os_dep.c: Add FreeBSD/PowerPC bits.
[official-gcc.git] / gcc / local-alloc.c
blob78b2ede46d785a2b0e13773558ba41fab9cede2d
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 #include "except.h"
78 #include "integrate.h"
79 #include "reload.h"
80 #include "ggc.h"
82 /* Next quantity number available for allocation. */
84 static int next_qty;
86 /* Information we maintain about each quantity. */
87 struct qty
89 /* The number of refs to quantity Q. */
91 int n_refs;
93 /* The frequency of uses of quantity Q. */
95 int freq;
97 /* Insn number (counting from head of basic block)
98 where quantity Q was born. -1 if birth has not been recorded. */
100 int birth;
102 /* Insn number (counting from head of basic block)
103 where given quantity died. Due to the way tying is done,
104 and the fact that we consider in this pass only regs that die but once,
105 a quantity can die only once. Each quantity's life span
106 is a set of consecutive insns. -1 if death has not been recorded. */
108 int death;
110 /* Number of words needed to hold the data in given quantity.
111 This depends on its machine mode. It is used for these purposes:
112 1. It is used in computing the relative importance of qtys,
113 which determines the order in which we look for regs for them.
114 2. It is used in rules that prevent tying several registers of
115 different sizes in a way that is geometrically impossible
116 (see combine_regs). */
118 int size;
120 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
122 int n_calls_crossed;
124 /* The register number of one pseudo register whose reg_qty value is Q.
125 This register should be the head of the chain
126 maintained in reg_next_in_qty. */
128 int first_reg;
130 /* Reg class contained in (smaller than) the preferred classes of all
131 the pseudo regs that are tied in given quantity.
132 This is the preferred class for allocating that quantity. */
134 enum reg_class min_class;
136 /* Register class within which we allocate given qty if we can't get
137 its preferred class. */
139 enum reg_class alternate_class;
141 /* This holds the mode of the registers that are tied to given qty,
142 or VOIDmode if registers with differing modes are tied together. */
144 enum machine_mode mode;
146 /* the hard reg number chosen for given quantity,
147 or -1 if none was found. */
149 short phys_reg;
152 static struct qty *qty;
154 /* These fields are kept separately to speedup their clearing. */
156 /* We maintain two hard register sets that indicate suggested hard registers
157 for each quantity. The first, phys_copy_sugg, contains hard registers
158 that are tied to the quantity by a simple copy. The second contains all
159 hard registers that are tied to the quantity via an arithmetic operation.
161 The former register set is given priority for allocation. This tends to
162 eliminate copy insns. */
164 /* Element Q is a set of hard registers that are suggested for quantity Q by
165 copy insns. */
167 static HARD_REG_SET *qty_phys_copy_sugg;
169 /* Element Q is a set of hard registers that are suggested for quantity Q by
170 arithmetic insns. */
172 static HARD_REG_SET *qty_phys_sugg;
174 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
176 static short *qty_phys_num_copy_sugg;
178 /* Element Q is the number of suggested registers in qty_phys_sugg. */
180 static short *qty_phys_num_sugg;
182 /* If (REG N) has been assigned a quantity number, is a register number
183 of another register assigned the same quantity number, or -1 for the
184 end of the chain. qty->first_reg point to the head of this chain. */
186 static int *reg_next_in_qty;
188 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
189 if it is >= 0,
190 of -1 if this register cannot be allocated by local-alloc,
191 or -2 if not known yet.
193 Note that if we see a use or death of pseudo register N with
194 reg_qty[N] == -2, register N must be local to the current block. If
195 it were used in more than one block, we would have reg_qty[N] == -1.
196 This relies on the fact that if reg_basic_block[N] is >= 0, register N
197 will not appear in any other block. We save a considerable number of
198 tests by exploiting this.
200 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
201 be referenced. */
203 static int *reg_qty;
205 /* The offset (in words) of register N within its quantity.
206 This can be nonzero if register N is SImode, and has been tied
207 to a subreg of a DImode register. */
209 static char *reg_offset;
211 /* Vector of substitutions of register numbers,
212 used to map pseudo regs into hardware regs.
213 This is set up as a result of register allocation.
214 Element N is the hard reg assigned to pseudo reg N,
215 or is -1 if no hard reg was assigned.
216 If N is a hard reg number, element N is N. */
218 short *reg_renumber;
220 /* Set of hard registers live at the current point in the scan
221 of the instructions in a basic block. */
223 static HARD_REG_SET regs_live;
225 /* Each set of hard registers indicates registers live at a particular
226 point in the basic block. For N even, regs_live_at[N] says which
227 hard registers are needed *after* insn N/2 (i.e., they may not
228 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
230 If an object is to conflict with the inputs of insn J but not the
231 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
232 if it is to conflict with the outputs of insn J but not the inputs of
233 insn J + 1, it is said to die at index J*2 + 1. */
235 static HARD_REG_SET *regs_live_at;
237 /* Communicate local vars `insn_number' and `insn'
238 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
239 static int this_insn_number;
240 static rtx this_insn;
242 struct equivalence
244 /* Set when an attempt should be made to replace a register
245 with the associated src_p entry. */
247 char replace;
249 /* Set when a REG_EQUIV note is found or created. Use to
250 keep track of what memory accesses might be created later,
251 e.g. by reload. */
253 rtx replacement;
255 rtx *src_p;
257 /* Loop depth is used to recognize equivalences which appear
258 to be present within the same loop (or in an inner loop). */
260 int loop_depth;
262 /* The list of each instruction which initializes this register. */
264 rtx init_insns;
266 /* Nonzero if this had a preexisting REG_EQUIV note. */
268 int is_arg_equivalence;
271 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
272 structure for that register. */
274 static struct equivalence *reg_equiv;
276 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
277 static int recorded_label_ref;
279 static void alloc_qty (int, enum machine_mode, int, int);
280 static void validate_equiv_mem_from_store (rtx, rtx, void *);
281 static int validate_equiv_mem (rtx, rtx, rtx);
282 static int equiv_init_varies_p (rtx);
283 static int equiv_init_movable_p (rtx, int);
284 static int contains_replace_regs (rtx);
285 static int memref_referenced_p (rtx, rtx);
286 static int memref_used_between_p (rtx, rtx, rtx);
287 static void update_equiv_regs (void);
288 static void no_equiv (rtx, rtx, void *);
289 static void block_alloc (int);
290 static int qty_sugg_compare (int, int);
291 static int qty_sugg_compare_1 (const void *, const void *);
292 static int qty_compare (int, int);
293 static int qty_compare_1 (const void *, const void *);
294 static int combine_regs (rtx, rtx, int, int, rtx, int);
295 static int reg_meets_class_p (int, enum reg_class);
296 static void update_qty_class (int, int);
297 static void reg_is_set (rtx, rtx, void *);
298 static void reg_is_born (rtx, int);
299 static void wipe_dead_reg (rtx, int);
300 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
301 int, int);
302 static void mark_life (int, enum machine_mode, int);
303 static void post_mark_life (int, enum machine_mode, int, int, int);
304 static int no_conflict_p (rtx, rtx, rtx);
305 static int requires_inout (const char *);
307 /* Allocate a new quantity (new within current basic block)
308 for register number REGNO which is born at index BIRTH
309 within the block. MODE and SIZE are info on reg REGNO. */
311 static void
312 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
314 int qtyno = next_qty++;
316 reg_qty[regno] = qtyno;
317 reg_offset[regno] = 0;
318 reg_next_in_qty[regno] = -1;
320 qty[qtyno].first_reg = regno;
321 qty[qtyno].size = size;
322 qty[qtyno].mode = mode;
323 qty[qtyno].birth = birth;
324 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
325 qty[qtyno].min_class = reg_preferred_class (regno);
326 qty[qtyno].alternate_class = reg_alternate_class (regno);
327 qty[qtyno].n_refs = REG_N_REFS (regno);
328 qty[qtyno].freq = REG_FREQ (regno);
331 /* Main entry point of this file. */
334 local_alloc (void)
336 int i;
337 int max_qty;
338 basic_block b;
340 /* We need to keep track of whether or not we recorded a LABEL_REF so
341 that we know if the jump optimizer needs to be rerun. */
342 recorded_label_ref = 0;
344 /* Leaf functions and non-leaf functions have different needs.
345 If defined, let the machine say what kind of ordering we
346 should use. */
347 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
348 ORDER_REGS_FOR_LOCAL_ALLOC;
349 #endif
351 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
352 registers. */
353 update_equiv_regs ();
355 /* This sets the maximum number of quantities we can have. Quantity
356 numbers start at zero and we can have one for each pseudo. */
357 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
359 /* Allocate vectors of temporary data.
360 See the declarations of these variables, above,
361 for what they mean. */
363 qty = xmalloc (max_qty * sizeof (struct qty));
364 qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
365 qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
366 qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
367 qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
369 reg_qty = xmalloc (max_regno * sizeof (int));
370 reg_offset = xmalloc (max_regno * sizeof (char));
371 reg_next_in_qty = xmalloc (max_regno * sizeof (int));
373 /* Determine which pseudo-registers can be allocated by local-alloc.
374 In general, these are the registers used only in a single block and
375 which only die once.
377 We need not be concerned with which block actually uses the register
378 since we will never see it outside that block. */
380 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
382 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
383 reg_qty[i] = -2;
384 else
385 reg_qty[i] = -1;
388 /* Force loop below to initialize entire quantity array. */
389 next_qty = max_qty;
391 /* Allocate each block's local registers, block by block. */
393 FOR_EACH_BB (b)
395 /* NEXT_QTY indicates which elements of the `qty_...'
396 vectors might need to be initialized because they were used
397 for the previous block; it is set to the entire array before
398 block 0. Initialize those, with explicit loop if there are few,
399 else with bzero and bcopy. Do not initialize vectors that are
400 explicit set by `alloc_qty'. */
402 if (next_qty < 6)
404 for (i = 0; i < next_qty; i++)
406 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
407 qty_phys_num_copy_sugg[i] = 0;
408 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
409 qty_phys_num_sugg[i] = 0;
412 else
414 #define CLEAR(vector) \
415 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
417 CLEAR (qty_phys_copy_sugg);
418 CLEAR (qty_phys_num_copy_sugg);
419 CLEAR (qty_phys_sugg);
420 CLEAR (qty_phys_num_sugg);
423 next_qty = 0;
425 block_alloc (b->index);
428 free (qty);
429 free (qty_phys_copy_sugg);
430 free (qty_phys_num_copy_sugg);
431 free (qty_phys_sugg);
432 free (qty_phys_num_sugg);
434 free (reg_qty);
435 free (reg_offset);
436 free (reg_next_in_qty);
438 return recorded_label_ref;
441 /* Used for communication between the following two functions: contains
442 a MEM that we wish to ensure remains unchanged. */
443 static rtx equiv_mem;
445 /* Set nonzero if EQUIV_MEM is modified. */
446 static int equiv_mem_modified;
448 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
449 Called via note_stores. */
451 static void
452 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
453 void *data ATTRIBUTE_UNUSED)
455 if ((REG_P (dest)
456 && reg_overlap_mentioned_p (dest, equiv_mem))
457 || (MEM_P (dest)
458 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
459 equiv_mem_modified = 1;
462 /* Verify that no store between START and the death of REG invalidates
463 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
464 by storing into an overlapping memory location, or with a non-const
465 CALL_INSN.
467 Return 1 if MEMREF remains valid. */
469 static int
470 validate_equiv_mem (rtx start, rtx reg, rtx memref)
472 rtx insn;
473 rtx note;
475 equiv_mem = memref;
476 equiv_mem_modified = 0;
478 /* If the memory reference has side effects or is volatile, it isn't a
479 valid equivalence. */
480 if (side_effects_p (memref))
481 return 0;
483 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
485 if (! INSN_P (insn))
486 continue;
488 if (find_reg_note (insn, REG_DEAD, reg))
489 return 1;
491 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
492 && ! CONST_OR_PURE_CALL_P (insn))
493 return 0;
495 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
497 /* If a register mentioned in MEMREF is modified via an
498 auto-increment, we lose the equivalence. Do the same if one
499 dies; although we could extend the life, it doesn't seem worth
500 the trouble. */
502 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
503 if ((REG_NOTE_KIND (note) == REG_INC
504 || REG_NOTE_KIND (note) == REG_DEAD)
505 && REG_P (XEXP (note, 0))
506 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
507 return 0;
510 return 0;
513 /* Returns zero if X is known to be invariant. */
515 static int
516 equiv_init_varies_p (rtx x)
518 RTX_CODE code = GET_CODE (x);
519 int i;
520 const char *fmt;
522 switch (code)
524 case MEM:
525 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
527 case CONST:
528 case CONST_INT:
529 case CONST_DOUBLE:
530 case CONST_VECTOR:
531 case SYMBOL_REF:
532 case LABEL_REF:
533 return 0;
535 case REG:
536 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
538 case ASM_OPERANDS:
539 if (MEM_VOLATILE_P (x))
540 return 1;
542 /* Fall through. */
544 default:
545 break;
548 fmt = GET_RTX_FORMAT (code);
549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
550 if (fmt[i] == 'e')
552 if (equiv_init_varies_p (XEXP (x, i)))
553 return 1;
555 else if (fmt[i] == 'E')
557 int j;
558 for (j = 0; j < XVECLEN (x, i); j++)
559 if (equiv_init_varies_p (XVECEXP (x, i, j)))
560 return 1;
563 return 0;
566 /* Returns nonzero if X (used to initialize register REGNO) is movable.
567 X is only movable if the registers it uses have equivalent initializations
568 which appear to be within the same loop (or in an inner loop) and movable
569 or if they are not candidates for local_alloc and don't vary. */
571 static int
572 equiv_init_movable_p (rtx x, int regno)
574 int i, j;
575 const char *fmt;
576 enum rtx_code code = GET_CODE (x);
578 switch (code)
580 case SET:
581 return equiv_init_movable_p (SET_SRC (x), regno);
583 case CC0:
584 case CLOBBER:
585 return 0;
587 case PRE_INC:
588 case PRE_DEC:
589 case POST_INC:
590 case POST_DEC:
591 case PRE_MODIFY:
592 case POST_MODIFY:
593 return 0;
595 case REG:
596 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
597 && reg_equiv[REGNO (x)].replace)
598 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
600 case UNSPEC_VOLATILE:
601 return 0;
603 case ASM_OPERANDS:
604 if (MEM_VOLATILE_P (x))
605 return 0;
607 /* Fall through. */
609 default:
610 break;
613 fmt = GET_RTX_FORMAT (code);
614 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
615 switch (fmt[i])
617 case 'e':
618 if (! equiv_init_movable_p (XEXP (x, i), regno))
619 return 0;
620 break;
621 case 'E':
622 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
623 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
624 return 0;
625 break;
628 return 1;
631 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
633 static int
634 contains_replace_regs (rtx x)
636 int i, j;
637 const char *fmt;
638 enum rtx_code code = GET_CODE (x);
640 switch (code)
642 case CONST_INT:
643 case CONST:
644 case LABEL_REF:
645 case SYMBOL_REF:
646 case CONST_DOUBLE:
647 case CONST_VECTOR:
648 case PC:
649 case CC0:
650 case HIGH:
651 return 0;
653 case REG:
654 return reg_equiv[REGNO (x)].replace;
656 default:
657 break;
660 fmt = GET_RTX_FORMAT (code);
661 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
662 switch (fmt[i])
664 case 'e':
665 if (contains_replace_regs (XEXP (x, i)))
666 return 1;
667 break;
668 case 'E':
669 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
670 if (contains_replace_regs (XVECEXP (x, i, j)))
671 return 1;
672 break;
675 return 0;
678 /* TRUE if X references a memory location that would be affected by a store
679 to MEMREF. */
681 static int
682 memref_referenced_p (rtx memref, rtx x)
684 int i, j;
685 const char *fmt;
686 enum rtx_code code = GET_CODE (x);
688 switch (code)
690 case CONST_INT:
691 case CONST:
692 case LABEL_REF:
693 case SYMBOL_REF:
694 case CONST_DOUBLE:
695 case CONST_VECTOR:
696 case PC:
697 case CC0:
698 case HIGH:
699 case LO_SUM:
700 return 0;
702 case REG:
703 return (reg_equiv[REGNO (x)].replacement
704 && memref_referenced_p (memref,
705 reg_equiv[REGNO (x)].replacement));
707 case MEM:
708 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
709 return 1;
710 break;
712 case SET:
713 /* If we are setting a MEM, it doesn't count (its address does), but any
714 other SET_DEST that has a MEM in it is referencing the MEM. */
715 if (MEM_P (SET_DEST (x)))
717 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
718 return 1;
720 else if (memref_referenced_p (memref, SET_DEST (x)))
721 return 1;
723 return memref_referenced_p (memref, SET_SRC (x));
725 default:
726 break;
729 fmt = GET_RTX_FORMAT (code);
730 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
731 switch (fmt[i])
733 case 'e':
734 if (memref_referenced_p (memref, XEXP (x, i)))
735 return 1;
736 break;
737 case 'E':
738 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
739 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
740 return 1;
741 break;
744 return 0;
747 /* TRUE if some insn in the range (START, END] references a memory location
748 that would be affected by a store to MEMREF. */
750 static int
751 memref_used_between_p (rtx memref, rtx start, rtx end)
753 rtx insn;
755 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
756 insn = NEXT_INSN (insn))
757 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
758 return 1;
760 return 0;
763 /* Find registers that are equivalent to a single value throughout the
764 compilation (either because they can be referenced in memory or are set once
765 from a single constant). Lower their priority for a register.
767 If such a register is only referenced once, try substituting its value
768 into the using insn. If it succeeds, we can eliminate the register
769 completely.
771 Initialize the REG_EQUIV_INIT array of initializing insns. */
773 static void
774 update_equiv_regs (void)
776 rtx insn;
777 basic_block bb;
778 int loop_depth;
779 regset_head cleared_regs;
780 int clear_regnos = 0;
782 reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
783 INIT_REG_SET (&cleared_regs);
784 reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
785 reg_equiv_init_size = max_regno;
787 init_alias_analysis ();
789 /* Scan the insns and find which registers have equivalences. Do this
790 in a separate scan of the insns because (due to -fcse-follow-jumps)
791 a register can be set below its use. */
792 FOR_EACH_BB (bb)
794 loop_depth = bb->loop_depth;
796 for (insn = BB_HEAD (bb);
797 insn != NEXT_INSN (BB_END (bb));
798 insn = NEXT_INSN (insn))
800 rtx note;
801 rtx set;
802 rtx dest, src;
803 int regno;
805 if (! INSN_P (insn))
806 continue;
808 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
809 if (REG_NOTE_KIND (note) == REG_INC)
810 no_equiv (XEXP (note, 0), note, NULL);
812 set = single_set (insn);
814 /* If this insn contains more (or less) than a single SET,
815 only mark all destinations as having no known equivalence. */
816 if (set == 0)
818 note_stores (PATTERN (insn), no_equiv, NULL);
819 continue;
821 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
823 int i;
825 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
827 rtx part = XVECEXP (PATTERN (insn), 0, i);
828 if (part != set)
829 note_stores (part, no_equiv, NULL);
833 dest = SET_DEST (set);
834 src = SET_SRC (set);
836 /* See if this is setting up the equivalence between an argument
837 register and its stack slot. */
838 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
839 if (note)
841 gcc_assert (REG_P (dest));
842 regno = REGNO (dest);
844 /* Note that we don't want to clear reg_equiv_init even if there
845 are multiple sets of this register. */
846 reg_equiv[regno].is_arg_equivalence = 1;
848 /* Record for reload that this is an equivalencing insn. */
849 if (rtx_equal_p (src, XEXP (note, 0)))
850 reg_equiv_init[regno]
851 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
853 /* Continue normally in case this is a candidate for
854 replacements. */
857 if (!optimize)
858 continue;
860 /* We only handle the case of a pseudo register being set
861 once, or always to the same value. */
862 /* ??? The mn10200 port breaks if we add equivalences for
863 values that need an ADDRESS_REGS register and set them equivalent
864 to a MEM of a pseudo. The actual problem is in the over-conservative
865 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
866 calculate_needs, but we traditionally work around this problem
867 here by rejecting equivalences when the destination is in a register
868 that's likely spilled. This is fragile, of course, since the
869 preferred class of a pseudo depends on all instructions that set
870 or use it. */
872 if (!REG_P (dest)
873 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
874 || reg_equiv[regno].init_insns == const0_rtx
875 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
876 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
878 /* This might be setting a SUBREG of a pseudo, a pseudo that is
879 also set somewhere else to a constant. */
880 note_stores (set, no_equiv, NULL);
881 continue;
884 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
886 /* cse sometimes generates function invariants, but doesn't put a
887 REG_EQUAL note on the insn. Since this note would be redundant,
888 there's no point creating it earlier than here. */
889 if (! note && ! rtx_varies_p (src, 0))
890 note = set_unique_reg_note (insn, REG_EQUAL, src);
892 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
893 since it represents a function call */
894 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
895 note = NULL_RTX;
897 if (REG_N_SETS (regno) != 1
898 && (! note
899 || rtx_varies_p (XEXP (note, 0), 0)
900 || (reg_equiv[regno].replacement
901 && ! rtx_equal_p (XEXP (note, 0),
902 reg_equiv[regno].replacement))))
904 no_equiv (dest, set, NULL);
905 continue;
907 /* Record this insn as initializing this register. */
908 reg_equiv[regno].init_insns
909 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
911 /* If this register is known to be equal to a constant, record that
912 it is always equivalent to the constant. */
913 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
914 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
916 /* If this insn introduces a "constant" register, decrease the priority
917 of that register. Record this insn if the register is only used once
918 more and the equivalence value is the same as our source.
920 The latter condition is checked for two reasons: First, it is an
921 indication that it may be more efficient to actually emit the insn
922 as written (if no registers are available, reload will substitute
923 the equivalence). Secondly, it avoids problems with any registers
924 dying in this insn whose death notes would be missed.
926 If we don't have a REG_EQUIV note, see if this insn is loading
927 a register used only in one basic block from a MEM. If so, and the
928 MEM remains unchanged for the life of the register, add a REG_EQUIV
929 note. */
931 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
933 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
934 && MEM_P (SET_SRC (set))
935 && validate_equiv_mem (insn, dest, SET_SRC (set)))
936 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
937 REG_NOTES (insn));
939 if (note)
941 int regno = REGNO (dest);
942 rtx x = XEXP (note, 0);
944 /* If we haven't done so, record for reload that this is an
945 equivalencing insn. */
946 if (!reg_equiv[regno].is_arg_equivalence
947 && (!MEM_P (x) || rtx_equal_p (src, x)))
948 reg_equiv_init[regno]
949 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
951 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
952 We might end up substituting the LABEL_REF for uses of the
953 pseudo here or later. That kind of transformation may turn an
954 indirect jump into a direct jump, in which case we must rerun the
955 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
956 if (GET_CODE (x) == LABEL_REF
957 || (GET_CODE (x) == CONST
958 && GET_CODE (XEXP (x, 0)) == PLUS
959 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
960 recorded_label_ref = 1;
962 reg_equiv[regno].replacement = x;
963 reg_equiv[regno].src_p = &SET_SRC (set);
964 reg_equiv[regno].loop_depth = loop_depth;
966 /* Don't mess with things live during setjmp. */
967 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
969 /* Note that the statement below does not affect the priority
970 in local-alloc! */
971 REG_LIVE_LENGTH (regno) *= 2;
973 /* If the register is referenced exactly twice, meaning it is
974 set once and used once, indicate that the reference may be
975 replaced by the equivalence we computed above. Do this
976 even if the register is only used in one block so that
977 dependencies can be handled where the last register is
978 used in a different block (i.e. HIGH / LO_SUM sequences)
979 and to reduce the number of registers alive across
980 calls. */
982 if (REG_N_REFS (regno) == 2
983 && (rtx_equal_p (x, src)
984 || ! equiv_init_varies_p (src))
985 && NONJUMP_INSN_P (insn)
986 && equiv_init_movable_p (PATTERN (insn), regno))
987 reg_equiv[regno].replace = 1;
993 if (!optimize)
994 goto out;
996 /* A second pass, to gather additional equivalences with memory. This needs
997 to be done after we know which registers we are going to replace. */
999 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1001 rtx set, src, dest;
1002 unsigned regno;
1004 if (! INSN_P (insn))
1005 continue;
1007 set = single_set (insn);
1008 if (! set)
1009 continue;
1011 dest = SET_DEST (set);
1012 src = SET_SRC (set);
1014 /* If this sets a MEM to the contents of a REG that is only used
1015 in a single basic block, see if the register is always equivalent
1016 to that memory location and if moving the store from INSN to the
1017 insn that set REG is safe. If so, put a REG_EQUIV note on the
1018 initializing insn.
1020 Don't add a REG_EQUIV note if the insn already has one. The existing
1021 REG_EQUIV is likely more useful than the one we are adding.
1023 If one of the regs in the address has reg_equiv[REGNO].replace set,
1024 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
1025 optimization may move the set of this register immediately before
1026 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1027 the mention in the REG_EQUIV note would be to an uninitialized
1028 pseudo. */
1030 if (MEM_P (dest) && REG_P (src)
1031 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1032 && REG_BASIC_BLOCK (regno) >= 0
1033 && REG_N_SETS (regno) == 1
1034 && reg_equiv[regno].init_insns != 0
1035 && reg_equiv[regno].init_insns != const0_rtx
1036 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1037 REG_EQUIV, NULL_RTX)
1038 && ! contains_replace_regs (XEXP (dest, 0)))
1040 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1041 if (validate_equiv_mem (init_insn, src, dest)
1042 && ! memref_used_between_p (dest, init_insn, insn))
1044 REG_NOTES (init_insn)
1045 = gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1046 REG_NOTES (init_insn));
1047 /* This insn makes the equivalence, not the one initializing
1048 the register. */
1049 reg_equiv_init[regno]
1050 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1055 /* Now scan all regs killed in an insn to see if any of them are
1056 registers only used that once. If so, see if we can replace the
1057 reference with the equivalent form. If we can, delete the
1058 initializing reference and this register will go away. If we
1059 can't replace the reference, and the initializing reference is
1060 within the same loop (or in an inner loop), then move the register
1061 initialization just before the use, so that they are in the same
1062 basic block. */
1063 FOR_EACH_BB_REVERSE (bb)
1065 loop_depth = bb->loop_depth;
1066 for (insn = BB_END (bb);
1067 insn != PREV_INSN (BB_HEAD (bb));
1068 insn = PREV_INSN (insn))
1070 rtx link;
1072 if (! INSN_P (insn))
1073 continue;
1075 /* Don't substitute into a non-local goto, this confuses CFG. */
1076 if (JUMP_P (insn)
1077 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1078 continue;
1080 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1082 if (REG_NOTE_KIND (link) == REG_DEAD
1083 /* Make sure this insn still refers to the register. */
1084 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1086 int regno = REGNO (XEXP (link, 0));
1087 rtx equiv_insn;
1089 if (! reg_equiv[regno].replace
1090 || reg_equiv[regno].loop_depth < loop_depth)
1091 continue;
1093 /* reg_equiv[REGNO].replace gets set only when
1094 REG_N_REFS[REGNO] is 2, i.e. the register is set
1095 once and used once. (If it were only set, but not used,
1096 flow would have deleted the setting insns.) Hence
1097 there can only be one insn in reg_equiv[REGNO].init_insns. */
1098 gcc_assert (reg_equiv[regno].init_insns
1099 && !XEXP (reg_equiv[regno].init_insns, 1));
1100 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1102 /* We may not move instructions that can throw, since
1103 that changes basic block boundaries and we are not
1104 prepared to adjust the CFG to match. */
1105 if (can_throw_internal (equiv_insn))
1106 continue;
1108 if (asm_noperands (PATTERN (equiv_insn)) < 0
1109 && validate_replace_rtx (regno_reg_rtx[regno],
1110 *(reg_equiv[regno].src_p), insn))
1112 rtx equiv_link;
1113 rtx last_link;
1114 rtx note;
1116 /* Find the last note. */
1117 for (last_link = link; XEXP (last_link, 1);
1118 last_link = XEXP (last_link, 1))
1121 /* Append the REG_DEAD notes from equiv_insn. */
1122 equiv_link = REG_NOTES (equiv_insn);
1123 while (equiv_link)
1125 note = equiv_link;
1126 equiv_link = XEXP (equiv_link, 1);
1127 if (REG_NOTE_KIND (note) == REG_DEAD)
1129 remove_note (equiv_insn, note);
1130 XEXP (last_link, 1) = note;
1131 XEXP (note, 1) = NULL_RTX;
1132 last_link = note;
1136 remove_death (regno, insn);
1137 REG_N_REFS (regno) = 0;
1138 REG_FREQ (regno) = 0;
1139 delete_insn (equiv_insn);
1141 reg_equiv[regno].init_insns
1142 = XEXP (reg_equiv[regno].init_insns, 1);
1144 /* Remember to clear REGNO from all basic block's live
1145 info. */
1146 SET_REGNO_REG_SET (&cleared_regs, regno);
1147 clear_regnos++;
1148 reg_equiv_init[regno] = NULL_RTX;
1150 /* Move the initialization of the register to just before
1151 INSN. Update the flow information. */
1152 else if (PREV_INSN (insn) != equiv_insn)
1154 rtx new_insn;
1156 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1157 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1158 REG_NOTES (equiv_insn) = 0;
1160 /* Make sure this insn is recognized before
1161 reload begins, otherwise
1162 eliminate_regs_in_insn will die. */
1163 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1165 delete_insn (equiv_insn);
1167 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1169 REG_BASIC_BLOCK (regno) = bb->index;
1170 REG_N_CALLS_CROSSED (regno) = 0;
1171 REG_LIVE_LENGTH (regno) = 2;
1173 if (insn == BB_HEAD (bb))
1174 BB_HEAD (bb) = PREV_INSN (insn);
1176 /* Remember to clear REGNO from all basic block's live
1177 info. */
1178 SET_REGNO_REG_SET (&cleared_regs, regno);
1179 clear_regnos++;
1180 reg_equiv_init[regno] = NULL_RTX;
1187 /* Clear all dead REGNOs from all basic block's live info. */
1188 if (clear_regnos)
1190 unsigned j;
1192 if (clear_regnos > 8)
1194 FOR_EACH_BB (bb)
1196 AND_COMPL_REG_SET (bb->global_live_at_start, &cleared_regs);
1197 AND_COMPL_REG_SET (bb->global_live_at_end, &cleared_regs);
1200 else
1202 reg_set_iterator rsi;
1203 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1205 FOR_EACH_BB (bb)
1207 CLEAR_REGNO_REG_SET (bb->global_live_at_start, j);
1208 CLEAR_REGNO_REG_SET (bb->global_live_at_end, j);
1214 out:
1215 /* Clean up. */
1216 end_alias_analysis ();
1217 CLEAR_REG_SET (&cleared_regs);
1218 free (reg_equiv);
1221 /* Mark REG as having no known equivalence.
1222 Some instructions might have been processed before and furnished
1223 with REG_EQUIV notes for this register; these notes will have to be
1224 removed.
1225 STORE is the piece of RTL that does the non-constant / conflicting
1226 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1227 but needs to be there because this function is called from note_stores. */
1228 static void
1229 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1231 int regno;
1232 rtx list;
1234 if (!REG_P (reg))
1235 return;
1236 regno = REGNO (reg);
1237 list = reg_equiv[regno].init_insns;
1238 if (list == const0_rtx)
1239 return;
1240 reg_equiv[regno].init_insns = const0_rtx;
1241 reg_equiv[regno].replacement = NULL_RTX;
1242 /* This doesn't matter for equivalences made for argument registers, we
1243 should keep their initialization insns. */
1244 if (reg_equiv[regno].is_arg_equivalence)
1245 return;
1246 reg_equiv_init[regno] = NULL_RTX;
1247 for (; list; list = XEXP (list, 1))
1249 rtx insn = XEXP (list, 0);
1250 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1254 /* Allocate hard regs to the pseudo regs used only within block number B.
1255 Only the pseudos that die but once can be handled. */
1257 static void
1258 block_alloc (int b)
1260 int i, q;
1261 rtx insn;
1262 rtx note, hard_reg;
1263 int insn_number = 0;
1264 int insn_count = 0;
1265 int max_uid = get_max_uid ();
1266 int *qty_order;
1267 int no_conflict_combined_regno = -1;
1269 /* Count the instructions in the basic block. */
1271 insn = BB_END (BASIC_BLOCK (b));
1272 while (1)
1274 if (!NOTE_P (insn))
1276 ++insn_count;
1277 gcc_assert (insn_count <= max_uid);
1279 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1280 break;
1281 insn = PREV_INSN (insn);
1284 /* +2 to leave room for a post_mark_life at the last insn and for
1285 the birth of a CLOBBER in the first insn. */
1286 regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1288 /* Initialize table of hardware registers currently live. */
1290 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1292 /* This loop scans the instructions of the basic block
1293 and assigns quantities to registers.
1294 It computes which registers to tie. */
1296 insn = BB_HEAD (BASIC_BLOCK (b));
1297 while (1)
1299 if (!NOTE_P (insn))
1300 insn_number++;
1302 if (INSN_P (insn))
1304 rtx link, set;
1305 int win = 0;
1306 rtx r0, r1 = NULL_RTX;
1307 int combined_regno = -1;
1308 int i;
1310 this_insn_number = insn_number;
1311 this_insn = insn;
1313 extract_insn (insn);
1314 which_alternative = -1;
1316 /* Is this insn suitable for tying two registers?
1317 If so, try doing that.
1318 Suitable insns are those with at least two operands and where
1319 operand 0 is an output that is a register that is not
1320 earlyclobber.
1322 We can tie operand 0 with some operand that dies in this insn.
1323 First look for operands that are required to be in the same
1324 register as operand 0. If we find such, only try tying that
1325 operand or one that can be put into that operand if the
1326 operation is commutative. If we don't find an operand
1327 that is required to be in the same register as operand 0,
1328 we can tie with any operand.
1330 Subregs in place of regs are also ok.
1332 If tying is done, WIN is set nonzero. */
1334 if (optimize
1335 && recog_data.n_operands > 1
1336 && recog_data.constraints[0][0] == '='
1337 && recog_data.constraints[0][1] != '&')
1339 /* If non-negative, is an operand that must match operand 0. */
1340 int must_match_0 = -1;
1341 /* Counts number of alternatives that require a match with
1342 operand 0. */
1343 int n_matching_alts = 0;
1345 for (i = 1; i < recog_data.n_operands; i++)
1347 const char *p = recog_data.constraints[i];
1348 int this_match = requires_inout (p);
1350 n_matching_alts += this_match;
1351 if (this_match == recog_data.n_alternatives)
1352 must_match_0 = i;
1355 r0 = recog_data.operand[0];
1356 for (i = 1; i < recog_data.n_operands; i++)
1358 /* Skip this operand if we found an operand that
1359 must match operand 0 and this operand isn't it
1360 and can't be made to be it by commutativity. */
1362 if (must_match_0 >= 0 && i != must_match_0
1363 && ! (i == must_match_0 + 1
1364 && recog_data.constraints[i-1][0] == '%')
1365 && ! (i == must_match_0 - 1
1366 && recog_data.constraints[i][0] == '%'))
1367 continue;
1369 /* Likewise if each alternative has some operand that
1370 must match operand zero. In that case, skip any
1371 operand that doesn't list operand 0 since we know that
1372 the operand always conflicts with operand 0. We
1373 ignore commutativity in this case to keep things simple. */
1374 if (n_matching_alts == recog_data.n_alternatives
1375 && 0 == requires_inout (recog_data.constraints[i]))
1376 continue;
1378 r1 = recog_data.operand[i];
1380 /* If the operand is an address, find a register in it.
1381 There may be more than one register, but we only try one
1382 of them. */
1383 if (recog_data.constraints[i][0] == 'p'
1384 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1385 recog_data.constraints[i]))
1386 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1387 r1 = XEXP (r1, 0);
1389 /* Avoid making a call-saved register unnecessarily
1390 clobbered. */
1391 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1392 if (hard_reg != NULL_RTX)
1394 if (REG_P (hard_reg)
1395 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1396 && !call_used_regs[REGNO (hard_reg)])
1397 continue;
1400 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1402 /* We have two priorities for hard register preferences.
1403 If we have a move insn or an insn whose first input
1404 can only be in the same register as the output, give
1405 priority to an equivalence found from that insn. */
1406 int may_save_copy
1407 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1409 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1410 win = combine_regs (r1, r0, may_save_copy,
1411 insn_number, insn, 0);
1413 if (win)
1414 break;
1418 /* Recognize an insn sequence with an ultimate result
1419 which can safely overlap one of the inputs.
1420 The sequence begins with a CLOBBER of its result,
1421 and ends with an insn that copies the result to itself
1422 and has a REG_EQUAL note for an equivalent formula.
1423 That note indicates what the inputs are.
1424 The result and the input can overlap if each insn in
1425 the sequence either doesn't mention the input
1426 or has a REG_NO_CONFLICT note to inhibit the conflict.
1428 We do the combining test at the CLOBBER so that the
1429 destination register won't have had a quantity number
1430 assigned, since that would prevent combining. */
1432 if (optimize
1433 && GET_CODE (PATTERN (insn)) == CLOBBER
1434 && (r0 = XEXP (PATTERN (insn), 0),
1435 REG_P (r0))
1436 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1437 && XEXP (link, 0) != 0
1438 && NONJUMP_INSN_P (XEXP (link, 0))
1439 && (set = single_set (XEXP (link, 0))) != 0
1440 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1441 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1442 NULL_RTX)) != 0)
1444 if (r1 = XEXP (note, 0), REG_P (r1)
1445 /* Check that we have such a sequence. */
1446 && no_conflict_p (insn, r0, r1))
1447 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1448 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1449 && (r1 = XEXP (XEXP (note, 0), 0),
1450 REG_P (r1) || GET_CODE (r1) == SUBREG)
1451 && no_conflict_p (insn, r0, r1))
1452 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1454 /* Here we care if the operation to be computed is
1455 commutative. */
1456 else if (COMMUTATIVE_P (XEXP (note, 0))
1457 && (r1 = XEXP (XEXP (note, 0), 1),
1458 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1459 && no_conflict_p (insn, r0, r1))
1460 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1462 /* If we did combine something, show the register number
1463 in question so that we know to ignore its death. */
1464 if (win)
1465 no_conflict_combined_regno = REGNO (r1);
1468 /* If registers were just tied, set COMBINED_REGNO
1469 to the number of the register used in this insn
1470 that was tied to the register set in this insn.
1471 This register's qty should not be "killed". */
1473 if (win)
1475 while (GET_CODE (r1) == SUBREG)
1476 r1 = SUBREG_REG (r1);
1477 combined_regno = REGNO (r1);
1480 /* Mark the death of everything that dies in this instruction,
1481 except for anything that was just combined. */
1483 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1484 if (REG_NOTE_KIND (link) == REG_DEAD
1485 && REG_P (XEXP (link, 0))
1486 && combined_regno != (int) REGNO (XEXP (link, 0))
1487 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1488 || ! find_reg_note (insn, REG_NO_CONFLICT,
1489 XEXP (link, 0))))
1490 wipe_dead_reg (XEXP (link, 0), 0);
1492 /* Allocate qty numbers for all registers local to this block
1493 that are born (set) in this instruction.
1494 A pseudo that already has a qty is not changed. */
1496 note_stores (PATTERN (insn), reg_is_set, NULL);
1498 /* If anything is set in this insn and then unused, mark it as dying
1499 after this insn, so it will conflict with our outputs. This
1500 can't match with something that combined, and it doesn't matter
1501 if it did. Do this after the calls to reg_is_set since these
1502 die after, not during, the current insn. */
1504 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1505 if (REG_NOTE_KIND (link) == REG_UNUSED
1506 && REG_P (XEXP (link, 0)))
1507 wipe_dead_reg (XEXP (link, 0), 1);
1509 /* If this is an insn that has a REG_RETVAL note pointing at a
1510 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1511 block, so clear any register number that combined within it. */
1512 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1513 && NONJUMP_INSN_P (XEXP (note, 0))
1514 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1515 no_conflict_combined_regno = -1;
1518 /* Set the registers live after INSN_NUMBER. Note that we never
1519 record the registers live before the block's first insn, since no
1520 pseudos we care about are live before that insn. */
1522 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1523 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1525 if (insn == BB_END (BASIC_BLOCK (b)))
1526 break;
1528 insn = NEXT_INSN (insn);
1531 /* Now every register that is local to this basic block
1532 should have been given a quantity, or else -1 meaning ignore it.
1533 Every quantity should have a known birth and death.
1535 Order the qtys so we assign them registers in order of the
1536 number of suggested registers they need so we allocate those with
1537 the most restrictive needs first. */
1539 qty_order = xmalloc (next_qty * sizeof (int));
1540 for (i = 0; i < next_qty; i++)
1541 qty_order[i] = i;
1543 #define EXCHANGE(I1, I2) \
1544 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1546 switch (next_qty)
1548 case 3:
1549 /* Make qty_order[2] be the one to allocate last. */
1550 if (qty_sugg_compare (0, 1) > 0)
1551 EXCHANGE (0, 1);
1552 if (qty_sugg_compare (1, 2) > 0)
1553 EXCHANGE (2, 1);
1555 /* ... Fall through ... */
1556 case 2:
1557 /* Put the best one to allocate in qty_order[0]. */
1558 if (qty_sugg_compare (0, 1) > 0)
1559 EXCHANGE (0, 1);
1561 /* ... Fall through ... */
1563 case 1:
1564 case 0:
1565 /* Nothing to do here. */
1566 break;
1568 default:
1569 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1572 /* Try to put each quantity in a suggested physical register, if it has one.
1573 This may cause registers to be allocated that otherwise wouldn't be, but
1574 this seems acceptable in local allocation (unlike global allocation). */
1575 for (i = 0; i < next_qty; i++)
1577 q = qty_order[i];
1578 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1579 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1580 0, 1, qty[q].birth, qty[q].death);
1581 else
1582 qty[q].phys_reg = -1;
1585 /* Order the qtys so we assign them registers in order of
1586 decreasing length of life. Normally call qsort, but if we
1587 have only a very small number of quantities, sort them ourselves. */
1589 for (i = 0; i < next_qty; i++)
1590 qty_order[i] = i;
1592 #define EXCHANGE(I1, I2) \
1593 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1595 switch (next_qty)
1597 case 3:
1598 /* Make qty_order[2] be the one to allocate last. */
1599 if (qty_compare (0, 1) > 0)
1600 EXCHANGE (0, 1);
1601 if (qty_compare (1, 2) > 0)
1602 EXCHANGE (2, 1);
1604 /* ... Fall through ... */
1605 case 2:
1606 /* Put the best one to allocate in qty_order[0]. */
1607 if (qty_compare (0, 1) > 0)
1608 EXCHANGE (0, 1);
1610 /* ... Fall through ... */
1612 case 1:
1613 case 0:
1614 /* Nothing to do here. */
1615 break;
1617 default:
1618 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1621 /* Now for each qty that is not a hardware register,
1622 look for a hardware register to put it in.
1623 First try the register class that is cheapest for this qty,
1624 if there is more than one class. */
1626 for (i = 0; i < next_qty; i++)
1628 q = qty_order[i];
1629 if (qty[q].phys_reg < 0)
1631 #ifdef INSN_SCHEDULING
1632 /* These values represent the adjusted lifetime of a qty so
1633 that it conflicts with qtys which appear near the start/end
1634 of this qty's lifetime.
1636 The purpose behind extending the lifetime of this qty is to
1637 discourage the register allocator from creating false
1638 dependencies.
1640 The adjustment value is chosen to indicate that this qty
1641 conflicts with all the qtys in the instructions immediately
1642 before and after the lifetime of this qty.
1644 Experiments have shown that higher values tend to hurt
1645 overall code performance.
1647 If allocation using the extended lifetime fails we will try
1648 again with the qty's unadjusted lifetime. */
1649 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1650 int fake_death = MIN (insn_number * 2 + 1,
1651 qty[q].death + 2 - qty[q].death % 2);
1652 #endif
1654 if (N_REG_CLASSES > 1)
1656 #ifdef INSN_SCHEDULING
1657 /* We try to avoid using hard registers allocated to qtys which
1658 are born immediately after this qty or die immediately before
1659 this qty.
1661 This optimization is only appropriate when we will run
1662 a scheduling pass after reload and we are not optimizing
1663 for code size. */
1664 if (flag_schedule_insns_after_reload
1665 && !optimize_size
1666 && !SMALL_REGISTER_CLASSES)
1668 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1669 qty[q].mode, q, 0, 0,
1670 fake_birth, fake_death);
1671 if (qty[q].phys_reg >= 0)
1672 continue;
1674 #endif
1675 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1676 qty[q].mode, q, 0, 0,
1677 qty[q].birth, qty[q].death);
1678 if (qty[q].phys_reg >= 0)
1679 continue;
1682 #ifdef INSN_SCHEDULING
1683 /* Similarly, avoid false dependencies. */
1684 if (flag_schedule_insns_after_reload
1685 && !optimize_size
1686 && !SMALL_REGISTER_CLASSES
1687 && qty[q].alternate_class != NO_REGS)
1688 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1689 qty[q].mode, q, 0, 0,
1690 fake_birth, fake_death);
1691 #endif
1692 if (qty[q].alternate_class != NO_REGS)
1693 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1694 qty[q].mode, q, 0, 0,
1695 qty[q].birth, qty[q].death);
1699 /* Now propagate the register assignments
1700 to the pseudo regs belonging to the qtys. */
1702 for (q = 0; q < next_qty; q++)
1703 if (qty[q].phys_reg >= 0)
1705 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1706 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1709 /* Clean up. */
1710 free (regs_live_at);
1711 free (qty_order);
1714 /* Compare two quantities' priority for getting real registers.
1715 We give shorter-lived quantities higher priority.
1716 Quantities with more references are also preferred, as are quantities that
1717 require multiple registers. This is the identical prioritization as
1718 done by global-alloc.
1720 We used to give preference to registers with *longer* lives, but using
1721 the same algorithm in both local- and global-alloc can speed up execution
1722 of some programs by as much as a factor of three! */
1724 /* Note that the quotient will never be bigger than
1725 the value of floor_log2 times the maximum number of
1726 times a register can occur in one insn (surely less than 100)
1727 weighted by frequency (max REG_FREQ_MAX).
1728 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1729 QTY_CMP_PRI is also used by qty_sugg_compare. */
1731 #define QTY_CMP_PRI(q) \
1732 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1733 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1735 static int
1736 qty_compare (int q1, int q2)
1738 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1741 static int
1742 qty_compare_1 (const void *q1p, const void *q2p)
1744 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1745 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1747 if (tem != 0)
1748 return tem;
1750 /* If qtys are equally good, sort by qty number,
1751 so that the results of qsort leave nothing to chance. */
1752 return q1 - q2;
1755 /* Compare two quantities' priority for getting real registers. This version
1756 is called for quantities that have suggested hard registers. First priority
1757 goes to quantities that have copy preferences, then to those that have
1758 normal preferences. Within those groups, quantities with the lower
1759 number of preferences have the highest priority. Of those, we use the same
1760 algorithm as above. */
1762 #define QTY_CMP_SUGG(q) \
1763 (qty_phys_num_copy_sugg[q] \
1764 ? qty_phys_num_copy_sugg[q] \
1765 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1767 static int
1768 qty_sugg_compare (int q1, int q2)
1770 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1772 if (tem != 0)
1773 return tem;
1775 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1778 static int
1779 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1781 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1782 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1784 if (tem != 0)
1785 return tem;
1787 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1788 if (tem != 0)
1789 return tem;
1791 /* If qtys are equally good, sort by qty number,
1792 so that the results of qsort leave nothing to chance. */
1793 return q1 - q2;
1796 #undef QTY_CMP_SUGG
1797 #undef QTY_CMP_PRI
1799 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1800 Returns 1 if have done so, or 0 if cannot.
1802 Combining registers means marking them as having the same quantity
1803 and adjusting the offsets within the quantity if either of
1804 them is a SUBREG.
1806 We don't actually combine a hard reg with a pseudo; instead
1807 we just record the hard reg as the suggestion for the pseudo's quantity.
1808 If we really combined them, we could lose if the pseudo lives
1809 across an insn that clobbers the hard reg (eg, movmem).
1811 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1812 there is no REG_DEAD note on INSN. This occurs during the processing
1813 of REG_NO_CONFLICT blocks.
1815 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1816 SETREG or if the input and output must share a register.
1817 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1819 There are elaborate checks for the validity of combining. */
1821 static int
1822 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1823 rtx insn, int already_dead)
1825 int ureg, sreg;
1826 int offset = 0;
1827 int usize, ssize;
1828 int sqty;
1830 /* Determine the numbers and sizes of registers being used. If a subreg
1831 is present that does not change the entire register, don't consider
1832 this a copy insn. */
1834 while (GET_CODE (usedreg) == SUBREG)
1836 rtx subreg = SUBREG_REG (usedreg);
1838 if (REG_P (subreg))
1840 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1841 may_save_copy = 0;
1843 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1844 offset += subreg_regno_offset (REGNO (subreg),
1845 GET_MODE (subreg),
1846 SUBREG_BYTE (usedreg),
1847 GET_MODE (usedreg));
1848 else
1849 offset += (SUBREG_BYTE (usedreg)
1850 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1853 usedreg = subreg;
1856 if (!REG_P (usedreg))
1857 return 0;
1859 ureg = REGNO (usedreg);
1860 if (ureg < FIRST_PSEUDO_REGISTER)
1861 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1862 else
1863 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1864 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1865 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1867 while (GET_CODE (setreg) == SUBREG)
1869 rtx subreg = SUBREG_REG (setreg);
1871 if (REG_P (subreg))
1873 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1874 may_save_copy = 0;
1876 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1877 offset -= subreg_regno_offset (REGNO (subreg),
1878 GET_MODE (subreg),
1879 SUBREG_BYTE (setreg),
1880 GET_MODE (setreg));
1881 else
1882 offset -= (SUBREG_BYTE (setreg)
1883 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1886 setreg = subreg;
1889 if (!REG_P (setreg))
1890 return 0;
1892 sreg = REGNO (setreg);
1893 if (sreg < FIRST_PSEUDO_REGISTER)
1894 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1895 else
1896 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1897 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1898 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1900 /* If UREG is a pseudo-register that hasn't already been assigned a
1901 quantity number, it means that it is not local to this block or dies
1902 more than once. In either event, we can't do anything with it. */
1903 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1904 /* Do not combine registers unless one fits within the other. */
1905 || (offset > 0 && usize + offset > ssize)
1906 || (offset < 0 && usize + offset < ssize)
1907 /* Do not combine with a smaller already-assigned object
1908 if that smaller object is already combined with something bigger. */
1909 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1910 && usize < qty[reg_qty[ureg]].size)
1911 /* Can't combine if SREG is not a register we can allocate. */
1912 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1913 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1914 These have already been taken care of. This probably wouldn't
1915 combine anyway, but don't take any chances. */
1916 || (ureg >= FIRST_PSEUDO_REGISTER
1917 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1918 /* Don't tie something to itself. In most cases it would make no
1919 difference, but it would screw up if the reg being tied to itself
1920 also dies in this insn. */
1921 || ureg == sreg
1922 /* Don't try to connect two different hardware registers. */
1923 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1924 /* Don't connect two different machine modes if they have different
1925 implications as to which registers may be used. */
1926 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1927 return 0;
1929 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1930 qty_phys_sugg for the pseudo instead of tying them.
1932 Return "failure" so that the lifespan of UREG is terminated here;
1933 that way the two lifespans will be disjoint and nothing will prevent
1934 the pseudo reg from being given this hard reg. */
1936 if (ureg < FIRST_PSEUDO_REGISTER)
1938 /* Allocate a quantity number so we have a place to put our
1939 suggestions. */
1940 if (reg_qty[sreg] == -2)
1941 reg_is_born (setreg, 2 * insn_number);
1943 if (reg_qty[sreg] >= 0)
1945 if (may_save_copy
1946 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1948 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1949 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1951 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1953 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1954 qty_phys_num_sugg[reg_qty[sreg]]++;
1957 return 0;
1960 /* Similarly for SREG a hard register and UREG a pseudo register. */
1962 if (sreg < FIRST_PSEUDO_REGISTER)
1964 if (may_save_copy
1965 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1967 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1968 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1970 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1972 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1973 qty_phys_num_sugg[reg_qty[ureg]]++;
1975 return 0;
1978 /* At this point we know that SREG and UREG are both pseudos.
1979 Do nothing if SREG already has a quantity or is a register that we
1980 don't allocate. */
1981 if (reg_qty[sreg] >= -1
1982 /* If we are not going to let any regs live across calls,
1983 don't tie a call-crossing reg to a non-call-crossing reg. */
1984 || (current_function_has_nonlocal_label
1985 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1986 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1987 return 0;
1989 /* We don't already know about SREG, so tie it to UREG
1990 if this is the last use of UREG, provided the classes they want
1991 are compatible. */
1993 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1994 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1996 /* Add SREG to UREG's quantity. */
1997 sqty = reg_qty[ureg];
1998 reg_qty[sreg] = sqty;
1999 reg_offset[sreg] = reg_offset[ureg] + offset;
2000 reg_next_in_qty[sreg] = qty[sqty].first_reg;
2001 qty[sqty].first_reg = sreg;
2003 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2004 update_qty_class (sqty, sreg);
2006 /* Update info about quantity SQTY. */
2007 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2008 qty[sqty].n_refs += REG_N_REFS (sreg);
2009 qty[sqty].freq += REG_FREQ (sreg);
2010 if (usize < ssize)
2012 int i;
2014 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2015 reg_offset[i] -= offset;
2017 qty[sqty].size = ssize;
2018 qty[sqty].mode = GET_MODE (setreg);
2021 else
2022 return 0;
2024 return 1;
2027 /* Return 1 if the preferred class of REG allows it to be tied
2028 to a quantity or register whose class is CLASS.
2029 True if REG's reg class either contains or is contained in CLASS. */
2031 static int
2032 reg_meets_class_p (int reg, enum reg_class class)
2034 enum reg_class rclass = reg_preferred_class (reg);
2035 return (reg_class_subset_p (rclass, class)
2036 || reg_class_subset_p (class, rclass));
2039 /* Update the class of QTYNO assuming that REG is being tied to it. */
2041 static void
2042 update_qty_class (int qtyno, int reg)
2044 enum reg_class rclass = reg_preferred_class (reg);
2045 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2046 qty[qtyno].min_class = rclass;
2048 rclass = reg_alternate_class (reg);
2049 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2050 qty[qtyno].alternate_class = rclass;
2053 /* Handle something which alters the value of an rtx REG.
2055 REG is whatever is set or clobbered. SETTER is the rtx that
2056 is modifying the register.
2058 If it is not really a register, we do nothing.
2059 The file-global variables `this_insn' and `this_insn_number'
2060 carry info from `block_alloc'. */
2062 static void
2063 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2065 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2066 a hard register. These may actually not exist any more. */
2068 if (GET_CODE (reg) != SUBREG
2069 && !REG_P (reg))
2070 return;
2072 /* Mark this register as being born. If it is used in a CLOBBER, mark
2073 it as being born halfway between the previous insn and this insn so that
2074 it conflicts with our inputs but not the outputs of the previous insn. */
2076 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2079 /* Handle beginning of the life of register REG.
2080 BIRTH is the index at which this is happening. */
2082 static void
2083 reg_is_born (rtx reg, int birth)
2085 int regno;
2087 if (GET_CODE (reg) == SUBREG)
2089 regno = REGNO (SUBREG_REG (reg));
2090 if (regno < FIRST_PSEUDO_REGISTER)
2091 regno = subreg_regno (reg);
2093 else
2094 regno = REGNO (reg);
2096 if (regno < FIRST_PSEUDO_REGISTER)
2098 mark_life (regno, GET_MODE (reg), 1);
2100 /* If the register was to have been born earlier that the present
2101 insn, mark it as live where it is actually born. */
2102 if (birth < 2 * this_insn_number)
2103 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2105 else
2107 if (reg_qty[regno] == -2)
2108 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2110 /* If this register has a quantity number, show that it isn't dead. */
2111 if (reg_qty[regno] >= 0)
2112 qty[reg_qty[regno]].death = -1;
2116 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2117 REG is an output that is dying (i.e., it is never used), otherwise it
2118 is an input (the normal case).
2119 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2121 static void
2122 wipe_dead_reg (rtx reg, int output_p)
2124 int regno = REGNO (reg);
2126 /* If this insn has multiple results,
2127 and the dead reg is used in one of the results,
2128 extend its life to after this insn,
2129 so it won't get allocated together with any other result of this insn.
2131 It is unsafe to use !single_set here since it will ignore an unused
2132 output. Just because an output is unused does not mean the compiler
2133 can assume the side effect will not occur. Consider if REG appears
2134 in the address of an output and we reload the output. If we allocate
2135 REG to the same hard register as an unused output we could set the hard
2136 register before the output reload insn. */
2137 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2138 && multiple_sets (this_insn))
2140 int i;
2141 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2143 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2144 if (GET_CODE (set) == SET
2145 && !REG_P (SET_DEST (set))
2146 && !rtx_equal_p (reg, SET_DEST (set))
2147 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2148 output_p = 1;
2152 /* If this register is used in an auto-increment address, then extend its
2153 life to after this insn, so that it won't get allocated together with
2154 the result of this insn. */
2155 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2156 output_p = 1;
2158 if (regno < FIRST_PSEUDO_REGISTER)
2160 mark_life (regno, GET_MODE (reg), 0);
2162 /* If a hard register is dying as an output, mark it as in use at
2163 the beginning of this insn (the above statement would cause this
2164 not to happen). */
2165 if (output_p)
2166 post_mark_life (regno, GET_MODE (reg), 1,
2167 2 * this_insn_number, 2 * this_insn_number + 1);
2170 else if (reg_qty[regno] >= 0)
2171 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2174 /* Find a block of SIZE words of hard regs in reg_class CLASS
2175 that can hold something of machine-mode MODE
2176 (but actually we test only the first of the block for holding MODE)
2177 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2178 and return the number of the first of them.
2179 Return -1 if such a block cannot be found.
2180 If QTYNO crosses calls, insist on a register preserved by calls,
2181 unless ACCEPT_CALL_CLOBBERED is nonzero.
2183 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2184 register is available. If not, return -1. */
2186 static int
2187 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2188 int accept_call_clobbered, int just_try_suggested,
2189 int born_index, int dead_index)
2191 int i, ins;
2192 HARD_REG_SET first_used, used;
2193 #ifdef ELIMINABLE_REGS
2194 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2195 #endif
2197 /* Validate our parameters. */
2198 gcc_assert (born_index >= 0 && born_index <= dead_index);
2200 /* Don't let a pseudo live in a reg across a function call
2201 if we might get a nonlocal goto. */
2202 if (current_function_has_nonlocal_label
2203 && qty[qtyno].n_calls_crossed > 0)
2204 return -1;
2206 if (accept_call_clobbered)
2207 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2208 else if (qty[qtyno].n_calls_crossed == 0)
2209 COPY_HARD_REG_SET (used, fixed_reg_set);
2210 else
2211 COPY_HARD_REG_SET (used, call_used_reg_set);
2213 if (accept_call_clobbered)
2214 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2216 for (ins = born_index; ins < dead_index; ins++)
2217 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2219 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2221 /* Don't use the frame pointer reg in local-alloc even if
2222 we may omit the frame pointer, because if we do that and then we
2223 need a frame pointer, reload won't know how to move the pseudo
2224 to another hard reg. It can move only regs made by global-alloc.
2226 This is true of any register that can be eliminated. */
2227 #ifdef ELIMINABLE_REGS
2228 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2229 SET_HARD_REG_BIT (used, eliminables[i].from);
2230 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2231 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2232 that it might be eliminated into. */
2233 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2234 #endif
2235 #else
2236 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2237 #endif
2239 #ifdef CANNOT_CHANGE_MODE_CLASS
2240 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2241 #endif
2243 /* Normally, the registers that can be used for the first register in
2244 a multi-register quantity are the same as those that can be used for
2245 subsequent registers. However, if just trying suggested registers,
2246 restrict our consideration to them. If there are copy-suggested
2247 register, try them. Otherwise, try the arithmetic-suggested
2248 registers. */
2249 COPY_HARD_REG_SET (first_used, used);
2251 if (just_try_suggested)
2253 if (qty_phys_num_copy_sugg[qtyno] != 0)
2254 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2255 else
2256 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2259 /* If all registers are excluded, we can't do anything. */
2260 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2262 /* If at least one would be suitable, test each hard reg. */
2264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2266 #ifdef REG_ALLOC_ORDER
2267 int regno = reg_alloc_order[i];
2268 #else
2269 int regno = i;
2270 #endif
2271 if (! TEST_HARD_REG_BIT (first_used, regno)
2272 && HARD_REGNO_MODE_OK (regno, mode)
2273 && (qty[qtyno].n_calls_crossed == 0
2274 || accept_call_clobbered
2275 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2277 int j;
2278 int size1 = hard_regno_nregs[regno][mode];
2279 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2280 if (j == size1)
2282 /* Mark that this register is in use between its birth and death
2283 insns. */
2284 post_mark_life (regno, mode, 1, born_index, dead_index);
2285 return regno;
2287 #ifndef REG_ALLOC_ORDER
2288 /* Skip starting points we know will lose. */
2289 i += j;
2290 #endif
2294 fail:
2295 /* If we are just trying suggested register, we have just tried copy-
2296 suggested registers, and there are arithmetic-suggested registers,
2297 try them. */
2299 /* If it would be profitable to allocate a call-clobbered register
2300 and save and restore it around calls, do that. */
2301 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2302 && qty_phys_num_sugg[qtyno] != 0)
2304 /* Don't try the copy-suggested regs again. */
2305 qty_phys_num_copy_sugg[qtyno] = 0;
2306 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2307 born_index, dead_index);
2310 /* We need not check to see if the current function has nonlocal
2311 labels because we don't put any pseudos that are live over calls in
2312 registers in that case. */
2314 if (! accept_call_clobbered
2315 && flag_caller_saves
2316 && ! just_try_suggested
2317 && qty[qtyno].n_calls_crossed != 0
2318 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2319 qty[qtyno].n_calls_crossed))
2321 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2322 if (i >= 0)
2323 caller_save_needed = 1;
2324 return i;
2326 return -1;
2329 /* Mark that REGNO with machine-mode MODE is live starting from the current
2330 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2331 is zero). */
2333 static void
2334 mark_life (int regno, enum machine_mode mode, int life)
2336 int j = hard_regno_nregs[regno][mode];
2337 if (life)
2338 while (--j >= 0)
2339 SET_HARD_REG_BIT (regs_live, regno + j);
2340 else
2341 while (--j >= 0)
2342 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2345 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2346 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2347 to insn number DEATH (exclusive). */
2349 static void
2350 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2351 int death)
2353 int j = hard_regno_nregs[regno][mode];
2354 HARD_REG_SET this_reg;
2356 CLEAR_HARD_REG_SET (this_reg);
2357 while (--j >= 0)
2358 SET_HARD_REG_BIT (this_reg, regno + j);
2360 if (life)
2361 while (birth < death)
2363 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2364 birth++;
2366 else
2367 while (birth < death)
2369 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2370 birth++;
2374 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2375 is the register being clobbered, and R1 is a register being used in
2376 the equivalent expression.
2378 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2379 in which it is used, return 1.
2381 Otherwise, return 0. */
2383 static int
2384 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2386 int ok = 0;
2387 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2388 rtx p, last;
2390 /* If R1 is a hard register, return 0 since we handle this case
2391 when we scan the insns that actually use it. */
2393 if (note == 0
2394 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2395 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2396 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2397 return 0;
2399 last = XEXP (note, 0);
2401 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2402 if (INSN_P (p))
2404 if (find_reg_note (p, REG_DEAD, r1))
2405 ok = 1;
2407 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2408 some earlier optimization pass has inserted instructions into
2409 the sequence, and it is not safe to perform this optimization.
2410 Note that emit_no_conflict_block always ensures that this is
2411 true when these sequences are created. */
2412 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2413 return 0;
2416 return ok;
2419 /* Return the number of alternatives for which the constraint string P
2420 indicates that the operand must be equal to operand 0 and that no register
2421 is acceptable. */
2423 static int
2424 requires_inout (const char *p)
2426 char c;
2427 int found_zero = 0;
2428 int reg_allowed = 0;
2429 int num_matching_alts = 0;
2430 int len;
2432 for ( ; (c = *p); p += len)
2434 len = CONSTRAINT_LEN (c, p);
2435 switch (c)
2437 case '=': case '+': case '?':
2438 case '#': case '&': case '!':
2439 case '*': case '%':
2440 case 'm': case '<': case '>': case 'V': case 'o':
2441 case 'E': case 'F': case 'G': case 'H':
2442 case 's': case 'i': case 'n':
2443 case 'I': case 'J': case 'K': case 'L':
2444 case 'M': case 'N': case 'O': case 'P':
2445 case 'X':
2446 /* These don't say anything we care about. */
2447 break;
2449 case ',':
2450 if (found_zero && ! reg_allowed)
2451 num_matching_alts++;
2453 found_zero = reg_allowed = 0;
2454 break;
2456 case '0':
2457 found_zero = 1;
2458 break;
2460 case '1': case '2': case '3': case '4': case '5':
2461 case '6': case '7': case '8': case '9':
2462 /* Skip the balance of the matching constraint. */
2464 p++;
2465 while (ISDIGIT (*p));
2466 len = 0;
2467 break;
2469 default:
2470 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2471 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2472 break;
2473 /* Fall through. */
2474 case 'p':
2475 case 'g': case 'r':
2476 reg_allowed = 1;
2477 break;
2481 if (found_zero && ! reg_allowed)
2482 num_matching_alts++;
2484 return num_matching_alts;
2487 void
2488 dump_local_alloc (FILE *file)
2490 int i;
2491 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2492 if (reg_renumber[i] != -1)
2493 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);