Add support for ARMv8-R architecture
[official-gcc.git] / gcc / reorg.c
blobdbd74ab24045bbc8b51dc9b41226a9832f382270
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction reorganization pass.
24 This pass runs after register allocation and final jump
25 optimization. It should be the last pass to run before peephole.
26 It serves primarily to fill delay slots of insns, typically branch
27 and call insns. Other insns typically involve more complicated
28 interactions of data dependencies and resource constraints, and
29 are better handled by scheduling before register allocation (by the
30 function `schedule_insns').
32 The Branch Penalty is the number of extra cycles that are needed to
33 execute a branch insn. On an ideal machine, branches take a single
34 cycle, and the Branch Penalty is 0. Several RISC machines approach
35 branch delays differently:
37 The MIPS has a single branch delay slot. Most insns
38 (except other branches) can be used to fill this slot. When the
39 slot is filled, two insns execute in two cycles, reducing the
40 branch penalty to zero.
42 The SPARC always has a branch delay slot, but its effects can be
43 annulled when the branch is not taken. This means that failing to
44 find other sources of insns, we can hoist an insn from the branch
45 target that would only be safe to execute knowing that the branch
46 is taken.
48 The HP-PA always has a branch delay slot. For unconditional branches
49 its effects can be annulled when the branch is taken. The effects
50 of the delay slot in a conditional branch can be nullified for forward
51 taken branches, or for untaken backward branches. This means
52 we can hoist insns from the fall-through path for forward branches or
53 steal insns from the target of backward branches.
55 The TMS320C3x and C4x have three branch delay slots. When the three
56 slots are filled, the branch penalty is zero. Most insns can fill the
57 delay slots except jump insns.
59 Three techniques for filling delay slots have been implemented so far:
61 (1) `fill_simple_delay_slots' is the simplest, most efficient way
62 to fill delay slots. This pass first looks for insns which come
63 from before the branch and which are safe to execute after the
64 branch. Then it searches after the insn requiring delay slots or,
65 in the case of a branch, for insns that are after the point at
66 which the branch merges into the fallthrough code, if such a point
67 exists. When such insns are found, the branch penalty decreases
68 and no code expansion takes place.
70 (2) `fill_eager_delay_slots' is more complicated: it is used for
71 scheduling conditional jumps, or for scheduling jumps which cannot
72 be filled using (1). A machine need not have annulled jumps to use
73 this strategy, but it helps (by keeping more options open).
74 `fill_eager_delay_slots' tries to guess the direction the branch
75 will go; if it guesses right 100% of the time, it can reduce the
76 branch penalty as much as `fill_simple_delay_slots' does. If it
77 guesses wrong 100% of the time, it might as well schedule nops. When
78 `fill_eager_delay_slots' takes insns from the fall-through path of
79 the jump, usually there is no code expansion; when it takes insns
80 from the branch target, there is code expansion if it is not the
81 only way to reach that target.
83 (3) `relax_delay_slots' uses a set of rules to simplify code that
84 has been reorganized by (1) and (2). It finds cases where
85 conditional test can be eliminated, jumps can be threaded, extra
86 insns can be eliminated, etc. It is the job of (1) and (2) to do a
87 good job of scheduling locally; `relax_delay_slots' takes care of
88 making the various individual schedules work well together. It is
89 especially tuned to handle the control flow interactions of branch
90 insns. It does nothing for insns with delay slots that do not
91 branch.
93 On machines that use CC0, we are very conservative. We will not make
94 a copy of an insn involving CC0 since we want to maintain a 1-1
95 correspondence between the insn that sets and uses CC0. The insns are
96 allowed to be separated by placing an insn that sets CC0 (but not an insn
97 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
98 delay slot. In that case, we point each insn at the other with REG_CC_USER
99 and REG_CC_SETTER notes. Note that these restrictions affect very few
100 machines because most RISC machines with delay slots will not use CC0
101 (the RT is the only known exception at this point). */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "memmodel.h"
112 #include "tm_p.h"
113 #include "expmed.h"
114 #include "insn-config.h"
115 #include "emit-rtl.h"
116 #include "recog.h"
117 #include "insn-attr.h"
118 #include "resource.h"
119 #include "params.h"
120 #include "tree-pass.h"
123 /* First, some functions that were used before GCC got a control flow graph.
124 These functions are now only used here in reorg.c, and have therefore
125 been moved here to avoid inadvertent misuse elsewhere in the compiler. */
127 /* Return the last label to mark the same position as LABEL. Return LABEL
128 itself if it is null or any return rtx. */
130 static rtx
131 skip_consecutive_labels (rtx label_or_return)
133 rtx_insn *insn;
135 if (label_or_return && ANY_RETURN_P (label_or_return))
136 return label_or_return;
138 rtx_insn *label = as_a <rtx_insn *> (label_or_return);
140 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
141 if (LABEL_P (insn))
142 label = insn;
144 return label;
147 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
148 and REG_CC_USER notes so we can find it. */
150 static void
151 link_cc0_insns (rtx_insn *insn)
153 rtx user = next_nonnote_insn (insn);
155 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
156 user = XVECEXP (PATTERN (user), 0, 0);
158 add_reg_note (user, REG_CC_SETTER, insn);
159 add_reg_note (insn, REG_CC_USER, user);
162 /* Insns which have delay slots that have not yet been filled. */
164 static struct obstack unfilled_slots_obstack;
165 static rtx *unfilled_firstobj;
167 /* Define macros to refer to the first and last slot containing unfilled
168 insns. These are used because the list may move and its address
169 should be recomputed at each use. */
171 #define unfilled_slots_base \
172 ((rtx_insn **) obstack_base (&unfilled_slots_obstack))
174 #define unfilled_slots_next \
175 ((rtx_insn **) obstack_next_free (&unfilled_slots_obstack))
177 /* Points to the label before the end of the function, or before a
178 return insn. */
179 static rtx_code_label *function_return_label;
180 /* Likewise for a simple_return. */
181 static rtx_code_label *function_simple_return_label;
183 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
184 not always monotonically increase. */
185 static int *uid_to_ruid;
187 /* Highest valid index in `uid_to_ruid'. */
188 static int max_uid;
190 static int stop_search_p (rtx_insn *, int);
191 static int resource_conflicts_p (struct resources *, struct resources *);
192 static int insn_references_resource_p (rtx, struct resources *, bool);
193 static int insn_sets_resource_p (rtx, struct resources *, bool);
194 static rtx_code_label *find_end_label (rtx);
195 static rtx_insn *emit_delay_sequence (rtx_insn *, const vec<rtx_insn *> &,
196 int);
197 static void add_to_delay_list (rtx_insn *, vec<rtx_insn *> *);
198 static rtx_insn *delete_from_delay_slot (rtx_insn *);
199 static void delete_scheduled_jump (rtx_insn *);
200 static void note_delay_statistics (int, int);
201 static int get_jump_flags (const rtx_insn *, rtx);
202 static int mostly_true_jump (rtx);
203 static rtx get_branch_condition (const rtx_insn *, rtx);
204 static int condition_dominates_p (rtx, const rtx_insn *);
205 static int redirect_with_delay_slots_safe_p (rtx_insn *, rtx, rtx);
206 static int redirect_with_delay_list_safe_p (rtx_insn *, rtx,
207 const vec<rtx_insn *> &);
208 static int check_annul_list_true_false (int, const vec<rtx_insn *> &);
209 static void steal_delay_list_from_target (rtx_insn *, rtx, rtx_sequence *,
210 vec<rtx_insn *> *,
211 struct resources *,
212 struct resources *,
213 struct resources *,
214 int, int *, int *,
215 rtx *);
216 static void steal_delay_list_from_fallthrough (rtx_insn *, rtx, rtx_sequence *,
217 vec<rtx_insn *> *,
218 struct resources *,
219 struct resources *,
220 struct resources *,
221 int, int *, int *);
222 static void try_merge_delay_insns (rtx_insn *, rtx_insn *);
223 static rtx_insn *redundant_insn (rtx, rtx_insn *, const vec<rtx_insn *> &);
224 static int own_thread_p (rtx, rtx, int);
225 static void update_block (rtx_insn *, rtx_insn *);
226 static int reorg_redirect_jump (rtx_jump_insn *, rtx);
227 static void update_reg_dead_notes (rtx_insn *, rtx_insn *);
228 static void fix_reg_dead_note (rtx_insn *, rtx);
229 static void update_reg_unused_notes (rtx_insn *, rtx);
230 static void fill_simple_delay_slots (int);
231 static void fill_slots_from_thread (rtx_jump_insn *, rtx, rtx, rtx,
232 int, int, int, int,
233 int *, vec<rtx_insn *> *);
234 static void fill_eager_delay_slots (void);
235 static void relax_delay_slots (rtx_insn *);
236 static void make_return_insns (rtx_insn *);
238 /* A wrapper around next_active_insn which takes care to return ret_rtx
239 unchanged. */
241 static rtx
242 first_active_target_insn (rtx insn)
244 if (ANY_RETURN_P (insn))
245 return insn;
246 return next_active_insn (as_a <rtx_insn *> (insn));
249 /* Return true iff INSN is a simplejump, or any kind of return insn. */
251 static bool
252 simplejump_or_return_p (rtx insn)
254 return (JUMP_P (insn)
255 && (simplejump_p (as_a <rtx_insn *> (insn))
256 || ANY_RETURN_P (PATTERN (insn))));
259 /* Return TRUE if this insn should stop the search for insn to fill delay
260 slots. LABELS_P indicates that labels should terminate the search.
261 In all cases, jumps terminate the search. */
263 static int
264 stop_search_p (rtx_insn *insn, int labels_p)
266 if (insn == 0)
267 return 1;
269 /* If the insn can throw an exception that is caught within the function,
270 it may effectively perform a jump from the viewpoint of the function.
271 Therefore act like for a jump. */
272 if (can_throw_internal (insn))
273 return 1;
275 switch (GET_CODE (insn))
277 case NOTE:
278 case CALL_INSN:
279 return 0;
281 case CODE_LABEL:
282 return labels_p;
284 case JUMP_INSN:
285 case BARRIER:
286 return 1;
288 case INSN:
289 /* OK unless it contains a delay slot or is an `asm' insn of some type.
290 We don't know anything about these. */
291 return (GET_CODE (PATTERN (insn)) == SEQUENCE
292 || GET_CODE (PATTERN (insn)) == ASM_INPUT
293 || asm_noperands (PATTERN (insn)) >= 0);
295 default:
296 gcc_unreachable ();
300 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
301 resource set contains a volatile memory reference. Otherwise, return FALSE. */
303 static int
304 resource_conflicts_p (struct resources *res1, struct resources *res2)
306 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
307 || res1->volatil || res2->volatil)
308 return 1;
310 return hard_reg_set_intersect_p (res1->regs, res2->regs);
313 /* Return TRUE if any resource marked in RES, a `struct resources', is
314 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
315 routine is using those resources.
317 We compute this by computing all the resources referenced by INSN and
318 seeing if this conflicts with RES. It might be faster to directly check
319 ourselves, and this is the way it used to work, but it means duplicating
320 a large block of complex code. */
322 static int
323 insn_references_resource_p (rtx insn, struct resources *res,
324 bool include_delayed_effects)
326 struct resources insn_res;
328 CLEAR_RESOURCE (&insn_res);
329 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
330 return resource_conflicts_p (&insn_res, res);
333 /* Return TRUE if INSN modifies resources that are marked in RES.
334 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
335 included. CC0 is only modified if it is explicitly set; see comments
336 in front of mark_set_resources for details. */
338 static int
339 insn_sets_resource_p (rtx insn, struct resources *res,
340 bool include_delayed_effects)
342 struct resources insn_sets;
344 CLEAR_RESOURCE (&insn_sets);
345 mark_set_resources (insn, &insn_sets, 0,
346 (include_delayed_effects
347 ? MARK_SRC_DEST_CALL
348 : MARK_SRC_DEST));
349 return resource_conflicts_p (&insn_sets, res);
352 /* Find a label at the end of the function or before a RETURN. If there
353 is none, try to make one. If that fails, returns 0.
355 The property of such a label is that it is placed just before the
356 epilogue or a bare RETURN insn, so that another bare RETURN can be
357 turned into a jump to the label unconditionally. In particular, the
358 label cannot be placed before a RETURN insn with a filled delay slot.
360 ??? There may be a problem with the current implementation. Suppose
361 we start with a bare RETURN insn and call find_end_label. It may set
362 function_return_label just before the RETURN. Suppose the machinery
363 is able to fill the delay slot of the RETURN insn afterwards. Then
364 function_return_label is no longer valid according to the property
365 described above and find_end_label will still return it unmodified.
366 Note that this is probably mitigated by the following observation:
367 once function_return_label is made, it is very likely the target of
368 a jump, so filling the delay slot of the RETURN will be much more
369 difficult.
370 KIND is either simple_return_rtx or ret_rtx, indicating which type of
371 return we're looking for. */
373 static rtx_code_label *
374 find_end_label (rtx kind)
376 rtx_insn *insn;
377 rtx_code_label **plabel;
379 if (kind == ret_rtx)
380 plabel = &function_return_label;
381 else
383 gcc_assert (kind == simple_return_rtx);
384 plabel = &function_simple_return_label;
387 /* If we found one previously, return it. */
388 if (*plabel)
389 return *plabel;
391 /* Otherwise, see if there is a label at the end of the function. If there
392 is, it must be that RETURN insns aren't needed, so that is our return
393 label and we don't have to do anything else. */
395 insn = get_last_insn ();
396 while (NOTE_P (insn)
397 || (NONJUMP_INSN_P (insn)
398 && (GET_CODE (PATTERN (insn)) == USE
399 || GET_CODE (PATTERN (insn)) == CLOBBER)))
400 insn = PREV_INSN (insn);
402 /* When a target threads its epilogue we might already have a
403 suitable return insn. If so put a label before it for the
404 function_return_label. */
405 if (BARRIER_P (insn)
406 && JUMP_P (PREV_INSN (insn))
407 && PATTERN (PREV_INSN (insn)) == kind)
409 rtx_insn *temp = PREV_INSN (PREV_INSN (insn));
410 rtx_code_label *label = gen_label_rtx ();
411 LABEL_NUSES (label) = 0;
413 /* Put the label before any USE insns that may precede the RETURN
414 insn. */
415 while (GET_CODE (temp) == USE)
416 temp = PREV_INSN (temp);
418 emit_label_after (label, temp);
419 *plabel = label;
422 else if (LABEL_P (insn))
423 *plabel = as_a <rtx_code_label *> (insn);
424 else
426 rtx_code_label *label = gen_label_rtx ();
427 LABEL_NUSES (label) = 0;
428 /* If the basic block reorder pass moves the return insn to
429 some other place try to locate it again and put our
430 function_return_label there. */
431 while (insn && ! (JUMP_P (insn) && (PATTERN (insn) == kind)))
432 insn = PREV_INSN (insn);
433 if (insn)
435 insn = PREV_INSN (insn);
437 /* Put the label before any USE insns that may precede the
438 RETURN insn. */
439 while (GET_CODE (insn) == USE)
440 insn = PREV_INSN (insn);
442 emit_label_after (label, insn);
444 else
446 if (targetm.have_epilogue () && ! targetm.have_return ())
447 /* The RETURN insn has its delay slot filled so we cannot
448 emit the label just before it. Since we already have
449 an epilogue and cannot emit a new RETURN, we cannot
450 emit the label at all. */
451 return NULL;
453 /* Otherwise, make a new label and emit a RETURN and BARRIER,
454 if needed. */
455 emit_label (label);
456 if (targetm.have_return ())
458 /* The return we make may have delay slots too. */
459 rtx_insn *pat = targetm.gen_return ();
460 rtx_insn *insn = emit_jump_insn (pat);
461 set_return_jump_label (insn);
462 emit_barrier ();
463 if (num_delay_slots (insn) > 0)
464 obstack_ptr_grow (&unfilled_slots_obstack, insn);
467 *plabel = label;
470 /* Show one additional use for this label so it won't go away until
471 we are done. */
472 ++LABEL_NUSES (*plabel);
474 return *plabel;
477 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
478 the pattern of INSN with the SEQUENCE.
480 Returns the insn containing the SEQUENCE that replaces INSN. */
482 static rtx_insn *
483 emit_delay_sequence (rtx_insn *insn, const vec<rtx_insn *> &list, int length)
485 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
486 rtvec seqv = rtvec_alloc (length + 1);
487 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
488 rtx_insn *seq_insn = make_insn_raw (seq);
490 /* If DELAY_INSN has a location, use it for SEQ_INSN. If DELAY_INSN does
491 not have a location, but one of the delayed insns does, we pick up a
492 location from there later. */
493 INSN_LOCATION (seq_insn) = INSN_LOCATION (insn);
495 /* Unlink INSN from the insn chain, so that we can put it into
496 the SEQUENCE. Remember where we want to emit SEQUENCE in AFTER. */
497 rtx_insn *after = PREV_INSN (insn);
498 remove_insn (insn);
499 SET_NEXT_INSN (insn) = SET_PREV_INSN (insn) = NULL;
501 /* Build our SEQUENCE and rebuild the insn chain. */
502 start_sequence ();
503 XVECEXP (seq, 0, 0) = emit_insn (insn);
505 unsigned int delay_insns = list.length ();
506 gcc_assert (delay_insns == (unsigned int) length);
507 for (unsigned int i = 0; i < delay_insns; i++)
509 rtx_insn *tem = list[i];
510 rtx note, next;
512 /* Show that this copy of the insn isn't deleted. */
513 tem->set_undeleted ();
515 /* Unlink insn from its original place, and re-emit it into
516 the sequence. */
517 SET_NEXT_INSN (tem) = SET_PREV_INSN (tem) = NULL;
518 XVECEXP (seq, 0, i + 1) = emit_insn (tem);
520 /* SPARC assembler, for instance, emit warning when debug info is output
521 into the delay slot. */
522 if (INSN_LOCATION (tem) && !INSN_LOCATION (seq_insn))
523 INSN_LOCATION (seq_insn) = INSN_LOCATION (tem);
524 INSN_LOCATION (tem) = 0;
526 for (note = REG_NOTES (tem); note; note = next)
528 next = XEXP (note, 1);
529 switch (REG_NOTE_KIND (note))
531 case REG_DEAD:
532 /* Remove any REG_DEAD notes because we can't rely on them now
533 that the insn has been moved. */
534 remove_note (tem, note);
535 break;
537 case REG_LABEL_OPERAND:
538 case REG_LABEL_TARGET:
539 /* Keep the label reference count up to date. */
540 if (LABEL_P (XEXP (note, 0)))
541 LABEL_NUSES (XEXP (note, 0)) ++;
542 break;
544 default:
545 break;
549 end_sequence ();
551 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
552 add_insn_after (seq_insn, after, NULL);
554 return seq_insn;
557 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
558 be in the order in which the insns are to be executed. */
560 static void
561 add_to_delay_list (rtx_insn *insn, vec<rtx_insn *> *delay_list)
563 /* If INSN has its block number recorded, clear it since we may
564 be moving the insn to a new block. */
565 clear_hashed_info_for_insn (insn);
566 delay_list->safe_push (insn);
569 /* Delete INSN from the delay slot of the insn that it is in, which may
570 produce an insn with no delay slots. Return the new insn. */
572 static rtx_insn *
573 delete_from_delay_slot (rtx_insn *insn)
575 rtx_insn *trial, *seq_insn, *prev;
576 rtx_sequence *seq;
577 int i;
578 int had_barrier = 0;
580 /* We first must find the insn containing the SEQUENCE with INSN in its
581 delay slot. Do this by finding an insn, TRIAL, where
582 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
584 for (trial = insn;
585 PREV_INSN (NEXT_INSN (trial)) == trial;
586 trial = NEXT_INSN (trial))
589 seq_insn = PREV_INSN (NEXT_INSN (trial));
590 seq = as_a <rtx_sequence *> (PATTERN (seq_insn));
592 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
593 had_barrier = 1;
595 /* Create a delay list consisting of all the insns other than the one
596 we are deleting (unless we were the only one). */
597 auto_vec<rtx_insn *, 5> delay_list;
598 if (seq->len () > 2)
599 for (i = 1; i < seq->len (); i++)
600 if (seq->insn (i) != insn)
601 add_to_delay_list (seq->insn (i), &delay_list);
603 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
604 list, and rebuild the delay list if non-empty. */
605 prev = PREV_INSN (seq_insn);
606 trial = seq->insn (0);
607 delete_related_insns (seq_insn);
608 add_insn_after (trial, prev, NULL);
610 /* If there was a barrier after the old SEQUENCE, remit it. */
611 if (had_barrier)
612 emit_barrier_after (trial);
614 /* If there are any delay insns, remit them. Otherwise clear the
615 annul flag. */
616 if (!delay_list.is_empty ())
617 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
618 else if (JUMP_P (trial))
619 INSN_ANNULLED_BRANCH_P (trial) = 0;
621 INSN_FROM_TARGET_P (insn) = 0;
623 /* Show we need to fill this insn again. */
624 obstack_ptr_grow (&unfilled_slots_obstack, trial);
626 return trial;
629 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
630 the insn that sets CC0 for it and delete it too. */
632 static void
633 delete_scheduled_jump (rtx_insn *insn)
635 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
636 delete the insn that sets the condition code, but it is hard to find it.
637 Since this case is rare anyway, don't bother trying; there would likely
638 be other insns that became dead anyway, which we wouldn't know to
639 delete. */
641 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, insn))
643 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
645 /* If a reg-note was found, it points to an insn to set CC0. This
646 insn is in the delay list of some other insn. So delete it from
647 the delay list it was in. */
648 if (note)
650 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
651 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
652 delete_from_delay_slot (as_a <rtx_insn *> (XEXP (note, 0)));
654 else
656 /* The insn setting CC0 is our previous insn, but it may be in
657 a delay slot. It will be the last insn in the delay slot, if
658 it is. */
659 rtx_insn *trial = previous_insn (insn);
660 if (NOTE_P (trial))
661 trial = prev_nonnote_insn (trial);
662 if (sets_cc0_p (PATTERN (trial)) != 1
663 || FIND_REG_INC_NOTE (trial, NULL_RTX))
664 return;
665 if (PREV_INSN (NEXT_INSN (trial)) == trial)
666 delete_related_insns (trial);
667 else
668 delete_from_delay_slot (trial);
672 delete_related_insns (insn);
675 /* Counters for delay-slot filling. */
677 #define NUM_REORG_FUNCTIONS 2
678 #define MAX_DELAY_HISTOGRAM 3
679 #define MAX_REORG_PASSES 2
681 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
683 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
685 static int reorg_pass_number;
687 static void
688 note_delay_statistics (int slots_filled, int index)
690 num_insns_needing_delays[index][reorg_pass_number]++;
691 if (slots_filled > MAX_DELAY_HISTOGRAM)
692 slots_filled = MAX_DELAY_HISTOGRAM;
693 num_filled_delays[index][slots_filled][reorg_pass_number]++;
696 /* Optimize the following cases:
698 1. When a conditional branch skips over only one instruction,
699 use an annulling branch and put that insn in the delay slot.
700 Use either a branch that annuls when the condition if true or
701 invert the test with a branch that annuls when the condition is
702 false. This saves insns, since otherwise we must copy an insn
703 from the L1 target.
705 (orig) (skip) (otherwise)
706 Bcc.n L1 Bcc',a L1 Bcc,a L1'
707 insn insn insn2
708 L1: L1: L1:
709 insn2 insn2 insn2
710 insn3 insn3 L1':
711 insn3
713 2. When a conditional branch skips over only one instruction,
714 and after that, it unconditionally branches somewhere else,
715 perform the similar optimization. This saves executing the
716 second branch in the case where the inverted condition is true.
718 Bcc.n L1 Bcc',a L2
719 insn insn
720 L1: L1:
721 Bra L2 Bra L2
723 INSN is a JUMP_INSN.
725 This should be expanded to skip over N insns, where N is the number
726 of delay slots required. */
728 static void
729 optimize_skip (rtx_jump_insn *insn, vec<rtx_insn *> *delay_list)
731 rtx_insn *trial = next_nonnote_insn (insn);
732 rtx_insn *next_trial = next_active_insn (trial);
733 int flags;
735 flags = get_jump_flags (insn, JUMP_LABEL (insn));
737 if (trial == 0
738 || !NONJUMP_INSN_P (trial)
739 || GET_CODE (PATTERN (trial)) == SEQUENCE
740 || recog_memoized (trial) < 0
741 || (! eligible_for_annul_false (insn, 0, trial, flags)
742 && ! eligible_for_annul_true (insn, 0, trial, flags))
743 || RTX_FRAME_RELATED_P (trial)
744 || can_throw_internal (trial))
745 return;
747 /* There are two cases where we are just executing one insn (we assume
748 here that a branch requires only one insn; this should be generalized
749 at some point): Where the branch goes around a single insn or where
750 we have one insn followed by a branch to the same label we branch to.
751 In both of these cases, inverting the jump and annulling the delay
752 slot give the same effect in fewer insns. */
753 if (next_trial == next_active_insn (JUMP_LABEL_AS_INSN (insn))
754 || (next_trial != 0
755 && simplejump_or_return_p (next_trial)
756 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)))
758 if (eligible_for_annul_false (insn, 0, trial, flags))
760 if (invert_jump (insn, JUMP_LABEL (insn), 1))
761 INSN_FROM_TARGET_P (trial) = 1;
762 else if (! eligible_for_annul_true (insn, 0, trial, flags))
763 return;
766 add_to_delay_list (trial, delay_list);
767 next_trial = next_active_insn (trial);
768 update_block (trial, trial);
769 delete_related_insns (trial);
771 /* Also, if we are targeting an unconditional
772 branch, thread our jump to the target of that branch. Don't
773 change this into a RETURN here, because it may not accept what
774 we have in the delay slot. We'll fix this up later. */
775 if (next_trial && simplejump_or_return_p (next_trial))
777 rtx target_label = JUMP_LABEL (next_trial);
778 if (ANY_RETURN_P (target_label))
779 target_label = find_end_label (target_label);
781 if (target_label)
783 /* Recompute the flags based on TARGET_LABEL since threading
784 the jump to TARGET_LABEL may change the direction of the
785 jump (which may change the circumstances in which the
786 delay slot is nullified). */
787 flags = get_jump_flags (insn, target_label);
788 if (eligible_for_annul_true (insn, 0, trial, flags))
789 reorg_redirect_jump (insn, target_label);
793 INSN_ANNULLED_BRANCH_P (insn) = 1;
797 /* Encode and return branch direction and prediction information for
798 INSN assuming it will jump to LABEL.
800 Non conditional branches return no direction information and
801 are predicted as very likely taken. */
803 static int
804 get_jump_flags (const rtx_insn *insn, rtx label)
806 int flags;
808 /* get_jump_flags can be passed any insn with delay slots, these may
809 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
810 direction information, and only if they are conditional jumps.
812 If LABEL is a return, then there is no way to determine the branch
813 direction. */
814 if (JUMP_P (insn)
815 && (condjump_p (insn) || condjump_in_parallel_p (insn))
816 && !ANY_RETURN_P (label)
817 && INSN_UID (insn) <= max_uid
818 && INSN_UID (label) <= max_uid)
819 flags
820 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
821 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
822 /* No valid direction information. */
823 else
824 flags = 0;
826 return flags;
829 /* Return truth value of the statement that this branch
830 is mostly taken. If we think that the branch is extremely likely
831 to be taken, we return 2. If the branch is slightly more likely to be
832 taken, return 1. If the branch is slightly less likely to be taken,
833 return 0 and if the branch is highly unlikely to be taken, return -1. */
835 static int
836 mostly_true_jump (rtx jump_insn)
838 /* If branch probabilities are available, then use that number since it
839 always gives a correct answer. */
840 rtx note = find_reg_note (jump_insn, REG_BR_PROB, 0);
841 if (note)
843 int prob = XINT (note, 0);
845 if (prob >= REG_BR_PROB_BASE * 9 / 10)
846 return 2;
847 else if (prob >= REG_BR_PROB_BASE / 2)
848 return 1;
849 else if (prob >= REG_BR_PROB_BASE / 10)
850 return 0;
851 else
852 return -1;
855 /* If there is no note, assume branches are not taken.
856 This should be rare. */
857 return 0;
860 /* Return the condition under which INSN will branch to TARGET. If TARGET
861 is zero, return the condition under which INSN will return. If INSN is
862 an unconditional branch, return const_true_rtx. If INSN isn't a simple
863 type of jump, or it doesn't go to TARGET, return 0. */
865 static rtx
866 get_branch_condition (const rtx_insn *insn, rtx target)
868 rtx pat = PATTERN (insn);
869 rtx src;
871 if (condjump_in_parallel_p (insn))
872 pat = XVECEXP (pat, 0, 0);
874 if (ANY_RETURN_P (pat) && pat == target)
875 return const_true_rtx;
877 if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
878 return 0;
880 src = SET_SRC (pat);
881 if (GET_CODE (src) == LABEL_REF && label_ref_label (src) == target)
882 return const_true_rtx;
884 else if (GET_CODE (src) == IF_THEN_ELSE
885 && XEXP (src, 2) == pc_rtx
886 && ((GET_CODE (XEXP (src, 1)) == LABEL_REF
887 && label_ref_label (XEXP (src, 1)) == target)
888 || (ANY_RETURN_P (XEXP (src, 1)) && XEXP (src, 1) == target)))
889 return XEXP (src, 0);
891 else if (GET_CODE (src) == IF_THEN_ELSE
892 && XEXP (src, 1) == pc_rtx
893 && ((GET_CODE (XEXP (src, 2)) == LABEL_REF
894 && label_ref_label (XEXP (src, 2)) == target)
895 || (ANY_RETURN_P (XEXP (src, 2)) && XEXP (src, 2) == target)))
897 enum rtx_code rev;
898 rev = reversed_comparison_code (XEXP (src, 0), insn);
899 if (rev != UNKNOWN)
900 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
901 XEXP (XEXP (src, 0), 0),
902 XEXP (XEXP (src, 0), 1));
905 return 0;
908 /* Return nonzero if CONDITION is more strict than the condition of
909 INSN, i.e., if INSN will always branch if CONDITION is true. */
911 static int
912 condition_dominates_p (rtx condition, const rtx_insn *insn)
914 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
915 enum rtx_code code = GET_CODE (condition);
916 enum rtx_code other_code;
918 if (rtx_equal_p (condition, other_condition)
919 || other_condition == const_true_rtx)
920 return 1;
922 else if (condition == const_true_rtx || other_condition == 0)
923 return 0;
925 other_code = GET_CODE (other_condition);
926 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
927 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
928 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
929 return 0;
931 return comparison_dominates_p (code, other_code);
934 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
935 any insns already in the delay slot of JUMP. */
937 static int
938 redirect_with_delay_slots_safe_p (rtx_insn *jump, rtx newlabel, rtx seq)
940 int flags, i;
941 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (seq));
943 /* Make sure all the delay slots of this jump would still
944 be valid after threading the jump. If they are still
945 valid, then return nonzero. */
947 flags = get_jump_flags (jump, newlabel);
948 for (i = 1; i < pat->len (); i++)
949 if (! (
950 #if ANNUL_IFFALSE_SLOTS
951 (INSN_ANNULLED_BRANCH_P (jump)
952 && INSN_FROM_TARGET_P (pat->insn (i)))
953 ? eligible_for_annul_false (jump, i - 1, pat->insn (i), flags) :
954 #endif
955 #if ANNUL_IFTRUE_SLOTS
956 (INSN_ANNULLED_BRANCH_P (jump)
957 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
958 ? eligible_for_annul_true (jump, i - 1, pat->insn (i), flags) :
959 #endif
960 eligible_for_delay (jump, i - 1, pat->insn (i), flags)))
961 break;
963 return (i == pat->len ());
966 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
967 any insns we wish to place in the delay slot of JUMP. */
969 static int
970 redirect_with_delay_list_safe_p (rtx_insn *jump, rtx newlabel,
971 const vec<rtx_insn *> &delay_list)
973 /* Make sure all the insns in DELAY_LIST would still be
974 valid after threading the jump. If they are still
975 valid, then return nonzero. */
977 int flags = get_jump_flags (jump, newlabel);
978 unsigned int delay_insns = delay_list.length ();
979 unsigned int i = 0;
980 for (; i < delay_insns; i++)
981 if (! (
982 #if ANNUL_IFFALSE_SLOTS
983 (INSN_ANNULLED_BRANCH_P (jump)
984 && INSN_FROM_TARGET_P (delay_list[i]))
985 ? eligible_for_annul_false (jump, i, delay_list[i], flags) :
986 #endif
987 #if ANNUL_IFTRUE_SLOTS
988 (INSN_ANNULLED_BRANCH_P (jump)
989 && ! INSN_FROM_TARGET_P (delay_list[i]))
990 ? eligible_for_annul_true (jump, i, delay_list[i], flags) :
991 #endif
992 eligible_for_delay (jump, i, delay_list[i], flags)))
993 break;
995 return i == delay_insns;
998 /* DELAY_LIST is a list of insns that have already been placed into delay
999 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1000 If not, return 0; otherwise return 1. */
1002 static int
1003 check_annul_list_true_false (int annul_true_p,
1004 const vec<rtx_insn *> &delay_list)
1006 rtx_insn *trial;
1007 unsigned int i;
1008 FOR_EACH_VEC_ELT (delay_list, i, trial)
1009 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1010 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1011 return 0;
1013 return 1;
1016 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1017 the condition tested by INSN is CONDITION and the resources shown in
1018 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1019 from SEQ's delay list, in addition to whatever insns it may execute
1020 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1021 needed while searching for delay slot insns. Return the concatenated
1022 delay list if possible, otherwise, return 0.
1024 SLOTS_TO_FILL is the total number of slots required by INSN, and
1025 PSLOTS_FILLED points to the number filled so far (also the number of
1026 insns in DELAY_LIST). It is updated with the number that have been
1027 filled from the SEQUENCE, if any.
1029 PANNUL_P points to a nonzero value if we already know that we need
1030 to annul INSN. If this routine determines that annulling is needed,
1031 it may set that value nonzero.
1033 PNEW_THREAD points to a location that is to receive the place at which
1034 execution should continue. */
1036 static void
1037 steal_delay_list_from_target (rtx_insn *insn, rtx condition, rtx_sequence *seq,
1038 vec<rtx_insn *> *delay_list, resources *sets,
1039 struct resources *needed,
1040 struct resources *other_needed,
1041 int slots_to_fill, int *pslots_filled,
1042 int *pannul_p, rtx *pnew_thread)
1044 int slots_remaining = slots_to_fill - *pslots_filled;
1045 int total_slots_filled = *pslots_filled;
1046 auto_vec<rtx_insn *, 5> new_delay_list;
1047 int must_annul = *pannul_p;
1048 int used_annul = 0;
1049 int i;
1050 struct resources cc_set;
1051 bool *redundant;
1053 /* We can't do anything if there are more delay slots in SEQ than we
1054 can handle, or if we don't know that it will be a taken branch.
1055 We know that it will be a taken branch if it is either an unconditional
1056 branch or a conditional branch with a stricter branch condition.
1058 Also, exit if the branch has more than one set, since then it is computing
1059 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1060 ??? It may be possible to move other sets into INSN in addition to
1061 moving the instructions in the delay slots.
1063 We can not steal the delay list if one of the instructions in the
1064 current delay_list modifies the condition codes and the jump in the
1065 sequence is a conditional jump. We can not do this because we can
1066 not change the direction of the jump because the condition codes
1067 will effect the direction of the jump in the sequence. */
1069 CLEAR_RESOURCE (&cc_set);
1071 rtx_insn *trial;
1072 FOR_EACH_VEC_ELT (*delay_list, i, trial)
1074 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1075 if (insn_references_resource_p (seq->insn (0), &cc_set, false))
1076 return;
1079 if (XVECLEN (seq, 0) - 1 > slots_remaining
1080 || ! condition_dominates_p (condition, seq->insn (0))
1081 || ! single_set (seq->insn (0)))
1082 return;
1084 /* On some targets, branches with delay slots can have a limited
1085 displacement. Give the back end a chance to tell us we can't do
1086 this. */
1087 if (! targetm.can_follow_jump (insn, seq->insn (0)))
1088 return;
1090 redundant = XALLOCAVEC (bool, XVECLEN (seq, 0));
1091 for (i = 1; i < seq->len (); i++)
1093 rtx_insn *trial = seq->insn (i);
1094 int flags;
1096 if (insn_references_resource_p (trial, sets, false)
1097 || insn_sets_resource_p (trial, needed, false)
1098 || insn_sets_resource_p (trial, sets, false)
1099 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1100 delay list. */
1101 || (HAVE_cc0 && find_reg_note (trial, REG_CC_USER, NULL_RTX))
1102 /* If TRIAL is from the fallthrough code of an annulled branch insn
1103 in SEQ, we cannot use it. */
1104 || (INSN_ANNULLED_BRANCH_P (seq->insn (0))
1105 && ! INSN_FROM_TARGET_P (trial)))
1106 return;
1108 /* If this insn was already done (usually in a previous delay slot),
1109 pretend we put it in our delay slot. */
1110 redundant[i] = redundant_insn (trial, insn, new_delay_list);
1111 if (redundant[i])
1112 continue;
1114 /* We will end up re-vectoring this branch, so compute flags
1115 based on jumping to the new label. */
1116 flags = get_jump_flags (insn, JUMP_LABEL (seq->insn (0)));
1118 if (! must_annul
1119 && ((condition == const_true_rtx
1120 || (! insn_sets_resource_p (trial, other_needed, false)
1121 && ! may_trap_or_fault_p (PATTERN (trial)))))
1122 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1123 : (must_annul || (delay_list->is_empty () && new_delay_list.is_empty ()))
1124 && (must_annul = 1,
1125 check_annul_list_true_false (0, *delay_list)
1126 && check_annul_list_true_false (0, new_delay_list)
1127 && eligible_for_annul_false (insn, total_slots_filled,
1128 trial, flags)))
1130 if (must_annul)
1132 /* Frame related instructions cannot go into annulled delay
1133 slots, it messes up the dwarf info. */
1134 if (RTX_FRAME_RELATED_P (trial))
1135 return;
1136 used_annul = 1;
1138 rtx_insn *temp = copy_delay_slot_insn (trial);
1139 INSN_FROM_TARGET_P (temp) = 1;
1140 add_to_delay_list (temp, &new_delay_list);
1141 total_slots_filled++;
1143 if (--slots_remaining == 0)
1144 break;
1146 else
1147 return;
1150 /* Record the effect of the instructions that were redundant and which
1151 we therefore decided not to copy. */
1152 for (i = 1; i < seq->len (); i++)
1153 if (redundant[i])
1154 update_block (seq->insn (i), insn);
1156 /* Show the place to which we will be branching. */
1157 *pnew_thread = first_active_target_insn (JUMP_LABEL (seq->insn (0)));
1159 /* Add any new insns to the delay list and update the count of the
1160 number of slots filled. */
1161 *pslots_filled = total_slots_filled;
1162 if (used_annul)
1163 *pannul_p = 1;
1165 rtx_insn *temp;
1166 FOR_EACH_VEC_ELT (new_delay_list, i, temp)
1167 add_to_delay_list (temp, delay_list);
1170 /* Similar to steal_delay_list_from_target except that SEQ is on the
1171 fallthrough path of INSN. Here we only do something if the delay insn
1172 of SEQ is an unconditional branch. In that case we steal its delay slot
1173 for INSN since unconditional branches are much easier to fill. */
1175 static void
1176 steal_delay_list_from_fallthrough (rtx_insn *insn, rtx condition,
1177 rtx_sequence *seq,
1178 vec<rtx_insn *> *delay_list,
1179 struct resources *sets,
1180 struct resources *needed,
1181 struct resources *other_needed,
1182 int slots_to_fill, int *pslots_filled,
1183 int *pannul_p)
1185 int i;
1186 int flags;
1187 int must_annul = *pannul_p;
1188 int used_annul = 0;
1190 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1192 /* We can't do anything if SEQ's delay insn isn't an
1193 unconditional branch. */
1195 if (! simplejump_or_return_p (seq->insn (0)))
1196 return;
1198 for (i = 1; i < seq->len (); i++)
1200 rtx_insn *trial = seq->insn (i);
1202 /* If TRIAL sets CC0, stealing it will move it too far from the use
1203 of CC0. */
1204 if (insn_references_resource_p (trial, sets, false)
1205 || insn_sets_resource_p (trial, needed, false)
1206 || insn_sets_resource_p (trial, sets, false)
1207 || (HAVE_cc0 && sets_cc0_p (PATTERN (trial))))
1209 break;
1211 /* If this insn was already done, we don't need it. */
1212 if (redundant_insn (trial, insn, *delay_list))
1214 update_block (trial, insn);
1215 delete_from_delay_slot (trial);
1216 continue;
1219 if (! must_annul
1220 && ((condition == const_true_rtx
1221 || (! insn_sets_resource_p (trial, other_needed, false)
1222 && ! may_trap_or_fault_p (PATTERN (trial)))))
1223 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1224 : (must_annul || delay_list->is_empty ()) && (must_annul = 1,
1225 check_annul_list_true_false (1, *delay_list)
1226 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1228 if (must_annul)
1229 used_annul = 1;
1230 delete_from_delay_slot (trial);
1231 add_to_delay_list (trial, delay_list);
1233 if (++(*pslots_filled) == slots_to_fill)
1234 break;
1236 else
1237 break;
1240 if (used_annul)
1241 *pannul_p = 1;
1244 /* Try merging insns starting at THREAD which match exactly the insns in
1245 INSN's delay list.
1247 If all insns were matched and the insn was previously annulling, the
1248 annul bit will be cleared.
1250 For each insn that is merged, if the branch is or will be non-annulling,
1251 we delete the merged insn. */
1253 static void
1254 try_merge_delay_insns (rtx_insn *insn, rtx_insn *thread)
1256 rtx_insn *trial, *next_trial;
1257 rtx_insn *delay_insn = as_a <rtx_insn *> (XVECEXP (PATTERN (insn), 0, 0));
1258 int annul_p = JUMP_P (delay_insn) && INSN_ANNULLED_BRANCH_P (delay_insn);
1259 int slot_number = 1;
1260 int num_slots = XVECLEN (PATTERN (insn), 0);
1261 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1262 struct resources set, needed, modified;
1263 auto_vec<std::pair<rtx_insn *, bool>, 10> merged_insns;
1264 int flags;
1266 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1268 CLEAR_RESOURCE (&needed);
1269 CLEAR_RESOURCE (&set);
1271 /* If this is not an annulling branch, take into account anything needed in
1272 INSN's delay slot. This prevents two increments from being incorrectly
1273 folded into one. If we are annulling, this would be the correct
1274 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1275 will essentially disable this optimization. This method is somewhat of
1276 a kludge, but I don't see a better way.) */
1277 if (! annul_p)
1278 for (int i = 1; i < num_slots; i++)
1279 if (XVECEXP (PATTERN (insn), 0, i))
1280 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
1281 true);
1283 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1285 rtx pat = PATTERN (trial);
1286 rtx oldtrial = trial;
1288 next_trial = next_nonnote_insn (trial);
1290 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1291 if (NONJUMP_INSN_P (trial)
1292 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1293 continue;
1295 if (GET_CODE (next_to_match) == GET_CODE (trial)
1296 /* We can't share an insn that sets cc0. */
1297 && (!HAVE_cc0 || ! sets_cc0_p (pat))
1298 && ! insn_references_resource_p (trial, &set, true)
1299 && ! insn_sets_resource_p (trial, &set, true)
1300 && ! insn_sets_resource_p (trial, &needed, true)
1301 && (trial = try_split (pat, trial, 0)) != 0
1302 /* Update next_trial, in case try_split succeeded. */
1303 && (next_trial = next_nonnote_insn (trial))
1304 /* Likewise THREAD. */
1305 && (thread = oldtrial == thread ? trial : thread)
1306 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1307 /* Have to test this condition if annul condition is different
1308 from (and less restrictive than) non-annulling one. */
1309 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1312 if (! annul_p)
1314 update_block (trial, thread);
1315 if (trial == thread)
1316 thread = next_active_insn (thread);
1318 delete_related_insns (trial);
1319 INSN_FROM_TARGET_P (next_to_match) = 0;
1321 else
1322 merged_insns.safe_push (std::pair<rtx_insn *, bool> (trial, false));
1324 if (++slot_number == num_slots)
1325 break;
1327 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1330 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1331 mark_referenced_resources (trial, &needed, true);
1334 /* See if we stopped on a filled insn. If we did, try to see if its
1335 delay slots match. */
1336 if (slot_number != num_slots
1337 && trial && NONJUMP_INSN_P (trial)
1338 && GET_CODE (PATTERN (trial)) == SEQUENCE
1339 && !(JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
1340 && INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0))))
1342 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (trial));
1343 rtx filled_insn = XVECEXP (pat, 0, 0);
1345 /* Account for resources set/needed by the filled insn. */
1346 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1347 mark_referenced_resources (filled_insn, &needed, true);
1349 for (int i = 1; i < pat->len (); i++)
1351 rtx_insn *dtrial = pat->insn (i);
1353 CLEAR_RESOURCE (&modified);
1354 /* Account for resources set by the insn following NEXT_TO_MATCH
1355 inside INSN's delay list. */
1356 for (int j = 1; slot_number + j < num_slots; j++)
1357 mark_set_resources (XVECEXP (PATTERN (insn), 0, slot_number + j),
1358 &modified, 0, MARK_SRC_DEST_CALL);
1359 /* Account for resources set by the insn before DTRIAL and inside
1360 TRIAL's delay list. */
1361 for (int j = 1; j < i; j++)
1362 mark_set_resources (XVECEXP (pat, 0, j),
1363 &modified, 0, MARK_SRC_DEST_CALL);
1364 if (! insn_references_resource_p (dtrial, &set, true)
1365 && ! insn_sets_resource_p (dtrial, &set, true)
1366 && ! insn_sets_resource_p (dtrial, &needed, true)
1367 && (!HAVE_cc0 || ! sets_cc0_p (PATTERN (dtrial)))
1368 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1369 /* Check that DTRIAL and NEXT_TO_MATCH does not reference a
1370 resource modified between them (only dtrial is checked because
1371 next_to_match and dtrial shall to be equal in order to hit
1372 this line) */
1373 && ! insn_references_resource_p (dtrial, &modified, true)
1374 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1376 if (! annul_p)
1378 rtx_insn *new_rtx;
1380 update_block (dtrial, thread);
1381 new_rtx = delete_from_delay_slot (dtrial);
1382 if (thread->deleted ())
1383 thread = new_rtx;
1384 INSN_FROM_TARGET_P (next_to_match) = 0;
1386 else
1387 merged_insns.safe_push (std::pair<rtx_insn *, bool> (dtrial,
1388 true));
1390 if (++slot_number == num_slots)
1391 break;
1393 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1395 else
1397 /* Keep track of the set/referenced resources for the delay
1398 slots of any trial insns we encounter. */
1399 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1400 mark_referenced_resources (dtrial, &needed, true);
1405 /* If all insns in the delay slot have been matched and we were previously
1406 annulling the branch, we need not any more. In that case delete all the
1407 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1408 the delay list so that we know that it isn't only being used at the
1409 target. */
1410 if (slot_number == num_slots && annul_p)
1412 unsigned int len = merged_insns.length ();
1413 for (unsigned int i = len - 1; i < len; i--)
1414 if (merged_insns[i].second)
1416 update_block (merged_insns[i].first, thread);
1417 rtx_insn *new_rtx = delete_from_delay_slot (merged_insns[i].first);
1418 if (thread->deleted ())
1419 thread = new_rtx;
1421 else
1423 update_block (merged_insns[i].first, thread);
1424 delete_related_insns (merged_insns[i].first);
1427 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1429 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1430 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1434 /* See if INSN is redundant with an insn in front of TARGET. Often this
1435 is called when INSN is a candidate for a delay slot of TARGET.
1436 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1437 of INSN. Often INSN will be redundant with an insn in a delay slot of
1438 some previous insn. This happens when we have a series of branches to the
1439 same label; in that case the first insn at the target might want to go
1440 into each of the delay slots.
1442 If we are not careful, this routine can take up a significant fraction
1443 of the total compilation time (4%), but only wins rarely. Hence we
1444 speed this routine up by making two passes. The first pass goes back
1445 until it hits a label and sees if it finds an insn with an identical
1446 pattern. Only in this (relatively rare) event does it check for
1447 data conflicts.
1449 We do not split insns we encounter. This could cause us not to find a
1450 redundant insn, but the cost of splitting seems greater than the possible
1451 gain in rare cases. */
1453 static rtx_insn *
1454 redundant_insn (rtx insn, rtx_insn *target, const vec<rtx_insn *> &delay_list)
1456 rtx target_main = target;
1457 rtx ipat = PATTERN (insn);
1458 rtx_insn *trial;
1459 rtx pat;
1460 struct resources needed, set;
1461 int i;
1462 unsigned insns_to_search;
1464 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1465 are allowed to not actually assign to such a register. */
1466 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1467 return 0;
1469 /* Scan backwards looking for a match. */
1470 for (trial = PREV_INSN (target),
1471 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1472 trial && insns_to_search > 0;
1473 trial = PREV_INSN (trial))
1475 /* (use (insn))s can come immediately after a barrier if the
1476 label that used to precede them has been deleted as dead.
1477 See delete_related_insns. */
1478 if (LABEL_P (trial) || BARRIER_P (trial))
1479 return 0;
1481 if (!INSN_P (trial))
1482 continue;
1483 --insns_to_search;
1485 pat = PATTERN (trial);
1486 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1487 continue;
1489 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
1491 /* Stop for a CALL and its delay slots because it is difficult to
1492 track its resource needs correctly. */
1493 if (CALL_P (seq->element (0)))
1494 return 0;
1496 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1497 slots because it is difficult to track its resource needs
1498 correctly. */
1500 if (INSN_SETS_ARE_DELAYED (seq->insn (0)))
1501 return 0;
1503 if (INSN_REFERENCES_ARE_DELAYED (seq->insn (0)))
1504 return 0;
1506 /* See if any of the insns in the delay slot match, updating
1507 resource requirements as we go. */
1508 for (i = seq->len () - 1; i > 0; i--)
1509 if (GET_CODE (seq->element (i)) == GET_CODE (insn)
1510 && rtx_equal_p (PATTERN (seq->element (i)), ipat)
1511 && ! find_reg_note (seq->element (i), REG_UNUSED, NULL_RTX))
1512 break;
1514 /* If found a match, exit this loop early. */
1515 if (i > 0)
1516 break;
1519 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1520 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1521 break;
1524 /* If we didn't find an insn that matches, return 0. */
1525 if (trial == 0)
1526 return 0;
1528 /* See what resources this insn sets and needs. If they overlap, or
1529 if this insn references CC0, it can't be redundant. */
1531 CLEAR_RESOURCE (&needed);
1532 CLEAR_RESOURCE (&set);
1533 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1534 mark_referenced_resources (insn, &needed, true);
1536 /* If TARGET is a SEQUENCE, get the main insn. */
1537 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1538 target_main = XVECEXP (PATTERN (target), 0, 0);
1540 if (resource_conflicts_p (&needed, &set)
1541 || (HAVE_cc0 && reg_mentioned_p (cc0_rtx, ipat))
1542 /* The insn requiring the delay may not set anything needed or set by
1543 INSN. */
1544 || insn_sets_resource_p (target_main, &needed, true)
1545 || insn_sets_resource_p (target_main, &set, true))
1546 return 0;
1548 /* Insns we pass may not set either NEEDED or SET, so merge them for
1549 simpler tests. */
1550 needed.memory |= set.memory;
1551 IOR_HARD_REG_SET (needed.regs, set.regs);
1553 /* This insn isn't redundant if it conflicts with an insn that either is
1554 or will be in a delay slot of TARGET. */
1556 unsigned int j;
1557 rtx_insn *temp;
1558 FOR_EACH_VEC_ELT (delay_list, j, temp)
1559 if (insn_sets_resource_p (temp, &needed, true))
1560 return 0;
1562 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1563 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1564 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
1565 true))
1566 return 0;
1568 /* Scan backwards until we reach a label or an insn that uses something
1569 INSN sets or sets something insn uses or sets. */
1571 for (trial = PREV_INSN (target),
1572 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1573 trial && !LABEL_P (trial) && insns_to_search > 0;
1574 trial = PREV_INSN (trial))
1576 if (!INSN_P (trial))
1577 continue;
1578 --insns_to_search;
1580 pat = PATTERN (trial);
1581 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1582 continue;
1584 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (pat))
1586 bool annul_p = false;
1587 rtx_insn *control = seq->insn (0);
1589 /* If this is a CALL_INSN and its delay slots, it is hard to track
1590 the resource needs properly, so give up. */
1591 if (CALL_P (control))
1592 return 0;
1594 /* If this is an INSN or JUMP_INSN with delayed effects, it
1595 is hard to track the resource needs properly, so give up. */
1597 if (INSN_SETS_ARE_DELAYED (control))
1598 return 0;
1600 if (INSN_REFERENCES_ARE_DELAYED (control))
1601 return 0;
1603 if (JUMP_P (control))
1604 annul_p = INSN_ANNULLED_BRANCH_P (control);
1606 /* See if any of the insns in the delay slot match, updating
1607 resource requirements as we go. */
1608 for (i = seq->len () - 1; i > 0; i--)
1610 rtx_insn *candidate = seq->insn (i);
1612 /* If an insn will be annulled if the branch is false, it isn't
1613 considered as a possible duplicate insn. */
1614 if (rtx_equal_p (PATTERN (candidate), ipat)
1615 && ! (annul_p && INSN_FROM_TARGET_P (candidate)))
1617 /* Show that this insn will be used in the sequel. */
1618 INSN_FROM_TARGET_P (candidate) = 0;
1619 return candidate;
1622 /* Unless this is an annulled insn from the target of a branch,
1623 we must stop if it sets anything needed or set by INSN. */
1624 if ((!annul_p || !INSN_FROM_TARGET_P (candidate))
1625 && insn_sets_resource_p (candidate, &needed, true))
1626 return 0;
1629 /* If the insn requiring the delay slot conflicts with INSN, we
1630 must stop. */
1631 if (insn_sets_resource_p (control, &needed, true))
1632 return 0;
1634 else
1636 /* See if TRIAL is the same as INSN. */
1637 pat = PATTERN (trial);
1638 if (rtx_equal_p (pat, ipat))
1639 return trial;
1641 /* Can't go any further if TRIAL conflicts with INSN. */
1642 if (insn_sets_resource_p (trial, &needed, true))
1643 return 0;
1647 return 0;
1650 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1651 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1652 is nonzero, we are allowed to fall into this thread; otherwise, we are
1653 not.
1655 If LABEL is used more than one or we pass a label other than LABEL before
1656 finding an active insn, we do not own this thread. */
1658 static int
1659 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1661 rtx_insn *active_insn;
1662 rtx_insn *insn;
1664 /* We don't own the function end. */
1665 if (thread == 0 || ANY_RETURN_P (thread))
1666 return 0;
1668 /* We have a non-NULL insn. */
1669 rtx_insn *thread_insn = as_a <rtx_insn *> (thread);
1671 /* Get the first active insn, or THREAD_INSN, if it is an active insn. */
1672 active_insn = next_active_insn (PREV_INSN (thread_insn));
1674 for (insn = thread_insn; insn != active_insn; insn = NEXT_INSN (insn))
1675 if (LABEL_P (insn)
1676 && (insn != label || LABEL_NUSES (insn) != 1))
1677 return 0;
1679 if (allow_fallthrough)
1680 return 1;
1682 /* Ensure that we reach a BARRIER before any insn or label. */
1683 for (insn = prev_nonnote_insn (thread_insn);
1684 insn == 0 || !BARRIER_P (insn);
1685 insn = prev_nonnote_insn (insn))
1686 if (insn == 0
1687 || LABEL_P (insn)
1688 || (NONJUMP_INSN_P (insn)
1689 && GET_CODE (PATTERN (insn)) != USE
1690 && GET_CODE (PATTERN (insn)) != CLOBBER))
1691 return 0;
1693 return 1;
1696 /* Called when INSN is being moved from a location near the target of a jump.
1697 We leave a marker of the form (use (INSN)) immediately in front of WHERE
1698 for mark_target_live_regs. These markers will be deleted at the end.
1700 We used to try to update the live status of registers if WHERE is at
1701 the start of a basic block, but that can't work since we may remove a
1702 BARRIER in relax_delay_slots. */
1704 static void
1705 update_block (rtx_insn *insn, rtx_insn *where)
1707 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1709 /* INSN might be making a value live in a block where it didn't use to
1710 be. So recompute liveness information for this block. */
1711 incr_ticks_for_insn (insn);
1714 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1715 the basic block containing the jump. */
1717 static int
1718 reorg_redirect_jump (rtx_jump_insn *jump, rtx nlabel)
1720 incr_ticks_for_insn (jump);
1721 return redirect_jump (jump, nlabel, 1);
1724 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1725 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1726 that reference values used in INSN. If we find one, then we move the
1727 REG_DEAD note to INSN.
1729 This is needed to handle the case where a later insn (after INSN) has a
1730 REG_DEAD note for a register used by INSN, and this later insn subsequently
1731 gets moved before a CODE_LABEL because it is a redundant insn. In this
1732 case, mark_target_live_regs may be confused into thinking the register
1733 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1735 static void
1736 update_reg_dead_notes (rtx_insn *insn, rtx_insn *delayed_insn)
1738 rtx link, next;
1739 rtx_insn *p;
1741 for (p = next_nonnote_insn (insn); p != delayed_insn;
1742 p = next_nonnote_insn (p))
1743 for (link = REG_NOTES (p); link; link = next)
1745 next = XEXP (link, 1);
1747 if (REG_NOTE_KIND (link) != REG_DEAD
1748 || !REG_P (XEXP (link, 0)))
1749 continue;
1751 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1753 /* Move the REG_DEAD note from P to INSN. */
1754 remove_note (p, link);
1755 XEXP (link, 1) = REG_NOTES (insn);
1756 REG_NOTES (insn) = link;
1761 /* Called when an insn redundant with start_insn is deleted. If there
1762 is a REG_DEAD note for the target of start_insn between start_insn
1763 and stop_insn, then the REG_DEAD note needs to be deleted since the
1764 value no longer dies there.
1766 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1767 confused into thinking the register is dead. */
1769 static void
1770 fix_reg_dead_note (rtx_insn *start_insn, rtx stop_insn)
1772 rtx link, next;
1773 rtx_insn *p;
1775 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1776 p = next_nonnote_insn (p))
1777 for (link = REG_NOTES (p); link; link = next)
1779 next = XEXP (link, 1);
1781 if (REG_NOTE_KIND (link) != REG_DEAD
1782 || !REG_P (XEXP (link, 0)))
1783 continue;
1785 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1787 remove_note (p, link);
1788 return;
1793 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1795 This handles the case of udivmodXi4 instructions which optimize their
1796 output depending on whether any REG_UNUSED notes are present.
1797 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1798 does. */
1800 static void
1801 update_reg_unused_notes (rtx_insn *insn, rtx redundant_insn)
1803 rtx link, next;
1805 for (link = REG_NOTES (insn); link; link = next)
1807 next = XEXP (link, 1);
1809 if (REG_NOTE_KIND (link) != REG_UNUSED
1810 || !REG_P (XEXP (link, 0)))
1811 continue;
1813 if (! find_regno_note (redundant_insn, REG_UNUSED,
1814 REGNO (XEXP (link, 0))))
1815 remove_note (insn, link);
1819 static vec <rtx> sibling_labels;
1821 /* Return the label before INSN, or put a new label there. If SIBLING is
1822 non-zero, it is another label associated with the new label (if any),
1823 typically the former target of the jump that will be redirected to
1824 the new label. */
1826 static rtx_insn *
1827 get_label_before (rtx_insn *insn, rtx sibling)
1829 rtx_insn *label;
1831 /* Find an existing label at this point
1832 or make a new one if there is none. */
1833 label = prev_nonnote_insn (insn);
1835 if (label == 0 || !LABEL_P (label))
1837 rtx_insn *prev = PREV_INSN (insn);
1839 label = gen_label_rtx ();
1840 emit_label_after (label, prev);
1841 LABEL_NUSES (label) = 0;
1842 if (sibling)
1844 sibling_labels.safe_push (label);
1845 sibling_labels.safe_push (sibling);
1848 return label;
1851 /* Scan a function looking for insns that need a delay slot and find insns to
1852 put into the delay slot.
1854 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
1855 as calls). We do these first since we don't want jump insns (that are
1856 easier to fill) to get the only insns that could be used for non-jump insns.
1857 When it is zero, only try to fill JUMP_INSNs.
1859 When slots are filled in this manner, the insns (including the
1860 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
1861 it is possible to tell whether a delay slot has really been filled
1862 or not. `final' knows how to deal with this, by communicating
1863 through FINAL_SEQUENCE. */
1865 static void
1866 fill_simple_delay_slots (int non_jumps_p)
1868 rtx_insn *insn, *trial, *next_trial;
1869 rtx pat;
1870 int i;
1871 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
1872 struct resources needed, set;
1873 int slots_to_fill, slots_filled;
1874 auto_vec<rtx_insn *, 5> delay_list;
1876 for (i = 0; i < num_unfilled_slots; i++)
1878 int flags;
1879 /* Get the next insn to fill. If it has already had any slots assigned,
1880 we can't do anything with it. Maybe we'll improve this later. */
1882 insn = unfilled_slots_base[i];
1883 if (insn == 0
1884 || insn->deleted ()
1885 || (NONJUMP_INSN_P (insn)
1886 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1887 || (JUMP_P (insn) && non_jumps_p)
1888 || (!JUMP_P (insn) && ! non_jumps_p))
1889 continue;
1891 /* It may have been that this insn used to need delay slots, but
1892 now doesn't; ignore in that case. This can happen, for example,
1893 on the HP PA RISC, where the number of delay slots depends on
1894 what insns are nearby. */
1895 slots_to_fill = num_delay_slots (insn);
1897 /* Some machine description have defined instructions to have
1898 delay slots only in certain circumstances which may depend on
1899 nearby insns (which change due to reorg's actions).
1901 For example, the PA port normally has delay slots for unconditional
1902 jumps.
1904 However, the PA port claims such jumps do not have a delay slot
1905 if they are immediate successors of certain CALL_INSNs. This
1906 allows the port to favor filling the delay slot of the call with
1907 the unconditional jump. */
1908 if (slots_to_fill == 0)
1909 continue;
1911 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
1912 says how many. After initialization, first try optimizing
1914 call _foo call _foo
1915 nop add %o7,.-L1,%o7
1916 b,a L1
1919 If this case applies, the delay slot of the call is filled with
1920 the unconditional jump. This is done first to avoid having the
1921 delay slot of the call filled in the backward scan. Also, since
1922 the unconditional jump is likely to also have a delay slot, that
1923 insn must exist when it is subsequently scanned.
1925 This is tried on each insn with delay slots as some machines
1926 have insns which perform calls, but are not represented as
1927 CALL_INSNs. */
1929 slots_filled = 0;
1930 delay_list.truncate (0);
1932 if (JUMP_P (insn))
1933 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1934 else
1935 flags = get_jump_flags (insn, NULL_RTX);
1937 if ((trial = next_active_insn (insn))
1938 && JUMP_P (trial)
1939 && simplejump_p (trial)
1940 && eligible_for_delay (insn, slots_filled, trial, flags)
1941 && no_labels_between_p (insn, trial)
1942 && ! can_throw_internal (trial))
1944 rtx_insn **tmp;
1945 slots_filled++;
1946 add_to_delay_list (trial, &delay_list);
1948 /* TRIAL may have had its delay slot filled, then unfilled. When
1949 the delay slot is unfilled, TRIAL is placed back on the unfilled
1950 slots obstack. Unfortunately, it is placed on the end of the
1951 obstack, not in its original location. Therefore, we must search
1952 from entry i + 1 to the end of the unfilled slots obstack to
1953 try and find TRIAL. */
1954 tmp = &unfilled_slots_base[i + 1];
1955 while (*tmp != trial && tmp != unfilled_slots_next)
1956 tmp++;
1958 /* Remove the unconditional jump from consideration for delay slot
1959 filling and unthread it. */
1960 if (*tmp == trial)
1961 *tmp = 0;
1963 rtx_insn *next = NEXT_INSN (trial);
1964 rtx_insn *prev = PREV_INSN (trial);
1965 if (prev)
1966 SET_NEXT_INSN (prev) = next;
1967 if (next)
1968 SET_PREV_INSN (next) = prev;
1972 /* Now, scan backwards from the insn to search for a potential
1973 delay-slot candidate. Stop searching when a label or jump is hit.
1975 For each candidate, if it is to go into the delay slot (moved
1976 forward in execution sequence), it must not need or set any resources
1977 that were set by later insns and must not set any resources that
1978 are needed for those insns.
1980 The delay slot insn itself sets resources unless it is a call
1981 (in which case the called routine, not the insn itself, is doing
1982 the setting). */
1984 if (slots_filled < slots_to_fill)
1986 /* If the flags register is dead after the insn, then we want to be
1987 able to accept a candidate that clobbers it. For this purpose,
1988 we need to filter the flags register during life analysis, so
1989 that it doesn't create RAW and WAW dependencies, while still
1990 creating the necessary WAR dependencies. */
1991 bool filter_flags
1992 = (slots_to_fill == 1
1993 && targetm.flags_regnum != INVALID_REGNUM
1994 && find_regno_note (insn, REG_DEAD, targetm.flags_regnum));
1995 struct resources fset;
1996 CLEAR_RESOURCE (&needed);
1997 CLEAR_RESOURCE (&set);
1998 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
1999 if (filter_flags)
2001 CLEAR_RESOURCE (&fset);
2002 mark_set_resources (insn, &fset, 0, MARK_SRC_DEST);
2004 mark_referenced_resources (insn, &needed, false);
2006 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2007 trial = next_trial)
2009 next_trial = prev_nonnote_insn (trial);
2011 /* This must be an INSN or CALL_INSN. */
2012 pat = PATTERN (trial);
2014 /* Stand-alone USE and CLOBBER are just for flow. */
2015 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2016 continue;
2018 /* Check for resource conflict first, to avoid unnecessary
2019 splitting. */
2020 if (! insn_references_resource_p (trial, &set, true)
2021 && ! insn_sets_resource_p (trial,
2022 filter_flags ? &fset : &set,
2023 true)
2024 && ! insn_sets_resource_p (trial, &needed, true)
2025 /* Can't separate set of cc0 from its use. */
2026 && (!HAVE_cc0 || ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat)))
2027 && ! can_throw_internal (trial))
2029 trial = try_split (pat, trial, 1);
2030 next_trial = prev_nonnote_insn (trial);
2031 if (eligible_for_delay (insn, slots_filled, trial, flags))
2033 /* In this case, we are searching backward, so if we
2034 find insns to put on the delay list, we want
2035 to put them at the head, rather than the
2036 tail, of the list. */
2038 update_reg_dead_notes (trial, insn);
2039 delay_list.safe_insert (0, trial);
2040 update_block (trial, trial);
2041 delete_related_insns (trial);
2042 if (slots_to_fill == ++slots_filled)
2043 break;
2044 continue;
2048 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2049 if (filter_flags)
2051 mark_set_resources (trial, &fset, 0, MARK_SRC_DEST_CALL);
2052 /* If the flags register is set, then it doesn't create RAW
2053 dependencies any longer and it also doesn't create WAW
2054 dependencies since it's dead after the original insn. */
2055 if (TEST_HARD_REG_BIT (fset.regs, targetm.flags_regnum))
2057 CLEAR_HARD_REG_BIT (needed.regs, targetm.flags_regnum);
2058 CLEAR_HARD_REG_BIT (fset.regs, targetm.flags_regnum);
2061 mark_referenced_resources (trial, &needed, true);
2065 /* If all needed slots haven't been filled, we come here. */
2067 /* Try to optimize case of jumping around a single insn. */
2068 if ((ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
2069 && slots_filled != slots_to_fill
2070 && delay_list.is_empty ()
2071 && JUMP_P (insn)
2072 && (condjump_p (insn) || condjump_in_parallel_p (insn))
2073 && !ANY_RETURN_P (JUMP_LABEL (insn)))
2075 optimize_skip (as_a <rtx_jump_insn *> (insn), &delay_list);
2076 if (!delay_list.is_empty ())
2077 slots_filled += 1;
2080 /* Try to get insns from beyond the insn needing the delay slot.
2081 These insns can neither set or reference resources set in insns being
2082 skipped, cannot set resources in the insn being skipped, and, if this
2083 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2084 call might not return).
2086 There used to be code which continued past the target label if
2087 we saw all uses of the target label. This code did not work,
2088 because it failed to account for some instructions which were
2089 both annulled and marked as from the target. This can happen as a
2090 result of optimize_skip. Since this code was redundant with
2091 fill_eager_delay_slots anyways, it was just deleted. */
2093 if (slots_filled != slots_to_fill
2094 /* If this instruction could throw an exception which is
2095 caught in the same function, then it's not safe to fill
2096 the delay slot with an instruction from beyond this
2097 point. For example, consider:
2099 int i = 2;
2101 try {
2102 f();
2103 i = 3;
2104 } catch (...) {}
2106 return i;
2108 Even though `i' is a local variable, we must be sure not
2109 to put `i = 3' in the delay slot if `f' might throw an
2110 exception.
2112 Presumably, we should also check to see if we could get
2113 back to this function via `setjmp'. */
2114 && ! can_throw_internal (insn)
2115 && !JUMP_P (insn))
2117 int maybe_never = 0;
2118 rtx pat, trial_delay;
2120 CLEAR_RESOURCE (&needed);
2121 CLEAR_RESOURCE (&set);
2122 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2123 mark_referenced_resources (insn, &needed, true);
2125 if (CALL_P (insn))
2126 maybe_never = 1;
2128 for (trial = next_nonnote_insn (insn); !stop_search_p (trial, 1);
2129 trial = next_trial)
2131 next_trial = next_nonnote_insn (trial);
2133 /* This must be an INSN or CALL_INSN. */
2134 pat = PATTERN (trial);
2136 /* Stand-alone USE and CLOBBER are just for flow. */
2137 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2138 continue;
2140 /* If this already has filled delay slots, get the insn needing
2141 the delay slots. */
2142 if (GET_CODE (pat) == SEQUENCE)
2143 trial_delay = XVECEXP (pat, 0, 0);
2144 else
2145 trial_delay = trial;
2147 /* Stop our search when seeing a jump. */
2148 if (JUMP_P (trial_delay))
2149 break;
2151 /* See if we have a resource problem before we try to split. */
2152 if (GET_CODE (pat) != SEQUENCE
2153 && ! insn_references_resource_p (trial, &set, true)
2154 && ! insn_sets_resource_p (trial, &set, true)
2155 && ! insn_sets_resource_p (trial, &needed, true)
2156 && (!HAVE_cc0 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat)))
2157 && ! (maybe_never && may_trap_or_fault_p (pat))
2158 && (trial = try_split (pat, trial, 0))
2159 && eligible_for_delay (insn, slots_filled, trial, flags)
2160 && ! can_throw_internal (trial))
2162 next_trial = next_nonnote_insn (trial);
2163 add_to_delay_list (trial, &delay_list);
2164 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, pat))
2165 link_cc0_insns (trial);
2167 delete_related_insns (trial);
2168 if (slots_to_fill == ++slots_filled)
2169 break;
2170 continue;
2173 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2174 mark_referenced_resources (trial, &needed, true);
2176 /* Ensure we don't put insns between the setting of cc and the
2177 comparison by moving a setting of cc into an earlier delay
2178 slot since these insns could clobber the condition code. */
2179 set.cc = 1;
2181 /* If this is a call, we might not get here. */
2182 if (CALL_P (trial_delay))
2183 maybe_never = 1;
2186 /* If there are slots left to fill and our search was stopped by an
2187 unconditional branch, try the insn at the branch target. We can
2188 redirect the branch if it works.
2190 Don't do this if the insn at the branch target is a branch. */
2191 if (slots_to_fill != slots_filled
2192 && trial
2193 && jump_to_label_p (trial)
2194 && simplejump_p (trial)
2195 && (next_trial = next_active_insn (JUMP_LABEL_AS_INSN (trial))) != 0
2196 && ! (NONJUMP_INSN_P (next_trial)
2197 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2198 && !JUMP_P (next_trial)
2199 && ! insn_references_resource_p (next_trial, &set, true)
2200 && ! insn_sets_resource_p (next_trial, &set, true)
2201 && ! insn_sets_resource_p (next_trial, &needed, true)
2202 && (!HAVE_cc0 || ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial)))
2203 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2204 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2205 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2206 && ! can_throw_internal (trial))
2208 /* See comment in relax_delay_slots about necessity of using
2209 next_real_insn here. */
2210 rtx_insn *new_label = next_real_insn (next_trial);
2212 if (new_label != 0)
2213 new_label = get_label_before (new_label, JUMP_LABEL (trial));
2214 else
2215 new_label = find_end_label (simple_return_rtx);
2217 if (new_label)
2219 add_to_delay_list (copy_delay_slot_insn (next_trial),
2220 &delay_list);
2221 slots_filled++;
2222 reorg_redirect_jump (as_a <rtx_jump_insn *> (trial),
2223 new_label);
2228 /* If this is an unconditional jump, then try to get insns from the
2229 target of the jump. */
2230 rtx_jump_insn *jump_insn;
2231 if ((jump_insn = dyn_cast <rtx_jump_insn *> (insn))
2232 && simplejump_p (jump_insn)
2233 && slots_filled != slots_to_fill)
2234 fill_slots_from_thread (jump_insn, const_true_rtx,
2235 next_active_insn (JUMP_LABEL_AS_INSN (insn)),
2236 NULL, 1, 1, own_thread_p (JUMP_LABEL (insn),
2237 JUMP_LABEL (insn), 0),
2238 slots_to_fill, &slots_filled, &delay_list);
2240 if (!delay_list.is_empty ())
2241 unfilled_slots_base[i]
2242 = emit_delay_sequence (insn, delay_list, slots_filled);
2244 if (slots_to_fill == slots_filled)
2245 unfilled_slots_base[i] = 0;
2247 note_delay_statistics (slots_filled, 0);
2251 /* Follow any unconditional jump at LABEL, for the purpose of redirecting JUMP;
2252 return the ultimate label reached by any such chain of jumps.
2253 Return a suitable return rtx if the chain ultimately leads to a
2254 return instruction.
2255 If LABEL is not followed by a jump, return LABEL.
2256 If the chain loops or we can't find end, return LABEL,
2257 since that tells caller to avoid changing the insn.
2258 If the returned label is obtained by following a crossing jump,
2259 set *CROSSING to true, otherwise set it to false. */
2261 static rtx
2262 follow_jumps (rtx label, rtx_insn *jump, bool *crossing)
2264 rtx_insn *insn;
2265 rtx_insn *next;
2266 int depth;
2268 *crossing = false;
2269 if (ANY_RETURN_P (label))
2270 return label;
2272 rtx_insn *value = as_a <rtx_insn *> (label);
2274 for (depth = 0;
2275 (depth < 10
2276 && (insn = next_active_insn (value)) != 0
2277 && JUMP_P (insn)
2278 && JUMP_LABEL (insn) != NULL_RTX
2279 && ((any_uncondjump_p (insn) && onlyjump_p (insn))
2280 || ANY_RETURN_P (PATTERN (insn)))
2281 && (next = NEXT_INSN (insn))
2282 && BARRIER_P (next));
2283 depth++)
2285 rtx this_label_or_return = JUMP_LABEL (insn);
2287 /* If we have found a cycle, make the insn jump to itself. */
2288 if (this_label_or_return == label)
2289 return label;
2291 /* Cannot follow returns and cannot look through tablejumps. */
2292 if (ANY_RETURN_P (this_label_or_return))
2293 return this_label_or_return;
2295 rtx_insn *this_label = as_a <rtx_insn *> (this_label_or_return);
2296 if (NEXT_INSN (this_label)
2297 && JUMP_TABLE_DATA_P (NEXT_INSN (this_label)))
2298 break;
2300 if (!targetm.can_follow_jump (jump, insn))
2301 break;
2302 if (!*crossing)
2303 *crossing = CROSSING_JUMP_P (jump);
2304 value = this_label;
2306 if (depth == 10)
2307 return label;
2308 return value;
2311 /* Try to find insns to place in delay slots.
2313 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2314 or is an unconditional branch if CONDITION is const_true_rtx.
2315 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2317 THREAD is a flow-of-control, either the insns to be executed if the
2318 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2320 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2321 to see if any potential delay slot insns set things needed there.
2323 LIKELY is nonzero if it is extremely likely that the branch will be
2324 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2325 end of a loop back up to the top.
2327 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2328 thread. I.e., it is the fallthrough code of our jump or the target of the
2329 jump when we are the only jump going there.
2331 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2332 case, we can only take insns from the head of the thread for our delay
2333 slot. We then adjust the jump to point after the insns we have taken. */
2335 static void
2336 fill_slots_from_thread (rtx_jump_insn *insn, rtx condition,
2337 rtx thread_or_return, rtx opposite_thread, int likely,
2338 int thread_if_true, int own_thread, int slots_to_fill,
2339 int *pslots_filled, vec<rtx_insn *> *delay_list)
2341 rtx new_thread;
2342 struct resources opposite_needed, set, needed;
2343 rtx_insn *trial;
2344 int lose = 0;
2345 int must_annul = 0;
2346 int flags;
2348 /* Validate our arguments. */
2349 gcc_assert (condition != const_true_rtx || thread_if_true);
2350 gcc_assert (own_thread || thread_if_true);
2352 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2354 /* If our thread is the end of subroutine, we can't get any delay
2355 insns from that. */
2356 if (thread_or_return == NULL_RTX || ANY_RETURN_P (thread_or_return))
2357 return;
2359 rtx_insn *thread = as_a <rtx_insn *> (thread_or_return);
2361 /* If this is an unconditional branch, nothing is needed at the
2362 opposite thread. Otherwise, compute what is needed there. */
2363 if (condition == const_true_rtx)
2364 CLEAR_RESOURCE (&opposite_needed);
2365 else
2366 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2368 /* If the insn at THREAD can be split, do it here to avoid having to
2369 update THREAD and NEW_THREAD if it is done in the loop below. Also
2370 initialize NEW_THREAD. */
2372 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2374 /* Scan insns at THREAD. We are looking for an insn that can be removed
2375 from THREAD (it neither sets nor references resources that were set
2376 ahead of it and it doesn't set anything needs by the insns ahead of
2377 it) and that either can be placed in an annulling insn or aren't
2378 needed at OPPOSITE_THREAD. */
2380 CLEAR_RESOURCE (&needed);
2381 CLEAR_RESOURCE (&set);
2383 /* If we do not own this thread, we must stop as soon as we find
2384 something that we can't put in a delay slot, since all we can do
2385 is branch into THREAD at a later point. Therefore, labels stop
2386 the search if this is not the `true' thread. */
2388 for (trial = thread;
2389 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2390 trial = next_nonnote_insn (trial))
2392 rtx pat, old_trial;
2394 /* If we have passed a label, we no longer own this thread. */
2395 if (LABEL_P (trial))
2397 own_thread = 0;
2398 continue;
2401 pat = PATTERN (trial);
2402 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2403 continue;
2405 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2406 don't separate or copy insns that set and use CC0. */
2407 if (! insn_references_resource_p (trial, &set, true)
2408 && ! insn_sets_resource_p (trial, &set, true)
2409 && ! insn_sets_resource_p (trial, &needed, true)
2410 && (!HAVE_cc0 || (! (reg_mentioned_p (cc0_rtx, pat)
2411 && (! own_thread || ! sets_cc0_p (pat)))))
2412 && ! can_throw_internal (trial))
2414 rtx_insn *prior_insn;
2416 /* If TRIAL is redundant with some insn before INSN, we don't
2417 actually need to add it to the delay list; we can merely pretend
2418 we did. */
2419 if ((prior_insn = redundant_insn (trial, insn, *delay_list)))
2421 fix_reg_dead_note (prior_insn, insn);
2422 if (own_thread)
2424 update_block (trial, thread);
2425 if (trial == thread)
2427 thread = next_active_insn (thread);
2428 if (new_thread == trial)
2429 new_thread = thread;
2432 delete_related_insns (trial);
2434 else
2436 update_reg_unused_notes (prior_insn, trial);
2437 new_thread = next_active_insn (trial);
2440 continue;
2443 /* There are two ways we can win: If TRIAL doesn't set anything
2444 needed at the opposite thread and can't trap, or if it can
2445 go into an annulled delay slot. But we want neither to copy
2446 nor to speculate frame-related insns. */
2447 if (!must_annul
2448 && ((condition == const_true_rtx
2449 && (own_thread || !RTX_FRAME_RELATED_P (trial)))
2450 || (! insn_sets_resource_p (trial, &opposite_needed, true)
2451 && ! may_trap_or_fault_p (pat)
2452 && ! RTX_FRAME_RELATED_P (trial))))
2454 old_trial = trial;
2455 trial = try_split (pat, trial, 0);
2456 if (new_thread == old_trial)
2457 new_thread = trial;
2458 if (thread == old_trial)
2459 thread = trial;
2460 pat = PATTERN (trial);
2461 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2462 goto winner;
2464 else if (!RTX_FRAME_RELATED_P (trial)
2465 && ((ANNUL_IFTRUE_SLOTS && ! thread_if_true)
2466 || (ANNUL_IFFALSE_SLOTS && thread_if_true)))
2468 old_trial = trial;
2469 trial = try_split (pat, trial, 0);
2470 if (new_thread == old_trial)
2471 new_thread = trial;
2472 if (thread == old_trial)
2473 thread = trial;
2474 pat = PATTERN (trial);
2475 if ((must_annul || delay_list->is_empty ()) && (thread_if_true
2476 ? check_annul_list_true_false (0, *delay_list)
2477 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2478 : check_annul_list_true_false (1, *delay_list)
2479 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2481 rtx_insn *temp;
2483 must_annul = 1;
2484 winner:
2486 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, pat))
2487 link_cc0_insns (trial);
2489 /* If we own this thread, delete the insn. If this is the
2490 destination of a branch, show that a basic block status
2491 may have been updated. In any case, mark the new
2492 starting point of this thread. */
2493 if (own_thread)
2495 rtx note;
2497 update_block (trial, thread);
2498 if (trial == thread)
2500 thread = next_active_insn (thread);
2501 if (new_thread == trial)
2502 new_thread = thread;
2505 /* We are moving this insn, not deleting it. We must
2506 temporarily increment the use count on any referenced
2507 label lest it be deleted by delete_related_insns. */
2508 for (note = REG_NOTES (trial);
2509 note != NULL_RTX;
2510 note = XEXP (note, 1))
2511 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2512 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2514 /* REG_LABEL_OPERAND could be
2515 NOTE_INSN_DELETED_LABEL too. */
2516 if (LABEL_P (XEXP (note, 0)))
2517 LABEL_NUSES (XEXP (note, 0))++;
2518 else
2519 gcc_assert (REG_NOTE_KIND (note)
2520 == REG_LABEL_OPERAND);
2522 if (jump_to_label_p (trial))
2523 LABEL_NUSES (JUMP_LABEL (trial))++;
2525 delete_related_insns (trial);
2527 for (note = REG_NOTES (trial);
2528 note != NULL_RTX;
2529 note = XEXP (note, 1))
2530 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2531 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2533 /* REG_LABEL_OPERAND could be
2534 NOTE_INSN_DELETED_LABEL too. */
2535 if (LABEL_P (XEXP (note, 0)))
2536 LABEL_NUSES (XEXP (note, 0))--;
2537 else
2538 gcc_assert (REG_NOTE_KIND (note)
2539 == REG_LABEL_OPERAND);
2541 if (jump_to_label_p (trial))
2542 LABEL_NUSES (JUMP_LABEL (trial))--;
2544 else
2545 new_thread = next_active_insn (trial);
2547 temp = own_thread ? trial : copy_delay_slot_insn (trial);
2548 if (thread_if_true)
2549 INSN_FROM_TARGET_P (temp) = 1;
2551 add_to_delay_list (temp, delay_list);
2553 if (slots_to_fill == ++(*pslots_filled))
2555 /* Even though we have filled all the slots, we
2556 may be branching to a location that has a
2557 redundant insn. Skip any if so. */
2558 while (new_thread && ! own_thread
2559 && ! insn_sets_resource_p (new_thread, &set, true)
2560 && ! insn_sets_resource_p (new_thread, &needed,
2561 true)
2562 && ! insn_references_resource_p (new_thread,
2563 &set, true)
2564 && (prior_insn
2565 = redundant_insn (new_thread, insn,
2566 *delay_list)))
2568 /* We know we do not own the thread, so no need
2569 to call update_block and delete_insn. */
2570 fix_reg_dead_note (prior_insn, insn);
2571 update_reg_unused_notes (prior_insn, new_thread);
2572 new_thread
2573 = next_active_insn (as_a<rtx_insn *> (new_thread));
2575 break;
2578 continue;
2583 /* This insn can't go into a delay slot. */
2584 lose = 1;
2585 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2586 mark_referenced_resources (trial, &needed, true);
2588 /* Ensure we don't put insns between the setting of cc and the comparison
2589 by moving a setting of cc into an earlier delay slot since these insns
2590 could clobber the condition code. */
2591 set.cc = 1;
2593 /* If this insn is a register-register copy and the next insn has
2594 a use of our destination, change it to use our source. That way,
2595 it will become a candidate for our delay slot the next time
2596 through this loop. This case occurs commonly in loops that
2597 scan a list.
2599 We could check for more complex cases than those tested below,
2600 but it doesn't seem worth it. It might also be a good idea to try
2601 to swap the two insns. That might do better.
2603 We can't do this if the next insn modifies our destination, because
2604 that would make the replacement into the insn invalid. We also can't
2605 do this if it modifies our source, because it might be an earlyclobber
2606 operand. This latter test also prevents updating the contents of
2607 a PRE_INC. We also can't do this if there's overlap of source and
2608 destination. Overlap may happen for larger-than-register-size modes. */
2610 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2611 && REG_P (SET_SRC (pat))
2612 && REG_P (SET_DEST (pat))
2613 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2615 rtx_insn *next = next_nonnote_insn (trial);
2617 if (next && NONJUMP_INSN_P (next)
2618 && GET_CODE (PATTERN (next)) != USE
2619 && ! reg_set_p (SET_DEST (pat), next)
2620 && ! reg_set_p (SET_SRC (pat), next)
2621 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2622 && ! modified_in_p (SET_DEST (pat), next))
2623 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2627 /* If we stopped on a branch insn that has delay slots, see if we can
2628 steal some of the insns in those slots. */
2629 if (trial && NONJUMP_INSN_P (trial)
2630 && GET_CODE (PATTERN (trial)) == SEQUENCE
2631 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2633 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (trial));
2634 /* If this is the `true' thread, we will want to follow the jump,
2635 so we can only do this if we have taken everything up to here. */
2636 if (thread_if_true && trial == new_thread)
2638 steal_delay_list_from_target (insn, condition, sequence,
2639 delay_list, &set, &needed,
2640 &opposite_needed, slots_to_fill,
2641 pslots_filled, &must_annul,
2642 &new_thread);
2643 /* If we owned the thread and are told that it branched
2644 elsewhere, make sure we own the thread at the new location. */
2645 if (own_thread && trial != new_thread)
2646 own_thread = own_thread_p (new_thread, new_thread, 0);
2648 else if (! thread_if_true)
2649 steal_delay_list_from_fallthrough (insn, condition, sequence,
2650 delay_list, &set, &needed,
2651 &opposite_needed, slots_to_fill,
2652 pslots_filled, &must_annul);
2655 /* If we haven't found anything for this delay slot and it is very
2656 likely that the branch will be taken, see if the insn at our target
2657 increments or decrements a register with an increment that does not
2658 depend on the destination register. If so, try to place the opposite
2659 arithmetic insn after the jump insn and put the arithmetic insn in the
2660 delay slot. If we can't do this, return. */
2661 if (delay_list->is_empty () && likely
2662 && new_thread && !ANY_RETURN_P (new_thread)
2663 && NONJUMP_INSN_P (new_thread)
2664 && !RTX_FRAME_RELATED_P (new_thread)
2665 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2666 && asm_noperands (PATTERN (new_thread)) < 0)
2668 rtx pat = PATTERN (new_thread);
2669 rtx dest;
2670 rtx src;
2672 /* We know "new_thread" is an insn due to NONJUMP_INSN_P (new_thread)
2673 above. */
2674 trial = as_a <rtx_insn *> (new_thread);
2675 pat = PATTERN (trial);
2677 if (!NONJUMP_INSN_P (trial)
2678 || GET_CODE (pat) != SET
2679 || ! eligible_for_delay (insn, 0, trial, flags)
2680 || can_throw_internal (trial))
2681 return;
2683 dest = SET_DEST (pat), src = SET_SRC (pat);
2684 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2685 && rtx_equal_p (XEXP (src, 0), dest)
2686 && (!FLOAT_MODE_P (GET_MODE (src))
2687 || flag_unsafe_math_optimizations)
2688 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2689 && ! side_effects_p (pat))
2691 rtx other = XEXP (src, 1);
2692 rtx new_arith;
2693 rtx_insn *ninsn;
2695 /* If this is a constant adjustment, use the same code with
2696 the negated constant. Otherwise, reverse the sense of the
2697 arithmetic. */
2698 if (CONST_INT_P (other))
2699 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2700 negate_rtx (GET_MODE (src), other));
2701 else
2702 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2703 GET_MODE (src), dest, other);
2705 ninsn = emit_insn_after (gen_rtx_SET (dest, new_arith), insn);
2707 if (recog_memoized (ninsn) < 0
2708 || (extract_insn (ninsn),
2709 !constrain_operands (1, get_preferred_alternatives (ninsn))))
2711 delete_related_insns (ninsn);
2712 return;
2715 if (own_thread)
2717 update_block (trial, thread);
2718 if (trial == thread)
2720 thread = next_active_insn (thread);
2721 if (new_thread == trial)
2722 new_thread = thread;
2724 delete_related_insns (trial);
2726 else
2727 new_thread = next_active_insn (trial);
2729 ninsn = own_thread ? trial : copy_delay_slot_insn (trial);
2730 if (thread_if_true)
2731 INSN_FROM_TARGET_P (ninsn) = 1;
2733 add_to_delay_list (ninsn, delay_list);
2734 (*pslots_filled)++;
2738 if (!delay_list->is_empty () && must_annul)
2739 INSN_ANNULLED_BRANCH_P (insn) = 1;
2741 /* If we are to branch into the middle of this thread, find an appropriate
2742 label or make a new one if none, and redirect INSN to it. If we hit the
2743 end of the function, use the end-of-function label. */
2744 if (new_thread != thread)
2746 rtx label;
2747 bool crossing = false;
2749 gcc_assert (thread_if_true);
2751 if (new_thread && simplejump_or_return_p (new_thread)
2752 && redirect_with_delay_list_safe_p (insn,
2753 JUMP_LABEL (new_thread),
2754 *delay_list))
2755 new_thread = follow_jumps (JUMP_LABEL (new_thread), insn,
2756 &crossing);
2758 if (ANY_RETURN_P (new_thread))
2759 label = find_end_label (new_thread);
2760 else if (LABEL_P (new_thread))
2761 label = new_thread;
2762 else
2763 label = get_label_before (as_a <rtx_insn *> (new_thread),
2764 JUMP_LABEL (insn));
2766 if (label)
2768 reorg_redirect_jump (insn, label);
2769 if (crossing)
2770 CROSSING_JUMP_P (insn) = 1;
2775 /* Make another attempt to find insns to place in delay slots.
2777 We previously looked for insns located in front of the delay insn
2778 and, for non-jump delay insns, located behind the delay insn.
2780 Here only try to schedule jump insns and try to move insns from either
2781 the target or the following insns into the delay slot. If annulling is
2782 supported, we will be likely to do this. Otherwise, we can do this only
2783 if safe. */
2785 static void
2786 fill_eager_delay_slots (void)
2788 rtx_insn *insn;
2789 int i;
2790 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2792 for (i = 0; i < num_unfilled_slots; i++)
2794 rtx condition;
2795 rtx target_label, insn_at_target;
2796 rtx_insn *fallthrough_insn;
2797 auto_vec<rtx_insn *, 5> delay_list;
2798 rtx_jump_insn *jump_insn;
2799 int own_target;
2800 int own_fallthrough;
2801 int prediction, slots_to_fill, slots_filled;
2803 insn = unfilled_slots_base[i];
2804 if (insn == 0
2805 || insn->deleted ()
2806 || ! (jump_insn = dyn_cast <rtx_jump_insn *> (insn))
2807 || ! (condjump_p (jump_insn) || condjump_in_parallel_p (jump_insn)))
2808 continue;
2810 slots_to_fill = num_delay_slots (jump_insn);
2811 /* Some machine description have defined instructions to have
2812 delay slots only in certain circumstances which may depend on
2813 nearby insns (which change due to reorg's actions).
2815 For example, the PA port normally has delay slots for unconditional
2816 jumps.
2818 However, the PA port claims such jumps do not have a delay slot
2819 if they are immediate successors of certain CALL_INSNs. This
2820 allows the port to favor filling the delay slot of the call with
2821 the unconditional jump. */
2822 if (slots_to_fill == 0)
2823 continue;
2825 slots_filled = 0;
2826 target_label = JUMP_LABEL (jump_insn);
2827 condition = get_branch_condition (jump_insn, target_label);
2829 if (condition == 0)
2830 continue;
2832 /* Get the next active fallthrough and target insns and see if we own
2833 them. Then see whether the branch is likely true. We don't need
2834 to do a lot of this for unconditional branches. */
2836 insn_at_target = first_active_target_insn (target_label);
2837 own_target = own_thread_p (target_label, target_label, 0);
2839 if (condition == const_true_rtx)
2841 own_fallthrough = 0;
2842 fallthrough_insn = 0;
2843 prediction = 2;
2845 else
2847 fallthrough_insn = next_active_insn (jump_insn);
2848 own_fallthrough = own_thread_p (NEXT_INSN (jump_insn), NULL_RTX, 1);
2849 prediction = mostly_true_jump (jump_insn);
2852 /* If this insn is expected to branch, first try to get insns from our
2853 target, then our fallthrough insns. If it is not expected to branch,
2854 try the other order. */
2856 if (prediction > 0)
2858 fill_slots_from_thread (jump_insn, condition, insn_at_target,
2859 fallthrough_insn, prediction == 2, 1,
2860 own_target,
2861 slots_to_fill, &slots_filled, &delay_list);
2863 if (delay_list.is_empty () && own_fallthrough)
2865 /* Even though we didn't find anything for delay slots,
2866 we might have found a redundant insn which we deleted
2867 from the thread that was filled. So we have to recompute
2868 the next insn at the target. */
2869 target_label = JUMP_LABEL (jump_insn);
2870 insn_at_target = first_active_target_insn (target_label);
2872 fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
2873 insn_at_target, 0, 0, own_fallthrough,
2874 slots_to_fill, &slots_filled,
2875 &delay_list);
2878 else
2880 if (own_fallthrough)
2881 fill_slots_from_thread (jump_insn, condition, fallthrough_insn,
2882 insn_at_target, 0, 0, own_fallthrough,
2883 slots_to_fill, &slots_filled, &delay_list);
2885 if (delay_list.is_empty ())
2886 fill_slots_from_thread (jump_insn, condition, insn_at_target,
2887 next_active_insn (insn), 0, 1, own_target,
2888 slots_to_fill, &slots_filled, &delay_list);
2891 if (!delay_list.is_empty ())
2892 unfilled_slots_base[i]
2893 = emit_delay_sequence (jump_insn, delay_list, slots_filled);
2895 if (slots_to_fill == slots_filled)
2896 unfilled_slots_base[i] = 0;
2898 note_delay_statistics (slots_filled, 1);
2902 static void delete_computation (rtx_insn *insn);
2904 /* Recursively delete prior insns that compute the value (used only by INSN
2905 which the caller is deleting) stored in the register mentioned by NOTE
2906 which is a REG_DEAD note associated with INSN. */
2908 static void
2909 delete_prior_computation (rtx note, rtx_insn *insn)
2911 rtx_insn *our_prev;
2912 rtx reg = XEXP (note, 0);
2914 for (our_prev = prev_nonnote_insn (insn);
2915 our_prev && (NONJUMP_INSN_P (our_prev)
2916 || CALL_P (our_prev));
2917 our_prev = prev_nonnote_insn (our_prev))
2919 rtx pat = PATTERN (our_prev);
2921 /* If we reach a CALL which is not calling a const function
2922 or the callee pops the arguments, then give up. */
2923 if (CALL_P (our_prev)
2924 && (! RTL_CONST_CALL_P (our_prev)
2925 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2926 break;
2928 /* If we reach a SEQUENCE, it is too complex to try to
2929 do anything with it, so give up. We can be run during
2930 and after reorg, so SEQUENCE rtl can legitimately show
2931 up here. */
2932 if (GET_CODE (pat) == SEQUENCE)
2933 break;
2935 if (GET_CODE (pat) == USE
2936 && NONJUMP_INSN_P (XEXP (pat, 0)))
2937 /* reorg creates USEs that look like this. We leave them
2938 alone because reorg needs them for its own purposes. */
2939 break;
2941 if (reg_set_p (reg, pat))
2943 if (side_effects_p (pat) && !CALL_P (our_prev))
2944 break;
2946 if (GET_CODE (pat) == PARALLEL)
2948 /* If we find a SET of something else, we can't
2949 delete the insn. */
2951 int i;
2953 for (i = 0; i < XVECLEN (pat, 0); i++)
2955 rtx part = XVECEXP (pat, 0, i);
2957 if (GET_CODE (part) == SET
2958 && SET_DEST (part) != reg)
2959 break;
2962 if (i == XVECLEN (pat, 0))
2963 delete_computation (our_prev);
2965 else if (GET_CODE (pat) == SET
2966 && REG_P (SET_DEST (pat)))
2968 int dest_regno = REGNO (SET_DEST (pat));
2969 int dest_endregno = END_REGNO (SET_DEST (pat));
2970 int regno = REGNO (reg);
2971 int endregno = END_REGNO (reg);
2973 if (dest_regno >= regno
2974 && dest_endregno <= endregno)
2975 delete_computation (our_prev);
2977 /* We may have a multi-word hard register and some, but not
2978 all, of the words of the register are needed in subsequent
2979 insns. Write REG_UNUSED notes for those parts that were not
2980 needed. */
2981 else if (dest_regno <= regno
2982 && dest_endregno >= endregno)
2984 int i;
2986 add_reg_note (our_prev, REG_UNUSED, reg);
2988 for (i = dest_regno; i < dest_endregno; i++)
2989 if (! find_regno_note (our_prev, REG_UNUSED, i))
2990 break;
2992 if (i == dest_endregno)
2993 delete_computation (our_prev);
2997 break;
3000 /* If PAT references the register that dies here, it is an
3001 additional use. Hence any prior SET isn't dead. However, this
3002 insn becomes the new place for the REG_DEAD note. */
3003 if (reg_overlap_mentioned_p (reg, pat))
3005 XEXP (note, 1) = REG_NOTES (our_prev);
3006 REG_NOTES (our_prev) = note;
3007 break;
3012 /* Delete INSN and recursively delete insns that compute values used only
3013 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3015 Look at all our REG_DEAD notes. If a previous insn does nothing other
3016 than set a register that dies in this insn, we can delete that insn
3017 as well.
3019 On machines with CC0, if CC0 is used in this insn, we may be able to
3020 delete the insn that set it. */
3022 static void
3023 delete_computation (rtx_insn *insn)
3025 rtx note, next;
3027 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
3029 rtx_insn *prev = prev_nonnote_insn (insn);
3030 /* We assume that at this stage
3031 CC's are always set explicitly
3032 and always immediately before the jump that
3033 will use them. So if the previous insn
3034 exists to set the CC's, delete it
3035 (unless it performs auto-increments, etc.). */
3036 if (prev && NONJUMP_INSN_P (prev)
3037 && sets_cc0_p (PATTERN (prev)))
3039 if (sets_cc0_p (PATTERN (prev)) > 0
3040 && ! side_effects_p (PATTERN (prev)))
3041 delete_computation (prev);
3042 else
3043 /* Otherwise, show that cc0 won't be used. */
3044 add_reg_note (prev, REG_UNUSED, cc0_rtx);
3048 for (note = REG_NOTES (insn); note; note = next)
3050 next = XEXP (note, 1);
3052 if (REG_NOTE_KIND (note) != REG_DEAD
3053 /* Verify that the REG_NOTE is legitimate. */
3054 || !REG_P (XEXP (note, 0)))
3055 continue;
3057 delete_prior_computation (note, insn);
3060 delete_related_insns (insn);
3063 /* If all INSN does is set the pc, delete it,
3064 and delete the insn that set the condition codes for it
3065 if that's what the previous thing was. */
3067 static void
3068 delete_jump (rtx_insn *insn)
3070 rtx set = single_set (insn);
3072 if (set && GET_CODE (SET_DEST (set)) == PC)
3073 delete_computation (insn);
3076 static rtx_insn *
3077 label_before_next_insn (rtx_insn *x, rtx scan_limit)
3079 rtx_insn *insn = next_active_insn (x);
3080 while (insn)
3082 insn = PREV_INSN (insn);
3083 if (insn == scan_limit || insn == NULL_RTX)
3084 return NULL;
3085 if (LABEL_P (insn))
3086 break;
3088 return insn;
3091 /* Return TRUE if there is a NOTE_INSN_SWITCH_TEXT_SECTIONS note in between
3092 BEG and END. */
3094 static bool
3095 switch_text_sections_between_p (const rtx_insn *beg, const rtx_insn *end)
3097 const rtx_insn *p;
3098 for (p = beg; p != end; p = NEXT_INSN (p))
3099 if (NOTE_P (p) && NOTE_KIND (p) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
3100 return true;
3101 return false;
3105 /* Once we have tried two ways to fill a delay slot, make a pass over the
3106 code to try to improve the results and to do such things as more jump
3107 threading. */
3109 static void
3110 relax_delay_slots (rtx_insn *first)
3112 rtx_insn *insn, *next;
3113 rtx_sequence *pat;
3114 rtx_insn *delay_insn;
3115 rtx target_label;
3117 /* Look at every JUMP_INSN and see if we can improve it. */
3118 for (insn = first; insn; insn = next)
3120 rtx_insn *other;
3121 bool crossing;
3123 next = next_active_insn (insn);
3125 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3126 the next insn, or jumps to a label that is not the last of a
3127 group of consecutive labels. */
3128 if (is_a <rtx_jump_insn *> (insn)
3129 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3130 && !ANY_RETURN_P (target_label = JUMP_LABEL (insn)))
3132 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (insn);
3133 target_label
3134 = skip_consecutive_labels (follow_jumps (target_label, jump_insn,
3135 &crossing));
3136 if (ANY_RETURN_P (target_label))
3137 target_label = find_end_label (target_label);
3139 if (target_label
3140 && next_active_insn (as_a<rtx_insn *> (target_label)) == next
3141 && ! condjump_in_parallel_p (jump_insn)
3142 && ! (next && switch_text_sections_between_p (jump_insn, next)))
3144 delete_jump (jump_insn);
3145 continue;
3148 if (target_label && target_label != JUMP_LABEL (jump_insn))
3150 reorg_redirect_jump (jump_insn, target_label);
3151 if (crossing)
3152 CROSSING_JUMP_P (jump_insn) = 1;
3155 /* See if this jump conditionally branches around an unconditional
3156 jump. If so, invert this jump and point it to the target of the
3157 second jump. Check if it's possible on the target. */
3158 if (next && simplejump_or_return_p (next)
3159 && any_condjump_p (jump_insn)
3160 && target_label
3161 && (next_active_insn (as_a<rtx_insn *> (target_label))
3162 == next_active_insn (next))
3163 && no_labels_between_p (jump_insn, next)
3164 && targetm.can_follow_jump (jump_insn, next))
3166 rtx label = JUMP_LABEL (next);
3168 /* Be careful how we do this to avoid deleting code or
3169 labels that are momentarily dead. See similar optimization
3170 in jump.c.
3172 We also need to ensure we properly handle the case when
3173 invert_jump fails. */
3175 ++LABEL_NUSES (target_label);
3176 if (!ANY_RETURN_P (label))
3177 ++LABEL_NUSES (label);
3179 if (invert_jump (jump_insn, label, 1))
3181 delete_related_insns (next);
3182 next = jump_insn;
3185 if (!ANY_RETURN_P (label))
3186 --LABEL_NUSES (label);
3188 if (--LABEL_NUSES (target_label) == 0)
3189 delete_related_insns (target_label);
3191 continue;
3195 /* If this is an unconditional jump and the previous insn is a
3196 conditional jump, try reversing the condition of the previous
3197 insn and swapping our targets. The next pass might be able to
3198 fill the slots.
3200 Don't do this if we expect the conditional branch to be true, because
3201 we would then be making the more common case longer. */
3203 if (simplejump_or_return_p (insn)
3204 && (other = prev_active_insn (insn)) != 0
3205 && any_condjump_p (other)
3206 && no_labels_between_p (other, insn)
3207 && 0 > mostly_true_jump (other))
3209 rtx other_target = JUMP_LABEL (other);
3210 target_label = JUMP_LABEL (insn);
3212 if (invert_jump (as_a <rtx_jump_insn *> (other), target_label, 0))
3213 reorg_redirect_jump (as_a <rtx_jump_insn *> (insn), other_target);
3216 /* Now look only at cases where we have a filled delay slot. */
3217 if (!NONJUMP_INSN_P (insn) || GET_CODE (PATTERN (insn)) != SEQUENCE)
3218 continue;
3220 pat = as_a <rtx_sequence *> (PATTERN (insn));
3221 delay_insn = pat->insn (0);
3223 /* See if the first insn in the delay slot is redundant with some
3224 previous insn. Remove it from the delay slot if so; then set up
3225 to reprocess this insn. */
3226 if (redundant_insn (pat->insn (1), delay_insn, vNULL))
3228 update_block (pat->insn (1), insn);
3229 delete_from_delay_slot (pat->insn (1));
3230 next = prev_active_insn (next);
3231 continue;
3234 /* See if we have a RETURN insn with a filled delay slot followed
3235 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3236 the first RETURN (but not its delay insn). This gives the same
3237 effect in fewer instructions.
3239 Only do so if optimizing for size since this results in slower, but
3240 smaller code. */
3241 if (optimize_function_for_size_p (cfun)
3242 && ANY_RETURN_P (PATTERN (delay_insn))
3243 && next
3244 && JUMP_P (next)
3245 && PATTERN (next) == PATTERN (delay_insn))
3247 rtx_insn *after;
3248 int i;
3250 /* Delete the RETURN and just execute the delay list insns.
3252 We do this by deleting the INSN containing the SEQUENCE, then
3253 re-emitting the insns separately, and then deleting the RETURN.
3254 This allows the count of the jump target to be properly
3255 decremented.
3257 Note that we need to change the INSN_UID of the re-emitted insns
3258 since it is used to hash the insns for mark_target_live_regs and
3259 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3261 Clear the from target bit, since these insns are no longer
3262 in delay slots. */
3263 for (i = 0; i < XVECLEN (pat, 0); i++)
3264 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3266 rtx_insn *prev = PREV_INSN (insn);
3267 delete_related_insns (insn);
3268 gcc_assert (GET_CODE (pat) == SEQUENCE);
3269 add_insn_after (delay_insn, prev, NULL);
3270 after = delay_insn;
3271 for (i = 1; i < pat->len (); i++)
3272 after = emit_copy_of_insn_after (pat->insn (i), after);
3273 delete_scheduled_jump (delay_insn);
3274 continue;
3277 /* Now look only at the cases where we have a filled JUMP_INSN. */
3278 rtx_jump_insn *delay_jump_insn =
3279 dyn_cast <rtx_jump_insn *> (delay_insn);
3280 if (! delay_jump_insn || !(condjump_p (delay_jump_insn)
3281 || condjump_in_parallel_p (delay_jump_insn)))
3282 continue;
3284 target_label = JUMP_LABEL (delay_jump_insn);
3285 if (target_label && ANY_RETURN_P (target_label))
3286 continue;
3288 /* If this jump goes to another unconditional jump, thread it, but
3289 don't convert a jump into a RETURN here. */
3290 rtx trial = skip_consecutive_labels (follow_jumps (target_label,
3291 delay_jump_insn,
3292 &crossing));
3293 if (ANY_RETURN_P (trial))
3294 trial = find_end_label (trial);
3296 if (trial && trial != target_label
3297 && redirect_with_delay_slots_safe_p (delay_jump_insn, trial, insn))
3299 reorg_redirect_jump (delay_jump_insn, trial);
3300 target_label = trial;
3301 if (crossing)
3302 CROSSING_JUMP_P (delay_jump_insn) = 1;
3305 /* If the first insn at TARGET_LABEL is redundant with a previous
3306 insn, redirect the jump to the following insn and process again.
3307 We use next_real_insn instead of next_active_insn so we
3308 don't skip USE-markers, or we'll end up with incorrect
3309 liveness info. */
3310 trial = next_real_insn (target_label);
3311 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3312 && redundant_insn (trial, insn, vNULL)
3313 && ! can_throw_internal (trial))
3315 /* Figure out where to emit the special USE insn so we don't
3316 later incorrectly compute register live/death info. */
3317 rtx_insn *tmp = next_active_insn (as_a<rtx_insn *> (trial));
3318 if (tmp == 0)
3319 tmp = find_end_label (simple_return_rtx);
3321 if (tmp)
3323 /* Insert the special USE insn and update dataflow info.
3324 We know "trial" is an insn here as it is the output of
3325 next_real_insn () above. */
3326 update_block (as_a <rtx_insn *> (trial), tmp);
3328 /* Now emit a label before the special USE insn, and
3329 redirect our jump to the new label. */
3330 target_label = get_label_before (PREV_INSN (tmp), target_label);
3331 reorg_redirect_jump (delay_jump_insn, target_label);
3332 next = insn;
3333 continue;
3337 /* Similarly, if it is an unconditional jump with one insn in its
3338 delay list and that insn is redundant, thread the jump. */
3339 rtx_sequence *trial_seq =
3340 trial ? dyn_cast <rtx_sequence *> (PATTERN (trial)) : NULL;
3341 if (trial_seq
3342 && trial_seq->len () == 2
3343 && JUMP_P (trial_seq->insn (0))
3344 && simplejump_or_return_p (trial_seq->insn (0))
3345 && redundant_insn (trial_seq->insn (1), insn, vNULL))
3347 rtx temp_label = JUMP_LABEL (trial_seq->insn (0));
3348 if (ANY_RETURN_P (temp_label))
3349 temp_label = find_end_label (temp_label);
3351 if (temp_label
3352 && redirect_with_delay_slots_safe_p (delay_jump_insn,
3353 temp_label, insn))
3355 update_block (trial_seq->insn (1), insn);
3356 reorg_redirect_jump (delay_jump_insn, temp_label);
3357 next = insn;
3358 continue;
3362 /* See if we have a simple (conditional) jump that is useless. */
3363 if (! INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3364 && ! condjump_in_parallel_p (delay_jump_insn)
3365 && prev_active_insn (as_a<rtx_insn *> (target_label)) == insn
3366 && ! BARRIER_P (prev_nonnote_insn (as_a<rtx_insn *> (target_label)))
3367 /* If the last insn in the delay slot sets CC0 for some insn,
3368 various code assumes that it is in a delay slot. We could
3369 put it back where it belonged and delete the register notes,
3370 but it doesn't seem worthwhile in this uncommon case. */
3371 && (!HAVE_cc0
3372 || ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3373 REG_CC_USER, NULL_RTX)))
3375 rtx_insn *after;
3376 int i;
3378 /* All this insn does is execute its delay list and jump to the
3379 following insn. So delete the jump and just execute the delay
3380 list insns.
3382 We do this by deleting the INSN containing the SEQUENCE, then
3383 re-emitting the insns separately, and then deleting the jump.
3384 This allows the count of the jump target to be properly
3385 decremented.
3387 Note that we need to change the INSN_UID of the re-emitted insns
3388 since it is used to hash the insns for mark_target_live_regs and
3389 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3391 Clear the from target bit, since these insns are no longer
3392 in delay slots. */
3393 for (i = 0; i < XVECLEN (pat, 0); i++)
3394 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3396 rtx_insn *prev = PREV_INSN (insn);
3397 delete_related_insns (insn);
3398 gcc_assert (GET_CODE (pat) == SEQUENCE);
3399 add_insn_after (delay_jump_insn, prev, NULL);
3400 after = delay_jump_insn;
3401 for (i = 1; i < pat->len (); i++)
3402 after = emit_copy_of_insn_after (pat->insn (i), after);
3403 delete_scheduled_jump (delay_jump_insn);
3404 continue;
3407 /* See if this is an unconditional jump around a single insn which is
3408 identical to the one in its delay slot. In this case, we can just
3409 delete the branch and the insn in its delay slot. */
3410 if (next && NONJUMP_INSN_P (next)
3411 && label_before_next_insn (next, insn) == target_label
3412 && simplejump_p (insn)
3413 && XVECLEN (pat, 0) == 2
3414 && rtx_equal_p (PATTERN (next), PATTERN (pat->insn (1))))
3416 delete_related_insns (insn);
3417 continue;
3420 /* See if this jump (with its delay slots) conditionally branches
3421 around an unconditional jump (without delay slots). If so, invert
3422 this jump and point it to the target of the second jump. We cannot
3423 do this for annulled jumps, though. Again, don't convert a jump to
3424 a RETURN here. */
3425 if (! INSN_ANNULLED_BRANCH_P (delay_jump_insn)
3426 && any_condjump_p (delay_jump_insn)
3427 && next && simplejump_or_return_p (next)
3428 && (next_active_insn (as_a<rtx_insn *> (target_label))
3429 == next_active_insn (next))
3430 && no_labels_between_p (insn, next))
3432 rtx label = JUMP_LABEL (next);
3433 rtx old_label = JUMP_LABEL (delay_jump_insn);
3435 if (ANY_RETURN_P (label))
3436 label = find_end_label (label);
3438 /* find_end_label can generate a new label. Check this first. */
3439 if (label
3440 && no_labels_between_p (insn, next)
3441 && redirect_with_delay_slots_safe_p (delay_jump_insn,
3442 label, insn))
3444 /* Be careful how we do this to avoid deleting code or labels
3445 that are momentarily dead. See similar optimization in
3446 jump.c */
3447 if (old_label)
3448 ++LABEL_NUSES (old_label);
3450 if (invert_jump (delay_jump_insn, label, 1))
3452 int i;
3454 /* Must update the INSN_FROM_TARGET_P bits now that
3455 the branch is reversed, so that mark_target_live_regs
3456 will handle the delay slot insn correctly. */
3457 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3459 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3460 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3463 delete_related_insns (next);
3464 next = insn;
3467 if (old_label && --LABEL_NUSES (old_label) == 0)
3468 delete_related_insns (old_label);
3469 continue;
3473 /* If we own the thread opposite the way this insn branches, see if we
3474 can merge its delay slots with following insns. */
3475 if (INSN_FROM_TARGET_P (pat->insn (1))
3476 && own_thread_p (NEXT_INSN (insn), 0, 1))
3477 try_merge_delay_insns (insn, next);
3478 else if (! INSN_FROM_TARGET_P (pat->insn (1))
3479 && own_thread_p (target_label, target_label, 0))
3480 try_merge_delay_insns (insn,
3481 next_active_insn (as_a<rtx_insn *> (target_label)));
3483 /* If we get here, we haven't deleted INSN. But we may have deleted
3484 NEXT, so recompute it. */
3485 next = next_active_insn (insn);
3490 /* Look for filled jumps to the end of function label. We can try to convert
3491 them into RETURN insns if the insns in the delay slot are valid for the
3492 RETURN as well. */
3494 static void
3495 make_return_insns (rtx_insn *first)
3497 rtx_insn *insn;
3498 rtx_jump_insn *jump_insn;
3499 rtx real_return_label = function_return_label;
3500 rtx real_simple_return_label = function_simple_return_label;
3501 int slots, i;
3503 /* See if there is a RETURN insn in the function other than the one we
3504 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3505 into a RETURN to jump to it. */
3506 for (insn = first; insn; insn = NEXT_INSN (insn))
3507 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
3509 rtx t = get_label_before (insn, NULL_RTX);
3510 if (PATTERN (insn) == ret_rtx)
3511 real_return_label = t;
3512 else
3513 real_simple_return_label = t;
3514 break;
3517 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3518 was equal to END_OF_FUNCTION_LABEL. */
3519 if (real_return_label)
3520 LABEL_NUSES (real_return_label)++;
3521 if (real_simple_return_label)
3522 LABEL_NUSES (real_simple_return_label)++;
3524 /* Clear the list of insns to fill so we can use it. */
3525 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3527 for (insn = first; insn; insn = NEXT_INSN (insn))
3529 int flags;
3530 rtx kind, real_label;
3532 /* Only look at filled JUMP_INSNs that go to the end of function
3533 label. */
3534 if (!NONJUMP_INSN_P (insn))
3535 continue;
3537 if (GET_CODE (PATTERN (insn)) != SEQUENCE)
3538 continue;
3540 rtx_sequence *pat = as_a <rtx_sequence *> (PATTERN (insn));
3542 if (!jump_to_label_p (pat->insn (0)))
3543 continue;
3545 if (JUMP_LABEL (pat->insn (0)) == function_return_label)
3547 kind = ret_rtx;
3548 real_label = real_return_label;
3550 else if (JUMP_LABEL (pat->insn (0)) == function_simple_return_label)
3552 kind = simple_return_rtx;
3553 real_label = real_simple_return_label;
3555 else
3556 continue;
3558 jump_insn = as_a <rtx_jump_insn *> (pat->insn (0));
3560 /* If we can't make the jump into a RETURN, try to redirect it to the best
3561 RETURN and go on to the next insn. */
3562 if (!reorg_redirect_jump (jump_insn, kind))
3564 /* Make sure redirecting the jump will not invalidate the delay
3565 slot insns. */
3566 if (redirect_with_delay_slots_safe_p (jump_insn, real_label, insn))
3567 reorg_redirect_jump (jump_insn, real_label);
3568 continue;
3571 /* See if this RETURN can accept the insns current in its delay slot.
3572 It can if it has more or an equal number of slots and the contents
3573 of each is valid. */
3575 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3576 slots = num_delay_slots (jump_insn);
3577 if (slots >= XVECLEN (pat, 0) - 1)
3579 for (i = 1; i < XVECLEN (pat, 0); i++)
3580 if (! (
3581 #if ANNUL_IFFALSE_SLOTS
3582 (INSN_ANNULLED_BRANCH_P (jump_insn)
3583 && INSN_FROM_TARGET_P (pat->insn (i)))
3584 ? eligible_for_annul_false (jump_insn, i - 1,
3585 pat->insn (i), flags) :
3586 #endif
3587 #if ANNUL_IFTRUE_SLOTS
3588 (INSN_ANNULLED_BRANCH_P (jump_insn)
3589 && ! INSN_FROM_TARGET_P (pat->insn (i)))
3590 ? eligible_for_annul_true (jump_insn, i - 1,
3591 pat->insn (i), flags) :
3592 #endif
3593 eligible_for_delay (jump_insn, i - 1,
3594 pat->insn (i), flags)))
3595 break;
3597 else
3598 i = 0;
3600 if (i == XVECLEN (pat, 0))
3601 continue;
3603 /* We have to do something with this insn. If it is an unconditional
3604 RETURN, delete the SEQUENCE and output the individual insns,
3605 followed by the RETURN. Then set things up so we try to find
3606 insns for its delay slots, if it needs some. */
3607 if (ANY_RETURN_P (PATTERN (jump_insn)))
3609 rtx_insn *prev = PREV_INSN (insn);
3611 delete_related_insns (insn);
3612 for (i = 1; i < XVECLEN (pat, 0); i++)
3613 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3615 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3616 emit_barrier_after (insn);
3618 if (slots)
3619 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3621 else
3622 /* It is probably more efficient to keep this with its current
3623 delay slot as a branch to a RETURN. */
3624 reorg_redirect_jump (jump_insn, real_label);
3627 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3628 new delay slots we have created. */
3629 if (real_return_label != NULL_RTX && --LABEL_NUSES (real_return_label) == 0)
3630 delete_related_insns (real_return_label);
3631 if (real_simple_return_label != NULL_RTX
3632 && --LABEL_NUSES (real_simple_return_label) == 0)
3633 delete_related_insns (real_simple_return_label);
3635 fill_simple_delay_slots (1);
3636 fill_simple_delay_slots (0);
3639 /* Try to find insns to place in delay slots. */
3641 static void
3642 dbr_schedule (rtx_insn *first)
3644 rtx_insn *insn, *next, *epilogue_insn = 0;
3645 int i;
3646 bool need_return_insns;
3648 /* If the current function has no insns other than the prologue and
3649 epilogue, then do not try to fill any delay slots. */
3650 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3651 return;
3653 /* Find the highest INSN_UID and allocate and initialize our map from
3654 INSN_UID's to position in code. */
3655 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3657 if (INSN_UID (insn) > max_uid)
3658 max_uid = INSN_UID (insn);
3659 if (NOTE_P (insn)
3660 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3661 epilogue_insn = insn;
3664 uid_to_ruid = XNEWVEC (int, max_uid + 1);
3665 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3666 uid_to_ruid[INSN_UID (insn)] = i;
3668 /* Initialize the list of insns that need filling. */
3669 if (unfilled_firstobj == 0)
3671 gcc_obstack_init (&unfilled_slots_obstack);
3672 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3675 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3677 rtx target;
3679 /* Skip vector tables. We can't get attributes for them. */
3680 if (JUMP_TABLE_DATA_P (insn))
3681 continue;
3683 if (JUMP_P (insn))
3684 INSN_ANNULLED_BRANCH_P (insn) = 0;
3685 INSN_FROM_TARGET_P (insn) = 0;
3687 if (num_delay_slots (insn) > 0)
3688 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3690 /* Ensure all jumps go to the last of a set of consecutive labels. */
3691 if (JUMP_P (insn)
3692 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3693 && !ANY_RETURN_P (JUMP_LABEL (insn))
3694 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3695 != JUMP_LABEL (insn)))
3696 redirect_jump (as_a <rtx_jump_insn *> (insn), target, 1);
3699 init_resource_info (epilogue_insn);
3701 /* Show we haven't computed an end-of-function label yet. */
3702 function_return_label = function_simple_return_label = NULL;
3704 /* Initialize the statistics for this function. */
3705 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3706 memset (num_filled_delays, 0, sizeof num_filled_delays);
3708 /* Now do the delay slot filling. Try everything twice in case earlier
3709 changes make more slots fillable. */
3711 for (reorg_pass_number = 0;
3712 reorg_pass_number < MAX_REORG_PASSES;
3713 reorg_pass_number++)
3715 fill_simple_delay_slots (1);
3716 fill_simple_delay_slots (0);
3717 if (!targetm.no_speculation_in_delay_slots_p ())
3718 fill_eager_delay_slots ();
3719 relax_delay_slots (first);
3722 /* If we made an end of function label, indicate that it is now
3723 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3724 If it is now unused, delete it. */
3725 if (function_return_label && --LABEL_NUSES (function_return_label) == 0)
3726 delete_related_insns (function_return_label);
3727 if (function_simple_return_label
3728 && --LABEL_NUSES (function_simple_return_label) == 0)
3729 delete_related_insns (function_simple_return_label);
3731 need_return_insns = false;
3732 need_return_insns |= targetm.have_return () && function_return_label != 0;
3733 need_return_insns |= (targetm.have_simple_return ()
3734 && function_simple_return_label != 0);
3735 if (need_return_insns)
3736 make_return_insns (first);
3738 /* Delete any USE insns made by update_block; subsequent passes don't need
3739 them or know how to deal with them. */
3740 for (insn = first; insn; insn = next)
3742 next = NEXT_INSN (insn);
3744 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3745 && INSN_P (XEXP (PATTERN (insn), 0)))
3746 next = delete_related_insns (insn);
3749 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3751 /* It is not clear why the line below is needed, but it does seem to be. */
3752 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3754 if (dump_file)
3756 int i, j, need_comma;
3757 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3758 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3760 for (reorg_pass_number = 0;
3761 reorg_pass_number < MAX_REORG_PASSES;
3762 reorg_pass_number++)
3764 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3765 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3767 need_comma = 0;
3768 fprintf (dump_file, ";; Reorg function #%d\n", i);
3770 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3771 num_insns_needing_delays[i][reorg_pass_number]);
3773 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3774 if (num_filled_delays[i][j][reorg_pass_number])
3776 if (need_comma)
3777 fprintf (dump_file, ", ");
3778 need_comma = 1;
3779 fprintf (dump_file, "%d got %d delays",
3780 num_filled_delays[i][j][reorg_pass_number], j);
3782 fprintf (dump_file, "\n");
3785 memset (total_delay_slots, 0, sizeof total_delay_slots);
3786 memset (total_annul_slots, 0, sizeof total_annul_slots);
3787 for (insn = first; insn; insn = NEXT_INSN (insn))
3789 if (! insn->deleted ()
3790 && NONJUMP_INSN_P (insn)
3791 && GET_CODE (PATTERN (insn)) != USE
3792 && GET_CODE (PATTERN (insn)) != CLOBBER)
3794 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3796 rtx control;
3797 j = XVECLEN (PATTERN (insn), 0) - 1;
3798 if (j > MAX_DELAY_HISTOGRAM)
3799 j = MAX_DELAY_HISTOGRAM;
3800 control = XVECEXP (PATTERN (insn), 0, 0);
3801 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
3802 total_annul_slots[j]++;
3803 else
3804 total_delay_slots[j]++;
3806 else if (num_delay_slots (insn) > 0)
3807 total_delay_slots[0]++;
3810 fprintf (dump_file, ";; Reorg totals: ");
3811 need_comma = 0;
3812 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3814 if (total_delay_slots[j])
3816 if (need_comma)
3817 fprintf (dump_file, ", ");
3818 need_comma = 1;
3819 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3822 fprintf (dump_file, "\n");
3824 if (ANNUL_IFTRUE_SLOTS || ANNUL_IFFALSE_SLOTS)
3826 fprintf (dump_file, ";; Reorg annuls: ");
3827 need_comma = 0;
3828 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3830 if (total_annul_slots[j])
3832 if (need_comma)
3833 fprintf (dump_file, ", ");
3834 need_comma = 1;
3835 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
3838 fprintf (dump_file, "\n");
3841 fprintf (dump_file, "\n");
3844 if (!sibling_labels.is_empty ())
3846 update_alignments (sibling_labels);
3847 sibling_labels.release ();
3850 free_resource_info ();
3851 free (uid_to_ruid);
3852 crtl->dbr_scheduled_p = true;
3855 /* Run delay slot optimization. */
3856 static unsigned int
3857 rest_of_handle_delay_slots (void)
3859 if (DELAY_SLOTS)
3860 dbr_schedule (get_insns ());
3862 return 0;
3865 namespace {
3867 const pass_data pass_data_delay_slots =
3869 RTL_PASS, /* type */
3870 "dbr", /* name */
3871 OPTGROUP_NONE, /* optinfo_flags */
3872 TV_DBR_SCHED, /* tv_id */
3873 0, /* properties_required */
3874 0, /* properties_provided */
3875 0, /* properties_destroyed */
3876 0, /* todo_flags_start */
3877 0, /* todo_flags_finish */
3880 class pass_delay_slots : public rtl_opt_pass
3882 public:
3883 pass_delay_slots (gcc::context *ctxt)
3884 : rtl_opt_pass (pass_data_delay_slots, ctxt)
3887 /* opt_pass methods: */
3888 virtual bool gate (function *);
3889 virtual unsigned int execute (function *)
3891 return rest_of_handle_delay_slots ();
3894 }; // class pass_delay_slots
3896 bool
3897 pass_delay_slots::gate (function *)
3899 /* At -O0 dataflow info isn't updated after RA. */
3900 if (DELAY_SLOTS)
3901 return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
3903 return false;
3906 } // anon namespace
3908 rtl_opt_pass *
3909 make_pass_delay_slots (gcc::context *ctxt)
3911 return new pass_delay_slots (ctxt);
3914 /* Machine dependent reorg pass. */
3916 namespace {
3918 const pass_data pass_data_machine_reorg =
3920 RTL_PASS, /* type */
3921 "mach", /* name */
3922 OPTGROUP_NONE, /* optinfo_flags */
3923 TV_MACH_DEP, /* tv_id */
3924 0, /* properties_required */
3925 0, /* properties_provided */
3926 0, /* properties_destroyed */
3927 0, /* todo_flags_start */
3928 0, /* todo_flags_finish */
3931 class pass_machine_reorg : public rtl_opt_pass
3933 public:
3934 pass_machine_reorg (gcc::context *ctxt)
3935 : rtl_opt_pass (pass_data_machine_reorg, ctxt)
3938 /* opt_pass methods: */
3939 virtual bool gate (function *)
3941 return targetm.machine_dependent_reorg != 0;
3944 virtual unsigned int execute (function *)
3946 targetm.machine_dependent_reorg ();
3947 return 0;
3950 }; // class pass_machine_reorg
3952 } // anon namespace
3954 rtl_opt_pass *
3955 make_pass_machine_reorg (gcc::context *ctxt)
3957 return new pass_machine_reorg (ctxt);