1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
90 #include "coretypes.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
100 #include "insn-config.h"
102 #include "emit-rtl.h"
104 #include "diagnostic.h"
106 #include "stor-layout.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
119 typedef fibonacci_heap
<long, basic_block_def
> bb_heap_t
;
120 typedef fibonacci_node
<long, basic_block_def
> bb_heap_node_t
;
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val
[(int) VALUE
== (int) IDENTIFIER_NODE
? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE
, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE
, /* Use location which is associated with a value. */
136 MO_VAL_LOC
, /* Use location which appears in a debug insn. */
137 MO_VAL_SET
, /* Set location associated with a value. */
138 MO_SET
, /* Set location. */
139 MO_COPY
, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER
, /* Clobber location. */
142 MO_CALL
, /* Call insn. */
143 MO_ADJUST
/* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name
[] = {
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
166 EMIT_NOTE_BEFORE_INSN
,
167 EMIT_NOTE_AFTER_INSN
,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 struct micro_operation
174 /* Type of micro operation. */
175 enum micro_operation_type type
;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust
;
199 /* A declaration of a variable, or an RTL value being handled like a
201 typedef void *decl_or_value
;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
205 dv_is_decl_p (decl_or_value dv
)
207 return !dv
|| (int) TREE_CODE ((tree
) dv
) != (int) VALUE
;
210 /* Return true if a decl_or_value is a VALUE rtl. */
212 dv_is_value_p (decl_or_value dv
)
214 return dv
&& !dv_is_decl_p (dv
);
217 /* Return the decl in the decl_or_value. */
219 dv_as_decl (decl_or_value dv
)
221 gcc_checking_assert (dv_is_decl_p (dv
));
225 /* Return the value in the decl_or_value. */
227 dv_as_value (decl_or_value dv
)
229 gcc_checking_assert (dv_is_value_p (dv
));
233 /* Return the opaque pointer in the decl_or_value. */
235 dv_as_opaque (decl_or_value dv
)
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
247 /* Pointer to next member of the list. */
250 /* The rtx of register. */
253 /* The declaration corresponding to LOC. */
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset
;
260 /* Structure for chaining the locations. */
261 struct location_chain
263 /* Next element in the chain. */
264 location_chain
*next
;
266 /* The location (REG, MEM or VALUE). */
269 /* The "value" stored in this location. */
273 enum var_init_status init
;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
282 /* The dependent DV. */
284 /* The dependency VALUE or DECL_DEBUG. */
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep
*next
;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep
**pprev
;
294 /* This data structure holds information about the depth of a variable
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep
*backlinks
;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
324 /* The depth of the cur_loc expression. */
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec
<loc_exp_dep
, va_heap
, vl_embed
> deps
;
330 /* Structure describing one part of variable. */
333 /* Chain of locations of the part. */
334 location_chain
*loc_chain
;
336 /* Location which was last emitted to location list. */
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset
;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux
*onepaux
;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
356 /* Not a one-part variable. */
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
360 /* A DEBUG_EXPR_DECL. */
366 /* Structure describing where the variable is located. */
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
373 /* Reference count. */
376 /* Number of variable parts. */
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum
) onepart
: CHAR_BIT
;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables
;
386 /* The variable parts. */
387 variable_part var_part
[1];
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
393 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't. */
395 static inline HOST_WIDE_INT
396 int_mem_offset (const_rtx mem
)
398 HOST_WIDE_INT offset
;
399 if (MEM_OFFSET_KNOWN_P (mem
) && MEM_OFFSET (mem
).is_constant (&offset
))
404 #if CHECKING_P && (GCC_VERSION >= 2007)
406 /* Access VAR's Ith part's offset, checking that it's not a one-part
408 #define VAR_PART_OFFSET(var, i) __extension__ \
409 (*({ variable *const __v = (var); \
410 gcc_checking_assert (!__v->onepart); \
411 &__v->var_part[(i)].aux.offset; }))
413 /* Access VAR's one-part auxiliary data, checking that it is a
414 one-part variable. */
415 #define VAR_LOC_1PAUX(var) __extension__ \
416 (*({ variable *const __v = (var); \
417 gcc_checking_assert (__v->onepart); \
418 &__v->var_part[0].aux.onepaux; }))
421 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
422 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
425 /* These are accessor macros for the one-part auxiliary data. When
426 convenient for users, they're guarded by tests that the data was
428 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
429 ? VAR_LOC_1PAUX (var)->backlinks \
431 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
432 ? &VAR_LOC_1PAUX (var)->backlinks \
434 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
435 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
436 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
437 ? &VAR_LOC_1PAUX (var)->deps \
442 typedef unsigned int dvuid
;
444 /* Return the uid of DV. */
447 dv_uid (decl_or_value dv
)
449 if (dv_is_value_p (dv
))
450 return CSELIB_VAL_PTR (dv_as_value (dv
))->uid
;
452 return DECL_UID (dv_as_decl (dv
));
455 /* Compute the hash from the uid. */
457 static inline hashval_t
458 dv_uid2hash (dvuid uid
)
463 /* The hash function for a mask table in a shared_htab chain. */
465 static inline hashval_t
466 dv_htab_hash (decl_or_value dv
)
468 return dv_uid2hash (dv_uid (dv
));
471 static void variable_htab_free (void *);
473 /* Variable hashtable helpers. */
475 struct variable_hasher
: pointer_hash
<variable
>
477 typedef void *compare_type
;
478 static inline hashval_t
hash (const variable
*);
479 static inline bool equal (const variable
*, const void *);
480 static inline void remove (variable
*);
483 /* The hash function for variable_htab, computes the hash value
484 from the declaration of variable X. */
487 variable_hasher::hash (const variable
*v
)
489 return dv_htab_hash (v
->dv
);
492 /* Compare the declaration of variable X with declaration Y. */
495 variable_hasher::equal (const variable
*v
, const void *y
)
497 decl_or_value dv
= CONST_CAST2 (decl_or_value
, const void *, y
);
499 return (dv_as_opaque (v
->dv
) == dv_as_opaque (dv
));
502 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
505 variable_hasher::remove (variable
*var
)
507 variable_htab_free (var
);
510 typedef hash_table
<variable_hasher
> variable_table_type
;
511 typedef variable_table_type::iterator variable_iterator_type
;
513 /* Structure for passing some other parameters to function
514 emit_note_insn_var_location. */
515 struct emit_note_data
517 /* The instruction which the note will be emitted before/after. */
520 /* Where the note will be emitted (before/after insn)? */
521 enum emit_note_where where
;
523 /* The variables and values active at this point. */
524 variable_table_type
*vars
;
527 /* Structure holding a refcounted hash table. If refcount > 1,
528 it must be first unshared before modified. */
531 /* Reference count. */
534 /* Actual hash table. */
535 variable_table_type
*htab
;
538 /* Structure holding the IN or OUT set for a basic block. */
541 /* Adjustment of stack offset. */
542 HOST_WIDE_INT stack_adjust
;
544 /* Attributes for registers (lists of attrs). */
545 attrs
*regs
[FIRST_PSEUDO_REGISTER
];
547 /* Variable locations. */
550 /* Vars that is being traversed. */
551 shared_hash
*traversed_vars
;
554 /* The structure (one for each basic block) containing the information
555 needed for variable tracking. */
556 struct variable_tracking_info
558 /* The vector of micro operations. */
559 vec
<micro_operation
> mos
;
561 /* The IN and OUT set for dataflow analysis. */
565 /* The permanent-in dataflow set for this block. This is used to
566 hold values for which we had to compute entry values. ??? This
567 should probably be dynamically allocated, to avoid using more
568 memory in non-debug builds. */
571 /* Has the block been visited in DFS? */
574 /* Has the block been flooded in VTA? */
579 /* Alloc pool for struct attrs_def. */
580 object_allocator
<attrs
> attrs_pool ("attrs pool");
582 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
584 static pool_allocator var_pool
585 ("variable_def pool", sizeof (variable
) +
586 (MAX_VAR_PARTS
- 1) * sizeof (((variable
*)NULL
)->var_part
[0]));
588 /* Alloc pool for struct variable_def with a single var_part entry. */
589 static pool_allocator valvar_pool
590 ("small variable_def pool", sizeof (variable
));
592 /* Alloc pool for struct location_chain. */
593 static object_allocator
<location_chain
> location_chain_pool
594 ("location_chain pool");
596 /* Alloc pool for struct shared_hash. */
597 static object_allocator
<shared_hash
> shared_hash_pool ("shared_hash pool");
599 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
600 object_allocator
<loc_exp_dep
> loc_exp_dep_pool ("loc_exp_dep pool");
602 /* Changed variables, notes will be emitted for them. */
603 static variable_table_type
*changed_variables
;
605 /* Shall notes be emitted? */
606 static bool emit_notes
;
608 /* Values whose dynamic location lists have gone empty, but whose
609 cselib location lists are still usable. Use this to hold the
610 current location, the backlinks, etc, during emit_notes. */
611 static variable_table_type
*dropped_values
;
613 /* Empty shared hashtable. */
614 static shared_hash
*empty_shared_hash
;
616 /* Scratch register bitmap used by cselib_expand_value_rtx. */
617 static bitmap scratch_regs
= NULL
;
619 #ifdef HAVE_window_save
620 struct GTY(()) parm_reg
{
626 /* Vector of windowed parameter registers, if any. */
627 static vec
<parm_reg
, va_gc
> *windowed_parm_regs
= NULL
;
630 /* Variable used to tell whether cselib_process_insn called our hook. */
631 static bool cselib_hook_called
;
633 /* Local function prototypes. */
634 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
636 static void insn_stack_adjust_offset_pre_post (rtx_insn
*, HOST_WIDE_INT
*,
638 static bool vt_stack_adjustments (void);
640 static void init_attrs_list_set (attrs
**);
641 static void attrs_list_clear (attrs
**);
642 static attrs
*attrs_list_member (attrs
*, decl_or_value
, HOST_WIDE_INT
);
643 static void attrs_list_insert (attrs
**, decl_or_value
, HOST_WIDE_INT
, rtx
);
644 static void attrs_list_copy (attrs
**, attrs
*);
645 static void attrs_list_union (attrs
**, attrs
*);
647 static variable
**unshare_variable (dataflow_set
*set
, variable
**slot
,
648 variable
*var
, enum var_init_status
);
649 static void vars_copy (variable_table_type
*, variable_table_type
*);
650 static tree
var_debug_decl (tree
);
651 static void var_reg_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
652 static void var_reg_delete_and_set (dataflow_set
*, rtx
, bool,
653 enum var_init_status
, rtx
);
654 static void var_reg_delete (dataflow_set
*, rtx
, bool);
655 static void var_regno_delete (dataflow_set
*, int);
656 static void var_mem_set (dataflow_set
*, rtx
, enum var_init_status
, rtx
);
657 static void var_mem_delete_and_set (dataflow_set
*, rtx
, bool,
658 enum var_init_status
, rtx
);
659 static void var_mem_delete (dataflow_set
*, rtx
, bool);
661 static void dataflow_set_init (dataflow_set
*);
662 static void dataflow_set_clear (dataflow_set
*);
663 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
664 static int variable_union_info_cmp_pos (const void *, const void *);
665 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
666 static location_chain
*find_loc_in_1pdv (rtx
, variable
*,
667 variable_table_type
*);
668 static bool canon_value_cmp (rtx
, rtx
);
669 static int loc_cmp (rtx
, rtx
);
670 static bool variable_part_different_p (variable_part
*, variable_part
*);
671 static bool onepart_variable_different_p (variable
*, variable
*);
672 static bool variable_different_p (variable
*, variable
*);
673 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
674 static void dataflow_set_destroy (dataflow_set
*);
676 static bool track_expr_p (tree
, bool);
677 static void add_uses_1 (rtx
*, void *);
678 static void add_stores (rtx
, const_rtx
, void *);
679 static bool compute_bb_dataflow (basic_block
);
680 static bool vt_find_locations (void);
682 static void dump_attrs_list (attrs
*);
683 static void dump_var (variable
*);
684 static void dump_vars (variable_table_type
*);
685 static void dump_dataflow_set (dataflow_set
*);
686 static void dump_dataflow_sets (void);
688 static void set_dv_changed (decl_or_value
, bool);
689 static void variable_was_changed (variable
*, dataflow_set
*);
690 static variable
**set_slot_part (dataflow_set
*, rtx
, variable
**,
691 decl_or_value
, HOST_WIDE_INT
,
692 enum var_init_status
, rtx
);
693 static void set_variable_part (dataflow_set
*, rtx
,
694 decl_or_value
, HOST_WIDE_INT
,
695 enum var_init_status
, rtx
, enum insert_option
);
696 static variable
**clobber_slot_part (dataflow_set
*, rtx
,
697 variable
**, HOST_WIDE_INT
, rtx
);
698 static void clobber_variable_part (dataflow_set
*, rtx
,
699 decl_or_value
, HOST_WIDE_INT
, rtx
);
700 static variable
**delete_slot_part (dataflow_set
*, rtx
, variable
**,
702 static void delete_variable_part (dataflow_set
*, rtx
,
703 decl_or_value
, HOST_WIDE_INT
);
704 static void emit_notes_in_bb (basic_block
, dataflow_set
*);
705 static void vt_emit_notes (void);
707 static void vt_add_function_parameters (void);
708 static bool vt_initialize (void);
709 static void vt_finalize (void);
711 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
714 stack_adjust_offset_pre_post_cb (rtx
, rtx op
, rtx dest
, rtx src
, rtx srcoff
,
717 if (dest
!= stack_pointer_rtx
)
720 switch (GET_CODE (op
))
724 ((HOST_WIDE_INT
*)arg
)[0] -= INTVAL (srcoff
);
728 ((HOST_WIDE_INT
*)arg
)[1] -= INTVAL (srcoff
);
732 /* We handle only adjustments by constant amount. */
733 gcc_assert (GET_CODE (src
) == PLUS
734 && CONST_INT_P (XEXP (src
, 1))
735 && XEXP (src
, 0) == stack_pointer_rtx
);
736 ((HOST_WIDE_INT
*)arg
)[GET_CODE (op
) == POST_MODIFY
]
737 -= INTVAL (XEXP (src
, 1));
744 /* Given a SET, calculate the amount of stack adjustment it contains
745 PRE- and POST-modifying stack pointer.
746 This function is similar to stack_adjust_offset. */
749 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
752 rtx src
= SET_SRC (pattern
);
753 rtx dest
= SET_DEST (pattern
);
756 if (dest
== stack_pointer_rtx
)
758 /* (set (reg sp) (plus (reg sp) (const_int))) */
759 code
= GET_CODE (src
);
760 if (! (code
== PLUS
|| code
== MINUS
)
761 || XEXP (src
, 0) != stack_pointer_rtx
762 || !CONST_INT_P (XEXP (src
, 1)))
766 *post
+= INTVAL (XEXP (src
, 1));
768 *post
-= INTVAL (XEXP (src
, 1));
771 HOST_WIDE_INT res
[2] = { 0, 0 };
772 for_each_inc_dec (pattern
, stack_adjust_offset_pre_post_cb
, res
);
777 /* Given an INSN, calculate the amount of stack adjustment it contains
778 PRE- and POST-modifying stack pointer. */
781 insn_stack_adjust_offset_pre_post (rtx_insn
*insn
, HOST_WIDE_INT
*pre
,
789 pattern
= PATTERN (insn
);
790 if (RTX_FRAME_RELATED_P (insn
))
792 rtx expr
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
794 pattern
= XEXP (expr
, 0);
797 if (GET_CODE (pattern
) == SET
)
798 stack_adjust_offset_pre_post (pattern
, pre
, post
);
799 else if (GET_CODE (pattern
) == PARALLEL
800 || GET_CODE (pattern
) == SEQUENCE
)
804 /* There may be stack adjustments inside compound insns. Search
806 for ( i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
807 if (GET_CODE (XVECEXP (pattern
, 0, i
)) == SET
)
808 stack_adjust_offset_pre_post (XVECEXP (pattern
, 0, i
), pre
, post
);
812 /* Compute stack adjustments for all blocks by traversing DFS tree.
813 Return true when the adjustments on all incoming edges are consistent.
814 Heavily borrowed from pre_and_rev_post_order_compute. */
817 vt_stack_adjustments (void)
819 edge_iterator
*stack
;
822 /* Initialize entry block. */
823 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->visited
= true;
824 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->in
.stack_adjust
825 = INCOMING_FRAME_SP_OFFSET
;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET
;
829 /* Allocate stack for back-tracking up CFG. */
830 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
833 /* Push the first edge on to the stack. */
834 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
842 /* Look at the edge on the top of the stack. */
844 src
= ei_edge (ei
)->src
;
845 dest
= ei_edge (ei
)->dest
;
847 /* Check if the edge destination has been visited yet. */
848 if (!VTI (dest
)->visited
)
851 HOST_WIDE_INT pre
, post
, offset
;
852 VTI (dest
)->visited
= true;
853 VTI (dest
)->in
.stack_adjust
= offset
= VTI (src
)->out
.stack_adjust
;
855 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
856 for (insn
= BB_HEAD (dest
);
857 insn
!= NEXT_INSN (BB_END (dest
));
858 insn
= NEXT_INSN (insn
))
861 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
862 offset
+= pre
+ post
;
865 VTI (dest
)->out
.stack_adjust
= offset
;
867 if (EDGE_COUNT (dest
->succs
) > 0)
868 /* Since the DEST node has been visited for the first
869 time, check its successors. */
870 stack
[sp
++] = ei_start (dest
->succs
);
874 /* We can end up with different stack adjustments for the exit block
875 of a shrink-wrapped function if stack_adjust_offset_pre_post
876 doesn't understand the rtx pattern used to restore the stack
877 pointer in the epilogue. For example, on s390(x), the stack
878 pointer is often restored via a load-multiple instruction
879 and so no stack_adjust offset is recorded for it. This means
880 that the stack offset at the end of the epilogue block is the
881 same as the offset before the epilogue, whereas other paths
882 to the exit block will have the correct stack_adjust.
884 It is safe to ignore these differences because (a) we never
885 use the stack_adjust for the exit block in this pass and
886 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
887 function are correct.
889 We must check whether the adjustments on other edges are
891 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
892 && VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
898 if (! ei_one_before_end_p (ei
))
899 /* Go to the next edge. */
900 ei_next (&stack
[sp
- 1]);
902 /* Return to previous level if there are no more edges. */
911 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
912 hard_frame_pointer_rtx is being mapped to it and offset for it. */
913 static rtx cfa_base_rtx
;
914 static HOST_WIDE_INT cfa_base_offset
;
916 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
917 or hard_frame_pointer_rtx. */
920 compute_cfa_pointer (poly_int64 adjustment
)
922 return plus_constant (Pmode
, cfa_base_rtx
, adjustment
+ cfa_base_offset
);
925 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
926 or -1 if the replacement shouldn't be done. */
927 static poly_int64 hard_frame_pointer_adjustment
= -1;
929 /* Data for adjust_mems callback. */
931 struct adjust_mem_data
934 machine_mode mem_mode
;
935 HOST_WIDE_INT stack_adjust
;
936 auto_vec
<rtx
> side_effects
;
939 /* Helper for adjust_mems. Return true if X is suitable for
940 transformation of wider mode arithmetics to narrower mode. */
943 use_narrower_mode_test (rtx x
, const_rtx subreg
)
945 subrtx_var_iterator::array_type array
;
946 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
950 iter
.skip_subrtxes ();
952 switch (GET_CODE (x
))
955 if (cselib_lookup (x
, GET_MODE (SUBREG_REG (subreg
)), 0, VOIDmode
))
957 if (!validate_subreg (GET_MODE (subreg
), GET_MODE (x
), x
,
958 subreg_lowpart_offset (GET_MODE (subreg
),
967 if (GET_MODE (XEXP (x
, 1)) != VOIDmode
)
969 enum machine_mode mode
= GET_MODE (subreg
);
970 rtx op1
= XEXP (x
, 1);
971 enum machine_mode op1_mode
= GET_MODE (op1
);
972 if (GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
))
973 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (op1_mode
)))
975 poly_uint64 byte
= subreg_lowpart_offset (mode
, op1_mode
);
976 if (GET_CODE (op1
) == SUBREG
|| GET_CODE (op1
) == CONCAT
)
978 if (!simplify_subreg (mode
, op1
, op1_mode
, byte
))
981 else if (!validate_subreg (mode
, op1_mode
, op1
, byte
))
985 iter
.substitute (XEXP (x
, 0));
994 /* Transform X into narrower mode MODE from wider mode WMODE. */
997 use_narrower_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode wmode
)
1001 return lowpart_subreg (mode
, x
, wmode
);
1002 switch (GET_CODE (x
))
1005 return lowpart_subreg (mode
, x
, wmode
);
1009 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1010 op1
= use_narrower_mode (XEXP (x
, 1), mode
, wmode
);
1011 return simplify_gen_binary (GET_CODE (x
), mode
, op0
, op1
);
1013 op0
= use_narrower_mode (XEXP (x
, 0), mode
, wmode
);
1015 /* Ensure shift amount is not wider than mode. */
1016 if (GET_MODE (op1
) == VOIDmode
)
1017 op1
= lowpart_subreg (mode
, op1
, wmode
);
1018 else if (GET_MODE_PRECISION (mode
)
1019 < GET_MODE_PRECISION (as_a
<scalar_int_mode
> (GET_MODE (op1
))))
1020 op1
= lowpart_subreg (mode
, op1
, GET_MODE (op1
));
1021 return simplify_gen_binary (ASHIFT
, mode
, op0
, op1
);
1027 /* Helper function for adjusting used MEMs. */
1030 adjust_mems (rtx loc
, const_rtx old_rtx
, void *data
)
1032 struct adjust_mem_data
*amd
= (struct adjust_mem_data
*) data
;
1033 rtx mem
, addr
= loc
, tem
;
1034 machine_mode mem_mode_save
;
1036 scalar_int_mode tem_mode
, tem_subreg_mode
;
1038 switch (GET_CODE (loc
))
1041 /* Don't do any sp or fp replacements outside of MEM addresses
1043 if (amd
->mem_mode
== VOIDmode
&& amd
->store
)
1045 if (loc
== stack_pointer_rtx
1046 && !frame_pointer_needed
1048 return compute_cfa_pointer (amd
->stack_adjust
);
1049 else if (loc
== hard_frame_pointer_rtx
1050 && frame_pointer_needed
1051 && maybe_ne (hard_frame_pointer_adjustment
, -1)
1053 return compute_cfa_pointer (hard_frame_pointer_adjustment
);
1054 gcc_checking_assert (loc
!= virtual_incoming_args_rtx
);
1060 mem
= targetm
.delegitimize_address (mem
);
1061 if (mem
!= loc
&& !MEM_P (mem
))
1062 return simplify_replace_fn_rtx (mem
, old_rtx
, adjust_mems
, data
);
1065 addr
= XEXP (mem
, 0);
1066 mem_mode_save
= amd
->mem_mode
;
1067 amd
->mem_mode
= GET_MODE (mem
);
1068 store_save
= amd
->store
;
1070 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1071 amd
->store
= store_save
;
1072 amd
->mem_mode
= mem_mode_save
;
1074 addr
= targetm
.delegitimize_address (addr
);
1075 if (addr
!= XEXP (mem
, 0))
1076 mem
= replace_equiv_address_nv (mem
, addr
);
1078 mem
= avoid_constant_pool_reference (mem
);
1082 size
= GET_MODE_SIZE (amd
->mem_mode
);
1083 addr
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1084 GET_CODE (loc
) == PRE_INC
? size
: -size
);
1089 addr
= XEXP (loc
, 0);
1090 gcc_assert (amd
->mem_mode
!= VOIDmode
&& amd
->mem_mode
!= BLKmode
);
1091 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1092 size
= GET_MODE_SIZE (amd
->mem_mode
);
1093 tem
= plus_constant (GET_MODE (loc
), XEXP (loc
, 0),
1094 (GET_CODE (loc
) == PRE_INC
1095 || GET_CODE (loc
) == POST_INC
) ? size
: -size
);
1096 store_save
= amd
->store
;
1098 tem
= simplify_replace_fn_rtx (tem
, old_rtx
, adjust_mems
, data
);
1099 amd
->store
= store_save
;
1100 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1103 addr
= XEXP (loc
, 1);
1107 addr
= XEXP (loc
, 0);
1108 gcc_assert (amd
->mem_mode
!= VOIDmode
);
1109 addr
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1110 store_save
= amd
->store
;
1112 tem
= simplify_replace_fn_rtx (XEXP (loc
, 1), old_rtx
,
1114 amd
->store
= store_save
;
1115 amd
->side_effects
.safe_push (gen_rtx_SET (XEXP (loc
, 0), tem
));
1118 /* First try without delegitimization of whole MEMs and
1119 avoid_constant_pool_reference, which is more likely to succeed. */
1120 store_save
= amd
->store
;
1122 addr
= simplify_replace_fn_rtx (SUBREG_REG (loc
), old_rtx
, adjust_mems
,
1124 amd
->store
= store_save
;
1125 mem
= simplify_replace_fn_rtx (addr
, old_rtx
, adjust_mems
, data
);
1126 if (mem
== SUBREG_REG (loc
))
1131 tem
= simplify_gen_subreg (GET_MODE (loc
), mem
,
1132 GET_MODE (SUBREG_REG (loc
)),
1136 tem
= simplify_gen_subreg (GET_MODE (loc
), addr
,
1137 GET_MODE (SUBREG_REG (loc
)),
1139 if (tem
== NULL_RTX
)
1140 tem
= gen_rtx_raw_SUBREG (GET_MODE (loc
), addr
, SUBREG_BYTE (loc
));
1142 if (MAY_HAVE_DEBUG_BIND_INSNS
1143 && GET_CODE (tem
) == SUBREG
1144 && (GET_CODE (SUBREG_REG (tem
)) == PLUS
1145 || GET_CODE (SUBREG_REG (tem
)) == MINUS
1146 || GET_CODE (SUBREG_REG (tem
)) == MULT
1147 || GET_CODE (SUBREG_REG (tem
)) == ASHIFT
)
1148 && is_a
<scalar_int_mode
> (GET_MODE (tem
), &tem_mode
)
1149 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (tem
)),
1151 && (GET_MODE_PRECISION (tem_mode
)
1152 < GET_MODE_PRECISION (tem_subreg_mode
))
1153 && subreg_lowpart_p (tem
)
1154 && use_narrower_mode_test (SUBREG_REG (tem
), tem
))
1155 return use_narrower_mode (SUBREG_REG (tem
), tem_mode
, tem_subreg_mode
);
1158 /* Don't do any replacements in second and following
1159 ASM_OPERANDS of inline-asm with multiple sets.
1160 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1161 and ASM_OPERANDS_LABEL_VEC need to be equal between
1162 all the ASM_OPERANDs in the insn and adjust_insn will
1164 if (ASM_OPERANDS_OUTPUT_IDX (loc
) != 0)
1173 /* Helper function for replacement of uses. */
1176 adjust_mem_uses (rtx
*x
, void *data
)
1178 rtx new_x
= simplify_replace_fn_rtx (*x
, NULL_RTX
, adjust_mems
, data
);
1180 validate_change (NULL_RTX
, x
, new_x
, true);
1183 /* Helper function for replacement of stores. */
1186 adjust_mem_stores (rtx loc
, const_rtx expr
, void *data
)
1190 rtx new_dest
= simplify_replace_fn_rtx (SET_DEST (expr
), NULL_RTX
,
1192 if (new_dest
!= SET_DEST (expr
))
1194 rtx xexpr
= CONST_CAST_RTX (expr
);
1195 validate_change (NULL_RTX
, &SET_DEST (xexpr
), new_dest
, true);
1200 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1201 replace them with their value in the insn and add the side-effects
1202 as other sets to the insn. */
1205 adjust_insn (basic_block bb
, rtx_insn
*insn
)
1209 #ifdef HAVE_window_save
1210 /* If the target machine has an explicit window save instruction, the
1211 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1212 if (RTX_FRAME_RELATED_P (insn
)
1213 && find_reg_note (insn
, REG_CFA_WINDOW_SAVE
, NULL_RTX
))
1215 unsigned int i
, nregs
= vec_safe_length (windowed_parm_regs
);
1216 rtx rtl
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
* 2));
1219 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs
, i
, p
)
1221 XVECEXP (rtl
, 0, i
* 2)
1222 = gen_rtx_SET (p
->incoming
, p
->outgoing
);
1223 /* Do not clobber the attached DECL, but only the REG. */
1224 XVECEXP (rtl
, 0, i
* 2 + 1)
1225 = gen_rtx_CLOBBER (GET_MODE (p
->outgoing
),
1226 gen_raw_REG (GET_MODE (p
->outgoing
),
1227 REGNO (p
->outgoing
)));
1230 validate_change (NULL_RTX
, &PATTERN (insn
), rtl
, true);
1235 adjust_mem_data amd
;
1236 amd
.mem_mode
= VOIDmode
;
1237 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
1240 note_stores (PATTERN (insn
), adjust_mem_stores
, &amd
);
1243 if (GET_CODE (PATTERN (insn
)) == PARALLEL
1244 && asm_noperands (PATTERN (insn
)) > 0
1245 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1250 /* inline-asm with multiple sets is tiny bit more complicated,
1251 because the 3 vectors in ASM_OPERANDS need to be shared between
1252 all ASM_OPERANDS in the instruction. adjust_mems will
1253 not touch ASM_OPERANDS other than the first one, asm_noperands
1254 test above needs to be called before that (otherwise it would fail)
1255 and afterwards this code fixes it up. */
1256 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1257 body
= PATTERN (insn
);
1258 set0
= XVECEXP (body
, 0, 0);
1259 gcc_checking_assert (GET_CODE (set0
) == SET
1260 && GET_CODE (SET_SRC (set0
)) == ASM_OPERANDS
1261 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0
)) == 0);
1262 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
1263 if (GET_CODE (XVECEXP (body
, 0, i
)) != SET
)
1267 set
= XVECEXP (body
, 0, i
);
1268 gcc_checking_assert (GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
1269 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set
))
1271 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set
))
1272 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
))
1273 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set
))
1274 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
))
1275 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set
))
1276 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
)))
1278 rtx newsrc
= shallow_copy_rtx (SET_SRC (set
));
1279 ASM_OPERANDS_INPUT_VEC (newsrc
)
1280 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0
));
1281 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc
)
1282 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0
));
1283 ASM_OPERANDS_LABEL_VEC (newsrc
)
1284 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0
));
1285 validate_change (NULL_RTX
, &SET_SRC (set
), newsrc
, true);
1290 note_uses (&PATTERN (insn
), adjust_mem_uses
, &amd
);
1292 /* For read-only MEMs containing some constant, prefer those
1294 set
= single_set (insn
);
1295 if (set
&& MEM_P (SET_SRC (set
)) && MEM_READONLY_P (SET_SRC (set
)))
1297 rtx note
= find_reg_equal_equiv_note (insn
);
1299 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1300 validate_change (NULL_RTX
, &SET_SRC (set
), XEXP (note
, 0), true);
1303 if (!amd
.side_effects
.is_empty ())
1308 pat
= &PATTERN (insn
);
1309 if (GET_CODE (*pat
) == COND_EXEC
)
1310 pat
= &COND_EXEC_CODE (*pat
);
1311 if (GET_CODE (*pat
) == PARALLEL
)
1312 oldn
= XVECLEN (*pat
, 0);
1315 unsigned int newn
= amd
.side_effects
.length ();
1316 new_pat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (oldn
+ newn
));
1317 if (GET_CODE (*pat
) == PARALLEL
)
1318 for (i
= 0; i
< oldn
; i
++)
1319 XVECEXP (new_pat
, 0, i
) = XVECEXP (*pat
, 0, i
);
1321 XVECEXP (new_pat
, 0, 0) = *pat
;
1325 FOR_EACH_VEC_ELT_REVERSE (amd
.side_effects
, j
, effect
)
1326 XVECEXP (new_pat
, 0, j
+ oldn
) = effect
;
1327 validate_change (NULL_RTX
, pat
, new_pat
, true);
1331 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1333 dv_as_rtx (decl_or_value dv
)
1337 if (dv_is_value_p (dv
))
1338 return dv_as_value (dv
);
1340 decl
= dv_as_decl (dv
);
1342 gcc_checking_assert (TREE_CODE (decl
) == DEBUG_EXPR_DECL
);
1343 return DECL_RTL_KNOWN_SET (decl
);
1346 /* Return nonzero if a decl_or_value must not have more than one
1347 variable part. The returned value discriminates among various
1348 kinds of one-part DVs ccording to enum onepart_enum. */
1349 static inline onepart_enum
1350 dv_onepart_p (decl_or_value dv
)
1354 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
1357 if (dv_is_value_p (dv
))
1358 return ONEPART_VALUE
;
1360 decl
= dv_as_decl (dv
);
1362 if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
1363 return ONEPART_DEXPR
;
1365 if (target_for_debug_bind (decl
) != NULL_TREE
)
1366 return ONEPART_VDECL
;
1371 /* Return the variable pool to be used for a dv of type ONEPART. */
1372 static inline pool_allocator
&
1373 onepart_pool (onepart_enum onepart
)
1375 return onepart
? valvar_pool
: var_pool
;
1378 /* Allocate a variable_def from the corresponding variable pool. */
1379 static inline variable
*
1380 onepart_pool_allocate (onepart_enum onepart
)
1382 return (variable
*) onepart_pool (onepart
).allocate ();
1385 /* Build a decl_or_value out of a decl. */
1386 static inline decl_or_value
1387 dv_from_decl (tree decl
)
1391 gcc_checking_assert (dv_is_decl_p (dv
));
1395 /* Build a decl_or_value out of a value. */
1396 static inline decl_or_value
1397 dv_from_value (rtx value
)
1401 gcc_checking_assert (dv_is_value_p (dv
));
1405 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1406 static inline decl_or_value
1411 switch (GET_CODE (x
))
1414 dv
= dv_from_decl (DEBUG_EXPR_TREE_DECL (x
));
1415 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x
)) == x
);
1419 dv
= dv_from_value (x
);
1429 extern void debug_dv (decl_or_value dv
);
1432 debug_dv (decl_or_value dv
)
1434 if (dv_is_value_p (dv
))
1435 debug_rtx (dv_as_value (dv
));
1437 debug_generic_stmt (dv_as_decl (dv
));
1440 static void loc_exp_dep_clear (variable
*var
);
1442 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1445 variable_htab_free (void *elem
)
1448 variable
*var
= (variable
*) elem
;
1449 location_chain
*node
, *next
;
1451 gcc_checking_assert (var
->refcount
> 0);
1454 if (var
->refcount
> 0)
1457 for (i
= 0; i
< var
->n_var_parts
; i
++)
1459 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
1464 var
->var_part
[i
].loc_chain
= NULL
;
1466 if (var
->onepart
&& VAR_LOC_1PAUX (var
))
1468 loc_exp_dep_clear (var
);
1469 if (VAR_LOC_DEP_LST (var
))
1470 VAR_LOC_DEP_LST (var
)->pprev
= NULL
;
1471 XDELETE (VAR_LOC_1PAUX (var
));
1472 /* These may be reused across functions, so reset
1474 if (var
->onepart
== ONEPART_DEXPR
)
1475 set_dv_changed (var
->dv
, true);
1477 onepart_pool (var
->onepart
).remove (var
);
1480 /* Initialize the set (array) SET of attrs to empty lists. */
1483 init_attrs_list_set (attrs
**set
)
1487 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1491 /* Make the list *LISTP empty. */
1494 attrs_list_clear (attrs
**listp
)
1498 for (list
= *listp
; list
; list
= next
)
1506 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1509 attrs_list_member (attrs
*list
, decl_or_value dv
, HOST_WIDE_INT offset
)
1511 for (; list
; list
= list
->next
)
1512 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
) && list
->offset
== offset
)
1517 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1520 attrs_list_insert (attrs
**listp
, decl_or_value dv
,
1521 HOST_WIDE_INT offset
, rtx loc
)
1523 attrs
*list
= new attrs
;
1526 list
->offset
= offset
;
1527 list
->next
= *listp
;
1531 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1534 attrs_list_copy (attrs
**dstp
, attrs
*src
)
1536 attrs_list_clear (dstp
);
1537 for (; src
; src
= src
->next
)
1539 attrs
*n
= new attrs
;
1542 n
->offset
= src
->offset
;
1548 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1551 attrs_list_union (attrs
**dstp
, attrs
*src
)
1553 for (; src
; src
= src
->next
)
1555 if (!attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1556 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1560 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1564 attrs_list_mpdv_union (attrs
**dstp
, attrs
*src
, attrs
*src2
)
1566 gcc_assert (!*dstp
);
1567 for (; src
; src
= src
->next
)
1569 if (!dv_onepart_p (src
->dv
))
1570 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1572 for (src
= src2
; src
; src
= src
->next
)
1574 if (!dv_onepart_p (src
->dv
)
1575 && !attrs_list_member (*dstp
, src
->dv
, src
->offset
))
1576 attrs_list_insert (dstp
, src
->dv
, src
->offset
, src
->loc
);
1580 /* Shared hashtable support. */
1582 /* Return true if VARS is shared. */
1585 shared_hash_shared (shared_hash
*vars
)
1587 return vars
->refcount
> 1;
1590 /* Return the hash table for VARS. */
1592 static inline variable_table_type
*
1593 shared_hash_htab (shared_hash
*vars
)
1598 /* Return true if VAR is shared, or maybe because VARS is shared. */
1601 shared_var_p (variable
*var
, shared_hash
*vars
)
1603 /* Don't count an entry in the changed_variables table as a duplicate. */
1604 return ((var
->refcount
> 1 + (int) var
->in_changed_variables
)
1605 || shared_hash_shared (vars
));
1608 /* Copy variables into a new hash table. */
1610 static shared_hash
*
1611 shared_hash_unshare (shared_hash
*vars
)
1613 shared_hash
*new_vars
= new shared_hash
;
1614 gcc_assert (vars
->refcount
> 1);
1615 new_vars
->refcount
= 1;
1616 new_vars
->htab
= new variable_table_type (vars
->htab
->elements () + 3);
1617 vars_copy (new_vars
->htab
, vars
->htab
);
1622 /* Increment reference counter on VARS and return it. */
1624 static inline shared_hash
*
1625 shared_hash_copy (shared_hash
*vars
)
1631 /* Decrement reference counter and destroy hash table if not shared
1635 shared_hash_destroy (shared_hash
*vars
)
1637 gcc_checking_assert (vars
->refcount
> 0);
1638 if (--vars
->refcount
== 0)
1645 /* Unshare *PVARS if shared and return slot for DV. If INS is
1646 INSERT, insert it if not already present. */
1648 static inline variable
**
1649 shared_hash_find_slot_unshare_1 (shared_hash
**pvars
, decl_or_value dv
,
1650 hashval_t dvhash
, enum insert_option ins
)
1652 if (shared_hash_shared (*pvars
))
1653 *pvars
= shared_hash_unshare (*pvars
);
1654 return shared_hash_htab (*pvars
)->find_slot_with_hash (dv
, dvhash
, ins
);
1657 static inline variable
**
1658 shared_hash_find_slot_unshare (shared_hash
**pvars
, decl_or_value dv
,
1659 enum insert_option ins
)
1661 return shared_hash_find_slot_unshare_1 (pvars
, dv
, dv_htab_hash (dv
), ins
);
1664 /* Return slot for DV, if it is already present in the hash table.
1665 If it is not present, insert it only VARS is not shared, otherwise
1668 static inline variable
**
1669 shared_hash_find_slot_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1671 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
,
1672 shared_hash_shared (vars
)
1673 ? NO_INSERT
: INSERT
);
1676 static inline variable
**
1677 shared_hash_find_slot (shared_hash
*vars
, decl_or_value dv
)
1679 return shared_hash_find_slot_1 (vars
, dv
, dv_htab_hash (dv
));
1682 /* Return slot for DV only if it is already present in the hash table. */
1684 static inline variable
**
1685 shared_hash_find_slot_noinsert_1 (shared_hash
*vars
, decl_or_value dv
,
1688 return shared_hash_htab (vars
)->find_slot_with_hash (dv
, dvhash
, NO_INSERT
);
1691 static inline variable
**
1692 shared_hash_find_slot_noinsert (shared_hash
*vars
, decl_or_value dv
)
1694 return shared_hash_find_slot_noinsert_1 (vars
, dv
, dv_htab_hash (dv
));
1697 /* Return variable for DV or NULL if not already present in the hash
1700 static inline variable
*
1701 shared_hash_find_1 (shared_hash
*vars
, decl_or_value dv
, hashval_t dvhash
)
1703 return shared_hash_htab (vars
)->find_with_hash (dv
, dvhash
);
1706 static inline variable
*
1707 shared_hash_find (shared_hash
*vars
, decl_or_value dv
)
1709 return shared_hash_find_1 (vars
, dv
, dv_htab_hash (dv
));
1712 /* Return true if TVAL is better than CVAL as a canonival value. We
1713 choose lowest-numbered VALUEs, using the RTX address as a
1714 tie-breaker. The idea is to arrange them into a star topology,
1715 such that all of them are at most one step away from the canonical
1716 value, and the canonical value has backlinks to all of them, in
1717 addition to all the actual locations. We don't enforce this
1718 topology throughout the entire dataflow analysis, though.
1722 canon_value_cmp (rtx tval
, rtx cval
)
1725 || CSELIB_VAL_PTR (tval
)->uid
< CSELIB_VAL_PTR (cval
)->uid
;
1728 static bool dst_can_be_shared
;
1730 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1733 unshare_variable (dataflow_set
*set
, variable
**slot
, variable
*var
,
1734 enum var_init_status initialized
)
1739 new_var
= onepart_pool_allocate (var
->onepart
);
1740 new_var
->dv
= var
->dv
;
1741 new_var
->refcount
= 1;
1743 new_var
->n_var_parts
= var
->n_var_parts
;
1744 new_var
->onepart
= var
->onepart
;
1745 new_var
->in_changed_variables
= false;
1747 if (! flag_var_tracking_uninit
)
1748 initialized
= VAR_INIT_STATUS_INITIALIZED
;
1750 for (i
= 0; i
< var
->n_var_parts
; i
++)
1752 location_chain
*node
;
1753 location_chain
**nextp
;
1755 if (i
== 0 && var
->onepart
)
1757 /* One-part auxiliary data is only used while emitting
1758 notes, so propagate it to the new variable in the active
1759 dataflow set. If we're not emitting notes, this will be
1761 gcc_checking_assert (!VAR_LOC_1PAUX (var
) || emit_notes
);
1762 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (var
);
1763 VAR_LOC_1PAUX (var
) = NULL
;
1766 VAR_PART_OFFSET (new_var
, i
) = VAR_PART_OFFSET (var
, i
);
1767 nextp
= &new_var
->var_part
[i
].loc_chain
;
1768 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1770 location_chain
*new_lc
;
1772 new_lc
= new location_chain
;
1773 new_lc
->next
= NULL
;
1774 if (node
->init
> initialized
)
1775 new_lc
->init
= node
->init
;
1777 new_lc
->init
= initialized
;
1778 if (node
->set_src
&& !(MEM_P (node
->set_src
)))
1779 new_lc
->set_src
= node
->set_src
;
1781 new_lc
->set_src
= NULL
;
1782 new_lc
->loc
= node
->loc
;
1785 nextp
= &new_lc
->next
;
1788 new_var
->var_part
[i
].cur_loc
= var
->var_part
[i
].cur_loc
;
1791 dst_can_be_shared
= false;
1792 if (shared_hash_shared (set
->vars
))
1793 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
, NO_INSERT
);
1794 else if (set
->traversed_vars
&& set
->vars
!= set
->traversed_vars
)
1795 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
1797 if (var
->in_changed_variables
)
1800 = changed_variables
->find_slot_with_hash (var
->dv
,
1801 dv_htab_hash (var
->dv
),
1803 gcc_assert (*cslot
== (void *) var
);
1804 var
->in_changed_variables
= false;
1805 variable_htab_free (var
);
1807 new_var
->in_changed_variables
= true;
1812 /* Copy all variables from hash table SRC to hash table DST. */
1815 vars_copy (variable_table_type
*dst
, variable_table_type
*src
)
1817 variable_iterator_type hi
;
1820 FOR_EACH_HASH_TABLE_ELEMENT (*src
, var
, variable
, hi
)
1824 dstp
= dst
->find_slot_with_hash (var
->dv
, dv_htab_hash (var
->dv
),
1830 /* Map a decl to its main debug decl. */
1833 var_debug_decl (tree decl
)
1835 if (decl
&& VAR_P (decl
) && DECL_HAS_DEBUG_EXPR_P (decl
))
1837 tree debugdecl
= DECL_DEBUG_EXPR (decl
);
1838 if (DECL_P (debugdecl
))
1845 /* Set the register LOC to contain DV, OFFSET. */
1848 var_reg_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1849 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
1850 enum insert_option iopt
)
1853 bool decl_p
= dv_is_decl_p (dv
);
1856 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
1858 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
1859 if (dv_as_opaque (node
->dv
) == dv_as_opaque (dv
)
1860 && node
->offset
== offset
)
1863 attrs_list_insert (&set
->regs
[REGNO (loc
)], dv
, offset
, loc
);
1864 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
1867 /* Return true if we should track a location that is OFFSET bytes from
1868 a variable. Store the constant offset in *OFFSET_OUT if so. */
1871 track_offset_p (poly_int64 offset
, HOST_WIDE_INT
*offset_out
)
1873 HOST_WIDE_INT const_offset
;
1874 if (!offset
.is_constant (&const_offset
)
1875 || !IN_RANGE (const_offset
, 0, MAX_VAR_PARTS
- 1))
1877 *offset_out
= const_offset
;
1881 /* Return the offset of a register that track_offset_p says we
1884 static HOST_WIDE_INT
1885 get_tracked_reg_offset (rtx loc
)
1887 HOST_WIDE_INT offset
;
1888 if (!track_offset_p (REG_OFFSET (loc
), &offset
))
1893 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1896 var_reg_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
1899 tree decl
= REG_EXPR (loc
);
1900 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1902 var_reg_decl_set (set
, loc
, initialized
,
1903 dv_from_decl (decl
), offset
, set_src
, INSERT
);
1906 static enum var_init_status
1907 get_init_value (dataflow_set
*set
, rtx loc
, decl_or_value dv
)
1911 enum var_init_status ret_val
= VAR_INIT_STATUS_UNKNOWN
;
1913 if (! flag_var_tracking_uninit
)
1914 return VAR_INIT_STATUS_INITIALIZED
;
1916 var
= shared_hash_find (set
->vars
, dv
);
1919 for (i
= 0; i
< var
->n_var_parts
&& ret_val
== VAR_INIT_STATUS_UNKNOWN
; i
++)
1921 location_chain
*nextp
;
1922 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
; nextp
= nextp
->next
)
1923 if (rtx_equal_p (nextp
->loc
, loc
))
1925 ret_val
= nextp
->init
;
1934 /* Delete current content of register LOC in dataflow set SET and set
1935 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1936 MODIFY is true, any other live copies of the same variable part are
1937 also deleted from the dataflow set, otherwise the variable part is
1938 assumed to be copied from another location holding the same
1942 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
1943 enum var_init_status initialized
, rtx set_src
)
1945 tree decl
= REG_EXPR (loc
);
1946 HOST_WIDE_INT offset
= get_tracked_reg_offset (loc
);
1950 decl
= var_debug_decl (decl
);
1952 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
1953 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
1955 nextp
= &set
->regs
[REGNO (loc
)];
1956 for (node
= *nextp
; node
; node
= next
)
1959 if (dv_as_opaque (node
->dv
) != decl
|| node
->offset
!= offset
)
1961 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
1968 nextp
= &node
->next
;
1972 clobber_variable_part (set
, loc
, dv_from_decl (decl
), offset
, set_src
);
1973 var_reg_set (set
, loc
, initialized
, set_src
);
1976 /* Delete the association of register LOC in dataflow set SET with any
1977 variables that aren't onepart. If CLOBBER is true, also delete any
1978 other live copies of the same variable part, and delete the
1979 association with onepart dvs too. */
1982 var_reg_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
1984 attrs
**nextp
= &set
->regs
[REGNO (loc
)];
1987 HOST_WIDE_INT offset
;
1988 if (clobber
&& track_offset_p (REG_OFFSET (loc
), &offset
))
1990 tree decl
= REG_EXPR (loc
);
1992 decl
= var_debug_decl (decl
);
1994 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
1997 for (node
= *nextp
; node
; node
= next
)
2000 if (clobber
|| !dv_onepart_p (node
->dv
))
2002 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2007 nextp
= &node
->next
;
2011 /* Delete content of register with number REGNO in dataflow set SET. */
2014 var_regno_delete (dataflow_set
*set
, int regno
)
2016 attrs
**reg
= &set
->regs
[regno
];
2019 for (node
= *reg
; node
; node
= next
)
2022 delete_variable_part (set
, node
->loc
, node
->dv
, node
->offset
);
2028 /* Return true if I is the negated value of a power of two. */
2030 negative_power_of_two_p (HOST_WIDE_INT i
)
2032 unsigned HOST_WIDE_INT x
= -(unsigned HOST_WIDE_INT
)i
;
2033 return pow2_or_zerop (x
);
2036 /* Strip constant offsets and alignments off of LOC. Return the base
2040 vt_get_canonicalize_base (rtx loc
)
2042 while ((GET_CODE (loc
) == PLUS
2043 || GET_CODE (loc
) == AND
)
2044 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2045 && (GET_CODE (loc
) != AND
2046 || negative_power_of_two_p (INTVAL (XEXP (loc
, 1)))))
2047 loc
= XEXP (loc
, 0);
2052 /* This caches canonicalized addresses for VALUEs, computed using
2053 information in the global cselib table. */
2054 static hash_map
<rtx
, rtx
> *global_get_addr_cache
;
2056 /* This caches canonicalized addresses for VALUEs, computed using
2057 information from the global cache and information pertaining to a
2058 basic block being analyzed. */
2059 static hash_map
<rtx
, rtx
> *local_get_addr_cache
;
2061 static rtx
vt_canonicalize_addr (dataflow_set
*, rtx
);
2063 /* Return the canonical address for LOC, that must be a VALUE, using a
2064 cached global equivalence or computing it and storing it in the
2068 get_addr_from_global_cache (rtx
const loc
)
2072 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2075 rtx
*slot
= &global_get_addr_cache
->get_or_insert (loc
, &existed
);
2079 x
= canon_rtx (get_addr (loc
));
2081 /* Tentative, avoiding infinite recursion. */
2086 rtx nx
= vt_canonicalize_addr (NULL
, x
);
2089 /* The table may have moved during recursion, recompute
2091 *global_get_addr_cache
->get (loc
) = x
= nx
;
2098 /* Return the canonical address for LOC, that must be a VALUE, using a
2099 cached local equivalence or computing it and storing it in the
2103 get_addr_from_local_cache (dataflow_set
*set
, rtx
const loc
)
2110 gcc_checking_assert (GET_CODE (loc
) == VALUE
);
2113 rtx
*slot
= &local_get_addr_cache
->get_or_insert (loc
, &existed
);
2117 x
= get_addr_from_global_cache (loc
);
2119 /* Tentative, avoiding infinite recursion. */
2122 /* Recurse to cache local expansion of X, or if we need to search
2123 for a VALUE in the expansion. */
2126 rtx nx
= vt_canonicalize_addr (set
, x
);
2129 slot
= local_get_addr_cache
->get (loc
);
2135 dv
= dv_from_rtx (x
);
2136 var
= shared_hash_find (set
->vars
, dv
);
2140 /* Look for an improved equivalent expression. */
2141 for (l
= var
->var_part
[0].loc_chain
; l
; l
= l
->next
)
2143 rtx base
= vt_get_canonicalize_base (l
->loc
);
2144 if (GET_CODE (base
) == VALUE
2145 && canon_value_cmp (base
, loc
))
2147 rtx nx
= vt_canonicalize_addr (set
, l
->loc
);
2150 slot
= local_get_addr_cache
->get (loc
);
2160 /* Canonicalize LOC using equivalences from SET in addition to those
2161 in the cselib static table. It expects a VALUE-based expression,
2162 and it will only substitute VALUEs with other VALUEs or
2163 function-global equivalences, so that, if two addresses have base
2164 VALUEs that are locally or globally related in ways that
2165 memrefs_conflict_p cares about, they will both canonicalize to
2166 expressions that have the same base VALUE.
2168 The use of VALUEs as canonical base addresses enables the canonical
2169 RTXs to remain unchanged globally, if they resolve to a constant,
2170 or throughout a basic block otherwise, so that they can be cached
2171 and the cache needs not be invalidated when REGs, MEMs or such
2175 vt_canonicalize_addr (dataflow_set
*set
, rtx oloc
)
2177 poly_int64 ofst
= 0, term
;
2178 machine_mode mode
= GET_MODE (oloc
);
2185 while (GET_CODE (loc
) == PLUS
2186 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2189 loc
= XEXP (loc
, 0);
2192 /* Alignment operations can't normally be combined, so just
2193 canonicalize the base and we're done. We'll normally have
2194 only one stack alignment anyway. */
2195 if (GET_CODE (loc
) == AND
2196 && GET_CODE (XEXP (loc
, 1)) == CONST_INT
2197 && negative_power_of_two_p (INTVAL (XEXP (loc
, 1))))
2199 x
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2200 if (x
!= XEXP (loc
, 0))
2201 loc
= gen_rtx_AND (mode
, x
, XEXP (loc
, 1));
2205 if (GET_CODE (loc
) == VALUE
)
2208 loc
= get_addr_from_local_cache (set
, loc
);
2210 loc
= get_addr_from_global_cache (loc
);
2212 /* Consolidate plus_constants. */
2213 while (maybe_ne (ofst
, 0)
2214 && GET_CODE (loc
) == PLUS
2215 && poly_int_rtx_p (XEXP (loc
, 1), &term
))
2218 loc
= XEXP (loc
, 0);
2225 x
= canon_rtx (loc
);
2232 /* Add OFST back in. */
2233 if (maybe_ne (ofst
, 0))
2235 /* Don't build new RTL if we can help it. */
2236 if (strip_offset (oloc
, &term
) == loc
&& known_eq (term
, ofst
))
2239 loc
= plus_constant (mode
, loc
, ofst
);
2245 /* Return true iff there's a true dependence between MLOC and LOC.
2246 MADDR must be a canonicalized version of MLOC's address. */
2249 vt_canon_true_dep (dataflow_set
*set
, rtx mloc
, rtx maddr
, rtx loc
)
2251 if (GET_CODE (loc
) != MEM
)
2254 rtx addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2255 if (!canon_true_dependence (mloc
, GET_MODE (mloc
), maddr
, loc
, addr
))
2261 /* Hold parameters for the hashtab traversal function
2262 drop_overlapping_mem_locs, see below. */
2264 struct overlapping_mems
2270 /* Remove all MEMs that overlap with COMS->LOC from the location list
2271 of a hash table entry for a onepart variable. COMS->ADDR must be a
2272 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2273 canonicalized itself. */
2276 drop_overlapping_mem_locs (variable
**slot
, overlapping_mems
*coms
)
2278 dataflow_set
*set
= coms
->set
;
2279 rtx mloc
= coms
->loc
, addr
= coms
->addr
;
2280 variable
*var
= *slot
;
2282 if (var
->onepart
!= NOT_ONEPART
)
2284 location_chain
*loc
, **locp
;
2285 bool changed
= false;
2288 gcc_assert (var
->n_var_parts
== 1);
2290 if (shared_var_p (var
, set
->vars
))
2292 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
2293 if (vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2299 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
2301 gcc_assert (var
->n_var_parts
== 1);
2304 if (VAR_LOC_1PAUX (var
))
2305 cur_loc
= VAR_LOC_FROM (var
);
2307 cur_loc
= var
->var_part
[0].cur_loc
;
2309 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
2312 if (!vt_canon_true_dep (set
, mloc
, addr
, loc
->loc
))
2319 /* If we have deleted the location which was last emitted
2320 we have to emit new location so add the variable to set
2321 of changed variables. */
2322 if (cur_loc
== loc
->loc
)
2325 var
->var_part
[0].cur_loc
= NULL
;
2326 if (VAR_LOC_1PAUX (var
))
2327 VAR_LOC_FROM (var
) = NULL
;
2332 if (!var
->var_part
[0].loc_chain
)
2338 variable_was_changed (var
, set
);
2344 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2347 clobber_overlapping_mems (dataflow_set
*set
, rtx loc
)
2349 struct overlapping_mems coms
;
2351 gcc_checking_assert (GET_CODE (loc
) == MEM
);
2354 coms
.loc
= canon_rtx (loc
);
2355 coms
.addr
= vt_canonicalize_addr (set
, XEXP (loc
, 0));
2357 set
->traversed_vars
= set
->vars
;
2358 shared_hash_htab (set
->vars
)
2359 ->traverse
<overlapping_mems
*, drop_overlapping_mem_locs
> (&coms
);
2360 set
->traversed_vars
= NULL
;
2363 /* Set the location of DV, OFFSET as the MEM LOC. */
2366 var_mem_decl_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2367 decl_or_value dv
, HOST_WIDE_INT offset
, rtx set_src
,
2368 enum insert_option iopt
)
2370 if (dv_is_decl_p (dv
))
2371 dv
= dv_from_decl (var_debug_decl (dv_as_decl (dv
)));
2373 set_variable_part (set
, loc
, dv
, offset
, initialized
, set_src
, iopt
);
2376 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2378 Adjust the address first if it is stack pointer based. */
2381 var_mem_set (dataflow_set
*set
, rtx loc
, enum var_init_status initialized
,
2384 tree decl
= MEM_EXPR (loc
);
2385 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2387 var_mem_decl_set (set
, loc
, initialized
,
2388 dv_from_decl (decl
), offset
, set_src
, INSERT
);
2391 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2392 dataflow set SET to LOC. If MODIFY is true, any other live copies
2393 of the same variable part are also deleted from the dataflow set,
2394 otherwise the variable part is assumed to be copied from another
2395 location holding the same part.
2396 Adjust the address first if it is stack pointer based. */
2399 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
, bool modify
,
2400 enum var_init_status initialized
, rtx set_src
)
2402 tree decl
= MEM_EXPR (loc
);
2403 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2405 clobber_overlapping_mems (set
, loc
);
2406 decl
= var_debug_decl (decl
);
2408 if (initialized
== VAR_INIT_STATUS_UNKNOWN
)
2409 initialized
= get_init_value (set
, loc
, dv_from_decl (decl
));
2412 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, set_src
);
2413 var_mem_set (set
, loc
, initialized
, set_src
);
2416 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2417 true, also delete any other live copies of the same variable part.
2418 Adjust the address first if it is stack pointer based. */
2421 var_mem_delete (dataflow_set
*set
, rtx loc
, bool clobber
)
2423 tree decl
= MEM_EXPR (loc
);
2424 HOST_WIDE_INT offset
= int_mem_offset (loc
);
2426 clobber_overlapping_mems (set
, loc
);
2427 decl
= var_debug_decl (decl
);
2429 clobber_variable_part (set
, NULL
, dv_from_decl (decl
), offset
, NULL
);
2430 delete_variable_part (set
, loc
, dv_from_decl (decl
), offset
);
2433 /* Return true if LOC should not be expanded for location expressions,
2437 unsuitable_loc (rtx loc
)
2439 switch (GET_CODE (loc
))
2453 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2457 val_bind (dataflow_set
*set
, rtx val
, rtx loc
, bool modified
)
2462 var_regno_delete (set
, REGNO (loc
));
2463 var_reg_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2464 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2466 else if (MEM_P (loc
))
2468 struct elt_loc_list
*l
= CSELIB_VAL_PTR (val
)->locs
;
2471 clobber_overlapping_mems (set
, loc
);
2473 if (l
&& GET_CODE (l
->loc
) == VALUE
)
2474 l
= canonical_cselib_val (CSELIB_VAL_PTR (l
->loc
))->locs
;
2476 /* If this MEM is a global constant, we don't need it in the
2477 dynamic tables. ??? We should test this before emitting the
2478 micro-op in the first place. */
2480 if (GET_CODE (l
->loc
) == MEM
&& XEXP (l
->loc
, 0) == XEXP (loc
, 0))
2486 var_mem_decl_set (set
, loc
, VAR_INIT_STATUS_INITIALIZED
,
2487 dv_from_value (val
), 0, NULL_RTX
, INSERT
);
2491 /* Other kinds of equivalences are necessarily static, at least
2492 so long as we do not perform substitutions while merging
2495 set_variable_part (set
, loc
, dv_from_value (val
), 0,
2496 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2500 /* Bind a value to a location it was just stored in. If MODIFIED
2501 holds, assume the location was modified, detaching it from any
2502 values bound to it. */
2505 val_store (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
,
2508 cselib_val
*v
= CSELIB_VAL_PTR (val
);
2510 gcc_assert (cselib_preserved_value_p (v
));
2514 fprintf (dump_file
, "%i: ", insn
? INSN_UID (insn
) : 0);
2515 print_inline_rtx (dump_file
, loc
, 0);
2516 fprintf (dump_file
, " evaluates to ");
2517 print_inline_rtx (dump_file
, val
, 0);
2520 struct elt_loc_list
*l
;
2521 for (l
= v
->locs
; l
; l
= l
->next
)
2523 fprintf (dump_file
, "\n%i: ", INSN_UID (l
->setting_insn
));
2524 print_inline_rtx (dump_file
, l
->loc
, 0);
2527 fprintf (dump_file
, "\n");
2530 gcc_checking_assert (!unsuitable_loc (loc
));
2532 val_bind (set
, val
, loc
, modified
);
2535 /* Clear (canonical address) slots that reference X. */
2538 local_get_addr_clear_given_value (rtx
const &, rtx
*slot
, rtx x
)
2540 if (vt_get_canonicalize_base (*slot
) == x
)
2545 /* Reset this node, detaching all its equivalences. Return the slot
2546 in the variable hash table that holds dv, if there is one. */
2549 val_reset (dataflow_set
*set
, decl_or_value dv
)
2551 variable
*var
= shared_hash_find (set
->vars
, dv
) ;
2552 location_chain
*node
;
2555 if (!var
|| !var
->n_var_parts
)
2558 gcc_assert (var
->n_var_parts
== 1);
2560 if (var
->onepart
== ONEPART_VALUE
)
2562 rtx x
= dv_as_value (dv
);
2564 /* Relationships in the global cache don't change, so reset the
2565 local cache entry only. */
2566 rtx
*slot
= local_get_addr_cache
->get (x
);
2569 /* If the value resolved back to itself, odds are that other
2570 values may have cached it too. These entries now refer
2571 to the old X, so detach them too. Entries that used the
2572 old X but resolved to something else remain ok as long as
2573 that something else isn't also reset. */
2575 local_get_addr_cache
2576 ->traverse
<rtx
, local_get_addr_clear_given_value
> (x
);
2582 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2583 if (GET_CODE (node
->loc
) == VALUE
2584 && canon_value_cmp (node
->loc
, cval
))
2587 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2588 if (GET_CODE (node
->loc
) == VALUE
&& cval
!= node
->loc
)
2590 /* Redirect the equivalence link to the new canonical
2591 value, or simply remove it if it would point at
2594 set_variable_part (set
, cval
, dv_from_value (node
->loc
),
2595 0, node
->init
, node
->set_src
, NO_INSERT
);
2596 delete_variable_part (set
, dv_as_value (dv
),
2597 dv_from_value (node
->loc
), 0);
2602 decl_or_value cdv
= dv_from_value (cval
);
2604 /* Keep the remaining values connected, accumulating links
2605 in the canonical value. */
2606 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
2608 if (node
->loc
== cval
)
2610 else if (GET_CODE (node
->loc
) == REG
)
2611 var_reg_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2612 node
->set_src
, NO_INSERT
);
2613 else if (GET_CODE (node
->loc
) == MEM
)
2614 var_mem_decl_set (set
, node
->loc
, node
->init
, cdv
, 0,
2615 node
->set_src
, NO_INSERT
);
2617 set_variable_part (set
, node
->loc
, cdv
, 0,
2618 node
->init
, node
->set_src
, NO_INSERT
);
2622 /* We remove this last, to make sure that the canonical value is not
2623 removed to the point of requiring reinsertion. */
2625 delete_variable_part (set
, dv_as_value (dv
), dv_from_value (cval
), 0);
2627 clobber_variable_part (set
, NULL
, dv
, 0, NULL
);
2630 /* Find the values in a given location and map the val to another
2631 value, if it is unique, or add the location as one holding the
2635 val_resolve (dataflow_set
*set
, rtx val
, rtx loc
, rtx_insn
*insn
)
2637 decl_or_value dv
= dv_from_value (val
);
2639 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2642 fprintf (dump_file
, "%i: ", INSN_UID (insn
));
2644 fprintf (dump_file
, "head: ");
2645 print_inline_rtx (dump_file
, val
, 0);
2646 fputs (" is at ", dump_file
);
2647 print_inline_rtx (dump_file
, loc
, 0);
2648 fputc ('\n', dump_file
);
2651 val_reset (set
, dv
);
2653 gcc_checking_assert (!unsuitable_loc (loc
));
2657 attrs
*node
, *found
= NULL
;
2659 for (node
= set
->regs
[REGNO (loc
)]; node
; node
= node
->next
)
2660 if (dv_is_value_p (node
->dv
)
2661 && GET_MODE (dv_as_value (node
->dv
)) == GET_MODE (loc
))
2665 /* Map incoming equivalences. ??? Wouldn't it be nice if
2666 we just started sharing the location lists? Maybe a
2667 circular list ending at the value itself or some
2669 set_variable_part (set
, dv_as_value (node
->dv
),
2670 dv_from_value (val
), node
->offset
,
2671 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2672 set_variable_part (set
, val
, node
->dv
, node
->offset
,
2673 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
, INSERT
);
2676 /* If we didn't find any equivalence, we need to remember that
2677 this value is held in the named register. */
2681 /* ??? Attempt to find and merge equivalent MEMs or other
2684 val_bind (set
, val
, loc
, false);
2687 /* Initialize dataflow set SET to be empty.
2688 VARS_SIZE is the initial size of hash table VARS. */
2691 dataflow_set_init (dataflow_set
*set
)
2693 init_attrs_list_set (set
->regs
);
2694 set
->vars
= shared_hash_copy (empty_shared_hash
);
2695 set
->stack_adjust
= 0;
2696 set
->traversed_vars
= NULL
;
2699 /* Delete the contents of dataflow set SET. */
2702 dataflow_set_clear (dataflow_set
*set
)
2706 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2707 attrs_list_clear (&set
->regs
[i
]);
2709 shared_hash_destroy (set
->vars
);
2710 set
->vars
= shared_hash_copy (empty_shared_hash
);
2713 /* Copy the contents of dataflow set SRC to DST. */
2716 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
2720 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2721 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
2723 shared_hash_destroy (dst
->vars
);
2724 dst
->vars
= shared_hash_copy (src
->vars
);
2725 dst
->stack_adjust
= src
->stack_adjust
;
2728 /* Information for merging lists of locations for a given offset of variable.
2730 struct variable_union_info
2732 /* Node of the location chain. */
2735 /* The sum of positions in the input chains. */
2738 /* The position in the chain of DST dataflow set. */
2742 /* Buffer for location list sorting and its allocated size. */
2743 static struct variable_union_info
*vui_vec
;
2744 static int vui_allocated
;
2746 /* Compare function for qsort, order the structures by POS element. */
2749 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
2751 const struct variable_union_info
*const i1
=
2752 (const struct variable_union_info
*) n1
;
2753 const struct variable_union_info
*const i2
=
2754 ( const struct variable_union_info
*) n2
;
2756 if (i1
->pos
!= i2
->pos
)
2757 return i1
->pos
- i2
->pos
;
2759 return (i1
->pos_dst
- i2
->pos_dst
);
2762 /* Compute union of location parts of variable *SLOT and the same variable
2763 from hash table DATA. Compute "sorted" union of the location chains
2764 for common offsets, i.e. the locations of a variable part are sorted by
2765 a priority where the priority is the sum of the positions in the 2 chains
2766 (if a location is only in one list the position in the second list is
2767 defined to be larger than the length of the chains).
2768 When we are updating the location parts the newest location is in the
2769 beginning of the chain, so when we do the described "sorted" union
2770 we keep the newest locations in the beginning. */
2773 variable_union (variable
*src
, dataflow_set
*set
)
2779 dstp
= shared_hash_find_slot (set
->vars
, src
->dv
);
2780 if (!dstp
|| !*dstp
)
2784 dst_can_be_shared
= false;
2786 dstp
= shared_hash_find_slot_unshare (&set
->vars
, src
->dv
, INSERT
);
2790 /* Continue traversing the hash table. */
2796 gcc_assert (src
->n_var_parts
);
2797 gcc_checking_assert (src
->onepart
== dst
->onepart
);
2799 /* We can combine one-part variables very efficiently, because their
2800 entries are in canonical order. */
2803 location_chain
**nodep
, *dnode
, *snode
;
2805 gcc_assert (src
->n_var_parts
== 1
2806 && dst
->n_var_parts
== 1);
2808 snode
= src
->var_part
[0].loc_chain
;
2811 restart_onepart_unshared
:
2812 nodep
= &dst
->var_part
[0].loc_chain
;
2818 int r
= dnode
? loc_cmp (dnode
->loc
, snode
->loc
) : 1;
2822 location_chain
*nnode
;
2824 if (shared_var_p (dst
, set
->vars
))
2826 dstp
= unshare_variable (set
, dstp
, dst
,
2827 VAR_INIT_STATUS_INITIALIZED
);
2829 goto restart_onepart_unshared
;
2832 *nodep
= nnode
= new location_chain
;
2833 nnode
->loc
= snode
->loc
;
2834 nnode
->init
= snode
->init
;
2835 if (!snode
->set_src
|| MEM_P (snode
->set_src
))
2836 nnode
->set_src
= NULL
;
2838 nnode
->set_src
= snode
->set_src
;
2839 nnode
->next
= dnode
;
2843 gcc_checking_assert (rtx_equal_p (dnode
->loc
, snode
->loc
));
2846 snode
= snode
->next
;
2848 nodep
= &dnode
->next
;
2855 gcc_checking_assert (!src
->onepart
);
2857 /* Count the number of location parts, result is K. */
2858 for (i
= 0, j
= 0, k
= 0;
2859 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
2861 if (VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2866 else if (VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
2871 k
+= src
->n_var_parts
- i
;
2872 k
+= dst
->n_var_parts
- j
;
2874 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2875 thus there are at most MAX_VAR_PARTS different offsets. */
2876 gcc_checking_assert (dst
->onepart
? k
== 1 : k
<= MAX_VAR_PARTS
);
2878 if (dst
->n_var_parts
!= k
&& shared_var_p (dst
, set
->vars
))
2880 dstp
= unshare_variable (set
, dstp
, dst
, VAR_INIT_STATUS_UNKNOWN
);
2884 i
= src
->n_var_parts
- 1;
2885 j
= dst
->n_var_parts
- 1;
2886 dst
->n_var_parts
= k
;
2888 for (k
--; k
>= 0; k
--)
2890 location_chain
*node
, *node2
;
2892 if (i
>= 0 && j
>= 0
2893 && VAR_PART_OFFSET (src
, i
) == VAR_PART_OFFSET (dst
, j
))
2895 /* Compute the "sorted" union of the chains, i.e. the locations which
2896 are in both chains go first, they are sorted by the sum of
2897 positions in the chains. */
2900 struct variable_union_info
*vui
;
2902 /* If DST is shared compare the location chains.
2903 If they are different we will modify the chain in DST with
2904 high probability so make a copy of DST. */
2905 if (shared_var_p (dst
, set
->vars
))
2907 for (node
= src
->var_part
[i
].loc_chain
,
2908 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
2909 node
= node
->next
, node2
= node2
->next
)
2911 if (!((REG_P (node2
->loc
)
2912 && REG_P (node
->loc
)
2913 && REGNO (node2
->loc
) == REGNO (node
->loc
))
2914 || rtx_equal_p (node2
->loc
, node
->loc
)))
2916 if (node2
->init
< node
->init
)
2917 node2
->init
= node
->init
;
2923 dstp
= unshare_variable (set
, dstp
, dst
,
2924 VAR_INIT_STATUS_UNKNOWN
);
2925 dst
= (variable
*)*dstp
;
2930 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2933 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
2938 /* The most common case, much simpler, no qsort is needed. */
2939 location_chain
*dstnode
= dst
->var_part
[j
].loc_chain
;
2940 dst
->var_part
[k
].loc_chain
= dstnode
;
2941 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
2943 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
2944 if (!((REG_P (dstnode
->loc
)
2945 && REG_P (node
->loc
)
2946 && REGNO (dstnode
->loc
) == REGNO (node
->loc
))
2947 || rtx_equal_p (dstnode
->loc
, node
->loc
)))
2949 location_chain
*new_node
;
2951 /* Copy the location from SRC. */
2952 new_node
= new location_chain
;
2953 new_node
->loc
= node
->loc
;
2954 new_node
->init
= node
->init
;
2955 if (!node
->set_src
|| MEM_P (node
->set_src
))
2956 new_node
->set_src
= NULL
;
2958 new_node
->set_src
= node
->set_src
;
2959 node2
->next
= new_node
;
2966 if (src_l
+ dst_l
> vui_allocated
)
2968 vui_allocated
= MAX (vui_allocated
* 2, src_l
+ dst_l
);
2969 vui_vec
= XRESIZEVEC (struct variable_union_info
, vui_vec
,
2974 /* Fill in the locations from DST. */
2975 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
2976 node
= node
->next
, jj
++)
2979 vui
[jj
].pos_dst
= jj
;
2981 /* Pos plus value larger than a sum of 2 valid positions. */
2982 vui
[jj
].pos
= jj
+ src_l
+ dst_l
;
2985 /* Fill in the locations from SRC. */
2987 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
2988 node
= node
->next
, ii
++)
2990 /* Find location from NODE. */
2991 for (jj
= 0; jj
< dst_l
; jj
++)
2993 if ((REG_P (vui
[jj
].lc
->loc
)
2994 && REG_P (node
->loc
)
2995 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
2996 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
2998 vui
[jj
].pos
= jj
+ ii
;
3002 if (jj
>= dst_l
) /* The location has not been found. */
3004 location_chain
*new_node
;
3006 /* Copy the location from SRC. */
3007 new_node
= new location_chain
;
3008 new_node
->loc
= node
->loc
;
3009 new_node
->init
= node
->init
;
3010 if (!node
->set_src
|| MEM_P (node
->set_src
))
3011 new_node
->set_src
= NULL
;
3013 new_node
->set_src
= node
->set_src
;
3014 vui
[n
].lc
= new_node
;
3015 vui
[n
].pos_dst
= src_l
+ dst_l
;
3016 vui
[n
].pos
= ii
+ src_l
+ dst_l
;
3023 /* Special case still very common case. For dst_l == 2
3024 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3025 vui[i].pos == i + src_l + dst_l. */
3026 if (vui
[0].pos
> vui
[1].pos
)
3028 /* Order should be 1, 0, 2... */
3029 dst
->var_part
[k
].loc_chain
= vui
[1].lc
;
3030 vui
[1].lc
->next
= vui
[0].lc
;
3033 vui
[0].lc
->next
= vui
[2].lc
;
3034 vui
[n
- 1].lc
->next
= NULL
;
3037 vui
[0].lc
->next
= NULL
;
3042 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3043 if (n
>= 3 && vui
[2].pos
< vui
[1].pos
)
3045 /* Order should be 0, 2, 1, 3... */
3046 vui
[0].lc
->next
= vui
[2].lc
;
3047 vui
[2].lc
->next
= vui
[1].lc
;
3050 vui
[1].lc
->next
= vui
[3].lc
;
3051 vui
[n
- 1].lc
->next
= NULL
;
3054 vui
[1].lc
->next
= NULL
;
3059 /* Order should be 0, 1, 2... */
3061 vui
[n
- 1].lc
->next
= NULL
;
3064 for (; ii
< n
; ii
++)
3065 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3069 qsort (vui
, n
, sizeof (struct variable_union_info
),
3070 variable_union_info_cmp_pos
);
3072 /* Reconnect the nodes in sorted order. */
3073 for (ii
= 1; ii
< n
; ii
++)
3074 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
3075 vui
[n
- 1].lc
->next
= NULL
;
3076 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
3079 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (dst
, j
);
3084 else if ((i
>= 0 && j
>= 0
3085 && VAR_PART_OFFSET (src
, i
) < VAR_PART_OFFSET (dst
, j
))
3088 dst
->var_part
[k
] = dst
->var_part
[j
];
3091 else if ((i
>= 0 && j
>= 0
3092 && VAR_PART_OFFSET (src
, i
) > VAR_PART_OFFSET (dst
, j
))
3095 location_chain
**nextp
;
3097 /* Copy the chain from SRC. */
3098 nextp
= &dst
->var_part
[k
].loc_chain
;
3099 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3101 location_chain
*new_lc
;
3103 new_lc
= new location_chain
;
3104 new_lc
->next
= NULL
;
3105 new_lc
->init
= node
->init
;
3106 if (!node
->set_src
|| MEM_P (node
->set_src
))
3107 new_lc
->set_src
= NULL
;
3109 new_lc
->set_src
= node
->set_src
;
3110 new_lc
->loc
= node
->loc
;
3113 nextp
= &new_lc
->next
;
3116 VAR_PART_OFFSET (dst
, k
) = VAR_PART_OFFSET (src
, i
);
3119 dst
->var_part
[k
].cur_loc
= NULL
;
3122 if (flag_var_tracking_uninit
)
3123 for (i
= 0; i
< src
->n_var_parts
&& i
< dst
->n_var_parts
; i
++)
3125 location_chain
*node
, *node2
;
3126 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
3127 for (node2
= dst
->var_part
[i
].loc_chain
; node2
; node2
= node2
->next
)
3128 if (rtx_equal_p (node
->loc
, node2
->loc
))
3130 if (node
->init
> node2
->init
)
3131 node2
->init
= node
->init
;
3135 /* Continue traversing the hash table. */
3139 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3142 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
3146 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3147 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
3149 if (dst
->vars
== empty_shared_hash
)
3151 shared_hash_destroy (dst
->vars
);
3152 dst
->vars
= shared_hash_copy (src
->vars
);
3156 variable_iterator_type hi
;
3159 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src
->vars
),
3161 variable_union (var
, dst
);
3165 /* Whether the value is currently being expanded. */
3166 #define VALUE_RECURSED_INTO(x) \
3167 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3169 /* Whether no expansion was found, saving useless lookups.
3170 It must only be set when VALUE_CHANGED is clear. */
3171 #define NO_LOC_P(x) \
3172 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3174 /* Whether cur_loc in the value needs to be (re)computed. */
3175 #define VALUE_CHANGED(x) \
3176 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3177 /* Whether cur_loc in the decl needs to be (re)computed. */
3178 #define DECL_CHANGED(x) TREE_VISITED (x)
3180 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3181 user DECLs, this means they're in changed_variables. Values and
3182 debug exprs may be left with this flag set if no user variable
3183 requires them to be evaluated. */
3186 set_dv_changed (decl_or_value dv
, bool newv
)
3188 switch (dv_onepart_p (dv
))
3192 NO_LOC_P (dv_as_value (dv
)) = false;
3193 VALUE_CHANGED (dv_as_value (dv
)) = newv
;
3198 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv
))) = false;
3202 DECL_CHANGED (dv_as_decl (dv
)) = newv
;
3207 /* Return true if DV needs to have its cur_loc recomputed. */
3210 dv_changed_p (decl_or_value dv
)
3212 return (dv_is_value_p (dv
)
3213 ? VALUE_CHANGED (dv_as_value (dv
))
3214 : DECL_CHANGED (dv_as_decl (dv
)));
3217 /* Return a location list node whose loc is rtx_equal to LOC, in the
3218 location list of a one-part variable or value VAR, or in that of
3219 any values recursively mentioned in the location lists. VARS must
3220 be in star-canonical form. */
3222 static location_chain
*
3223 find_loc_in_1pdv (rtx loc
, variable
*var
, variable_table_type
*vars
)
3225 location_chain
*node
;
3226 enum rtx_code loc_code
;
3231 gcc_checking_assert (var
->onepart
);
3233 if (!var
->n_var_parts
)
3236 gcc_checking_assert (loc
!= dv_as_opaque (var
->dv
));
3238 loc_code
= GET_CODE (loc
);
3239 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3244 if (GET_CODE (node
->loc
) != loc_code
)
3246 if (GET_CODE (node
->loc
) != VALUE
)
3249 else if (loc
== node
->loc
)
3251 else if (loc_code
!= VALUE
)
3253 if (rtx_equal_p (loc
, node
->loc
))
3258 /* Since we're in star-canonical form, we don't need to visit
3259 non-canonical nodes: one-part variables and non-canonical
3260 values would only point back to the canonical node. */
3261 if (dv_is_value_p (var
->dv
)
3262 && !canon_value_cmp (node
->loc
, dv_as_value (var
->dv
)))
3264 /* Skip all subsequent VALUEs. */
3265 while (node
->next
&& GET_CODE (node
->next
->loc
) == VALUE
)
3268 gcc_checking_assert (!canon_value_cmp (node
->loc
,
3269 dv_as_value (var
->dv
)));
3270 if (loc
== node
->loc
)
3276 gcc_checking_assert (node
== var
->var_part
[0].loc_chain
);
3277 gcc_checking_assert (!node
->next
);
3279 dv
= dv_from_value (node
->loc
);
3280 rvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
3281 return find_loc_in_1pdv (loc
, rvar
, vars
);
3284 /* ??? Gotta look in cselib_val locations too. */
3289 /* Hash table iteration argument passed to variable_merge. */
3292 /* The set in which the merge is to be inserted. */
3294 /* The set that we're iterating in. */
3296 /* The set that may contain the other dv we are to merge with. */
3298 /* Number of onepart dvs in src. */
3299 int src_onepart_cnt
;
3302 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3303 loc_cmp order, and it is maintained as such. */
3306 insert_into_intersection (location_chain
**nodep
, rtx loc
,
3307 enum var_init_status status
)
3309 location_chain
*node
;
3312 for (node
= *nodep
; node
; nodep
= &node
->next
, node
= *nodep
)
3313 if ((r
= loc_cmp (node
->loc
, loc
)) == 0)
3315 node
->init
= MIN (node
->init
, status
);
3321 node
= new location_chain
;
3324 node
->set_src
= NULL
;
3325 node
->init
= status
;
3326 node
->next
= *nodep
;
3330 /* Insert in DEST the intersection of the locations present in both
3331 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3332 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3336 intersect_loc_chains (rtx val
, location_chain
**dest
, struct dfset_merge
*dsm
,
3337 location_chain
*s1node
, variable
*s2var
)
3339 dataflow_set
*s1set
= dsm
->cur
;
3340 dataflow_set
*s2set
= dsm
->src
;
3341 location_chain
*found
;
3345 location_chain
*s2node
;
3347 gcc_checking_assert (s2var
->onepart
);
3349 if (s2var
->n_var_parts
)
3351 s2node
= s2var
->var_part
[0].loc_chain
;
3353 for (; s1node
&& s2node
;
3354 s1node
= s1node
->next
, s2node
= s2node
->next
)
3355 if (s1node
->loc
!= s2node
->loc
)
3357 else if (s1node
->loc
== val
)
3360 insert_into_intersection (dest
, s1node
->loc
,
3361 MIN (s1node
->init
, s2node
->init
));
3365 for (; s1node
; s1node
= s1node
->next
)
3367 if (s1node
->loc
== val
)
3370 if ((found
= find_loc_in_1pdv (s1node
->loc
, s2var
,
3371 shared_hash_htab (s2set
->vars
))))
3373 insert_into_intersection (dest
, s1node
->loc
,
3374 MIN (s1node
->init
, found
->init
));
3378 if (GET_CODE (s1node
->loc
) == VALUE
3379 && !VALUE_RECURSED_INTO (s1node
->loc
))
3381 decl_or_value dv
= dv_from_value (s1node
->loc
);
3382 variable
*svar
= shared_hash_find (s1set
->vars
, dv
);
3385 if (svar
->n_var_parts
== 1)
3387 VALUE_RECURSED_INTO (s1node
->loc
) = true;
3388 intersect_loc_chains (val
, dest
, dsm
,
3389 svar
->var_part
[0].loc_chain
,
3391 VALUE_RECURSED_INTO (s1node
->loc
) = false;
3396 /* ??? gotta look in cselib_val locations too. */
3398 /* ??? if the location is equivalent to any location in src,
3399 searched recursively
3401 add to dst the values needed to represent the equivalence
3403 telling whether locations S is equivalent to another dv's
3406 for each location D in the list
3408 if S and D satisfy rtx_equal_p, then it is present
3410 else if D is a value, recurse without cycles
3412 else if S and D have the same CODE and MODE
3414 for each operand oS and the corresponding oD
3416 if oS and oD are not equivalent, then S an D are not equivalent
3418 else if they are RTX vectors
3420 if any vector oS element is not equivalent to its respective oD,
3421 then S and D are not equivalent
3429 /* Return -1 if X should be before Y in a location list for a 1-part
3430 variable, 1 if Y should be before X, and 0 if they're equivalent
3431 and should not appear in the list. */
3434 loc_cmp (rtx x
, rtx y
)
3437 RTX_CODE code
= GET_CODE (x
);
3447 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3448 if (REGNO (x
) == REGNO (y
))
3450 else if (REGNO (x
) < REGNO (y
))
3463 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3464 return loc_cmp (XEXP (x
, 0), XEXP (y
, 0));
3470 if (GET_CODE (x
) == VALUE
)
3472 if (GET_CODE (y
) != VALUE
)
3474 /* Don't assert the modes are the same, that is true only
3475 when not recursing. (subreg:QI (value:SI 1:1) 0)
3476 and (subreg:QI (value:DI 2:2) 0) can be compared,
3477 even when the modes are different. */
3478 if (canon_value_cmp (x
, y
))
3484 if (GET_CODE (y
) == VALUE
)
3487 /* Entry value is the least preferable kind of expression. */
3488 if (GET_CODE (x
) == ENTRY_VALUE
)
3490 if (GET_CODE (y
) != ENTRY_VALUE
)
3492 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3493 return loc_cmp (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
3496 if (GET_CODE (y
) == ENTRY_VALUE
)
3499 if (GET_CODE (x
) == GET_CODE (y
))
3500 /* Compare operands below. */;
3501 else if (GET_CODE (x
) < GET_CODE (y
))
3506 gcc_assert (GET_MODE (x
) == GET_MODE (y
));
3508 if (GET_CODE (x
) == DEBUG_EXPR
)
3510 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3511 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)))
3513 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x
))
3514 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y
)));
3518 fmt
= GET_RTX_FORMAT (code
);
3519 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
3523 if (XWINT (x
, i
) == XWINT (y
, i
))
3525 else if (XWINT (x
, i
) < XWINT (y
, i
))
3532 if (XINT (x
, i
) == XINT (y
, i
))
3534 else if (XINT (x
, i
) < XINT (y
, i
))
3540 r
= compare_sizes_for_sort (SUBREG_BYTE (x
), SUBREG_BYTE (y
));
3547 /* Compare the vector length first. */
3548 if (XVECLEN (x
, i
) == XVECLEN (y
, i
))
3549 /* Compare the vectors elements. */;
3550 else if (XVECLEN (x
, i
) < XVECLEN (y
, i
))
3555 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3556 if ((r
= loc_cmp (XVECEXP (x
, i
, j
),
3557 XVECEXP (y
, i
, j
))))
3562 if ((r
= loc_cmp (XEXP (x
, i
), XEXP (y
, i
))))
3568 if (XSTR (x
, i
) == XSTR (y
, i
))
3574 if ((r
= strcmp (XSTR (x
, i
), XSTR (y
, i
))) == 0)
3582 /* These are just backpointers, so they don't matter. */
3589 /* It is believed that rtx's at this level will never
3590 contain anything but integers and other rtx's,
3591 except for within LABEL_REFs and SYMBOL_REFs. */
3595 if (CONST_WIDE_INT_P (x
))
3597 /* Compare the vector length first. */
3598 if (CONST_WIDE_INT_NUNITS (x
) >= CONST_WIDE_INT_NUNITS (y
))
3600 else if (CONST_WIDE_INT_NUNITS (x
) < CONST_WIDE_INT_NUNITS (y
))
3603 /* Compare the vectors elements. */;
3604 for (j
= CONST_WIDE_INT_NUNITS (x
) - 1; j
>= 0 ; j
--)
3606 if (CONST_WIDE_INT_ELT (x
, j
) < CONST_WIDE_INT_ELT (y
, j
))
3608 if (CONST_WIDE_INT_ELT (x
, j
) > CONST_WIDE_INT_ELT (y
, j
))
3616 /* Check the order of entries in one-part variables. */
3619 canonicalize_loc_order_check (variable
**slot
,
3620 dataflow_set
*data ATTRIBUTE_UNUSED
)
3622 variable
*var
= *slot
;
3623 location_chain
*node
, *next
;
3625 #ifdef ENABLE_RTL_CHECKING
3627 for (i
= 0; i
< var
->n_var_parts
; i
++)
3628 gcc_assert (var
->var_part
[0].cur_loc
== NULL
);
3629 gcc_assert (!var
->in_changed_variables
);
3635 gcc_assert (var
->n_var_parts
== 1);
3636 node
= var
->var_part
[0].loc_chain
;
3639 while ((next
= node
->next
))
3641 gcc_assert (loc_cmp (node
->loc
, next
->loc
) < 0);
3648 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3649 more likely to be chosen as canonical for an equivalence set.
3650 Ensure less likely values can reach more likely neighbors, making
3651 the connections bidirectional. */
3654 canonicalize_values_mark (variable
**slot
, dataflow_set
*set
)
3656 variable
*var
= *slot
;
3657 decl_or_value dv
= var
->dv
;
3659 location_chain
*node
;
3661 if (!dv_is_value_p (dv
))
3664 gcc_checking_assert (var
->n_var_parts
== 1);
3666 val
= dv_as_value (dv
);
3668 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3669 if (GET_CODE (node
->loc
) == VALUE
)
3671 if (canon_value_cmp (node
->loc
, val
))
3672 VALUE_RECURSED_INTO (val
) = true;
3675 decl_or_value odv
= dv_from_value (node
->loc
);
3677 oslot
= shared_hash_find_slot_noinsert (set
->vars
, odv
);
3679 set_slot_part (set
, val
, oslot
, odv
, 0,
3680 node
->init
, NULL_RTX
);
3682 VALUE_RECURSED_INTO (node
->loc
) = true;
3689 /* Remove redundant entries from equivalence lists in onepart
3690 variables, canonicalizing equivalence sets into star shapes. */
3693 canonicalize_values_star (variable
**slot
, dataflow_set
*set
)
3695 variable
*var
= *slot
;
3696 decl_or_value dv
= var
->dv
;
3697 location_chain
*node
;
3707 gcc_checking_assert (var
->n_var_parts
== 1);
3709 if (dv_is_value_p (dv
))
3711 cval
= dv_as_value (dv
);
3712 if (!VALUE_RECURSED_INTO (cval
))
3714 VALUE_RECURSED_INTO (cval
) = false;
3724 gcc_assert (var
->n_var_parts
== 1);
3726 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3727 if (GET_CODE (node
->loc
) == VALUE
)
3730 if (VALUE_RECURSED_INTO (node
->loc
))
3732 if (canon_value_cmp (node
->loc
, cval
))
3741 if (!has_marks
|| dv_is_decl_p (dv
))
3744 /* Keep it marked so that we revisit it, either after visiting a
3745 child node, or after visiting a new parent that might be
3747 VALUE_RECURSED_INTO (val
) = true;
3749 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3750 if (GET_CODE (node
->loc
) == VALUE
3751 && VALUE_RECURSED_INTO (node
->loc
))
3755 VALUE_RECURSED_INTO (cval
) = false;
3756 dv
= dv_from_value (cval
);
3757 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
3760 gcc_assert (dv_is_decl_p (var
->dv
));
3761 /* The canonical value was reset and dropped.
3763 clobber_variable_part (set
, NULL
, var
->dv
, 0, NULL
);
3767 gcc_assert (dv_is_value_p (var
->dv
));
3768 if (var
->n_var_parts
== 0)
3770 gcc_assert (var
->n_var_parts
== 1);
3774 VALUE_RECURSED_INTO (val
) = false;
3779 /* Push values to the canonical one. */
3780 cdv
= dv_from_value (cval
);
3781 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3783 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
3784 if (node
->loc
!= cval
)
3786 cslot
= set_slot_part (set
, node
->loc
, cslot
, cdv
, 0,
3787 node
->init
, NULL_RTX
);
3788 if (GET_CODE (node
->loc
) == VALUE
)
3790 decl_or_value ndv
= dv_from_value (node
->loc
);
3792 set_variable_part (set
, cval
, ndv
, 0, node
->init
, NULL_RTX
,
3795 if (canon_value_cmp (node
->loc
, val
))
3797 /* If it could have been a local minimum, it's not any more,
3798 since it's now neighbor to cval, so it may have to push
3799 to it. Conversely, if it wouldn't have prevailed over
3800 val, then whatever mark it has is fine: if it was to
3801 push, it will now push to a more canonical node, but if
3802 it wasn't, then it has already pushed any values it might
3804 VALUE_RECURSED_INTO (node
->loc
) = true;
3805 /* Make sure we visit node->loc by ensuring we cval is
3807 VALUE_RECURSED_INTO (cval
) = true;
3809 else if (!VALUE_RECURSED_INTO (node
->loc
))
3810 /* If we have no need to "recurse" into this node, it's
3811 already "canonicalized", so drop the link to the old
3813 clobber_variable_part (set
, cval
, ndv
, 0, NULL
);
3815 else if (GET_CODE (node
->loc
) == REG
)
3817 attrs
*list
= set
->regs
[REGNO (node
->loc
)], **listp
;
3819 /* Change an existing attribute referring to dv so that it
3820 refers to cdv, removing any duplicate this might
3821 introduce, and checking that no previous duplicates
3822 existed, all in a single pass. */
3826 if (list
->offset
== 0
3827 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3828 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3835 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3838 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3843 if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3845 *listp
= list
->next
;
3851 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (dv
));
3854 else if (dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
))
3856 for (listp
= &list
->next
; (list
= *listp
); listp
= &list
->next
)
3861 if (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
))
3863 *listp
= list
->next
;
3869 gcc_assert (dv_as_opaque (list
->dv
) != dv_as_opaque (cdv
));
3878 if (list
->offset
== 0
3879 && (dv_as_opaque (list
->dv
) == dv_as_opaque (dv
)
3880 || dv_as_opaque (list
->dv
) == dv_as_opaque (cdv
)))
3889 set_slot_part (set
, val
, cslot
, cdv
, 0,
3890 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
);
3892 slot
= clobber_slot_part (set
, cval
, slot
, 0, NULL
);
3894 /* Variable may have been unshared. */
3896 gcc_checking_assert (var
->n_var_parts
&& var
->var_part
[0].loc_chain
->loc
== cval
3897 && var
->var_part
[0].loc_chain
->next
== NULL
);
3899 if (VALUE_RECURSED_INTO (cval
))
3900 goto restart_with_cval
;
3905 /* Bind one-part variables to the canonical value in an equivalence
3906 set. Not doing this causes dataflow convergence failure in rare
3907 circumstances, see PR42873. Unfortunately we can't do this
3908 efficiently as part of canonicalize_values_star, since we may not
3909 have determined or even seen the canonical value of a set when we
3910 get to a variable that references another member of the set. */
3913 canonicalize_vars_star (variable
**slot
, dataflow_set
*set
)
3915 variable
*var
= *slot
;
3916 decl_or_value dv
= var
->dv
;
3917 location_chain
*node
;
3922 location_chain
*cnode
;
3924 if (!var
->onepart
|| var
->onepart
== ONEPART_VALUE
)
3927 gcc_assert (var
->n_var_parts
== 1);
3929 node
= var
->var_part
[0].loc_chain
;
3931 if (GET_CODE (node
->loc
) != VALUE
)
3934 gcc_assert (!node
->next
);
3937 /* Push values to the canonical one. */
3938 cdv
= dv_from_value (cval
);
3939 cslot
= shared_hash_find_slot_noinsert (set
->vars
, cdv
);
3943 gcc_assert (cvar
->n_var_parts
== 1);
3945 cnode
= cvar
->var_part
[0].loc_chain
;
3947 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3948 that are not “more canonical” than it. */
3949 if (GET_CODE (cnode
->loc
) != VALUE
3950 || !canon_value_cmp (cnode
->loc
, cval
))
3953 /* CVAL was found to be non-canonical. Change the variable to point
3954 to the canonical VALUE. */
3955 gcc_assert (!cnode
->next
);
3958 slot
= set_slot_part (set
, cval
, slot
, dv
, 0,
3959 node
->init
, node
->set_src
);
3960 clobber_slot_part (set
, cval
, slot
, 0, node
->set_src
);
3965 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3966 corresponding entry in DSM->src. Multi-part variables are combined
3967 with variable_union, whereas onepart dvs are combined with
3971 variable_merge_over_cur (variable
*s1var
, struct dfset_merge
*dsm
)
3973 dataflow_set
*dst
= dsm
->dst
;
3975 variable
*s2var
, *dvar
= NULL
;
3976 decl_or_value dv
= s1var
->dv
;
3977 onepart_enum onepart
= s1var
->onepart
;
3980 location_chain
*node
, **nodep
;
3982 /* If the incoming onepart variable has an empty location list, then
3983 the intersection will be just as empty. For other variables,
3984 it's always union. */
3985 gcc_checking_assert (s1var
->n_var_parts
3986 && s1var
->var_part
[0].loc_chain
);
3989 return variable_union (s1var
, dst
);
3991 gcc_checking_assert (s1var
->n_var_parts
== 1);
3993 dvhash
= dv_htab_hash (dv
);
3994 if (dv_is_value_p (dv
))
3995 val
= dv_as_value (dv
);
3999 s2var
= shared_hash_find_1 (dsm
->src
->vars
, dv
, dvhash
);
4002 dst_can_be_shared
= false;
4006 dsm
->src_onepart_cnt
--;
4007 gcc_assert (s2var
->var_part
[0].loc_chain
4008 && s2var
->onepart
== onepart
4009 && s2var
->n_var_parts
== 1);
4011 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4015 gcc_assert (dvar
->refcount
== 1
4016 && dvar
->onepart
== onepart
4017 && dvar
->n_var_parts
== 1);
4018 nodep
= &dvar
->var_part
[0].loc_chain
;
4026 if (!dstslot
&& !onepart_variable_different_p (s1var
, s2var
))
4028 dstslot
= shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
,
4030 *dstslot
= dvar
= s2var
;
4035 dst_can_be_shared
= false;
4037 intersect_loc_chains (val
, nodep
, dsm
,
4038 s1var
->var_part
[0].loc_chain
, s2var
);
4044 dvar
= onepart_pool_allocate (onepart
);
4047 dvar
->n_var_parts
= 1;
4048 dvar
->onepart
= onepart
;
4049 dvar
->in_changed_variables
= false;
4050 dvar
->var_part
[0].loc_chain
= node
;
4051 dvar
->var_part
[0].cur_loc
= NULL
;
4053 VAR_LOC_1PAUX (dvar
) = NULL
;
4055 VAR_PART_OFFSET (dvar
, 0) = 0;
4058 = shared_hash_find_slot_unshare_1 (&dst
->vars
, dv
, dvhash
,
4060 gcc_assert (!*dstslot
);
4068 nodep
= &dvar
->var_part
[0].loc_chain
;
4069 while ((node
= *nodep
))
4071 location_chain
**nextp
= &node
->next
;
4073 if (GET_CODE (node
->loc
) == REG
)
4077 for (list
= dst
->regs
[REGNO (node
->loc
)]; list
; list
= list
->next
)
4078 if (GET_MODE (node
->loc
) == GET_MODE (list
->loc
)
4079 && dv_is_value_p (list
->dv
))
4083 attrs_list_insert (&dst
->regs
[REGNO (node
->loc
)],
4085 /* If this value became canonical for another value that had
4086 this register, we want to leave it alone. */
4087 else if (dv_as_value (list
->dv
) != val
)
4089 dstslot
= set_slot_part (dst
, dv_as_value (list
->dv
),
4091 node
->init
, NULL_RTX
);
4092 dstslot
= delete_slot_part (dst
, node
->loc
, dstslot
, 0);
4094 /* Since nextp points into the removed node, we can't
4095 use it. The pointer to the next node moved to nodep.
4096 However, if the variable we're walking is unshared
4097 during our walk, we'll keep walking the location list
4098 of the previously-shared variable, in which case the
4099 node won't have been removed, and we'll want to skip
4100 it. That's why we test *nodep here. */
4106 /* Canonicalization puts registers first, so we don't have to
4112 if (dvar
!= *dstslot
)
4114 nodep
= &dvar
->var_part
[0].loc_chain
;
4118 /* Mark all referenced nodes for canonicalization, and make sure
4119 we have mutual equivalence links. */
4120 VALUE_RECURSED_INTO (val
) = true;
4121 for (node
= *nodep
; node
; node
= node
->next
)
4122 if (GET_CODE (node
->loc
) == VALUE
)
4124 VALUE_RECURSED_INTO (node
->loc
) = true;
4125 set_variable_part (dst
, val
, dv_from_value (node
->loc
), 0,
4126 node
->init
, NULL
, INSERT
);
4129 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4130 gcc_assert (*dstslot
== dvar
);
4131 canonicalize_values_star (dstslot
, dst
);
4132 gcc_checking_assert (dstslot
4133 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4139 bool has_value
= false, has_other
= false;
4141 /* If we have one value and anything else, we're going to
4142 canonicalize this, so make sure all values have an entry in
4143 the table and are marked for canonicalization. */
4144 for (node
= *nodep
; node
; node
= node
->next
)
4146 if (GET_CODE (node
->loc
) == VALUE
)
4148 /* If this was marked during register canonicalization,
4149 we know we have to canonicalize values. */
4164 if (has_value
&& has_other
)
4166 for (node
= *nodep
; node
; node
= node
->next
)
4168 if (GET_CODE (node
->loc
) == VALUE
)
4170 decl_or_value dv
= dv_from_value (node
->loc
);
4171 variable
**slot
= NULL
;
4173 if (shared_hash_shared (dst
->vars
))
4174 slot
= shared_hash_find_slot_noinsert (dst
->vars
, dv
);
4176 slot
= shared_hash_find_slot_unshare (&dst
->vars
, dv
,
4180 variable
*var
= onepart_pool_allocate (ONEPART_VALUE
);
4183 var
->n_var_parts
= 1;
4184 var
->onepart
= ONEPART_VALUE
;
4185 var
->in_changed_variables
= false;
4186 var
->var_part
[0].loc_chain
= NULL
;
4187 var
->var_part
[0].cur_loc
= NULL
;
4188 VAR_LOC_1PAUX (var
) = NULL
;
4192 VALUE_RECURSED_INTO (node
->loc
) = true;
4196 dstslot
= shared_hash_find_slot_noinsert_1 (dst
->vars
, dv
, dvhash
);
4197 gcc_assert (*dstslot
== dvar
);
4198 canonicalize_values_star (dstslot
, dst
);
4199 gcc_checking_assert (dstslot
4200 == shared_hash_find_slot_noinsert_1 (dst
->vars
,
4206 if (!onepart_variable_different_p (dvar
, s2var
))
4208 variable_htab_free (dvar
);
4209 *dstslot
= dvar
= s2var
;
4212 else if (s2var
!= s1var
&& !onepart_variable_different_p (dvar
, s1var
))
4214 variable_htab_free (dvar
);
4215 *dstslot
= dvar
= s1var
;
4217 dst_can_be_shared
= false;
4220 dst_can_be_shared
= false;
4225 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4226 multi-part variable. Unions of multi-part variables and
4227 intersections of one-part ones will be handled in
4228 variable_merge_over_cur(). */
4231 variable_merge_over_src (variable
*s2var
, struct dfset_merge
*dsm
)
4233 dataflow_set
*dst
= dsm
->dst
;
4234 decl_or_value dv
= s2var
->dv
;
4236 if (!s2var
->onepart
)
4238 variable
**dstp
= shared_hash_find_slot (dst
->vars
, dv
);
4244 dsm
->src_onepart_cnt
++;
4248 /* Combine dataflow set information from SRC2 into DST, using PDST
4249 to carry over information across passes. */
4252 dataflow_set_merge (dataflow_set
*dst
, dataflow_set
*src2
)
4254 dataflow_set cur
= *dst
;
4255 dataflow_set
*src1
= &cur
;
4256 struct dfset_merge dsm
;
4258 size_t src1_elems
, src2_elems
;
4259 variable_iterator_type hi
;
4262 src1_elems
= shared_hash_htab (src1
->vars
)->elements ();
4263 src2_elems
= shared_hash_htab (src2
->vars
)->elements ();
4264 dataflow_set_init (dst
);
4265 dst
->stack_adjust
= cur
.stack_adjust
;
4266 shared_hash_destroy (dst
->vars
);
4267 dst
->vars
= new shared_hash
;
4268 dst
->vars
->refcount
= 1;
4269 dst
->vars
->htab
= new variable_table_type (MAX (src1_elems
, src2_elems
));
4271 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4272 attrs_list_mpdv_union (&dst
->regs
[i
], src1
->regs
[i
], src2
->regs
[i
]);
4277 dsm
.src_onepart_cnt
= 0;
4279 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.src
->vars
),
4281 variable_merge_over_src (var
, &dsm
);
4282 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm
.cur
->vars
),
4284 variable_merge_over_cur (var
, &dsm
);
4286 if (dsm
.src_onepart_cnt
)
4287 dst_can_be_shared
= false;
4289 dataflow_set_destroy (src1
);
4292 /* Mark register equivalences. */
4295 dataflow_set_equiv_regs (dataflow_set
*set
)
4298 attrs
*list
, **listp
;
4300 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4302 rtx canon
[NUM_MACHINE_MODES
];
4304 /* If the list is empty or one entry, no need to canonicalize
4306 if (set
->regs
[i
] == NULL
|| set
->regs
[i
]->next
== NULL
)
4309 memset (canon
, 0, sizeof (canon
));
4311 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4312 if (list
->offset
== 0 && dv_is_value_p (list
->dv
))
4314 rtx val
= dv_as_value (list
->dv
);
4315 rtx
*cvalp
= &canon
[(int)GET_MODE (val
)];
4318 if (canon_value_cmp (val
, cval
))
4322 for (list
= set
->regs
[i
]; list
; list
= list
->next
)
4323 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4325 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4330 if (dv_is_value_p (list
->dv
))
4332 rtx val
= dv_as_value (list
->dv
);
4337 VALUE_RECURSED_INTO (val
) = true;
4338 set_variable_part (set
, val
, dv_from_value (cval
), 0,
4339 VAR_INIT_STATUS_INITIALIZED
,
4343 VALUE_RECURSED_INTO (cval
) = true;
4344 set_variable_part (set
, cval
, list
->dv
, 0,
4345 VAR_INIT_STATUS_INITIALIZED
, NULL
, NO_INSERT
);
4348 for (listp
= &set
->regs
[i
]; (list
= *listp
);
4349 listp
= list
? &list
->next
: listp
)
4350 if (list
->offset
== 0 && dv_onepart_p (list
->dv
))
4352 rtx cval
= canon
[(int)GET_MODE (list
->loc
)];
4358 if (dv_is_value_p (list
->dv
))
4360 rtx val
= dv_as_value (list
->dv
);
4361 if (!VALUE_RECURSED_INTO (val
))
4365 slot
= shared_hash_find_slot_noinsert (set
->vars
, list
->dv
);
4366 canonicalize_values_star (slot
, set
);
4373 /* Remove any redundant values in the location list of VAR, which must
4374 be unshared and 1-part. */
4377 remove_duplicate_values (variable
*var
)
4379 location_chain
*node
, **nodep
;
4381 gcc_assert (var
->onepart
);
4382 gcc_assert (var
->n_var_parts
== 1);
4383 gcc_assert (var
->refcount
== 1);
4385 for (nodep
= &var
->var_part
[0].loc_chain
; (node
= *nodep
); )
4387 if (GET_CODE (node
->loc
) == VALUE
)
4389 if (VALUE_RECURSED_INTO (node
->loc
))
4391 /* Remove duplicate value node. */
4392 *nodep
= node
->next
;
4397 VALUE_RECURSED_INTO (node
->loc
) = true;
4399 nodep
= &node
->next
;
4402 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4403 if (GET_CODE (node
->loc
) == VALUE
)
4405 gcc_assert (VALUE_RECURSED_INTO (node
->loc
));
4406 VALUE_RECURSED_INTO (node
->loc
) = false;
4411 /* Hash table iteration argument passed to variable_post_merge. */
4412 struct dfset_post_merge
4414 /* The new input set for the current block. */
4416 /* Pointer to the permanent input set for the current block, or
4418 dataflow_set
**permp
;
4421 /* Create values for incoming expressions associated with one-part
4422 variables that don't have value numbers for them. */
4425 variable_post_merge_new_vals (variable
**slot
, dfset_post_merge
*dfpm
)
4427 dataflow_set
*set
= dfpm
->set
;
4428 variable
*var
= *slot
;
4429 location_chain
*node
;
4431 if (!var
->onepart
|| !var
->n_var_parts
)
4434 gcc_assert (var
->n_var_parts
== 1);
4436 if (dv_is_decl_p (var
->dv
))
4438 bool check_dupes
= false;
4441 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4443 if (GET_CODE (node
->loc
) == VALUE
)
4444 gcc_assert (!VALUE_RECURSED_INTO (node
->loc
));
4445 else if (GET_CODE (node
->loc
) == REG
)
4447 attrs
*att
, **attp
, **curp
= NULL
;
4449 if (var
->refcount
!= 1)
4451 slot
= unshare_variable (set
, slot
, var
,
4452 VAR_INIT_STATUS_INITIALIZED
);
4457 for (attp
= &set
->regs
[REGNO (node
->loc
)]; (att
= *attp
);
4459 if (att
->offset
== 0
4460 && GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4462 if (dv_is_value_p (att
->dv
))
4464 rtx cval
= dv_as_value (att
->dv
);
4469 else if (dv_as_opaque (att
->dv
) == dv_as_opaque (var
->dv
))
4477 if ((*curp
)->offset
== 0
4478 && GET_MODE ((*curp
)->loc
) == GET_MODE (node
->loc
)
4479 && dv_as_opaque ((*curp
)->dv
) == dv_as_opaque (var
->dv
))
4482 curp
= &(*curp
)->next
;
4493 *dfpm
->permp
= XNEW (dataflow_set
);
4494 dataflow_set_init (*dfpm
->permp
);
4497 for (att
= (*dfpm
->permp
)->regs
[REGNO (node
->loc
)];
4498 att
; att
= att
->next
)
4499 if (GET_MODE (att
->loc
) == GET_MODE (node
->loc
))
4501 gcc_assert (att
->offset
== 0
4502 && dv_is_value_p (att
->dv
));
4503 val_reset (set
, att
->dv
);
4510 cval
= dv_as_value (cdv
);
4514 /* Create a unique value to hold this register,
4515 that ought to be found and reused in
4516 subsequent rounds. */
4518 gcc_assert (!cselib_lookup (node
->loc
,
4519 GET_MODE (node
->loc
), 0,
4521 v
= cselib_lookup (node
->loc
, GET_MODE (node
->loc
), 1,
4523 cselib_preserve_value (v
);
4524 cselib_invalidate_rtx (node
->loc
);
4526 cdv
= dv_from_value (cval
);
4529 "Created new value %u:%u for reg %i\n",
4530 v
->uid
, v
->hash
, REGNO (node
->loc
));
4533 var_reg_decl_set (*dfpm
->permp
, node
->loc
,
4534 VAR_INIT_STATUS_INITIALIZED
,
4535 cdv
, 0, NULL
, INSERT
);
4541 /* Remove attribute referring to the decl, which now
4542 uses the value for the register, already existing or
4543 to be added when we bring perm in. */
4551 remove_duplicate_values (var
);
4557 /* Reset values in the permanent set that are not associated with the
4558 chosen expression. */
4561 variable_post_merge_perm_vals (variable
**pslot
, dfset_post_merge
*dfpm
)
4563 dataflow_set
*set
= dfpm
->set
;
4564 variable
*pvar
= *pslot
, *var
;
4565 location_chain
*pnode
;
4569 gcc_assert (dv_is_value_p (pvar
->dv
)
4570 && pvar
->n_var_parts
== 1);
4571 pnode
= pvar
->var_part
[0].loc_chain
;
4574 && REG_P (pnode
->loc
));
4578 var
= shared_hash_find (set
->vars
, dv
);
4581 /* Although variable_post_merge_new_vals may have made decls
4582 non-star-canonical, values that pre-existed in canonical form
4583 remain canonical, and newly-created values reference a single
4584 REG, so they are canonical as well. Since VAR has the
4585 location list for a VALUE, using find_loc_in_1pdv for it is
4586 fine, since VALUEs don't map back to DECLs. */
4587 if (find_loc_in_1pdv (pnode
->loc
, var
, shared_hash_htab (set
->vars
)))
4589 val_reset (set
, dv
);
4592 for (att
= set
->regs
[REGNO (pnode
->loc
)]; att
; att
= att
->next
)
4593 if (att
->offset
== 0
4594 && GET_MODE (att
->loc
) == GET_MODE (pnode
->loc
)
4595 && dv_is_value_p (att
->dv
))
4598 /* If there is a value associated with this register already, create
4600 if (att
&& dv_as_value (att
->dv
) != dv_as_value (dv
))
4602 rtx cval
= dv_as_value (att
->dv
);
4603 set_variable_part (set
, cval
, dv
, 0, pnode
->init
, NULL
, INSERT
);
4604 set_variable_part (set
, dv_as_value (dv
), att
->dv
, 0, pnode
->init
,
4609 attrs_list_insert (&set
->regs
[REGNO (pnode
->loc
)],
4611 variable_union (pvar
, set
);
4617 /* Just checking stuff and registering register attributes for
4621 dataflow_post_merge_adjust (dataflow_set
*set
, dataflow_set
**permp
)
4623 struct dfset_post_merge dfpm
;
4628 shared_hash_htab (set
->vars
)
4629 ->traverse
<dfset_post_merge
*, variable_post_merge_new_vals
> (&dfpm
);
4631 shared_hash_htab ((*permp
)->vars
)
4632 ->traverse
<dfset_post_merge
*, variable_post_merge_perm_vals
> (&dfpm
);
4633 shared_hash_htab (set
->vars
)
4634 ->traverse
<dataflow_set
*, canonicalize_values_star
> (set
);
4635 shared_hash_htab (set
->vars
)
4636 ->traverse
<dataflow_set
*, canonicalize_vars_star
> (set
);
4639 /* Return a node whose loc is a MEM that refers to EXPR in the
4640 location list of a one-part variable or value VAR, or in that of
4641 any values recursively mentioned in the location lists. */
4643 static location_chain
*
4644 find_mem_expr_in_1pdv (tree expr
, rtx val
, variable_table_type
*vars
)
4646 location_chain
*node
;
4649 location_chain
*where
= NULL
;
4654 gcc_assert (GET_CODE (val
) == VALUE
4655 && !VALUE_RECURSED_INTO (val
));
4657 dv
= dv_from_value (val
);
4658 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
4663 gcc_assert (var
->onepart
);
4665 if (!var
->n_var_parts
)
4668 VALUE_RECURSED_INTO (val
) = true;
4670 for (node
= var
->var_part
[0].loc_chain
; node
; node
= node
->next
)
4671 if (MEM_P (node
->loc
)
4672 && MEM_EXPR (node
->loc
) == expr
4673 && int_mem_offset (node
->loc
) == 0)
4678 else if (GET_CODE (node
->loc
) == VALUE
4679 && !VALUE_RECURSED_INTO (node
->loc
)
4680 && (where
= find_mem_expr_in_1pdv (expr
, node
->loc
, vars
)))
4683 VALUE_RECURSED_INTO (val
) = false;
4688 /* Return TRUE if the value of MEM may vary across a call. */
4691 mem_dies_at_call (rtx mem
)
4693 tree expr
= MEM_EXPR (mem
);
4699 decl
= get_base_address (expr
);
4707 return (may_be_aliased (decl
)
4708 || (!TREE_READONLY (decl
) && is_global_var (decl
)));
4711 /* Remove all MEMs from the location list of a hash table entry for a
4712 one-part variable, except those whose MEM attributes map back to
4713 the variable itself, directly or within a VALUE. */
4716 dataflow_set_preserve_mem_locs (variable
**slot
, dataflow_set
*set
)
4718 variable
*var
= *slot
;
4720 if (var
->onepart
== ONEPART_VDECL
|| var
->onepart
== ONEPART_DEXPR
)
4722 tree decl
= dv_as_decl (var
->dv
);
4723 location_chain
*loc
, **locp
;
4724 bool changed
= false;
4726 if (!var
->n_var_parts
)
4729 gcc_assert (var
->n_var_parts
== 1);
4731 if (shared_var_p (var
, set
->vars
))
4733 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4735 /* We want to remove dying MEMs that don't refer to DECL. */
4736 if (GET_CODE (loc
->loc
) == MEM
4737 && (MEM_EXPR (loc
->loc
) != decl
4738 || int_mem_offset (loc
->loc
) != 0)
4739 && mem_dies_at_call (loc
->loc
))
4741 /* We want to move here MEMs that do refer to DECL. */
4742 else if (GET_CODE (loc
->loc
) == VALUE
4743 && find_mem_expr_in_1pdv (decl
, loc
->loc
,
4744 shared_hash_htab (set
->vars
)))
4751 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4753 gcc_assert (var
->n_var_parts
== 1);
4756 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4759 rtx old_loc
= loc
->loc
;
4760 if (GET_CODE (old_loc
) == VALUE
)
4762 location_chain
*mem_node
4763 = find_mem_expr_in_1pdv (decl
, loc
->loc
,
4764 shared_hash_htab (set
->vars
));
4766 /* ??? This picks up only one out of multiple MEMs that
4767 refer to the same variable. Do we ever need to be
4768 concerned about dealing with more than one, or, given
4769 that they should all map to the same variable
4770 location, their addresses will have been merged and
4771 they will be regarded as equivalent? */
4774 loc
->loc
= mem_node
->loc
;
4775 loc
->set_src
= mem_node
->set_src
;
4776 loc
->init
= MIN (loc
->init
, mem_node
->init
);
4780 if (GET_CODE (loc
->loc
) != MEM
4781 || (MEM_EXPR (loc
->loc
) == decl
4782 && int_mem_offset (loc
->loc
) == 0)
4783 || !mem_dies_at_call (loc
->loc
))
4785 if (old_loc
!= loc
->loc
&& emit_notes
)
4787 if (old_loc
== var
->var_part
[0].cur_loc
)
4790 var
->var_part
[0].cur_loc
= NULL
;
4799 if (old_loc
== var
->var_part
[0].cur_loc
)
4802 var
->var_part
[0].cur_loc
= NULL
;
4809 if (!var
->var_part
[0].loc_chain
)
4815 variable_was_changed (var
, set
);
4821 /* Remove all MEMs from the location list of a hash table entry for a
4822 onepart variable. */
4825 dataflow_set_remove_mem_locs (variable
**slot
, dataflow_set
*set
)
4827 variable
*var
= *slot
;
4829 if (var
->onepart
!= NOT_ONEPART
)
4831 location_chain
*loc
, **locp
;
4832 bool changed
= false;
4835 gcc_assert (var
->n_var_parts
== 1);
4837 if (shared_var_p (var
, set
->vars
))
4839 for (loc
= var
->var_part
[0].loc_chain
; loc
; loc
= loc
->next
)
4840 if (GET_CODE (loc
->loc
) == MEM
4841 && mem_dies_at_call (loc
->loc
))
4847 slot
= unshare_variable (set
, slot
, var
, VAR_INIT_STATUS_UNKNOWN
);
4849 gcc_assert (var
->n_var_parts
== 1);
4852 if (VAR_LOC_1PAUX (var
))
4853 cur_loc
= VAR_LOC_FROM (var
);
4855 cur_loc
= var
->var_part
[0].cur_loc
;
4857 for (locp
= &var
->var_part
[0].loc_chain
, loc
= *locp
;
4860 if (GET_CODE (loc
->loc
) != MEM
4861 || !mem_dies_at_call (loc
->loc
))
4868 /* If we have deleted the location which was last emitted
4869 we have to emit new location so add the variable to set
4870 of changed variables. */
4871 if (cur_loc
== loc
->loc
)
4874 var
->var_part
[0].cur_loc
= NULL
;
4875 if (VAR_LOC_1PAUX (var
))
4876 VAR_LOC_FROM (var
) = NULL
;
4881 if (!var
->var_part
[0].loc_chain
)
4887 variable_was_changed (var
, set
);
4893 /* Remove all variable-location information about call-clobbered
4894 registers, as well as associations between MEMs and VALUEs. */
4897 dataflow_set_clear_at_call (dataflow_set
*set
, rtx_insn
*call_insn
)
4900 hard_reg_set_iterator hrsi
;
4901 HARD_REG_SET invalidated_regs
;
4903 get_call_reg_set_usage (call_insn
, &invalidated_regs
,
4904 regs_invalidated_by_call
);
4906 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs
, 0, r
, hrsi
)
4907 var_regno_delete (set
, r
);
4909 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4911 set
->traversed_vars
= set
->vars
;
4912 shared_hash_htab (set
->vars
)
4913 ->traverse
<dataflow_set
*, dataflow_set_preserve_mem_locs
> (set
);
4914 set
->traversed_vars
= set
->vars
;
4915 shared_hash_htab (set
->vars
)
4916 ->traverse
<dataflow_set
*, dataflow_set_remove_mem_locs
> (set
);
4917 set
->traversed_vars
= NULL
;
4922 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
4924 location_chain
*lc1
, *lc2
;
4926 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
4928 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
4930 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
4932 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
4935 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
4944 /* Return true if one-part variables VAR1 and VAR2 are different.
4945 They must be in canonical order. */
4948 onepart_variable_different_p (variable
*var1
, variable
*var2
)
4950 location_chain
*lc1
, *lc2
;
4955 gcc_assert (var1
->n_var_parts
== 1
4956 && var2
->n_var_parts
== 1);
4958 lc1
= var1
->var_part
[0].loc_chain
;
4959 lc2
= var2
->var_part
[0].loc_chain
;
4961 gcc_assert (lc1
&& lc2
);
4965 if (loc_cmp (lc1
->loc
, lc2
->loc
))
4974 /* Return true if one-part variables VAR1 and VAR2 are different.
4975 They must be in canonical order. */
4978 dump_onepart_variable_differences (variable
*var1
, variable
*var2
)
4980 location_chain
*lc1
, *lc2
;
4982 gcc_assert (var1
!= var2
);
4983 gcc_assert (dump_file
);
4984 gcc_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
));
4985 gcc_assert (var1
->n_var_parts
== 1
4986 && var2
->n_var_parts
== 1);
4988 lc1
= var1
->var_part
[0].loc_chain
;
4989 lc2
= var2
->var_part
[0].loc_chain
;
4991 gcc_assert (lc1
&& lc2
);
4995 switch (loc_cmp (lc1
->loc
, lc2
->loc
))
4998 fprintf (dump_file
, "removed: ");
4999 print_rtl_single (dump_file
, lc1
->loc
);
5005 fprintf (dump_file
, "added: ");
5006 print_rtl_single (dump_file
, lc2
->loc
);
5018 fprintf (dump_file
, "removed: ");
5019 print_rtl_single (dump_file
, lc1
->loc
);
5025 fprintf (dump_file
, "added: ");
5026 print_rtl_single (dump_file
, lc2
->loc
);
5031 /* Return true if variables VAR1 and VAR2 are different. */
5034 variable_different_p (variable
*var1
, variable
*var2
)
5041 if (var1
->onepart
!= var2
->onepart
)
5044 if (var1
->n_var_parts
!= var2
->n_var_parts
)
5047 if (var1
->onepart
&& var1
->n_var_parts
)
5049 gcc_checking_assert (dv_as_opaque (var1
->dv
) == dv_as_opaque (var2
->dv
)
5050 && var1
->n_var_parts
== 1);
5051 /* One-part values have locations in a canonical order. */
5052 return onepart_variable_different_p (var1
, var2
);
5055 for (i
= 0; i
< var1
->n_var_parts
; i
++)
5057 if (VAR_PART_OFFSET (var1
, i
) != VAR_PART_OFFSET (var2
, i
))
5059 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
5061 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
5067 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5070 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
5072 variable_iterator_type hi
;
5074 bool diffound
= false;
5075 bool details
= (dump_file
&& (dump_flags
& TDF_DETAILS
));
5087 if (old_set
->vars
== new_set
->vars
)
5090 if (shared_hash_htab (old_set
->vars
)->elements ()
5091 != shared_hash_htab (new_set
->vars
)->elements ())
5094 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set
->vars
),
5097 variable_table_type
*htab
= shared_hash_htab (new_set
->vars
);
5098 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5102 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5104 fprintf (dump_file
, "dataflow difference found: removal of:\n");
5109 else if (variable_different_p (var1
, var2
))
5113 fprintf (dump_file
, "dataflow difference found: "
5114 "old and new follow:\n");
5116 if (dv_onepart_p (var1
->dv
))
5117 dump_onepart_variable_differences (var1
, var2
);
5124 /* There's no need to traverse the second hashtab unless we want to
5125 print the details. If both have the same number of elements and
5126 the second one had all entries found in the first one, then the
5127 second can't have any extra entries. */
5131 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set
->vars
),
5134 variable_table_type
*htab
= shared_hash_htab (old_set
->vars
);
5135 variable
*var2
= htab
->find_with_hash (var1
->dv
, dv_htab_hash (var1
->dv
));
5140 fprintf (dump_file
, "dataflow difference found: addition of:\n");
5152 /* Free the contents of dataflow set SET. */
5155 dataflow_set_destroy (dataflow_set
*set
)
5159 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5160 attrs_list_clear (&set
->regs
[i
]);
5162 shared_hash_destroy (set
->vars
);
5166 /* Return true if T is a tracked parameter with non-degenerate record type. */
5169 tracked_record_parameter_p (tree t
)
5171 if (TREE_CODE (t
) != PARM_DECL
)
5174 if (DECL_MODE (t
) == BLKmode
)
5177 tree type
= TREE_TYPE (t
);
5178 if (TREE_CODE (type
) != RECORD_TYPE
)
5181 if (TYPE_FIELDS (type
) == NULL_TREE
5182 || DECL_CHAIN (TYPE_FIELDS (type
)) == NULL_TREE
)
5188 /* Shall EXPR be tracked? */
5191 track_expr_p (tree expr
, bool need_rtl
)
5196 if (TREE_CODE (expr
) == DEBUG_EXPR_DECL
)
5197 return DECL_RTL_SET_P (expr
);
5199 /* If EXPR is not a parameter or a variable do not track it. */
5200 if (!VAR_P (expr
) && TREE_CODE (expr
) != PARM_DECL
)
5203 /* It also must have a name... */
5204 if (!DECL_NAME (expr
) && need_rtl
)
5207 /* ... and a RTL assigned to it. */
5208 decl_rtl
= DECL_RTL_IF_SET (expr
);
5209 if (!decl_rtl
&& need_rtl
)
5212 /* If this expression is really a debug alias of some other declaration, we
5213 don't need to track this expression if the ultimate declaration is
5216 if (VAR_P (realdecl
) && DECL_HAS_DEBUG_EXPR_P (realdecl
))
5218 realdecl
= DECL_DEBUG_EXPR (realdecl
);
5219 if (!DECL_P (realdecl
))
5221 if (handled_component_p (realdecl
)
5222 || (TREE_CODE (realdecl
) == MEM_REF
5223 && TREE_CODE (TREE_OPERAND (realdecl
, 0)) == ADDR_EXPR
))
5225 HOST_WIDE_INT bitsize
, bitpos
;
5228 = get_ref_base_and_extent_hwi (realdecl
, &bitpos
,
5229 &bitsize
, &reverse
);
5231 || !DECL_P (innerdecl
)
5232 || DECL_IGNORED_P (innerdecl
)
5233 /* Do not track declarations for parts of tracked record
5234 parameters since we want to track them as a whole. */
5235 || tracked_record_parameter_p (innerdecl
)
5236 || TREE_STATIC (innerdecl
)
5238 || bitpos
+ bitsize
> 256)
5248 /* Do not track EXPR if REALDECL it should be ignored for debugging
5250 if (DECL_IGNORED_P (realdecl
))
5253 /* Do not track global variables until we are able to emit correct location
5255 if (TREE_STATIC (realdecl
))
5258 /* When the EXPR is a DECL for alias of some variable (see example)
5259 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5260 DECL_RTL contains SYMBOL_REF.
5263 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5266 if (decl_rtl
&& MEM_P (decl_rtl
)
5267 && contains_symbol_ref_p (XEXP (decl_rtl
, 0)))
5270 /* If RTX is a memory it should not be very large (because it would be
5271 an array or struct). */
5272 if (decl_rtl
&& MEM_P (decl_rtl
))
5274 /* Do not track structures and arrays. */
5275 if ((GET_MODE (decl_rtl
) == BLKmode
5276 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl
)))
5277 && !tracked_record_parameter_p (realdecl
))
5279 if (MEM_SIZE_KNOWN_P (decl_rtl
)
5280 && maybe_gt (MEM_SIZE (decl_rtl
), MAX_VAR_PARTS
))
5284 DECL_CHANGED (expr
) = 0;
5285 DECL_CHANGED (realdecl
) = 0;
5289 /* Determine whether a given LOC refers to the same variable part as
5293 same_variable_part_p (rtx loc
, tree expr
, poly_int64 offset
)
5298 if (! DECL_P (expr
))
5303 expr2
= REG_EXPR (loc
);
5304 offset2
= REG_OFFSET (loc
);
5306 else if (MEM_P (loc
))
5308 expr2
= MEM_EXPR (loc
);
5309 offset2
= int_mem_offset (loc
);
5314 if (! expr2
|| ! DECL_P (expr2
))
5317 expr
= var_debug_decl (expr
);
5318 expr2
= var_debug_decl (expr2
);
5320 return (expr
== expr2
&& known_eq (offset
, offset2
));
5323 /* LOC is a REG or MEM that we would like to track if possible.
5324 If EXPR is null, we don't know what expression LOC refers to,
5325 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5326 LOC is an lvalue register.
5328 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5329 is something we can track. When returning true, store the mode of
5330 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5331 from EXPR in *OFFSET_OUT (if nonnull). */
5334 track_loc_p (rtx loc
, tree expr
, poly_int64 offset
, bool store_reg_p
,
5335 machine_mode
*mode_out
, HOST_WIDE_INT
*offset_out
)
5339 if (expr
== NULL
|| !track_expr_p (expr
, true))
5342 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5343 whole subreg, but only the old inner part is really relevant. */
5344 mode
= GET_MODE (loc
);
5345 if (REG_P (loc
) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc
)))
5347 machine_mode pseudo_mode
;
5349 pseudo_mode
= PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc
));
5350 if (paradoxical_subreg_p (mode
, pseudo_mode
))
5352 offset
+= byte_lowpart_offset (pseudo_mode
, mode
);
5357 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5358 Do the same if we are storing to a register and EXPR occupies
5359 the whole of register LOC; in that case, the whole of EXPR is
5360 being changed. We exclude complex modes from the second case
5361 because the real and imaginary parts are represented as separate
5362 pseudo registers, even if the whole complex value fits into one
5364 if ((paradoxical_subreg_p (mode
, DECL_MODE (expr
))
5366 && !COMPLEX_MODE_P (DECL_MODE (expr
))
5367 && hard_regno_nregs (REGNO (loc
), DECL_MODE (expr
)) == 1))
5368 && known_eq (offset
+ byte_lowpart_offset (DECL_MODE (expr
), mode
), 0))
5370 mode
= DECL_MODE (expr
);
5374 HOST_WIDE_INT const_offset
;
5375 if (!track_offset_p (offset
, &const_offset
))
5381 *offset_out
= const_offset
;
5385 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5386 want to track. When returning nonnull, make sure that the attributes
5387 on the returned value are updated. */
5390 var_lowpart (machine_mode mode
, rtx loc
)
5394 if (GET_MODE (loc
) == mode
)
5397 if (!REG_P (loc
) && !MEM_P (loc
))
5400 poly_uint64 offset
= byte_lowpart_offset (mode
, GET_MODE (loc
));
5403 return adjust_address_nv (loc
, mode
, offset
);
5405 poly_uint64 reg_offset
= subreg_lowpart_offset (mode
, GET_MODE (loc
));
5406 regno
= REGNO (loc
) + subreg_regno_offset (REGNO (loc
), GET_MODE (loc
),
5408 return gen_rtx_REG_offset (loc
, mode
, regno
, offset
);
5411 /* Carry information about uses and stores while walking rtx. */
5413 struct count_use_info
5415 /* The insn where the RTX is. */
5418 /* The basic block where insn is. */
5421 /* The array of n_sets sets in the insn, as determined by cselib. */
5422 struct cselib_set
*sets
;
5425 /* True if we're counting stores, false otherwise. */
5429 /* Find a VALUE corresponding to X. */
5431 static inline cselib_val
*
5432 find_use_val (rtx x
, machine_mode mode
, struct count_use_info
*cui
)
5438 /* This is called after uses are set up and before stores are
5439 processed by cselib, so it's safe to look up srcs, but not
5440 dsts. So we look up expressions that appear in srcs or in
5441 dest expressions, but we search the sets array for dests of
5445 /* Some targets represent memset and memcpy patterns
5446 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5447 (set (mem:BLK ...) (const_int ...)) or
5448 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5449 in that case, otherwise we end up with mode mismatches. */
5450 if (mode
== BLKmode
&& MEM_P (x
))
5452 for (i
= 0; i
< cui
->n_sets
; i
++)
5453 if (cui
->sets
[i
].dest
== x
)
5454 return cui
->sets
[i
].src_elt
;
5457 return cselib_lookup (x
, mode
, 0, VOIDmode
);
5463 /* Replace all registers and addresses in an expression with VALUE
5464 expressions that map back to them, unless the expression is a
5465 register. If no mapping is or can be performed, returns NULL. */
5468 replace_expr_with_values (rtx loc
)
5470 if (REG_P (loc
) || GET_CODE (loc
) == ENTRY_VALUE
)
5472 else if (MEM_P (loc
))
5474 cselib_val
*addr
= cselib_lookup (XEXP (loc
, 0),
5475 get_address_mode (loc
), 0,
5478 return replace_equiv_address_nv (loc
, addr
->val_rtx
);
5483 return cselib_subst_to_values (loc
, VOIDmode
);
5486 /* Return true if X contains a DEBUG_EXPR. */
5489 rtx_debug_expr_p (const_rtx x
)
5491 subrtx_iterator::array_type array
;
5492 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5493 if (GET_CODE (*iter
) == DEBUG_EXPR
)
5498 /* Determine what kind of micro operation to choose for a USE. Return
5499 MO_CLOBBER if no micro operation is to be generated. */
5501 static enum micro_operation_type
5502 use_type (rtx loc
, struct count_use_info
*cui
, machine_mode
*modep
)
5506 if (cui
&& cui
->sets
)
5508 if (GET_CODE (loc
) == VAR_LOCATION
)
5510 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc
), false))
5512 rtx ploc
= PAT_VAR_LOCATION_LOC (loc
);
5513 if (! VAR_LOC_UNKNOWN_P (ploc
))
5515 cselib_val
*val
= cselib_lookup (ploc
, GET_MODE (loc
), 1,
5518 /* ??? flag_float_store and volatile mems are never
5519 given values, but we could in theory use them for
5521 gcc_assert (val
|| 1);
5529 if (REG_P (loc
) || MEM_P (loc
))
5532 *modep
= GET_MODE (loc
);
5536 || (find_use_val (loc
, GET_MODE (loc
), cui
)
5537 && cselib_lookup (XEXP (loc
, 0),
5538 get_address_mode (loc
), 0,
5544 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5546 if (val
&& !cselib_preserved_value_p (val
))
5554 gcc_assert (REGNO (loc
) < FIRST_PSEUDO_REGISTER
);
5556 if (loc
== cfa_base_rtx
)
5558 expr
= REG_EXPR (loc
);
5561 return MO_USE_NO_VAR
;
5562 else if (target_for_debug_bind (var_debug_decl (expr
)))
5564 else if (track_loc_p (loc
, expr
, REG_OFFSET (loc
),
5565 false, modep
, NULL
))
5568 return MO_USE_NO_VAR
;
5570 else if (MEM_P (loc
))
5572 expr
= MEM_EXPR (loc
);
5576 else if (target_for_debug_bind (var_debug_decl (expr
)))
5578 else if (track_loc_p (loc
, expr
, int_mem_offset (loc
),
5580 /* Multi-part variables shouldn't refer to one-part
5581 variable names such as VALUEs (never happens) or
5582 DEBUG_EXPRs (only happens in the presence of debug
5584 && (!MAY_HAVE_DEBUG_BIND_INSNS
5585 || !rtx_debug_expr_p (XEXP (loc
, 0))))
5594 /* Log to OUT information about micro-operation MOPT involving X in
5598 log_op_type (rtx x
, basic_block bb
, rtx_insn
*insn
,
5599 enum micro_operation_type mopt
, FILE *out
)
5601 fprintf (out
, "bb %i op %i insn %i %s ",
5602 bb
->index
, VTI (bb
)->mos
.length (),
5603 INSN_UID (insn
), micro_operation_type_name
[mopt
]);
5604 print_inline_rtx (out
, x
, 2);
5608 /* Tell whether the CONCAT used to holds a VALUE and its location
5609 needs value resolution, i.e., an attempt of mapping the location
5610 back to other incoming values. */
5611 #define VAL_NEEDS_RESOLUTION(x) \
5612 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5613 /* Whether the location in the CONCAT is a tracked expression, that
5614 should also be handled like a MO_USE. */
5615 #define VAL_HOLDS_TRACK_EXPR(x) \
5616 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5617 /* Whether the location in the CONCAT should be handled like a MO_COPY
5619 #define VAL_EXPR_IS_COPIED(x) \
5620 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5621 /* Whether the location in the CONCAT should be handled like a
5622 MO_CLOBBER as well. */
5623 #define VAL_EXPR_IS_CLOBBERED(x) \
5624 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5626 /* All preserved VALUEs. */
5627 static vec
<rtx
> preserved_values
;
5629 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5632 preserve_value (cselib_val
*val
)
5634 cselib_preserve_value (val
);
5635 preserved_values
.safe_push (val
->val_rtx
);
5638 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5639 any rtxes not suitable for CONST use not replaced by VALUEs
5643 non_suitable_const (const_rtx x
)
5645 subrtx_iterator::array_type array
;
5646 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
5648 const_rtx x
= *iter
;
5649 switch (GET_CODE (x
))
5660 if (!MEM_READONLY_P (x
))
5670 /* Add uses (register and memory references) LOC which will be tracked
5671 to VTI (bb)->mos. */
5674 add_uses (rtx loc
, struct count_use_info
*cui
)
5676 machine_mode mode
= VOIDmode
;
5677 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5679 if (type
!= MO_CLOBBER
)
5681 basic_block bb
= cui
->bb
;
5685 mo
.u
.loc
= type
== MO_USE
? var_lowpart (mode
, loc
) : loc
;
5686 mo
.insn
= cui
->insn
;
5688 if (type
== MO_VAL_LOC
)
5691 rtx vloc
= PAT_VAR_LOCATION_LOC (oloc
);
5694 gcc_assert (cui
->sets
);
5697 && !REG_P (XEXP (vloc
, 0))
5698 && !MEM_P (XEXP (vloc
, 0)))
5701 machine_mode address_mode
= get_address_mode (mloc
);
5703 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5706 if (val
&& !cselib_preserved_value_p (val
))
5707 preserve_value (val
);
5710 if (CONSTANT_P (vloc
)
5711 && (GET_CODE (vloc
) != CONST
|| non_suitable_const (vloc
)))
5712 /* For constants don't look up any value. */;
5713 else if (!VAR_LOC_UNKNOWN_P (vloc
) && !unsuitable_loc (vloc
)
5714 && (val
= find_use_val (vloc
, GET_MODE (oloc
), cui
)))
5717 enum micro_operation_type type2
;
5719 bool resolvable
= REG_P (vloc
) || MEM_P (vloc
);
5722 nloc
= replace_expr_with_values (vloc
);
5726 oloc
= shallow_copy_rtx (oloc
);
5727 PAT_VAR_LOCATION_LOC (oloc
) = nloc
;
5730 oloc
= gen_rtx_CONCAT (mode
, val
->val_rtx
, oloc
);
5732 type2
= use_type (vloc
, 0, &mode2
);
5734 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5735 || type2
== MO_CLOBBER
);
5737 if (type2
== MO_CLOBBER
5738 && !cselib_preserved_value_p (val
))
5740 VAL_NEEDS_RESOLUTION (oloc
) = resolvable
;
5741 preserve_value (val
);
5744 else if (!VAR_LOC_UNKNOWN_P (vloc
))
5746 oloc
= shallow_copy_rtx (oloc
);
5747 PAT_VAR_LOCATION_LOC (oloc
) = gen_rtx_UNKNOWN_VAR_LOC ();
5752 else if (type
== MO_VAL_USE
)
5754 machine_mode mode2
= VOIDmode
;
5755 enum micro_operation_type type2
;
5756 cselib_val
*val
= find_use_val (loc
, GET_MODE (loc
), cui
);
5757 rtx vloc
, oloc
= loc
, nloc
;
5759 gcc_assert (cui
->sets
);
5762 && !REG_P (XEXP (oloc
, 0))
5763 && !MEM_P (XEXP (oloc
, 0)))
5766 machine_mode address_mode
= get_address_mode (mloc
);
5768 = cselib_lookup (XEXP (mloc
, 0), address_mode
, 0,
5771 if (val
&& !cselib_preserved_value_p (val
))
5772 preserve_value (val
);
5775 type2
= use_type (loc
, 0, &mode2
);
5777 gcc_assert (type2
== MO_USE
|| type2
== MO_USE_NO_VAR
5778 || type2
== MO_CLOBBER
);
5780 if (type2
== MO_USE
)
5781 vloc
= var_lowpart (mode2
, loc
);
5785 /* The loc of a MO_VAL_USE may have two forms:
5787 (concat val src): val is at src, a value-based
5790 (concat (concat val use) src): same as above, with use as
5791 the MO_USE tracked value, if it differs from src.
5795 gcc_checking_assert (REG_P (loc
) || MEM_P (loc
));
5796 nloc
= replace_expr_with_values (loc
);
5801 oloc
= gen_rtx_CONCAT (mode2
, val
->val_rtx
, vloc
);
5803 oloc
= val
->val_rtx
;
5805 mo
.u
.loc
= gen_rtx_CONCAT (mode
, oloc
, nloc
);
5807 if (type2
== MO_USE
)
5808 VAL_HOLDS_TRACK_EXPR (mo
.u
.loc
) = 1;
5809 if (!cselib_preserved_value_p (val
))
5811 VAL_NEEDS_RESOLUTION (mo
.u
.loc
) = 1;
5812 preserve_value (val
);
5816 gcc_assert (type
== MO_USE
|| type
== MO_USE_NO_VAR
);
5818 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5819 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
5820 VTI (bb
)->mos
.safe_push (mo
);
5824 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5827 add_uses_1 (rtx
*x
, void *cui
)
5829 subrtx_var_iterator::array_type array
;
5830 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
5831 add_uses (*iter
, (struct count_use_info
*) cui
);
5834 /* This is the value used during expansion of locations. We want it
5835 to be unbounded, so that variables expanded deep in a recursion
5836 nest are fully evaluated, so that their values are cached
5837 correctly. We avoid recursion cycles through other means, and we
5838 don't unshare RTL, so excess complexity is not a problem. */
5839 #define EXPR_DEPTH (INT_MAX)
5840 /* We use this to keep too-complex expressions from being emitted as
5841 location notes, and then to debug information. Users can trade
5842 compile time for ridiculously complex expressions, although they're
5843 seldom useful, and they may often have to be discarded as not
5844 representable anyway. */
5845 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5847 /* Attempt to reverse the EXPR operation in the debug info and record
5848 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5849 no longer live we can express its value as VAL - 6. */
5852 reverse_op (rtx val
, const_rtx expr
, rtx_insn
*insn
)
5856 struct elt_loc_list
*l
;
5860 if (GET_CODE (expr
) != SET
)
5863 if (!REG_P (SET_DEST (expr
)) || GET_MODE (val
) != GET_MODE (SET_DEST (expr
)))
5866 src
= SET_SRC (expr
);
5867 switch (GET_CODE (src
))
5874 if (!REG_P (XEXP (src
, 0)))
5879 if (!REG_P (XEXP (src
, 0)) && !MEM_P (XEXP (src
, 0)))
5886 if (!SCALAR_INT_MODE_P (GET_MODE (src
)) || XEXP (src
, 0) == cfa_base_rtx
)
5889 v
= cselib_lookup (XEXP (src
, 0), GET_MODE (XEXP (src
, 0)), 0, VOIDmode
);
5890 if (!v
|| !cselib_preserved_value_p (v
))
5893 /* Use canonical V to avoid creating multiple redundant expressions
5894 for different VALUES equivalent to V. */
5895 v
= canonical_cselib_val (v
);
5897 /* Adding a reverse op isn't useful if V already has an always valid
5898 location. Ignore ENTRY_VALUE, while it is always constant, we should
5899 prefer non-ENTRY_VALUE locations whenever possible. */
5900 for (l
= v
->locs
, count
= 0; l
; l
= l
->next
, count
++)
5901 if (CONSTANT_P (l
->loc
)
5902 && (GET_CODE (l
->loc
) != CONST
|| !references_value_p (l
->loc
, 0)))
5904 /* Avoid creating too large locs lists. */
5905 else if (count
== PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE
))
5908 switch (GET_CODE (src
))
5912 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5914 ret
= gen_rtx_fmt_e (GET_CODE (src
), GET_MODE (val
), val
);
5918 ret
= gen_lowpart_SUBREG (GET_MODE (v
->val_rtx
), val
);
5930 if (GET_MODE (v
->val_rtx
) != GET_MODE (val
))
5932 arg
= XEXP (src
, 1);
5933 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5935 arg
= cselib_expand_value_rtx (arg
, scratch_regs
, 5);
5936 if (arg
== NULL_RTX
)
5938 if (!CONST_INT_P (arg
) && GET_CODE (arg
) != SYMBOL_REF
)
5941 ret
= simplify_gen_binary (code
, GET_MODE (val
), val
, arg
);
5947 cselib_add_permanent_equiv (v
, ret
, insn
);
5950 /* Add stores (register and memory references) LOC which will be tracked
5951 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5952 CUIP->insn is instruction which the LOC is part of. */
5955 add_stores (rtx loc
, const_rtx expr
, void *cuip
)
5957 machine_mode mode
= VOIDmode
, mode2
;
5958 struct count_use_info
*cui
= (struct count_use_info
*)cuip
;
5959 basic_block bb
= cui
->bb
;
5961 rtx oloc
= loc
, nloc
, src
= NULL
;
5962 enum micro_operation_type type
= use_type (loc
, cui
, &mode
);
5963 bool track_p
= false;
5965 bool resolve
, preserve
;
5967 if (type
== MO_CLOBBER
)
5974 gcc_assert (loc
!= cfa_base_rtx
);
5975 if ((GET_CODE (expr
) == CLOBBER
&& type
!= MO_VAL_SET
)
5976 || !(track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
5977 || GET_CODE (expr
) == CLOBBER
)
5979 mo
.type
= MO_CLOBBER
;
5981 if (GET_CODE (expr
) == SET
5982 && (SET_DEST (expr
) == loc
5983 || (GET_CODE (SET_DEST (expr
)) == STRICT_LOW_PART
5984 && XEXP (SET_DEST (expr
), 0) == loc
))
5985 && !unsuitable_loc (SET_SRC (expr
))
5986 && find_use_val (loc
, mode
, cui
))
5988 gcc_checking_assert (type
== MO_VAL_SET
);
5989 mo
.u
.loc
= gen_rtx_SET (loc
, SET_SRC (expr
));
5994 if (GET_CODE (expr
) == SET
5995 && SET_DEST (expr
) == loc
5996 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
5997 src
= var_lowpart (mode2
, SET_SRC (expr
));
5998 loc
= var_lowpart (mode2
, loc
);
6007 rtx xexpr
= gen_rtx_SET (loc
, src
);
6008 if (same_variable_part_p (src
, REG_EXPR (loc
), REG_OFFSET (loc
)))
6010 /* If this is an instruction copying (part of) a parameter
6011 passed by invisible reference to its register location,
6012 pretend it's a SET so that the initial memory location
6013 is discarded, as the parameter register can be reused
6014 for other purposes and we do not track locations based
6015 on generic registers. */
6018 && TREE_CODE (REG_EXPR (loc
)) == PARM_DECL
6019 && DECL_MODE (REG_EXPR (loc
)) != BLKmode
6020 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc
)))
6021 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc
)), 0)
6032 mo
.insn
= cui
->insn
;
6034 else if (MEM_P (loc
)
6035 && ((track_p
= use_type (loc
, NULL
, &mode2
) == MO_USE
)
6038 if (MEM_P (loc
) && type
== MO_VAL_SET
6039 && !REG_P (XEXP (loc
, 0))
6040 && !MEM_P (XEXP (loc
, 0)))
6043 machine_mode address_mode
= get_address_mode (mloc
);
6044 cselib_val
*val
= cselib_lookup (XEXP (mloc
, 0),
6048 if (val
&& !cselib_preserved_value_p (val
))
6049 preserve_value (val
);
6052 if (GET_CODE (expr
) == CLOBBER
|| !track_p
)
6054 mo
.type
= MO_CLOBBER
;
6055 mo
.u
.loc
= track_p
? var_lowpart (mode2
, loc
) : loc
;
6059 if (GET_CODE (expr
) == SET
6060 && SET_DEST (expr
) == loc
6061 && GET_CODE (SET_SRC (expr
)) != ASM_OPERANDS
)
6062 src
= var_lowpart (mode2
, SET_SRC (expr
));
6063 loc
= var_lowpart (mode2
, loc
);
6072 rtx xexpr
= gen_rtx_SET (loc
, src
);
6073 if (same_variable_part_p (SET_SRC (xexpr
),
6075 int_mem_offset (loc
)))
6082 mo
.insn
= cui
->insn
;
6087 if (type
!= MO_VAL_SET
)
6088 goto log_and_return
;
6090 v
= find_use_val (oloc
, mode
, cui
);
6093 goto log_and_return
;
6095 resolve
= preserve
= !cselib_preserved_value_p (v
);
6097 /* We cannot track values for multiple-part variables, so we track only
6098 locations for tracked record parameters. */
6102 && tracked_record_parameter_p (REG_EXPR (loc
)))
6104 /* Although we don't use the value here, it could be used later by the
6105 mere virtue of its existence as the operand of the reverse operation
6106 that gave rise to it (typically extension/truncation). Make sure it
6107 is preserved as required by vt_expand_var_loc_chain. */
6110 goto log_and_return
;
6113 if (loc
== stack_pointer_rtx
6114 && maybe_ne (hard_frame_pointer_adjustment
, -1)
6116 cselib_set_value_sp_based (v
);
6118 nloc
= replace_expr_with_values (oloc
);
6122 if (GET_CODE (PATTERN (cui
->insn
)) == COND_EXEC
)
6124 cselib_val
*oval
= cselib_lookup (oloc
, GET_MODE (oloc
), 0, VOIDmode
);
6128 gcc_assert (REG_P (oloc
) || MEM_P (oloc
));
6130 if (oval
&& !cselib_preserved_value_p (oval
))
6132 micro_operation moa
;
6134 preserve_value (oval
);
6136 moa
.type
= MO_VAL_USE
;
6137 moa
.u
.loc
= gen_rtx_CONCAT (mode
, oval
->val_rtx
, oloc
);
6138 VAL_NEEDS_RESOLUTION (moa
.u
.loc
) = 1;
6139 moa
.insn
= cui
->insn
;
6141 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6142 log_op_type (moa
.u
.loc
, cui
->bb
, cui
->insn
,
6143 moa
.type
, dump_file
);
6144 VTI (bb
)->mos
.safe_push (moa
);
6149 else if (resolve
&& GET_CODE (mo
.u
.loc
) == SET
)
6151 if (REG_P (SET_SRC (expr
)) || MEM_P (SET_SRC (expr
)))
6152 nloc
= replace_expr_with_values (SET_SRC (expr
));
6156 /* Avoid the mode mismatch between oexpr and expr. */
6157 if (!nloc
&& mode
!= mode2
)
6159 nloc
= SET_SRC (expr
);
6160 gcc_assert (oloc
== SET_DEST (expr
));
6163 if (nloc
&& nloc
!= SET_SRC (mo
.u
.loc
))
6164 oloc
= gen_rtx_SET (oloc
, nloc
);
6167 if (oloc
== SET_DEST (mo
.u
.loc
))
6168 /* No point in duplicating. */
6170 if (!REG_P (SET_SRC (mo
.u
.loc
)))
6176 if (GET_CODE (mo
.u
.loc
) == SET
6177 && oloc
== SET_DEST (mo
.u
.loc
))
6178 /* No point in duplicating. */
6184 loc
= gen_rtx_CONCAT (mode
, v
->val_rtx
, oloc
);
6186 if (mo
.u
.loc
!= oloc
)
6187 loc
= gen_rtx_CONCAT (GET_MODE (mo
.u
.loc
), loc
, mo
.u
.loc
);
6189 /* The loc of a MO_VAL_SET may have various forms:
6191 (concat val dst): dst now holds val
6193 (concat val (set dst src)): dst now holds val, copied from src
6195 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6196 after replacing mems and non-top-level regs with values.
6198 (concat (concat val dstv) (set dst src)): dst now holds val,
6199 copied from src. dstv is a value-based representation of dst, if
6200 it differs from dst. If resolution is needed, src is a REG, and
6201 its mode is the same as that of val.
6203 (concat (concat val (set dstv srcv)) (set dst src)): src
6204 copied to dst, holding val. dstv and srcv are value-based
6205 representations of dst and src, respectively.
6209 if (GET_CODE (PATTERN (cui
->insn
)) != COND_EXEC
)
6210 reverse_op (v
->val_rtx
, expr
, cui
->insn
);
6215 VAL_HOLDS_TRACK_EXPR (loc
) = 1;
6218 VAL_NEEDS_RESOLUTION (loc
) = resolve
;
6221 if (mo
.type
== MO_CLOBBER
)
6222 VAL_EXPR_IS_CLOBBERED (loc
) = 1;
6223 if (mo
.type
== MO_COPY
)
6224 VAL_EXPR_IS_COPIED (loc
) = 1;
6226 mo
.type
= MO_VAL_SET
;
6229 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6230 log_op_type (mo
.u
.loc
, cui
->bb
, cui
->insn
, mo
.type
, dump_file
);
6231 VTI (bb
)->mos
.safe_push (mo
);
6234 /* Arguments to the call. */
6235 static rtx call_arguments
;
6237 /* Compute call_arguments. */
6240 prepare_call_arguments (basic_block bb
, rtx_insn
*insn
)
6243 rtx prev
, cur
, next
;
6244 rtx this_arg
= NULL_RTX
;
6245 tree type
= NULL_TREE
, t
, fndecl
= NULL_TREE
;
6246 tree obj_type_ref
= NULL_TREE
;
6247 CUMULATIVE_ARGS args_so_far_v
;
6248 cumulative_args_t args_so_far
;
6250 memset (&args_so_far_v
, 0, sizeof (args_so_far_v
));
6251 args_so_far
= pack_cumulative_args (&args_so_far_v
);
6252 call
= get_call_rtx_from (insn
);
6255 if (GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
6257 rtx symbol
= XEXP (XEXP (call
, 0), 0);
6258 if (SYMBOL_REF_DECL (symbol
))
6259 fndecl
= SYMBOL_REF_DECL (symbol
);
6261 if (fndecl
== NULL_TREE
)
6262 fndecl
= MEM_EXPR (XEXP (call
, 0));
6264 && TREE_CODE (TREE_TYPE (fndecl
)) != FUNCTION_TYPE
6265 && TREE_CODE (TREE_TYPE (fndecl
)) != METHOD_TYPE
)
6267 if (fndecl
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl
)))
6268 type
= TREE_TYPE (fndecl
);
6269 if (fndecl
&& TREE_CODE (fndecl
) != FUNCTION_DECL
)
6271 if (TREE_CODE (fndecl
) == INDIRECT_REF
6272 && TREE_CODE (TREE_OPERAND (fndecl
, 0)) == OBJ_TYPE_REF
)
6273 obj_type_ref
= TREE_OPERAND (fndecl
, 0);
6278 for (t
= TYPE_ARG_TYPES (type
); t
&& t
!= void_list_node
;
6280 if (TREE_CODE (TREE_VALUE (t
)) == REFERENCE_TYPE
6281 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t
))))
6283 if ((t
== NULL
|| t
== void_list_node
) && obj_type_ref
== NULL_TREE
)
6287 int nargs ATTRIBUTE_UNUSED
= list_length (TYPE_ARG_TYPES (type
));
6288 link
= CALL_INSN_FUNCTION_USAGE (insn
);
6289 #ifndef PCC_STATIC_STRUCT_RETURN
6290 if (aggregate_value_p (TREE_TYPE (type
), type
)
6291 && targetm
.calls
.struct_value_rtx (type
, 0) == 0)
6293 tree struct_addr
= build_pointer_type (TREE_TYPE (type
));
6294 machine_mode mode
= TYPE_MODE (struct_addr
);
6296 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6298 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6300 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6302 if (reg
== NULL_RTX
)
6304 for (; link
; link
= XEXP (link
, 1))
6305 if (GET_CODE (XEXP (link
, 0)) == USE
6306 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6308 link
= XEXP (link
, 1);
6315 INIT_CUMULATIVE_ARGS (args_so_far_v
, type
, NULL_RTX
, fndecl
,
6317 if (obj_type_ref
&& TYPE_ARG_TYPES (type
) != void_list_node
)
6320 t
= TYPE_ARG_TYPES (type
);
6321 mode
= TYPE_MODE (TREE_VALUE (t
));
6322 this_arg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6323 TREE_VALUE (t
), true);
6324 if (this_arg
&& !REG_P (this_arg
))
6325 this_arg
= NULL_RTX
;
6326 else if (this_arg
== NULL_RTX
)
6328 for (; link
; link
= XEXP (link
, 1))
6329 if (GET_CODE (XEXP (link
, 0)) == USE
6330 && MEM_P (XEXP (XEXP (link
, 0), 0)))
6332 this_arg
= XEXP (XEXP (link
, 0), 0);
6340 t
= type
? TYPE_ARG_TYPES (type
) : NULL_TREE
;
6342 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
6343 if (GET_CODE (XEXP (link
, 0)) == USE
)
6345 rtx item
= NULL_RTX
;
6346 x
= XEXP (XEXP (link
, 0), 0);
6347 if (GET_MODE (link
) == VOIDmode
6348 || GET_MODE (link
) == BLKmode
6349 || (GET_MODE (link
) != GET_MODE (x
)
6350 && ((GET_MODE_CLASS (GET_MODE (link
)) != MODE_INT
6351 && GET_MODE_CLASS (GET_MODE (link
)) != MODE_PARTIAL_INT
)
6352 || (GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
6353 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_PARTIAL_INT
))))
6354 /* Can't do anything for these, if the original type mode
6355 isn't known or can't be converted. */;
6358 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6359 scalar_int_mode mode
;
6360 if (val
&& cselib_preserved_value_p (val
))
6361 item
= val
->val_rtx
;
6362 else if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
6364 opt_scalar_int_mode mode_iter
;
6365 FOR_EACH_WIDER_MODE (mode_iter
, mode
)
6367 mode
= mode_iter
.require ();
6368 if (GET_MODE_BITSIZE (mode
) > BITS_PER_WORD
)
6371 rtx reg
= simplify_subreg (mode
, x
, GET_MODE (x
), 0);
6372 if (reg
== NULL_RTX
|| !REG_P (reg
))
6374 val
= cselib_lookup (reg
, mode
, 0, VOIDmode
);
6375 if (val
&& cselib_preserved_value_p (val
))
6377 item
= val
->val_rtx
;
6388 if (!frame_pointer_needed
)
6390 struct adjust_mem_data amd
;
6391 amd
.mem_mode
= VOIDmode
;
6392 amd
.stack_adjust
= -VTI (bb
)->out
.stack_adjust
;
6394 mem
= simplify_replace_fn_rtx (mem
, NULL_RTX
, adjust_mems
,
6396 gcc_assert (amd
.side_effects
.is_empty ());
6398 val
= cselib_lookup (mem
, GET_MODE (mem
), 0, VOIDmode
);
6399 if (val
&& cselib_preserved_value_p (val
))
6400 item
= val
->val_rtx
;
6401 else if (GET_MODE_CLASS (GET_MODE (mem
)) != MODE_INT
6402 && GET_MODE_CLASS (GET_MODE (mem
)) != MODE_PARTIAL_INT
)
6404 /* For non-integer stack argument see also if they weren't
6405 initialized by integers. */
6406 scalar_int_mode imode
;
6407 if (int_mode_for_mode (GET_MODE (mem
)).exists (&imode
)
6408 && imode
!= GET_MODE (mem
))
6410 val
= cselib_lookup (adjust_address_nv (mem
, imode
, 0),
6411 imode
, 0, VOIDmode
);
6412 if (val
&& cselib_preserved_value_p (val
))
6413 item
= lowpart_subreg (GET_MODE (x
), val
->val_rtx
,
6421 if (GET_MODE (item
) != GET_MODE (link
))
6422 item
= lowpart_subreg (GET_MODE (link
), item
, GET_MODE (item
));
6423 if (GET_MODE (x2
) != GET_MODE (link
))
6424 x2
= lowpart_subreg (GET_MODE (link
), x2
, GET_MODE (x2
));
6425 item
= gen_rtx_CONCAT (GET_MODE (link
), x2
, item
);
6427 = gen_rtx_EXPR_LIST (VOIDmode
, item
, call_arguments
);
6429 if (t
&& t
!= void_list_node
)
6431 tree argtype
= TREE_VALUE (t
);
6432 machine_mode mode
= TYPE_MODE (argtype
);
6434 if (pass_by_reference (&args_so_far_v
, mode
, argtype
, true))
6436 argtype
= build_pointer_type (argtype
);
6437 mode
= TYPE_MODE (argtype
);
6439 reg
= targetm
.calls
.function_arg (args_so_far
, mode
,
6441 if (TREE_CODE (argtype
) == REFERENCE_TYPE
6442 && INTEGRAL_TYPE_P (TREE_TYPE (argtype
))
6445 && GET_MODE (reg
) == mode
6446 && (GET_MODE_CLASS (mode
) == MODE_INT
6447 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6449 && REGNO (x
) == REGNO (reg
)
6450 && GET_MODE (x
) == mode
6453 machine_mode indmode
6454 = TYPE_MODE (TREE_TYPE (argtype
));
6455 rtx mem
= gen_rtx_MEM (indmode
, x
);
6456 cselib_val
*val
= cselib_lookup (mem
, indmode
, 0, VOIDmode
);
6457 if (val
&& cselib_preserved_value_p (val
))
6459 item
= gen_rtx_CONCAT (indmode
, mem
, val
->val_rtx
);
6460 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6465 struct elt_loc_list
*l
;
6468 /* Try harder, when passing address of a constant
6469 pool integer it can be easily read back. */
6470 item
= XEXP (item
, 1);
6471 if (GET_CODE (item
) == SUBREG
)
6472 item
= SUBREG_REG (item
);
6473 gcc_assert (GET_CODE (item
) == VALUE
);
6474 val
= CSELIB_VAL_PTR (item
);
6475 for (l
= val
->locs
; l
; l
= l
->next
)
6476 if (GET_CODE (l
->loc
) == SYMBOL_REF
6477 && TREE_CONSTANT_POOL_ADDRESS_P (l
->loc
)
6478 && SYMBOL_REF_DECL (l
->loc
)
6479 && DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
)))
6481 initial
= DECL_INITIAL (SYMBOL_REF_DECL (l
->loc
));
6482 if (tree_fits_shwi_p (initial
))
6484 item
= GEN_INT (tree_to_shwi (initial
));
6485 item
= gen_rtx_CONCAT (indmode
, mem
, item
);
6487 = gen_rtx_EXPR_LIST (VOIDmode
, item
,
6494 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
6500 /* Add debug arguments. */
6502 && TREE_CODE (fndecl
) == FUNCTION_DECL
6503 && DECL_HAS_DEBUG_ARGS_P (fndecl
))
6505 vec
<tree
, va_gc
> **debug_args
= decl_debug_args_lookup (fndecl
);
6510 for (ix
= 0; vec_safe_iterate (*debug_args
, ix
, ¶m
); ix
+= 2)
6513 tree dtemp
= (**debug_args
)[ix
+ 1];
6514 machine_mode mode
= DECL_MODE (dtemp
);
6515 item
= gen_rtx_DEBUG_PARAMETER_REF (mode
, param
);
6516 item
= gen_rtx_CONCAT (mode
, item
, DECL_RTL_KNOWN_SET (dtemp
));
6517 call_arguments
= gen_rtx_EXPR_LIST (VOIDmode
, item
,
6523 /* Reverse call_arguments chain. */
6525 for (cur
= call_arguments
; cur
; cur
= next
)
6527 next
= XEXP (cur
, 1);
6528 XEXP (cur
, 1) = prev
;
6531 call_arguments
= prev
;
6533 x
= get_call_rtx_from (insn
);
6536 x
= XEXP (XEXP (x
, 0), 0);
6537 if (GET_CODE (x
) == SYMBOL_REF
)
6538 /* Don't record anything. */;
6539 else if (CONSTANT_P (x
))
6541 x
= gen_rtx_CONCAT (GET_MODE (x
) == VOIDmode
? Pmode
: GET_MODE (x
),
6544 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6548 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0, VOIDmode
);
6549 if (val
&& cselib_preserved_value_p (val
))
6551 x
= gen_rtx_CONCAT (GET_MODE (x
), pc_rtx
, val
->val_rtx
);
6553 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6560 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref
)));
6561 rtx clobbered
= gen_rtx_MEM (mode
, this_arg
);
6563 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref
));
6565 clobbered
= plus_constant (mode
, clobbered
,
6566 token
* GET_MODE_SIZE (mode
));
6567 clobbered
= gen_rtx_MEM (mode
, clobbered
);
6568 x
= gen_rtx_CONCAT (mode
, gen_rtx_CLOBBER (VOIDmode
, pc_rtx
), clobbered
);
6570 = gen_rtx_EXPR_LIST (VOIDmode
, x
, call_arguments
);
6574 /* Callback for cselib_record_sets_hook, that records as micro
6575 operations uses and stores in an insn after cselib_record_sets has
6576 analyzed the sets in an insn, but before it modifies the stored
6577 values in the internal tables, unless cselib_record_sets doesn't
6578 call it directly (perhaps because we're not doing cselib in the
6579 first place, in which case sets and n_sets will be 0). */
6582 add_with_sets (rtx_insn
*insn
, struct cselib_set
*sets
, int n_sets
)
6584 basic_block bb
= BLOCK_FOR_INSN (insn
);
6586 struct count_use_info cui
;
6587 micro_operation
*mos
;
6589 cselib_hook_called
= true;
6594 cui
.n_sets
= n_sets
;
6596 n1
= VTI (bb
)->mos
.length ();
6597 cui
.store_p
= false;
6598 note_uses (&PATTERN (insn
), add_uses_1
, &cui
);
6599 n2
= VTI (bb
)->mos
.length () - 1;
6600 mos
= VTI (bb
)->mos
.address ();
6602 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6606 while (n1
< n2
&& mos
[n1
].type
== MO_USE
)
6608 while (n1
< n2
&& mos
[n2
].type
!= MO_USE
)
6611 std::swap (mos
[n1
], mos
[n2
]);
6614 n2
= VTI (bb
)->mos
.length () - 1;
6617 while (n1
< n2
&& mos
[n1
].type
!= MO_VAL_LOC
)
6619 while (n1
< n2
&& mos
[n2
].type
== MO_VAL_LOC
)
6622 std::swap (mos
[n1
], mos
[n2
]);
6631 mo
.u
.loc
= call_arguments
;
6632 call_arguments
= NULL_RTX
;
6634 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6635 log_op_type (PATTERN (insn
), bb
, insn
, mo
.type
, dump_file
);
6636 VTI (bb
)->mos
.safe_push (mo
);
6639 n1
= VTI (bb
)->mos
.length ();
6640 /* This will record NEXT_INSN (insn), such that we can
6641 insert notes before it without worrying about any
6642 notes that MO_USEs might emit after the insn. */
6644 note_stores (PATTERN (insn
), add_stores
, &cui
);
6645 n2
= VTI (bb
)->mos
.length () - 1;
6646 mos
= VTI (bb
)->mos
.address ();
6648 /* Order the MO_VAL_USEs first (note_stores does nothing
6649 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6650 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6653 while (n1
< n2
&& mos
[n1
].type
== MO_VAL_USE
)
6655 while (n1
< n2
&& mos
[n2
].type
!= MO_VAL_USE
)
6658 std::swap (mos
[n1
], mos
[n2
]);
6661 n2
= VTI (bb
)->mos
.length () - 1;
6664 while (n1
< n2
&& mos
[n1
].type
== MO_CLOBBER
)
6666 while (n1
< n2
&& mos
[n2
].type
!= MO_CLOBBER
)
6669 std::swap (mos
[n1
], mos
[n2
]);
6673 static enum var_init_status
6674 find_src_status (dataflow_set
*in
, rtx src
)
6676 tree decl
= NULL_TREE
;
6677 enum var_init_status status
= VAR_INIT_STATUS_UNINITIALIZED
;
6679 if (! flag_var_tracking_uninit
)
6680 status
= VAR_INIT_STATUS_INITIALIZED
;
6682 if (src
&& REG_P (src
))
6683 decl
= var_debug_decl (REG_EXPR (src
));
6684 else if (src
&& MEM_P (src
))
6685 decl
= var_debug_decl (MEM_EXPR (src
));
6688 status
= get_init_value (in
, src
, dv_from_decl (decl
));
6693 /* SRC is the source of an assignment. Use SET to try to find what
6694 was ultimately assigned to SRC. Return that value if known,
6695 otherwise return SRC itself. */
6698 find_src_set_src (dataflow_set
*set
, rtx src
)
6700 tree decl
= NULL_TREE
; /* The variable being copied around. */
6701 rtx set_src
= NULL_RTX
; /* The value for "decl" stored in "src". */
6703 location_chain
*nextp
;
6707 if (src
&& REG_P (src
))
6708 decl
= var_debug_decl (REG_EXPR (src
));
6709 else if (src
&& MEM_P (src
))
6710 decl
= var_debug_decl (MEM_EXPR (src
));
6714 decl_or_value dv
= dv_from_decl (decl
);
6716 var
= shared_hash_find (set
->vars
, dv
);
6720 for (i
= 0; i
< var
->n_var_parts
&& !found
; i
++)
6721 for (nextp
= var
->var_part
[i
].loc_chain
; nextp
&& !found
;
6722 nextp
= nextp
->next
)
6723 if (rtx_equal_p (nextp
->loc
, src
))
6725 set_src
= nextp
->set_src
;
6735 /* Compute the changes of variable locations in the basic block BB. */
6738 compute_bb_dataflow (basic_block bb
)
6741 micro_operation
*mo
;
6743 dataflow_set old_out
;
6744 dataflow_set
*in
= &VTI (bb
)->in
;
6745 dataflow_set
*out
= &VTI (bb
)->out
;
6747 dataflow_set_init (&old_out
);
6748 dataflow_set_copy (&old_out
, out
);
6749 dataflow_set_copy (out
, in
);
6751 if (MAY_HAVE_DEBUG_BIND_INSNS
)
6752 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
6754 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
6756 rtx_insn
*insn
= mo
->insn
;
6761 dataflow_set_clear_at_call (out
, insn
);
6766 rtx loc
= mo
->u
.loc
;
6769 var_reg_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6770 else if (MEM_P (loc
))
6771 var_mem_set (out
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
6777 rtx loc
= mo
->u
.loc
;
6781 if (GET_CODE (loc
) == CONCAT
)
6783 val
= XEXP (loc
, 0);
6784 vloc
= XEXP (loc
, 1);
6792 var
= PAT_VAR_LOCATION_DECL (vloc
);
6794 clobber_variable_part (out
, NULL_RTX
,
6795 dv_from_decl (var
), 0, NULL_RTX
);
6798 if (VAL_NEEDS_RESOLUTION (loc
))
6799 val_resolve (out
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
6800 set_variable_part (out
, val
, dv_from_decl (var
), 0,
6801 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6804 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
6805 set_variable_part (out
, PAT_VAR_LOCATION_LOC (vloc
),
6806 dv_from_decl (var
), 0,
6807 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
6814 rtx loc
= mo
->u
.loc
;
6815 rtx val
, vloc
, uloc
;
6817 vloc
= uloc
= XEXP (loc
, 1);
6818 val
= XEXP (loc
, 0);
6820 if (GET_CODE (val
) == CONCAT
)
6822 uloc
= XEXP (val
, 1);
6823 val
= XEXP (val
, 0);
6826 if (VAL_NEEDS_RESOLUTION (loc
))
6827 val_resolve (out
, val
, vloc
, insn
);
6829 val_store (out
, val
, uloc
, insn
, false);
6831 if (VAL_HOLDS_TRACK_EXPR (loc
))
6833 if (GET_CODE (uloc
) == REG
)
6834 var_reg_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6836 else if (GET_CODE (uloc
) == MEM
)
6837 var_mem_set (out
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
6845 rtx loc
= mo
->u
.loc
;
6846 rtx val
, vloc
, uloc
;
6850 uloc
= XEXP (vloc
, 1);
6851 val
= XEXP (vloc
, 0);
6854 if (GET_CODE (uloc
) == SET
)
6856 dstv
= SET_DEST (uloc
);
6857 srcv
= SET_SRC (uloc
);
6865 if (GET_CODE (val
) == CONCAT
)
6867 dstv
= vloc
= XEXP (val
, 1);
6868 val
= XEXP (val
, 0);
6871 if (GET_CODE (vloc
) == SET
)
6873 srcv
= SET_SRC (vloc
);
6875 gcc_assert (val
!= srcv
);
6876 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
6878 dstv
= vloc
= SET_DEST (vloc
);
6880 if (VAL_NEEDS_RESOLUTION (loc
))
6881 val_resolve (out
, val
, srcv
, insn
);
6883 else if (VAL_NEEDS_RESOLUTION (loc
))
6885 gcc_assert (GET_CODE (uloc
) == SET
6886 && GET_CODE (SET_SRC (uloc
)) == REG
);
6887 val_resolve (out
, val
, SET_SRC (uloc
), insn
);
6890 if (VAL_HOLDS_TRACK_EXPR (loc
))
6892 if (VAL_EXPR_IS_CLOBBERED (loc
))
6895 var_reg_delete (out
, uloc
, true);
6896 else if (MEM_P (uloc
))
6898 gcc_assert (MEM_P (dstv
));
6899 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
6900 var_mem_delete (out
, dstv
, true);
6905 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
6906 rtx src
= NULL
, dst
= uloc
;
6907 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
6909 if (GET_CODE (uloc
) == SET
)
6911 src
= SET_SRC (uloc
);
6912 dst
= SET_DEST (uloc
);
6917 if (flag_var_tracking_uninit
)
6919 status
= find_src_status (in
, src
);
6921 if (status
== VAR_INIT_STATUS_UNKNOWN
)
6922 status
= find_src_status (out
, src
);
6925 src
= find_src_set_src (in
, src
);
6929 var_reg_delete_and_set (out
, dst
, !copied_p
,
6931 else if (MEM_P (dst
))
6933 gcc_assert (MEM_P (dstv
));
6934 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
6935 var_mem_delete_and_set (out
, dstv
, !copied_p
,
6940 else if (REG_P (uloc
))
6941 var_regno_delete (out
, REGNO (uloc
));
6942 else if (MEM_P (uloc
))
6944 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
6945 gcc_checking_assert (dstv
== vloc
);
6947 clobber_overlapping_mems (out
, vloc
);
6950 val_store (out
, val
, dstv
, insn
, true);
6956 rtx loc
= mo
->u
.loc
;
6959 if (GET_CODE (loc
) == SET
)
6961 set_src
= SET_SRC (loc
);
6962 loc
= SET_DEST (loc
);
6966 var_reg_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6968 else if (MEM_P (loc
))
6969 var_mem_delete_and_set (out
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
6976 rtx loc
= mo
->u
.loc
;
6977 enum var_init_status src_status
;
6980 if (GET_CODE (loc
) == SET
)
6982 set_src
= SET_SRC (loc
);
6983 loc
= SET_DEST (loc
);
6986 if (! flag_var_tracking_uninit
)
6987 src_status
= VAR_INIT_STATUS_INITIALIZED
;
6990 src_status
= find_src_status (in
, set_src
);
6992 if (src_status
== VAR_INIT_STATUS_UNKNOWN
)
6993 src_status
= find_src_status (out
, set_src
);
6996 set_src
= find_src_set_src (in
, set_src
);
6999 var_reg_delete_and_set (out
, loc
, false, src_status
, set_src
);
7000 else if (MEM_P (loc
))
7001 var_mem_delete_and_set (out
, loc
, false, src_status
, set_src
);
7007 rtx loc
= mo
->u
.loc
;
7010 var_reg_delete (out
, loc
, false);
7011 else if (MEM_P (loc
))
7012 var_mem_delete (out
, loc
, false);
7018 rtx loc
= mo
->u
.loc
;
7021 var_reg_delete (out
, loc
, true);
7022 else if (MEM_P (loc
))
7023 var_mem_delete (out
, loc
, true);
7028 out
->stack_adjust
+= mo
->u
.adjust
;
7033 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7035 delete local_get_addr_cache
;
7036 local_get_addr_cache
= NULL
;
7038 dataflow_set_equiv_regs (out
);
7039 shared_hash_htab (out
->vars
)
7040 ->traverse
<dataflow_set
*, canonicalize_values_mark
> (out
);
7041 shared_hash_htab (out
->vars
)
7042 ->traverse
<dataflow_set
*, canonicalize_values_star
> (out
);
7044 shared_hash_htab (out
->vars
)
7045 ->traverse
<dataflow_set
*, canonicalize_loc_order_check
> (out
);
7047 changed
= dataflow_set_different (&old_out
, out
);
7048 dataflow_set_destroy (&old_out
);
7052 /* Find the locations of variables in the whole function. */
7055 vt_find_locations (void)
7057 bb_heap_t
*worklist
= new bb_heap_t (LONG_MIN
);
7058 bb_heap_t
*pending
= new bb_heap_t (LONG_MIN
);
7059 sbitmap in_worklist
, in_pending
;
7066 int htabmax
= PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE
);
7067 bool success
= true;
7069 timevar_push (TV_VAR_TRACKING_DATAFLOW
);
7070 /* Compute reverse completion order of depth first search of the CFG
7071 so that the data-flow runs faster. */
7072 rc_order
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
7073 bb_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
7074 pre_and_rev_post_order_compute (NULL
, rc_order
, false);
7075 for (i
= 0; i
< n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
; i
++)
7076 bb_order
[rc_order
[i
]] = i
;
7079 auto_sbitmap
visited (last_basic_block_for_fn (cfun
));
7080 in_worklist
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7081 in_pending
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
7082 bitmap_clear (in_worklist
);
7084 FOR_EACH_BB_FN (bb
, cfun
)
7085 pending
->insert (bb_order
[bb
->index
], bb
);
7086 bitmap_ones (in_pending
);
7088 while (success
&& !pending
->empty ())
7090 std::swap (worklist
, pending
);
7091 std::swap (in_worklist
, in_pending
);
7093 bitmap_clear (visited
);
7095 while (!worklist
->empty ())
7097 bb
= worklist
->extract_min ();
7098 bitmap_clear_bit (in_worklist
, bb
->index
);
7099 gcc_assert (!bitmap_bit_p (visited
, bb
->index
));
7100 if (!bitmap_bit_p (visited
, bb
->index
))
7104 int oldinsz
, oldoutsz
;
7106 bitmap_set_bit (visited
, bb
->index
);
7108 if (VTI (bb
)->in
.vars
)
7111 -= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7112 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7113 oldinsz
= shared_hash_htab (VTI (bb
)->in
.vars
)->elements ();
7115 = shared_hash_htab (VTI (bb
)->out
.vars
)->elements ();
7118 oldinsz
= oldoutsz
= 0;
7120 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7122 dataflow_set
*in
= &VTI (bb
)->in
, *first_out
= NULL
;
7123 bool first
= true, adjust
= false;
7125 /* Calculate the IN set as the intersection of
7126 predecessor OUT sets. */
7128 dataflow_set_clear (in
);
7129 dst_can_be_shared
= true;
7131 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7132 if (!VTI (e
->src
)->flooded
)
7133 gcc_assert (bb_order
[bb
->index
]
7134 <= bb_order
[e
->src
->index
]);
7137 dataflow_set_copy (in
, &VTI (e
->src
)->out
);
7138 first_out
= &VTI (e
->src
)->out
;
7143 dataflow_set_merge (in
, &VTI (e
->src
)->out
);
7149 dataflow_post_merge_adjust (in
, &VTI (bb
)->permp
);
7152 /* Merge and merge_adjust should keep entries in
7154 shared_hash_htab (in
->vars
)
7155 ->traverse
<dataflow_set
*,
7156 canonicalize_loc_order_check
> (in
);
7158 if (dst_can_be_shared
)
7160 shared_hash_destroy (in
->vars
);
7161 in
->vars
= shared_hash_copy (first_out
->vars
);
7165 VTI (bb
)->flooded
= true;
7169 /* Calculate the IN set as union of predecessor OUT sets. */
7170 dataflow_set_clear (&VTI (bb
)->in
);
7171 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7172 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
7175 changed
= compute_bb_dataflow (bb
);
7176 htabsz
+= shared_hash_htab (VTI (bb
)->in
.vars
)->size ()
7177 + shared_hash_htab (VTI (bb
)->out
.vars
)->size ();
7179 if (htabmax
&& htabsz
> htabmax
)
7181 if (MAY_HAVE_DEBUG_BIND_INSNS
)
7182 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7183 "variable tracking size limit exceeded with "
7184 "-fvar-tracking-assignments, retrying without");
7186 inform (DECL_SOURCE_LOCATION (cfun
->decl
),
7187 "variable tracking size limit exceeded");
7194 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7196 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
7199 if (bitmap_bit_p (visited
, e
->dest
->index
))
7201 if (!bitmap_bit_p (in_pending
, e
->dest
->index
))
7203 /* Send E->DEST to next round. */
7204 bitmap_set_bit (in_pending
, e
->dest
->index
);
7205 pending
->insert (bb_order
[e
->dest
->index
],
7209 else if (!bitmap_bit_p (in_worklist
, e
->dest
->index
))
7211 /* Add E->DEST to current round. */
7212 bitmap_set_bit (in_worklist
, e
->dest
->index
);
7213 worklist
->insert (bb_order
[e
->dest
->index
],
7221 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7223 (int)shared_hash_htab (VTI (bb
)->in
.vars
)->size (),
7225 (int)shared_hash_htab (VTI (bb
)->out
.vars
)->size (),
7227 (int)worklist
->nodes (), (int)pending
->nodes (),
7230 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7232 fprintf (dump_file
, "BB %i IN:\n", bb
->index
);
7233 dump_dataflow_set (&VTI (bb
)->in
);
7234 fprintf (dump_file
, "BB %i OUT:\n", bb
->index
);
7235 dump_dataflow_set (&VTI (bb
)->out
);
7241 if (success
&& MAY_HAVE_DEBUG_BIND_INSNS
)
7242 FOR_EACH_BB_FN (bb
, cfun
)
7243 gcc_assert (VTI (bb
)->flooded
);
7248 sbitmap_free (in_worklist
);
7249 sbitmap_free (in_pending
);
7251 timevar_pop (TV_VAR_TRACKING_DATAFLOW
);
7255 /* Print the content of the LIST to dump file. */
7258 dump_attrs_list (attrs
*list
)
7260 for (; list
; list
= list
->next
)
7262 if (dv_is_decl_p (list
->dv
))
7263 print_mem_expr (dump_file
, dv_as_decl (list
->dv
));
7265 print_rtl_single (dump_file
, dv_as_value (list
->dv
));
7266 fprintf (dump_file
, "+" HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
7268 fprintf (dump_file
, "\n");
7271 /* Print the information about variable *SLOT to dump file. */
7274 dump_var_tracking_slot (variable
**slot
, void *data ATTRIBUTE_UNUSED
)
7276 variable
*var
= *slot
;
7280 /* Continue traversing the hash table. */
7284 /* Print the information about variable VAR to dump file. */
7287 dump_var (variable
*var
)
7290 location_chain
*node
;
7292 if (dv_is_decl_p (var
->dv
))
7294 const_tree decl
= dv_as_decl (var
->dv
);
7296 if (DECL_NAME (decl
))
7298 fprintf (dump_file
, " name: %s",
7299 IDENTIFIER_POINTER (DECL_NAME (decl
)));
7300 if (dump_flags
& TDF_UID
)
7301 fprintf (dump_file
, "D.%u", DECL_UID (decl
));
7303 else if (TREE_CODE (decl
) == DEBUG_EXPR_DECL
)
7304 fprintf (dump_file
, " name: D#%u", DEBUG_TEMP_UID (decl
));
7306 fprintf (dump_file
, " name: D.%u", DECL_UID (decl
));
7307 fprintf (dump_file
, "\n");
7311 fputc (' ', dump_file
);
7312 print_rtl_single (dump_file
, dv_as_value (var
->dv
));
7315 for (i
= 0; i
< var
->n_var_parts
; i
++)
7317 fprintf (dump_file
, " offset %ld\n",
7318 (long)(var
->onepart
? 0 : VAR_PART_OFFSET (var
, i
)));
7319 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
7321 fprintf (dump_file
, " ");
7322 if (node
->init
== VAR_INIT_STATUS_UNINITIALIZED
)
7323 fprintf (dump_file
, "[uninit]");
7324 print_rtl_single (dump_file
, node
->loc
);
7329 /* Print the information about variables from hash table VARS to dump file. */
7332 dump_vars (variable_table_type
*vars
)
7334 if (vars
->elements () > 0)
7336 fprintf (dump_file
, "Variables:\n");
7337 vars
->traverse
<void *, dump_var_tracking_slot
> (NULL
);
7341 /* Print the dataflow set SET to dump file. */
7344 dump_dataflow_set (dataflow_set
*set
)
7348 fprintf (dump_file
, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC
"\n",
7350 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7354 fprintf (dump_file
, "Reg %d:", i
);
7355 dump_attrs_list (set
->regs
[i
]);
7358 dump_vars (shared_hash_htab (set
->vars
));
7359 fprintf (dump_file
, "\n");
7362 /* Print the IN and OUT sets for each basic block to dump file. */
7365 dump_dataflow_sets (void)
7369 FOR_EACH_BB_FN (bb
, cfun
)
7371 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
7372 fprintf (dump_file
, "IN:\n");
7373 dump_dataflow_set (&VTI (bb
)->in
);
7374 fprintf (dump_file
, "OUT:\n");
7375 dump_dataflow_set (&VTI (bb
)->out
);
7379 /* Return the variable for DV in dropped_values, inserting one if
7380 requested with INSERT. */
7382 static inline variable
*
7383 variable_from_dropped (decl_or_value dv
, enum insert_option insert
)
7386 variable
*empty_var
;
7387 onepart_enum onepart
;
7389 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
), insert
);
7397 gcc_checking_assert (insert
== INSERT
);
7399 onepart
= dv_onepart_p (dv
);
7401 gcc_checking_assert (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
);
7403 empty_var
= onepart_pool_allocate (onepart
);
7405 empty_var
->refcount
= 1;
7406 empty_var
->n_var_parts
= 0;
7407 empty_var
->onepart
= onepart
;
7408 empty_var
->in_changed_variables
= false;
7409 empty_var
->var_part
[0].loc_chain
= NULL
;
7410 empty_var
->var_part
[0].cur_loc
= NULL
;
7411 VAR_LOC_1PAUX (empty_var
) = NULL
;
7412 set_dv_changed (dv
, true);
7419 /* Recover the one-part aux from dropped_values. */
7421 static struct onepart_aux
*
7422 recover_dropped_1paux (variable
*var
)
7426 gcc_checking_assert (var
->onepart
);
7428 if (VAR_LOC_1PAUX (var
))
7429 return VAR_LOC_1PAUX (var
);
7431 if (var
->onepart
== ONEPART_VDECL
)
7434 dvar
= variable_from_dropped (var
->dv
, NO_INSERT
);
7439 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (dvar
);
7440 VAR_LOC_1PAUX (dvar
) = NULL
;
7442 return VAR_LOC_1PAUX (var
);
7445 /* Add variable VAR to the hash table of changed variables and
7446 if it has no locations delete it from SET's hash table. */
7449 variable_was_changed (variable
*var
, dataflow_set
*set
)
7451 hashval_t hash
= dv_htab_hash (var
->dv
);
7457 /* Remember this decl or VALUE has been added to changed_variables. */
7458 set_dv_changed (var
->dv
, true);
7460 slot
= changed_variables
->find_slot_with_hash (var
->dv
, hash
, INSERT
);
7464 variable
*old_var
= *slot
;
7465 gcc_assert (old_var
->in_changed_variables
);
7466 old_var
->in_changed_variables
= false;
7467 if (var
!= old_var
&& var
->onepart
)
7469 /* Restore the auxiliary info from an empty variable
7470 previously created for changed_variables, so it is
7472 gcc_checking_assert (!VAR_LOC_1PAUX (var
));
7473 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (old_var
);
7474 VAR_LOC_1PAUX (old_var
) = NULL
;
7476 variable_htab_free (*slot
);
7479 if (set
&& var
->n_var_parts
== 0)
7481 onepart_enum onepart
= var
->onepart
;
7482 variable
*empty_var
= NULL
;
7483 variable
**dslot
= NULL
;
7485 if (onepart
== ONEPART_VALUE
|| onepart
== ONEPART_DEXPR
)
7487 dslot
= dropped_values
->find_slot_with_hash (var
->dv
,
7488 dv_htab_hash (var
->dv
),
7494 gcc_checking_assert (!empty_var
->in_changed_variables
);
7495 if (!VAR_LOC_1PAUX (var
))
7497 VAR_LOC_1PAUX (var
) = VAR_LOC_1PAUX (empty_var
);
7498 VAR_LOC_1PAUX (empty_var
) = NULL
;
7501 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
7507 empty_var
= onepart_pool_allocate (onepart
);
7508 empty_var
->dv
= var
->dv
;
7509 empty_var
->refcount
= 1;
7510 empty_var
->n_var_parts
= 0;
7511 empty_var
->onepart
= onepart
;
7514 empty_var
->refcount
++;
7519 empty_var
->refcount
++;
7520 empty_var
->in_changed_variables
= true;
7524 empty_var
->var_part
[0].loc_chain
= NULL
;
7525 empty_var
->var_part
[0].cur_loc
= NULL
;
7526 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (var
);
7527 VAR_LOC_1PAUX (var
) = NULL
;
7533 if (var
->onepart
&& !VAR_LOC_1PAUX (var
))
7534 recover_dropped_1paux (var
);
7536 var
->in_changed_variables
= true;
7543 if (var
->n_var_parts
== 0)
7548 slot
= shared_hash_find_slot_noinsert (set
->vars
, var
->dv
);
7551 if (shared_hash_shared (set
->vars
))
7552 slot
= shared_hash_find_slot_unshare (&set
->vars
, var
->dv
,
7554 shared_hash_htab (set
->vars
)->clear_slot (slot
);
7560 /* Look for the index in VAR->var_part corresponding to OFFSET.
7561 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7562 referenced int will be set to the index that the part has or should
7563 have, if it should be inserted. */
7566 find_variable_location_part (variable
*var
, HOST_WIDE_INT offset
,
7567 int *insertion_point
)
7576 if (insertion_point
)
7577 *insertion_point
= 0;
7579 return var
->n_var_parts
- 1;
7582 /* Find the location part. */
7584 high
= var
->n_var_parts
;
7587 pos
= (low
+ high
) / 2;
7588 if (VAR_PART_OFFSET (var
, pos
) < offset
)
7595 if (insertion_point
)
7596 *insertion_point
= pos
;
7598 if (pos
< var
->n_var_parts
&& VAR_PART_OFFSET (var
, pos
) == offset
)
7605 set_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7606 decl_or_value dv
, HOST_WIDE_INT offset
,
7607 enum var_init_status initialized
, rtx set_src
)
7610 location_chain
*node
, *next
;
7611 location_chain
**nextp
;
7613 onepart_enum onepart
;
7618 onepart
= var
->onepart
;
7620 onepart
= dv_onepart_p (dv
);
7622 gcc_checking_assert (offset
== 0 || !onepart
);
7623 gcc_checking_assert (loc
!= dv_as_opaque (dv
));
7625 if (! flag_var_tracking_uninit
)
7626 initialized
= VAR_INIT_STATUS_INITIALIZED
;
7630 /* Create new variable information. */
7631 var
= onepart_pool_allocate (onepart
);
7634 var
->n_var_parts
= 1;
7635 var
->onepart
= onepart
;
7636 var
->in_changed_variables
= false;
7638 VAR_LOC_1PAUX (var
) = NULL
;
7640 VAR_PART_OFFSET (var
, 0) = offset
;
7641 var
->var_part
[0].loc_chain
= NULL
;
7642 var
->var_part
[0].cur_loc
= NULL
;
7645 nextp
= &var
->var_part
[0].loc_chain
;
7651 gcc_assert (dv_as_opaque (var
->dv
) == dv_as_opaque (dv
));
7655 if (GET_CODE (loc
) == VALUE
)
7657 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7658 nextp
= &node
->next
)
7659 if (GET_CODE (node
->loc
) == VALUE
)
7661 if (node
->loc
== loc
)
7666 if (canon_value_cmp (node
->loc
, loc
))
7674 else if (REG_P (node
->loc
) || MEM_P (node
->loc
))
7682 else if (REG_P (loc
))
7684 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7685 nextp
= &node
->next
)
7686 if (REG_P (node
->loc
))
7688 if (REGNO (node
->loc
) < REGNO (loc
))
7692 if (REGNO (node
->loc
) == REGNO (loc
))
7705 else if (MEM_P (loc
))
7707 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7708 nextp
= &node
->next
)
7709 if (REG_P (node
->loc
))
7711 else if (MEM_P (node
->loc
))
7713 if ((r
= loc_cmp (XEXP (node
->loc
, 0), XEXP (loc
, 0))) >= 0)
7725 for (nextp
= &var
->var_part
[0].loc_chain
; (node
= *nextp
);
7726 nextp
= &node
->next
)
7727 if ((r
= loc_cmp (node
->loc
, loc
)) >= 0)
7735 if (shared_var_p (var
, set
->vars
))
7737 slot
= unshare_variable (set
, slot
, var
, initialized
);
7739 for (nextp
= &var
->var_part
[0].loc_chain
; c
;
7740 nextp
= &(*nextp
)->next
)
7742 gcc_assert ((!node
&& !*nextp
) || node
->loc
== (*nextp
)->loc
);
7749 gcc_assert (dv_as_decl (var
->dv
) == dv_as_decl (dv
));
7751 pos
= find_variable_location_part (var
, offset
, &inspos
);
7755 node
= var
->var_part
[pos
].loc_chain
;
7758 && ((REG_P (node
->loc
) && REG_P (loc
)
7759 && REGNO (node
->loc
) == REGNO (loc
))
7760 || rtx_equal_p (node
->loc
, loc
)))
7762 /* LOC is in the beginning of the chain so we have nothing
7764 if (node
->init
< initialized
)
7765 node
->init
= initialized
;
7766 if (set_src
!= NULL
)
7767 node
->set_src
= set_src
;
7773 /* We have to make a copy of a shared variable. */
7774 if (shared_var_p (var
, set
->vars
))
7776 slot
= unshare_variable (set
, slot
, var
, initialized
);
7783 /* We have not found the location part, new one will be created. */
7785 /* We have to make a copy of the shared variable. */
7786 if (shared_var_p (var
, set
->vars
))
7788 slot
= unshare_variable (set
, slot
, var
, initialized
);
7792 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7793 thus there are at most MAX_VAR_PARTS different offsets. */
7794 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
7795 && (!var
->n_var_parts
|| !onepart
));
7797 /* We have to move the elements of array starting at index
7798 inspos to the next position. */
7799 for (pos
= var
->n_var_parts
; pos
> inspos
; pos
--)
7800 var
->var_part
[pos
] = var
->var_part
[pos
- 1];
7803 gcc_checking_assert (!onepart
);
7804 VAR_PART_OFFSET (var
, pos
) = offset
;
7805 var
->var_part
[pos
].loc_chain
= NULL
;
7806 var
->var_part
[pos
].cur_loc
= NULL
;
7809 /* Delete the location from the list. */
7810 nextp
= &var
->var_part
[pos
].loc_chain
;
7811 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
7814 if ((REG_P (node
->loc
) && REG_P (loc
)
7815 && REGNO (node
->loc
) == REGNO (loc
))
7816 || rtx_equal_p (node
->loc
, loc
))
7818 /* Save these values, to assign to the new node, before
7819 deleting this one. */
7820 if (node
->init
> initialized
)
7821 initialized
= node
->init
;
7822 if (node
->set_src
!= NULL
&& set_src
== NULL
)
7823 set_src
= node
->set_src
;
7824 if (var
->var_part
[pos
].cur_loc
== node
->loc
)
7825 var
->var_part
[pos
].cur_loc
= NULL
;
7831 nextp
= &node
->next
;
7834 nextp
= &var
->var_part
[pos
].loc_chain
;
7837 /* Add the location to the beginning. */
7838 node
= new location_chain
;
7840 node
->init
= initialized
;
7841 node
->set_src
= set_src
;
7842 node
->next
= *nextp
;
7845 /* If no location was emitted do so. */
7846 if (var
->var_part
[pos
].cur_loc
== NULL
)
7847 variable_was_changed (var
, set
);
7852 /* Set the part of variable's location in the dataflow set SET. The
7853 variable part is specified by variable's declaration in DV and
7854 offset OFFSET and the part's location by LOC. IOPT should be
7855 NO_INSERT if the variable is known to be in SET already and the
7856 variable hash table must not be resized, and INSERT otherwise. */
7859 set_variable_part (dataflow_set
*set
, rtx loc
,
7860 decl_or_value dv
, HOST_WIDE_INT offset
,
7861 enum var_init_status initialized
, rtx set_src
,
7862 enum insert_option iopt
)
7866 if (iopt
== NO_INSERT
)
7867 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7870 slot
= shared_hash_find_slot (set
->vars
, dv
);
7872 slot
= shared_hash_find_slot_unshare (&set
->vars
, dv
, iopt
);
7874 set_slot_part (set
, loc
, slot
, dv
, offset
, initialized
, set_src
);
7877 /* Remove all recorded register locations for the given variable part
7878 from dataflow set SET, except for those that are identical to loc.
7879 The variable part is specified by variable's declaration or value
7880 DV and offset OFFSET. */
7883 clobber_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7884 HOST_WIDE_INT offset
, rtx set_src
)
7886 variable
*var
= *slot
;
7887 int pos
= find_variable_location_part (var
, offset
, NULL
);
7891 location_chain
*node
, *next
;
7893 /* Remove the register locations from the dataflow set. */
7894 next
= var
->var_part
[pos
].loc_chain
;
7895 for (node
= next
; node
; node
= next
)
7898 if (node
->loc
!= loc
7899 && (!flag_var_tracking_uninit
7902 || !rtx_equal_p (set_src
, node
->set_src
)))
7904 if (REG_P (node
->loc
))
7906 attrs
*anode
, *anext
;
7909 /* Remove the variable part from the register's
7910 list, but preserve any other variable parts
7911 that might be regarded as live in that same
7913 anextp
= &set
->regs
[REGNO (node
->loc
)];
7914 for (anode
= *anextp
; anode
; anode
= anext
)
7916 anext
= anode
->next
;
7917 if (dv_as_opaque (anode
->dv
) == dv_as_opaque (var
->dv
)
7918 && anode
->offset
== offset
)
7924 anextp
= &anode
->next
;
7928 slot
= delete_slot_part (set
, node
->loc
, slot
, offset
);
7936 /* Remove all recorded register locations for the given variable part
7937 from dataflow set SET, except for those that are identical to loc.
7938 The variable part is specified by variable's declaration or value
7939 DV and offset OFFSET. */
7942 clobber_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
7943 HOST_WIDE_INT offset
, rtx set_src
)
7947 if (!dv_as_opaque (dv
)
7948 || (!dv_is_value_p (dv
) && ! DECL_P (dv_as_decl (dv
))))
7951 slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
7955 clobber_slot_part (set
, loc
, slot
, offset
, set_src
);
7958 /* Delete the part of variable's location from dataflow set SET. The
7959 variable part is specified by its SET->vars slot SLOT and offset
7960 OFFSET and the part's location by LOC. */
7963 delete_slot_part (dataflow_set
*set
, rtx loc
, variable
**slot
,
7964 HOST_WIDE_INT offset
)
7966 variable
*var
= *slot
;
7967 int pos
= find_variable_location_part (var
, offset
, NULL
);
7971 location_chain
*node
, *next
;
7972 location_chain
**nextp
;
7976 if (shared_var_p (var
, set
->vars
))
7978 /* If the variable contains the location part we have to
7979 make a copy of the variable. */
7980 for (node
= var
->var_part
[pos
].loc_chain
; node
;
7983 if ((REG_P (node
->loc
) && REG_P (loc
)
7984 && REGNO (node
->loc
) == REGNO (loc
))
7985 || rtx_equal_p (node
->loc
, loc
))
7987 slot
= unshare_variable (set
, slot
, var
,
7988 VAR_INIT_STATUS_UNKNOWN
);
7995 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
7996 cur_loc
= VAR_LOC_FROM (var
);
7998 cur_loc
= var
->var_part
[pos
].cur_loc
;
8000 /* Delete the location part. */
8002 nextp
= &var
->var_part
[pos
].loc_chain
;
8003 for (node
= *nextp
; node
; node
= next
)
8006 if ((REG_P (node
->loc
) && REG_P (loc
)
8007 && REGNO (node
->loc
) == REGNO (loc
))
8008 || rtx_equal_p (node
->loc
, loc
))
8010 /* If we have deleted the location which was last emitted
8011 we have to emit new location so add the variable to set
8012 of changed variables. */
8013 if (cur_loc
== node
->loc
)
8016 var
->var_part
[pos
].cur_loc
= NULL
;
8017 if (pos
== 0 && var
->onepart
&& VAR_LOC_1PAUX (var
))
8018 VAR_LOC_FROM (var
) = NULL
;
8025 nextp
= &node
->next
;
8028 if (var
->var_part
[pos
].loc_chain
== NULL
)
8032 while (pos
< var
->n_var_parts
)
8034 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
8039 variable_was_changed (var
, set
);
8045 /* Delete the part of variable's location from dataflow set SET. The
8046 variable part is specified by variable's declaration or value DV
8047 and offset OFFSET and the part's location by LOC. */
8050 delete_variable_part (dataflow_set
*set
, rtx loc
, decl_or_value dv
,
8051 HOST_WIDE_INT offset
)
8053 variable
**slot
= shared_hash_find_slot_noinsert (set
->vars
, dv
);
8057 delete_slot_part (set
, loc
, slot
, offset
);
8061 /* Structure for passing some other parameters to function
8062 vt_expand_loc_callback. */
8063 struct expand_loc_callback_data
8065 /* The variables and values active at this point. */
8066 variable_table_type
*vars
;
8068 /* Stack of values and debug_exprs under expansion, and their
8070 auto_vec
<rtx
, 4> expanding
;
8072 /* Stack of values and debug_exprs whose expansion hit recursion
8073 cycles. They will have VALUE_RECURSED_INTO marked when added to
8074 this list. This flag will be cleared if any of its dependencies
8075 resolves to a valid location. So, if the flag remains set at the
8076 end of the search, we know no valid location for this one can
8078 auto_vec
<rtx
, 4> pending
;
8080 /* The maximum depth among the sub-expressions under expansion.
8081 Zero indicates no expansion so far. */
8085 /* Allocate the one-part auxiliary data structure for VAR, with enough
8086 room for COUNT dependencies. */
8089 loc_exp_dep_alloc (variable
*var
, int count
)
8093 gcc_checking_assert (var
->onepart
);
8095 /* We can be called with COUNT == 0 to allocate the data structure
8096 without any dependencies, e.g. for the backlinks only. However,
8097 if we are specifying a COUNT, then the dependency list must have
8098 been emptied before. It would be possible to adjust pointers or
8099 force it empty here, but this is better done at an earlier point
8100 in the algorithm, so we instead leave an assertion to catch
8102 gcc_checking_assert (!count
8103 || VAR_LOC_DEP_VEC (var
) == NULL
8104 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8106 if (VAR_LOC_1PAUX (var
) && VAR_LOC_DEP_VEC (var
)->space (count
))
8109 allocsize
= offsetof (struct onepart_aux
, deps
)
8110 + vec
<loc_exp_dep
, va_heap
, vl_embed
>::embedded_size (count
);
8112 if (VAR_LOC_1PAUX (var
))
8114 VAR_LOC_1PAUX (var
) = XRESIZEVAR (struct onepart_aux
,
8115 VAR_LOC_1PAUX (var
), allocsize
);
8116 /* If the reallocation moves the onepaux structure, the
8117 back-pointer to BACKLINKS in the first list member will still
8118 point to its old location. Adjust it. */
8119 if (VAR_LOC_DEP_LST (var
))
8120 VAR_LOC_DEP_LST (var
)->pprev
= VAR_LOC_DEP_LSTP (var
);
8124 VAR_LOC_1PAUX (var
) = XNEWVAR (struct onepart_aux
, allocsize
);
8125 *VAR_LOC_DEP_LSTP (var
) = NULL
;
8126 VAR_LOC_FROM (var
) = NULL
;
8127 VAR_LOC_DEPTH (var
).complexity
= 0;
8128 VAR_LOC_DEPTH (var
).entryvals
= 0;
8130 VAR_LOC_DEP_VEC (var
)->embedded_init (count
);
8133 /* Remove all entries from the vector of active dependencies of VAR,
8134 removing them from the back-links lists too. */
8137 loc_exp_dep_clear (variable
*var
)
8139 while (VAR_LOC_DEP_VEC (var
) && !VAR_LOC_DEP_VEC (var
)->is_empty ())
8141 loc_exp_dep
*led
= &VAR_LOC_DEP_VEC (var
)->last ();
8143 led
->next
->pprev
= led
->pprev
;
8145 *led
->pprev
= led
->next
;
8146 VAR_LOC_DEP_VEC (var
)->pop ();
8150 /* Insert an active dependency from VAR on X to the vector of
8151 dependencies, and add the corresponding back-link to X's list of
8152 back-links in VARS. */
8155 loc_exp_insert_dep (variable
*var
, rtx x
, variable_table_type
*vars
)
8161 dv
= dv_from_rtx (x
);
8163 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8164 an additional look up? */
8165 xvar
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8169 xvar
= variable_from_dropped (dv
, NO_INSERT
);
8170 gcc_checking_assert (xvar
);
8173 /* No point in adding the same backlink more than once. This may
8174 arise if say the same value appears in two complex expressions in
8175 the same loc_list, or even more than once in a single
8177 if (VAR_LOC_DEP_LST (xvar
) && VAR_LOC_DEP_LST (xvar
)->dv
== var
->dv
)
8180 if (var
->onepart
== NOT_ONEPART
)
8181 led
= new loc_exp_dep
;
8185 memset (&empty
, 0, sizeof (empty
));
8186 VAR_LOC_DEP_VEC (var
)->quick_push (empty
);
8187 led
= &VAR_LOC_DEP_VEC (var
)->last ();
8192 loc_exp_dep_alloc (xvar
, 0);
8193 led
->pprev
= VAR_LOC_DEP_LSTP (xvar
);
8194 led
->next
= *led
->pprev
;
8196 led
->next
->pprev
= &led
->next
;
8200 /* Create active dependencies of VAR on COUNT values starting at
8201 VALUE, and corresponding back-links to the entries in VARS. Return
8202 true if we found any pending-recursion results. */
8205 loc_exp_dep_set (variable
*var
, rtx result
, rtx
*value
, int count
,
8206 variable_table_type
*vars
)
8208 bool pending_recursion
= false;
8210 gcc_checking_assert (VAR_LOC_DEP_VEC (var
) == NULL
8211 || VAR_LOC_DEP_VEC (var
)->is_empty ());
8213 /* Set up all dependencies from last_child (as set up at the end of
8214 the loop above) to the end. */
8215 loc_exp_dep_alloc (var
, count
);
8221 if (!pending_recursion
)
8222 pending_recursion
= !result
&& VALUE_RECURSED_INTO (x
);
8224 loc_exp_insert_dep (var
, x
, vars
);
8227 return pending_recursion
;
8230 /* Notify the back-links of IVAR that are pending recursion that we
8231 have found a non-NIL value for it, so they are cleared for another
8232 attempt to compute a current location. */
8235 notify_dependents_of_resolved_value (variable
*ivar
, variable_table_type
*vars
)
8237 loc_exp_dep
*led
, *next
;
8239 for (led
= VAR_LOC_DEP_LST (ivar
); led
; led
= next
)
8241 decl_or_value dv
= led
->dv
;
8246 if (dv_is_value_p (dv
))
8248 rtx value
= dv_as_value (dv
);
8250 /* If we have already resolved it, leave it alone. */
8251 if (!VALUE_RECURSED_INTO (value
))
8254 /* Check that VALUE_RECURSED_INTO, true from the test above,
8255 implies NO_LOC_P. */
8256 gcc_checking_assert (NO_LOC_P (value
));
8258 /* We won't notify variables that are being expanded,
8259 because their dependency list is cleared before
8261 NO_LOC_P (value
) = false;
8262 VALUE_RECURSED_INTO (value
) = false;
8264 gcc_checking_assert (dv_changed_p (dv
));
8268 gcc_checking_assert (dv_onepart_p (dv
) != NOT_ONEPART
);
8269 if (!dv_changed_p (dv
))
8273 var
= vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8276 var
= variable_from_dropped (dv
, NO_INSERT
);
8279 notify_dependents_of_resolved_value (var
, vars
);
8282 next
->pprev
= led
->pprev
;
8290 static rtx
vt_expand_loc_callback (rtx x
, bitmap regs
,
8291 int max_depth
, void *data
);
8293 /* Return the combined depth, when one sub-expression evaluated to
8294 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8296 static inline expand_depth
8297 update_depth (expand_depth saved_depth
, expand_depth best_depth
)
8299 /* If we didn't find anything, stick with what we had. */
8300 if (!best_depth
.complexity
)
8303 /* If we found hadn't found anything, use the depth of the current
8304 expression. Do NOT add one extra level, we want to compute the
8305 maximum depth among sub-expressions. We'll increment it later,
8307 if (!saved_depth
.complexity
)
8310 /* Combine the entryval count so that regardless of which one we
8311 return, the entryval count is accurate. */
8312 best_depth
.entryvals
= saved_depth
.entryvals
8313 = best_depth
.entryvals
+ saved_depth
.entryvals
;
8315 if (saved_depth
.complexity
< best_depth
.complexity
)
8321 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8322 DATA for cselib expand callback. If PENDRECP is given, indicate in
8323 it whether any sub-expression couldn't be fully evaluated because
8324 it is pending recursion resolution. */
8327 vt_expand_var_loc_chain (variable
*var
, bitmap regs
, void *data
,
8330 struct expand_loc_callback_data
*elcd
8331 = (struct expand_loc_callback_data
*) data
;
8332 location_chain
*loc
, *next
;
8334 int first_child
, result_first_child
, last_child
;
8335 bool pending_recursion
;
8336 rtx loc_from
= NULL
;
8337 struct elt_loc_list
*cloc
= NULL
;
8338 expand_depth depth
= { 0, 0 }, saved_depth
= elcd
->depth
;
8339 int wanted_entryvals
, found_entryvals
= 0;
8341 /* Clear all backlinks pointing at this, so that we're not notified
8342 while we're active. */
8343 loc_exp_dep_clear (var
);
8346 if (var
->onepart
== ONEPART_VALUE
)
8348 cselib_val
*val
= CSELIB_VAL_PTR (dv_as_value (var
->dv
));
8350 gcc_checking_assert (cselib_preserved_value_p (val
));
8355 first_child
= result_first_child
= last_child
8356 = elcd
->expanding
.length ();
8358 wanted_entryvals
= found_entryvals
;
8360 /* Attempt to expand each available location in turn. */
8361 for (next
= loc
= var
->n_var_parts
? var
->var_part
[0].loc_chain
: NULL
;
8362 loc
|| cloc
; loc
= next
)
8364 result_first_child
= last_child
;
8368 loc_from
= cloc
->loc
;
8371 if (unsuitable_loc (loc_from
))
8376 loc_from
= loc
->loc
;
8380 gcc_checking_assert (!unsuitable_loc (loc_from
));
8382 elcd
->depth
.complexity
= elcd
->depth
.entryvals
= 0;
8383 result
= cselib_expand_value_rtx_cb (loc_from
, regs
, EXPR_DEPTH
,
8384 vt_expand_loc_callback
, data
);
8385 last_child
= elcd
->expanding
.length ();
8389 depth
= elcd
->depth
;
8391 gcc_checking_assert (depth
.complexity
8392 || result_first_child
== last_child
);
8394 if (last_child
- result_first_child
!= 1)
8396 if (!depth
.complexity
&& GET_CODE (result
) == ENTRY_VALUE
)
8401 if (depth
.complexity
<= EXPR_USE_DEPTH
)
8403 if (depth
.entryvals
<= wanted_entryvals
)
8405 else if (!found_entryvals
|| depth
.entryvals
< found_entryvals
)
8406 found_entryvals
= depth
.entryvals
;
8412 /* Set it up in case we leave the loop. */
8413 depth
.complexity
= depth
.entryvals
= 0;
8415 result_first_child
= first_child
;
8418 if (!loc_from
&& wanted_entryvals
< found_entryvals
)
8420 /* We found entries with ENTRY_VALUEs and skipped them. Since
8421 we could not find any expansions without ENTRY_VALUEs, but we
8422 found at least one with them, go back and get an entry with
8423 the minimum number ENTRY_VALUE count that we found. We could
8424 avoid looping, but since each sub-loc is already resolved,
8425 the re-expansion should be trivial. ??? Should we record all
8426 attempted locs as dependencies, so that we retry the
8427 expansion should any of them change, in the hope it can give
8428 us a new entry without an ENTRY_VALUE? */
8429 elcd
->expanding
.truncate (first_child
);
8433 /* Register all encountered dependencies as active. */
8434 pending_recursion
= loc_exp_dep_set
8435 (var
, result
, elcd
->expanding
.address () + result_first_child
,
8436 last_child
- result_first_child
, elcd
->vars
);
8438 elcd
->expanding
.truncate (first_child
);
8440 /* Record where the expansion came from. */
8441 gcc_checking_assert (!result
|| !pending_recursion
);
8442 VAR_LOC_FROM (var
) = loc_from
;
8443 VAR_LOC_DEPTH (var
) = depth
;
8445 gcc_checking_assert (!depth
.complexity
== !result
);
8447 elcd
->depth
= update_depth (saved_depth
, depth
);
8449 /* Indicate whether any of the dependencies are pending recursion
8452 *pendrecp
= pending_recursion
;
8454 if (!pendrecp
|| !pending_recursion
)
8455 var
->var_part
[0].cur_loc
= result
;
8460 /* Callback for cselib_expand_value, that looks for expressions
8461 holding the value in the var-tracking hash tables. Return X for
8462 standard processing, anything else is to be used as-is. */
8465 vt_expand_loc_callback (rtx x
, bitmap regs
,
8466 int max_depth ATTRIBUTE_UNUSED
,
8469 struct expand_loc_callback_data
*elcd
8470 = (struct expand_loc_callback_data
*) data
;
8474 bool pending_recursion
= false;
8475 bool from_empty
= false;
8477 switch (GET_CODE (x
))
8480 subreg
= cselib_expand_value_rtx_cb (SUBREG_REG (x
), regs
,
8482 vt_expand_loc_callback
, data
);
8487 result
= simplify_gen_subreg (GET_MODE (x
), subreg
,
8488 GET_MODE (SUBREG_REG (x
)),
8491 /* Invalid SUBREGs are ok in debug info. ??? We could try
8492 alternate expansions for the VALUE as well. */
8494 result
= gen_rtx_raw_SUBREG (GET_MODE (x
), subreg
, SUBREG_BYTE (x
));
8500 dv
= dv_from_rtx (x
);
8507 elcd
->expanding
.safe_push (x
);
8509 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8510 gcc_checking_assert (!VALUE_RECURSED_INTO (x
) || NO_LOC_P (x
));
8514 gcc_checking_assert (VALUE_RECURSED_INTO (x
) || !dv_changed_p (dv
));
8518 var
= elcd
->vars
->find_with_hash (dv
, dv_htab_hash (dv
));
8523 var
= variable_from_dropped (dv
, INSERT
);
8526 gcc_checking_assert (var
);
8528 if (!dv_changed_p (dv
))
8530 gcc_checking_assert (!NO_LOC_P (x
));
8531 gcc_checking_assert (var
->var_part
[0].cur_loc
);
8532 gcc_checking_assert (VAR_LOC_1PAUX (var
));
8533 gcc_checking_assert (VAR_LOC_1PAUX (var
)->depth
.complexity
);
8535 elcd
->depth
= update_depth (elcd
->depth
, VAR_LOC_1PAUX (var
)->depth
);
8537 return var
->var_part
[0].cur_loc
;
8540 VALUE_RECURSED_INTO (x
) = true;
8541 /* This is tentative, but it makes some tests simpler. */
8542 NO_LOC_P (x
) = true;
8544 gcc_checking_assert (var
->n_var_parts
== 1 || from_empty
);
8546 result
= vt_expand_var_loc_chain (var
, regs
, data
, &pending_recursion
);
8548 if (pending_recursion
)
8550 gcc_checking_assert (!result
);
8551 elcd
->pending
.safe_push (x
);
8555 NO_LOC_P (x
) = !result
;
8556 VALUE_RECURSED_INTO (x
) = false;
8557 set_dv_changed (dv
, false);
8560 notify_dependents_of_resolved_value (var
, elcd
->vars
);
8566 /* While expanding variables, we may encounter recursion cycles
8567 because of mutual (possibly indirect) dependencies between two
8568 particular variables (or values), say A and B. If we're trying to
8569 expand A when we get to B, which in turn attempts to expand A, if
8570 we can't find any other expansion for B, we'll add B to this
8571 pending-recursion stack, and tentatively return NULL for its
8572 location. This tentative value will be used for any other
8573 occurrences of B, unless A gets some other location, in which case
8574 it will notify B that it is worth another try at computing a
8575 location for it, and it will use the location computed for A then.
8576 At the end of the expansion, the tentative NULL locations become
8577 final for all members of PENDING that didn't get a notification.
8578 This function performs this finalization of NULL locations. */
8581 resolve_expansions_pending_recursion (vec
<rtx
, va_heap
> *pending
)
8583 while (!pending
->is_empty ())
8585 rtx x
= pending
->pop ();
8588 if (!VALUE_RECURSED_INTO (x
))
8591 gcc_checking_assert (NO_LOC_P (x
));
8592 VALUE_RECURSED_INTO (x
) = false;
8593 dv
= dv_from_rtx (x
);
8594 gcc_checking_assert (dv_changed_p (dv
));
8595 set_dv_changed (dv
, false);
8599 /* Initialize expand_loc_callback_data D with variable hash table V.
8600 It must be a macro because of alloca (vec stack). */
8601 #define INIT_ELCD(d, v) \
8605 (d).depth.complexity = (d).depth.entryvals = 0; \
8608 /* Finalize expand_loc_callback_data D, resolved to location L. */
8609 #define FINI_ELCD(d, l) \
8612 resolve_expansions_pending_recursion (&(d).pending); \
8613 (d).pending.release (); \
8614 (d).expanding.release (); \
8616 if ((l) && MEM_P (l)) \
8617 (l) = targetm.delegitimize_address (l); \
8621 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8622 equivalences in VARS, updating their CUR_LOCs in the process. */
8625 vt_expand_loc (rtx loc
, variable_table_type
*vars
)
8627 struct expand_loc_callback_data data
;
8630 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
8633 INIT_ELCD (data
, vars
);
8635 result
= cselib_expand_value_rtx_cb (loc
, scratch_regs
, EXPR_DEPTH
,
8636 vt_expand_loc_callback
, &data
);
8638 FINI_ELCD (data
, result
);
8643 /* Expand the one-part VARiable to a location, using the equivalences
8644 in VARS, updating their CUR_LOCs in the process. */
8647 vt_expand_1pvar (variable
*var
, variable_table_type
*vars
)
8649 struct expand_loc_callback_data data
;
8652 gcc_checking_assert (var
->onepart
&& var
->n_var_parts
== 1);
8654 if (!dv_changed_p (var
->dv
))
8655 return var
->var_part
[0].cur_loc
;
8657 INIT_ELCD (data
, vars
);
8659 loc
= vt_expand_var_loc_chain (var
, scratch_regs
, &data
, NULL
);
8661 gcc_checking_assert (data
.expanding
.is_empty ());
8663 FINI_ELCD (data
, loc
);
8668 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8669 additional parameters: WHERE specifies whether the note shall be emitted
8670 before or after instruction INSN. */
8673 emit_note_insn_var_location (variable
**varp
, emit_note_data
*data
)
8675 variable
*var
= *varp
;
8676 rtx_insn
*insn
= data
->insn
;
8677 enum emit_note_where where
= data
->where
;
8678 variable_table_type
*vars
= data
->vars
;
8681 int i
, j
, n_var_parts
;
8683 enum var_init_status initialized
= VAR_INIT_STATUS_UNINITIALIZED
;
8684 HOST_WIDE_INT last_limit
;
8685 HOST_WIDE_INT offsets
[MAX_VAR_PARTS
];
8686 rtx loc
[MAX_VAR_PARTS
];
8690 gcc_checking_assert (var
->onepart
== NOT_ONEPART
8691 || var
->onepart
== ONEPART_VDECL
);
8693 decl
= dv_as_decl (var
->dv
);
8699 for (i
= 0; i
< var
->n_var_parts
; i
++)
8700 if (var
->var_part
[i
].cur_loc
== NULL
&& var
->var_part
[i
].loc_chain
)
8701 var
->var_part
[i
].cur_loc
= var
->var_part
[i
].loc_chain
->loc
;
8702 for (i
= 0; i
< var
->n_var_parts
; i
++)
8704 machine_mode mode
, wider_mode
;
8706 HOST_WIDE_INT offset
, size
, wider_size
;
8708 if (i
== 0 && var
->onepart
)
8710 gcc_checking_assert (var
->n_var_parts
== 1);
8712 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8713 loc2
= vt_expand_1pvar (var
, vars
);
8717 if (last_limit
< VAR_PART_OFFSET (var
, i
))
8722 else if (last_limit
> VAR_PART_OFFSET (var
, i
))
8724 offset
= VAR_PART_OFFSET (var
, i
);
8725 loc2
= var
->var_part
[i
].cur_loc
;
8726 if (loc2
&& GET_CODE (loc2
) == MEM
8727 && GET_CODE (XEXP (loc2
, 0)) == VALUE
)
8729 rtx depval
= XEXP (loc2
, 0);
8731 loc2
= vt_expand_loc (loc2
, vars
);
8734 loc_exp_insert_dep (var
, depval
, vars
);
8741 gcc_checking_assert (GET_CODE (loc2
) != VALUE
);
8742 for (lc
= var
->var_part
[i
].loc_chain
; lc
; lc
= lc
->next
)
8743 if (var
->var_part
[i
].cur_loc
== lc
->loc
)
8745 initialized
= lc
->init
;
8751 offsets
[n_var_parts
] = offset
;
8757 loc
[n_var_parts
] = loc2
;
8758 mode
= GET_MODE (var
->var_part
[i
].cur_loc
);
8759 if (mode
== VOIDmode
&& var
->onepart
)
8760 mode
= DECL_MODE (decl
);
8761 /* We ony track subparts of constant-sized objects, since at present
8762 there's no representation for polynomial pieces. */
8763 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
8768 last_limit
= offsets
[n_var_parts
] + size
;
8770 /* Attempt to merge adjacent registers or memory. */
8771 for (j
= i
+ 1; j
< var
->n_var_parts
; j
++)
8772 if (last_limit
<= VAR_PART_OFFSET (var
, j
))
8774 if (j
< var
->n_var_parts
8775 && GET_MODE_WIDER_MODE (mode
).exists (&wider_mode
)
8776 && GET_MODE_SIZE (wider_mode
).is_constant (&wider_size
)
8777 && var
->var_part
[j
].cur_loc
8778 && mode
== GET_MODE (var
->var_part
[j
].cur_loc
)
8779 && (REG_P (loc
[n_var_parts
]) || MEM_P (loc
[n_var_parts
]))
8780 && last_limit
== (var
->onepart
? 0 : VAR_PART_OFFSET (var
, j
))
8781 && (loc2
= vt_expand_loc (var
->var_part
[j
].cur_loc
, vars
))
8782 && GET_CODE (loc
[n_var_parts
]) == GET_CODE (loc2
))
8787 if (REG_P (loc
[n_var_parts
])
8788 && hard_regno_nregs (REGNO (loc
[n_var_parts
]), mode
) * 2
8789 == hard_regno_nregs (REGNO (loc
[n_var_parts
]), wider_mode
)
8790 && end_hard_regno (mode
, REGNO (loc
[n_var_parts
]))
8793 if (! WORDS_BIG_ENDIAN
&& ! BYTES_BIG_ENDIAN
)
8794 new_loc
= simplify_subreg (wider_mode
, loc
[n_var_parts
],
8796 else if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
8797 new_loc
= simplify_subreg (wider_mode
, loc2
, mode
, 0);
8800 if (!REG_P (new_loc
)
8801 || REGNO (new_loc
) != REGNO (loc
[n_var_parts
]))
8804 REG_ATTRS (new_loc
) = REG_ATTRS (loc
[n_var_parts
]);
8807 else if (MEM_P (loc
[n_var_parts
])
8808 && GET_CODE (XEXP (loc2
, 0)) == PLUS
8809 && REG_P (XEXP (XEXP (loc2
, 0), 0))
8810 && poly_int_rtx_p (XEXP (XEXP (loc2
, 0), 1), &offset2
))
8812 poly_int64 end1
= size
;
8813 rtx base1
= strip_offset_and_add (XEXP (loc
[n_var_parts
], 0),
8815 if (rtx_equal_p (base1
, XEXP (XEXP (loc2
, 0), 0))
8816 && known_eq (end1
, offset2
))
8817 new_loc
= adjust_address_nv (loc
[n_var_parts
],
8823 loc
[n_var_parts
] = new_loc
;
8825 last_limit
= offsets
[n_var_parts
] + wider_size
;
8831 poly_uint64 type_size_unit
8832 = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl
)));
8833 if (maybe_lt (poly_uint64 (last_limit
), type_size_unit
))
8836 if (! flag_var_tracking_uninit
)
8837 initialized
= VAR_INIT_STATUS_INITIALIZED
;
8841 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, NULL_RTX
, initialized
);
8842 else if (n_var_parts
== 1)
8846 if (offsets
[0] || GET_CODE (loc
[0]) == PARALLEL
)
8847 expr_list
= gen_rtx_EXPR_LIST (VOIDmode
, loc
[0], GEN_INT (offsets
[0]));
8851 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
, expr_list
, initialized
);
8853 else if (n_var_parts
)
8857 for (i
= 0; i
< n_var_parts
; i
++)
8859 = gen_rtx_EXPR_LIST (VOIDmode
, loc
[i
], GEN_INT (offsets
[i
]));
8861 parallel
= gen_rtx_PARALLEL (VOIDmode
,
8862 gen_rtvec_v (n_var_parts
, loc
));
8863 note_vl
= gen_rtx_VAR_LOCATION (VOIDmode
, decl
,
8864 parallel
, initialized
);
8867 if (where
!= EMIT_NOTE_BEFORE_INSN
)
8869 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8870 if (where
== EMIT_NOTE_AFTER_CALL_INSN
)
8871 NOTE_DURING_CALL_P (note
) = true;
8875 /* Make sure that the call related notes come first. */
8876 while (NEXT_INSN (insn
)
8878 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8879 && NOTE_DURING_CALL_P (insn
))
8880 insn
= NEXT_INSN (insn
);
8882 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
8883 && NOTE_DURING_CALL_P (insn
))
8884 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
8886 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
8888 NOTE_VAR_LOCATION (note
) = note_vl
;
8890 set_dv_changed (var
->dv
, false);
8891 gcc_assert (var
->in_changed_variables
);
8892 var
->in_changed_variables
= false;
8893 changed_variables
->clear_slot (varp
);
8895 /* Continue traversing the hash table. */
8899 /* While traversing changed_variables, push onto DATA (a stack of RTX
8900 values) entries that aren't user variables. */
8903 var_track_values_to_stack (variable
**slot
,
8904 vec
<rtx
, va_heap
> *changed_values_stack
)
8906 variable
*var
= *slot
;
8908 if (var
->onepart
== ONEPART_VALUE
)
8909 changed_values_stack
->safe_push (dv_as_value (var
->dv
));
8910 else if (var
->onepart
== ONEPART_DEXPR
)
8911 changed_values_stack
->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var
->dv
)));
8916 /* Remove from changed_variables the entry whose DV corresponds to
8917 value or debug_expr VAL. */
8919 remove_value_from_changed_variables (rtx val
)
8921 decl_or_value dv
= dv_from_rtx (val
);
8925 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8928 var
->in_changed_variables
= false;
8929 changed_variables
->clear_slot (slot
);
8932 /* If VAL (a value or debug_expr) has backlinks to variables actively
8933 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8934 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8935 have dependencies of their own to notify. */
8938 notify_dependents_of_changed_value (rtx val
, variable_table_type
*htab
,
8939 vec
<rtx
, va_heap
> *changed_values_stack
)
8944 decl_or_value dv
= dv_from_rtx (val
);
8946 slot
= changed_variables
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8949 slot
= htab
->find_slot_with_hash (dv
, dv_htab_hash (dv
), NO_INSERT
);
8951 slot
= dropped_values
->find_slot_with_hash (dv
, dv_htab_hash (dv
),
8955 while ((led
= VAR_LOC_DEP_LST (var
)))
8957 decl_or_value ldv
= led
->dv
;
8960 /* Deactivate and remove the backlink, as it was “used up”. It
8961 makes no sense to attempt to notify the same entity again:
8962 either it will be recomputed and re-register an active
8963 dependency, or it will still have the changed mark. */
8965 led
->next
->pprev
= led
->pprev
;
8967 *led
->pprev
= led
->next
;
8971 if (dv_changed_p (ldv
))
8974 switch (dv_onepart_p (ldv
))
8978 set_dv_changed (ldv
, true);
8979 changed_values_stack
->safe_push (dv_as_rtx (ldv
));
8983 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8984 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar
));
8985 variable_was_changed (ivar
, NULL
);
8990 ivar
= htab
->find_with_hash (ldv
, dv_htab_hash (ldv
));
8993 int i
= ivar
->n_var_parts
;
8996 rtx loc
= ivar
->var_part
[i
].cur_loc
;
8998 if (loc
&& GET_CODE (loc
) == MEM
8999 && XEXP (loc
, 0) == val
)
9001 variable_was_changed (ivar
, NULL
);
9014 /* Take out of changed_variables any entries that don't refer to use
9015 variables. Back-propagate change notifications from values and
9016 debug_exprs to their active dependencies in HTAB or in
9017 CHANGED_VARIABLES. */
9020 process_changed_values (variable_table_type
*htab
)
9024 auto_vec
<rtx
, 20> changed_values_stack
;
9026 /* Move values from changed_variables to changed_values_stack. */
9028 ->traverse
<vec
<rtx
, va_heap
>*, var_track_values_to_stack
>
9029 (&changed_values_stack
);
9031 /* Back-propagate change notifications in values while popping
9032 them from the stack. */
9033 for (n
= i
= changed_values_stack
.length ();
9034 i
> 0; i
= changed_values_stack
.length ())
9036 val
= changed_values_stack
.pop ();
9037 notify_dependents_of_changed_value (val
, htab
, &changed_values_stack
);
9039 /* This condition will hold when visiting each of the entries
9040 originally in changed_variables. We can't remove them
9041 earlier because this could drop the backlinks before we got a
9042 chance to use them. */
9045 remove_value_from_changed_variables (val
);
9051 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9052 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9053 the notes shall be emitted before of after instruction INSN. */
9056 emit_notes_for_changes (rtx_insn
*insn
, enum emit_note_where where
,
9059 emit_note_data data
;
9060 variable_table_type
*htab
= shared_hash_htab (vars
);
9062 if (!changed_variables
->elements ())
9065 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9066 process_changed_values (htab
);
9073 ->traverse
<emit_note_data
*, emit_note_insn_var_location
> (&data
);
9076 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9077 same variable in hash table DATA or is not there at all. */
9080 emit_notes_for_differences_1 (variable
**slot
, variable_table_type
*new_vars
)
9082 variable
*old_var
, *new_var
;
9085 new_var
= new_vars
->find_with_hash (old_var
->dv
, dv_htab_hash (old_var
->dv
));
9089 /* Variable has disappeared. */
9090 variable
*empty_var
= NULL
;
9092 if (old_var
->onepart
== ONEPART_VALUE
9093 || old_var
->onepart
== ONEPART_DEXPR
)
9095 empty_var
= variable_from_dropped (old_var
->dv
, NO_INSERT
);
9098 gcc_checking_assert (!empty_var
->in_changed_variables
);
9099 if (!VAR_LOC_1PAUX (old_var
))
9101 VAR_LOC_1PAUX (old_var
) = VAR_LOC_1PAUX (empty_var
);
9102 VAR_LOC_1PAUX (empty_var
) = NULL
;
9105 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var
));
9111 empty_var
= onepart_pool_allocate (old_var
->onepart
);
9112 empty_var
->dv
= old_var
->dv
;
9113 empty_var
->refcount
= 0;
9114 empty_var
->n_var_parts
= 0;
9115 empty_var
->onepart
= old_var
->onepart
;
9116 empty_var
->in_changed_variables
= false;
9119 if (empty_var
->onepart
)
9121 /* Propagate the auxiliary data to (ultimately)
9122 changed_variables. */
9123 empty_var
->var_part
[0].loc_chain
= NULL
;
9124 empty_var
->var_part
[0].cur_loc
= NULL
;
9125 VAR_LOC_1PAUX (empty_var
) = VAR_LOC_1PAUX (old_var
);
9126 VAR_LOC_1PAUX (old_var
) = NULL
;
9128 variable_was_changed (empty_var
, NULL
);
9129 /* Continue traversing the hash table. */
9132 /* Update cur_loc and one-part auxiliary data, before new_var goes
9133 through variable_was_changed. */
9134 if (old_var
!= new_var
&& new_var
->onepart
)
9136 gcc_checking_assert (VAR_LOC_1PAUX (new_var
) == NULL
);
9137 VAR_LOC_1PAUX (new_var
) = VAR_LOC_1PAUX (old_var
);
9138 VAR_LOC_1PAUX (old_var
) = NULL
;
9139 new_var
->var_part
[0].cur_loc
= old_var
->var_part
[0].cur_loc
;
9141 if (variable_different_p (old_var
, new_var
))
9142 variable_was_changed (new_var
, NULL
);
9144 /* Continue traversing the hash table. */
9148 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9152 emit_notes_for_differences_2 (variable
**slot
, variable_table_type
*old_vars
)
9154 variable
*old_var
, *new_var
;
9157 old_var
= old_vars
->find_with_hash (new_var
->dv
, dv_htab_hash (new_var
->dv
));
9161 for (i
= 0; i
< new_var
->n_var_parts
; i
++)
9162 new_var
->var_part
[i
].cur_loc
= NULL
;
9163 variable_was_changed (new_var
, NULL
);
9166 /* Continue traversing the hash table. */
9170 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9174 emit_notes_for_differences (rtx_insn
*insn
, dataflow_set
*old_set
,
9175 dataflow_set
*new_set
)
9177 shared_hash_htab (old_set
->vars
)
9178 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9179 (shared_hash_htab (new_set
->vars
));
9180 shared_hash_htab (new_set
->vars
)
9181 ->traverse
<variable_table_type
*, emit_notes_for_differences_2
>
9182 (shared_hash_htab (old_set
->vars
));
9183 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, new_set
->vars
);
9186 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9189 next_non_note_insn_var_location (rtx_insn
*insn
)
9193 insn
= NEXT_INSN (insn
);
9196 || NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
)
9203 /* Emit the notes for changes of location parts in the basic block BB. */
9206 emit_notes_in_bb (basic_block bb
, dataflow_set
*set
)
9209 micro_operation
*mo
;
9211 dataflow_set_clear (set
);
9212 dataflow_set_copy (set
, &VTI (bb
)->in
);
9214 FOR_EACH_VEC_ELT (VTI (bb
)->mos
, i
, mo
)
9216 rtx_insn
*insn
= mo
->insn
;
9217 rtx_insn
*next_insn
= next_non_note_insn_var_location (insn
);
9222 dataflow_set_clear_at_call (set
, insn
);
9223 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_CALL_INSN
, set
->vars
);
9225 rtx arguments
= mo
->u
.loc
, *p
= &arguments
;
9228 XEXP (XEXP (*p
, 0), 1)
9229 = vt_expand_loc (XEXP (XEXP (*p
, 0), 1),
9230 shared_hash_htab (set
->vars
));
9231 /* If expansion is successful, keep it in the list. */
9232 if (XEXP (XEXP (*p
, 0), 1))
9234 XEXP (XEXP (*p
, 0), 1)
9235 = copy_rtx_if_shared (XEXP (XEXP (*p
, 0), 1));
9238 /* Otherwise, if the following item is data_value for it,
9240 else if (XEXP (*p
, 1)
9241 && REG_P (XEXP (XEXP (*p
, 0), 0))
9242 && MEM_P (XEXP (XEXP (XEXP (*p
, 1), 0), 0))
9243 && REG_P (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0), 0),
9245 && REGNO (XEXP (XEXP (*p
, 0), 0))
9246 == REGNO (XEXP (XEXP (XEXP (XEXP (*p
, 1), 0),
9248 *p
= XEXP (XEXP (*p
, 1), 1);
9249 /* Just drop this item. */
9253 add_reg_note (insn
, REG_CALL_ARG_LOCATION
, arguments
);
9259 rtx loc
= mo
->u
.loc
;
9262 var_reg_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9264 var_mem_set (set
, loc
, VAR_INIT_STATUS_UNINITIALIZED
, NULL
);
9266 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9272 rtx loc
= mo
->u
.loc
;
9276 if (GET_CODE (loc
) == CONCAT
)
9278 val
= XEXP (loc
, 0);
9279 vloc
= XEXP (loc
, 1);
9287 var
= PAT_VAR_LOCATION_DECL (vloc
);
9289 clobber_variable_part (set
, NULL_RTX
,
9290 dv_from_decl (var
), 0, NULL_RTX
);
9293 if (VAL_NEEDS_RESOLUTION (loc
))
9294 val_resolve (set
, val
, PAT_VAR_LOCATION_LOC (vloc
), insn
);
9295 set_variable_part (set
, val
, dv_from_decl (var
), 0,
9296 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9299 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc
)))
9300 set_variable_part (set
, PAT_VAR_LOCATION_LOC (vloc
),
9301 dv_from_decl (var
), 0,
9302 VAR_INIT_STATUS_INITIALIZED
, NULL_RTX
,
9305 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9311 rtx loc
= mo
->u
.loc
;
9312 rtx val
, vloc
, uloc
;
9314 vloc
= uloc
= XEXP (loc
, 1);
9315 val
= XEXP (loc
, 0);
9317 if (GET_CODE (val
) == CONCAT
)
9319 uloc
= XEXP (val
, 1);
9320 val
= XEXP (val
, 0);
9323 if (VAL_NEEDS_RESOLUTION (loc
))
9324 val_resolve (set
, val
, vloc
, insn
);
9326 val_store (set
, val
, uloc
, insn
, false);
9328 if (VAL_HOLDS_TRACK_EXPR (loc
))
9330 if (GET_CODE (uloc
) == REG
)
9331 var_reg_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9333 else if (GET_CODE (uloc
) == MEM
)
9334 var_mem_set (set
, uloc
, VAR_INIT_STATUS_UNINITIALIZED
,
9338 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
, set
->vars
);
9344 rtx loc
= mo
->u
.loc
;
9345 rtx val
, vloc
, uloc
;
9349 uloc
= XEXP (vloc
, 1);
9350 val
= XEXP (vloc
, 0);
9353 if (GET_CODE (uloc
) == SET
)
9355 dstv
= SET_DEST (uloc
);
9356 srcv
= SET_SRC (uloc
);
9364 if (GET_CODE (val
) == CONCAT
)
9366 dstv
= vloc
= XEXP (val
, 1);
9367 val
= XEXP (val
, 0);
9370 if (GET_CODE (vloc
) == SET
)
9372 srcv
= SET_SRC (vloc
);
9374 gcc_assert (val
!= srcv
);
9375 gcc_assert (vloc
== uloc
|| VAL_NEEDS_RESOLUTION (loc
));
9377 dstv
= vloc
= SET_DEST (vloc
);
9379 if (VAL_NEEDS_RESOLUTION (loc
))
9380 val_resolve (set
, val
, srcv
, insn
);
9382 else if (VAL_NEEDS_RESOLUTION (loc
))
9384 gcc_assert (GET_CODE (uloc
) == SET
9385 && GET_CODE (SET_SRC (uloc
)) == REG
);
9386 val_resolve (set
, val
, SET_SRC (uloc
), insn
);
9389 if (VAL_HOLDS_TRACK_EXPR (loc
))
9391 if (VAL_EXPR_IS_CLOBBERED (loc
))
9394 var_reg_delete (set
, uloc
, true);
9395 else if (MEM_P (uloc
))
9397 gcc_assert (MEM_P (dstv
));
9398 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (uloc
));
9399 var_mem_delete (set
, dstv
, true);
9404 bool copied_p
= VAL_EXPR_IS_COPIED (loc
);
9405 rtx src
= NULL
, dst
= uloc
;
9406 enum var_init_status status
= VAR_INIT_STATUS_INITIALIZED
;
9408 if (GET_CODE (uloc
) == SET
)
9410 src
= SET_SRC (uloc
);
9411 dst
= SET_DEST (uloc
);
9416 status
= find_src_status (set
, src
);
9418 src
= find_src_set_src (set
, src
);
9422 var_reg_delete_and_set (set
, dst
, !copied_p
,
9424 else if (MEM_P (dst
))
9426 gcc_assert (MEM_P (dstv
));
9427 gcc_assert (MEM_ATTRS (dstv
) == MEM_ATTRS (dst
));
9428 var_mem_delete_and_set (set
, dstv
, !copied_p
,
9433 else if (REG_P (uloc
))
9434 var_regno_delete (set
, REGNO (uloc
));
9435 else if (MEM_P (uloc
))
9437 gcc_checking_assert (GET_CODE (vloc
) == MEM
);
9438 gcc_checking_assert (vloc
== dstv
);
9440 clobber_overlapping_mems (set
, vloc
);
9443 val_store (set
, val
, dstv
, insn
, true);
9445 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9452 rtx loc
= mo
->u
.loc
;
9455 if (GET_CODE (loc
) == SET
)
9457 set_src
= SET_SRC (loc
);
9458 loc
= SET_DEST (loc
);
9462 var_reg_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9465 var_mem_delete_and_set (set
, loc
, true, VAR_INIT_STATUS_INITIALIZED
,
9468 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9475 rtx loc
= mo
->u
.loc
;
9476 enum var_init_status src_status
;
9479 if (GET_CODE (loc
) == SET
)
9481 set_src
= SET_SRC (loc
);
9482 loc
= SET_DEST (loc
);
9485 src_status
= find_src_status (set
, set_src
);
9486 set_src
= find_src_set_src (set
, set_src
);
9489 var_reg_delete_and_set (set
, loc
, false, src_status
, set_src
);
9491 var_mem_delete_and_set (set
, loc
, false, src_status
, set_src
);
9493 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9500 rtx loc
= mo
->u
.loc
;
9503 var_reg_delete (set
, loc
, false);
9505 var_mem_delete (set
, loc
, false);
9507 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
, set
->vars
);
9513 rtx loc
= mo
->u
.loc
;
9516 var_reg_delete (set
, loc
, true);
9518 var_mem_delete (set
, loc
, true);
9520 emit_notes_for_changes (next_insn
, EMIT_NOTE_BEFORE_INSN
,
9526 set
->stack_adjust
+= mo
->u
.adjust
;
9532 /* Emit notes for the whole function. */
9535 vt_emit_notes (void)
9540 gcc_assert (!changed_variables
->elements ());
9542 /* Free memory occupied by the out hash tables, as they aren't used
9544 FOR_EACH_BB_FN (bb
, cfun
)
9545 dataflow_set_clear (&VTI (bb
)->out
);
9547 /* Enable emitting notes by functions (mainly by set_variable_part and
9548 delete_variable_part). */
9551 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9552 dropped_values
= new variable_table_type (cselib_get_next_uid () * 2);
9554 dataflow_set_init (&cur
);
9556 FOR_EACH_BB_FN (bb
, cfun
)
9558 /* Emit the notes for changes of variable locations between two
9559 subsequent basic blocks. */
9560 emit_notes_for_differences (BB_HEAD (bb
), &cur
, &VTI (bb
)->in
);
9562 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9563 local_get_addr_cache
= new hash_map
<rtx
, rtx
>;
9565 /* Emit the notes for the changes in the basic block itself. */
9566 emit_notes_in_bb (bb
, &cur
);
9568 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9569 delete local_get_addr_cache
;
9570 local_get_addr_cache
= NULL
;
9572 /* Free memory occupied by the in hash table, we won't need it
9574 dataflow_set_clear (&VTI (bb
)->in
);
9578 shared_hash_htab (cur
.vars
)
9579 ->traverse
<variable_table_type
*, emit_notes_for_differences_1
>
9580 (shared_hash_htab (empty_shared_hash
));
9582 dataflow_set_destroy (&cur
);
9584 if (MAY_HAVE_DEBUG_BIND_INSNS
)
9585 delete dropped_values
;
9586 dropped_values
= NULL
;
9591 /* If there is a declaration and offset associated with register/memory RTL
9592 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9595 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, poly_int64
*offsetp
)
9599 if (REG_ATTRS (rtl
))
9601 *declp
= REG_EXPR (rtl
);
9602 *offsetp
= REG_OFFSET (rtl
);
9606 else if (GET_CODE (rtl
) == PARALLEL
)
9608 tree decl
= NULL_TREE
;
9609 HOST_WIDE_INT offset
= MAX_VAR_PARTS
;
9610 int len
= XVECLEN (rtl
, 0), i
;
9612 for (i
= 0; i
< len
; i
++)
9614 rtx reg
= XEXP (XVECEXP (rtl
, 0, i
), 0);
9615 if (!REG_P (reg
) || !REG_ATTRS (reg
))
9618 decl
= REG_EXPR (reg
);
9619 if (REG_EXPR (reg
) != decl
)
9621 HOST_WIDE_INT this_offset
;
9622 if (!track_offset_p (REG_OFFSET (reg
), &this_offset
))
9624 offset
= MIN (offset
, this_offset
);
9634 else if (MEM_P (rtl
))
9636 if (MEM_ATTRS (rtl
))
9638 *declp
= MEM_EXPR (rtl
);
9639 *offsetp
= int_mem_offset (rtl
);
9646 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9650 record_entry_value (cselib_val
*val
, rtx rtl
)
9652 rtx ev
= gen_rtx_ENTRY_VALUE (GET_MODE (rtl
));
9654 ENTRY_VALUE_EXP (ev
) = rtl
;
9656 cselib_add_permanent_equiv (val
, ev
, get_insns ());
9659 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9662 vt_add_function_parameter (tree parm
)
9664 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
9665 rtx incoming
= DECL_INCOMING_RTL (parm
);
9671 bool incoming_ok
= true;
9673 if (TREE_CODE (parm
) != PARM_DECL
)
9676 if (!decl_rtl
|| !incoming
)
9679 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
9682 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9683 rewrite the incoming location of parameters passed on the stack
9684 into MEMs based on the argument pointer, so that incoming doesn't
9685 depend on a pseudo. */
9686 poly_int64 incoming_offset
= 0;
9687 if (MEM_P (incoming
)
9688 && (strip_offset (XEXP (incoming
, 0), &incoming_offset
)
9689 == crtl
->args
.internal_arg_pointer
))
9691 HOST_WIDE_INT off
= -FIRST_PARM_OFFSET (current_function_decl
);
9693 = replace_equiv_address_nv (incoming
,
9694 plus_constant (Pmode
,
9696 off
+ incoming_offset
));
9699 #ifdef HAVE_window_save
9700 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9701 If the target machine has an explicit window save instruction, the
9702 actual entry value is the corresponding OUTGOING_REGNO instead. */
9703 if (HAVE_window_save
&& !crtl
->uses_only_leaf_regs
)
9705 if (REG_P (incoming
)
9706 && HARD_REGISTER_P (incoming
)
9707 && OUTGOING_REGNO (REGNO (incoming
)) != REGNO (incoming
))
9710 p
.incoming
= incoming
;
9712 = gen_rtx_REG_offset (incoming
, GET_MODE (incoming
),
9713 OUTGOING_REGNO (REGNO (incoming
)), 0);
9714 p
.outgoing
= incoming
;
9715 vec_safe_push (windowed_parm_regs
, p
);
9717 else if (GET_CODE (incoming
) == PARALLEL
)
9720 = gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (XVECLEN (incoming
, 0)));
9723 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9725 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9728 reg
= gen_rtx_REG_offset (reg
, GET_MODE (reg
),
9729 OUTGOING_REGNO (REGNO (reg
)), 0);
9731 XVECEXP (outgoing
, 0, i
)
9732 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
9733 XEXP (XVECEXP (incoming
, 0, i
), 1));
9734 vec_safe_push (windowed_parm_regs
, p
);
9737 incoming
= outgoing
;
9739 else if (MEM_P (incoming
)
9740 && REG_P (XEXP (incoming
, 0))
9741 && HARD_REGISTER_P (XEXP (incoming
, 0)))
9743 rtx reg
= XEXP (incoming
, 0);
9744 if (OUTGOING_REGNO (REGNO (reg
)) != REGNO (reg
))
9748 reg
= gen_raw_REG (GET_MODE (reg
), OUTGOING_REGNO (REGNO (reg
)));
9750 vec_safe_push (windowed_parm_regs
, p
);
9751 incoming
= replace_equiv_address_nv (incoming
, reg
);
9757 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
9759 incoming_ok
= false;
9760 if (MEM_P (incoming
))
9762 /* This means argument is passed by invisible reference. */
9768 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
9770 offset
+= byte_lowpart_offset (GET_MODE (incoming
),
9771 GET_MODE (decl_rtl
));
9780 /* If that DECL_RTL wasn't a pseudo that got spilled to
9781 memory, bail out. Otherwise, the spill slot sharing code
9782 will force the memory to reference spill_slot_decl (%sfp),
9783 so we don't match above. That's ok, the pseudo must have
9784 referenced the entire parameter, so just reset OFFSET. */
9785 if (decl
!= get_spill_slot_decl (false))
9790 HOST_WIDE_INT const_offset
;
9791 if (!track_loc_p (incoming
, parm
, offset
, false, &mode
, &const_offset
))
9794 out
= &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->out
;
9796 dv
= dv_from_decl (parm
);
9798 if (target_for_debug_bind (parm
)
9799 /* We can't deal with these right now, because this kind of
9800 variable is single-part. ??? We could handle parallels
9801 that describe multiple locations for the same single
9802 value, but ATM we don't. */
9803 && GET_CODE (incoming
) != PARALLEL
)
9808 /* ??? We shouldn't ever hit this, but it may happen because
9809 arguments passed by invisible reference aren't dealt with
9810 above: incoming-rtl will have Pmode rather than the
9811 expected mode for the type. */
9815 lowpart
= var_lowpart (mode
, incoming
);
9819 val
= cselib_lookup_from_insn (lowpart
, mode
, true,
9820 VOIDmode
, get_insns ());
9822 /* ??? Float-typed values in memory are not handled by
9826 preserve_value (val
);
9827 set_variable_part (out
, val
->val_rtx
, dv
, const_offset
,
9828 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9829 dv
= dv_from_value (val
->val_rtx
);
9832 if (MEM_P (incoming
))
9834 val
= cselib_lookup_from_insn (XEXP (incoming
, 0), mode
, true,
9835 VOIDmode
, get_insns ());
9838 preserve_value (val
);
9839 incoming
= replace_equiv_address_nv (incoming
, val
->val_rtx
);
9844 if (REG_P (incoming
))
9846 incoming
= var_lowpart (mode
, incoming
);
9847 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
9848 attrs_list_insert (&out
->regs
[REGNO (incoming
)], dv
, const_offset
,
9850 set_variable_part (out
, incoming
, dv
, const_offset
,
9851 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9852 if (dv_is_value_p (dv
))
9854 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv
)), incoming
);
9855 if (TREE_CODE (TREE_TYPE (parm
)) == REFERENCE_TYPE
9856 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm
))))
9858 machine_mode indmode
9859 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm
)));
9860 rtx mem
= gen_rtx_MEM (indmode
, incoming
);
9861 cselib_val
*val
= cselib_lookup_from_insn (mem
, indmode
, true,
9866 preserve_value (val
);
9867 record_entry_value (val
, mem
);
9868 set_variable_part (out
, mem
, dv_from_value (val
->val_rtx
), 0,
9869 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9874 else if (GET_CODE (incoming
) == PARALLEL
&& !dv_onepart_p (dv
))
9878 /* The following code relies on vt_get_decl_and_offset returning true for
9879 incoming, which might not be always the case. */
9882 for (i
= 0; i
< XVECLEN (incoming
, 0); i
++)
9884 rtx reg
= XEXP (XVECEXP (incoming
, 0, i
), 0);
9885 /* vt_get_decl_and_offset has already checked that the offset
9886 is a valid variable part. */
9887 const_offset
= get_tracked_reg_offset (reg
);
9888 gcc_assert (REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
9889 attrs_list_insert (&out
->regs
[REGNO (reg
)], dv
, const_offset
, reg
);
9890 set_variable_part (out
, reg
, dv
, const_offset
,
9891 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9894 else if (MEM_P (incoming
))
9896 incoming
= var_lowpart (mode
, incoming
);
9897 set_variable_part (out
, incoming
, dv
, const_offset
,
9898 VAR_INIT_STATUS_INITIALIZED
, NULL
, INSERT
);
9902 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9905 vt_add_function_parameters (void)
9909 for (parm
= DECL_ARGUMENTS (current_function_decl
);
9910 parm
; parm
= DECL_CHAIN (parm
))
9911 vt_add_function_parameter (parm
);
9913 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl
)))
9915 tree vexpr
= DECL_VALUE_EXPR (DECL_RESULT (current_function_decl
));
9917 if (TREE_CODE (vexpr
) == INDIRECT_REF
)
9918 vexpr
= TREE_OPERAND (vexpr
, 0);
9920 if (TREE_CODE (vexpr
) == PARM_DECL
9921 && DECL_ARTIFICIAL (vexpr
)
9922 && !DECL_IGNORED_P (vexpr
)
9923 && DECL_NAMELESS (vexpr
))
9924 vt_add_function_parameter (vexpr
);
9928 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9929 ensure it isn't flushed during cselib_reset_table.
9930 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9931 has been eliminated. */
9934 vt_init_cfa_base (void)
9938 #ifdef FRAME_POINTER_CFA_OFFSET
9939 cfa_base_rtx
= frame_pointer_rtx
;
9940 cfa_base_offset
= -FRAME_POINTER_CFA_OFFSET (current_function_decl
);
9942 cfa_base_rtx
= arg_pointer_rtx
;
9943 cfa_base_offset
= -ARG_POINTER_CFA_OFFSET (current_function_decl
);
9945 if (cfa_base_rtx
== hard_frame_pointer_rtx
9946 || !fixed_regs
[REGNO (cfa_base_rtx
)])
9948 cfa_base_rtx
= NULL_RTX
;
9951 if (!MAY_HAVE_DEBUG_BIND_INSNS
)
9954 /* Tell alias analysis that cfa_base_rtx should share
9955 find_base_term value with stack pointer or hard frame pointer. */
9956 if (!frame_pointer_needed
)
9957 vt_equate_reg_base_value (cfa_base_rtx
, stack_pointer_rtx
);
9958 else if (!crtl
->stack_realign_tried
)
9959 vt_equate_reg_base_value (cfa_base_rtx
, hard_frame_pointer_rtx
);
9961 val
= cselib_lookup_from_insn (cfa_base_rtx
, GET_MODE (cfa_base_rtx
), 1,
9962 VOIDmode
, get_insns ());
9963 preserve_value (val
);
9964 cselib_preserve_cfa_base_value (val
, REGNO (cfa_base_rtx
));
9967 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note. */
9970 reemit_marker_as_note (rtx_insn
*insn
)
9972 gcc_checking_assert (DEBUG_MARKER_INSN_P (insn
));
9974 enum insn_note kind
= INSN_DEBUG_MARKER_KIND (insn
);
9978 case NOTE_INSN_BEGIN_STMT
:
9979 case NOTE_INSN_INLINE_ENTRY
:
9981 rtx_insn
*note
= NULL
;
9982 if (cfun
->debug_nonbind_markers
)
9984 note
= emit_note_before (kind
, insn
);
9985 NOTE_MARKER_LOCATION (note
) = INSN_LOCATION (insn
);
9996 /* Allocate and initialize the data structures for variable tracking
9997 and parse the RTL to get the micro operations. */
10000 vt_initialize (void)
10003 poly_int64 fp_cfa_offset
= -1;
10005 alloc_aux_for_blocks (sizeof (variable_tracking_info
));
10007 empty_shared_hash
= shared_hash_pool
.allocate ();
10008 empty_shared_hash
->refcount
= 1;
10009 empty_shared_hash
->htab
= new variable_table_type (1);
10010 changed_variables
= new variable_table_type (10);
10012 /* Init the IN and OUT sets. */
10013 FOR_ALL_BB_FN (bb
, cfun
)
10015 VTI (bb
)->visited
= false;
10016 VTI (bb
)->flooded
= false;
10017 dataflow_set_init (&VTI (bb
)->in
);
10018 dataflow_set_init (&VTI (bb
)->out
);
10019 VTI (bb
)->permp
= NULL
;
10022 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10024 cselib_init (CSELIB_RECORD_MEMORY
| CSELIB_PRESERVE_CONSTANTS
);
10025 scratch_regs
= BITMAP_ALLOC (NULL
);
10026 preserved_values
.create (256);
10027 global_get_addr_cache
= new hash_map
<rtx
, rtx
>;
10031 scratch_regs
= NULL
;
10032 global_get_addr_cache
= NULL
;
10035 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10041 #ifdef FRAME_POINTER_CFA_OFFSET
10042 reg
= frame_pointer_rtx
;
10043 ofst
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10045 reg
= arg_pointer_rtx
;
10046 ofst
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10049 ofst
-= INCOMING_FRAME_SP_OFFSET
;
10051 val
= cselib_lookup_from_insn (reg
, GET_MODE (reg
), 1,
10052 VOIDmode
, get_insns ());
10053 preserve_value (val
);
10054 if (reg
!= hard_frame_pointer_rtx
&& fixed_regs
[REGNO (reg
)])
10055 cselib_preserve_cfa_base_value (val
, REGNO (reg
));
10056 expr
= plus_constant (GET_MODE (stack_pointer_rtx
),
10057 stack_pointer_rtx
, -ofst
);
10058 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10062 val
= cselib_lookup_from_insn (stack_pointer_rtx
,
10063 GET_MODE (stack_pointer_rtx
), 1,
10064 VOIDmode
, get_insns ());
10065 preserve_value (val
);
10066 expr
= plus_constant (GET_MODE (reg
), reg
, ofst
);
10067 cselib_add_permanent_equiv (val
, expr
, get_insns ());
10071 /* In order to factor out the adjustments made to the stack pointer or to
10072 the hard frame pointer and thus be able to use DW_OP_fbreg operations
10073 instead of individual location lists, we're going to rewrite MEMs based
10074 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10075 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10076 resp. arg_pointer_rtx. We can do this either when there is no frame
10077 pointer in the function and stack adjustments are consistent for all
10078 basic blocks or when there is a frame pointer and no stack realignment.
10079 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10080 has been eliminated. */
10081 if (!frame_pointer_needed
)
10085 if (!vt_stack_adjustments ())
10088 #ifdef FRAME_POINTER_CFA_OFFSET
10089 reg
= frame_pointer_rtx
;
10091 reg
= arg_pointer_rtx
;
10093 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10096 if (GET_CODE (elim
) == PLUS
)
10097 elim
= XEXP (elim
, 0);
10098 if (elim
== stack_pointer_rtx
)
10099 vt_init_cfa_base ();
10102 else if (!crtl
->stack_realign_tried
)
10106 #ifdef FRAME_POINTER_CFA_OFFSET
10107 reg
= frame_pointer_rtx
;
10108 fp_cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10110 reg
= arg_pointer_rtx
;
10111 fp_cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10113 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10116 if (GET_CODE (elim
) == PLUS
)
10118 fp_cfa_offset
-= rtx_to_poly_int64 (XEXP (elim
, 1));
10119 elim
= XEXP (elim
, 0);
10121 if (elim
!= hard_frame_pointer_rtx
)
10122 fp_cfa_offset
= -1;
10125 fp_cfa_offset
= -1;
10128 /* If the stack is realigned and a DRAP register is used, we're going to
10129 rewrite MEMs based on it representing incoming locations of parameters
10130 passed on the stack into MEMs based on the argument pointer. Although
10131 we aren't going to rewrite other MEMs, we still need to initialize the
10132 virtual CFA pointer in order to ensure that the argument pointer will
10133 be seen as a constant throughout the function.
10135 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10136 else if (stack_realign_drap
)
10140 #ifdef FRAME_POINTER_CFA_OFFSET
10141 reg
= frame_pointer_rtx
;
10143 reg
= arg_pointer_rtx
;
10145 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10148 if (GET_CODE (elim
) == PLUS
)
10149 elim
= XEXP (elim
, 0);
10150 if (elim
== hard_frame_pointer_rtx
)
10151 vt_init_cfa_base ();
10155 hard_frame_pointer_adjustment
= -1;
10157 vt_add_function_parameters ();
10159 FOR_EACH_BB_FN (bb
, cfun
)
10162 HOST_WIDE_INT pre
, post
= 0;
10163 basic_block first_bb
, last_bb
;
10165 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10167 cselib_record_sets_hook
= add_with_sets
;
10168 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10169 fprintf (dump_file
, "first value: %i\n",
10170 cselib_get_next_uid ());
10177 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
10178 || ! single_pred_p (bb
->next_bb
))
10180 e
= find_edge (bb
, bb
->next_bb
);
10181 if (! e
|| (e
->flags
& EDGE_FALLTHRU
) == 0)
10187 /* Add the micro-operations to the vector. */
10188 FOR_BB_BETWEEN (bb
, first_bb
, last_bb
->next_bb
, next_bb
)
10190 HOST_WIDE_INT offset
= VTI (bb
)->out
.stack_adjust
;
10191 VTI (bb
)->out
.stack_adjust
= VTI (bb
)->in
.stack_adjust
;
10194 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10198 if (!frame_pointer_needed
)
10200 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
10203 micro_operation mo
;
10204 mo
.type
= MO_ADJUST
;
10207 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10208 log_op_type (PATTERN (insn
), bb
, insn
,
10209 MO_ADJUST
, dump_file
);
10210 VTI (bb
)->mos
.safe_push (mo
);
10211 VTI (bb
)->out
.stack_adjust
+= pre
;
10215 cselib_hook_called
= false;
10216 adjust_insn (bb
, insn
);
10217 if (DEBUG_MARKER_INSN_P (insn
))
10219 reemit_marker_as_note (insn
);
10223 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10226 prepare_call_arguments (bb
, insn
);
10227 cselib_process_insn (insn
);
10228 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10230 print_rtl_single (dump_file
, insn
);
10231 dump_cselib_table (dump_file
);
10234 if (!cselib_hook_called
)
10235 add_with_sets (insn
, 0, 0);
10236 cancel_changes (0);
10238 if (!frame_pointer_needed
&& post
)
10240 micro_operation mo
;
10241 mo
.type
= MO_ADJUST
;
10242 mo
.u
.adjust
= post
;
10244 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10245 log_op_type (PATTERN (insn
), bb
, insn
,
10246 MO_ADJUST
, dump_file
);
10247 VTI (bb
)->mos
.safe_push (mo
);
10248 VTI (bb
)->out
.stack_adjust
+= post
;
10251 if (maybe_ne (fp_cfa_offset
, -1)
10252 && known_eq (hard_frame_pointer_adjustment
, -1)
10253 && fp_setter_insn (insn
))
10255 vt_init_cfa_base ();
10256 hard_frame_pointer_adjustment
= fp_cfa_offset
;
10257 /* Disassociate sp from fp now. */
10258 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10261 cselib_invalidate_rtx (stack_pointer_rtx
);
10262 v
= cselib_lookup (stack_pointer_rtx
, Pmode
, 1,
10264 if (v
&& !cselib_preserved_value_p (v
))
10266 cselib_set_value_sp_based (v
);
10267 preserve_value (v
);
10273 gcc_assert (offset
== VTI (bb
)->out
.stack_adjust
);
10278 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10280 cselib_preserve_only_values ();
10281 cselib_reset_table (cselib_get_next_uid ());
10282 cselib_record_sets_hook
= NULL
;
10286 hard_frame_pointer_adjustment
= -1;
10287 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->flooded
= true;
10288 cfa_base_rtx
= NULL_RTX
;
10292 /* This is *not* reset after each function. It gives each
10293 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10294 a unique label number. */
10296 static int debug_label_num
= 1;
10298 /* Remove from the insn stream a single debug insn used for
10299 variable tracking at assignments. */
10302 delete_vta_debug_insn (rtx_insn
*insn
)
10304 if (DEBUG_MARKER_INSN_P (insn
))
10306 reemit_marker_as_note (insn
);
10310 tree decl
= INSN_VAR_LOCATION_DECL (insn
);
10311 if (TREE_CODE (decl
) == LABEL_DECL
10312 && DECL_NAME (decl
)
10313 && !DECL_RTL_SET_P (decl
))
10315 PUT_CODE (insn
, NOTE
);
10316 NOTE_KIND (insn
) = NOTE_INSN_DELETED_DEBUG_LABEL
;
10317 NOTE_DELETED_LABEL_NAME (insn
)
10318 = IDENTIFIER_POINTER (DECL_NAME (decl
));
10319 SET_DECL_RTL (decl
, insn
);
10320 CODE_LABEL_NUMBER (insn
) = debug_label_num
++;
10323 delete_insn (insn
);
10326 /* Remove from the insn stream all debug insns used for variable
10327 tracking at assignments. USE_CFG should be false if the cfg is no
10331 delete_vta_debug_insns (bool use_cfg
)
10334 rtx_insn
*insn
, *next
;
10336 if (!MAY_HAVE_DEBUG_INSNS
)
10340 FOR_EACH_BB_FN (bb
, cfun
)
10342 FOR_BB_INSNS_SAFE (bb
, insn
, next
)
10343 if (DEBUG_INSN_P (insn
))
10344 delete_vta_debug_insn (insn
);
10347 for (insn
= get_insns (); insn
; insn
= next
)
10349 next
= NEXT_INSN (insn
);
10350 if (DEBUG_INSN_P (insn
))
10351 delete_vta_debug_insn (insn
);
10355 /* Run a fast, BB-local only version of var tracking, to take care of
10356 information that we don't do global analysis on, such that not all
10357 information is lost. If SKIPPED holds, we're skipping the global
10358 pass entirely, so we should try to use information it would have
10359 handled as well.. */
10362 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED
)
10364 /* ??? Just skip it all for now. */
10365 delete_vta_debug_insns (true);
10368 /* Free the data structures needed for variable tracking. */
10375 FOR_EACH_BB_FN (bb
, cfun
)
10377 VTI (bb
)->mos
.release ();
10380 FOR_ALL_BB_FN (bb
, cfun
)
10382 dataflow_set_destroy (&VTI (bb
)->in
);
10383 dataflow_set_destroy (&VTI (bb
)->out
);
10384 if (VTI (bb
)->permp
)
10386 dataflow_set_destroy (VTI (bb
)->permp
);
10387 XDELETE (VTI (bb
)->permp
);
10390 free_aux_for_blocks ();
10391 delete empty_shared_hash
->htab
;
10392 empty_shared_hash
->htab
= NULL
;
10393 delete changed_variables
;
10394 changed_variables
= NULL
;
10395 attrs_pool
.release ();
10396 var_pool
.release ();
10397 location_chain_pool
.release ();
10398 shared_hash_pool
.release ();
10400 if (MAY_HAVE_DEBUG_BIND_INSNS
)
10402 if (global_get_addr_cache
)
10403 delete global_get_addr_cache
;
10404 global_get_addr_cache
= NULL
;
10405 loc_exp_dep_pool
.release ();
10406 valvar_pool
.release ();
10407 preserved_values
.release ();
10409 BITMAP_FREE (scratch_regs
);
10410 scratch_regs
= NULL
;
10413 #ifdef HAVE_window_save
10414 vec_free (windowed_parm_regs
);
10418 XDELETEVEC (vui_vec
);
10423 /* The entry point to variable tracking pass. */
10425 static inline unsigned int
10426 variable_tracking_main_1 (void)
10430 /* We won't be called as a separate pass if flag_var_tracking is not
10431 set, but final may call us to turn debug markers into notes. */
10432 if ((!flag_var_tracking
&& MAY_HAVE_DEBUG_INSNS
)
10433 || flag_var_tracking_assignments
< 0
10434 /* Var-tracking right now assumes the IR doesn't contain
10435 any pseudos at this point. */
10436 || targetm
.no_register_allocation
)
10438 delete_vta_debug_insns (true);
10442 if (!flag_var_tracking
)
10445 if (n_basic_blocks_for_fn (cfun
) > 500
10446 && n_edges_for_fn (cfun
) / n_basic_blocks_for_fn (cfun
) >= 20)
10448 vt_debug_insns_local (true);
10452 mark_dfs_back_edges ();
10453 if (!vt_initialize ())
10456 vt_debug_insns_local (true);
10460 success
= vt_find_locations ();
10462 if (!success
&& flag_var_tracking_assignments
> 0)
10466 delete_vta_debug_insns (true);
10468 /* This is later restored by our caller. */
10469 flag_var_tracking_assignments
= 0;
10471 success
= vt_initialize ();
10472 gcc_assert (success
);
10474 success
= vt_find_locations ();
10480 vt_debug_insns_local (false);
10484 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10486 dump_dataflow_sets ();
10487 dump_reg_info (dump_file
);
10488 dump_flow_info (dump_file
, dump_flags
);
10491 timevar_push (TV_VAR_TRACKING_EMIT
);
10493 timevar_pop (TV_VAR_TRACKING_EMIT
);
10496 vt_debug_insns_local (false);
10501 variable_tracking_main (void)
10504 int save
= flag_var_tracking_assignments
;
10506 ret
= variable_tracking_main_1 ();
10508 flag_var_tracking_assignments
= save
;
10515 const pass_data pass_data_variable_tracking
=
10517 RTL_PASS
, /* type */
10518 "vartrack", /* name */
10519 OPTGROUP_NONE
, /* optinfo_flags */
10520 TV_VAR_TRACKING
, /* tv_id */
10521 0, /* properties_required */
10522 0, /* properties_provided */
10523 0, /* properties_destroyed */
10524 0, /* todo_flags_start */
10525 0, /* todo_flags_finish */
10528 class pass_variable_tracking
: public rtl_opt_pass
10531 pass_variable_tracking (gcc::context
*ctxt
)
10532 : rtl_opt_pass (pass_data_variable_tracking
, ctxt
)
10535 /* opt_pass methods: */
10536 virtual bool gate (function
*)
10538 return (flag_var_tracking
&& !targetm
.delay_vartrack
);
10541 virtual unsigned int execute (function
*)
10543 return variable_tracking_main ();
10546 }; // class pass_variable_tracking
10548 } // anon namespace
10551 make_pass_variable_tracking (gcc::context
*ctxt
)
10553 return new pass_variable_tracking (ctxt
);