Add support for ARMv8-R architecture
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator_primary32.h
blob989b87a192345218dbd422e7d0d6b8ab44b4180f
1 //===-- sanitizer_allocator_primary32.h -------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the Sanitizer Allocator.
9 //
10 //===----------------------------------------------------------------------===//
11 #ifndef SANITIZER_ALLOCATOR_H
12 #error This file must be included inside sanitizer_allocator.h
13 #endif
15 template<class SizeClassAllocator> struct SizeClassAllocator32LocalCache;
17 // SizeClassAllocator32 -- allocator for 32-bit address space.
18 // This allocator can theoretically be used on 64-bit arch, but there it is less
19 // efficient than SizeClassAllocator64.
21 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
22 // be returned by MmapOrDie().
24 // Region:
25 // a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
26 // Since the regions are aligned by kRegionSize, there are exactly
27 // kNumPossibleRegions possible regions in the address space and so we keep
28 // a ByteMap possible_regions to store the size classes of each Region.
29 // 0 size class means the region is not used by the allocator.
31 // One Region is used to allocate chunks of a single size class.
32 // A Region looks like this:
33 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
35 // In order to avoid false sharing the objects of this class should be
36 // chache-line aligned.
37 template <const uptr kSpaceBeg, const u64 kSpaceSize,
38 const uptr kMetadataSize, class SizeClassMap,
39 const uptr kRegionSizeLog,
40 class ByteMap,
41 class MapUnmapCallback = NoOpMapUnmapCallback>
42 class SizeClassAllocator32 {
43 public:
44 struct TransferBatch {
45 static const uptr kMaxNumCached = SizeClassMap::kMaxNumCachedHint - 2;
46 void SetFromArray(uptr region_beg_unused, void *batch[], uptr count) {
47 count_ = count;
48 CHECK_LE(count_, kMaxNumCached);
49 for (uptr i = 0; i < count; i++)
50 batch_[i] = batch[i];
52 uptr Count() const { return count_; }
53 void Clear() { count_ = 0; }
54 void Add(void *ptr) {
55 batch_[count_++] = ptr;
56 CHECK_LE(count_, kMaxNumCached);
58 void CopyToArray(void *to_batch[]) {
59 for (uptr i = 0, n = Count(); i < n; i++)
60 to_batch[i] = batch_[i];
63 // How much memory do we need for a batch containing n elements.
64 static uptr AllocationSizeRequiredForNElements(uptr n) {
65 return sizeof(uptr) * 2 + sizeof(void *) * n;
67 static uptr MaxCached(uptr class_id) {
68 return Min(kMaxNumCached, SizeClassMap::MaxCachedHint(class_id));
71 TransferBatch *next;
73 private:
74 uptr count_;
75 void *batch_[kMaxNumCached];
78 static const uptr kBatchSize = sizeof(TransferBatch);
79 COMPILER_CHECK((kBatchSize & (kBatchSize - 1)) == 0);
80 COMPILER_CHECK(sizeof(TransferBatch) ==
81 SizeClassMap::kMaxNumCachedHint * sizeof(uptr));
83 static uptr ClassIdToSize(uptr class_id) {
84 return SizeClassMap::Size(class_id);
87 typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
88 SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
89 typedef SizeClassAllocator32LocalCache<ThisT> AllocatorCache;
91 void Init() {
92 possible_regions.TestOnlyInit();
93 internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
96 void *MapWithCallback(uptr size) {
97 size = RoundUpTo(size, GetPageSizeCached());
98 void *res = MmapOrDie(size, "SizeClassAllocator32");
99 MapUnmapCallback().OnMap((uptr)res, size);
100 return res;
103 void UnmapWithCallback(uptr beg, uptr size) {
104 MapUnmapCallback().OnUnmap(beg, size);
105 UnmapOrDie(reinterpret_cast<void *>(beg), size);
108 static bool CanAllocate(uptr size, uptr alignment) {
109 return size <= SizeClassMap::kMaxSize &&
110 alignment <= SizeClassMap::kMaxSize;
113 void *GetMetaData(const void *p) {
114 CHECK(PointerIsMine(p));
115 uptr mem = reinterpret_cast<uptr>(p);
116 uptr beg = ComputeRegionBeg(mem);
117 uptr size = ClassIdToSize(GetSizeClass(p));
118 u32 offset = mem - beg;
119 uptr n = offset / (u32)size; // 32-bit division
120 uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
121 return reinterpret_cast<void*>(meta);
124 NOINLINE TransferBatch *AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
125 uptr class_id) {
126 CHECK_LT(class_id, kNumClasses);
127 SizeClassInfo *sci = GetSizeClassInfo(class_id);
128 SpinMutexLock l(&sci->mutex);
129 if (sci->free_list.empty())
130 PopulateFreeList(stat, c, sci, class_id);
131 CHECK(!sci->free_list.empty());
132 TransferBatch *b = sci->free_list.front();
133 sci->free_list.pop_front();
134 return b;
137 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id,
138 TransferBatch *b) {
139 CHECK_LT(class_id, kNumClasses);
140 SizeClassInfo *sci = GetSizeClassInfo(class_id);
141 SpinMutexLock l(&sci->mutex);
142 CHECK_GT(b->Count(), 0);
143 sci->free_list.push_front(b);
146 uptr GetRegionBeginBySizeClass(uptr class_id) { return 0; }
148 bool PointerIsMine(const void *p) {
149 uptr mem = reinterpret_cast<uptr>(p);
150 if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
151 return false;
152 return GetSizeClass(p) != 0;
155 uptr GetSizeClass(const void *p) {
156 return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
159 void *GetBlockBegin(const void *p) {
160 CHECK(PointerIsMine(p));
161 uptr mem = reinterpret_cast<uptr>(p);
162 uptr beg = ComputeRegionBeg(mem);
163 uptr size = ClassIdToSize(GetSizeClass(p));
164 u32 offset = mem - beg;
165 u32 n = offset / (u32)size; // 32-bit division
166 uptr res = beg + (n * (u32)size);
167 return reinterpret_cast<void*>(res);
170 uptr GetActuallyAllocatedSize(void *p) {
171 CHECK(PointerIsMine(p));
172 return ClassIdToSize(GetSizeClass(p));
175 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
177 uptr TotalMemoryUsed() {
178 // No need to lock here.
179 uptr res = 0;
180 for (uptr i = 0; i < kNumPossibleRegions; i++)
181 if (possible_regions[i])
182 res += kRegionSize;
183 return res;
186 void TestOnlyUnmap() {
187 for (uptr i = 0; i < kNumPossibleRegions; i++)
188 if (possible_regions[i])
189 UnmapWithCallback((i * kRegionSize), kRegionSize);
192 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
193 // introspection API.
194 void ForceLock() {
195 for (uptr i = 0; i < kNumClasses; i++) {
196 GetSizeClassInfo(i)->mutex.Lock();
200 void ForceUnlock() {
201 for (int i = kNumClasses - 1; i >= 0; i--) {
202 GetSizeClassInfo(i)->mutex.Unlock();
206 // Iterate over all existing chunks.
207 // The allocator must be locked when calling this function.
208 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
209 for (uptr region = 0; region < kNumPossibleRegions; region++)
210 if (possible_regions[region]) {
211 uptr chunk_size = ClassIdToSize(possible_regions[region]);
212 uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
213 uptr region_beg = region * kRegionSize;
214 for (uptr chunk = region_beg;
215 chunk < region_beg + max_chunks_in_region * chunk_size;
216 chunk += chunk_size) {
217 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
218 callback(chunk, arg);
223 void PrintStats() {
226 static uptr AdditionalSize() {
227 return 0;
230 // This is empty here. Currently only implemented in 64-bit allocator.
231 void ReleaseToOS() { }
234 typedef SizeClassMap SizeClassMapT;
235 static const uptr kNumClasses = SizeClassMap::kNumClasses;
237 private:
238 static const uptr kRegionSize = 1 << kRegionSizeLog;
239 static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
241 struct SizeClassInfo {
242 SpinMutex mutex;
243 IntrusiveList<TransferBatch> free_list;
244 char padding[kCacheLineSize - sizeof(uptr) -
245 sizeof(IntrusiveList<TransferBatch>)];
247 COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
249 uptr ComputeRegionId(uptr mem) {
250 uptr res = mem >> kRegionSizeLog;
251 CHECK_LT(res, kNumPossibleRegions);
252 return res;
255 uptr ComputeRegionBeg(uptr mem) {
256 return mem & ~(kRegionSize - 1);
259 uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
260 CHECK_LT(class_id, kNumClasses);
261 uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
262 "SizeClassAllocator32"));
263 MapUnmapCallback().OnMap(res, kRegionSize);
264 stat->Add(AllocatorStatMapped, kRegionSize);
265 CHECK_EQ(0U, (res & (kRegionSize - 1)));
266 possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
267 return res;
270 SizeClassInfo *GetSizeClassInfo(uptr class_id) {
271 CHECK_LT(class_id, kNumClasses);
272 return &size_class_info_array[class_id];
275 void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
276 SizeClassInfo *sci, uptr class_id) {
277 uptr size = ClassIdToSize(class_id);
278 uptr reg = AllocateRegion(stat, class_id);
279 uptr n_chunks = kRegionSize / (size + kMetadataSize);
280 uptr max_count = TransferBatch::MaxCached(class_id);
281 TransferBatch *b = nullptr;
282 for (uptr i = reg; i < reg + n_chunks * size; i += size) {
283 if (!b) {
284 b = c->CreateBatch(class_id, this, (TransferBatch*)i);
285 b->Clear();
287 b->Add((void*)i);
288 if (b->Count() == max_count) {
289 CHECK_GT(b->Count(), 0);
290 sci->free_list.push_back(b);
291 b = nullptr;
294 if (b) {
295 CHECK_GT(b->Count(), 0);
296 sci->free_list.push_back(b);
300 ByteMap possible_regions;
301 SizeClassInfo size_class_info_array[kNumClasses];