');
5508 init_integral_libfuncs (ior_optab, "ior", '3');
5509 init_integral_libfuncs (xor_optab, "xor", '3');
5510 init_integral_libfuncs (ashl_optab, "ashl", '3');
5511 init_integral_libfuncs (ashr_optab, "ashr", '3');
5512 init_integral_libfuncs (lshr_optab, "lshr", '3');
5513 init_integral_libfuncs (smin_optab, "min", '3');
5514 init_floating_libfuncs (smin_optab, "min", '3');
5515 init_integral_libfuncs (smax_optab, "max", '3');
5516 init_floating_libfuncs (smax_optab, "max", '3');
5517 init_integral_libfuncs (umin_optab, "umin", '3');
5518 init_integral_libfuncs (umax_optab, "umax", '3');
5519 init_integral_libfuncs (neg_optab, "neg", '2');
5520 init_floating_libfuncs (neg_optab, "neg", '2');
5521 init_integral_libfuncs (negv_optab, "negv", '2');
5522 init_floating_libfuncs (negv_optab, "neg", '2');
5523 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5524 init_integral_libfuncs (ffs_optab, "ffs", '2');
5525 init_integral_libfuncs (clz_optab, "clz", '2');
5526 init_integral_libfuncs (ctz_optab, "ctz", '2');
5527 init_integral_libfuncs (popcount_optab, "popcount", '2');
5528 init_integral_libfuncs (parity_optab, "parity", '2');
5530 /* Comparison libcalls for integers MUST come in pairs,
5531 signed/unsigned. */
5532 init_integral_libfuncs (cmp_optab, "cmp", '2');
5533 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5534 init_floating_libfuncs (cmp_optab, "cmp", '2');
5536 /* EQ etc are floating point only. */
5537 init_floating_libfuncs (eq_optab, "eq", '2');
5538 init_floating_libfuncs (ne_optab, "ne", '2');
5539 init_floating_libfuncs (gt_optab, "gt", '2');
5540 init_floating_libfuncs (ge_optab, "ge", '2');
5541 init_floating_libfuncs (lt_optab, "lt", '2');
5542 init_floating_libfuncs (le_optab, "le", '2');
5543 init_floating_libfuncs (unord_optab, "unord", '2');
5545 /* Conversions. */
5546 init_interclass_conv_libfuncs (sfloat_optab, "float",
5547 MODE_INT, MODE_FLOAT);
5548 init_interclass_conv_libfuncs (sfix_optab, "fix",
5549 MODE_FLOAT, MODE_INT);
5550 init_interclass_conv_libfuncs (ufix_optab, "fixuns",
5551 MODE_FLOAT, MODE_INT);
5553 /* sext_optab is also used for FLOAT_EXTEND. */
5554 init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
5555 init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
5557 /* Use cabs for double complex abs, since systems generally have cabs.
5558 Don't define any libcall for float complex, so that cabs will be used. */
5559 if (complex_double_type_node)
5560 abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
5561 = init_one_libfunc ("cabs");
5563 /* The ffs function operates on `int'. */
5564 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5565 = init_one_libfunc ("ffs");
5567 abort_libfunc = init_one_libfunc ("abort");
5568 memcpy_libfunc = init_one_libfunc ("memcpy");
5569 memmove_libfunc = init_one_libfunc ("memmove");
5570 memcmp_libfunc = init_one_libfunc ("memcmp");
5571 memset_libfunc = init_one_libfunc ("memset");
5572 setbits_libfunc = init_one_libfunc ("__setbits");
5574 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5575 ? "_Unwind_SjLj_Resume"
5576 : "_Unwind_Resume");
5577 #ifndef DONT_USE_BUILTIN_SETJMP
5578 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5579 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5580 #else
5581 setjmp_libfunc = init_one_libfunc ("setjmp");
5582 longjmp_libfunc = init_one_libfunc ("longjmp");
5583 #endif
5584 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5585 unwind_sjlj_unregister_libfunc
5586 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5588 /* For function entry/exit instrumentation. */
5589 profile_function_entry_libfunc
5590 = init_one_libfunc ("__cyg_profile_func_enter");
5591 profile_function_exit_libfunc
5592 = init_one_libfunc ("__cyg_profile_func_exit");
5594 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5596 if (HAVE_conditional_trap)
5597 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5599 /* Allow the target to add more libcalls or rename some, etc. */
5600 targetm.init_libfuncs ();
5603 #ifdef DEBUG
5605 /* Print information about the current contents of the optabs on
5606 STDERR. */
5608 static void
5609 debug_optab_libfuncs (void)
5611 int i;
5612 int j;
5613 int k;
5615 /* Dump the arithmetic optabs. */
5616 for (i = 0; i != (int) OTI_MAX; i++)
5617 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5619 optab o;
5620 struct optab_handlers *h;
5622 o = optab_table[i];
5623 h = &o->handlers[j];
5624 if (h->libfunc)
5626 if (GET_CODE (h->libfunc) != SYMBOL_REF)
5627 abort ();
5628 fprintf (stderr, "%s\t%s:\t%s\n",
5629 GET_RTX_NAME (o->code),
5630 GET_MODE_NAME (j),
5631 XSTR (h->libfunc, 0));
5635 /* Dump the conversion optabs. */
5636 for (i = 0; i < (int) CTI_MAX; ++i)
5637 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5638 for (k = 0; k < NUM_MACHINE_MODES; ++k)
5640 convert_optab o;
5641 struct optab_handlers *h;
5643 o = &convert_optab_table[i];
5644 h = &o->handlers[j][k];
5645 if (h->libfunc)
5647 if (GET_CODE (h->libfunc) != SYMBOL_REF)
5648 abort ();
5649 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
5650 GET_RTX_NAME (o->code),
5651 GET_MODE_NAME (j),
5652 GET_MODE_NAME (k),
5653 XSTR (h->libfunc, 0));
5658 #endif /* DEBUG */
5661 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5662 CODE. Return 0 on failure. */
5665 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5666 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
5668 enum machine_mode mode = GET_MODE (op1);
5669 enum insn_code icode;
5670 rtx insn;
5672 if (!HAVE_conditional_trap)
5673 return 0;
5675 if (mode == VOIDmode)
5676 return 0;
5678 icode = cmp_optab->handlers[(int) mode].insn_code;
5679 if (icode == CODE_FOR_nothing)
5680 return 0;
5682 start_sequence ();
5683 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
5684 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
5685 if (!op1 || !op2)
5687 end_sequence ();
5688 return 0;
5690 emit_insn (GEN_FCN (icode) (op1, op2));
5692 PUT_CODE (trap_rtx, code);
5693 insn = gen_conditional_trap (trap_rtx, tcode);
5694 if (insn)
5696 emit_insn (insn);
5697 insn = get_insns ();
5699 end_sequence ();
5701 return insn;
5704 #include "gt-optabs.h"