1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S --
9 -- Copyright (C) 2006-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 with Ada
.Numerics
; use Ada
.Numerics
;
34 package body System
.Generic_Array_Operations
is
36 function Check_Unit_Last
39 First
: Integer) return Integer;
40 pragma Inline_Always
(Check_Unit_Last
);
41 -- Compute index of last element returned by Unit_Vector or Unit_Matrix.
42 -- A separate function is needed to allow raising Constraint_Error before
43 -- declaring the function result variable. The result variable needs to be
44 -- declared first, to allow front-end inlining.
50 function Diagonal
(A
: Matrix
) return Vector
is
51 N
: constant Natural := Natural'Min (A
'Length (1), A
'Length (2));
53 return R
: Vector
(A
'First (1) .. A
'First (1) + N
- 1) do
54 for J
in 0 .. N
- 1 loop
55 R
(R
'First + J
) := A
(A
'First (1) + J
, A
'First (2) + J
);
60 --------------------------
61 -- Square_Matrix_Length --
62 --------------------------
64 function Square_Matrix_Length
(A
: Matrix
) return Natural is
66 if A
'Length (1) /= A
'Length (2) then
67 raise Constraint_Error
with "matrix is not square";
71 end Square_Matrix_Length
;
77 function Check_Unit_Last
80 First
: Integer) return Integer
83 -- Order the tests carefully to avoid overflow
86 or else First
> Integer'Last - Order
+ 1
87 or else Index
> First
+ (Order
- 1)
89 raise Constraint_Error
;
92 return First
+ (Order
- 1);
99 procedure Back_Substitute
(M
, N
: in out Matrix
) is
100 pragma Assert
(M
'First (1) = N
'First (1)
102 M
'Last (1) = N
'Last (1));
109 -- Elementary row operation that subtracts Factor * M (Source, <>) from
123 for J
in M
'Range (2) loop
124 M
(Target
, J
) := M
(Target
, J
) - Factor
* M
(Source
, J
);
128 -- Local declarations
130 Max_Col
: Integer := M
'Last (2);
132 -- Start of processing for Back_Substitute
135 Do_Rows
: for Row
in reverse M
'Range (1) loop
136 Find_Non_Zero
: for Col
in reverse M
'First (2) .. Max_Col
loop
137 if Is_Non_Zero
(M
(Row
, Col
)) then
139 -- Found first non-zero element, so subtract a multiple of this
140 -- element from all higher rows, to reduce all other elements
141 -- in this column to zero.
144 -- We can't use a for loop, as we'd need to iterate to
145 -- Row - 1, but that expression will overflow if M'First
146 -- equals Integer'First, which is true for aggregates
147 -- without explicit bounds..
149 J
: Integer := M
'First (1);
153 Sub_Row
(N
, J
, Row
, (M
(J
, Col
) / M
(Row
, Col
)));
154 Sub_Row
(M
, J
, Row
, (M
(J
, Col
) / M
(Row
, Col
)));
159 -- Avoid potential overflow in the subtraction below
161 exit Do_Rows
when Col
= M
'First (2);
167 end loop Find_Non_Zero
;
171 -----------------------
172 -- Forward_Eliminate --
173 -----------------------
175 procedure Forward_Eliminate
180 pragma Assert
(M
'First (1) = N
'First (1)
182 M
'Last (1) = N
'Last (1));
184 -- The following are variations of the elementary matrix row operations:
185 -- row switching, row multiplication and row addition. Because in this
186 -- algorithm the addition factor is always a negated value, we chose to
187 -- use row subtraction instead. Similarly, instead of multiplying by
188 -- a reciprocal, we divide.
195 -- Subtrace Factor * M (Source, <>) from M (Target, <>)
198 (M
, N
: in out Matrix
;
201 -- Divide M (Row) and N (Row) by Scale, and update Det
204 (M
, N
: in out Matrix
;
207 -- Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
208 -- negating Det in the process.
221 for J
in M
'Range (2) loop
222 M
(Target
, J
) := M
(Target
, J
) - Factor
* M
(Source
, J
);
231 (M
, N
: in out Matrix
;
238 for J
in M
'Range (2) loop
239 M
(Row
, J
) := M
(Row
, J
) / Scale
;
242 for J
in N
'Range (2) loop
243 N
(Row
- M
'First (1) + N
'First (1), J
) :=
244 N
(Row
- M
'First (1) + N
'First (1), J
) / Scale
;
253 (M
, N
: in out Matrix
;
257 procedure Swap
(X
, Y
: in out Scalar
);
258 -- Exchange the values of X and Y
264 procedure Swap
(X
, Y
: in out Scalar
) is
265 T
: constant Scalar
:= X
;
271 -- Start of processing for Switch_Row
274 if Row_1
/= Row_2
then
277 for J
in M
'Range (2) loop
278 Swap
(M
(Row_1
, J
), M
(Row_2
, J
));
281 for J
in N
'Range (2) loop
282 Swap
(N
(Row_1
- M
'First (1) + N
'First (1), J
),
283 N
(Row_2
- M
'First (1) + N
'First (1), J
));
288 -- Local declarations
290 Row
: Integer := M
'First (1);
292 -- Start of processing for Forward_Eliminate
297 for J
in M
'Range (2) loop
299 Max_Row
: Integer := Row
;
300 Max_Abs
: Real
'Base := 0.0;
303 -- Find best pivot in column J, starting in row Row
305 for K
in Row
.. M
'Last (1) loop
307 New_Abs
: constant Real
'Base := abs M
(K
, J
);
309 if Max_Abs
< New_Abs
then
316 if Max_Abs
> 0.0 then
317 Switch_Row
(M
, N
, Row
, Max_Row
);
319 -- The temporaries below are necessary to force a copy of the
320 -- value and avoid improper aliasing.
323 Scale
: constant Scalar
:= M
(Row
, J
);
325 Divide_Row
(M
, N
, Row
, Scale
);
328 for U
in Row
+ 1 .. M
'Last (1) loop
330 Factor
: constant Scalar
:= M
(U
, J
);
332 Sub_Row
(N
, U
, Row
, Factor
);
333 Sub_Row
(M
, U
, Row
, Factor
);
337 exit when Row
>= M
'Last (1);
342 -- Set zero (note that we do not have literals)
348 end Forward_Eliminate
;
354 function Inner_Product
356 Right
: Right_Vector
) return Result_Scalar
358 R
: Result_Scalar
:= Zero
;
361 if Left
'Length /= Right
'Length then
362 raise Constraint_Error
with
363 "vectors are of different length in inner product";
366 for J
in Left
'Range loop
367 R
:= R
+ Left
(J
) * Right
(J
- Left
'First + Right
'First);
377 function L2_Norm
(X
: X_Vector
) return Result_Real
'Base is
378 Sum
: Result_Real
'Base := 0.0;
381 for J
in X
'Range loop
382 Sum
:= Sum
+ Result_Real
'Base (abs X
(J
))**2;
388 ----------------------------------
389 -- Matrix_Elementwise_Operation --
390 ----------------------------------
392 function Matrix_Elementwise_Operation
(X
: X_Matrix
) return Result_Matrix
is
394 return R
: Result_Matrix
(X
'Range (1), X
'Range (2)) do
395 for J
in R
'Range (1) loop
396 for K
in R
'Range (2) loop
397 R
(J
, K
) := Operation
(X
(J
, K
));
401 end Matrix_Elementwise_Operation
;
403 ----------------------------------
404 -- Vector_Elementwise_Operation --
405 ----------------------------------
407 function Vector_Elementwise_Operation
(X
: X_Vector
) return Result_Vector
is
409 return R
: Result_Vector
(X
'Range) do
410 for J
in R
'Range loop
411 R
(J
) := Operation
(X
(J
));
414 end Vector_Elementwise_Operation
;
416 -----------------------------------------
417 -- Matrix_Matrix_Elementwise_Operation --
418 -----------------------------------------
420 function Matrix_Matrix_Elementwise_Operation
422 Right
: Right_Matrix
) return Result_Matrix
425 return R
: Result_Matrix
(Left
'Range (1), Left
'Range (2)) do
426 if Left
'Length (1) /= Right
'Length (1)
428 Left
'Length (2) /= Right
'Length (2)
430 raise Constraint_Error
with
431 "matrices are of different dimension in elementwise operation";
434 for J
in R
'Range (1) loop
435 for K
in R
'Range (2) loop
440 (J
- R
'First (1) + Right
'First (1),
441 K
- R
'First (2) + Right
'First (2)));
445 end Matrix_Matrix_Elementwise_Operation
;
447 ------------------------------------------------
448 -- Matrix_Matrix_Scalar_Elementwise_Operation --
449 ------------------------------------------------
451 function Matrix_Matrix_Scalar_Elementwise_Operation
454 Z
: Z_Scalar
) return Result_Matrix
457 return R
: Result_Matrix
(X
'Range (1), X
'Range (2)) do
458 if X
'Length (1) /= Y
'Length (1)
460 X
'Length (2) /= Y
'Length (2)
462 raise Constraint_Error
with
463 "matrices are of different dimension in elementwise operation";
466 for J
in R
'Range (1) loop
467 for K
in R
'Range (2) loop
471 Y
(J
- R
'First (1) + Y
'First (1),
472 K
- R
'First (2) + Y
'First (2)),
477 end Matrix_Matrix_Scalar_Elementwise_Operation
;
479 -----------------------------------------
480 -- Vector_Vector_Elementwise_Operation --
481 -----------------------------------------
483 function Vector_Vector_Elementwise_Operation
485 Right
: Right_Vector
) return Result_Vector
488 return R
: Result_Vector
(Left
'Range) do
489 if Left
'Length /= Right
'Length then
490 raise Constraint_Error
with
491 "vectors are of different length in elementwise operation";
494 for J
in R
'Range loop
495 R
(J
) := Operation
(Left
(J
), Right
(J
- R
'First + Right
'First));
498 end Vector_Vector_Elementwise_Operation
;
500 ------------------------------------------------
501 -- Vector_Vector_Scalar_Elementwise_Operation --
502 ------------------------------------------------
504 function Vector_Vector_Scalar_Elementwise_Operation
507 Z
: Z_Scalar
) return Result_Vector
is
509 return R
: Result_Vector
(X
'Range) do
510 if X
'Length /= Y
'Length then
511 raise Constraint_Error
with
512 "vectors are of different length in elementwise operation";
515 for J
in R
'Range loop
516 R
(J
) := Operation
(X
(J
), Y
(J
- X
'First + Y
'First), Z
);
519 end Vector_Vector_Scalar_Elementwise_Operation
;
521 -----------------------------------------
522 -- Matrix_Scalar_Elementwise_Operation --
523 -----------------------------------------
525 function Matrix_Scalar_Elementwise_Operation
527 Right
: Right_Scalar
) return Result_Matrix
530 return R
: Result_Matrix
(Left
'Range (1), Left
'Range (2)) do
531 for J
in R
'Range (1) loop
532 for K
in R
'Range (2) loop
533 R
(J
, K
) := Operation
(Left
(J
, K
), Right
);
537 end Matrix_Scalar_Elementwise_Operation
;
539 -----------------------------------------
540 -- Vector_Scalar_Elementwise_Operation --
541 -----------------------------------------
543 function Vector_Scalar_Elementwise_Operation
545 Right
: Right_Scalar
) return Result_Vector
548 return R
: Result_Vector
(Left
'Range) do
549 for J
in R
'Range loop
550 R
(J
) := Operation
(Left
(J
), Right
);
553 end Vector_Scalar_Elementwise_Operation
;
555 -----------------------------------------
556 -- Scalar_Matrix_Elementwise_Operation --
557 -----------------------------------------
559 function Scalar_Matrix_Elementwise_Operation
561 Right
: Right_Matrix
) return Result_Matrix
564 return R
: Result_Matrix
(Right
'Range (1), Right
'Range (2)) do
565 for J
in R
'Range (1) loop
566 for K
in R
'Range (2) loop
567 R
(J
, K
) := Operation
(Left
, Right
(J
, K
));
571 end Scalar_Matrix_Elementwise_Operation
;
573 -----------------------------------------
574 -- Scalar_Vector_Elementwise_Operation --
575 -----------------------------------------
577 function Scalar_Vector_Elementwise_Operation
579 Right
: Right_Vector
) return Result_Vector
582 return R
: Result_Vector
(Right
'Range) do
583 for J
in R
'Range loop
584 R
(J
) := Operation
(Left
, Right
(J
));
587 end Scalar_Vector_Elementwise_Operation
;
593 function Sqrt
(X
: Real
'Base) return Real
'Base is
594 Root
, Next
: Real
'Base;
597 -- Be defensive: any comparisons with NaN values will yield False.
599 if not (X
> 0.0) then
603 raise Argument_Error
;
606 elsif X
> Real
'Base'Last then
608 -- X is infinity, which is its own square root
613 -- Compute an initial estimate based on:
615 -- X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),
617 -- where M is the mantissa, R is the radix and E the exponent.
619 -- By ignoring the mantissa and ignoring the case of an odd
620 -- exponent, we get a final error that is at most R. In other words,
621 -- the result has about a single bit precision.
623 Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);
625 -- Because of the poor initial estimate, use the Babylonian method of
626 -- computing the square root, as it is stable for all inputs. Every step
627 -- will roughly double the precision of the result. Just a few steps
628 -- suffice in most cases. Eight iterations should give about 2**8 bits
632 Next := (Root + X / Root) / 2.0;
633 exit when Root = Next;
640 ---------------------------
641 -- Matrix_Matrix_Product --
642 ---------------------------
644 function Matrix_Matrix_Product
646 Right : Right_Matrix) return Result_Matrix
649 return R : Result_Matrix (Left'Range (1), Right'Range (2)) do
650 if Left'Length (2) /= Right'Length (1) then
651 raise Constraint_Error with
652 "incompatible dimensions in matrix multiplication";
655 for J in R'Range (1) loop
656 for K in R'Range (2) loop
658 S : Result_Scalar := Zero;
661 for M in Left'Range (2) loop
662 S := S + Left (J, M) *
664 (M - Left'First (2) + Right'First (1), K);
672 end Matrix_Matrix_Product;
674 ----------------------------
675 -- Matrix_Vector_Solution --
676 ----------------------------
678 function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
679 N : constant Natural := A'Length (1);
681 MX : Matrix (A'Range (1), 1 .. 1);
682 R : Vector (A'Range (2));
686 if A'Length (2) /= N then
687 raise Constraint_Error with "matrix is not square";
690 if X'Length /= N then
691 raise Constraint_Error with "incompatible vector length";
694 for J in 0 .. MX'Length (1) - 1 loop
695 MX (MX'First (1) + J, 1) := X (X'First + J);
698 Forward_Eliminate (MA, MX, Det);
699 Back_Substitute (MA, MX);
701 for J in 0 .. R'Length - 1 loop
702 R (R'First + J) := MX (MX'First (1) + J, 1);
706 end Matrix_Vector_Solution;
708 ----------------------------
709 -- Matrix_Matrix_Solution --
710 ----------------------------
712 function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
713 N : constant Natural := A'Length (1);
714 MA : Matrix (A'Range (2), A'Range (2));
715 MB : Matrix (A'Range (2), X'Range (2));
719 if A'Length (2) /= N then
720 raise Constraint_Error with "matrix is not square";
723 if X'Length (1) /= N then
724 raise Constraint_Error with "matrices have unequal number of rows";
727 for J in 0 .. A'Length (1) - 1 loop
728 for K in MA'Range (2) loop
729 MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
732 for K in MB'Range (2) loop
733 MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
737 Forward_Eliminate (MA, MB, Det);
738 Back_Substitute (MA, MB);
741 end Matrix_Matrix_Solution;
743 ---------------------------
744 -- Matrix_Vector_Product --
745 ---------------------------
747 function Matrix_Vector_Product
749 Right : Right_Vector) return Result_Vector
752 return R : Result_Vector (Left'Range (1)) do
753 if Left'Length (2) /= Right'Length then
754 raise Constraint_Error with
755 "incompatible dimensions in matrix-vector multiplication";
758 for J in Left'Range (1) loop
760 S : Result_Scalar := Zero;
763 for K in Left'Range (2) loop
765 * Right (K - Left'First (2) + Right'First);
772 end Matrix_Vector_Product;
778 function Outer_Product
780 Right : Right_Vector) return Matrix
783 return R : Matrix (Left'Range, Right'Range) do
784 for J in R'Range (1) loop
785 for K in R'Range (2) loop
786 R (J, K) := Left (J) * Right (K);
796 procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
799 for J in A'Range (1) loop
801 A (J, Left) := A (J, Right);
802 A (J, Right) := Temp;
810 procedure Transpose (A : Matrix; R : out Matrix) is
812 for J in R'Range (1) loop
813 for K in R'Range (2) loop
814 R (J, K) := A (K - R'First (2) + A'First (1),
815 J - R'First (1) + A'First (2));
820 -------------------------------
821 -- Update_Matrix_With_Matrix --
822 -------------------------------
824 procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
826 if X'Length (1) /= Y'Length (1)
828 X'Length (2) /= Y'Length (2)
830 raise Constraint_Error with
831 "matrices are of different dimension in update operation";
834 for J in X'Range (1) loop
835 for K in X'Range (2) loop
836 Update (X (J, K), Y (J - X'First (1) + Y'First (1),
837 K - X'First (2) + Y'First (2)));
840 end Update_Matrix_With_Matrix;
842 -------------------------------
843 -- Update_Vector_With_Vector --
844 -------------------------------
846 procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
848 if X'Length /= Y'Length then
849 raise Constraint_Error with
850 "vectors are of different length in update operation";
853 for J in X'Range loop
854 Update (X (J), Y (J - X'First + Y'First));
856 end Update_Vector_With_Vector;
864 First_1 : Integer := 1;
865 First_2 : Integer := 1) return Matrix
868 return R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
869 First_2 .. Check_Unit_Last (First_2, Order, First_2))
871 R := (others => (others => Zero));
873 for J in 0 .. Order - 1 loop
874 R (First_1 + J, First_2 + J) := One;
886 First : Integer := 1) return Vector
889 return R : Vector (First .. Check_Unit_Last (Index, Order, First)) do
890 R := (others => Zero);
895 ---------------------------
896 -- Vector_Matrix_Product --
897 ---------------------------
899 function Vector_Matrix_Product
901 Right : Matrix) return Result_Vector
904 return R : Result_Vector (Right'Range (2)) do
905 if Left'Length /= Right'Length (1) then
906 raise Constraint_Error with
907 "incompatible dimensions in vector-matrix multiplication";
910 for J in Right'Range (2) loop
912 S : Result_Scalar := Zero;
915 for K in Right'Range (1) loop
916 S := S + Left (K - Right'First (1)
917 + Left'First) * Right (K, J);
924 end Vector_Matrix_Product;
926 end System.Generic_Array_Operations;