PR libstdc++/69450
[official-gcc.git] / gcc / var-tracking.c
blob9f09d30b1f91edb2a728c875222f5be719f07c0d
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "regs.h"
101 #include "emit-rtl.h"
102 #include "recog.h"
103 #include "diagnostic.h"
104 #include "varasm.h"
105 #include "stor-layout.h"
106 #include "cfgrtl.h"
107 #include "cfganal.h"
108 #include "reload.h"
109 #include "calls.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "cselib.h"
113 #include "params.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
118 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
119 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
121 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
122 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
123 Currently the value is the same as IDENTIFIER_NODE, which has such
124 a property. If this compile time assertion ever fails, make sure that
125 the new tree code that equals (int) VALUE has the same property. */
126 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128 /* Type of micro operation. */
129 enum micro_operation_type
131 MO_USE, /* Use location (REG or MEM). */
132 MO_USE_NO_VAR,/* Use location which is not associated with a variable
133 or the variable is not trackable. */
134 MO_VAL_USE, /* Use location which is associated with a value. */
135 MO_VAL_LOC, /* Use location which appears in a debug insn. */
136 MO_VAL_SET, /* Set location associated with a value. */
137 MO_SET, /* Set location. */
138 MO_COPY, /* Copy the same portion of a variable from one
139 location to another. */
140 MO_CLOBBER, /* Clobber location. */
141 MO_CALL, /* Call insn. */
142 MO_ADJUST /* Adjust stack pointer. */
146 static const char * const ATTRIBUTE_UNUSED
147 micro_operation_type_name[] = {
148 "MO_USE",
149 "MO_USE_NO_VAR",
150 "MO_VAL_USE",
151 "MO_VAL_LOC",
152 "MO_VAL_SET",
153 "MO_SET",
154 "MO_COPY",
155 "MO_CLOBBER",
156 "MO_CALL",
157 "MO_ADJUST"
160 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
161 Notes emitted as AFTER_CALL are to take effect during the call,
162 rather than after the call. */
163 enum emit_note_where
165 EMIT_NOTE_BEFORE_INSN,
166 EMIT_NOTE_AFTER_INSN,
167 EMIT_NOTE_AFTER_CALL_INSN
170 /* Structure holding information about micro operation. */
171 struct micro_operation
173 /* Type of micro operation. */
174 enum micro_operation_type type;
176 /* The instruction which the micro operation is in, for MO_USE,
177 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
178 instruction or note in the original flow (before any var-tracking
179 notes are inserted, to simplify emission of notes), for MO_SET
180 and MO_CLOBBER. */
181 rtx_insn *insn;
183 union {
184 /* Location. For MO_SET and MO_COPY, this is the SET that
185 performs the assignment, if known, otherwise it is the target
186 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
187 CONCAT of the VALUE and the LOC associated with it. For
188 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
189 associated with it. */
190 rtx loc;
192 /* Stack adjustment. */
193 HOST_WIDE_INT adjust;
194 } u;
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
202 /* Return true if a decl_or_value DV is a DECL or NULL. */
203 static inline bool
204 dv_is_decl_p (decl_or_value dv)
206 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
209 /* Return true if a decl_or_value is a VALUE rtl. */
210 static inline bool
211 dv_is_value_p (decl_or_value dv)
213 return dv && !dv_is_decl_p (dv);
216 /* Return the decl in the decl_or_value. */
217 static inline tree
218 dv_as_decl (decl_or_value dv)
220 gcc_checking_assert (dv_is_decl_p (dv));
221 return (tree) dv;
224 /* Return the value in the decl_or_value. */
225 static inline rtx
226 dv_as_value (decl_or_value dv)
228 gcc_checking_assert (dv_is_value_p (dv));
229 return (rtx)dv;
232 /* Return the opaque pointer in the decl_or_value. */
233 static inline void *
234 dv_as_opaque (decl_or_value dv)
236 return dv;
240 /* Description of location of a part of a variable. The content of a physical
241 register is described by a chain of these structures.
242 The chains are pretty short (usually 1 or 2 elements) and thus
243 chain is the best data structure. */
244 struct attrs
246 /* Pointer to next member of the list. */
247 attrs *next;
249 /* The rtx of register. */
250 rtx loc;
252 /* The declaration corresponding to LOC. */
253 decl_or_value dv;
255 /* Offset from start of DECL. */
256 HOST_WIDE_INT offset;
259 /* Structure for chaining the locations. */
260 struct location_chain
262 /* Next element in the chain. */
263 location_chain *next;
265 /* The location (REG, MEM or VALUE). */
266 rtx loc;
268 /* The "value" stored in this location. */
269 rtx set_src;
271 /* Initialized? */
272 enum var_init_status init;
275 /* A vector of loc_exp_dep holds the active dependencies of a one-part
276 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
277 location of DV. Each entry is also part of VALUE' s linked-list of
278 backlinks back to DV. */
279 struct loc_exp_dep
281 /* The dependent DV. */
282 decl_or_value dv;
283 /* The dependency VALUE or DECL_DEBUG. */
284 rtx value;
285 /* The next entry in VALUE's backlinks list. */
286 struct loc_exp_dep *next;
287 /* A pointer to the pointer to this entry (head or prev's next) in
288 the doubly-linked list. */
289 struct loc_exp_dep **pprev;
293 /* This data structure holds information about the depth of a variable
294 expansion. */
295 struct expand_depth
297 /* This measures the complexity of the expanded expression. It
298 grows by one for each level of expansion that adds more than one
299 operand. */
300 int complexity;
301 /* This counts the number of ENTRY_VALUE expressions in an
302 expansion. We want to minimize their use. */
303 int entryvals;
306 /* This data structure is allocated for one-part variables at the time
307 of emitting notes. */
308 struct onepart_aux
310 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
311 computation used the expansion of this variable, and that ought
312 to be notified should this variable change. If the DV's cur_loc
313 expanded to NULL, all components of the loc list are regarded as
314 active, so that any changes in them give us a chance to get a
315 location. Otherwise, only components of the loc that expanded to
316 non-NULL are regarded as active dependencies. */
317 loc_exp_dep *backlinks;
318 /* This holds the LOC that was expanded into cur_loc. We need only
319 mark a one-part variable as changed if the FROM loc is removed,
320 or if it has no known location and a loc is added, or if it gets
321 a change notification from any of its active dependencies. */
322 rtx from;
323 /* The depth of the cur_loc expression. */
324 expand_depth depth;
325 /* Dependencies actively used when expand FROM into cur_loc. */
326 vec<loc_exp_dep, va_heap, vl_embed> deps;
329 /* Structure describing one part of variable. */
330 struct variable_part
332 /* Chain of locations of the part. */
333 location_chain *loc_chain;
335 /* Location which was last emitted to location list. */
336 rtx cur_loc;
338 union variable_aux
340 /* The offset in the variable, if !var->onepart. */
341 HOST_WIDE_INT offset;
343 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
344 struct onepart_aux *onepaux;
345 } aux;
348 /* Maximum number of location parts. */
349 #define MAX_VAR_PARTS 16
351 /* Enumeration type used to discriminate various types of one-part
352 variables. */
353 enum onepart_enum
355 /* Not a one-part variable. */
356 NOT_ONEPART = 0,
357 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
358 ONEPART_VDECL = 1,
359 /* A DEBUG_EXPR_DECL. */
360 ONEPART_DEXPR = 2,
361 /* A VALUE. */
362 ONEPART_VALUE = 3
365 /* Structure describing where the variable is located. */
366 struct variable
368 /* The declaration of the variable, or an RTL value being handled
369 like a declaration. */
370 decl_or_value dv;
372 /* Reference count. */
373 int refcount;
375 /* Number of variable parts. */
376 char n_var_parts;
378 /* What type of DV this is, according to enum onepart_enum. */
379 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381 /* True if this variable_def struct is currently in the
382 changed_variables hash table. */
383 bool in_changed_variables;
385 /* The variable parts. */
386 variable_part var_part[1];
389 /* Pointer to the BB's information specific to variable tracking pass. */
390 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
392 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
393 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
395 #if CHECKING_P && (GCC_VERSION >= 2007)
397 /* Access VAR's Ith part's offset, checking that it's not a one-part
398 variable. */
399 #define VAR_PART_OFFSET(var, i) __extension__ \
400 (*({ variable *const __v = (var); \
401 gcc_checking_assert (!__v->onepart); \
402 &__v->var_part[(i)].aux.offset; }))
404 /* Access VAR's one-part auxiliary data, checking that it is a
405 one-part variable. */
406 #define VAR_LOC_1PAUX(var) __extension__ \
407 (*({ variable *const __v = (var); \
408 gcc_checking_assert (__v->onepart); \
409 &__v->var_part[0].aux.onepaux; }))
411 #else
412 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
413 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
414 #endif
416 /* These are accessor macros for the one-part auxiliary data. When
417 convenient for users, they're guarded by tests that the data was
418 allocated. */
419 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
420 ? VAR_LOC_1PAUX (var)->backlinks \
421 : NULL)
422 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
423 ? &VAR_LOC_1PAUX (var)->backlinks \
424 : NULL)
425 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
426 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
427 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
428 ? &VAR_LOC_1PAUX (var)->deps \
429 : NULL)
433 typedef unsigned int dvuid;
435 /* Return the uid of DV. */
437 static inline dvuid
438 dv_uid (decl_or_value dv)
440 if (dv_is_value_p (dv))
441 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
442 else
443 return DECL_UID (dv_as_decl (dv));
446 /* Compute the hash from the uid. */
448 static inline hashval_t
449 dv_uid2hash (dvuid uid)
451 return uid;
454 /* The hash function for a mask table in a shared_htab chain. */
456 static inline hashval_t
457 dv_htab_hash (decl_or_value dv)
459 return dv_uid2hash (dv_uid (dv));
462 static void variable_htab_free (void *);
464 /* Variable hashtable helpers. */
466 struct variable_hasher : pointer_hash <variable>
468 typedef void *compare_type;
469 static inline hashval_t hash (const variable *);
470 static inline bool equal (const variable *, const void *);
471 static inline void remove (variable *);
474 /* The hash function for variable_htab, computes the hash value
475 from the declaration of variable X. */
477 inline hashval_t
478 variable_hasher::hash (const variable *v)
480 return dv_htab_hash (v->dv);
483 /* Compare the declaration of variable X with declaration Y. */
485 inline bool
486 variable_hasher::equal (const variable *v, const void *y)
488 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
490 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
493 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
495 inline void
496 variable_hasher::remove (variable *var)
498 variable_htab_free (var);
501 typedef hash_table<variable_hasher> variable_table_type;
502 typedef variable_table_type::iterator variable_iterator_type;
504 /* Structure for passing some other parameters to function
505 emit_note_insn_var_location. */
506 struct emit_note_data
508 /* The instruction which the note will be emitted before/after. */
509 rtx_insn *insn;
511 /* Where the note will be emitted (before/after insn)? */
512 enum emit_note_where where;
514 /* The variables and values active at this point. */
515 variable_table_type *vars;
518 /* Structure holding a refcounted hash table. If refcount > 1,
519 it must be first unshared before modified. */
520 struct shared_hash
522 /* Reference count. */
523 int refcount;
525 /* Actual hash table. */
526 variable_table_type *htab;
529 /* Structure holding the IN or OUT set for a basic block. */
530 struct dataflow_set
532 /* Adjustment of stack offset. */
533 HOST_WIDE_INT stack_adjust;
535 /* Attributes for registers (lists of attrs). */
536 attrs *regs[FIRST_PSEUDO_REGISTER];
538 /* Variable locations. */
539 shared_hash *vars;
541 /* Vars that is being traversed. */
542 shared_hash *traversed_vars;
545 /* The structure (one for each basic block) containing the information
546 needed for variable tracking. */
547 struct variable_tracking_info
549 /* The vector of micro operations. */
550 vec<micro_operation> mos;
552 /* The IN and OUT set for dataflow analysis. */
553 dataflow_set in;
554 dataflow_set out;
556 /* The permanent-in dataflow set for this block. This is used to
557 hold values for which we had to compute entry values. ??? This
558 should probably be dynamically allocated, to avoid using more
559 memory in non-debug builds. */
560 dataflow_set *permp;
562 /* Has the block been visited in DFS? */
563 bool visited;
565 /* Has the block been flooded in VTA? */
566 bool flooded;
570 /* Alloc pool for struct attrs_def. */
571 object_allocator<attrs> attrs_pool ("attrs pool");
573 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
575 static pool_allocator var_pool
576 ("variable_def pool", sizeof (variable) +
577 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static pool_allocator valvar_pool
581 ("small variable_def pool", sizeof (variable));
583 /* Alloc pool for struct location_chain. */
584 static object_allocator<location_chain> location_chain_pool
585 ("location_chain pool");
587 /* Alloc pool for struct shared_hash. */
588 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
590 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
591 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
593 /* Changed variables, notes will be emitted for them. */
594 static variable_table_type *changed_variables;
596 /* Shall notes be emitted? */
597 static bool emit_notes;
599 /* Values whose dynamic location lists have gone empty, but whose
600 cselib location lists are still usable. Use this to hold the
601 current location, the backlinks, etc, during emit_notes. */
602 static variable_table_type *dropped_values;
604 /* Empty shared hashtable. */
605 static shared_hash *empty_shared_hash;
607 /* Scratch register bitmap used by cselib_expand_value_rtx. */
608 static bitmap scratch_regs = NULL;
610 #ifdef HAVE_window_save
611 struct GTY(()) parm_reg {
612 rtx outgoing;
613 rtx incoming;
617 /* Vector of windowed parameter registers, if any. */
618 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
619 #endif
621 /* Variable used to tell whether cselib_process_insn called our hook. */
622 static bool cselib_hook_called;
624 /* Local function prototypes. */
625 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
628 HOST_WIDE_INT *);
629 static bool vt_stack_adjustments (void);
631 static void init_attrs_list_set (attrs **);
632 static void attrs_list_clear (attrs **);
633 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
634 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
635 static void attrs_list_copy (attrs **, attrs *);
636 static void attrs_list_union (attrs **, attrs *);
638 static variable **unshare_variable (dataflow_set *set, variable **slot,
639 variable *var, enum var_init_status);
640 static void vars_copy (variable_table_type *, variable_table_type *);
641 static tree var_debug_decl (tree);
642 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
643 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
644 enum var_init_status, rtx);
645 static void var_reg_delete (dataflow_set *, rtx, bool);
646 static void var_regno_delete (dataflow_set *, int);
647 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
648 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
649 enum var_init_status, rtx);
650 static void var_mem_delete (dataflow_set *, rtx, bool);
652 static void dataflow_set_init (dataflow_set *);
653 static void dataflow_set_clear (dataflow_set *);
654 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
655 static int variable_union_info_cmp_pos (const void *, const void *);
656 static void dataflow_set_union (dataflow_set *, dataflow_set *);
657 static location_chain *find_loc_in_1pdv (rtx, variable *,
658 variable_table_type *);
659 static bool canon_value_cmp (rtx, rtx);
660 static int loc_cmp (rtx, rtx);
661 static bool variable_part_different_p (variable_part *, variable_part *);
662 static bool onepart_variable_different_p (variable *, variable *);
663 static bool variable_different_p (variable *, variable *);
664 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
665 static void dataflow_set_destroy (dataflow_set *);
667 static bool track_expr_p (tree, bool);
668 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
669 static void add_uses_1 (rtx *, void *);
670 static void add_stores (rtx, const_rtx, void *);
671 static bool compute_bb_dataflow (basic_block);
672 static bool vt_find_locations (void);
674 static void dump_attrs_list (attrs *);
675 static void dump_var (variable *);
676 static void dump_vars (variable_table_type *);
677 static void dump_dataflow_set (dataflow_set *);
678 static void dump_dataflow_sets (void);
680 static void set_dv_changed (decl_or_value, bool);
681 static void variable_was_changed (variable *, dataflow_set *);
682 static variable **set_slot_part (dataflow_set *, rtx, variable **,
683 decl_or_value, HOST_WIDE_INT,
684 enum var_init_status, rtx);
685 static void set_variable_part (dataflow_set *, rtx,
686 decl_or_value, HOST_WIDE_INT,
687 enum var_init_status, rtx, enum insert_option);
688 static variable **clobber_slot_part (dataflow_set *, rtx,
689 variable **, HOST_WIDE_INT, rtx);
690 static void clobber_variable_part (dataflow_set *, rtx,
691 decl_or_value, HOST_WIDE_INT, rtx);
692 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
693 HOST_WIDE_INT);
694 static void delete_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT);
696 static void emit_notes_in_bb (basic_block, dataflow_set *);
697 static void vt_emit_notes (void);
699 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
700 static void vt_add_function_parameters (void);
701 static bool vt_initialize (void);
702 static void vt_finalize (void);
704 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
706 static int
707 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
708 void *arg)
710 if (dest != stack_pointer_rtx)
711 return 0;
713 switch (GET_CODE (op))
715 case PRE_INC:
716 case PRE_DEC:
717 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
718 return 0;
719 case POST_INC:
720 case POST_DEC:
721 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
722 return 0;
723 case PRE_MODIFY:
724 case POST_MODIFY:
725 /* We handle only adjustments by constant amount. */
726 gcc_assert (GET_CODE (src) == PLUS
727 && CONST_INT_P (XEXP (src, 1))
728 && XEXP (src, 0) == stack_pointer_rtx);
729 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
730 -= INTVAL (XEXP (src, 1));
731 return 0;
732 default:
733 gcc_unreachable ();
737 /* Given a SET, calculate the amount of stack adjustment it contains
738 PRE- and POST-modifying stack pointer.
739 This function is similar to stack_adjust_offset. */
741 static void
742 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
743 HOST_WIDE_INT *post)
745 rtx src = SET_SRC (pattern);
746 rtx dest = SET_DEST (pattern);
747 enum rtx_code code;
749 if (dest == stack_pointer_rtx)
751 /* (set (reg sp) (plus (reg sp) (const_int))) */
752 code = GET_CODE (src);
753 if (! (code == PLUS || code == MINUS)
754 || XEXP (src, 0) != stack_pointer_rtx
755 || !CONST_INT_P (XEXP (src, 1)))
756 return;
758 if (code == MINUS)
759 *post += INTVAL (XEXP (src, 1));
760 else
761 *post -= INTVAL (XEXP (src, 1));
762 return;
764 HOST_WIDE_INT res[2] = { 0, 0 };
765 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
766 *pre += res[0];
767 *post += res[1];
770 /* Given an INSN, calculate the amount of stack adjustment it contains
771 PRE- and POST-modifying stack pointer. */
773 static void
774 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
775 HOST_WIDE_INT *post)
777 rtx pattern;
779 *pre = 0;
780 *post = 0;
782 pattern = PATTERN (insn);
783 if (RTX_FRAME_RELATED_P (insn))
785 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
786 if (expr)
787 pattern = XEXP (expr, 0);
790 if (GET_CODE (pattern) == SET)
791 stack_adjust_offset_pre_post (pattern, pre, post);
792 else if (GET_CODE (pattern) == PARALLEL
793 || GET_CODE (pattern) == SEQUENCE)
795 int i;
797 /* There may be stack adjustments inside compound insns. Search
798 for them. */
799 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
800 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
801 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
805 /* Compute stack adjustments for all blocks by traversing DFS tree.
806 Return true when the adjustments on all incoming edges are consistent.
807 Heavily borrowed from pre_and_rev_post_order_compute. */
809 static bool
810 vt_stack_adjustments (void)
812 edge_iterator *stack;
813 int sp;
815 /* Initialize entry block. */
816 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
818 = INCOMING_FRAME_SP_OFFSET;
819 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
820 = INCOMING_FRAME_SP_OFFSET;
822 /* Allocate stack for back-tracking up CFG. */
823 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
824 sp = 0;
826 /* Push the first edge on to the stack. */
827 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
829 while (sp)
831 edge_iterator ei;
832 basic_block src;
833 basic_block dest;
835 /* Look at the edge on the top of the stack. */
836 ei = stack[sp - 1];
837 src = ei_edge (ei)->src;
838 dest = ei_edge (ei)->dest;
840 /* Check if the edge destination has been visited yet. */
841 if (!VTI (dest)->visited)
843 rtx_insn *insn;
844 HOST_WIDE_INT pre, post, offset;
845 VTI (dest)->visited = true;
846 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
848 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
849 for (insn = BB_HEAD (dest);
850 insn != NEXT_INSN (BB_END (dest));
851 insn = NEXT_INSN (insn))
852 if (INSN_P (insn))
854 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
855 offset += pre + post;
858 VTI (dest)->out.stack_adjust = offset;
860 if (EDGE_COUNT (dest->succs) > 0)
861 /* Since the DEST node has been visited for the first
862 time, check its successors. */
863 stack[sp++] = ei_start (dest->succs);
865 else
867 /* We can end up with different stack adjustments for the exit block
868 of a shrink-wrapped function if stack_adjust_offset_pre_post
869 doesn't understand the rtx pattern used to restore the stack
870 pointer in the epilogue. For example, on s390(x), the stack
871 pointer is often restored via a load-multiple instruction
872 and so no stack_adjust offset is recorded for it. This means
873 that the stack offset at the end of the epilogue block is the
874 same as the offset before the epilogue, whereas other paths
875 to the exit block will have the correct stack_adjust.
877 It is safe to ignore these differences because (a) we never
878 use the stack_adjust for the exit block in this pass and
879 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
880 function are correct.
882 We must check whether the adjustments on other edges are
883 the same though. */
884 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
885 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
887 free (stack);
888 return false;
891 if (! ei_one_before_end_p (ei))
892 /* Go to the next edge. */
893 ei_next (&stack[sp - 1]);
894 else
895 /* Return to previous level if there are no more edges. */
896 sp--;
900 free (stack);
901 return true;
904 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
905 hard_frame_pointer_rtx is being mapped to it and offset for it. */
906 static rtx cfa_base_rtx;
907 static HOST_WIDE_INT cfa_base_offset;
909 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
910 or hard_frame_pointer_rtx. */
912 static inline rtx
913 compute_cfa_pointer (HOST_WIDE_INT adjustment)
915 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
918 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
919 or -1 if the replacement shouldn't be done. */
920 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
922 /* Data for adjust_mems callback. */
924 struct adjust_mem_data
926 bool store;
927 machine_mode mem_mode;
928 HOST_WIDE_INT stack_adjust;
929 rtx_expr_list *side_effects;
932 /* Helper for adjust_mems. Return true if X is suitable for
933 transformation of wider mode arithmetics to narrower mode. */
935 static bool
936 use_narrower_mode_test (rtx x, const_rtx subreg)
938 subrtx_var_iterator::array_type array;
939 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
941 rtx x = *iter;
942 if (CONSTANT_P (x))
943 iter.skip_subrtxes ();
944 else
945 switch (GET_CODE (x))
947 case REG:
948 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
949 return false;
950 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
951 subreg_lowpart_offset (GET_MODE (subreg),
952 GET_MODE (x))))
953 return false;
954 break;
955 case PLUS:
956 case MINUS:
957 case MULT:
958 break;
959 case ASHIFT:
960 iter.substitute (XEXP (x, 0));
961 break;
962 default:
963 return false;
966 return true;
969 /* Transform X into narrower mode MODE from wider mode WMODE. */
971 static rtx
972 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
974 rtx op0, op1;
975 if (CONSTANT_P (x))
976 return lowpart_subreg (mode, x, wmode);
977 switch (GET_CODE (x))
979 case REG:
980 return lowpart_subreg (mode, x, wmode);
981 case PLUS:
982 case MINUS:
983 case MULT:
984 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
985 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
986 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
987 case ASHIFT:
988 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
989 op1 = XEXP (x, 1);
990 /* Ensure shift amount is not wider than mode. */
991 if (GET_MODE (op1) == VOIDmode)
992 op1 = lowpart_subreg (mode, op1, wmode);
993 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
994 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
995 return simplify_gen_binary (ASHIFT, mode, op0, op1);
996 default:
997 gcc_unreachable ();
1001 /* Helper function for adjusting used MEMs. */
1003 static rtx
1004 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1006 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1007 rtx mem, addr = loc, tem;
1008 machine_mode mem_mode_save;
1009 bool store_save;
1010 switch (GET_CODE (loc))
1012 case REG:
1013 /* Don't do any sp or fp replacements outside of MEM addresses
1014 on the LHS. */
1015 if (amd->mem_mode == VOIDmode && amd->store)
1016 return loc;
1017 if (loc == stack_pointer_rtx
1018 && !frame_pointer_needed
1019 && cfa_base_rtx)
1020 return compute_cfa_pointer (amd->stack_adjust);
1021 else if (loc == hard_frame_pointer_rtx
1022 && frame_pointer_needed
1023 && hard_frame_pointer_adjustment != -1
1024 && cfa_base_rtx)
1025 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1026 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1027 return loc;
1028 case MEM:
1029 mem = loc;
1030 if (!amd->store)
1032 mem = targetm.delegitimize_address (mem);
1033 if (mem != loc && !MEM_P (mem))
1034 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1037 addr = XEXP (mem, 0);
1038 mem_mode_save = amd->mem_mode;
1039 amd->mem_mode = GET_MODE (mem);
1040 store_save = amd->store;
1041 amd->store = false;
1042 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1043 amd->store = store_save;
1044 amd->mem_mode = mem_mode_save;
1045 if (mem == loc)
1046 addr = targetm.delegitimize_address (addr);
1047 if (addr != XEXP (mem, 0))
1048 mem = replace_equiv_address_nv (mem, addr);
1049 if (!amd->store)
1050 mem = avoid_constant_pool_reference (mem);
1051 return mem;
1052 case PRE_INC:
1053 case PRE_DEC:
1054 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1055 gen_int_mode (GET_CODE (loc) == PRE_INC
1056 ? GET_MODE_SIZE (amd->mem_mode)
1057 : -GET_MODE_SIZE (amd->mem_mode),
1058 GET_MODE (loc)));
1059 case POST_INC:
1060 case POST_DEC:
1061 if (addr == loc)
1062 addr = XEXP (loc, 0);
1063 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1064 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1065 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1066 gen_int_mode ((GET_CODE (loc) == PRE_INC
1067 || GET_CODE (loc) == POST_INC)
1068 ? GET_MODE_SIZE (amd->mem_mode)
1069 : -GET_MODE_SIZE (amd->mem_mode),
1070 GET_MODE (loc)));
1071 store_save = amd->store;
1072 amd->store = false;
1073 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1074 amd->store = store_save;
1075 amd->side_effects = alloc_EXPR_LIST (0,
1076 gen_rtx_SET (XEXP (loc, 0), tem),
1077 amd->side_effects);
1078 return addr;
1079 case PRE_MODIFY:
1080 addr = XEXP (loc, 1);
1081 case POST_MODIFY:
1082 if (addr == loc)
1083 addr = XEXP (loc, 0);
1084 gcc_assert (amd->mem_mode != VOIDmode);
1085 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1086 store_save = amd->store;
1087 amd->store = false;
1088 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1089 adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (XEXP (loc, 0), tem),
1093 amd->side_effects);
1094 return addr;
1095 case SUBREG:
1096 /* First try without delegitimization of whole MEMs and
1097 avoid_constant_pool_reference, which is more likely to succeed. */
1098 store_save = amd->store;
1099 amd->store = true;
1100 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1101 data);
1102 amd->store = store_save;
1103 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1104 if (mem == SUBREG_REG (loc))
1106 tem = loc;
1107 goto finish_subreg;
1109 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1110 GET_MODE (SUBREG_REG (loc)),
1111 SUBREG_BYTE (loc));
1112 if (tem)
1113 goto finish_subreg;
1114 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1115 GET_MODE (SUBREG_REG (loc)),
1116 SUBREG_BYTE (loc));
1117 if (tem == NULL_RTX)
1118 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1119 finish_subreg:
1120 if (MAY_HAVE_DEBUG_INSNS
1121 && GET_CODE (tem) == SUBREG
1122 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1123 || GET_CODE (SUBREG_REG (tem)) == MINUS
1124 || GET_CODE (SUBREG_REG (tem)) == MULT
1125 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1126 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1127 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1128 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1129 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1130 && GET_MODE_PRECISION (GET_MODE (tem))
1131 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1132 && subreg_lowpart_p (tem)
1133 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1134 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1135 GET_MODE (SUBREG_REG (tem)));
1136 return tem;
1137 case ASM_OPERANDS:
1138 /* Don't do any replacements in second and following
1139 ASM_OPERANDS of inline-asm with multiple sets.
1140 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1141 and ASM_OPERANDS_LABEL_VEC need to be equal between
1142 all the ASM_OPERANDs in the insn and adjust_insn will
1143 fix this up. */
1144 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1145 return loc;
1146 break;
1147 default:
1148 break;
1150 return NULL_RTX;
1153 /* Helper function for replacement of uses. */
1155 static void
1156 adjust_mem_uses (rtx *x, void *data)
1158 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1159 if (new_x != *x)
1160 validate_change (NULL_RTX, x, new_x, true);
1163 /* Helper function for replacement of stores. */
1165 static void
1166 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1168 if (MEM_P (loc))
1170 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1171 adjust_mems, data);
1172 if (new_dest != SET_DEST (expr))
1174 rtx xexpr = CONST_CAST_RTX (expr);
1175 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1180 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1181 replace them with their value in the insn and add the side-effects
1182 as other sets to the insn. */
1184 static void
1185 adjust_insn (basic_block bb, rtx_insn *insn)
1187 struct adjust_mem_data amd;
1188 rtx set;
1190 #ifdef HAVE_window_save
1191 /* If the target machine has an explicit window save instruction, the
1192 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1193 if (RTX_FRAME_RELATED_P (insn)
1194 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1196 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1197 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1198 parm_reg *p;
1200 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1202 XVECEXP (rtl, 0, i * 2)
1203 = gen_rtx_SET (p->incoming, p->outgoing);
1204 /* Do not clobber the attached DECL, but only the REG. */
1205 XVECEXP (rtl, 0, i * 2 + 1)
1206 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1207 gen_raw_REG (GET_MODE (p->outgoing),
1208 REGNO (p->outgoing)));
1211 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1212 return;
1214 #endif
1216 amd.mem_mode = VOIDmode;
1217 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1218 amd.side_effects = NULL;
1220 amd.store = true;
1221 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1223 amd.store = false;
1224 if (GET_CODE (PATTERN (insn)) == PARALLEL
1225 && asm_noperands (PATTERN (insn)) > 0
1226 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1228 rtx body, set0;
1229 int i;
1231 /* inline-asm with multiple sets is tiny bit more complicated,
1232 because the 3 vectors in ASM_OPERANDS need to be shared between
1233 all ASM_OPERANDS in the instruction. adjust_mems will
1234 not touch ASM_OPERANDS other than the first one, asm_noperands
1235 test above needs to be called before that (otherwise it would fail)
1236 and afterwards this code fixes it up. */
1237 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1238 body = PATTERN (insn);
1239 set0 = XVECEXP (body, 0, 0);
1240 gcc_checking_assert (GET_CODE (set0) == SET
1241 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1243 for (i = 1; i < XVECLEN (body, 0); i++)
1244 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1245 break;
1246 else
1248 set = XVECEXP (body, 0, i);
1249 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1251 == i);
1252 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1256 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1257 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1259 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1260 ASM_OPERANDS_INPUT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1263 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1264 ASM_OPERANDS_LABEL_VEC (newsrc)
1265 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1266 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1270 else
1271 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1273 /* For read-only MEMs containing some constant, prefer those
1274 constants. */
1275 set = single_set (insn);
1276 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1278 rtx note = find_reg_equal_equiv_note (insn);
1280 if (note && CONSTANT_P (XEXP (note, 0)))
1281 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1284 if (amd.side_effects)
1286 rtx *pat, new_pat, s;
1287 int i, oldn, newn;
1289 pat = &PATTERN (insn);
1290 if (GET_CODE (*pat) == COND_EXEC)
1291 pat = &COND_EXEC_CODE (*pat);
1292 if (GET_CODE (*pat) == PARALLEL)
1293 oldn = XVECLEN (*pat, 0);
1294 else
1295 oldn = 1;
1296 for (s = amd.side_effects, newn = 0; s; newn++)
1297 s = XEXP (s, 1);
1298 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1299 if (GET_CODE (*pat) == PARALLEL)
1300 for (i = 0; i < oldn; i++)
1301 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1302 else
1303 XVECEXP (new_pat, 0, 0) = *pat;
1304 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1305 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1306 free_EXPR_LIST_list (&amd.side_effects);
1307 validate_change (NULL_RTX, pat, new_pat, true);
1311 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1312 static inline rtx
1313 dv_as_rtx (decl_or_value dv)
1315 tree decl;
1317 if (dv_is_value_p (dv))
1318 return dv_as_value (dv);
1320 decl = dv_as_decl (dv);
1322 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1323 return DECL_RTL_KNOWN_SET (decl);
1326 /* Return nonzero if a decl_or_value must not have more than one
1327 variable part. The returned value discriminates among various
1328 kinds of one-part DVs ccording to enum onepart_enum. */
1329 static inline onepart_enum
1330 dv_onepart_p (decl_or_value dv)
1332 tree decl;
1334 if (!MAY_HAVE_DEBUG_INSNS)
1335 return NOT_ONEPART;
1337 if (dv_is_value_p (dv))
1338 return ONEPART_VALUE;
1340 decl = dv_as_decl (dv);
1342 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1343 return ONEPART_DEXPR;
1345 if (target_for_debug_bind (decl) != NULL_TREE)
1346 return ONEPART_VDECL;
1348 return NOT_ONEPART;
1351 /* Return the variable pool to be used for a dv of type ONEPART. */
1352 static inline pool_allocator &
1353 onepart_pool (onepart_enum onepart)
1355 return onepart ? valvar_pool : var_pool;
1358 /* Allocate a variable_def from the corresponding variable pool. */
1359 static inline variable *
1360 onepart_pool_allocate (onepart_enum onepart)
1362 return (variable*) onepart_pool (onepart).allocate ();
1365 /* Build a decl_or_value out of a decl. */
1366 static inline decl_or_value
1367 dv_from_decl (tree decl)
1369 decl_or_value dv;
1370 dv = decl;
1371 gcc_checking_assert (dv_is_decl_p (dv));
1372 return dv;
1375 /* Build a decl_or_value out of a value. */
1376 static inline decl_or_value
1377 dv_from_value (rtx value)
1379 decl_or_value dv;
1380 dv = value;
1381 gcc_checking_assert (dv_is_value_p (dv));
1382 return dv;
1385 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1386 static inline decl_or_value
1387 dv_from_rtx (rtx x)
1389 decl_or_value dv;
1391 switch (GET_CODE (x))
1393 case DEBUG_EXPR:
1394 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1395 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1396 break;
1398 case VALUE:
1399 dv = dv_from_value (x);
1400 break;
1402 default:
1403 gcc_unreachable ();
1406 return dv;
1409 extern void debug_dv (decl_or_value dv);
1411 DEBUG_FUNCTION void
1412 debug_dv (decl_or_value dv)
1414 if (dv_is_value_p (dv))
1415 debug_rtx (dv_as_value (dv));
1416 else
1417 debug_generic_stmt (dv_as_decl (dv));
1420 static void loc_exp_dep_clear (variable *var);
1422 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1424 static void
1425 variable_htab_free (void *elem)
1427 int i;
1428 variable *var = (variable *) elem;
1429 location_chain *node, *next;
1431 gcc_checking_assert (var->refcount > 0);
1433 var->refcount--;
1434 if (var->refcount > 0)
1435 return;
1437 for (i = 0; i < var->n_var_parts; i++)
1439 for (node = var->var_part[i].loc_chain; node; node = next)
1441 next = node->next;
1442 delete node;
1444 var->var_part[i].loc_chain = NULL;
1446 if (var->onepart && VAR_LOC_1PAUX (var))
1448 loc_exp_dep_clear (var);
1449 if (VAR_LOC_DEP_LST (var))
1450 VAR_LOC_DEP_LST (var)->pprev = NULL;
1451 XDELETE (VAR_LOC_1PAUX (var));
1452 /* These may be reused across functions, so reset
1453 e.g. NO_LOC_P. */
1454 if (var->onepart == ONEPART_DEXPR)
1455 set_dv_changed (var->dv, true);
1457 onepart_pool (var->onepart).remove (var);
1460 /* Initialize the set (array) SET of attrs to empty lists. */
1462 static void
1463 init_attrs_list_set (attrs **set)
1465 int i;
1467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1468 set[i] = NULL;
1471 /* Make the list *LISTP empty. */
1473 static void
1474 attrs_list_clear (attrs **listp)
1476 attrs *list, *next;
1478 for (list = *listp; list; list = next)
1480 next = list->next;
1481 delete list;
1483 *listp = NULL;
1486 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1488 static attrs *
1489 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1491 for (; list; list = list->next)
1492 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1493 return list;
1494 return NULL;
1497 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1499 static void
1500 attrs_list_insert (attrs **listp, decl_or_value dv,
1501 HOST_WIDE_INT offset, rtx loc)
1503 attrs *list = new attrs;
1504 list->loc = loc;
1505 list->dv = dv;
1506 list->offset = offset;
1507 list->next = *listp;
1508 *listp = list;
1511 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1513 static void
1514 attrs_list_copy (attrs **dstp, attrs *src)
1516 attrs_list_clear (dstp);
1517 for (; src; src = src->next)
1519 attrs *n = new attrs;
1520 n->loc = src->loc;
1521 n->dv = src->dv;
1522 n->offset = src->offset;
1523 n->next = *dstp;
1524 *dstp = n;
1528 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1530 static void
1531 attrs_list_union (attrs **dstp, attrs *src)
1533 for (; src; src = src->next)
1535 if (!attrs_list_member (*dstp, src->dv, src->offset))
1536 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1540 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1541 *DSTP. */
1543 static void
1544 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1546 gcc_assert (!*dstp);
1547 for (; src; src = src->next)
1549 if (!dv_onepart_p (src->dv))
1550 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1552 for (src = src2; src; src = src->next)
1554 if (!dv_onepart_p (src->dv)
1555 && !attrs_list_member (*dstp, src->dv, src->offset))
1556 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1560 /* Shared hashtable support. */
1562 /* Return true if VARS is shared. */
1564 static inline bool
1565 shared_hash_shared (shared_hash *vars)
1567 return vars->refcount > 1;
1570 /* Return the hash table for VARS. */
1572 static inline variable_table_type *
1573 shared_hash_htab (shared_hash *vars)
1575 return vars->htab;
1578 /* Return true if VAR is shared, or maybe because VARS is shared. */
1580 static inline bool
1581 shared_var_p (variable *var, shared_hash *vars)
1583 /* Don't count an entry in the changed_variables table as a duplicate. */
1584 return ((var->refcount > 1 + (int) var->in_changed_variables)
1585 || shared_hash_shared (vars));
1588 /* Copy variables into a new hash table. */
1590 static shared_hash *
1591 shared_hash_unshare (shared_hash *vars)
1593 shared_hash *new_vars = new shared_hash;
1594 gcc_assert (vars->refcount > 1);
1595 new_vars->refcount = 1;
1596 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1597 vars_copy (new_vars->htab, vars->htab);
1598 vars->refcount--;
1599 return new_vars;
1602 /* Increment reference counter on VARS and return it. */
1604 static inline shared_hash *
1605 shared_hash_copy (shared_hash *vars)
1607 vars->refcount++;
1608 return vars;
1611 /* Decrement reference counter and destroy hash table if not shared
1612 anymore. */
1614 static void
1615 shared_hash_destroy (shared_hash *vars)
1617 gcc_checking_assert (vars->refcount > 0);
1618 if (--vars->refcount == 0)
1620 delete vars->htab;
1621 delete vars;
1625 /* Unshare *PVARS if shared and return slot for DV. If INS is
1626 INSERT, insert it if not already present. */
1628 static inline variable **
1629 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1630 hashval_t dvhash, enum insert_option ins)
1632 if (shared_hash_shared (*pvars))
1633 *pvars = shared_hash_unshare (*pvars);
1634 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1637 static inline variable **
1638 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1639 enum insert_option ins)
1641 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1644 /* Return slot for DV, if it is already present in the hash table.
1645 If it is not present, insert it only VARS is not shared, otherwise
1646 return NULL. */
1648 static inline variable **
1649 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1651 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1652 shared_hash_shared (vars)
1653 ? NO_INSERT : INSERT);
1656 static inline variable **
1657 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1659 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1662 /* Return slot for DV only if it is already present in the hash table. */
1664 static inline variable **
1665 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1666 hashval_t dvhash)
1668 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1671 static inline variable **
1672 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1674 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1677 /* Return variable for DV or NULL if not already present in the hash
1678 table. */
1680 static inline variable *
1681 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1683 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1686 static inline variable *
1687 shared_hash_find (shared_hash *vars, decl_or_value dv)
1689 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1692 /* Return true if TVAL is better than CVAL as a canonival value. We
1693 choose lowest-numbered VALUEs, using the RTX address as a
1694 tie-breaker. The idea is to arrange them into a star topology,
1695 such that all of them are at most one step away from the canonical
1696 value, and the canonical value has backlinks to all of them, in
1697 addition to all the actual locations. We don't enforce this
1698 topology throughout the entire dataflow analysis, though.
1701 static inline bool
1702 canon_value_cmp (rtx tval, rtx cval)
1704 return !cval
1705 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1708 static bool dst_can_be_shared;
1710 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1712 static variable **
1713 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1714 enum var_init_status initialized)
1716 variable *new_var;
1717 int i;
1719 new_var = onepart_pool_allocate (var->onepart);
1720 new_var->dv = var->dv;
1721 new_var->refcount = 1;
1722 var->refcount--;
1723 new_var->n_var_parts = var->n_var_parts;
1724 new_var->onepart = var->onepart;
1725 new_var->in_changed_variables = false;
1727 if (! flag_var_tracking_uninit)
1728 initialized = VAR_INIT_STATUS_INITIALIZED;
1730 for (i = 0; i < var->n_var_parts; i++)
1732 location_chain *node;
1733 location_chain **nextp;
1735 if (i == 0 && var->onepart)
1737 /* One-part auxiliary data is only used while emitting
1738 notes, so propagate it to the new variable in the active
1739 dataflow set. If we're not emitting notes, this will be
1740 a no-op. */
1741 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1742 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1743 VAR_LOC_1PAUX (var) = NULL;
1745 else
1746 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1747 nextp = &new_var->var_part[i].loc_chain;
1748 for (node = var->var_part[i].loc_chain; node; node = node->next)
1750 location_chain *new_lc;
1752 new_lc = new location_chain;
1753 new_lc->next = NULL;
1754 if (node->init > initialized)
1755 new_lc->init = node->init;
1756 else
1757 new_lc->init = initialized;
1758 if (node->set_src && !(MEM_P (node->set_src)))
1759 new_lc->set_src = node->set_src;
1760 else
1761 new_lc->set_src = NULL;
1762 new_lc->loc = node->loc;
1764 *nextp = new_lc;
1765 nextp = &new_lc->next;
1768 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1771 dst_can_be_shared = false;
1772 if (shared_hash_shared (set->vars))
1773 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1774 else if (set->traversed_vars && set->vars != set->traversed_vars)
1775 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1776 *slot = new_var;
1777 if (var->in_changed_variables)
1779 variable **cslot
1780 = changed_variables->find_slot_with_hash (var->dv,
1781 dv_htab_hash (var->dv),
1782 NO_INSERT);
1783 gcc_assert (*cslot == (void *) var);
1784 var->in_changed_variables = false;
1785 variable_htab_free (var);
1786 *cslot = new_var;
1787 new_var->in_changed_variables = true;
1789 return slot;
1792 /* Copy all variables from hash table SRC to hash table DST. */
1794 static void
1795 vars_copy (variable_table_type *dst, variable_table_type *src)
1797 variable_iterator_type hi;
1798 variable *var;
1800 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1802 variable **dstp;
1803 var->refcount++;
1804 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1805 INSERT);
1806 *dstp = var;
1810 /* Map a decl to its main debug decl. */
1812 static inline tree
1813 var_debug_decl (tree decl)
1815 if (decl && TREE_CODE (decl) == VAR_DECL
1816 && DECL_HAS_DEBUG_EXPR_P (decl))
1818 tree debugdecl = DECL_DEBUG_EXPR (decl);
1819 if (DECL_P (debugdecl))
1820 decl = debugdecl;
1823 return decl;
1826 /* Set the register LOC to contain DV, OFFSET. */
1828 static void
1829 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1830 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1831 enum insert_option iopt)
1833 attrs *node;
1834 bool decl_p = dv_is_decl_p (dv);
1836 if (decl_p)
1837 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1839 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1840 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1841 && node->offset == offset)
1842 break;
1843 if (!node)
1844 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1845 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1848 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1850 static void
1851 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1852 rtx set_src)
1854 tree decl = REG_EXPR (loc);
1855 HOST_WIDE_INT offset = REG_OFFSET (loc);
1857 var_reg_decl_set (set, loc, initialized,
1858 dv_from_decl (decl), offset, set_src, INSERT);
1861 static enum var_init_status
1862 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1864 variable *var;
1865 int i;
1866 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1868 if (! flag_var_tracking_uninit)
1869 return VAR_INIT_STATUS_INITIALIZED;
1871 var = shared_hash_find (set->vars, dv);
1872 if (var)
1874 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1876 location_chain *nextp;
1877 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1878 if (rtx_equal_p (nextp->loc, loc))
1880 ret_val = nextp->init;
1881 break;
1886 return ret_val;
1889 /* Delete current content of register LOC in dataflow set SET and set
1890 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1891 MODIFY is true, any other live copies of the same variable part are
1892 also deleted from the dataflow set, otherwise the variable part is
1893 assumed to be copied from another location holding the same
1894 part. */
1896 static void
1897 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1898 enum var_init_status initialized, rtx set_src)
1900 tree decl = REG_EXPR (loc);
1901 HOST_WIDE_INT offset = REG_OFFSET (loc);
1902 attrs *node, *next;
1903 attrs **nextp;
1905 decl = var_debug_decl (decl);
1907 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1908 initialized = get_init_value (set, loc, dv_from_decl (decl));
1910 nextp = &set->regs[REGNO (loc)];
1911 for (node = *nextp; node; node = next)
1913 next = node->next;
1914 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1916 delete_variable_part (set, node->loc, node->dv, node->offset);
1917 delete node;
1918 *nextp = next;
1920 else
1922 node->loc = loc;
1923 nextp = &node->next;
1926 if (modify)
1927 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1928 var_reg_set (set, loc, initialized, set_src);
1931 /* Delete the association of register LOC in dataflow set SET with any
1932 variables that aren't onepart. If CLOBBER is true, also delete any
1933 other live copies of the same variable part, and delete the
1934 association with onepart dvs too. */
1936 static void
1937 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1939 attrs **nextp = &set->regs[REGNO (loc)];
1940 attrs *node, *next;
1942 if (clobber)
1944 tree decl = REG_EXPR (loc);
1945 HOST_WIDE_INT offset = REG_OFFSET (loc);
1947 decl = var_debug_decl (decl);
1949 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1952 for (node = *nextp; node; node = next)
1954 next = node->next;
1955 if (clobber || !dv_onepart_p (node->dv))
1957 delete_variable_part (set, node->loc, node->dv, node->offset);
1958 delete node;
1959 *nextp = next;
1961 else
1962 nextp = &node->next;
1966 /* Delete content of register with number REGNO in dataflow set SET. */
1968 static void
1969 var_regno_delete (dataflow_set *set, int regno)
1971 attrs **reg = &set->regs[regno];
1972 attrs *node, *next;
1974 for (node = *reg; node; node = next)
1976 next = node->next;
1977 delete_variable_part (set, node->loc, node->dv, node->offset);
1978 delete node;
1980 *reg = NULL;
1983 /* Return true if I is the negated value of a power of two. */
1984 static bool
1985 negative_power_of_two_p (HOST_WIDE_INT i)
1987 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1988 return x == (x & -x);
1991 /* Strip constant offsets and alignments off of LOC. Return the base
1992 expression. */
1994 static rtx
1995 vt_get_canonicalize_base (rtx loc)
1997 while ((GET_CODE (loc) == PLUS
1998 || GET_CODE (loc) == AND)
1999 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2000 && (GET_CODE (loc) != AND
2001 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2002 loc = XEXP (loc, 0);
2004 return loc;
2007 /* This caches canonicalized addresses for VALUEs, computed using
2008 information in the global cselib table. */
2009 static hash_map<rtx, rtx> *global_get_addr_cache;
2011 /* This caches canonicalized addresses for VALUEs, computed using
2012 information from the global cache and information pertaining to a
2013 basic block being analyzed. */
2014 static hash_map<rtx, rtx> *local_get_addr_cache;
2016 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2018 /* Return the canonical address for LOC, that must be a VALUE, using a
2019 cached global equivalence or computing it and storing it in the
2020 global cache. */
2022 static rtx
2023 get_addr_from_global_cache (rtx const loc)
2025 rtx x;
2027 gcc_checking_assert (GET_CODE (loc) == VALUE);
2029 bool existed;
2030 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2031 if (existed)
2032 return *slot;
2034 x = canon_rtx (get_addr (loc));
2036 /* Tentative, avoiding infinite recursion. */
2037 *slot = x;
2039 if (x != loc)
2041 rtx nx = vt_canonicalize_addr (NULL, x);
2042 if (nx != x)
2044 /* The table may have moved during recursion, recompute
2045 SLOT. */
2046 *global_get_addr_cache->get (loc) = x = nx;
2050 return x;
2053 /* Return the canonical address for LOC, that must be a VALUE, using a
2054 cached local equivalence or computing it and storing it in the
2055 local cache. */
2057 static rtx
2058 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2060 rtx x;
2061 decl_or_value dv;
2062 variable *var;
2063 location_chain *l;
2065 gcc_checking_assert (GET_CODE (loc) == VALUE);
2067 bool existed;
2068 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2069 if (existed)
2070 return *slot;
2072 x = get_addr_from_global_cache (loc);
2074 /* Tentative, avoiding infinite recursion. */
2075 *slot = x;
2077 /* Recurse to cache local expansion of X, or if we need to search
2078 for a VALUE in the expansion. */
2079 if (x != loc)
2081 rtx nx = vt_canonicalize_addr (set, x);
2082 if (nx != x)
2084 slot = local_get_addr_cache->get (loc);
2085 *slot = x = nx;
2087 return x;
2090 dv = dv_from_rtx (x);
2091 var = shared_hash_find (set->vars, dv);
2092 if (!var)
2093 return x;
2095 /* Look for an improved equivalent expression. */
2096 for (l = var->var_part[0].loc_chain; l; l = l->next)
2098 rtx base = vt_get_canonicalize_base (l->loc);
2099 if (GET_CODE (base) == VALUE
2100 && canon_value_cmp (base, loc))
2102 rtx nx = vt_canonicalize_addr (set, l->loc);
2103 if (x != nx)
2105 slot = local_get_addr_cache->get (loc);
2106 *slot = x = nx;
2108 break;
2112 return x;
2115 /* Canonicalize LOC using equivalences from SET in addition to those
2116 in the cselib static table. It expects a VALUE-based expression,
2117 and it will only substitute VALUEs with other VALUEs or
2118 function-global equivalences, so that, if two addresses have base
2119 VALUEs that are locally or globally related in ways that
2120 memrefs_conflict_p cares about, they will both canonicalize to
2121 expressions that have the same base VALUE.
2123 The use of VALUEs as canonical base addresses enables the canonical
2124 RTXs to remain unchanged globally, if they resolve to a constant,
2125 or throughout a basic block otherwise, so that they can be cached
2126 and the cache needs not be invalidated when REGs, MEMs or such
2127 change. */
2129 static rtx
2130 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2132 HOST_WIDE_INT ofst = 0;
2133 machine_mode mode = GET_MODE (oloc);
2134 rtx loc = oloc;
2135 rtx x;
2136 bool retry = true;
2138 while (retry)
2140 while (GET_CODE (loc) == PLUS
2141 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2143 ofst += INTVAL (XEXP (loc, 1));
2144 loc = XEXP (loc, 0);
2147 /* Alignment operations can't normally be combined, so just
2148 canonicalize the base and we're done. We'll normally have
2149 only one stack alignment anyway. */
2150 if (GET_CODE (loc) == AND
2151 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2152 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2154 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2155 if (x != XEXP (loc, 0))
2156 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2157 retry = false;
2160 if (GET_CODE (loc) == VALUE)
2162 if (set)
2163 loc = get_addr_from_local_cache (set, loc);
2164 else
2165 loc = get_addr_from_global_cache (loc);
2167 /* Consolidate plus_constants. */
2168 while (ofst && GET_CODE (loc) == PLUS
2169 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2171 ofst += INTVAL (XEXP (loc, 1));
2172 loc = XEXP (loc, 0);
2175 retry = false;
2177 else
2179 x = canon_rtx (loc);
2180 if (retry)
2181 retry = (x != loc);
2182 loc = x;
2186 /* Add OFST back in. */
2187 if (ofst)
2189 /* Don't build new RTL if we can help it. */
2190 if (GET_CODE (oloc) == PLUS
2191 && XEXP (oloc, 0) == loc
2192 && INTVAL (XEXP (oloc, 1)) == ofst)
2193 return oloc;
2195 loc = plus_constant (mode, loc, ofst);
2198 return loc;
2201 /* Return true iff there's a true dependence between MLOC and LOC.
2202 MADDR must be a canonicalized version of MLOC's address. */
2204 static inline bool
2205 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2207 if (GET_CODE (loc) != MEM)
2208 return false;
2210 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2211 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2212 return false;
2214 return true;
2217 /* Hold parameters for the hashtab traversal function
2218 drop_overlapping_mem_locs, see below. */
2220 struct overlapping_mems
2222 dataflow_set *set;
2223 rtx loc, addr;
2226 /* Remove all MEMs that overlap with COMS->LOC from the location list
2227 of a hash table entry for a onepart variable. COMS->ADDR must be a
2228 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2229 canonicalized itself. */
2232 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2234 dataflow_set *set = coms->set;
2235 rtx mloc = coms->loc, addr = coms->addr;
2236 variable *var = *slot;
2238 if (var->onepart != NOT_ONEPART)
2240 location_chain *loc, **locp;
2241 bool changed = false;
2242 rtx cur_loc;
2244 gcc_assert (var->n_var_parts == 1);
2246 if (shared_var_p (var, set->vars))
2248 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2249 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2250 break;
2252 if (!loc)
2253 return 1;
2255 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2256 var = *slot;
2257 gcc_assert (var->n_var_parts == 1);
2260 if (VAR_LOC_1PAUX (var))
2261 cur_loc = VAR_LOC_FROM (var);
2262 else
2263 cur_loc = var->var_part[0].cur_loc;
2265 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2266 loc; loc = *locp)
2268 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2270 locp = &loc->next;
2271 continue;
2274 *locp = loc->next;
2275 /* If we have deleted the location which was last emitted
2276 we have to emit new location so add the variable to set
2277 of changed variables. */
2278 if (cur_loc == loc->loc)
2280 changed = true;
2281 var->var_part[0].cur_loc = NULL;
2282 if (VAR_LOC_1PAUX (var))
2283 VAR_LOC_FROM (var) = NULL;
2285 delete loc;
2288 if (!var->var_part[0].loc_chain)
2290 var->n_var_parts--;
2291 changed = true;
2293 if (changed)
2294 variable_was_changed (var, set);
2297 return 1;
2300 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2302 static void
2303 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2305 struct overlapping_mems coms;
2307 gcc_checking_assert (GET_CODE (loc) == MEM);
2309 coms.set = set;
2310 coms.loc = canon_rtx (loc);
2311 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2313 set->traversed_vars = set->vars;
2314 shared_hash_htab (set->vars)
2315 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2316 set->traversed_vars = NULL;
2319 /* Set the location of DV, OFFSET as the MEM LOC. */
2321 static void
2322 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2323 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2324 enum insert_option iopt)
2326 if (dv_is_decl_p (dv))
2327 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2329 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2332 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2333 SET to LOC.
2334 Adjust the address first if it is stack pointer based. */
2336 static void
2337 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2338 rtx set_src)
2340 tree decl = MEM_EXPR (loc);
2341 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2343 var_mem_decl_set (set, loc, initialized,
2344 dv_from_decl (decl), offset, set_src, INSERT);
2347 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2348 dataflow set SET to LOC. If MODIFY is true, any other live copies
2349 of the same variable part are also deleted from the dataflow set,
2350 otherwise the variable part is assumed to be copied from another
2351 location holding the same part.
2352 Adjust the address first if it is stack pointer based. */
2354 static void
2355 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2356 enum var_init_status initialized, rtx set_src)
2358 tree decl = MEM_EXPR (loc);
2359 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2361 clobber_overlapping_mems (set, loc);
2362 decl = var_debug_decl (decl);
2364 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2365 initialized = get_init_value (set, loc, dv_from_decl (decl));
2367 if (modify)
2368 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2369 var_mem_set (set, loc, initialized, set_src);
2372 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2373 true, also delete any other live copies of the same variable part.
2374 Adjust the address first if it is stack pointer based. */
2376 static void
2377 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2379 tree decl = MEM_EXPR (loc);
2380 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2382 clobber_overlapping_mems (set, loc);
2383 decl = var_debug_decl (decl);
2384 if (clobber)
2385 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2386 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2389 /* Return true if LOC should not be expanded for location expressions,
2390 or used in them. */
2392 static inline bool
2393 unsuitable_loc (rtx loc)
2395 switch (GET_CODE (loc))
2397 case PC:
2398 case SCRATCH:
2399 case CC0:
2400 case ASM_INPUT:
2401 case ASM_OPERANDS:
2402 return true;
2404 default:
2405 return false;
2409 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2410 bound to it. */
2412 static inline void
2413 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2415 if (REG_P (loc))
2417 if (modified)
2418 var_regno_delete (set, REGNO (loc));
2419 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2420 dv_from_value (val), 0, NULL_RTX, INSERT);
2422 else if (MEM_P (loc))
2424 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2426 if (modified)
2427 clobber_overlapping_mems (set, loc);
2429 if (l && GET_CODE (l->loc) == VALUE)
2430 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2432 /* If this MEM is a global constant, we don't need it in the
2433 dynamic tables. ??? We should test this before emitting the
2434 micro-op in the first place. */
2435 while (l)
2436 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2437 break;
2438 else
2439 l = l->next;
2441 if (!l)
2442 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2443 dv_from_value (val), 0, NULL_RTX, INSERT);
2445 else
2447 /* Other kinds of equivalences are necessarily static, at least
2448 so long as we do not perform substitutions while merging
2449 expressions. */
2450 gcc_unreachable ();
2451 set_variable_part (set, loc, dv_from_value (val), 0,
2452 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2456 /* Bind a value to a location it was just stored in. If MODIFIED
2457 holds, assume the location was modified, detaching it from any
2458 values bound to it. */
2460 static void
2461 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2462 bool modified)
2464 cselib_val *v = CSELIB_VAL_PTR (val);
2466 gcc_assert (cselib_preserved_value_p (v));
2468 if (dump_file)
2470 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2471 print_inline_rtx (dump_file, loc, 0);
2472 fprintf (dump_file, " evaluates to ");
2473 print_inline_rtx (dump_file, val, 0);
2474 if (v->locs)
2476 struct elt_loc_list *l;
2477 for (l = v->locs; l; l = l->next)
2479 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2480 print_inline_rtx (dump_file, l->loc, 0);
2483 fprintf (dump_file, "\n");
2486 gcc_checking_assert (!unsuitable_loc (loc));
2488 val_bind (set, val, loc, modified);
2491 /* Clear (canonical address) slots that reference X. */
2493 bool
2494 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2496 if (vt_get_canonicalize_base (*slot) == x)
2497 *slot = NULL;
2498 return true;
2501 /* Reset this node, detaching all its equivalences. Return the slot
2502 in the variable hash table that holds dv, if there is one. */
2504 static void
2505 val_reset (dataflow_set *set, decl_or_value dv)
2507 variable *var = shared_hash_find (set->vars, dv) ;
2508 location_chain *node;
2509 rtx cval;
2511 if (!var || !var->n_var_parts)
2512 return;
2514 gcc_assert (var->n_var_parts == 1);
2516 if (var->onepart == ONEPART_VALUE)
2518 rtx x = dv_as_value (dv);
2520 /* Relationships in the global cache don't change, so reset the
2521 local cache entry only. */
2522 rtx *slot = local_get_addr_cache->get (x);
2523 if (slot)
2525 /* If the value resolved back to itself, odds are that other
2526 values may have cached it too. These entries now refer
2527 to the old X, so detach them too. Entries that used the
2528 old X but resolved to something else remain ok as long as
2529 that something else isn't also reset. */
2530 if (*slot == x)
2531 local_get_addr_cache
2532 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2533 *slot = NULL;
2537 cval = NULL;
2538 for (node = var->var_part[0].loc_chain; node; node = node->next)
2539 if (GET_CODE (node->loc) == VALUE
2540 && canon_value_cmp (node->loc, cval))
2541 cval = node->loc;
2543 for (node = var->var_part[0].loc_chain; node; node = node->next)
2544 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2546 /* Redirect the equivalence link to the new canonical
2547 value, or simply remove it if it would point at
2548 itself. */
2549 if (cval)
2550 set_variable_part (set, cval, dv_from_value (node->loc),
2551 0, node->init, node->set_src, NO_INSERT);
2552 delete_variable_part (set, dv_as_value (dv),
2553 dv_from_value (node->loc), 0);
2556 if (cval)
2558 decl_or_value cdv = dv_from_value (cval);
2560 /* Keep the remaining values connected, accummulating links
2561 in the canonical value. */
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2564 if (node->loc == cval)
2565 continue;
2566 else if (GET_CODE (node->loc) == REG)
2567 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2568 node->set_src, NO_INSERT);
2569 else if (GET_CODE (node->loc) == MEM)
2570 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2571 node->set_src, NO_INSERT);
2572 else
2573 set_variable_part (set, node->loc, cdv, 0,
2574 node->init, node->set_src, NO_INSERT);
2578 /* We remove this last, to make sure that the canonical value is not
2579 removed to the point of requiring reinsertion. */
2580 if (cval)
2581 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2583 clobber_variable_part (set, NULL, dv, 0, NULL);
2586 /* Find the values in a given location and map the val to another
2587 value, if it is unique, or add the location as one holding the
2588 value. */
2590 static void
2591 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2593 decl_or_value dv = dv_from_value (val);
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2597 if (insn)
2598 fprintf (dump_file, "%i: ", INSN_UID (insn));
2599 else
2600 fprintf (dump_file, "head: ");
2601 print_inline_rtx (dump_file, val, 0);
2602 fputs (" is at ", dump_file);
2603 print_inline_rtx (dump_file, loc, 0);
2604 fputc ('\n', dump_file);
2607 val_reset (set, dv);
2609 gcc_checking_assert (!unsuitable_loc (loc));
2611 if (REG_P (loc))
2613 attrs *node, *found = NULL;
2615 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2616 if (dv_is_value_p (node->dv)
2617 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2619 found = node;
2621 /* Map incoming equivalences. ??? Wouldn't it be nice if
2622 we just started sharing the location lists? Maybe a
2623 circular list ending at the value itself or some
2624 such. */
2625 set_variable_part (set, dv_as_value (node->dv),
2626 dv_from_value (val), node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 set_variable_part (set, val, node->dv, node->offset,
2629 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2632 /* If we didn't find any equivalence, we need to remember that
2633 this value is held in the named register. */
2634 if (found)
2635 return;
2637 /* ??? Attempt to find and merge equivalent MEMs or other
2638 expressions too. */
2640 val_bind (set, val, loc, false);
2643 /* Initialize dataflow set SET to be empty.
2644 VARS_SIZE is the initial size of hash table VARS. */
2646 static void
2647 dataflow_set_init (dataflow_set *set)
2649 init_attrs_list_set (set->regs);
2650 set->vars = shared_hash_copy (empty_shared_hash);
2651 set->stack_adjust = 0;
2652 set->traversed_vars = NULL;
2655 /* Delete the contents of dataflow set SET. */
2657 static void
2658 dataflow_set_clear (dataflow_set *set)
2660 int i;
2662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2663 attrs_list_clear (&set->regs[i]);
2665 shared_hash_destroy (set->vars);
2666 set->vars = shared_hash_copy (empty_shared_hash);
2669 /* Copy the contents of dataflow set SRC to DST. */
2671 static void
2672 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2674 int i;
2676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2677 attrs_list_copy (&dst->regs[i], src->regs[i]);
2679 shared_hash_destroy (dst->vars);
2680 dst->vars = shared_hash_copy (src->vars);
2681 dst->stack_adjust = src->stack_adjust;
2684 /* Information for merging lists of locations for a given offset of variable.
2686 struct variable_union_info
2688 /* Node of the location chain. */
2689 location_chain *lc;
2691 /* The sum of positions in the input chains. */
2692 int pos;
2694 /* The position in the chain of DST dataflow set. */
2695 int pos_dst;
2698 /* Buffer for location list sorting and its allocated size. */
2699 static struct variable_union_info *vui_vec;
2700 static int vui_allocated;
2702 /* Compare function for qsort, order the structures by POS element. */
2704 static int
2705 variable_union_info_cmp_pos (const void *n1, const void *n2)
2707 const struct variable_union_info *const i1 =
2708 (const struct variable_union_info *) n1;
2709 const struct variable_union_info *const i2 =
2710 ( const struct variable_union_info *) n2;
2712 if (i1->pos != i2->pos)
2713 return i1->pos - i2->pos;
2715 return (i1->pos_dst - i2->pos_dst);
2718 /* Compute union of location parts of variable *SLOT and the same variable
2719 from hash table DATA. Compute "sorted" union of the location chains
2720 for common offsets, i.e. the locations of a variable part are sorted by
2721 a priority where the priority is the sum of the positions in the 2 chains
2722 (if a location is only in one list the position in the second list is
2723 defined to be larger than the length of the chains).
2724 When we are updating the location parts the newest location is in the
2725 beginning of the chain, so when we do the described "sorted" union
2726 we keep the newest locations in the beginning. */
2728 static int
2729 variable_union (variable *src, dataflow_set *set)
2731 variable *dst;
2732 variable **dstp;
2733 int i, j, k;
2735 dstp = shared_hash_find_slot (set->vars, src->dv);
2736 if (!dstp || !*dstp)
2738 src->refcount++;
2740 dst_can_be_shared = false;
2741 if (!dstp)
2742 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2744 *dstp = src;
2746 /* Continue traversing the hash table. */
2747 return 1;
2749 else
2750 dst = *dstp;
2752 gcc_assert (src->n_var_parts);
2753 gcc_checking_assert (src->onepart == dst->onepart);
2755 /* We can combine one-part variables very efficiently, because their
2756 entries are in canonical order. */
2757 if (src->onepart)
2759 location_chain **nodep, *dnode, *snode;
2761 gcc_assert (src->n_var_parts == 1
2762 && dst->n_var_parts == 1);
2764 snode = src->var_part[0].loc_chain;
2765 gcc_assert (snode);
2767 restart_onepart_unshared:
2768 nodep = &dst->var_part[0].loc_chain;
2769 dnode = *nodep;
2770 gcc_assert (dnode);
2772 while (snode)
2774 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2776 if (r > 0)
2778 location_chain *nnode;
2780 if (shared_var_p (dst, set->vars))
2782 dstp = unshare_variable (set, dstp, dst,
2783 VAR_INIT_STATUS_INITIALIZED);
2784 dst = *dstp;
2785 goto restart_onepart_unshared;
2788 *nodep = nnode = new location_chain;
2789 nnode->loc = snode->loc;
2790 nnode->init = snode->init;
2791 if (!snode->set_src || MEM_P (snode->set_src))
2792 nnode->set_src = NULL;
2793 else
2794 nnode->set_src = snode->set_src;
2795 nnode->next = dnode;
2796 dnode = nnode;
2798 else if (r == 0)
2799 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2801 if (r >= 0)
2802 snode = snode->next;
2804 nodep = &dnode->next;
2805 dnode = *nodep;
2808 return 1;
2811 gcc_checking_assert (!src->onepart);
2813 /* Count the number of location parts, result is K. */
2814 for (i = 0, j = 0, k = 0;
2815 i < src->n_var_parts && j < dst->n_var_parts; k++)
2817 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2819 i++;
2820 j++;
2822 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2823 i++;
2824 else
2825 j++;
2827 k += src->n_var_parts - i;
2828 k += dst->n_var_parts - j;
2830 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2831 thus there are at most MAX_VAR_PARTS different offsets. */
2832 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2834 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2836 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2837 dst = *dstp;
2840 i = src->n_var_parts - 1;
2841 j = dst->n_var_parts - 1;
2842 dst->n_var_parts = k;
2844 for (k--; k >= 0; k--)
2846 location_chain *node, *node2;
2848 if (i >= 0 && j >= 0
2849 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2851 /* Compute the "sorted" union of the chains, i.e. the locations which
2852 are in both chains go first, they are sorted by the sum of
2853 positions in the chains. */
2854 int dst_l, src_l;
2855 int ii, jj, n;
2856 struct variable_union_info *vui;
2858 /* If DST is shared compare the location chains.
2859 If they are different we will modify the chain in DST with
2860 high probability so make a copy of DST. */
2861 if (shared_var_p (dst, set->vars))
2863 for (node = src->var_part[i].loc_chain,
2864 node2 = dst->var_part[j].loc_chain; node && node2;
2865 node = node->next, node2 = node2->next)
2867 if (!((REG_P (node2->loc)
2868 && REG_P (node->loc)
2869 && REGNO (node2->loc) == REGNO (node->loc))
2870 || rtx_equal_p (node2->loc, node->loc)))
2872 if (node2->init < node->init)
2873 node2->init = node->init;
2874 break;
2877 if (node || node2)
2879 dstp = unshare_variable (set, dstp, dst,
2880 VAR_INIT_STATUS_UNKNOWN);
2881 dst = (variable *)*dstp;
2885 src_l = 0;
2886 for (node = src->var_part[i].loc_chain; node; node = node->next)
2887 src_l++;
2888 dst_l = 0;
2889 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2890 dst_l++;
2892 if (dst_l == 1)
2894 /* The most common case, much simpler, no qsort is needed. */
2895 location_chain *dstnode = dst->var_part[j].loc_chain;
2896 dst->var_part[k].loc_chain = dstnode;
2897 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2898 node2 = dstnode;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 if (!((REG_P (dstnode->loc)
2901 && REG_P (node->loc)
2902 && REGNO (dstnode->loc) == REGNO (node->loc))
2903 || rtx_equal_p (dstnode->loc, node->loc)))
2905 location_chain *new_node;
2907 /* Copy the location from SRC. */
2908 new_node = new location_chain;
2909 new_node->loc = node->loc;
2910 new_node->init = node->init;
2911 if (!node->set_src || MEM_P (node->set_src))
2912 new_node->set_src = NULL;
2913 else
2914 new_node->set_src = node->set_src;
2915 node2->next = new_node;
2916 node2 = new_node;
2918 node2->next = NULL;
2920 else
2922 if (src_l + dst_l > vui_allocated)
2924 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2925 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2926 vui_allocated);
2928 vui = vui_vec;
2930 /* Fill in the locations from DST. */
2931 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2932 node = node->next, jj++)
2934 vui[jj].lc = node;
2935 vui[jj].pos_dst = jj;
2937 /* Pos plus value larger than a sum of 2 valid positions. */
2938 vui[jj].pos = jj + src_l + dst_l;
2941 /* Fill in the locations from SRC. */
2942 n = dst_l;
2943 for (node = src->var_part[i].loc_chain, ii = 0; node;
2944 node = node->next, ii++)
2946 /* Find location from NODE. */
2947 for (jj = 0; jj < dst_l; jj++)
2949 if ((REG_P (vui[jj].lc->loc)
2950 && REG_P (node->loc)
2951 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2952 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2954 vui[jj].pos = jj + ii;
2955 break;
2958 if (jj >= dst_l) /* The location has not been found. */
2960 location_chain *new_node;
2962 /* Copy the location from SRC. */
2963 new_node = new location_chain;
2964 new_node->loc = node->loc;
2965 new_node->init = node->init;
2966 if (!node->set_src || MEM_P (node->set_src))
2967 new_node->set_src = NULL;
2968 else
2969 new_node->set_src = node->set_src;
2970 vui[n].lc = new_node;
2971 vui[n].pos_dst = src_l + dst_l;
2972 vui[n].pos = ii + src_l + dst_l;
2973 n++;
2977 if (dst_l == 2)
2979 /* Special case still very common case. For dst_l == 2
2980 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2981 vui[i].pos == i + src_l + dst_l. */
2982 if (vui[0].pos > vui[1].pos)
2984 /* Order should be 1, 0, 2... */
2985 dst->var_part[k].loc_chain = vui[1].lc;
2986 vui[1].lc->next = vui[0].lc;
2987 if (n >= 3)
2989 vui[0].lc->next = vui[2].lc;
2990 vui[n - 1].lc->next = NULL;
2992 else
2993 vui[0].lc->next = NULL;
2994 ii = 3;
2996 else
2998 dst->var_part[k].loc_chain = vui[0].lc;
2999 if (n >= 3 && vui[2].pos < vui[1].pos)
3001 /* Order should be 0, 2, 1, 3... */
3002 vui[0].lc->next = vui[2].lc;
3003 vui[2].lc->next = vui[1].lc;
3004 if (n >= 4)
3006 vui[1].lc->next = vui[3].lc;
3007 vui[n - 1].lc->next = NULL;
3009 else
3010 vui[1].lc->next = NULL;
3011 ii = 4;
3013 else
3015 /* Order should be 0, 1, 2... */
3016 ii = 1;
3017 vui[n - 1].lc->next = NULL;
3020 for (; ii < n; ii++)
3021 vui[ii - 1].lc->next = vui[ii].lc;
3023 else
3025 qsort (vui, n, sizeof (struct variable_union_info),
3026 variable_union_info_cmp_pos);
3028 /* Reconnect the nodes in sorted order. */
3029 for (ii = 1; ii < n; ii++)
3030 vui[ii - 1].lc->next = vui[ii].lc;
3031 vui[n - 1].lc->next = NULL;
3032 dst->var_part[k].loc_chain = vui[0].lc;
3035 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3037 i--;
3038 j--;
3040 else if ((i >= 0 && j >= 0
3041 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3042 || i < 0)
3044 dst->var_part[k] = dst->var_part[j];
3045 j--;
3047 else if ((i >= 0 && j >= 0
3048 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3049 || j < 0)
3051 location_chain **nextp;
3053 /* Copy the chain from SRC. */
3054 nextp = &dst->var_part[k].loc_chain;
3055 for (node = src->var_part[i].loc_chain; node; node = node->next)
3057 location_chain *new_lc;
3059 new_lc = new location_chain;
3060 new_lc->next = NULL;
3061 new_lc->init = node->init;
3062 if (!node->set_src || MEM_P (node->set_src))
3063 new_lc->set_src = NULL;
3064 else
3065 new_lc->set_src = node->set_src;
3066 new_lc->loc = node->loc;
3068 *nextp = new_lc;
3069 nextp = &new_lc->next;
3072 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3073 i--;
3075 dst->var_part[k].cur_loc = NULL;
3078 if (flag_var_tracking_uninit)
3079 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3081 location_chain *node, *node2;
3082 for (node = src->var_part[i].loc_chain; node; node = node->next)
3083 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3084 if (rtx_equal_p (node->loc, node2->loc))
3086 if (node->init > node2->init)
3087 node2->init = node->init;
3091 /* Continue traversing the hash table. */
3092 return 1;
3095 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3097 static void
3098 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3100 int i;
3102 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3103 attrs_list_union (&dst->regs[i], src->regs[i]);
3105 if (dst->vars == empty_shared_hash)
3107 shared_hash_destroy (dst->vars);
3108 dst->vars = shared_hash_copy (src->vars);
3110 else
3112 variable_iterator_type hi;
3113 variable *var;
3115 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3116 var, variable, hi)
3117 variable_union (var, dst);
3121 /* Whether the value is currently being expanded. */
3122 #define VALUE_RECURSED_INTO(x) \
3123 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3125 /* Whether no expansion was found, saving useless lookups.
3126 It must only be set when VALUE_CHANGED is clear. */
3127 #define NO_LOC_P(x) \
3128 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3130 /* Whether cur_loc in the value needs to be (re)computed. */
3131 #define VALUE_CHANGED(x) \
3132 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3133 /* Whether cur_loc in the decl needs to be (re)computed. */
3134 #define DECL_CHANGED(x) TREE_VISITED (x)
3136 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3137 user DECLs, this means they're in changed_variables. Values and
3138 debug exprs may be left with this flag set if no user variable
3139 requires them to be evaluated. */
3141 static inline void
3142 set_dv_changed (decl_or_value dv, bool newv)
3144 switch (dv_onepart_p (dv))
3146 case ONEPART_VALUE:
3147 if (newv)
3148 NO_LOC_P (dv_as_value (dv)) = false;
3149 VALUE_CHANGED (dv_as_value (dv)) = newv;
3150 break;
3152 case ONEPART_DEXPR:
3153 if (newv)
3154 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3155 /* Fall through... */
3157 default:
3158 DECL_CHANGED (dv_as_decl (dv)) = newv;
3159 break;
3163 /* Return true if DV needs to have its cur_loc recomputed. */
3165 static inline bool
3166 dv_changed_p (decl_or_value dv)
3168 return (dv_is_value_p (dv)
3169 ? VALUE_CHANGED (dv_as_value (dv))
3170 : DECL_CHANGED (dv_as_decl (dv)));
3173 /* Return a location list node whose loc is rtx_equal to LOC, in the
3174 location list of a one-part variable or value VAR, or in that of
3175 any values recursively mentioned in the location lists. VARS must
3176 be in star-canonical form. */
3178 static location_chain *
3179 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3181 location_chain *node;
3182 enum rtx_code loc_code;
3184 if (!var)
3185 return NULL;
3187 gcc_checking_assert (var->onepart);
3189 if (!var->n_var_parts)
3190 return NULL;
3192 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3194 loc_code = GET_CODE (loc);
3195 for (node = var->var_part[0].loc_chain; node; node = node->next)
3197 decl_or_value dv;
3198 variable *rvar;
3200 if (GET_CODE (node->loc) != loc_code)
3202 if (GET_CODE (node->loc) != VALUE)
3203 continue;
3205 else if (loc == node->loc)
3206 return node;
3207 else if (loc_code != VALUE)
3209 if (rtx_equal_p (loc, node->loc))
3210 return node;
3211 continue;
3214 /* Since we're in star-canonical form, we don't need to visit
3215 non-canonical nodes: one-part variables and non-canonical
3216 values would only point back to the canonical node. */
3217 if (dv_is_value_p (var->dv)
3218 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3220 /* Skip all subsequent VALUEs. */
3221 while (node->next && GET_CODE (node->next->loc) == VALUE)
3223 node = node->next;
3224 gcc_checking_assert (!canon_value_cmp (node->loc,
3225 dv_as_value (var->dv)));
3226 if (loc == node->loc)
3227 return node;
3229 continue;
3232 gcc_checking_assert (node == var->var_part[0].loc_chain);
3233 gcc_checking_assert (!node->next);
3235 dv = dv_from_value (node->loc);
3236 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3237 return find_loc_in_1pdv (loc, rvar, vars);
3240 /* ??? Gotta look in cselib_val locations too. */
3242 return NULL;
3245 /* Hash table iteration argument passed to variable_merge. */
3246 struct dfset_merge
3248 /* The set in which the merge is to be inserted. */
3249 dataflow_set *dst;
3250 /* The set that we're iterating in. */
3251 dataflow_set *cur;
3252 /* The set that may contain the other dv we are to merge with. */
3253 dataflow_set *src;
3254 /* Number of onepart dvs in src. */
3255 int src_onepart_cnt;
3258 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3259 loc_cmp order, and it is maintained as such. */
3261 static void
3262 insert_into_intersection (location_chain **nodep, rtx loc,
3263 enum var_init_status status)
3265 location_chain *node;
3266 int r;
3268 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3269 if ((r = loc_cmp (node->loc, loc)) == 0)
3271 node->init = MIN (node->init, status);
3272 return;
3274 else if (r > 0)
3275 break;
3277 node = new location_chain;
3279 node->loc = loc;
3280 node->set_src = NULL;
3281 node->init = status;
3282 node->next = *nodep;
3283 *nodep = node;
3286 /* Insert in DEST the intersection of the locations present in both
3287 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3288 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3289 DSM->dst. */
3291 static void
3292 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3293 location_chain *s1node, variable *s2var)
3295 dataflow_set *s1set = dsm->cur;
3296 dataflow_set *s2set = dsm->src;
3297 location_chain *found;
3299 if (s2var)
3301 location_chain *s2node;
3303 gcc_checking_assert (s2var->onepart);
3305 if (s2var->n_var_parts)
3307 s2node = s2var->var_part[0].loc_chain;
3309 for (; s1node && s2node;
3310 s1node = s1node->next, s2node = s2node->next)
3311 if (s1node->loc != s2node->loc)
3312 break;
3313 else if (s1node->loc == val)
3314 continue;
3315 else
3316 insert_into_intersection (dest, s1node->loc,
3317 MIN (s1node->init, s2node->init));
3321 for (; s1node; s1node = s1node->next)
3323 if (s1node->loc == val)
3324 continue;
3326 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3327 shared_hash_htab (s2set->vars))))
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, found->init));
3331 continue;
3334 if (GET_CODE (s1node->loc) == VALUE
3335 && !VALUE_RECURSED_INTO (s1node->loc))
3337 decl_or_value dv = dv_from_value (s1node->loc);
3338 variable *svar = shared_hash_find (s1set->vars, dv);
3339 if (svar)
3341 if (svar->n_var_parts == 1)
3343 VALUE_RECURSED_INTO (s1node->loc) = true;
3344 intersect_loc_chains (val, dest, dsm,
3345 svar->var_part[0].loc_chain,
3346 s2var);
3347 VALUE_RECURSED_INTO (s1node->loc) = false;
3352 /* ??? gotta look in cselib_val locations too. */
3354 /* ??? if the location is equivalent to any location in src,
3355 searched recursively
3357 add to dst the values needed to represent the equivalence
3359 telling whether locations S is equivalent to another dv's
3360 location list:
3362 for each location D in the list
3364 if S and D satisfy rtx_equal_p, then it is present
3366 else if D is a value, recurse without cycles
3368 else if S and D have the same CODE and MODE
3370 for each operand oS and the corresponding oD
3372 if oS and oD are not equivalent, then S an D are not equivalent
3374 else if they are RTX vectors
3376 if any vector oS element is not equivalent to its respective oD,
3377 then S and D are not equivalent
3385 /* Return -1 if X should be before Y in a location list for a 1-part
3386 variable, 1 if Y should be before X, and 0 if they're equivalent
3387 and should not appear in the list. */
3389 static int
3390 loc_cmp (rtx x, rtx y)
3392 int i, j, r;
3393 RTX_CODE code = GET_CODE (x);
3394 const char *fmt;
3396 if (x == y)
3397 return 0;
3399 if (REG_P (x))
3401 if (!REG_P (y))
3402 return -1;
3403 gcc_assert (GET_MODE (x) == GET_MODE (y));
3404 if (REGNO (x) == REGNO (y))
3405 return 0;
3406 else if (REGNO (x) < REGNO (y))
3407 return -1;
3408 else
3409 return 1;
3412 if (REG_P (y))
3413 return 1;
3415 if (MEM_P (x))
3417 if (!MEM_P (y))
3418 return -1;
3419 gcc_assert (GET_MODE (x) == GET_MODE (y));
3420 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3423 if (MEM_P (y))
3424 return 1;
3426 if (GET_CODE (x) == VALUE)
3428 if (GET_CODE (y) != VALUE)
3429 return -1;
3430 /* Don't assert the modes are the same, that is true only
3431 when not recursing. (subreg:QI (value:SI 1:1) 0)
3432 and (subreg:QI (value:DI 2:2) 0) can be compared,
3433 even when the modes are different. */
3434 if (canon_value_cmp (x, y))
3435 return -1;
3436 else
3437 return 1;
3440 if (GET_CODE (y) == VALUE)
3441 return 1;
3443 /* Entry value is the least preferable kind of expression. */
3444 if (GET_CODE (x) == ENTRY_VALUE)
3446 if (GET_CODE (y) != ENTRY_VALUE)
3447 return 1;
3448 gcc_assert (GET_MODE (x) == GET_MODE (y));
3449 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3452 if (GET_CODE (y) == ENTRY_VALUE)
3453 return -1;
3455 if (GET_CODE (x) == GET_CODE (y))
3456 /* Compare operands below. */;
3457 else if (GET_CODE (x) < GET_CODE (y))
3458 return -1;
3459 else
3460 return 1;
3462 gcc_assert (GET_MODE (x) == GET_MODE (y));
3464 if (GET_CODE (x) == DEBUG_EXPR)
3466 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3467 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3468 return -1;
3469 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3470 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3471 return 1;
3474 fmt = GET_RTX_FORMAT (code);
3475 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3476 switch (fmt[i])
3478 case 'w':
3479 if (XWINT (x, i) == XWINT (y, i))
3480 break;
3481 else if (XWINT (x, i) < XWINT (y, i))
3482 return -1;
3483 else
3484 return 1;
3486 case 'n':
3487 case 'i':
3488 if (XINT (x, i) == XINT (y, i))
3489 break;
3490 else if (XINT (x, i) < XINT (y, i))
3491 return -1;
3492 else
3493 return 1;
3495 case 'V':
3496 case 'E':
3497 /* Compare the vector length first. */
3498 if (XVECLEN (x, i) == XVECLEN (y, i))
3499 /* Compare the vectors elements. */;
3500 else if (XVECLEN (x, i) < XVECLEN (y, i))
3501 return -1;
3502 else
3503 return 1;
3505 for (j = 0; j < XVECLEN (x, i); j++)
3506 if ((r = loc_cmp (XVECEXP (x, i, j),
3507 XVECEXP (y, i, j))))
3508 return r;
3509 break;
3511 case 'e':
3512 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3513 return r;
3514 break;
3516 case 'S':
3517 case 's':
3518 if (XSTR (x, i) == XSTR (y, i))
3519 break;
3520 if (!XSTR (x, i))
3521 return -1;
3522 if (!XSTR (y, i))
3523 return 1;
3524 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3525 break;
3526 else if (r < 0)
3527 return -1;
3528 else
3529 return 1;
3531 case 'u':
3532 /* These are just backpointers, so they don't matter. */
3533 break;
3535 case '0':
3536 case 't':
3537 break;
3539 /* It is believed that rtx's at this level will never
3540 contain anything but integers and other rtx's,
3541 except for within LABEL_REFs and SYMBOL_REFs. */
3542 default:
3543 gcc_unreachable ();
3545 if (CONST_WIDE_INT_P (x))
3547 /* Compare the vector length first. */
3548 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3549 return 1;
3550 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3551 return -1;
3553 /* Compare the vectors elements. */;
3554 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3556 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3557 return -1;
3558 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3559 return 1;
3563 return 0;
3566 /* Check the order of entries in one-part variables. */
3569 canonicalize_loc_order_check (variable **slot,
3570 dataflow_set *data ATTRIBUTE_UNUSED)
3572 variable *var = *slot;
3573 location_chain *node, *next;
3575 #ifdef ENABLE_RTL_CHECKING
3576 int i;
3577 for (i = 0; i < var->n_var_parts; i++)
3578 gcc_assert (var->var_part[0].cur_loc == NULL);
3579 gcc_assert (!var->in_changed_variables);
3580 #endif
3582 if (!var->onepart)
3583 return 1;
3585 gcc_assert (var->n_var_parts == 1);
3586 node = var->var_part[0].loc_chain;
3587 gcc_assert (node);
3589 while ((next = node->next))
3591 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3592 node = next;
3595 return 1;
3598 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3599 more likely to be chosen as canonical for an equivalence set.
3600 Ensure less likely values can reach more likely neighbors, making
3601 the connections bidirectional. */
3604 canonicalize_values_mark (variable **slot, dataflow_set *set)
3606 variable *var = *slot;
3607 decl_or_value dv = var->dv;
3608 rtx val;
3609 location_chain *node;
3611 if (!dv_is_value_p (dv))
3612 return 1;
3614 gcc_checking_assert (var->n_var_parts == 1);
3616 val = dv_as_value (dv);
3618 for (node = var->var_part[0].loc_chain; node; node = node->next)
3619 if (GET_CODE (node->loc) == VALUE)
3621 if (canon_value_cmp (node->loc, val))
3622 VALUE_RECURSED_INTO (val) = true;
3623 else
3625 decl_or_value odv = dv_from_value (node->loc);
3626 variable **oslot;
3627 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3629 set_slot_part (set, val, oslot, odv, 0,
3630 node->init, NULL_RTX);
3632 VALUE_RECURSED_INTO (node->loc) = true;
3636 return 1;
3639 /* Remove redundant entries from equivalence lists in onepart
3640 variables, canonicalizing equivalence sets into star shapes. */
3643 canonicalize_values_star (variable **slot, dataflow_set *set)
3645 variable *var = *slot;
3646 decl_or_value dv = var->dv;
3647 location_chain *node;
3648 decl_or_value cdv;
3649 rtx val, cval;
3650 variable **cslot;
3651 bool has_value;
3652 bool has_marks;
3654 if (!var->onepart)
3655 return 1;
3657 gcc_checking_assert (var->n_var_parts == 1);
3659 if (dv_is_value_p (dv))
3661 cval = dv_as_value (dv);
3662 if (!VALUE_RECURSED_INTO (cval))
3663 return 1;
3664 VALUE_RECURSED_INTO (cval) = false;
3666 else
3667 cval = NULL_RTX;
3669 restart:
3670 val = cval;
3671 has_value = false;
3672 has_marks = false;
3674 gcc_assert (var->n_var_parts == 1);
3676 for (node = var->var_part[0].loc_chain; node; node = node->next)
3677 if (GET_CODE (node->loc) == VALUE)
3679 has_value = true;
3680 if (VALUE_RECURSED_INTO (node->loc))
3681 has_marks = true;
3682 if (canon_value_cmp (node->loc, cval))
3683 cval = node->loc;
3686 if (!has_value)
3687 return 1;
3689 if (cval == val)
3691 if (!has_marks || dv_is_decl_p (dv))
3692 return 1;
3694 /* Keep it marked so that we revisit it, either after visiting a
3695 child node, or after visiting a new parent that might be
3696 found out. */
3697 VALUE_RECURSED_INTO (val) = true;
3699 for (node = var->var_part[0].loc_chain; node; node = node->next)
3700 if (GET_CODE (node->loc) == VALUE
3701 && VALUE_RECURSED_INTO (node->loc))
3703 cval = node->loc;
3704 restart_with_cval:
3705 VALUE_RECURSED_INTO (cval) = false;
3706 dv = dv_from_value (cval);
3707 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3708 if (!slot)
3710 gcc_assert (dv_is_decl_p (var->dv));
3711 /* The canonical value was reset and dropped.
3712 Remove it. */
3713 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3714 return 1;
3716 var = *slot;
3717 gcc_assert (dv_is_value_p (var->dv));
3718 if (var->n_var_parts == 0)
3719 return 1;
3720 gcc_assert (var->n_var_parts == 1);
3721 goto restart;
3724 VALUE_RECURSED_INTO (val) = false;
3726 return 1;
3729 /* Push values to the canonical one. */
3730 cdv = dv_from_value (cval);
3731 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3733 for (node = var->var_part[0].loc_chain; node; node = node->next)
3734 if (node->loc != cval)
3736 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3737 node->init, NULL_RTX);
3738 if (GET_CODE (node->loc) == VALUE)
3740 decl_or_value ndv = dv_from_value (node->loc);
3742 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3743 NO_INSERT);
3745 if (canon_value_cmp (node->loc, val))
3747 /* If it could have been a local minimum, it's not any more,
3748 since it's now neighbor to cval, so it may have to push
3749 to it. Conversely, if it wouldn't have prevailed over
3750 val, then whatever mark it has is fine: if it was to
3751 push, it will now push to a more canonical node, but if
3752 it wasn't, then it has already pushed any values it might
3753 have to. */
3754 VALUE_RECURSED_INTO (node->loc) = true;
3755 /* Make sure we visit node->loc by ensuring we cval is
3756 visited too. */
3757 VALUE_RECURSED_INTO (cval) = true;
3759 else if (!VALUE_RECURSED_INTO (node->loc))
3760 /* If we have no need to "recurse" into this node, it's
3761 already "canonicalized", so drop the link to the old
3762 parent. */
3763 clobber_variable_part (set, cval, ndv, 0, NULL);
3765 else if (GET_CODE (node->loc) == REG)
3767 attrs *list = set->regs[REGNO (node->loc)], **listp;
3769 /* Change an existing attribute referring to dv so that it
3770 refers to cdv, removing any duplicate this might
3771 introduce, and checking that no previous duplicates
3772 existed, all in a single pass. */
3774 while (list)
3776 if (list->offset == 0
3777 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3778 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3779 break;
3781 list = list->next;
3784 gcc_assert (list);
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3787 list->dv = cdv;
3788 for (listp = &list->next; (list = *listp); listp = &list->next)
3790 if (list->offset)
3791 continue;
3793 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3795 *listp = list->next;
3796 delete list;
3797 list = *listp;
3798 break;
3801 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3804 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3806 for (listp = &list->next; (list = *listp); listp = &list->next)
3808 if (list->offset)
3809 continue;
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3813 *listp = list->next;
3814 delete list;
3815 list = *listp;
3816 break;
3819 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3822 else
3823 gcc_unreachable ();
3825 if (flag_checking)
3826 while (list)
3828 if (list->offset == 0
3829 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3830 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3831 gcc_unreachable ();
3833 list = list->next;
3838 if (val)
3839 set_slot_part (set, val, cslot, cdv, 0,
3840 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3842 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3844 /* Variable may have been unshared. */
3845 var = *slot;
3846 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3847 && var->var_part[0].loc_chain->next == NULL);
3849 if (VALUE_RECURSED_INTO (cval))
3850 goto restart_with_cval;
3852 return 1;
3855 /* Bind one-part variables to the canonical value in an equivalence
3856 set. Not doing this causes dataflow convergence failure in rare
3857 circumstances, see PR42873. Unfortunately we can't do this
3858 efficiently as part of canonicalize_values_star, since we may not
3859 have determined or even seen the canonical value of a set when we
3860 get to a variable that references another member of the set. */
3863 canonicalize_vars_star (variable **slot, dataflow_set *set)
3865 variable *var = *slot;
3866 decl_or_value dv = var->dv;
3867 location_chain *node;
3868 rtx cval;
3869 decl_or_value cdv;
3870 variable **cslot;
3871 variable *cvar;
3872 location_chain *cnode;
3874 if (!var->onepart || var->onepart == ONEPART_VALUE)
3875 return 1;
3877 gcc_assert (var->n_var_parts == 1);
3879 node = var->var_part[0].loc_chain;
3881 if (GET_CODE (node->loc) != VALUE)
3882 return 1;
3884 gcc_assert (!node->next);
3885 cval = node->loc;
3887 /* Push values to the canonical one. */
3888 cdv = dv_from_value (cval);
3889 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3890 if (!cslot)
3891 return 1;
3892 cvar = *cslot;
3893 gcc_assert (cvar->n_var_parts == 1);
3895 cnode = cvar->var_part[0].loc_chain;
3897 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3898 that are not “more canonical” than it. */
3899 if (GET_CODE (cnode->loc) != VALUE
3900 || !canon_value_cmp (cnode->loc, cval))
3901 return 1;
3903 /* CVAL was found to be non-canonical. Change the variable to point
3904 to the canonical VALUE. */
3905 gcc_assert (!cnode->next);
3906 cval = cnode->loc;
3908 slot = set_slot_part (set, cval, slot, dv, 0,
3909 node->init, node->set_src);
3910 clobber_slot_part (set, cval, slot, 0, node->set_src);
3912 return 1;
3915 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3916 corresponding entry in DSM->src. Multi-part variables are combined
3917 with variable_union, whereas onepart dvs are combined with
3918 intersection. */
3920 static int
3921 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3923 dataflow_set *dst = dsm->dst;
3924 variable **dstslot;
3925 variable *s2var, *dvar = NULL;
3926 decl_or_value dv = s1var->dv;
3927 onepart_enum onepart = s1var->onepart;
3928 rtx val;
3929 hashval_t dvhash;
3930 location_chain *node, **nodep;
3932 /* If the incoming onepart variable has an empty location list, then
3933 the intersection will be just as empty. For other variables,
3934 it's always union. */
3935 gcc_checking_assert (s1var->n_var_parts
3936 && s1var->var_part[0].loc_chain);
3938 if (!onepart)
3939 return variable_union (s1var, dst);
3941 gcc_checking_assert (s1var->n_var_parts == 1);
3943 dvhash = dv_htab_hash (dv);
3944 if (dv_is_value_p (dv))
3945 val = dv_as_value (dv);
3946 else
3947 val = NULL;
3949 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3950 if (!s2var)
3952 dst_can_be_shared = false;
3953 return 1;
3956 dsm->src_onepart_cnt--;
3957 gcc_assert (s2var->var_part[0].loc_chain
3958 && s2var->onepart == onepart
3959 && s2var->n_var_parts == 1);
3961 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3962 if (dstslot)
3964 dvar = *dstslot;
3965 gcc_assert (dvar->refcount == 1
3966 && dvar->onepart == onepart
3967 && dvar->n_var_parts == 1);
3968 nodep = &dvar->var_part[0].loc_chain;
3970 else
3972 nodep = &node;
3973 node = NULL;
3976 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3978 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3979 dvhash, INSERT);
3980 *dstslot = dvar = s2var;
3981 dvar->refcount++;
3983 else
3985 dst_can_be_shared = false;
3987 intersect_loc_chains (val, nodep, dsm,
3988 s1var->var_part[0].loc_chain, s2var);
3990 if (!dstslot)
3992 if (node)
3994 dvar = onepart_pool_allocate (onepart);
3995 dvar->dv = dv;
3996 dvar->refcount = 1;
3997 dvar->n_var_parts = 1;
3998 dvar->onepart = onepart;
3999 dvar->in_changed_variables = false;
4000 dvar->var_part[0].loc_chain = node;
4001 dvar->var_part[0].cur_loc = NULL;
4002 if (onepart)
4003 VAR_LOC_1PAUX (dvar) = NULL;
4004 else
4005 VAR_PART_OFFSET (dvar, 0) = 0;
4007 dstslot
4008 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4009 INSERT);
4010 gcc_assert (!*dstslot);
4011 *dstslot = dvar;
4013 else
4014 return 1;
4018 nodep = &dvar->var_part[0].loc_chain;
4019 while ((node = *nodep))
4021 location_chain **nextp = &node->next;
4023 if (GET_CODE (node->loc) == REG)
4025 attrs *list;
4027 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4028 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4029 && dv_is_value_p (list->dv))
4030 break;
4032 if (!list)
4033 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4034 dv, 0, node->loc);
4035 /* If this value became canonical for another value that had
4036 this register, we want to leave it alone. */
4037 else if (dv_as_value (list->dv) != val)
4039 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4040 dstslot, dv, 0,
4041 node->init, NULL_RTX);
4042 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4044 /* Since nextp points into the removed node, we can't
4045 use it. The pointer to the next node moved to nodep.
4046 However, if the variable we're walking is unshared
4047 during our walk, we'll keep walking the location list
4048 of the previously-shared variable, in which case the
4049 node won't have been removed, and we'll want to skip
4050 it. That's why we test *nodep here. */
4051 if (*nodep != node)
4052 nextp = nodep;
4055 else
4056 /* Canonicalization puts registers first, so we don't have to
4057 walk it all. */
4058 break;
4059 nodep = nextp;
4062 if (dvar != *dstslot)
4063 dvar = *dstslot;
4064 nodep = &dvar->var_part[0].loc_chain;
4066 if (val)
4068 /* Mark all referenced nodes for canonicalization, and make sure
4069 we have mutual equivalence links. */
4070 VALUE_RECURSED_INTO (val) = true;
4071 for (node = *nodep; node; node = node->next)
4072 if (GET_CODE (node->loc) == VALUE)
4074 VALUE_RECURSED_INTO (node->loc) = true;
4075 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4076 node->init, NULL, INSERT);
4079 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4080 gcc_assert (*dstslot == dvar);
4081 canonicalize_values_star (dstslot, dst);
4082 gcc_checking_assert (dstslot
4083 == shared_hash_find_slot_noinsert_1 (dst->vars,
4084 dv, dvhash));
4085 dvar = *dstslot;
4087 else
4089 bool has_value = false, has_other = false;
4091 /* If we have one value and anything else, we're going to
4092 canonicalize this, so make sure all values have an entry in
4093 the table and are marked for canonicalization. */
4094 for (node = *nodep; node; node = node->next)
4096 if (GET_CODE (node->loc) == VALUE)
4098 /* If this was marked during register canonicalization,
4099 we know we have to canonicalize values. */
4100 if (has_value)
4101 has_other = true;
4102 has_value = true;
4103 if (has_other)
4104 break;
4106 else
4108 has_other = true;
4109 if (has_value)
4110 break;
4114 if (has_value && has_other)
4116 for (node = *nodep; node; node = node->next)
4118 if (GET_CODE (node->loc) == VALUE)
4120 decl_or_value dv = dv_from_value (node->loc);
4121 variable **slot = NULL;
4123 if (shared_hash_shared (dst->vars))
4124 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4125 if (!slot)
4126 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4127 INSERT);
4128 if (!*slot)
4130 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4131 var->dv = dv;
4132 var->refcount = 1;
4133 var->n_var_parts = 1;
4134 var->onepart = ONEPART_VALUE;
4135 var->in_changed_variables = false;
4136 var->var_part[0].loc_chain = NULL;
4137 var->var_part[0].cur_loc = NULL;
4138 VAR_LOC_1PAUX (var) = NULL;
4139 *slot = var;
4142 VALUE_RECURSED_INTO (node->loc) = true;
4146 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4147 gcc_assert (*dstslot == dvar);
4148 canonicalize_values_star (dstslot, dst);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst->vars,
4151 dv, dvhash));
4152 dvar = *dstslot;
4156 if (!onepart_variable_different_p (dvar, s2var))
4158 variable_htab_free (dvar);
4159 *dstslot = dvar = s2var;
4160 dvar->refcount++;
4162 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4164 variable_htab_free (dvar);
4165 *dstslot = dvar = s1var;
4166 dvar->refcount++;
4167 dst_can_be_shared = false;
4169 else
4170 dst_can_be_shared = false;
4172 return 1;
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4180 static int
4181 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4183 dataflow_set *dst = dsm->dst;
4184 decl_or_value dv = s2var->dv;
4186 if (!s2var->onepart)
4188 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4189 *dstp = s2var;
4190 s2var->refcount++;
4191 return 1;
4194 dsm->src_onepart_cnt++;
4195 return 1;
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4201 static void
4202 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4204 dataflow_set cur = *dst;
4205 dataflow_set *src1 = &cur;
4206 struct dfset_merge dsm;
4207 int i;
4208 size_t src1_elems, src2_elems;
4209 variable_iterator_type hi;
4210 variable *var;
4212 src1_elems = shared_hash_htab (src1->vars)->elements ();
4213 src2_elems = shared_hash_htab (src2->vars)->elements ();
4214 dataflow_set_init (dst);
4215 dst->stack_adjust = cur.stack_adjust;
4216 shared_hash_destroy (dst->vars);
4217 dst->vars = new shared_hash;
4218 dst->vars->refcount = 1;
4219 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4224 dsm.dst = dst;
4225 dsm.src = src2;
4226 dsm.cur = src1;
4227 dsm.src_onepart_cnt = 0;
4229 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4230 var, variable, hi)
4231 variable_merge_over_src (var, &dsm);
4232 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4233 var, variable, hi)
4234 variable_merge_over_cur (var, &dsm);
4236 if (dsm.src_onepart_cnt)
4237 dst_can_be_shared = false;
4239 dataflow_set_destroy (src1);
4242 /* Mark register equivalences. */
4244 static void
4245 dataflow_set_equiv_regs (dataflow_set *set)
4247 int i;
4248 attrs *list, **listp;
4250 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4252 rtx canon[NUM_MACHINE_MODES];
4254 /* If the list is empty or one entry, no need to canonicalize
4255 anything. */
4256 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4257 continue;
4259 memset (canon, 0, sizeof (canon));
4261 for (list = set->regs[i]; list; list = list->next)
4262 if (list->offset == 0 && dv_is_value_p (list->dv))
4264 rtx val = dv_as_value (list->dv);
4265 rtx *cvalp = &canon[(int)GET_MODE (val)];
4266 rtx cval = *cvalp;
4268 if (canon_value_cmp (val, cval))
4269 *cvalp = val;
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_onepart_p (list->dv))
4275 rtx cval = canon[(int)GET_MODE (list->loc)];
4277 if (!cval)
4278 continue;
4280 if (dv_is_value_p (list->dv))
4282 rtx val = dv_as_value (list->dv);
4284 if (val == cval)
4285 continue;
4287 VALUE_RECURSED_INTO (val) = true;
4288 set_variable_part (set, val, dv_from_value (cval), 0,
4289 VAR_INIT_STATUS_INITIALIZED,
4290 NULL, NO_INSERT);
4293 VALUE_RECURSED_INTO (cval) = true;
4294 set_variable_part (set, cval, list->dv, 0,
4295 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4298 for (listp = &set->regs[i]; (list = *listp);
4299 listp = list ? &list->next : listp)
4300 if (list->offset == 0 && dv_onepart_p (list->dv))
4302 rtx cval = canon[(int)GET_MODE (list->loc)];
4303 variable **slot;
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4311 if (!VALUE_RECURSED_INTO (val))
4312 continue;
4315 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4316 canonicalize_values_star (slot, set);
4317 if (*listp != list)
4318 list = NULL;
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4326 static void
4327 remove_duplicate_values (variable *var)
4329 location_chain *node, **nodep;
4331 gcc_assert (var->onepart);
4332 gcc_assert (var->n_var_parts == 1);
4333 gcc_assert (var->refcount == 1);
4335 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4337 if (GET_CODE (node->loc) == VALUE)
4339 if (VALUE_RECURSED_INTO (node->loc))
4341 /* Remove duplicate value node. */
4342 *nodep = node->next;
4343 delete node;
4344 continue;
4346 else
4347 VALUE_RECURSED_INTO (node->loc) = true;
4349 nodep = &node->next;
4352 for (node = var->var_part[0].loc_chain; node; node = node->next)
4353 if (GET_CODE (node->loc) == VALUE)
4355 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4356 VALUE_RECURSED_INTO (node->loc) = false;
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4364 /* The new input set for the current block. */
4365 dataflow_set *set;
4366 /* Pointer to the permanent input set for the current block, or
4367 NULL. */
4368 dataflow_set **permp;
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4375 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4377 dataflow_set *set = dfpm->set;
4378 variable *var = *slot;
4379 location_chain *node;
4381 if (!var->onepart || !var->n_var_parts)
4382 return 1;
4384 gcc_assert (var->n_var_parts == 1);
4386 if (dv_is_decl_p (var->dv))
4388 bool check_dupes = false;
4390 restart:
4391 for (node = var->var_part[0].loc_chain; node; node = node->next)
4393 if (GET_CODE (node->loc) == VALUE)
4394 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4395 else if (GET_CODE (node->loc) == REG)
4397 attrs *att, **attp, **curp = NULL;
4399 if (var->refcount != 1)
4401 slot = unshare_variable (set, slot, var,
4402 VAR_INIT_STATUS_INITIALIZED);
4403 var = *slot;
4404 goto restart;
4407 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4408 attp = &att->next)
4409 if (att->offset == 0
4410 && GET_MODE (att->loc) == GET_MODE (node->loc))
4412 if (dv_is_value_p (att->dv))
4414 rtx cval = dv_as_value (att->dv);
4415 node->loc = cval;
4416 check_dupes = true;
4417 break;
4419 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4420 curp = attp;
4423 if (!curp)
4425 curp = attp;
4426 while (*curp)
4427 if ((*curp)->offset == 0
4428 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4429 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4430 break;
4431 else
4432 curp = &(*curp)->next;
4433 gcc_assert (*curp);
4436 if (!att)
4438 decl_or_value cdv;
4439 rtx cval;
4441 if (!*dfpm->permp)
4443 *dfpm->permp = XNEW (dataflow_set);
4444 dataflow_set_init (*dfpm->permp);
4447 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4448 att; att = att->next)
4449 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4451 gcc_assert (att->offset == 0
4452 && dv_is_value_p (att->dv));
4453 val_reset (set, att->dv);
4454 break;
4457 if (att)
4459 cdv = att->dv;
4460 cval = dv_as_value (cdv);
4462 else
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4467 cselib_val *v;
4468 gcc_assert (!cselib_lookup (node->loc,
4469 GET_MODE (node->loc), 0,
4470 VOIDmode));
4471 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4472 VOIDmode);
4473 cselib_preserve_value (v);
4474 cselib_invalidate_rtx (node->loc);
4475 cval = v->val_rtx;
4476 cdv = dv_from_value (cval);
4477 if (dump_file)
4478 fprintf (dump_file,
4479 "Created new value %u:%u for reg %i\n",
4480 v->uid, v->hash, REGNO (node->loc));
4483 var_reg_decl_set (*dfpm->permp, node->loc,
4484 VAR_INIT_STATUS_INITIALIZED,
4485 cdv, 0, NULL, INSERT);
4487 node->loc = cval;
4488 check_dupes = true;
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4494 att = *curp;
4495 *curp = att->next;
4496 delete att;
4500 if (check_dupes)
4501 remove_duplicate_values (var);
4504 return 1;
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4511 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4513 dataflow_set *set = dfpm->set;
4514 variable *pvar = *pslot, *var;
4515 location_chain *pnode;
4516 decl_or_value dv;
4517 attrs *att;
4519 gcc_assert (dv_is_value_p (pvar->dv)
4520 && pvar->n_var_parts == 1);
4521 pnode = pvar->var_part[0].loc_chain;
4522 gcc_assert (pnode
4523 && !pnode->next
4524 && REG_P (pnode->loc));
4526 dv = pvar->dv;
4528 var = shared_hash_find (set->vars, dv);
4529 if (var)
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4538 return 1;
4539 val_reset (set, dv);
4542 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4543 if (att->offset == 0
4544 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4545 && dv_is_value_p (att->dv))
4546 break;
4548 /* If there is a value associated with this register already, create
4549 an equivalence. */
4550 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4552 rtx cval = dv_as_value (att->dv);
4553 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4554 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4555 NULL, INSERT);
4557 else if (!att)
4559 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4560 dv, 0, pnode->loc);
4561 variable_union (pvar, set);
4564 return 1;
4567 /* Just checking stuff and registering register attributes for
4568 now. */
4570 static void
4571 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4573 struct dfset_post_merge dfpm;
4575 dfpm.set = set;
4576 dfpm.permp = permp;
4578 shared_hash_htab (set->vars)
4579 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4580 if (*permp)
4581 shared_hash_htab ((*permp)->vars)
4582 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4585 shared_hash_htab (set->vars)
4586 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4593 static location_chain *
4594 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4596 location_chain *node;
4597 decl_or_value dv;
4598 variable *var;
4599 location_chain *where = NULL;
4601 if (!val)
4602 return NULL;
4604 gcc_assert (GET_CODE (val) == VALUE
4605 && !VALUE_RECURSED_INTO (val));
4607 dv = dv_from_value (val);
4608 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4610 if (!var)
4611 return NULL;
4613 gcc_assert (var->onepart);
4615 if (!var->n_var_parts)
4616 return NULL;
4618 VALUE_RECURSED_INTO (val) = true;
4620 for (node = var->var_part[0].loc_chain; node; node = node->next)
4621 if (MEM_P (node->loc)
4622 && MEM_EXPR (node->loc) == expr
4623 && INT_MEM_OFFSET (node->loc) == 0)
4625 where = node;
4626 break;
4628 else if (GET_CODE (node->loc) == VALUE
4629 && !VALUE_RECURSED_INTO (node->loc)
4630 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4631 break;
4633 VALUE_RECURSED_INTO (val) = false;
4635 return where;
4638 /* Return TRUE if the value of MEM may vary across a call. */
4640 static bool
4641 mem_dies_at_call (rtx mem)
4643 tree expr = MEM_EXPR (mem);
4644 tree decl;
4646 if (!expr)
4647 return true;
4649 decl = get_base_address (expr);
4651 if (!decl)
4652 return true;
4654 if (!DECL_P (decl))
4655 return true;
4657 return (may_be_aliased (decl)
4658 || (!TREE_READONLY (decl) && is_global_var (decl)));
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4666 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4668 variable *var = *slot;
4670 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4672 tree decl = dv_as_decl (var->dv);
4673 location_chain *loc, **locp;
4674 bool changed = false;
4676 if (!var->n_var_parts)
4677 return 1;
4679 gcc_assert (var->n_var_parts == 1);
4681 if (shared_var_p (var, set->vars))
4683 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4685 /* We want to remove dying MEMs that don't refer to DECL. */
4686 if (GET_CODE (loc->loc) == MEM
4687 && (MEM_EXPR (loc->loc) != decl
4688 || INT_MEM_OFFSET (loc->loc) != 0)
4689 && mem_dies_at_call (loc->loc))
4690 break;
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc->loc) == VALUE
4693 && find_mem_expr_in_1pdv (decl, loc->loc,
4694 shared_hash_htab (set->vars)))
4695 break;
4698 if (!loc)
4699 return 1;
4701 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4702 var = *slot;
4703 gcc_assert (var->n_var_parts == 1);
4706 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4707 loc; loc = *locp)
4709 rtx old_loc = loc->loc;
4710 if (GET_CODE (old_loc) == VALUE)
4712 location_chain *mem_node
4713 = find_mem_expr_in_1pdv (decl, loc->loc,
4714 shared_hash_htab (set->vars));
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4722 if (mem_node)
4724 loc->loc = mem_node->loc;
4725 loc->set_src = mem_node->set_src;
4726 loc->init = MIN (loc->init, mem_node->init);
4730 if (GET_CODE (loc->loc) != MEM
4731 || (MEM_EXPR (loc->loc) == decl
4732 && INT_MEM_OFFSET (loc->loc) == 0)
4733 || !mem_dies_at_call (loc->loc))
4735 if (old_loc != loc->loc && emit_notes)
4737 if (old_loc == var->var_part[0].cur_loc)
4739 changed = true;
4740 var->var_part[0].cur_loc = NULL;
4743 locp = &loc->next;
4744 continue;
4747 if (emit_notes)
4749 if (old_loc == var->var_part[0].cur_loc)
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4755 *locp = loc->next;
4756 delete loc;
4759 if (!var->var_part[0].loc_chain)
4761 var->n_var_parts--;
4762 changed = true;
4764 if (changed)
4765 variable_was_changed (var, set);
4768 return 1;
4771 /* Remove all MEMs from the location list of a hash table entry for a
4772 onepart variable. */
4775 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4777 variable *var = *slot;
4779 if (var->onepart != NOT_ONEPART)
4781 location_chain *loc, **locp;
4782 bool changed = false;
4783 rtx cur_loc;
4785 gcc_assert (var->n_var_parts == 1);
4787 if (shared_var_p (var, set->vars))
4789 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4790 if (GET_CODE (loc->loc) == MEM
4791 && mem_dies_at_call (loc->loc))
4792 break;
4794 if (!loc)
4795 return 1;
4797 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4798 var = *slot;
4799 gcc_assert (var->n_var_parts == 1);
4802 if (VAR_LOC_1PAUX (var))
4803 cur_loc = VAR_LOC_FROM (var);
4804 else
4805 cur_loc = var->var_part[0].cur_loc;
4807 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4808 loc; loc = *locp)
4810 if (GET_CODE (loc->loc) != MEM
4811 || !mem_dies_at_call (loc->loc))
4813 locp = &loc->next;
4814 continue;
4817 *locp = loc->next;
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc == loc->loc)
4823 changed = true;
4824 var->var_part[0].cur_loc = NULL;
4825 if (VAR_LOC_1PAUX (var))
4826 VAR_LOC_FROM (var) = NULL;
4828 delete loc;
4831 if (!var->var_part[0].loc_chain)
4833 var->n_var_parts--;
4834 changed = true;
4836 if (changed)
4837 variable_was_changed (var, set);
4840 return 1;
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4846 static void
4847 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4849 unsigned int r;
4850 hard_reg_set_iterator hrsi;
4851 HARD_REG_SET invalidated_regs;
4853 get_call_reg_set_usage (call_insn, &invalidated_regs,
4854 regs_invalidated_by_call);
4856 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4857 var_regno_delete (set, r);
4859 if (MAY_HAVE_DEBUG_INSNS)
4861 set->traversed_vars = set->vars;
4862 shared_hash_htab (set->vars)
4863 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4864 set->traversed_vars = set->vars;
4865 shared_hash_htab (set->vars)
4866 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4867 set->traversed_vars = NULL;
4871 static bool
4872 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4874 location_chain *lc1, *lc2;
4876 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4878 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4880 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4882 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4883 break;
4885 if (rtx_equal_p (lc1->loc, lc2->loc))
4886 break;
4888 if (!lc2)
4889 return true;
4891 return false;
4894 /* Return true if one-part variables VAR1 and VAR2 are different.
4895 They must be in canonical order. */
4897 static bool
4898 onepart_variable_different_p (variable *var1, variable *var2)
4900 location_chain *lc1, *lc2;
4902 if (var1 == var2)
4903 return false;
4905 gcc_assert (var1->n_var_parts == 1
4906 && var2->n_var_parts == 1);
4908 lc1 = var1->var_part[0].loc_chain;
4909 lc2 = var2->var_part[0].loc_chain;
4911 gcc_assert (lc1 && lc2);
4913 while (lc1 && lc2)
4915 if (loc_cmp (lc1->loc, lc2->loc))
4916 return true;
4917 lc1 = lc1->next;
4918 lc2 = lc2->next;
4921 return lc1 != lc2;
4924 /* Return true if one-part variables VAR1 and VAR2 are different.
4925 They must be in canonical order. */
4927 static void
4928 dump_onepart_variable_differences (variable *var1, variable *var2)
4930 location_chain *lc1, *lc2;
4932 gcc_assert (var1 != var2);
4933 gcc_assert (dump_file);
4934 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4935 gcc_assert (var1->n_var_parts == 1
4936 && var2->n_var_parts == 1);
4938 lc1 = var1->var_part[0].loc_chain;
4939 lc2 = var2->var_part[0].loc_chain;
4941 gcc_assert (lc1 && lc2);
4943 while (lc1 && lc2)
4945 switch (loc_cmp (lc1->loc, lc2->loc))
4947 case -1:
4948 fprintf (dump_file, "removed: ");
4949 print_rtl_single (dump_file, lc1->loc);
4950 lc1 = lc1->next;
4951 continue;
4952 case 0:
4953 break;
4954 case 1:
4955 fprintf (dump_file, "added: ");
4956 print_rtl_single (dump_file, lc2->loc);
4957 lc2 = lc2->next;
4958 continue;
4959 default:
4960 gcc_unreachable ();
4962 lc1 = lc1->next;
4963 lc2 = lc2->next;
4966 while (lc1)
4968 fprintf (dump_file, "removed: ");
4969 print_rtl_single (dump_file, lc1->loc);
4970 lc1 = lc1->next;
4973 while (lc2)
4975 fprintf (dump_file, "added: ");
4976 print_rtl_single (dump_file, lc2->loc);
4977 lc2 = lc2->next;
4981 /* Return true if variables VAR1 and VAR2 are different. */
4983 static bool
4984 variable_different_p (variable *var1, variable *var2)
4986 int i;
4988 if (var1 == var2)
4989 return false;
4991 if (var1->onepart != var2->onepart)
4992 return true;
4994 if (var1->n_var_parts != var2->n_var_parts)
4995 return true;
4997 if (var1->onepart && var1->n_var_parts)
4999 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5000 && var1->n_var_parts == 1);
5001 /* One-part values have locations in a canonical order. */
5002 return onepart_variable_different_p (var1, var2);
5005 for (i = 0; i < var1->n_var_parts; i++)
5007 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5008 return true;
5009 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5010 return true;
5011 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5012 return true;
5014 return false;
5017 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5019 static bool
5020 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5022 variable_iterator_type hi;
5023 variable *var1;
5024 bool diffound = false;
5025 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5027 #define RETRUE \
5028 do \
5030 if (!details) \
5031 return true; \
5032 else \
5033 diffound = true; \
5035 while (0)
5037 if (old_set->vars == new_set->vars)
5038 return false;
5040 if (shared_hash_htab (old_set->vars)->elements ()
5041 != shared_hash_htab (new_set->vars)->elements ())
5042 RETRUE;
5044 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5045 var1, variable, hi)
5047 variable_table_type *htab = shared_hash_htab (new_set->vars);
5048 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5050 if (!var2)
5052 if (dump_file && (dump_flags & TDF_DETAILS))
5054 fprintf (dump_file, "dataflow difference found: removal of:\n");
5055 dump_var (var1);
5057 RETRUE;
5059 else if (variable_different_p (var1, var2))
5061 if (details)
5063 fprintf (dump_file, "dataflow difference found: "
5064 "old and new follow:\n");
5065 dump_var (var1);
5066 if (dv_onepart_p (var1->dv))
5067 dump_onepart_variable_differences (var1, var2);
5068 dump_var (var2);
5070 RETRUE;
5074 /* There's no need to traverse the second hashtab unless we want to
5075 print the details. If both have the same number of elements and
5076 the second one had all entries found in the first one, then the
5077 second can't have any extra entries. */
5078 if (!details)
5079 return diffound;
5081 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5082 var1, variable, hi)
5084 variable_table_type *htab = shared_hash_htab (old_set->vars);
5085 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5086 if (!var2)
5088 if (details)
5090 fprintf (dump_file, "dataflow difference found: addition of:\n");
5091 dump_var (var1);
5093 RETRUE;
5097 #undef RETRUE
5099 return diffound;
5102 /* Free the contents of dataflow set SET. */
5104 static void
5105 dataflow_set_destroy (dataflow_set *set)
5107 int i;
5109 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5110 attrs_list_clear (&set->regs[i]);
5112 shared_hash_destroy (set->vars);
5113 set->vars = NULL;
5116 /* Return true if T is a tracked parameter with non-degenerate record type. */
5118 static bool
5119 tracked_record_parameter_p (tree t)
5121 if (TREE_CODE (t) != PARM_DECL)
5122 return false;
5124 if (DECL_MODE (t) == BLKmode)
5125 return false;
5127 tree type = TREE_TYPE (t);
5128 if (TREE_CODE (type) != RECORD_TYPE)
5129 return false;
5131 if (TYPE_FIELDS (type) == NULL_TREE
5132 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5133 return false;
5135 return true;
5138 /* Shall EXPR be tracked? */
5140 static bool
5141 track_expr_p (tree expr, bool need_rtl)
5143 rtx decl_rtl;
5144 tree realdecl;
5146 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5147 return DECL_RTL_SET_P (expr);
5149 /* If EXPR is not a parameter or a variable do not track it. */
5150 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5151 return 0;
5153 /* It also must have a name... */
5154 if (!DECL_NAME (expr) && need_rtl)
5155 return 0;
5157 /* ... and a RTL assigned to it. */
5158 decl_rtl = DECL_RTL_IF_SET (expr);
5159 if (!decl_rtl && need_rtl)
5160 return 0;
5162 /* If this expression is really a debug alias of some other declaration, we
5163 don't need to track this expression if the ultimate declaration is
5164 ignored. */
5165 realdecl = expr;
5166 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5168 realdecl = DECL_DEBUG_EXPR (realdecl);
5169 if (!DECL_P (realdecl))
5171 if (handled_component_p (realdecl)
5172 || (TREE_CODE (realdecl) == MEM_REF
5173 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5175 HOST_WIDE_INT bitsize, bitpos, maxsize;
5176 bool reverse;
5177 tree innerdecl
5178 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5179 &maxsize, &reverse);
5180 if (!DECL_P (innerdecl)
5181 || DECL_IGNORED_P (innerdecl)
5182 /* Do not track declarations for parts of tracked record
5183 parameters since we want to track them as a whole. */
5184 || tracked_record_parameter_p (innerdecl)
5185 || TREE_STATIC (innerdecl)
5186 || bitsize <= 0
5187 || bitpos + bitsize > 256
5188 || bitsize != maxsize)
5189 return 0;
5190 else
5191 realdecl = expr;
5193 else
5194 return 0;
5198 /* Do not track EXPR if REALDECL it should be ignored for debugging
5199 purposes. */
5200 if (DECL_IGNORED_P (realdecl))
5201 return 0;
5203 /* Do not track global variables until we are able to emit correct location
5204 list for them. */
5205 if (TREE_STATIC (realdecl))
5206 return 0;
5208 /* When the EXPR is a DECL for alias of some variable (see example)
5209 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5210 DECL_RTL contains SYMBOL_REF.
5212 Example:
5213 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5214 char **_dl_argv;
5216 if (decl_rtl && MEM_P (decl_rtl)
5217 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5218 return 0;
5220 /* If RTX is a memory it should not be very large (because it would be
5221 an array or struct). */
5222 if (decl_rtl && MEM_P (decl_rtl))
5224 /* Do not track structures and arrays. */
5225 if (GET_MODE (decl_rtl) == BLKmode
5226 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5227 return 0;
5228 if (MEM_SIZE_KNOWN_P (decl_rtl)
5229 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5230 return 0;
5233 DECL_CHANGED (expr) = 0;
5234 DECL_CHANGED (realdecl) = 0;
5235 return 1;
5238 /* Determine whether a given LOC refers to the same variable part as
5239 EXPR+OFFSET. */
5241 static bool
5242 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5244 tree expr2;
5245 HOST_WIDE_INT offset2;
5247 if (! DECL_P (expr))
5248 return false;
5250 if (REG_P (loc))
5252 expr2 = REG_EXPR (loc);
5253 offset2 = REG_OFFSET (loc);
5255 else if (MEM_P (loc))
5257 expr2 = MEM_EXPR (loc);
5258 offset2 = INT_MEM_OFFSET (loc);
5260 else
5261 return false;
5263 if (! expr2 || ! DECL_P (expr2))
5264 return false;
5266 expr = var_debug_decl (expr);
5267 expr2 = var_debug_decl (expr2);
5269 return (expr == expr2 && offset == offset2);
5272 /* LOC is a REG or MEM that we would like to track if possible.
5273 If EXPR is null, we don't know what expression LOC refers to,
5274 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5275 LOC is an lvalue register.
5277 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5278 is something we can track. When returning true, store the mode of
5279 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5280 from EXPR in *OFFSET_OUT (if nonnull). */
5282 static bool
5283 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5284 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5286 machine_mode mode;
5288 if (expr == NULL || !track_expr_p (expr, true))
5289 return false;
5291 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5292 whole subreg, but only the old inner part is really relevant. */
5293 mode = GET_MODE (loc);
5294 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5296 machine_mode pseudo_mode;
5298 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5299 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5301 offset += byte_lowpart_offset (pseudo_mode, mode);
5302 mode = pseudo_mode;
5306 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5307 Do the same if we are storing to a register and EXPR occupies
5308 the whole of register LOC; in that case, the whole of EXPR is
5309 being changed. We exclude complex modes from the second case
5310 because the real and imaginary parts are represented as separate
5311 pseudo registers, even if the whole complex value fits into one
5312 hard register. */
5313 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5314 || (store_reg_p
5315 && !COMPLEX_MODE_P (DECL_MODE (expr))
5316 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5317 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5319 mode = DECL_MODE (expr);
5320 offset = 0;
5323 if (offset < 0 || offset >= MAX_VAR_PARTS)
5324 return false;
5326 if (mode_out)
5327 *mode_out = mode;
5328 if (offset_out)
5329 *offset_out = offset;
5330 return true;
5333 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5334 want to track. When returning nonnull, make sure that the attributes
5335 on the returned value are updated. */
5337 static rtx
5338 var_lowpart (machine_mode mode, rtx loc)
5340 unsigned int offset, reg_offset, regno;
5342 if (GET_MODE (loc) == mode)
5343 return loc;
5345 if (!REG_P (loc) && !MEM_P (loc))
5346 return NULL;
5348 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5350 if (MEM_P (loc))
5351 return adjust_address_nv (loc, mode, offset);
5353 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5354 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5355 reg_offset, mode);
5356 return gen_rtx_REG_offset (loc, mode, regno, offset);
5359 /* Carry information about uses and stores while walking rtx. */
5361 struct count_use_info
5363 /* The insn where the RTX is. */
5364 rtx_insn *insn;
5366 /* The basic block where insn is. */
5367 basic_block bb;
5369 /* The array of n_sets sets in the insn, as determined by cselib. */
5370 struct cselib_set *sets;
5371 int n_sets;
5373 /* True if we're counting stores, false otherwise. */
5374 bool store_p;
5377 /* Find a VALUE corresponding to X. */
5379 static inline cselib_val *
5380 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5382 int i;
5384 if (cui->sets)
5386 /* This is called after uses are set up and before stores are
5387 processed by cselib, so it's safe to look up srcs, but not
5388 dsts. So we look up expressions that appear in srcs or in
5389 dest expressions, but we search the sets array for dests of
5390 stores. */
5391 if (cui->store_p)
5393 /* Some targets represent memset and memcpy patterns
5394 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5395 (set (mem:BLK ...) (const_int ...)) or
5396 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5397 in that case, otherwise we end up with mode mismatches. */
5398 if (mode == BLKmode && MEM_P (x))
5399 return NULL;
5400 for (i = 0; i < cui->n_sets; i++)
5401 if (cui->sets[i].dest == x)
5402 return cui->sets[i].src_elt;
5404 else
5405 return cselib_lookup (x, mode, 0, VOIDmode);
5408 return NULL;
5411 /* Replace all registers and addresses in an expression with VALUE
5412 expressions that map back to them, unless the expression is a
5413 register. If no mapping is or can be performed, returns NULL. */
5415 static rtx
5416 replace_expr_with_values (rtx loc)
5418 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5419 return NULL;
5420 else if (MEM_P (loc))
5422 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5423 get_address_mode (loc), 0,
5424 GET_MODE (loc));
5425 if (addr)
5426 return replace_equiv_address_nv (loc, addr->val_rtx);
5427 else
5428 return NULL;
5430 else
5431 return cselib_subst_to_values (loc, VOIDmode);
5434 /* Return true if X contains a DEBUG_EXPR. */
5436 static bool
5437 rtx_debug_expr_p (const_rtx x)
5439 subrtx_iterator::array_type array;
5440 FOR_EACH_SUBRTX (iter, array, x, ALL)
5441 if (GET_CODE (*iter) == DEBUG_EXPR)
5442 return true;
5443 return false;
5446 /* Determine what kind of micro operation to choose for a USE. Return
5447 MO_CLOBBER if no micro operation is to be generated. */
5449 static enum micro_operation_type
5450 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5452 tree expr;
5454 if (cui && cui->sets)
5456 if (GET_CODE (loc) == VAR_LOCATION)
5458 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5460 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5461 if (! VAR_LOC_UNKNOWN_P (ploc))
5463 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5464 VOIDmode);
5466 /* ??? flag_float_store and volatile mems are never
5467 given values, but we could in theory use them for
5468 locations. */
5469 gcc_assert (val || 1);
5471 return MO_VAL_LOC;
5473 else
5474 return MO_CLOBBER;
5477 if (REG_P (loc) || MEM_P (loc))
5479 if (modep)
5480 *modep = GET_MODE (loc);
5481 if (cui->store_p)
5483 if (REG_P (loc)
5484 || (find_use_val (loc, GET_MODE (loc), cui)
5485 && cselib_lookup (XEXP (loc, 0),
5486 get_address_mode (loc), 0,
5487 GET_MODE (loc))))
5488 return MO_VAL_SET;
5490 else
5492 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5494 if (val && !cselib_preserved_value_p (val))
5495 return MO_VAL_USE;
5500 if (REG_P (loc))
5502 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5504 if (loc == cfa_base_rtx)
5505 return MO_CLOBBER;
5506 expr = REG_EXPR (loc);
5508 if (!expr)
5509 return MO_USE_NO_VAR;
5510 else if (target_for_debug_bind (var_debug_decl (expr)))
5511 return MO_CLOBBER;
5512 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5513 false, modep, NULL))
5514 return MO_USE;
5515 else
5516 return MO_USE_NO_VAR;
5518 else if (MEM_P (loc))
5520 expr = MEM_EXPR (loc);
5522 if (!expr)
5523 return MO_CLOBBER;
5524 else if (target_for_debug_bind (var_debug_decl (expr)))
5525 return MO_CLOBBER;
5526 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5527 false, modep, NULL)
5528 /* Multi-part variables shouldn't refer to one-part
5529 variable names such as VALUEs (never happens) or
5530 DEBUG_EXPRs (only happens in the presence of debug
5531 insns). */
5532 && (!MAY_HAVE_DEBUG_INSNS
5533 || !rtx_debug_expr_p (XEXP (loc, 0))))
5534 return MO_USE;
5535 else
5536 return MO_CLOBBER;
5539 return MO_CLOBBER;
5542 /* Log to OUT information about micro-operation MOPT involving X in
5543 INSN of BB. */
5545 static inline void
5546 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5547 enum micro_operation_type mopt, FILE *out)
5549 fprintf (out, "bb %i op %i insn %i %s ",
5550 bb->index, VTI (bb)->mos.length (),
5551 INSN_UID (insn), micro_operation_type_name[mopt]);
5552 print_inline_rtx (out, x, 2);
5553 fputc ('\n', out);
5556 /* Tell whether the CONCAT used to holds a VALUE and its location
5557 needs value resolution, i.e., an attempt of mapping the location
5558 back to other incoming values. */
5559 #define VAL_NEEDS_RESOLUTION(x) \
5560 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5561 /* Whether the location in the CONCAT is a tracked expression, that
5562 should also be handled like a MO_USE. */
5563 #define VAL_HOLDS_TRACK_EXPR(x) \
5564 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5565 /* Whether the location in the CONCAT should be handled like a MO_COPY
5566 as well. */
5567 #define VAL_EXPR_IS_COPIED(x) \
5568 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5569 /* Whether the location in the CONCAT should be handled like a
5570 MO_CLOBBER as well. */
5571 #define VAL_EXPR_IS_CLOBBERED(x) \
5572 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5574 /* All preserved VALUEs. */
5575 static vec<rtx> preserved_values;
5577 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5579 static void
5580 preserve_value (cselib_val *val)
5582 cselib_preserve_value (val);
5583 preserved_values.safe_push (val->val_rtx);
5586 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5587 any rtxes not suitable for CONST use not replaced by VALUEs
5588 are discovered. */
5590 static bool
5591 non_suitable_const (const_rtx x)
5593 subrtx_iterator::array_type array;
5594 FOR_EACH_SUBRTX (iter, array, x, ALL)
5596 const_rtx x = *iter;
5597 switch (GET_CODE (x))
5599 case REG:
5600 case DEBUG_EXPR:
5601 case PC:
5602 case SCRATCH:
5603 case CC0:
5604 case ASM_INPUT:
5605 case ASM_OPERANDS:
5606 return true;
5607 case MEM:
5608 if (!MEM_READONLY_P (x))
5609 return true;
5610 break;
5611 default:
5612 break;
5615 return false;
5618 /* Add uses (register and memory references) LOC which will be tracked
5619 to VTI (bb)->mos. */
5621 static void
5622 add_uses (rtx loc, struct count_use_info *cui)
5624 machine_mode mode = VOIDmode;
5625 enum micro_operation_type type = use_type (loc, cui, &mode);
5627 if (type != MO_CLOBBER)
5629 basic_block bb = cui->bb;
5630 micro_operation mo;
5632 mo.type = type;
5633 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5634 mo.insn = cui->insn;
5636 if (type == MO_VAL_LOC)
5638 rtx oloc = loc;
5639 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5640 cselib_val *val;
5642 gcc_assert (cui->sets);
5644 if (MEM_P (vloc)
5645 && !REG_P (XEXP (vloc, 0))
5646 && !MEM_P (XEXP (vloc, 0)))
5648 rtx mloc = vloc;
5649 machine_mode address_mode = get_address_mode (mloc);
5650 cselib_val *val
5651 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5652 GET_MODE (mloc));
5654 if (val && !cselib_preserved_value_p (val))
5655 preserve_value (val);
5658 if (CONSTANT_P (vloc)
5659 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5660 /* For constants don't look up any value. */;
5661 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5662 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5664 machine_mode mode2;
5665 enum micro_operation_type type2;
5666 rtx nloc = NULL;
5667 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5669 if (resolvable)
5670 nloc = replace_expr_with_values (vloc);
5672 if (nloc)
5674 oloc = shallow_copy_rtx (oloc);
5675 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5678 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5680 type2 = use_type (vloc, 0, &mode2);
5682 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5683 || type2 == MO_CLOBBER);
5685 if (type2 == MO_CLOBBER
5686 && !cselib_preserved_value_p (val))
5688 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5689 preserve_value (val);
5692 else if (!VAR_LOC_UNKNOWN_P (vloc))
5694 oloc = shallow_copy_rtx (oloc);
5695 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5698 mo.u.loc = oloc;
5700 else if (type == MO_VAL_USE)
5702 machine_mode mode2 = VOIDmode;
5703 enum micro_operation_type type2;
5704 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5705 rtx vloc, oloc = loc, nloc;
5707 gcc_assert (cui->sets);
5709 if (MEM_P (oloc)
5710 && !REG_P (XEXP (oloc, 0))
5711 && !MEM_P (XEXP (oloc, 0)))
5713 rtx mloc = oloc;
5714 machine_mode address_mode = get_address_mode (mloc);
5715 cselib_val *val
5716 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5717 GET_MODE (mloc));
5719 if (val && !cselib_preserved_value_p (val))
5720 preserve_value (val);
5723 type2 = use_type (loc, 0, &mode2);
5725 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5726 || type2 == MO_CLOBBER);
5728 if (type2 == MO_USE)
5729 vloc = var_lowpart (mode2, loc);
5730 else
5731 vloc = oloc;
5733 /* The loc of a MO_VAL_USE may have two forms:
5735 (concat val src): val is at src, a value-based
5736 representation.
5738 (concat (concat val use) src): same as above, with use as
5739 the MO_USE tracked value, if it differs from src.
5743 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5744 nloc = replace_expr_with_values (loc);
5745 if (!nloc)
5746 nloc = oloc;
5748 if (vloc != nloc)
5749 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5750 else
5751 oloc = val->val_rtx;
5753 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5755 if (type2 == MO_USE)
5756 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5757 if (!cselib_preserved_value_p (val))
5759 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5760 preserve_value (val);
5763 else
5764 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5766 if (dump_file && (dump_flags & TDF_DETAILS))
5767 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5768 VTI (bb)->mos.safe_push (mo);
5772 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5774 static void
5775 add_uses_1 (rtx *x, void *cui)
5777 subrtx_var_iterator::array_type array;
5778 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5779 add_uses (*iter, (struct count_use_info *) cui);
5782 /* This is the value used during expansion of locations. We want it
5783 to be unbounded, so that variables expanded deep in a recursion
5784 nest are fully evaluated, so that their values are cached
5785 correctly. We avoid recursion cycles through other means, and we
5786 don't unshare RTL, so excess complexity is not a problem. */
5787 #define EXPR_DEPTH (INT_MAX)
5788 /* We use this to keep too-complex expressions from being emitted as
5789 location notes, and then to debug information. Users can trade
5790 compile time for ridiculously complex expressions, although they're
5791 seldom useful, and they may often have to be discarded as not
5792 representable anyway. */
5793 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5795 /* Attempt to reverse the EXPR operation in the debug info and record
5796 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5797 no longer live we can express its value as VAL - 6. */
5799 static void
5800 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5802 rtx src, arg, ret;
5803 cselib_val *v;
5804 struct elt_loc_list *l;
5805 enum rtx_code code;
5806 int count;
5808 if (GET_CODE (expr) != SET)
5809 return;
5811 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5812 return;
5814 src = SET_SRC (expr);
5815 switch (GET_CODE (src))
5817 case PLUS:
5818 case MINUS:
5819 case XOR:
5820 case NOT:
5821 case NEG:
5822 if (!REG_P (XEXP (src, 0)))
5823 return;
5824 break;
5825 case SIGN_EXTEND:
5826 case ZERO_EXTEND:
5827 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5828 return;
5829 break;
5830 default:
5831 return;
5834 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5835 return;
5837 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5838 if (!v || !cselib_preserved_value_p (v))
5839 return;
5841 /* Use canonical V to avoid creating multiple redundant expressions
5842 for different VALUES equivalent to V. */
5843 v = canonical_cselib_val (v);
5845 /* Adding a reverse op isn't useful if V already has an always valid
5846 location. Ignore ENTRY_VALUE, while it is always constant, we should
5847 prefer non-ENTRY_VALUE locations whenever possible. */
5848 for (l = v->locs, count = 0; l; l = l->next, count++)
5849 if (CONSTANT_P (l->loc)
5850 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5851 return;
5852 /* Avoid creating too large locs lists. */
5853 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5854 return;
5856 switch (GET_CODE (src))
5858 case NOT:
5859 case NEG:
5860 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5861 return;
5862 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5863 break;
5864 case SIGN_EXTEND:
5865 case ZERO_EXTEND:
5866 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5867 break;
5868 case XOR:
5869 code = XOR;
5870 goto binary;
5871 case PLUS:
5872 code = MINUS;
5873 goto binary;
5874 case MINUS:
5875 code = PLUS;
5876 goto binary;
5877 binary:
5878 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5879 return;
5880 arg = XEXP (src, 1);
5881 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5883 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5884 if (arg == NULL_RTX)
5885 return;
5886 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5887 return;
5889 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5890 break;
5891 default:
5892 gcc_unreachable ();
5895 cselib_add_permanent_equiv (v, ret, insn);
5898 /* Add stores (register and memory references) LOC which will be tracked
5899 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5900 CUIP->insn is instruction which the LOC is part of. */
5902 static void
5903 add_stores (rtx loc, const_rtx expr, void *cuip)
5905 machine_mode mode = VOIDmode, mode2;
5906 struct count_use_info *cui = (struct count_use_info *)cuip;
5907 basic_block bb = cui->bb;
5908 micro_operation mo;
5909 rtx oloc = loc, nloc, src = NULL;
5910 enum micro_operation_type type = use_type (loc, cui, &mode);
5911 bool track_p = false;
5912 cselib_val *v;
5913 bool resolve, preserve;
5915 if (type == MO_CLOBBER)
5916 return;
5918 mode2 = mode;
5920 if (REG_P (loc))
5922 gcc_assert (loc != cfa_base_rtx);
5923 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5924 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5925 || GET_CODE (expr) == CLOBBER)
5927 mo.type = MO_CLOBBER;
5928 mo.u.loc = loc;
5929 if (GET_CODE (expr) == SET
5930 && SET_DEST (expr) == loc
5931 && !unsuitable_loc (SET_SRC (expr))
5932 && find_use_val (loc, mode, cui))
5934 gcc_checking_assert (type == MO_VAL_SET);
5935 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5938 else
5940 if (GET_CODE (expr) == SET
5941 && SET_DEST (expr) == loc
5942 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5943 src = var_lowpart (mode2, SET_SRC (expr));
5944 loc = var_lowpart (mode2, loc);
5946 if (src == NULL)
5948 mo.type = MO_SET;
5949 mo.u.loc = loc;
5951 else
5953 rtx xexpr = gen_rtx_SET (loc, src);
5954 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5956 /* If this is an instruction copying (part of) a parameter
5957 passed by invisible reference to its register location,
5958 pretend it's a SET so that the initial memory location
5959 is discarded, as the parameter register can be reused
5960 for other purposes and we do not track locations based
5961 on generic registers. */
5962 if (MEM_P (src)
5963 && REG_EXPR (loc)
5964 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5965 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5966 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5967 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5968 != arg_pointer_rtx)
5969 mo.type = MO_SET;
5970 else
5971 mo.type = MO_COPY;
5973 else
5974 mo.type = MO_SET;
5975 mo.u.loc = xexpr;
5978 mo.insn = cui->insn;
5980 else if (MEM_P (loc)
5981 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5982 || cui->sets))
5984 if (MEM_P (loc) && type == MO_VAL_SET
5985 && !REG_P (XEXP (loc, 0))
5986 && !MEM_P (XEXP (loc, 0)))
5988 rtx mloc = loc;
5989 machine_mode address_mode = get_address_mode (mloc);
5990 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5991 address_mode, 0,
5992 GET_MODE (mloc));
5994 if (val && !cselib_preserved_value_p (val))
5995 preserve_value (val);
5998 if (GET_CODE (expr) == CLOBBER || !track_p)
6000 mo.type = MO_CLOBBER;
6001 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6003 else
6005 if (GET_CODE (expr) == SET
6006 && SET_DEST (expr) == loc
6007 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6008 src = var_lowpart (mode2, SET_SRC (expr));
6009 loc = var_lowpart (mode2, loc);
6011 if (src == NULL)
6013 mo.type = MO_SET;
6014 mo.u.loc = loc;
6016 else
6018 rtx xexpr = gen_rtx_SET (loc, src);
6019 if (same_variable_part_p (SET_SRC (xexpr),
6020 MEM_EXPR (loc),
6021 INT_MEM_OFFSET (loc)))
6022 mo.type = MO_COPY;
6023 else
6024 mo.type = MO_SET;
6025 mo.u.loc = xexpr;
6028 mo.insn = cui->insn;
6030 else
6031 return;
6033 if (type != MO_VAL_SET)
6034 goto log_and_return;
6036 v = find_use_val (oloc, mode, cui);
6038 if (!v)
6039 goto log_and_return;
6041 resolve = preserve = !cselib_preserved_value_p (v);
6043 /* We cannot track values for multiple-part variables, so we track only
6044 locations for tracked record parameters. */
6045 if (track_p
6046 && REG_P (loc)
6047 && REG_EXPR (loc)
6048 && tracked_record_parameter_p (REG_EXPR (loc)))
6050 /* Although we don't use the value here, it could be used later by the
6051 mere virtue of its existence as the operand of the reverse operation
6052 that gave rise to it (typically extension/truncation). Make sure it
6053 is preserved as required by vt_expand_var_loc_chain. */
6054 if (preserve)
6055 preserve_value (v);
6056 goto log_and_return;
6059 if (loc == stack_pointer_rtx
6060 && hard_frame_pointer_adjustment != -1
6061 && preserve)
6062 cselib_set_value_sp_based (v);
6064 nloc = replace_expr_with_values (oloc);
6065 if (nloc)
6066 oloc = nloc;
6068 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6070 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6072 if (oval == v)
6073 return;
6074 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6076 if (oval && !cselib_preserved_value_p (oval))
6078 micro_operation moa;
6080 preserve_value (oval);
6082 moa.type = MO_VAL_USE;
6083 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6084 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6085 moa.insn = cui->insn;
6087 if (dump_file && (dump_flags & TDF_DETAILS))
6088 log_op_type (moa.u.loc, cui->bb, cui->insn,
6089 moa.type, dump_file);
6090 VTI (bb)->mos.safe_push (moa);
6093 resolve = false;
6095 else if (resolve && GET_CODE (mo.u.loc) == SET)
6097 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6098 nloc = replace_expr_with_values (SET_SRC (expr));
6099 else
6100 nloc = NULL_RTX;
6102 /* Avoid the mode mismatch between oexpr and expr. */
6103 if (!nloc && mode != mode2)
6105 nloc = SET_SRC (expr);
6106 gcc_assert (oloc == SET_DEST (expr));
6109 if (nloc && nloc != SET_SRC (mo.u.loc))
6110 oloc = gen_rtx_SET (oloc, nloc);
6111 else
6113 if (oloc == SET_DEST (mo.u.loc))
6114 /* No point in duplicating. */
6115 oloc = mo.u.loc;
6116 if (!REG_P (SET_SRC (mo.u.loc)))
6117 resolve = false;
6120 else if (!resolve)
6122 if (GET_CODE (mo.u.loc) == SET
6123 && oloc == SET_DEST (mo.u.loc))
6124 /* No point in duplicating. */
6125 oloc = mo.u.loc;
6127 else
6128 resolve = false;
6130 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6132 if (mo.u.loc != oloc)
6133 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6135 /* The loc of a MO_VAL_SET may have various forms:
6137 (concat val dst): dst now holds val
6139 (concat val (set dst src)): dst now holds val, copied from src
6141 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6142 after replacing mems and non-top-level regs with values.
6144 (concat (concat val dstv) (set dst src)): dst now holds val,
6145 copied from src. dstv is a value-based representation of dst, if
6146 it differs from dst. If resolution is needed, src is a REG, and
6147 its mode is the same as that of val.
6149 (concat (concat val (set dstv srcv)) (set dst src)): src
6150 copied to dst, holding val. dstv and srcv are value-based
6151 representations of dst and src, respectively.
6155 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6156 reverse_op (v->val_rtx, expr, cui->insn);
6158 mo.u.loc = loc;
6160 if (track_p)
6161 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6162 if (preserve)
6164 VAL_NEEDS_RESOLUTION (loc) = resolve;
6165 preserve_value (v);
6167 if (mo.type == MO_CLOBBER)
6168 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6169 if (mo.type == MO_COPY)
6170 VAL_EXPR_IS_COPIED (loc) = 1;
6172 mo.type = MO_VAL_SET;
6174 log_and_return:
6175 if (dump_file && (dump_flags & TDF_DETAILS))
6176 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6177 VTI (bb)->mos.safe_push (mo);
6180 /* Arguments to the call. */
6181 static rtx call_arguments;
6183 /* Compute call_arguments. */
6185 static void
6186 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6188 rtx link, x, call;
6189 rtx prev, cur, next;
6190 rtx this_arg = NULL_RTX;
6191 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6192 tree obj_type_ref = NULL_TREE;
6193 CUMULATIVE_ARGS args_so_far_v;
6194 cumulative_args_t args_so_far;
6196 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6197 args_so_far = pack_cumulative_args (&args_so_far_v);
6198 call = get_call_rtx_from (insn);
6199 if (call)
6201 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6203 rtx symbol = XEXP (XEXP (call, 0), 0);
6204 if (SYMBOL_REF_DECL (symbol))
6205 fndecl = SYMBOL_REF_DECL (symbol);
6207 if (fndecl == NULL_TREE)
6208 fndecl = MEM_EXPR (XEXP (call, 0));
6209 if (fndecl
6210 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6211 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6212 fndecl = NULL_TREE;
6213 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6214 type = TREE_TYPE (fndecl);
6215 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6217 if (TREE_CODE (fndecl) == INDIRECT_REF
6218 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6219 obj_type_ref = TREE_OPERAND (fndecl, 0);
6220 fndecl = NULL_TREE;
6222 if (type)
6224 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6225 t = TREE_CHAIN (t))
6226 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6227 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6228 break;
6229 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6230 type = NULL;
6231 else
6233 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6234 link = CALL_INSN_FUNCTION_USAGE (insn);
6235 #ifndef PCC_STATIC_STRUCT_RETURN
6236 if (aggregate_value_p (TREE_TYPE (type), type)
6237 && targetm.calls.struct_value_rtx (type, 0) == 0)
6239 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6240 machine_mode mode = TYPE_MODE (struct_addr);
6241 rtx reg;
6242 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6243 nargs + 1);
6244 reg = targetm.calls.function_arg (args_so_far, mode,
6245 struct_addr, true);
6246 targetm.calls.function_arg_advance (args_so_far, mode,
6247 struct_addr, true);
6248 if (reg == NULL_RTX)
6250 for (; link; link = XEXP (link, 1))
6251 if (GET_CODE (XEXP (link, 0)) == USE
6252 && MEM_P (XEXP (XEXP (link, 0), 0)))
6254 link = XEXP (link, 1);
6255 break;
6259 else
6260 #endif
6261 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6262 nargs);
6263 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6265 machine_mode mode;
6266 t = TYPE_ARG_TYPES (type);
6267 mode = TYPE_MODE (TREE_VALUE (t));
6268 this_arg = targetm.calls.function_arg (args_so_far, mode,
6269 TREE_VALUE (t), true);
6270 if (this_arg && !REG_P (this_arg))
6271 this_arg = NULL_RTX;
6272 else if (this_arg == NULL_RTX)
6274 for (; link; link = XEXP (link, 1))
6275 if (GET_CODE (XEXP (link, 0)) == USE
6276 && MEM_P (XEXP (XEXP (link, 0), 0)))
6278 this_arg = XEXP (XEXP (link, 0), 0);
6279 break;
6286 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6288 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6289 if (GET_CODE (XEXP (link, 0)) == USE)
6291 rtx item = NULL_RTX;
6292 x = XEXP (XEXP (link, 0), 0);
6293 if (GET_MODE (link) == VOIDmode
6294 || GET_MODE (link) == BLKmode
6295 || (GET_MODE (link) != GET_MODE (x)
6296 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6297 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6298 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6299 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6300 /* Can't do anything for these, if the original type mode
6301 isn't known or can't be converted. */;
6302 else if (REG_P (x))
6304 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6305 if (val && cselib_preserved_value_p (val))
6306 item = val->val_rtx;
6307 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6308 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6310 machine_mode mode = GET_MODE (x);
6312 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6313 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6315 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6317 if (reg == NULL_RTX || !REG_P (reg))
6318 continue;
6319 val = cselib_lookup (reg, mode, 0, VOIDmode);
6320 if (val && cselib_preserved_value_p (val))
6322 item = val->val_rtx;
6323 break;
6328 else if (MEM_P (x))
6330 rtx mem = x;
6331 cselib_val *val;
6333 if (!frame_pointer_needed)
6335 struct adjust_mem_data amd;
6336 amd.mem_mode = VOIDmode;
6337 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6338 amd.side_effects = NULL;
6339 amd.store = true;
6340 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6341 &amd);
6342 gcc_assert (amd.side_effects == NULL_RTX);
6344 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6345 if (val && cselib_preserved_value_p (val))
6346 item = val->val_rtx;
6347 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6348 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6350 /* For non-integer stack argument see also if they weren't
6351 initialized by integers. */
6352 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6353 if (imode != GET_MODE (mem) && imode != BLKmode)
6355 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6356 imode, 0, VOIDmode);
6357 if (val && cselib_preserved_value_p (val))
6358 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6359 imode);
6363 if (item)
6365 rtx x2 = x;
6366 if (GET_MODE (item) != GET_MODE (link))
6367 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6368 if (GET_MODE (x2) != GET_MODE (link))
6369 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6370 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6371 call_arguments
6372 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6374 if (t && t != void_list_node)
6376 tree argtype = TREE_VALUE (t);
6377 machine_mode mode = TYPE_MODE (argtype);
6378 rtx reg;
6379 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6381 argtype = build_pointer_type (argtype);
6382 mode = TYPE_MODE (argtype);
6384 reg = targetm.calls.function_arg (args_so_far, mode,
6385 argtype, true);
6386 if (TREE_CODE (argtype) == REFERENCE_TYPE
6387 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6388 && reg
6389 && REG_P (reg)
6390 && GET_MODE (reg) == mode
6391 && (GET_MODE_CLASS (mode) == MODE_INT
6392 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6393 && REG_P (x)
6394 && REGNO (x) == REGNO (reg)
6395 && GET_MODE (x) == mode
6396 && item)
6398 machine_mode indmode
6399 = TYPE_MODE (TREE_TYPE (argtype));
6400 rtx mem = gen_rtx_MEM (indmode, x);
6401 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6402 if (val && cselib_preserved_value_p (val))
6404 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6405 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6406 call_arguments);
6408 else
6410 struct elt_loc_list *l;
6411 tree initial;
6413 /* Try harder, when passing address of a constant
6414 pool integer it can be easily read back. */
6415 item = XEXP (item, 1);
6416 if (GET_CODE (item) == SUBREG)
6417 item = SUBREG_REG (item);
6418 gcc_assert (GET_CODE (item) == VALUE);
6419 val = CSELIB_VAL_PTR (item);
6420 for (l = val->locs; l; l = l->next)
6421 if (GET_CODE (l->loc) == SYMBOL_REF
6422 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6423 && SYMBOL_REF_DECL (l->loc)
6424 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6426 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6427 if (tree_fits_shwi_p (initial))
6429 item = GEN_INT (tree_to_shwi (initial));
6430 item = gen_rtx_CONCAT (indmode, mem, item);
6431 call_arguments
6432 = gen_rtx_EXPR_LIST (VOIDmode, item,
6433 call_arguments);
6435 break;
6439 targetm.calls.function_arg_advance (args_so_far, mode,
6440 argtype, true);
6441 t = TREE_CHAIN (t);
6445 /* Add debug arguments. */
6446 if (fndecl
6447 && TREE_CODE (fndecl) == FUNCTION_DECL
6448 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6450 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6451 if (debug_args)
6453 unsigned int ix;
6454 tree param;
6455 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6457 rtx item;
6458 tree dtemp = (**debug_args)[ix + 1];
6459 machine_mode mode = DECL_MODE (dtemp);
6460 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6461 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6462 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6463 call_arguments);
6468 /* Reverse call_arguments chain. */
6469 prev = NULL_RTX;
6470 for (cur = call_arguments; cur; cur = next)
6472 next = XEXP (cur, 1);
6473 XEXP (cur, 1) = prev;
6474 prev = cur;
6476 call_arguments = prev;
6478 x = get_call_rtx_from (insn);
6479 if (x)
6481 x = XEXP (XEXP (x, 0), 0);
6482 if (GET_CODE (x) == SYMBOL_REF)
6483 /* Don't record anything. */;
6484 else if (CONSTANT_P (x))
6486 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6487 pc_rtx, x);
6488 call_arguments
6489 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6491 else
6493 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6494 if (val && cselib_preserved_value_p (val))
6496 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6497 call_arguments
6498 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6502 if (this_arg)
6504 machine_mode mode
6505 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6506 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6507 HOST_WIDE_INT token
6508 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6509 if (token)
6510 clobbered = plus_constant (mode, clobbered,
6511 token * GET_MODE_SIZE (mode));
6512 clobbered = gen_rtx_MEM (mode, clobbered);
6513 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6514 call_arguments
6515 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6519 /* Callback for cselib_record_sets_hook, that records as micro
6520 operations uses and stores in an insn after cselib_record_sets has
6521 analyzed the sets in an insn, but before it modifies the stored
6522 values in the internal tables, unless cselib_record_sets doesn't
6523 call it directly (perhaps because we're not doing cselib in the
6524 first place, in which case sets and n_sets will be 0). */
6526 static void
6527 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6529 basic_block bb = BLOCK_FOR_INSN (insn);
6530 int n1, n2;
6531 struct count_use_info cui;
6532 micro_operation *mos;
6534 cselib_hook_called = true;
6536 cui.insn = insn;
6537 cui.bb = bb;
6538 cui.sets = sets;
6539 cui.n_sets = n_sets;
6541 n1 = VTI (bb)->mos.length ();
6542 cui.store_p = false;
6543 note_uses (&PATTERN (insn), add_uses_1, &cui);
6544 n2 = VTI (bb)->mos.length () - 1;
6545 mos = VTI (bb)->mos.address ();
6547 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6548 MO_VAL_LOC last. */
6549 while (n1 < n2)
6551 while (n1 < n2 && mos[n1].type == MO_USE)
6552 n1++;
6553 while (n1 < n2 && mos[n2].type != MO_USE)
6554 n2--;
6555 if (n1 < n2)
6556 std::swap (mos[n1], mos[n2]);
6559 n2 = VTI (bb)->mos.length () - 1;
6560 while (n1 < n2)
6562 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6563 n1++;
6564 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6565 n2--;
6566 if (n1 < n2)
6567 std::swap (mos[n1], mos[n2]);
6570 if (CALL_P (insn))
6572 micro_operation mo;
6574 mo.type = MO_CALL;
6575 mo.insn = insn;
6576 mo.u.loc = call_arguments;
6577 call_arguments = NULL_RTX;
6579 if (dump_file && (dump_flags & TDF_DETAILS))
6580 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6581 VTI (bb)->mos.safe_push (mo);
6584 n1 = VTI (bb)->mos.length ();
6585 /* This will record NEXT_INSN (insn), such that we can
6586 insert notes before it without worrying about any
6587 notes that MO_USEs might emit after the insn. */
6588 cui.store_p = true;
6589 note_stores (PATTERN (insn), add_stores, &cui);
6590 n2 = VTI (bb)->mos.length () - 1;
6591 mos = VTI (bb)->mos.address ();
6593 /* Order the MO_VAL_USEs first (note_stores does nothing
6594 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6595 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6596 while (n1 < n2)
6598 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6599 n1++;
6600 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6601 n2--;
6602 if (n1 < n2)
6603 std::swap (mos[n1], mos[n2]);
6606 n2 = VTI (bb)->mos.length () - 1;
6607 while (n1 < n2)
6609 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6610 n1++;
6611 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6612 n2--;
6613 if (n1 < n2)
6614 std::swap (mos[n1], mos[n2]);
6618 static enum var_init_status
6619 find_src_status (dataflow_set *in, rtx src)
6621 tree decl = NULL_TREE;
6622 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6624 if (! flag_var_tracking_uninit)
6625 status = VAR_INIT_STATUS_INITIALIZED;
6627 if (src && REG_P (src))
6628 decl = var_debug_decl (REG_EXPR (src));
6629 else if (src && MEM_P (src))
6630 decl = var_debug_decl (MEM_EXPR (src));
6632 if (src && decl)
6633 status = get_init_value (in, src, dv_from_decl (decl));
6635 return status;
6638 /* SRC is the source of an assignment. Use SET to try to find what
6639 was ultimately assigned to SRC. Return that value if known,
6640 otherwise return SRC itself. */
6642 static rtx
6643 find_src_set_src (dataflow_set *set, rtx src)
6645 tree decl = NULL_TREE; /* The variable being copied around. */
6646 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6647 variable *var;
6648 location_chain *nextp;
6649 int i;
6650 bool found;
6652 if (src && REG_P (src))
6653 decl = var_debug_decl (REG_EXPR (src));
6654 else if (src && MEM_P (src))
6655 decl = var_debug_decl (MEM_EXPR (src));
6657 if (src && decl)
6659 decl_or_value dv = dv_from_decl (decl);
6661 var = shared_hash_find (set->vars, dv);
6662 if (var)
6664 found = false;
6665 for (i = 0; i < var->n_var_parts && !found; i++)
6666 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6667 nextp = nextp->next)
6668 if (rtx_equal_p (nextp->loc, src))
6670 set_src = nextp->set_src;
6671 found = true;
6677 return set_src;
6680 /* Compute the changes of variable locations in the basic block BB. */
6682 static bool
6683 compute_bb_dataflow (basic_block bb)
6685 unsigned int i;
6686 micro_operation *mo;
6687 bool changed;
6688 dataflow_set old_out;
6689 dataflow_set *in = &VTI (bb)->in;
6690 dataflow_set *out = &VTI (bb)->out;
6692 dataflow_set_init (&old_out);
6693 dataflow_set_copy (&old_out, out);
6694 dataflow_set_copy (out, in);
6696 if (MAY_HAVE_DEBUG_INSNS)
6697 local_get_addr_cache = new hash_map<rtx, rtx>;
6699 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6701 rtx_insn *insn = mo->insn;
6703 switch (mo->type)
6705 case MO_CALL:
6706 dataflow_set_clear_at_call (out, insn);
6707 break;
6709 case MO_USE:
6711 rtx loc = mo->u.loc;
6713 if (REG_P (loc))
6714 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6715 else if (MEM_P (loc))
6716 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6718 break;
6720 case MO_VAL_LOC:
6722 rtx loc = mo->u.loc;
6723 rtx val, vloc;
6724 tree var;
6726 if (GET_CODE (loc) == CONCAT)
6728 val = XEXP (loc, 0);
6729 vloc = XEXP (loc, 1);
6731 else
6733 val = NULL_RTX;
6734 vloc = loc;
6737 var = PAT_VAR_LOCATION_DECL (vloc);
6739 clobber_variable_part (out, NULL_RTX,
6740 dv_from_decl (var), 0, NULL_RTX);
6741 if (val)
6743 if (VAL_NEEDS_RESOLUTION (loc))
6744 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6745 set_variable_part (out, val, dv_from_decl (var), 0,
6746 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6747 INSERT);
6749 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6750 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6751 dv_from_decl (var), 0,
6752 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6753 INSERT);
6755 break;
6757 case MO_VAL_USE:
6759 rtx loc = mo->u.loc;
6760 rtx val, vloc, uloc;
6762 vloc = uloc = XEXP (loc, 1);
6763 val = XEXP (loc, 0);
6765 if (GET_CODE (val) == CONCAT)
6767 uloc = XEXP (val, 1);
6768 val = XEXP (val, 0);
6771 if (VAL_NEEDS_RESOLUTION (loc))
6772 val_resolve (out, val, vloc, insn);
6773 else
6774 val_store (out, val, uloc, insn, false);
6776 if (VAL_HOLDS_TRACK_EXPR (loc))
6778 if (GET_CODE (uloc) == REG)
6779 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6780 NULL);
6781 else if (GET_CODE (uloc) == MEM)
6782 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6783 NULL);
6786 break;
6788 case MO_VAL_SET:
6790 rtx loc = mo->u.loc;
6791 rtx val, vloc, uloc;
6792 rtx dstv, srcv;
6794 vloc = loc;
6795 uloc = XEXP (vloc, 1);
6796 val = XEXP (vloc, 0);
6797 vloc = uloc;
6799 if (GET_CODE (uloc) == SET)
6801 dstv = SET_DEST (uloc);
6802 srcv = SET_SRC (uloc);
6804 else
6806 dstv = uloc;
6807 srcv = NULL;
6810 if (GET_CODE (val) == CONCAT)
6812 dstv = vloc = XEXP (val, 1);
6813 val = XEXP (val, 0);
6816 if (GET_CODE (vloc) == SET)
6818 srcv = SET_SRC (vloc);
6820 gcc_assert (val != srcv);
6821 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6823 dstv = vloc = SET_DEST (vloc);
6825 if (VAL_NEEDS_RESOLUTION (loc))
6826 val_resolve (out, val, srcv, insn);
6828 else if (VAL_NEEDS_RESOLUTION (loc))
6830 gcc_assert (GET_CODE (uloc) == SET
6831 && GET_CODE (SET_SRC (uloc)) == REG);
6832 val_resolve (out, val, SET_SRC (uloc), insn);
6835 if (VAL_HOLDS_TRACK_EXPR (loc))
6837 if (VAL_EXPR_IS_CLOBBERED (loc))
6839 if (REG_P (uloc))
6840 var_reg_delete (out, uloc, true);
6841 else if (MEM_P (uloc))
6843 gcc_assert (MEM_P (dstv));
6844 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6845 var_mem_delete (out, dstv, true);
6848 else
6850 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6851 rtx src = NULL, dst = uloc;
6852 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6854 if (GET_CODE (uloc) == SET)
6856 src = SET_SRC (uloc);
6857 dst = SET_DEST (uloc);
6860 if (copied_p)
6862 if (flag_var_tracking_uninit)
6864 status = find_src_status (in, src);
6866 if (status == VAR_INIT_STATUS_UNKNOWN)
6867 status = find_src_status (out, src);
6870 src = find_src_set_src (in, src);
6873 if (REG_P (dst))
6874 var_reg_delete_and_set (out, dst, !copied_p,
6875 status, srcv);
6876 else if (MEM_P (dst))
6878 gcc_assert (MEM_P (dstv));
6879 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6880 var_mem_delete_and_set (out, dstv, !copied_p,
6881 status, srcv);
6885 else if (REG_P (uloc))
6886 var_regno_delete (out, REGNO (uloc));
6887 else if (MEM_P (uloc))
6889 gcc_checking_assert (GET_CODE (vloc) == MEM);
6890 gcc_checking_assert (dstv == vloc);
6891 if (dstv != vloc)
6892 clobber_overlapping_mems (out, vloc);
6895 val_store (out, val, dstv, insn, true);
6897 break;
6899 case MO_SET:
6901 rtx loc = mo->u.loc;
6902 rtx set_src = NULL;
6904 if (GET_CODE (loc) == SET)
6906 set_src = SET_SRC (loc);
6907 loc = SET_DEST (loc);
6910 if (REG_P (loc))
6911 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6912 set_src);
6913 else if (MEM_P (loc))
6914 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6915 set_src);
6917 break;
6919 case MO_COPY:
6921 rtx loc = mo->u.loc;
6922 enum var_init_status src_status;
6923 rtx set_src = NULL;
6925 if (GET_CODE (loc) == SET)
6927 set_src = SET_SRC (loc);
6928 loc = SET_DEST (loc);
6931 if (! flag_var_tracking_uninit)
6932 src_status = VAR_INIT_STATUS_INITIALIZED;
6933 else
6935 src_status = find_src_status (in, set_src);
6937 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6938 src_status = find_src_status (out, set_src);
6941 set_src = find_src_set_src (in, set_src);
6943 if (REG_P (loc))
6944 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6945 else if (MEM_P (loc))
6946 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6948 break;
6950 case MO_USE_NO_VAR:
6952 rtx loc = mo->u.loc;
6954 if (REG_P (loc))
6955 var_reg_delete (out, loc, false);
6956 else if (MEM_P (loc))
6957 var_mem_delete (out, loc, false);
6959 break;
6961 case MO_CLOBBER:
6963 rtx loc = mo->u.loc;
6965 if (REG_P (loc))
6966 var_reg_delete (out, loc, true);
6967 else if (MEM_P (loc))
6968 var_mem_delete (out, loc, true);
6970 break;
6972 case MO_ADJUST:
6973 out->stack_adjust += mo->u.adjust;
6974 break;
6978 if (MAY_HAVE_DEBUG_INSNS)
6980 delete local_get_addr_cache;
6981 local_get_addr_cache = NULL;
6983 dataflow_set_equiv_regs (out);
6984 shared_hash_htab (out->vars)
6985 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6986 shared_hash_htab (out->vars)
6987 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6988 if (flag_checking)
6989 shared_hash_htab (out->vars)
6990 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6992 changed = dataflow_set_different (&old_out, out);
6993 dataflow_set_destroy (&old_out);
6994 return changed;
6997 /* Find the locations of variables in the whole function. */
6999 static bool
7000 vt_find_locations (void)
7002 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7003 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7004 sbitmap visited, in_worklist, in_pending;
7005 basic_block bb;
7006 edge e;
7007 int *bb_order;
7008 int *rc_order;
7009 int i;
7010 int htabsz = 0;
7011 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7012 bool success = true;
7014 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7015 /* Compute reverse completion order of depth first search of the CFG
7016 so that the data-flow runs faster. */
7017 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7018 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7019 pre_and_rev_post_order_compute (NULL, rc_order, false);
7020 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7021 bb_order[rc_order[i]] = i;
7022 free (rc_order);
7024 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7025 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7026 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7027 bitmap_clear (in_worklist);
7029 FOR_EACH_BB_FN (bb, cfun)
7030 pending->insert (bb_order[bb->index], bb);
7031 bitmap_ones (in_pending);
7033 while (success && !pending->empty ())
7035 std::swap (worklist, pending);
7036 std::swap (in_worklist, in_pending);
7038 bitmap_clear (visited);
7040 while (!worklist->empty ())
7042 bb = worklist->extract_min ();
7043 bitmap_clear_bit (in_worklist, bb->index);
7044 gcc_assert (!bitmap_bit_p (visited, bb->index));
7045 if (!bitmap_bit_p (visited, bb->index))
7047 bool changed;
7048 edge_iterator ei;
7049 int oldinsz, oldoutsz;
7051 bitmap_set_bit (visited, bb->index);
7053 if (VTI (bb)->in.vars)
7055 htabsz
7056 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7057 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7058 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7059 oldoutsz
7060 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7062 else
7063 oldinsz = oldoutsz = 0;
7065 if (MAY_HAVE_DEBUG_INSNS)
7067 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7068 bool first = true, adjust = false;
7070 /* Calculate the IN set as the intersection of
7071 predecessor OUT sets. */
7073 dataflow_set_clear (in);
7074 dst_can_be_shared = true;
7076 FOR_EACH_EDGE (e, ei, bb->preds)
7077 if (!VTI (e->src)->flooded)
7078 gcc_assert (bb_order[bb->index]
7079 <= bb_order[e->src->index]);
7080 else if (first)
7082 dataflow_set_copy (in, &VTI (e->src)->out);
7083 first_out = &VTI (e->src)->out;
7084 first = false;
7086 else
7088 dataflow_set_merge (in, &VTI (e->src)->out);
7089 adjust = true;
7092 if (adjust)
7094 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7096 if (flag_checking)
7097 /* Merge and merge_adjust should keep entries in
7098 canonical order. */
7099 shared_hash_htab (in->vars)
7100 ->traverse <dataflow_set *,
7101 canonicalize_loc_order_check> (in);
7103 if (dst_can_be_shared)
7105 shared_hash_destroy (in->vars);
7106 in->vars = shared_hash_copy (first_out->vars);
7110 VTI (bb)->flooded = true;
7112 else
7114 /* Calculate the IN set as union of predecessor OUT sets. */
7115 dataflow_set_clear (&VTI (bb)->in);
7116 FOR_EACH_EDGE (e, ei, bb->preds)
7117 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7120 changed = compute_bb_dataflow (bb);
7121 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7122 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7124 if (htabmax && htabsz > htabmax)
7126 if (MAY_HAVE_DEBUG_INSNS)
7127 inform (DECL_SOURCE_LOCATION (cfun->decl),
7128 "variable tracking size limit exceeded with "
7129 "-fvar-tracking-assignments, retrying without");
7130 else
7131 inform (DECL_SOURCE_LOCATION (cfun->decl),
7132 "variable tracking size limit exceeded");
7133 success = false;
7134 break;
7137 if (changed)
7139 FOR_EACH_EDGE (e, ei, bb->succs)
7141 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7142 continue;
7144 if (bitmap_bit_p (visited, e->dest->index))
7146 if (!bitmap_bit_p (in_pending, e->dest->index))
7148 /* Send E->DEST to next round. */
7149 bitmap_set_bit (in_pending, e->dest->index);
7150 pending->insert (bb_order[e->dest->index],
7151 e->dest);
7154 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7156 /* Add E->DEST to current round. */
7157 bitmap_set_bit (in_worklist, e->dest->index);
7158 worklist->insert (bb_order[e->dest->index],
7159 e->dest);
7164 if (dump_file)
7165 fprintf (dump_file,
7166 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7167 bb->index,
7168 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7169 oldinsz,
7170 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7171 oldoutsz,
7172 (int)worklist->nodes (), (int)pending->nodes (),
7173 htabsz);
7175 if (dump_file && (dump_flags & TDF_DETAILS))
7177 fprintf (dump_file, "BB %i IN:\n", bb->index);
7178 dump_dataflow_set (&VTI (bb)->in);
7179 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7180 dump_dataflow_set (&VTI (bb)->out);
7186 if (success && MAY_HAVE_DEBUG_INSNS)
7187 FOR_EACH_BB_FN (bb, cfun)
7188 gcc_assert (VTI (bb)->flooded);
7190 free (bb_order);
7191 delete worklist;
7192 delete pending;
7193 sbitmap_free (visited);
7194 sbitmap_free (in_worklist);
7195 sbitmap_free (in_pending);
7197 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7198 return success;
7201 /* Print the content of the LIST to dump file. */
7203 static void
7204 dump_attrs_list (attrs *list)
7206 for (; list; list = list->next)
7208 if (dv_is_decl_p (list->dv))
7209 print_mem_expr (dump_file, dv_as_decl (list->dv));
7210 else
7211 print_rtl_single (dump_file, dv_as_value (list->dv));
7212 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7214 fprintf (dump_file, "\n");
7217 /* Print the information about variable *SLOT to dump file. */
7220 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7222 variable *var = *slot;
7224 dump_var (var);
7226 /* Continue traversing the hash table. */
7227 return 1;
7230 /* Print the information about variable VAR to dump file. */
7232 static void
7233 dump_var (variable *var)
7235 int i;
7236 location_chain *node;
7238 if (dv_is_decl_p (var->dv))
7240 const_tree decl = dv_as_decl (var->dv);
7242 if (DECL_NAME (decl))
7244 fprintf (dump_file, " name: %s",
7245 IDENTIFIER_POINTER (DECL_NAME (decl)));
7246 if (dump_flags & TDF_UID)
7247 fprintf (dump_file, "D.%u", DECL_UID (decl));
7249 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7250 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7251 else
7252 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7253 fprintf (dump_file, "\n");
7255 else
7257 fputc (' ', dump_file);
7258 print_rtl_single (dump_file, dv_as_value (var->dv));
7261 for (i = 0; i < var->n_var_parts; i++)
7263 fprintf (dump_file, " offset %ld\n",
7264 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7265 for (node = var->var_part[i].loc_chain; node; node = node->next)
7267 fprintf (dump_file, " ");
7268 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7269 fprintf (dump_file, "[uninit]");
7270 print_rtl_single (dump_file, node->loc);
7275 /* Print the information about variables from hash table VARS to dump file. */
7277 static void
7278 dump_vars (variable_table_type *vars)
7280 if (vars->elements () > 0)
7282 fprintf (dump_file, "Variables:\n");
7283 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7287 /* Print the dataflow set SET to dump file. */
7289 static void
7290 dump_dataflow_set (dataflow_set *set)
7292 int i;
7294 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7295 set->stack_adjust);
7296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7298 if (set->regs[i])
7300 fprintf (dump_file, "Reg %d:", i);
7301 dump_attrs_list (set->regs[i]);
7304 dump_vars (shared_hash_htab (set->vars));
7305 fprintf (dump_file, "\n");
7308 /* Print the IN and OUT sets for each basic block to dump file. */
7310 static void
7311 dump_dataflow_sets (void)
7313 basic_block bb;
7315 FOR_EACH_BB_FN (bb, cfun)
7317 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7318 fprintf (dump_file, "IN:\n");
7319 dump_dataflow_set (&VTI (bb)->in);
7320 fprintf (dump_file, "OUT:\n");
7321 dump_dataflow_set (&VTI (bb)->out);
7325 /* Return the variable for DV in dropped_values, inserting one if
7326 requested with INSERT. */
7328 static inline variable *
7329 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7331 variable **slot;
7332 variable *empty_var;
7333 onepart_enum onepart;
7335 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7337 if (!slot)
7338 return NULL;
7340 if (*slot)
7341 return *slot;
7343 gcc_checking_assert (insert == INSERT);
7345 onepart = dv_onepart_p (dv);
7347 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7349 empty_var = onepart_pool_allocate (onepart);
7350 empty_var->dv = dv;
7351 empty_var->refcount = 1;
7352 empty_var->n_var_parts = 0;
7353 empty_var->onepart = onepart;
7354 empty_var->in_changed_variables = false;
7355 empty_var->var_part[0].loc_chain = NULL;
7356 empty_var->var_part[0].cur_loc = NULL;
7357 VAR_LOC_1PAUX (empty_var) = NULL;
7358 set_dv_changed (dv, true);
7360 *slot = empty_var;
7362 return empty_var;
7365 /* Recover the one-part aux from dropped_values. */
7367 static struct onepart_aux *
7368 recover_dropped_1paux (variable *var)
7370 variable *dvar;
7372 gcc_checking_assert (var->onepart);
7374 if (VAR_LOC_1PAUX (var))
7375 return VAR_LOC_1PAUX (var);
7377 if (var->onepart == ONEPART_VDECL)
7378 return NULL;
7380 dvar = variable_from_dropped (var->dv, NO_INSERT);
7382 if (!dvar)
7383 return NULL;
7385 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7386 VAR_LOC_1PAUX (dvar) = NULL;
7388 return VAR_LOC_1PAUX (var);
7391 /* Add variable VAR to the hash table of changed variables and
7392 if it has no locations delete it from SET's hash table. */
7394 static void
7395 variable_was_changed (variable *var, dataflow_set *set)
7397 hashval_t hash = dv_htab_hash (var->dv);
7399 if (emit_notes)
7401 variable **slot;
7403 /* Remember this decl or VALUE has been added to changed_variables. */
7404 set_dv_changed (var->dv, true);
7406 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7408 if (*slot)
7410 variable *old_var = *slot;
7411 gcc_assert (old_var->in_changed_variables);
7412 old_var->in_changed_variables = false;
7413 if (var != old_var && var->onepart)
7415 /* Restore the auxiliary info from an empty variable
7416 previously created for changed_variables, so it is
7417 not lost. */
7418 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7419 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7420 VAR_LOC_1PAUX (old_var) = NULL;
7422 variable_htab_free (*slot);
7425 if (set && var->n_var_parts == 0)
7427 onepart_enum onepart = var->onepart;
7428 variable *empty_var = NULL;
7429 variable **dslot = NULL;
7431 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7433 dslot = dropped_values->find_slot_with_hash (var->dv,
7434 dv_htab_hash (var->dv),
7435 INSERT);
7436 empty_var = *dslot;
7438 if (empty_var)
7440 gcc_checking_assert (!empty_var->in_changed_variables);
7441 if (!VAR_LOC_1PAUX (var))
7443 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7444 VAR_LOC_1PAUX (empty_var) = NULL;
7446 else
7447 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7451 if (!empty_var)
7453 empty_var = onepart_pool_allocate (onepart);
7454 empty_var->dv = var->dv;
7455 empty_var->refcount = 1;
7456 empty_var->n_var_parts = 0;
7457 empty_var->onepart = onepart;
7458 if (dslot)
7460 empty_var->refcount++;
7461 *dslot = empty_var;
7464 else
7465 empty_var->refcount++;
7466 empty_var->in_changed_variables = true;
7467 *slot = empty_var;
7468 if (onepart)
7470 empty_var->var_part[0].loc_chain = NULL;
7471 empty_var->var_part[0].cur_loc = NULL;
7472 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7473 VAR_LOC_1PAUX (var) = NULL;
7475 goto drop_var;
7477 else
7479 if (var->onepart && !VAR_LOC_1PAUX (var))
7480 recover_dropped_1paux (var);
7481 var->refcount++;
7482 var->in_changed_variables = true;
7483 *slot = var;
7486 else
7488 gcc_assert (set);
7489 if (var->n_var_parts == 0)
7491 variable **slot;
7493 drop_var:
7494 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7495 if (slot)
7497 if (shared_hash_shared (set->vars))
7498 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7499 NO_INSERT);
7500 shared_hash_htab (set->vars)->clear_slot (slot);
7506 /* Look for the index in VAR->var_part corresponding to OFFSET.
7507 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7508 referenced int will be set to the index that the part has or should
7509 have, if it should be inserted. */
7511 static inline int
7512 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7513 int *insertion_point)
7515 int pos, low, high;
7517 if (var->onepart)
7519 if (offset != 0)
7520 return -1;
7522 if (insertion_point)
7523 *insertion_point = 0;
7525 return var->n_var_parts - 1;
7528 /* Find the location part. */
7529 low = 0;
7530 high = var->n_var_parts;
7531 while (low != high)
7533 pos = (low + high) / 2;
7534 if (VAR_PART_OFFSET (var, pos) < offset)
7535 low = pos + 1;
7536 else
7537 high = pos;
7539 pos = low;
7541 if (insertion_point)
7542 *insertion_point = pos;
7544 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7545 return pos;
7547 return -1;
7550 static variable **
7551 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7552 decl_or_value dv, HOST_WIDE_INT offset,
7553 enum var_init_status initialized, rtx set_src)
7555 int pos;
7556 location_chain *node, *next;
7557 location_chain **nextp;
7558 variable *var;
7559 onepart_enum onepart;
7561 var = *slot;
7563 if (var)
7564 onepart = var->onepart;
7565 else
7566 onepart = dv_onepart_p (dv);
7568 gcc_checking_assert (offset == 0 || !onepart);
7569 gcc_checking_assert (loc != dv_as_opaque (dv));
7571 if (! flag_var_tracking_uninit)
7572 initialized = VAR_INIT_STATUS_INITIALIZED;
7574 if (!var)
7576 /* Create new variable information. */
7577 var = onepart_pool_allocate (onepart);
7578 var->dv = dv;
7579 var->refcount = 1;
7580 var->n_var_parts = 1;
7581 var->onepart = onepart;
7582 var->in_changed_variables = false;
7583 if (var->onepart)
7584 VAR_LOC_1PAUX (var) = NULL;
7585 else
7586 VAR_PART_OFFSET (var, 0) = offset;
7587 var->var_part[0].loc_chain = NULL;
7588 var->var_part[0].cur_loc = NULL;
7589 *slot = var;
7590 pos = 0;
7591 nextp = &var->var_part[0].loc_chain;
7593 else if (onepart)
7595 int r = -1, c = 0;
7597 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7599 pos = 0;
7601 if (GET_CODE (loc) == VALUE)
7603 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7604 nextp = &node->next)
7605 if (GET_CODE (node->loc) == VALUE)
7607 if (node->loc == loc)
7609 r = 0;
7610 break;
7612 if (canon_value_cmp (node->loc, loc))
7613 c++;
7614 else
7616 r = 1;
7617 break;
7620 else if (REG_P (node->loc) || MEM_P (node->loc))
7621 c++;
7622 else
7624 r = 1;
7625 break;
7628 else if (REG_P (loc))
7630 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7631 nextp = &node->next)
7632 if (REG_P (node->loc))
7634 if (REGNO (node->loc) < REGNO (loc))
7635 c++;
7636 else
7638 if (REGNO (node->loc) == REGNO (loc))
7639 r = 0;
7640 else
7641 r = 1;
7642 break;
7645 else
7647 r = 1;
7648 break;
7651 else if (MEM_P (loc))
7653 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7654 nextp = &node->next)
7655 if (REG_P (node->loc))
7656 c++;
7657 else if (MEM_P (node->loc))
7659 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7660 break;
7661 else
7662 c++;
7664 else
7666 r = 1;
7667 break;
7670 else
7671 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7672 nextp = &node->next)
7673 if ((r = loc_cmp (node->loc, loc)) >= 0)
7674 break;
7675 else
7676 c++;
7678 if (r == 0)
7679 return slot;
7681 if (shared_var_p (var, set->vars))
7683 slot = unshare_variable (set, slot, var, initialized);
7684 var = *slot;
7685 for (nextp = &var->var_part[0].loc_chain; c;
7686 nextp = &(*nextp)->next)
7687 c--;
7688 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7691 else
7693 int inspos = 0;
7695 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7697 pos = find_variable_location_part (var, offset, &inspos);
7699 if (pos >= 0)
7701 node = var->var_part[pos].loc_chain;
7703 if (node
7704 && ((REG_P (node->loc) && REG_P (loc)
7705 && REGNO (node->loc) == REGNO (loc))
7706 || rtx_equal_p (node->loc, loc)))
7708 /* LOC is in the beginning of the chain so we have nothing
7709 to do. */
7710 if (node->init < initialized)
7711 node->init = initialized;
7712 if (set_src != NULL)
7713 node->set_src = set_src;
7715 return slot;
7717 else
7719 /* We have to make a copy of a shared variable. */
7720 if (shared_var_p (var, set->vars))
7722 slot = unshare_variable (set, slot, var, initialized);
7723 var = *slot;
7727 else
7729 /* We have not found the location part, new one will be created. */
7731 /* We have to make a copy of the shared variable. */
7732 if (shared_var_p (var, set->vars))
7734 slot = unshare_variable (set, slot, var, initialized);
7735 var = *slot;
7738 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7739 thus there are at most MAX_VAR_PARTS different offsets. */
7740 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7741 && (!var->n_var_parts || !onepart));
7743 /* We have to move the elements of array starting at index
7744 inspos to the next position. */
7745 for (pos = var->n_var_parts; pos > inspos; pos--)
7746 var->var_part[pos] = var->var_part[pos - 1];
7748 var->n_var_parts++;
7749 gcc_checking_assert (!onepart);
7750 VAR_PART_OFFSET (var, pos) = offset;
7751 var->var_part[pos].loc_chain = NULL;
7752 var->var_part[pos].cur_loc = NULL;
7755 /* Delete the location from the list. */
7756 nextp = &var->var_part[pos].loc_chain;
7757 for (node = var->var_part[pos].loc_chain; node; node = next)
7759 next = node->next;
7760 if ((REG_P (node->loc) && REG_P (loc)
7761 && REGNO (node->loc) == REGNO (loc))
7762 || rtx_equal_p (node->loc, loc))
7764 /* Save these values, to assign to the new node, before
7765 deleting this one. */
7766 if (node->init > initialized)
7767 initialized = node->init;
7768 if (node->set_src != NULL && set_src == NULL)
7769 set_src = node->set_src;
7770 if (var->var_part[pos].cur_loc == node->loc)
7771 var->var_part[pos].cur_loc = NULL;
7772 delete node;
7773 *nextp = next;
7774 break;
7776 else
7777 nextp = &node->next;
7780 nextp = &var->var_part[pos].loc_chain;
7783 /* Add the location to the beginning. */
7784 node = new location_chain;
7785 node->loc = loc;
7786 node->init = initialized;
7787 node->set_src = set_src;
7788 node->next = *nextp;
7789 *nextp = node;
7791 /* If no location was emitted do so. */
7792 if (var->var_part[pos].cur_loc == NULL)
7793 variable_was_changed (var, set);
7795 return slot;
7798 /* Set the part of variable's location in the dataflow set SET. The
7799 variable part is specified by variable's declaration in DV and
7800 offset OFFSET and the part's location by LOC. IOPT should be
7801 NO_INSERT if the variable is known to be in SET already and the
7802 variable hash table must not be resized, and INSERT otherwise. */
7804 static void
7805 set_variable_part (dataflow_set *set, rtx loc,
7806 decl_or_value dv, HOST_WIDE_INT offset,
7807 enum var_init_status initialized, rtx set_src,
7808 enum insert_option iopt)
7810 variable **slot;
7812 if (iopt == NO_INSERT)
7813 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7814 else
7816 slot = shared_hash_find_slot (set->vars, dv);
7817 if (!slot)
7818 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7820 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7823 /* Remove all recorded register locations for the given variable part
7824 from dataflow set SET, except for those that are identical to loc.
7825 The variable part is specified by variable's declaration or value
7826 DV and offset OFFSET. */
7828 static variable **
7829 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7830 HOST_WIDE_INT offset, rtx set_src)
7832 variable *var = *slot;
7833 int pos = find_variable_location_part (var, offset, NULL);
7835 if (pos >= 0)
7837 location_chain *node, *next;
7839 /* Remove the register locations from the dataflow set. */
7840 next = var->var_part[pos].loc_chain;
7841 for (node = next; node; node = next)
7843 next = node->next;
7844 if (node->loc != loc
7845 && (!flag_var_tracking_uninit
7846 || !set_src
7847 || MEM_P (set_src)
7848 || !rtx_equal_p (set_src, node->set_src)))
7850 if (REG_P (node->loc))
7852 attrs *anode, *anext;
7853 attrs **anextp;
7855 /* Remove the variable part from the register's
7856 list, but preserve any other variable parts
7857 that might be regarded as live in that same
7858 register. */
7859 anextp = &set->regs[REGNO (node->loc)];
7860 for (anode = *anextp; anode; anode = anext)
7862 anext = anode->next;
7863 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7864 && anode->offset == offset)
7866 delete anode;
7867 *anextp = anext;
7869 else
7870 anextp = &anode->next;
7874 slot = delete_slot_part (set, node->loc, slot, offset);
7879 return slot;
7882 /* Remove all recorded register locations for the given variable part
7883 from dataflow set SET, except for those that are identical to loc.
7884 The variable part is specified by variable's declaration or value
7885 DV and offset OFFSET. */
7887 static void
7888 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7889 HOST_WIDE_INT offset, rtx set_src)
7891 variable **slot;
7893 if (!dv_as_opaque (dv)
7894 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7895 return;
7897 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7898 if (!slot)
7899 return;
7901 clobber_slot_part (set, loc, slot, offset, set_src);
7904 /* Delete the part of variable's location from dataflow set SET. The
7905 variable part is specified by its SET->vars slot SLOT and offset
7906 OFFSET and the part's location by LOC. */
7908 static variable **
7909 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7910 HOST_WIDE_INT offset)
7912 variable *var = *slot;
7913 int pos = find_variable_location_part (var, offset, NULL);
7915 if (pos >= 0)
7917 location_chain *node, *next;
7918 location_chain **nextp;
7919 bool changed;
7920 rtx cur_loc;
7922 if (shared_var_p (var, set->vars))
7924 /* If the variable contains the location part we have to
7925 make a copy of the variable. */
7926 for (node = var->var_part[pos].loc_chain; node;
7927 node = node->next)
7929 if ((REG_P (node->loc) && REG_P (loc)
7930 && REGNO (node->loc) == REGNO (loc))
7931 || rtx_equal_p (node->loc, loc))
7933 slot = unshare_variable (set, slot, var,
7934 VAR_INIT_STATUS_UNKNOWN);
7935 var = *slot;
7936 break;
7941 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7942 cur_loc = VAR_LOC_FROM (var);
7943 else
7944 cur_loc = var->var_part[pos].cur_loc;
7946 /* Delete the location part. */
7947 changed = false;
7948 nextp = &var->var_part[pos].loc_chain;
7949 for (node = *nextp; node; node = next)
7951 next = node->next;
7952 if ((REG_P (node->loc) && REG_P (loc)
7953 && REGNO (node->loc) == REGNO (loc))
7954 || rtx_equal_p (node->loc, loc))
7956 /* If we have deleted the location which was last emitted
7957 we have to emit new location so add the variable to set
7958 of changed variables. */
7959 if (cur_loc == node->loc)
7961 changed = true;
7962 var->var_part[pos].cur_loc = NULL;
7963 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7964 VAR_LOC_FROM (var) = NULL;
7966 delete node;
7967 *nextp = next;
7968 break;
7970 else
7971 nextp = &node->next;
7974 if (var->var_part[pos].loc_chain == NULL)
7976 changed = true;
7977 var->n_var_parts--;
7978 while (pos < var->n_var_parts)
7980 var->var_part[pos] = var->var_part[pos + 1];
7981 pos++;
7984 if (changed)
7985 variable_was_changed (var, set);
7988 return slot;
7991 /* Delete the part of variable's location from dataflow set SET. The
7992 variable part is specified by variable's declaration or value DV
7993 and offset OFFSET and the part's location by LOC. */
7995 static void
7996 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7997 HOST_WIDE_INT offset)
7999 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8000 if (!slot)
8001 return;
8003 delete_slot_part (set, loc, slot, offset);
8007 /* Structure for passing some other parameters to function
8008 vt_expand_loc_callback. */
8009 struct expand_loc_callback_data
8011 /* The variables and values active at this point. */
8012 variable_table_type *vars;
8014 /* Stack of values and debug_exprs under expansion, and their
8015 children. */
8016 auto_vec<rtx, 4> expanding;
8018 /* Stack of values and debug_exprs whose expansion hit recursion
8019 cycles. They will have VALUE_RECURSED_INTO marked when added to
8020 this list. This flag will be cleared if any of its dependencies
8021 resolves to a valid location. So, if the flag remains set at the
8022 end of the search, we know no valid location for this one can
8023 possibly exist. */
8024 auto_vec<rtx, 4> pending;
8026 /* The maximum depth among the sub-expressions under expansion.
8027 Zero indicates no expansion so far. */
8028 expand_depth depth;
8031 /* Allocate the one-part auxiliary data structure for VAR, with enough
8032 room for COUNT dependencies. */
8034 static void
8035 loc_exp_dep_alloc (variable *var, int count)
8037 size_t allocsize;
8039 gcc_checking_assert (var->onepart);
8041 /* We can be called with COUNT == 0 to allocate the data structure
8042 without any dependencies, e.g. for the backlinks only. However,
8043 if we are specifying a COUNT, then the dependency list must have
8044 been emptied before. It would be possible to adjust pointers or
8045 force it empty here, but this is better done at an earlier point
8046 in the algorithm, so we instead leave an assertion to catch
8047 errors. */
8048 gcc_checking_assert (!count
8049 || VAR_LOC_DEP_VEC (var) == NULL
8050 || VAR_LOC_DEP_VEC (var)->is_empty ());
8052 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8053 return;
8055 allocsize = offsetof (struct onepart_aux, deps)
8056 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8058 if (VAR_LOC_1PAUX (var))
8060 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8061 VAR_LOC_1PAUX (var), allocsize);
8062 /* If the reallocation moves the onepaux structure, the
8063 back-pointer to BACKLINKS in the first list member will still
8064 point to its old location. Adjust it. */
8065 if (VAR_LOC_DEP_LST (var))
8066 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8068 else
8070 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8071 *VAR_LOC_DEP_LSTP (var) = NULL;
8072 VAR_LOC_FROM (var) = NULL;
8073 VAR_LOC_DEPTH (var).complexity = 0;
8074 VAR_LOC_DEPTH (var).entryvals = 0;
8076 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8079 /* Remove all entries from the vector of active dependencies of VAR,
8080 removing them from the back-links lists too. */
8082 static void
8083 loc_exp_dep_clear (variable *var)
8085 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8087 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8088 if (led->next)
8089 led->next->pprev = led->pprev;
8090 if (led->pprev)
8091 *led->pprev = led->next;
8092 VAR_LOC_DEP_VEC (var)->pop ();
8096 /* Insert an active dependency from VAR on X to the vector of
8097 dependencies, and add the corresponding back-link to X's list of
8098 back-links in VARS. */
8100 static void
8101 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8103 decl_or_value dv;
8104 variable *xvar;
8105 loc_exp_dep *led;
8107 dv = dv_from_rtx (x);
8109 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8110 an additional look up? */
8111 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8113 if (!xvar)
8115 xvar = variable_from_dropped (dv, NO_INSERT);
8116 gcc_checking_assert (xvar);
8119 /* No point in adding the same backlink more than once. This may
8120 arise if say the same value appears in two complex expressions in
8121 the same loc_list, or even more than once in a single
8122 expression. */
8123 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8124 return;
8126 if (var->onepart == NOT_ONEPART)
8127 led = new loc_exp_dep;
8128 else
8130 loc_exp_dep empty;
8131 memset (&empty, 0, sizeof (empty));
8132 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8133 led = &VAR_LOC_DEP_VEC (var)->last ();
8135 led->dv = var->dv;
8136 led->value = x;
8138 loc_exp_dep_alloc (xvar, 0);
8139 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8140 led->next = *led->pprev;
8141 if (led->next)
8142 led->next->pprev = &led->next;
8143 *led->pprev = led;
8146 /* Create active dependencies of VAR on COUNT values starting at
8147 VALUE, and corresponding back-links to the entries in VARS. Return
8148 true if we found any pending-recursion results. */
8150 static bool
8151 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8152 variable_table_type *vars)
8154 bool pending_recursion = false;
8156 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8157 || VAR_LOC_DEP_VEC (var)->is_empty ());
8159 /* Set up all dependencies from last_child (as set up at the end of
8160 the loop above) to the end. */
8161 loc_exp_dep_alloc (var, count);
8163 while (count--)
8165 rtx x = *value++;
8167 if (!pending_recursion)
8168 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8170 loc_exp_insert_dep (var, x, vars);
8173 return pending_recursion;
8176 /* Notify the back-links of IVAR that are pending recursion that we
8177 have found a non-NIL value for it, so they are cleared for another
8178 attempt to compute a current location. */
8180 static void
8181 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8183 loc_exp_dep *led, *next;
8185 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8187 decl_or_value dv = led->dv;
8188 variable *var;
8190 next = led->next;
8192 if (dv_is_value_p (dv))
8194 rtx value = dv_as_value (dv);
8196 /* If we have already resolved it, leave it alone. */
8197 if (!VALUE_RECURSED_INTO (value))
8198 continue;
8200 /* Check that VALUE_RECURSED_INTO, true from the test above,
8201 implies NO_LOC_P. */
8202 gcc_checking_assert (NO_LOC_P (value));
8204 /* We won't notify variables that are being expanded,
8205 because their dependency list is cleared before
8206 recursing. */
8207 NO_LOC_P (value) = false;
8208 VALUE_RECURSED_INTO (value) = false;
8210 gcc_checking_assert (dv_changed_p (dv));
8212 else
8214 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8215 if (!dv_changed_p (dv))
8216 continue;
8219 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8221 if (!var)
8222 var = variable_from_dropped (dv, NO_INSERT);
8224 if (var)
8225 notify_dependents_of_resolved_value (var, vars);
8227 if (next)
8228 next->pprev = led->pprev;
8229 if (led->pprev)
8230 *led->pprev = next;
8231 led->next = NULL;
8232 led->pprev = NULL;
8236 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8237 int max_depth, void *data);
8239 /* Return the combined depth, when one sub-expression evaluated to
8240 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8242 static inline expand_depth
8243 update_depth (expand_depth saved_depth, expand_depth best_depth)
8245 /* If we didn't find anything, stick with what we had. */
8246 if (!best_depth.complexity)
8247 return saved_depth;
8249 /* If we found hadn't found anything, use the depth of the current
8250 expression. Do NOT add one extra level, we want to compute the
8251 maximum depth among sub-expressions. We'll increment it later,
8252 if appropriate. */
8253 if (!saved_depth.complexity)
8254 return best_depth;
8256 /* Combine the entryval count so that regardless of which one we
8257 return, the entryval count is accurate. */
8258 best_depth.entryvals = saved_depth.entryvals
8259 = best_depth.entryvals + saved_depth.entryvals;
8261 if (saved_depth.complexity < best_depth.complexity)
8262 return best_depth;
8263 else
8264 return saved_depth;
8267 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8268 DATA for cselib expand callback. If PENDRECP is given, indicate in
8269 it whether any sub-expression couldn't be fully evaluated because
8270 it is pending recursion resolution. */
8272 static inline rtx
8273 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8274 bool *pendrecp)
8276 struct expand_loc_callback_data *elcd
8277 = (struct expand_loc_callback_data *) data;
8278 location_chain *loc, *next;
8279 rtx result = NULL;
8280 int first_child, result_first_child, last_child;
8281 bool pending_recursion;
8282 rtx loc_from = NULL;
8283 struct elt_loc_list *cloc = NULL;
8284 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8285 int wanted_entryvals, found_entryvals = 0;
8287 /* Clear all backlinks pointing at this, so that we're not notified
8288 while we're active. */
8289 loc_exp_dep_clear (var);
8291 retry:
8292 if (var->onepart == ONEPART_VALUE)
8294 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8296 gcc_checking_assert (cselib_preserved_value_p (val));
8298 cloc = val->locs;
8301 first_child = result_first_child = last_child
8302 = elcd->expanding.length ();
8304 wanted_entryvals = found_entryvals;
8306 /* Attempt to expand each available location in turn. */
8307 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8308 loc || cloc; loc = next)
8310 result_first_child = last_child;
8312 if (!loc)
8314 loc_from = cloc->loc;
8315 next = loc;
8316 cloc = cloc->next;
8317 if (unsuitable_loc (loc_from))
8318 continue;
8320 else
8322 loc_from = loc->loc;
8323 next = loc->next;
8326 gcc_checking_assert (!unsuitable_loc (loc_from));
8328 elcd->depth.complexity = elcd->depth.entryvals = 0;
8329 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8330 vt_expand_loc_callback, data);
8331 last_child = elcd->expanding.length ();
8333 if (result)
8335 depth = elcd->depth;
8337 gcc_checking_assert (depth.complexity
8338 || result_first_child == last_child);
8340 if (last_child - result_first_child != 1)
8342 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8343 depth.entryvals++;
8344 depth.complexity++;
8347 if (depth.complexity <= EXPR_USE_DEPTH)
8349 if (depth.entryvals <= wanted_entryvals)
8350 break;
8351 else if (!found_entryvals || depth.entryvals < found_entryvals)
8352 found_entryvals = depth.entryvals;
8355 result = NULL;
8358 /* Set it up in case we leave the loop. */
8359 depth.complexity = depth.entryvals = 0;
8360 loc_from = NULL;
8361 result_first_child = first_child;
8364 if (!loc_from && wanted_entryvals < found_entryvals)
8366 /* We found entries with ENTRY_VALUEs and skipped them. Since
8367 we could not find any expansions without ENTRY_VALUEs, but we
8368 found at least one with them, go back and get an entry with
8369 the minimum number ENTRY_VALUE count that we found. We could
8370 avoid looping, but since each sub-loc is already resolved,
8371 the re-expansion should be trivial. ??? Should we record all
8372 attempted locs as dependencies, so that we retry the
8373 expansion should any of them change, in the hope it can give
8374 us a new entry without an ENTRY_VALUE? */
8375 elcd->expanding.truncate (first_child);
8376 goto retry;
8379 /* Register all encountered dependencies as active. */
8380 pending_recursion = loc_exp_dep_set
8381 (var, result, elcd->expanding.address () + result_first_child,
8382 last_child - result_first_child, elcd->vars);
8384 elcd->expanding.truncate (first_child);
8386 /* Record where the expansion came from. */
8387 gcc_checking_assert (!result || !pending_recursion);
8388 VAR_LOC_FROM (var) = loc_from;
8389 VAR_LOC_DEPTH (var) = depth;
8391 gcc_checking_assert (!depth.complexity == !result);
8393 elcd->depth = update_depth (saved_depth, depth);
8395 /* Indicate whether any of the dependencies are pending recursion
8396 resolution. */
8397 if (pendrecp)
8398 *pendrecp = pending_recursion;
8400 if (!pendrecp || !pending_recursion)
8401 var->var_part[0].cur_loc = result;
8403 return result;
8406 /* Callback for cselib_expand_value, that looks for expressions
8407 holding the value in the var-tracking hash tables. Return X for
8408 standard processing, anything else is to be used as-is. */
8410 static rtx
8411 vt_expand_loc_callback (rtx x, bitmap regs,
8412 int max_depth ATTRIBUTE_UNUSED,
8413 void *data)
8415 struct expand_loc_callback_data *elcd
8416 = (struct expand_loc_callback_data *) data;
8417 decl_or_value dv;
8418 variable *var;
8419 rtx result, subreg;
8420 bool pending_recursion = false;
8421 bool from_empty = false;
8423 switch (GET_CODE (x))
8425 case SUBREG:
8426 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8427 EXPR_DEPTH,
8428 vt_expand_loc_callback, data);
8430 if (!subreg)
8431 return NULL;
8433 result = simplify_gen_subreg (GET_MODE (x), subreg,
8434 GET_MODE (SUBREG_REG (x)),
8435 SUBREG_BYTE (x));
8437 /* Invalid SUBREGs are ok in debug info. ??? We could try
8438 alternate expansions for the VALUE as well. */
8439 if (!result)
8440 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8442 return result;
8444 case DEBUG_EXPR:
8445 case VALUE:
8446 dv = dv_from_rtx (x);
8447 break;
8449 default:
8450 return x;
8453 elcd->expanding.safe_push (x);
8455 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8456 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8458 if (NO_LOC_P (x))
8460 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8461 return NULL;
8464 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8466 if (!var)
8468 from_empty = true;
8469 var = variable_from_dropped (dv, INSERT);
8472 gcc_checking_assert (var);
8474 if (!dv_changed_p (dv))
8476 gcc_checking_assert (!NO_LOC_P (x));
8477 gcc_checking_assert (var->var_part[0].cur_loc);
8478 gcc_checking_assert (VAR_LOC_1PAUX (var));
8479 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8481 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8483 return var->var_part[0].cur_loc;
8486 VALUE_RECURSED_INTO (x) = true;
8487 /* This is tentative, but it makes some tests simpler. */
8488 NO_LOC_P (x) = true;
8490 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8492 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8494 if (pending_recursion)
8496 gcc_checking_assert (!result);
8497 elcd->pending.safe_push (x);
8499 else
8501 NO_LOC_P (x) = !result;
8502 VALUE_RECURSED_INTO (x) = false;
8503 set_dv_changed (dv, false);
8505 if (result)
8506 notify_dependents_of_resolved_value (var, elcd->vars);
8509 return result;
8512 /* While expanding variables, we may encounter recursion cycles
8513 because of mutual (possibly indirect) dependencies between two
8514 particular variables (or values), say A and B. If we're trying to
8515 expand A when we get to B, which in turn attempts to expand A, if
8516 we can't find any other expansion for B, we'll add B to this
8517 pending-recursion stack, and tentatively return NULL for its
8518 location. This tentative value will be used for any other
8519 occurrences of B, unless A gets some other location, in which case
8520 it will notify B that it is worth another try at computing a
8521 location for it, and it will use the location computed for A then.
8522 At the end of the expansion, the tentative NULL locations become
8523 final for all members of PENDING that didn't get a notification.
8524 This function performs this finalization of NULL locations. */
8526 static void
8527 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8529 while (!pending->is_empty ())
8531 rtx x = pending->pop ();
8532 decl_or_value dv;
8534 if (!VALUE_RECURSED_INTO (x))
8535 continue;
8537 gcc_checking_assert (NO_LOC_P (x));
8538 VALUE_RECURSED_INTO (x) = false;
8539 dv = dv_from_rtx (x);
8540 gcc_checking_assert (dv_changed_p (dv));
8541 set_dv_changed (dv, false);
8545 /* Initialize expand_loc_callback_data D with variable hash table V.
8546 It must be a macro because of alloca (vec stack). */
8547 #define INIT_ELCD(d, v) \
8548 do \
8550 (d).vars = (v); \
8551 (d).depth.complexity = (d).depth.entryvals = 0; \
8553 while (0)
8554 /* Finalize expand_loc_callback_data D, resolved to location L. */
8555 #define FINI_ELCD(d, l) \
8556 do \
8558 resolve_expansions_pending_recursion (&(d).pending); \
8559 (d).pending.release (); \
8560 (d).expanding.release (); \
8562 if ((l) && MEM_P (l)) \
8563 (l) = targetm.delegitimize_address (l); \
8565 while (0)
8567 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8568 equivalences in VARS, updating their CUR_LOCs in the process. */
8570 static rtx
8571 vt_expand_loc (rtx loc, variable_table_type *vars)
8573 struct expand_loc_callback_data data;
8574 rtx result;
8576 if (!MAY_HAVE_DEBUG_INSNS)
8577 return loc;
8579 INIT_ELCD (data, vars);
8581 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8582 vt_expand_loc_callback, &data);
8584 FINI_ELCD (data, result);
8586 return result;
8589 /* Expand the one-part VARiable to a location, using the equivalences
8590 in VARS, updating their CUR_LOCs in the process. */
8592 static rtx
8593 vt_expand_1pvar (variable *var, variable_table_type *vars)
8595 struct expand_loc_callback_data data;
8596 rtx loc;
8598 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8600 if (!dv_changed_p (var->dv))
8601 return var->var_part[0].cur_loc;
8603 INIT_ELCD (data, vars);
8605 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8607 gcc_checking_assert (data.expanding.is_empty ());
8609 FINI_ELCD (data, loc);
8611 return loc;
8614 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8615 additional parameters: WHERE specifies whether the note shall be emitted
8616 before or after instruction INSN. */
8619 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8621 variable *var = *varp;
8622 rtx_insn *insn = data->insn;
8623 enum emit_note_where where = data->where;
8624 variable_table_type *vars = data->vars;
8625 rtx_note *note;
8626 rtx note_vl;
8627 int i, j, n_var_parts;
8628 bool complete;
8629 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8630 HOST_WIDE_INT last_limit;
8631 tree type_size_unit;
8632 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8633 rtx loc[MAX_VAR_PARTS];
8634 tree decl;
8635 location_chain *lc;
8637 gcc_checking_assert (var->onepart == NOT_ONEPART
8638 || var->onepart == ONEPART_VDECL);
8640 decl = dv_as_decl (var->dv);
8642 complete = true;
8643 last_limit = 0;
8644 n_var_parts = 0;
8645 if (!var->onepart)
8646 for (i = 0; i < var->n_var_parts; i++)
8647 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8648 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8649 for (i = 0; i < var->n_var_parts; i++)
8651 machine_mode mode, wider_mode;
8652 rtx loc2;
8653 HOST_WIDE_INT offset;
8655 if (i == 0 && var->onepart)
8657 gcc_checking_assert (var->n_var_parts == 1);
8658 offset = 0;
8659 initialized = VAR_INIT_STATUS_INITIALIZED;
8660 loc2 = vt_expand_1pvar (var, vars);
8662 else
8664 if (last_limit < VAR_PART_OFFSET (var, i))
8666 complete = false;
8667 break;
8669 else if (last_limit > VAR_PART_OFFSET (var, i))
8670 continue;
8671 offset = VAR_PART_OFFSET (var, i);
8672 loc2 = var->var_part[i].cur_loc;
8673 if (loc2 && GET_CODE (loc2) == MEM
8674 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8676 rtx depval = XEXP (loc2, 0);
8678 loc2 = vt_expand_loc (loc2, vars);
8680 if (loc2)
8681 loc_exp_insert_dep (var, depval, vars);
8683 if (!loc2)
8685 complete = false;
8686 continue;
8688 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8689 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8690 if (var->var_part[i].cur_loc == lc->loc)
8692 initialized = lc->init;
8693 break;
8695 gcc_assert (lc);
8698 offsets[n_var_parts] = offset;
8699 if (!loc2)
8701 complete = false;
8702 continue;
8704 loc[n_var_parts] = loc2;
8705 mode = GET_MODE (var->var_part[i].cur_loc);
8706 if (mode == VOIDmode && var->onepart)
8707 mode = DECL_MODE (decl);
8708 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8710 /* Attempt to merge adjacent registers or memory. */
8711 wider_mode = GET_MODE_WIDER_MODE (mode);
8712 for (j = i + 1; j < var->n_var_parts; j++)
8713 if (last_limit <= VAR_PART_OFFSET (var, j))
8714 break;
8715 if (j < var->n_var_parts
8716 && wider_mode != VOIDmode
8717 && var->var_part[j].cur_loc
8718 && mode == GET_MODE (var->var_part[j].cur_loc)
8719 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8720 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8721 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8722 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8724 rtx new_loc = NULL;
8726 if (REG_P (loc[n_var_parts])
8727 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8728 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8729 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8730 == REGNO (loc2))
8732 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8733 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8734 mode, 0);
8735 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8736 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8737 if (new_loc)
8739 if (!REG_P (new_loc)
8740 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8741 new_loc = NULL;
8742 else
8743 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8746 else if (MEM_P (loc[n_var_parts])
8747 && GET_CODE (XEXP (loc2, 0)) == PLUS
8748 && REG_P (XEXP (XEXP (loc2, 0), 0))
8749 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8751 if ((REG_P (XEXP (loc[n_var_parts], 0))
8752 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8753 XEXP (XEXP (loc2, 0), 0))
8754 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8755 == GET_MODE_SIZE (mode))
8756 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8757 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8758 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8759 XEXP (XEXP (loc2, 0), 0))
8760 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8761 + GET_MODE_SIZE (mode)
8762 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8763 new_loc = adjust_address_nv (loc[n_var_parts],
8764 wider_mode, 0);
8767 if (new_loc)
8769 loc[n_var_parts] = new_loc;
8770 mode = wider_mode;
8771 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8772 i = j;
8775 ++n_var_parts;
8777 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8778 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8779 complete = false;
8781 if (! flag_var_tracking_uninit)
8782 initialized = VAR_INIT_STATUS_INITIALIZED;
8784 note_vl = NULL_RTX;
8785 if (!complete)
8786 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8787 else if (n_var_parts == 1)
8789 rtx expr_list;
8791 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8792 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8793 else
8794 expr_list = loc[0];
8796 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8798 else if (n_var_parts)
8800 rtx parallel;
8802 for (i = 0; i < n_var_parts; i++)
8803 loc[i]
8804 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8806 parallel = gen_rtx_PARALLEL (VOIDmode,
8807 gen_rtvec_v (n_var_parts, loc));
8808 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8809 parallel, initialized);
8812 if (where != EMIT_NOTE_BEFORE_INSN)
8814 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8815 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8816 NOTE_DURING_CALL_P (note) = true;
8818 else
8820 /* Make sure that the call related notes come first. */
8821 while (NEXT_INSN (insn)
8822 && NOTE_P (insn)
8823 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8824 && NOTE_DURING_CALL_P (insn))
8825 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8826 insn = NEXT_INSN (insn);
8827 if (NOTE_P (insn)
8828 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8829 && NOTE_DURING_CALL_P (insn))
8830 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8831 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8832 else
8833 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8835 NOTE_VAR_LOCATION (note) = note_vl;
8837 set_dv_changed (var->dv, false);
8838 gcc_assert (var->in_changed_variables);
8839 var->in_changed_variables = false;
8840 changed_variables->clear_slot (varp);
8842 /* Continue traversing the hash table. */
8843 return 1;
8846 /* While traversing changed_variables, push onto DATA (a stack of RTX
8847 values) entries that aren't user variables. */
8850 var_track_values_to_stack (variable **slot,
8851 vec<rtx, va_heap> *changed_values_stack)
8853 variable *var = *slot;
8855 if (var->onepart == ONEPART_VALUE)
8856 changed_values_stack->safe_push (dv_as_value (var->dv));
8857 else if (var->onepart == ONEPART_DEXPR)
8858 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8860 return 1;
8863 /* Remove from changed_variables the entry whose DV corresponds to
8864 value or debug_expr VAL. */
8865 static void
8866 remove_value_from_changed_variables (rtx val)
8868 decl_or_value dv = dv_from_rtx (val);
8869 variable **slot;
8870 variable *var;
8872 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8873 NO_INSERT);
8874 var = *slot;
8875 var->in_changed_variables = false;
8876 changed_variables->clear_slot (slot);
8879 /* If VAL (a value or debug_expr) has backlinks to variables actively
8880 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8881 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8882 have dependencies of their own to notify. */
8884 static void
8885 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8886 vec<rtx, va_heap> *changed_values_stack)
8888 variable **slot;
8889 variable *var;
8890 loc_exp_dep *led;
8891 decl_or_value dv = dv_from_rtx (val);
8893 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8894 NO_INSERT);
8895 if (!slot)
8896 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8897 if (!slot)
8898 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8899 NO_INSERT);
8900 var = *slot;
8902 while ((led = VAR_LOC_DEP_LST (var)))
8904 decl_or_value ldv = led->dv;
8905 variable *ivar;
8907 /* Deactivate and remove the backlink, as it was “used up”. It
8908 makes no sense to attempt to notify the same entity again:
8909 either it will be recomputed and re-register an active
8910 dependency, or it will still have the changed mark. */
8911 if (led->next)
8912 led->next->pprev = led->pprev;
8913 if (led->pprev)
8914 *led->pprev = led->next;
8915 led->next = NULL;
8916 led->pprev = NULL;
8918 if (dv_changed_p (ldv))
8919 continue;
8921 switch (dv_onepart_p (ldv))
8923 case ONEPART_VALUE:
8924 case ONEPART_DEXPR:
8925 set_dv_changed (ldv, true);
8926 changed_values_stack->safe_push (dv_as_rtx (ldv));
8927 break;
8929 case ONEPART_VDECL:
8930 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8931 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8932 variable_was_changed (ivar, NULL);
8933 break;
8935 case NOT_ONEPART:
8936 delete led;
8937 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8938 if (ivar)
8940 int i = ivar->n_var_parts;
8941 while (i--)
8943 rtx loc = ivar->var_part[i].cur_loc;
8945 if (loc && GET_CODE (loc) == MEM
8946 && XEXP (loc, 0) == val)
8948 variable_was_changed (ivar, NULL);
8949 break;
8953 break;
8955 default:
8956 gcc_unreachable ();
8961 /* Take out of changed_variables any entries that don't refer to use
8962 variables. Back-propagate change notifications from values and
8963 debug_exprs to their active dependencies in HTAB or in
8964 CHANGED_VARIABLES. */
8966 static void
8967 process_changed_values (variable_table_type *htab)
8969 int i, n;
8970 rtx val;
8971 auto_vec<rtx, 20> changed_values_stack;
8973 /* Move values from changed_variables to changed_values_stack. */
8974 changed_variables
8975 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8976 (&changed_values_stack);
8978 /* Back-propagate change notifications in values while popping
8979 them from the stack. */
8980 for (n = i = changed_values_stack.length ();
8981 i > 0; i = changed_values_stack.length ())
8983 val = changed_values_stack.pop ();
8984 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8986 /* This condition will hold when visiting each of the entries
8987 originally in changed_variables. We can't remove them
8988 earlier because this could drop the backlinks before we got a
8989 chance to use them. */
8990 if (i == n)
8992 remove_value_from_changed_variables (val);
8993 n--;
8998 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8999 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9000 the notes shall be emitted before of after instruction INSN. */
9002 static void
9003 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9004 shared_hash *vars)
9006 emit_note_data data;
9007 variable_table_type *htab = shared_hash_htab (vars);
9009 if (!changed_variables->elements ())
9010 return;
9012 if (MAY_HAVE_DEBUG_INSNS)
9013 process_changed_values (htab);
9015 data.insn = insn;
9016 data.where = where;
9017 data.vars = htab;
9019 changed_variables
9020 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9023 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9024 same variable in hash table DATA or is not there at all. */
9027 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9029 variable *old_var, *new_var;
9031 old_var = *slot;
9032 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9034 if (!new_var)
9036 /* Variable has disappeared. */
9037 variable *empty_var = NULL;
9039 if (old_var->onepart == ONEPART_VALUE
9040 || old_var->onepart == ONEPART_DEXPR)
9042 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9043 if (empty_var)
9045 gcc_checking_assert (!empty_var->in_changed_variables);
9046 if (!VAR_LOC_1PAUX (old_var))
9048 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9049 VAR_LOC_1PAUX (empty_var) = NULL;
9051 else
9052 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9056 if (!empty_var)
9058 empty_var = onepart_pool_allocate (old_var->onepart);
9059 empty_var->dv = old_var->dv;
9060 empty_var->refcount = 0;
9061 empty_var->n_var_parts = 0;
9062 empty_var->onepart = old_var->onepart;
9063 empty_var->in_changed_variables = false;
9066 if (empty_var->onepart)
9068 /* Propagate the auxiliary data to (ultimately)
9069 changed_variables. */
9070 empty_var->var_part[0].loc_chain = NULL;
9071 empty_var->var_part[0].cur_loc = NULL;
9072 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9073 VAR_LOC_1PAUX (old_var) = NULL;
9075 variable_was_changed (empty_var, NULL);
9076 /* Continue traversing the hash table. */
9077 return 1;
9079 /* Update cur_loc and one-part auxiliary data, before new_var goes
9080 through variable_was_changed. */
9081 if (old_var != new_var && new_var->onepart)
9083 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9084 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9085 VAR_LOC_1PAUX (old_var) = NULL;
9086 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9088 if (variable_different_p (old_var, new_var))
9089 variable_was_changed (new_var, NULL);
9091 /* Continue traversing the hash table. */
9092 return 1;
9095 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9096 table DATA. */
9099 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9101 variable *old_var, *new_var;
9103 new_var = *slot;
9104 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9105 if (!old_var)
9107 int i;
9108 for (i = 0; i < new_var->n_var_parts; i++)
9109 new_var->var_part[i].cur_loc = NULL;
9110 variable_was_changed (new_var, NULL);
9113 /* Continue traversing the hash table. */
9114 return 1;
9117 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9118 NEW_SET. */
9120 static void
9121 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9122 dataflow_set *new_set)
9124 shared_hash_htab (old_set->vars)
9125 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9126 (shared_hash_htab (new_set->vars));
9127 shared_hash_htab (new_set->vars)
9128 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9129 (shared_hash_htab (old_set->vars));
9130 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9133 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9135 static rtx_insn *
9136 next_non_note_insn_var_location (rtx_insn *insn)
9138 while (insn)
9140 insn = NEXT_INSN (insn);
9141 if (insn == 0
9142 || !NOTE_P (insn)
9143 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9144 break;
9147 return insn;
9150 /* Emit the notes for changes of location parts in the basic block BB. */
9152 static void
9153 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9155 unsigned int i;
9156 micro_operation *mo;
9158 dataflow_set_clear (set);
9159 dataflow_set_copy (set, &VTI (bb)->in);
9161 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9163 rtx_insn *insn = mo->insn;
9164 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9166 switch (mo->type)
9168 case MO_CALL:
9169 dataflow_set_clear_at_call (set, insn);
9170 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9172 rtx arguments = mo->u.loc, *p = &arguments;
9173 rtx_note *note;
9174 while (*p)
9176 XEXP (XEXP (*p, 0), 1)
9177 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9178 shared_hash_htab (set->vars));
9179 /* If expansion is successful, keep it in the list. */
9180 if (XEXP (XEXP (*p, 0), 1))
9181 p = &XEXP (*p, 1);
9182 /* Otherwise, if the following item is data_value for it,
9183 drop it too too. */
9184 else if (XEXP (*p, 1)
9185 && REG_P (XEXP (XEXP (*p, 0), 0))
9186 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9187 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9189 && REGNO (XEXP (XEXP (*p, 0), 0))
9190 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9191 0), 0)))
9192 *p = XEXP (XEXP (*p, 1), 1);
9193 /* Just drop this item. */
9194 else
9195 *p = XEXP (*p, 1);
9197 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9198 NOTE_VAR_LOCATION (note) = arguments;
9200 break;
9202 case MO_USE:
9204 rtx loc = mo->u.loc;
9206 if (REG_P (loc))
9207 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9208 else
9209 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9211 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9213 break;
9215 case MO_VAL_LOC:
9217 rtx loc = mo->u.loc;
9218 rtx val, vloc;
9219 tree var;
9221 if (GET_CODE (loc) == CONCAT)
9223 val = XEXP (loc, 0);
9224 vloc = XEXP (loc, 1);
9226 else
9228 val = NULL_RTX;
9229 vloc = loc;
9232 var = PAT_VAR_LOCATION_DECL (vloc);
9234 clobber_variable_part (set, NULL_RTX,
9235 dv_from_decl (var), 0, NULL_RTX);
9236 if (val)
9238 if (VAL_NEEDS_RESOLUTION (loc))
9239 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9240 set_variable_part (set, val, dv_from_decl (var), 0,
9241 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9242 INSERT);
9244 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9245 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9246 dv_from_decl (var), 0,
9247 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9248 INSERT);
9250 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9252 break;
9254 case MO_VAL_USE:
9256 rtx loc = mo->u.loc;
9257 rtx val, vloc, uloc;
9259 vloc = uloc = XEXP (loc, 1);
9260 val = XEXP (loc, 0);
9262 if (GET_CODE (val) == CONCAT)
9264 uloc = XEXP (val, 1);
9265 val = XEXP (val, 0);
9268 if (VAL_NEEDS_RESOLUTION (loc))
9269 val_resolve (set, val, vloc, insn);
9270 else
9271 val_store (set, val, uloc, insn, false);
9273 if (VAL_HOLDS_TRACK_EXPR (loc))
9275 if (GET_CODE (uloc) == REG)
9276 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9277 NULL);
9278 else if (GET_CODE (uloc) == MEM)
9279 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9280 NULL);
9283 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9285 break;
9287 case MO_VAL_SET:
9289 rtx loc = mo->u.loc;
9290 rtx val, vloc, uloc;
9291 rtx dstv, srcv;
9293 vloc = loc;
9294 uloc = XEXP (vloc, 1);
9295 val = XEXP (vloc, 0);
9296 vloc = uloc;
9298 if (GET_CODE (uloc) == SET)
9300 dstv = SET_DEST (uloc);
9301 srcv = SET_SRC (uloc);
9303 else
9305 dstv = uloc;
9306 srcv = NULL;
9309 if (GET_CODE (val) == CONCAT)
9311 dstv = vloc = XEXP (val, 1);
9312 val = XEXP (val, 0);
9315 if (GET_CODE (vloc) == SET)
9317 srcv = SET_SRC (vloc);
9319 gcc_assert (val != srcv);
9320 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9322 dstv = vloc = SET_DEST (vloc);
9324 if (VAL_NEEDS_RESOLUTION (loc))
9325 val_resolve (set, val, srcv, insn);
9327 else if (VAL_NEEDS_RESOLUTION (loc))
9329 gcc_assert (GET_CODE (uloc) == SET
9330 && GET_CODE (SET_SRC (uloc)) == REG);
9331 val_resolve (set, val, SET_SRC (uloc), insn);
9334 if (VAL_HOLDS_TRACK_EXPR (loc))
9336 if (VAL_EXPR_IS_CLOBBERED (loc))
9338 if (REG_P (uloc))
9339 var_reg_delete (set, uloc, true);
9340 else if (MEM_P (uloc))
9342 gcc_assert (MEM_P (dstv));
9343 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9344 var_mem_delete (set, dstv, true);
9347 else
9349 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9350 rtx src = NULL, dst = uloc;
9351 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9353 if (GET_CODE (uloc) == SET)
9355 src = SET_SRC (uloc);
9356 dst = SET_DEST (uloc);
9359 if (copied_p)
9361 status = find_src_status (set, src);
9363 src = find_src_set_src (set, src);
9366 if (REG_P (dst))
9367 var_reg_delete_and_set (set, dst, !copied_p,
9368 status, srcv);
9369 else if (MEM_P (dst))
9371 gcc_assert (MEM_P (dstv));
9372 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9373 var_mem_delete_and_set (set, dstv, !copied_p,
9374 status, srcv);
9378 else if (REG_P (uloc))
9379 var_regno_delete (set, REGNO (uloc));
9380 else if (MEM_P (uloc))
9382 gcc_checking_assert (GET_CODE (vloc) == MEM);
9383 gcc_checking_assert (vloc == dstv);
9384 if (vloc != dstv)
9385 clobber_overlapping_mems (set, vloc);
9388 val_store (set, val, dstv, insn, true);
9390 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9391 set->vars);
9393 break;
9395 case MO_SET:
9397 rtx loc = mo->u.loc;
9398 rtx set_src = NULL;
9400 if (GET_CODE (loc) == SET)
9402 set_src = SET_SRC (loc);
9403 loc = SET_DEST (loc);
9406 if (REG_P (loc))
9407 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9408 set_src);
9409 else
9410 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9411 set_src);
9413 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9414 set->vars);
9416 break;
9418 case MO_COPY:
9420 rtx loc = mo->u.loc;
9421 enum var_init_status src_status;
9422 rtx set_src = NULL;
9424 if (GET_CODE (loc) == SET)
9426 set_src = SET_SRC (loc);
9427 loc = SET_DEST (loc);
9430 src_status = find_src_status (set, set_src);
9431 set_src = find_src_set_src (set, set_src);
9433 if (REG_P (loc))
9434 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9435 else
9436 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9438 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9439 set->vars);
9441 break;
9443 case MO_USE_NO_VAR:
9445 rtx loc = mo->u.loc;
9447 if (REG_P (loc))
9448 var_reg_delete (set, loc, false);
9449 else
9450 var_mem_delete (set, loc, false);
9452 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9454 break;
9456 case MO_CLOBBER:
9458 rtx loc = mo->u.loc;
9460 if (REG_P (loc))
9461 var_reg_delete (set, loc, true);
9462 else
9463 var_mem_delete (set, loc, true);
9465 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9466 set->vars);
9468 break;
9470 case MO_ADJUST:
9471 set->stack_adjust += mo->u.adjust;
9472 break;
9477 /* Emit notes for the whole function. */
9479 static void
9480 vt_emit_notes (void)
9482 basic_block bb;
9483 dataflow_set cur;
9485 gcc_assert (!changed_variables->elements ());
9487 /* Free memory occupied by the out hash tables, as they aren't used
9488 anymore. */
9489 FOR_EACH_BB_FN (bb, cfun)
9490 dataflow_set_clear (&VTI (bb)->out);
9492 /* Enable emitting notes by functions (mainly by set_variable_part and
9493 delete_variable_part). */
9494 emit_notes = true;
9496 if (MAY_HAVE_DEBUG_INSNS)
9498 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9501 dataflow_set_init (&cur);
9503 FOR_EACH_BB_FN (bb, cfun)
9505 /* Emit the notes for changes of variable locations between two
9506 subsequent basic blocks. */
9507 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9509 if (MAY_HAVE_DEBUG_INSNS)
9510 local_get_addr_cache = new hash_map<rtx, rtx>;
9512 /* Emit the notes for the changes in the basic block itself. */
9513 emit_notes_in_bb (bb, &cur);
9515 if (MAY_HAVE_DEBUG_INSNS)
9516 delete local_get_addr_cache;
9517 local_get_addr_cache = NULL;
9519 /* Free memory occupied by the in hash table, we won't need it
9520 again. */
9521 dataflow_set_clear (&VTI (bb)->in);
9524 if (flag_checking)
9525 shared_hash_htab (cur.vars)
9526 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9527 (shared_hash_htab (empty_shared_hash));
9529 dataflow_set_destroy (&cur);
9531 if (MAY_HAVE_DEBUG_INSNS)
9532 delete dropped_values;
9533 dropped_values = NULL;
9535 emit_notes = false;
9538 /* If there is a declaration and offset associated with register/memory RTL
9539 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9541 static bool
9542 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9544 if (REG_P (rtl))
9546 if (REG_ATTRS (rtl))
9548 *declp = REG_EXPR (rtl);
9549 *offsetp = REG_OFFSET (rtl);
9550 return true;
9553 else if (GET_CODE (rtl) == PARALLEL)
9555 tree decl = NULL_TREE;
9556 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9557 int len = XVECLEN (rtl, 0), i;
9559 for (i = 0; i < len; i++)
9561 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9562 if (!REG_P (reg) || !REG_ATTRS (reg))
9563 break;
9564 if (!decl)
9565 decl = REG_EXPR (reg);
9566 if (REG_EXPR (reg) != decl)
9567 break;
9568 if (REG_OFFSET (reg) < offset)
9569 offset = REG_OFFSET (reg);
9572 if (i == len)
9574 *declp = decl;
9575 *offsetp = offset;
9576 return true;
9579 else if (MEM_P (rtl))
9581 if (MEM_ATTRS (rtl))
9583 *declp = MEM_EXPR (rtl);
9584 *offsetp = INT_MEM_OFFSET (rtl);
9585 return true;
9588 return false;
9591 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9592 of VAL. */
9594 static void
9595 record_entry_value (cselib_val *val, rtx rtl)
9597 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9599 ENTRY_VALUE_EXP (ev) = rtl;
9601 cselib_add_permanent_equiv (val, ev, get_insns ());
9604 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9606 static void
9607 vt_add_function_parameter (tree parm)
9609 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9610 rtx incoming = DECL_INCOMING_RTL (parm);
9611 tree decl;
9612 machine_mode mode;
9613 HOST_WIDE_INT offset;
9614 dataflow_set *out;
9615 decl_or_value dv;
9617 if (TREE_CODE (parm) != PARM_DECL)
9618 return;
9620 if (!decl_rtl || !incoming)
9621 return;
9623 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9624 return;
9626 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9627 rewrite the incoming location of parameters passed on the stack
9628 into MEMs based on the argument pointer, so that incoming doesn't
9629 depend on a pseudo. */
9630 if (MEM_P (incoming)
9631 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9632 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9633 && XEXP (XEXP (incoming, 0), 0)
9634 == crtl->args.internal_arg_pointer
9635 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9637 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9638 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9639 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9640 incoming
9641 = replace_equiv_address_nv (incoming,
9642 plus_constant (Pmode,
9643 arg_pointer_rtx, off));
9646 #ifdef HAVE_window_save
9647 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9648 If the target machine has an explicit window save instruction, the
9649 actual entry value is the corresponding OUTGOING_REGNO instead. */
9650 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9652 if (REG_P (incoming)
9653 && HARD_REGISTER_P (incoming)
9654 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9656 parm_reg p;
9657 p.incoming = incoming;
9658 incoming
9659 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9660 OUTGOING_REGNO (REGNO (incoming)), 0);
9661 p.outgoing = incoming;
9662 vec_safe_push (windowed_parm_regs, p);
9664 else if (GET_CODE (incoming) == PARALLEL)
9666 rtx outgoing
9667 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9668 int i;
9670 for (i = 0; i < XVECLEN (incoming, 0); i++)
9672 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9673 parm_reg p;
9674 p.incoming = reg;
9675 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9676 OUTGOING_REGNO (REGNO (reg)), 0);
9677 p.outgoing = reg;
9678 XVECEXP (outgoing, 0, i)
9679 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9680 XEXP (XVECEXP (incoming, 0, i), 1));
9681 vec_safe_push (windowed_parm_regs, p);
9684 incoming = outgoing;
9686 else if (MEM_P (incoming)
9687 && REG_P (XEXP (incoming, 0))
9688 && HARD_REGISTER_P (XEXP (incoming, 0)))
9690 rtx reg = XEXP (incoming, 0);
9691 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9693 parm_reg p;
9694 p.incoming = reg;
9695 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9696 p.outgoing = reg;
9697 vec_safe_push (windowed_parm_regs, p);
9698 incoming = replace_equiv_address_nv (incoming, reg);
9702 #endif
9704 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9706 if (MEM_P (incoming))
9708 /* This means argument is passed by invisible reference. */
9709 offset = 0;
9710 decl = parm;
9712 else
9714 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9715 return;
9716 offset += byte_lowpart_offset (GET_MODE (incoming),
9717 GET_MODE (decl_rtl));
9721 if (!decl)
9722 return;
9724 if (parm != decl)
9726 /* If that DECL_RTL wasn't a pseudo that got spilled to
9727 memory, bail out. Otherwise, the spill slot sharing code
9728 will force the memory to reference spill_slot_decl (%sfp),
9729 so we don't match above. That's ok, the pseudo must have
9730 referenced the entire parameter, so just reset OFFSET. */
9731 if (decl != get_spill_slot_decl (false))
9732 return;
9733 offset = 0;
9736 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9737 return;
9739 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9741 dv = dv_from_decl (parm);
9743 if (target_for_debug_bind (parm)
9744 /* We can't deal with these right now, because this kind of
9745 variable is single-part. ??? We could handle parallels
9746 that describe multiple locations for the same single
9747 value, but ATM we don't. */
9748 && GET_CODE (incoming) != PARALLEL)
9750 cselib_val *val;
9751 rtx lowpart;
9753 /* ??? We shouldn't ever hit this, but it may happen because
9754 arguments passed by invisible reference aren't dealt with
9755 above: incoming-rtl will have Pmode rather than the
9756 expected mode for the type. */
9757 if (offset)
9758 return;
9760 lowpart = var_lowpart (mode, incoming);
9761 if (!lowpart)
9762 return;
9764 val = cselib_lookup_from_insn (lowpart, mode, true,
9765 VOIDmode, get_insns ());
9767 /* ??? Float-typed values in memory are not handled by
9768 cselib. */
9769 if (val)
9771 preserve_value (val);
9772 set_variable_part (out, val->val_rtx, dv, offset,
9773 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9774 dv = dv_from_value (val->val_rtx);
9777 if (MEM_P (incoming))
9779 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9780 VOIDmode, get_insns ());
9781 if (val)
9783 preserve_value (val);
9784 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9789 if (REG_P (incoming))
9791 incoming = var_lowpart (mode, incoming);
9792 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9793 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9794 incoming);
9795 set_variable_part (out, incoming, dv, offset,
9796 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9797 if (dv_is_value_p (dv))
9799 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9800 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9801 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9803 machine_mode indmode
9804 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9805 rtx mem = gen_rtx_MEM (indmode, incoming);
9806 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9807 VOIDmode,
9808 get_insns ());
9809 if (val)
9811 preserve_value (val);
9812 record_entry_value (val, mem);
9813 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9814 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9819 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9821 int i;
9823 for (i = 0; i < XVECLEN (incoming, 0); i++)
9825 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9826 offset = REG_OFFSET (reg);
9827 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9828 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9829 set_variable_part (out, reg, dv, offset,
9830 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9833 else if (MEM_P (incoming))
9835 incoming = var_lowpart (mode, incoming);
9836 set_variable_part (out, incoming, dv, offset,
9837 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9841 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9843 static void
9844 vt_add_function_parameters (void)
9846 tree parm;
9848 for (parm = DECL_ARGUMENTS (current_function_decl);
9849 parm; parm = DECL_CHAIN (parm))
9850 if (!POINTER_BOUNDS_P (parm))
9851 vt_add_function_parameter (parm);
9853 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9855 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9857 if (TREE_CODE (vexpr) == INDIRECT_REF)
9858 vexpr = TREE_OPERAND (vexpr, 0);
9860 if (TREE_CODE (vexpr) == PARM_DECL
9861 && DECL_ARTIFICIAL (vexpr)
9862 && !DECL_IGNORED_P (vexpr)
9863 && DECL_NAMELESS (vexpr))
9864 vt_add_function_parameter (vexpr);
9868 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9869 ensure it isn't flushed during cselib_reset_table.
9870 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9871 has been eliminated. */
9873 static void
9874 vt_init_cfa_base (void)
9876 cselib_val *val;
9878 #ifdef FRAME_POINTER_CFA_OFFSET
9879 cfa_base_rtx = frame_pointer_rtx;
9880 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9881 #else
9882 cfa_base_rtx = arg_pointer_rtx;
9883 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9884 #endif
9885 if (cfa_base_rtx == hard_frame_pointer_rtx
9886 || !fixed_regs[REGNO (cfa_base_rtx)])
9888 cfa_base_rtx = NULL_RTX;
9889 return;
9891 if (!MAY_HAVE_DEBUG_INSNS)
9892 return;
9894 /* Tell alias analysis that cfa_base_rtx should share
9895 find_base_term value with stack pointer or hard frame pointer. */
9896 if (!frame_pointer_needed)
9897 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9898 else if (!crtl->stack_realign_tried)
9899 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9901 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9902 VOIDmode, get_insns ());
9903 preserve_value (val);
9904 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9907 /* Allocate and initialize the data structures for variable tracking
9908 and parse the RTL to get the micro operations. */
9910 static bool
9911 vt_initialize (void)
9913 basic_block bb;
9914 HOST_WIDE_INT fp_cfa_offset = -1;
9916 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9918 empty_shared_hash = shared_hash_pool.allocate ();
9919 empty_shared_hash->refcount = 1;
9920 empty_shared_hash->htab = new variable_table_type (1);
9921 changed_variables = new variable_table_type (10);
9923 /* Init the IN and OUT sets. */
9924 FOR_ALL_BB_FN (bb, cfun)
9926 VTI (bb)->visited = false;
9927 VTI (bb)->flooded = false;
9928 dataflow_set_init (&VTI (bb)->in);
9929 dataflow_set_init (&VTI (bb)->out);
9930 VTI (bb)->permp = NULL;
9933 if (MAY_HAVE_DEBUG_INSNS)
9935 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9936 scratch_regs = BITMAP_ALLOC (NULL);
9937 preserved_values.create (256);
9938 global_get_addr_cache = new hash_map<rtx, rtx>;
9940 else
9942 scratch_regs = NULL;
9943 global_get_addr_cache = NULL;
9946 if (MAY_HAVE_DEBUG_INSNS)
9948 rtx reg, expr;
9949 int ofst;
9950 cselib_val *val;
9952 #ifdef FRAME_POINTER_CFA_OFFSET
9953 reg = frame_pointer_rtx;
9954 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9955 #else
9956 reg = arg_pointer_rtx;
9957 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9958 #endif
9960 ofst -= INCOMING_FRAME_SP_OFFSET;
9962 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9963 VOIDmode, get_insns ());
9964 preserve_value (val);
9965 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9966 cselib_preserve_cfa_base_value (val, REGNO (reg));
9967 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9968 stack_pointer_rtx, -ofst);
9969 cselib_add_permanent_equiv (val, expr, get_insns ());
9971 if (ofst)
9973 val = cselib_lookup_from_insn (stack_pointer_rtx,
9974 GET_MODE (stack_pointer_rtx), 1,
9975 VOIDmode, get_insns ());
9976 preserve_value (val);
9977 expr = plus_constant (GET_MODE (reg), reg, ofst);
9978 cselib_add_permanent_equiv (val, expr, get_insns ());
9982 /* In order to factor out the adjustments made to the stack pointer or to
9983 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9984 instead of individual location lists, we're going to rewrite MEMs based
9985 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9986 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9987 resp. arg_pointer_rtx. We can do this either when there is no frame
9988 pointer in the function and stack adjustments are consistent for all
9989 basic blocks or when there is a frame pointer and no stack realignment.
9990 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9991 has been eliminated. */
9992 if (!frame_pointer_needed)
9994 rtx reg, elim;
9996 if (!vt_stack_adjustments ())
9997 return false;
9999 #ifdef FRAME_POINTER_CFA_OFFSET
10000 reg = frame_pointer_rtx;
10001 #else
10002 reg = arg_pointer_rtx;
10003 #endif
10004 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10005 if (elim != reg)
10007 if (GET_CODE (elim) == PLUS)
10008 elim = XEXP (elim, 0);
10009 if (elim == stack_pointer_rtx)
10010 vt_init_cfa_base ();
10013 else if (!crtl->stack_realign_tried)
10015 rtx reg, elim;
10017 #ifdef FRAME_POINTER_CFA_OFFSET
10018 reg = frame_pointer_rtx;
10019 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10020 #else
10021 reg = arg_pointer_rtx;
10022 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10023 #endif
10024 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10025 if (elim != reg)
10027 if (GET_CODE (elim) == PLUS)
10029 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10030 elim = XEXP (elim, 0);
10032 if (elim != hard_frame_pointer_rtx)
10033 fp_cfa_offset = -1;
10035 else
10036 fp_cfa_offset = -1;
10039 /* If the stack is realigned and a DRAP register is used, we're going to
10040 rewrite MEMs based on it representing incoming locations of parameters
10041 passed on the stack into MEMs based on the argument pointer. Although
10042 we aren't going to rewrite other MEMs, we still need to initialize the
10043 virtual CFA pointer in order to ensure that the argument pointer will
10044 be seen as a constant throughout the function.
10046 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10047 else if (stack_realign_drap)
10049 rtx reg, elim;
10051 #ifdef FRAME_POINTER_CFA_OFFSET
10052 reg = frame_pointer_rtx;
10053 #else
10054 reg = arg_pointer_rtx;
10055 #endif
10056 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10057 if (elim != reg)
10059 if (GET_CODE (elim) == PLUS)
10060 elim = XEXP (elim, 0);
10061 if (elim == hard_frame_pointer_rtx)
10062 vt_init_cfa_base ();
10066 hard_frame_pointer_adjustment = -1;
10068 vt_add_function_parameters ();
10070 FOR_EACH_BB_FN (bb, cfun)
10072 rtx_insn *insn;
10073 HOST_WIDE_INT pre, post = 0;
10074 basic_block first_bb, last_bb;
10076 if (MAY_HAVE_DEBUG_INSNS)
10078 cselib_record_sets_hook = add_with_sets;
10079 if (dump_file && (dump_flags & TDF_DETAILS))
10080 fprintf (dump_file, "first value: %i\n",
10081 cselib_get_next_uid ());
10084 first_bb = bb;
10085 for (;;)
10087 edge e;
10088 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10089 || ! single_pred_p (bb->next_bb))
10090 break;
10091 e = find_edge (bb, bb->next_bb);
10092 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10093 break;
10094 bb = bb->next_bb;
10096 last_bb = bb;
10098 /* Add the micro-operations to the vector. */
10099 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10101 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10102 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10103 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10104 insn = NEXT_INSN (insn))
10106 if (INSN_P (insn))
10108 if (!frame_pointer_needed)
10110 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10111 if (pre)
10113 micro_operation mo;
10114 mo.type = MO_ADJUST;
10115 mo.u.adjust = pre;
10116 mo.insn = insn;
10117 if (dump_file && (dump_flags & TDF_DETAILS))
10118 log_op_type (PATTERN (insn), bb, insn,
10119 MO_ADJUST, dump_file);
10120 VTI (bb)->mos.safe_push (mo);
10121 VTI (bb)->out.stack_adjust += pre;
10125 cselib_hook_called = false;
10126 adjust_insn (bb, insn);
10127 if (MAY_HAVE_DEBUG_INSNS)
10129 if (CALL_P (insn))
10130 prepare_call_arguments (bb, insn);
10131 cselib_process_insn (insn);
10132 if (dump_file && (dump_flags & TDF_DETAILS))
10134 print_rtl_single (dump_file, insn);
10135 dump_cselib_table (dump_file);
10138 if (!cselib_hook_called)
10139 add_with_sets (insn, 0, 0);
10140 cancel_changes (0);
10142 if (!frame_pointer_needed && post)
10144 micro_operation mo;
10145 mo.type = MO_ADJUST;
10146 mo.u.adjust = post;
10147 mo.insn = insn;
10148 if (dump_file && (dump_flags & TDF_DETAILS))
10149 log_op_type (PATTERN (insn), bb, insn,
10150 MO_ADJUST, dump_file);
10151 VTI (bb)->mos.safe_push (mo);
10152 VTI (bb)->out.stack_adjust += post;
10155 if (fp_cfa_offset != -1
10156 && hard_frame_pointer_adjustment == -1
10157 && fp_setter_insn (insn))
10159 vt_init_cfa_base ();
10160 hard_frame_pointer_adjustment = fp_cfa_offset;
10161 /* Disassociate sp from fp now. */
10162 if (MAY_HAVE_DEBUG_INSNS)
10164 cselib_val *v;
10165 cselib_invalidate_rtx (stack_pointer_rtx);
10166 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10167 VOIDmode);
10168 if (v && !cselib_preserved_value_p (v))
10170 cselib_set_value_sp_based (v);
10171 preserve_value (v);
10177 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10180 bb = last_bb;
10182 if (MAY_HAVE_DEBUG_INSNS)
10184 cselib_preserve_only_values ();
10185 cselib_reset_table (cselib_get_next_uid ());
10186 cselib_record_sets_hook = NULL;
10190 hard_frame_pointer_adjustment = -1;
10191 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10192 cfa_base_rtx = NULL_RTX;
10193 return true;
10196 /* This is *not* reset after each function. It gives each
10197 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10198 a unique label number. */
10200 static int debug_label_num = 1;
10202 /* Get rid of all debug insns from the insn stream. */
10204 static void
10205 delete_debug_insns (void)
10207 basic_block bb;
10208 rtx_insn *insn, *next;
10210 if (!MAY_HAVE_DEBUG_INSNS)
10211 return;
10213 FOR_EACH_BB_FN (bb, cfun)
10215 FOR_BB_INSNS_SAFE (bb, insn, next)
10216 if (DEBUG_INSN_P (insn))
10218 tree decl = INSN_VAR_LOCATION_DECL (insn);
10219 if (TREE_CODE (decl) == LABEL_DECL
10220 && DECL_NAME (decl)
10221 && !DECL_RTL_SET_P (decl))
10223 PUT_CODE (insn, NOTE);
10224 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10225 NOTE_DELETED_LABEL_NAME (insn)
10226 = IDENTIFIER_POINTER (DECL_NAME (decl));
10227 SET_DECL_RTL (decl, insn);
10228 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10230 else
10231 delete_insn (insn);
10236 /* Run a fast, BB-local only version of var tracking, to take care of
10237 information that we don't do global analysis on, such that not all
10238 information is lost. If SKIPPED holds, we're skipping the global
10239 pass entirely, so we should try to use information it would have
10240 handled as well.. */
10242 static void
10243 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10245 /* ??? Just skip it all for now. */
10246 delete_debug_insns ();
10249 /* Free the data structures needed for variable tracking. */
10251 static void
10252 vt_finalize (void)
10254 basic_block bb;
10256 FOR_EACH_BB_FN (bb, cfun)
10258 VTI (bb)->mos.release ();
10261 FOR_ALL_BB_FN (bb, cfun)
10263 dataflow_set_destroy (&VTI (bb)->in);
10264 dataflow_set_destroy (&VTI (bb)->out);
10265 if (VTI (bb)->permp)
10267 dataflow_set_destroy (VTI (bb)->permp);
10268 XDELETE (VTI (bb)->permp);
10271 free_aux_for_blocks ();
10272 delete empty_shared_hash->htab;
10273 empty_shared_hash->htab = NULL;
10274 delete changed_variables;
10275 changed_variables = NULL;
10276 attrs_pool.release ();
10277 var_pool.release ();
10278 location_chain_pool.release ();
10279 shared_hash_pool.release ();
10281 if (MAY_HAVE_DEBUG_INSNS)
10283 if (global_get_addr_cache)
10284 delete global_get_addr_cache;
10285 global_get_addr_cache = NULL;
10286 loc_exp_dep_pool.release ();
10287 valvar_pool.release ();
10288 preserved_values.release ();
10289 cselib_finish ();
10290 BITMAP_FREE (scratch_regs);
10291 scratch_regs = NULL;
10294 #ifdef HAVE_window_save
10295 vec_free (windowed_parm_regs);
10296 #endif
10298 if (vui_vec)
10299 XDELETEVEC (vui_vec);
10300 vui_vec = NULL;
10301 vui_allocated = 0;
10304 /* The entry point to variable tracking pass. */
10306 static inline unsigned int
10307 variable_tracking_main_1 (void)
10309 bool success;
10311 if (flag_var_tracking_assignments < 0
10312 /* Var-tracking right now assumes the IR doesn't contain
10313 any pseudos at this point. */
10314 || targetm.no_register_allocation)
10316 delete_debug_insns ();
10317 return 0;
10320 if (n_basic_blocks_for_fn (cfun) > 500 &&
10321 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10323 vt_debug_insns_local (true);
10324 return 0;
10327 mark_dfs_back_edges ();
10328 if (!vt_initialize ())
10330 vt_finalize ();
10331 vt_debug_insns_local (true);
10332 return 0;
10335 success = vt_find_locations ();
10337 if (!success && flag_var_tracking_assignments > 0)
10339 vt_finalize ();
10341 delete_debug_insns ();
10343 /* This is later restored by our caller. */
10344 flag_var_tracking_assignments = 0;
10346 success = vt_initialize ();
10347 gcc_assert (success);
10349 success = vt_find_locations ();
10352 if (!success)
10354 vt_finalize ();
10355 vt_debug_insns_local (false);
10356 return 0;
10359 if (dump_file && (dump_flags & TDF_DETAILS))
10361 dump_dataflow_sets ();
10362 dump_reg_info (dump_file);
10363 dump_flow_info (dump_file, dump_flags);
10366 timevar_push (TV_VAR_TRACKING_EMIT);
10367 vt_emit_notes ();
10368 timevar_pop (TV_VAR_TRACKING_EMIT);
10370 vt_finalize ();
10371 vt_debug_insns_local (false);
10372 return 0;
10375 unsigned int
10376 variable_tracking_main (void)
10378 unsigned int ret;
10379 int save = flag_var_tracking_assignments;
10381 ret = variable_tracking_main_1 ();
10383 flag_var_tracking_assignments = save;
10385 return ret;
10388 namespace {
10390 const pass_data pass_data_variable_tracking =
10392 RTL_PASS, /* type */
10393 "vartrack", /* name */
10394 OPTGROUP_NONE, /* optinfo_flags */
10395 TV_VAR_TRACKING, /* tv_id */
10396 0, /* properties_required */
10397 0, /* properties_provided */
10398 0, /* properties_destroyed */
10399 0, /* todo_flags_start */
10400 0, /* todo_flags_finish */
10403 class pass_variable_tracking : public rtl_opt_pass
10405 public:
10406 pass_variable_tracking (gcc::context *ctxt)
10407 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10410 /* opt_pass methods: */
10411 virtual bool gate (function *)
10413 return (flag_var_tracking && !targetm.delay_vartrack);
10416 virtual unsigned int execute (function *)
10418 return variable_tracking_main ();
10421 }; // class pass_variable_tracking
10423 } // anon namespace
10425 rtl_opt_pass *
10426 make_pass_variable_tracking (gcc::context *ctxt)
10428 return new pass_variable_tracking (ctxt);