1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
32 #include "coretypes.h"
37 #include "tree-pass.h"
40 #include "diagnostic.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
47 #include "toplev.h" /* get_random_seed */
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
65 #include "stringpool.h"
69 #include "tree-vector-builder.h"
71 /* Tree code classes. */
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
76 const enum tree_code_class tree_code_type
[] = {
77 #include "all-tree.def"
81 #undef END_OF_BASE_TREE_CODES
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
90 const unsigned char tree_code_length
[] = {
91 #include "all-tree.def"
95 #undef END_OF_BASE_TREE_CODES
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
102 static const char *const tree_code_name
[] = {
103 #include "all-tree.def"
107 #undef END_OF_BASE_TREE_CODES
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
112 const char *const tree_code_class_strings
[] =
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack
*h
, void *obj
);
130 /* Statistics-gathering stuff. */
132 static uint64_t tree_code_counts
[MAX_TREE_CODES
];
133 uint64_t tree_node_counts
[(int) all_kinds
];
134 uint64_t tree_node_sizes
[(int) all_kinds
];
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names
[] = {
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid
;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid
= 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid
;
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
167 struct GTY((for_user
)) type_hash
{
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
175 struct type_cache_hasher
: ggc_cache_ptr_hash
<type_hash
>
177 static hashval_t
hash (type_hash
*t
) { return t
->hash
; }
178 static bool equal (type_hash
*a
, type_hash
*b
);
181 keep_cache_entry (type_hash
*&t
)
183 return ggc_marked_p (t
->type
);
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
194 static GTY ((cache
)) hash_table
<type_cache_hasher
> *type_hash_table
;
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node
;
199 struct int_cst_hasher
: ggc_cache_ptr_hash
<tree_node
>
201 static hashval_t
hash (tree t
);
202 static bool equal (tree x
, tree y
);
205 static GTY ((cache
)) hash_table
<int_cst_hasher
> *int_cst_hash_table
;
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher
: ggc_cache_ptr_hash
<tree_node
>
211 typedef std::pair
<tree
, const poly_wide_int
*> compare_type
;
212 static hashval_t
hash (tree t
);
213 static bool equal (tree x
, const compare_type
&y
);
216 static GTY ((cache
)) hash_table
<poly_int_cst_hasher
> *poly_int_cst_hash_table
;
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node
;
224 static GTY (()) tree cl_target_option_node
;
226 struct cl_option_hasher
: ggc_cache_ptr_hash
<tree_node
>
228 static hashval_t
hash (tree t
);
229 static bool equal (tree x
, tree y
);
232 static GTY ((cache
)) hash_table
<cl_option_hasher
> *cl_option_hash_table
;
234 /* General tree->tree mapping structure for use in hash tables. */
238 hash_table
<tree_decl_map_cache_hasher
> *debug_expr_for_decl
;
241 hash_table
<tree_decl_map_cache_hasher
> *value_expr_for_decl
;
243 struct tree_vec_map_cache_hasher
: ggc_cache_ptr_hash
<tree_vec_map
>
245 static hashval_t
hash (tree_vec_map
*m
) { return DECL_UID (m
->base
.from
); }
248 equal (tree_vec_map
*a
, tree_vec_map
*b
)
250 return a
->base
.from
== b
->base
.from
;
254 keep_cache_entry (tree_vec_map
*&m
)
256 return ggc_marked_p (m
->base
.from
);
261 hash_table
<tree_vec_map_cache_hasher
> *debug_args_for_decl
;
263 static void set_type_quals (tree
, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
268 tree global_trees
[TI_MAX
];
269 tree integer_types
[itk_none
];
271 bool int_n_enabled_p
[NUM_INT_N_ENTS
];
272 struct int_n_trees_t int_n_trees
[NUM_INT_N_ENTS
];
274 bool tree_contains_struct
[MAX_TREE_CODES
][64];
276 /* Number of operands for each OpenMP clause. */
277 unsigned const char omp_clause_num_ops
[] =
279 0, /* OMP_CLAUSE_ERROR */
280 1, /* OMP_CLAUSE_PRIVATE */
281 1, /* OMP_CLAUSE_SHARED */
282 1, /* OMP_CLAUSE_FIRSTPRIVATE */
283 2, /* OMP_CLAUSE_LASTPRIVATE */
284 5, /* OMP_CLAUSE_REDUCTION */
285 1, /* OMP_CLAUSE_COPYIN */
286 1, /* OMP_CLAUSE_COPYPRIVATE */
287 3, /* OMP_CLAUSE_LINEAR */
288 2, /* OMP_CLAUSE_ALIGNED */
289 1, /* OMP_CLAUSE_DEPEND */
290 1, /* OMP_CLAUSE_UNIFORM */
291 1, /* OMP_CLAUSE_TO_DECLARE */
292 1, /* OMP_CLAUSE_LINK */
293 2, /* OMP_CLAUSE_FROM */
294 2, /* OMP_CLAUSE_TO */
295 2, /* OMP_CLAUSE_MAP */
296 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
297 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
298 2, /* OMP_CLAUSE__CACHE_ */
299 2, /* OMP_CLAUSE_GANG */
300 1, /* OMP_CLAUSE_ASYNC */
301 1, /* OMP_CLAUSE_WAIT */
302 0, /* OMP_CLAUSE_AUTO */
303 0, /* OMP_CLAUSE_SEQ */
304 1, /* OMP_CLAUSE__LOOPTEMP_ */
305 1, /* OMP_CLAUSE_IF */
306 1, /* OMP_CLAUSE_NUM_THREADS */
307 1, /* OMP_CLAUSE_SCHEDULE */
308 0, /* OMP_CLAUSE_NOWAIT */
309 1, /* OMP_CLAUSE_ORDERED */
310 0, /* OMP_CLAUSE_DEFAULT */
311 3, /* OMP_CLAUSE_COLLAPSE */
312 0, /* OMP_CLAUSE_UNTIED */
313 1, /* OMP_CLAUSE_FINAL */
314 0, /* OMP_CLAUSE_MERGEABLE */
315 1, /* OMP_CLAUSE_DEVICE */
316 1, /* OMP_CLAUSE_DIST_SCHEDULE */
317 0, /* OMP_CLAUSE_INBRANCH */
318 0, /* OMP_CLAUSE_NOTINBRANCH */
319 1, /* OMP_CLAUSE_NUM_TEAMS */
320 1, /* OMP_CLAUSE_THREAD_LIMIT */
321 0, /* OMP_CLAUSE_PROC_BIND */
322 1, /* OMP_CLAUSE_SAFELEN */
323 1, /* OMP_CLAUSE_SIMDLEN */
324 0, /* OMP_CLAUSE_FOR */
325 0, /* OMP_CLAUSE_PARALLEL */
326 0, /* OMP_CLAUSE_SECTIONS */
327 0, /* OMP_CLAUSE_TASKGROUP */
328 1, /* OMP_CLAUSE_PRIORITY */
329 1, /* OMP_CLAUSE_GRAINSIZE */
330 1, /* OMP_CLAUSE_NUM_TASKS */
331 0, /* OMP_CLAUSE_NOGROUP */
332 0, /* OMP_CLAUSE_THREADS */
333 0, /* OMP_CLAUSE_SIMD */
334 1, /* OMP_CLAUSE_HINT */
335 0, /* OMP_CLAUSE_DEFALTMAP */
336 1, /* OMP_CLAUSE__SIMDUID_ */
337 0, /* OMP_CLAUSE__SIMT_ */
338 0, /* OMP_CLAUSE_INDEPENDENT */
339 1, /* OMP_CLAUSE_WORKER */
340 1, /* OMP_CLAUSE_VECTOR */
341 1, /* OMP_CLAUSE_NUM_GANGS */
342 1, /* OMP_CLAUSE_NUM_WORKERS */
343 1, /* OMP_CLAUSE_VECTOR_LENGTH */
344 3, /* OMP_CLAUSE_TILE */
345 2, /* OMP_CLAUSE__GRIDDIM_ */
346 0, /* OMP_CLAUSE_IF_PRESENT */
347 0, /* OMP_CLAUSE_FINALIZE */
350 const char * const omp_clause_code_name
[] =
424 /* Return the tree node structure used by tree code CODE. */
426 static inline enum tree_node_structure_enum
427 tree_node_structure_for_code (enum tree_code code
)
429 switch (TREE_CODE_CLASS (code
))
431 case tcc_declaration
:
436 return TS_FIELD_DECL
;
442 return TS_LABEL_DECL
;
444 return TS_RESULT_DECL
;
445 case DEBUG_EXPR_DECL
:
448 return TS_CONST_DECL
;
452 return TS_FUNCTION_DECL
;
453 case TRANSLATION_UNIT_DECL
:
454 return TS_TRANSLATION_UNIT_DECL
;
456 return TS_DECL_NON_COMMON
;
460 return TS_TYPE_NON_COMMON
;
469 default: /* tcc_constant and tcc_exceptional */
474 /* tcc_constant cases. */
475 case VOID_CST
: return TS_TYPED
;
476 case INTEGER_CST
: return TS_INT_CST
;
477 case POLY_INT_CST
: return TS_POLY_INT_CST
;
478 case REAL_CST
: return TS_REAL_CST
;
479 case FIXED_CST
: return TS_FIXED_CST
;
480 case COMPLEX_CST
: return TS_COMPLEX
;
481 case VECTOR_CST
: return TS_VECTOR
;
482 case STRING_CST
: return TS_STRING
;
483 /* tcc_exceptional cases. */
484 case ERROR_MARK
: return TS_COMMON
;
485 case IDENTIFIER_NODE
: return TS_IDENTIFIER
;
486 case TREE_LIST
: return TS_LIST
;
487 case TREE_VEC
: return TS_VEC
;
488 case SSA_NAME
: return TS_SSA_NAME
;
489 case PLACEHOLDER_EXPR
: return TS_COMMON
;
490 case STATEMENT_LIST
: return TS_STATEMENT_LIST
;
491 case BLOCK
: return TS_BLOCK
;
492 case CONSTRUCTOR
: return TS_CONSTRUCTOR
;
493 case TREE_BINFO
: return TS_BINFO
;
494 case OMP_CLAUSE
: return TS_OMP_CLAUSE
;
495 case OPTIMIZATION_NODE
: return TS_OPTIMIZATION
;
496 case TARGET_OPTION_NODE
: return TS_TARGET_OPTION
;
504 /* Initialize tree_contains_struct to describe the hierarchy of tree
508 initialize_tree_contains_struct (void)
512 for (i
= ERROR_MARK
; i
< LAST_AND_UNUSED_TREE_CODE
; i
++)
515 enum tree_node_structure_enum ts_code
;
517 code
= (enum tree_code
) i
;
518 ts_code
= tree_node_structure_for_code (code
);
520 /* Mark the TS structure itself. */
521 tree_contains_struct
[code
][ts_code
] = 1;
523 /* Mark all the structures that TS is derived from. */
528 case TS_OPTIMIZATION
:
529 case TS_TARGET_OPTION
:
535 case TS_POLY_INT_CST
:
544 case TS_STATEMENT_LIST
:
545 MARK_TS_TYPED (code
);
549 case TS_DECL_MINIMAL
:
555 MARK_TS_COMMON (code
);
558 case TS_TYPE_WITH_LANG_SPECIFIC
:
559 MARK_TS_TYPE_COMMON (code
);
562 case TS_TYPE_NON_COMMON
:
563 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code
);
567 MARK_TS_DECL_MINIMAL (code
);
572 MARK_TS_DECL_COMMON (code
);
575 case TS_DECL_NON_COMMON
:
576 MARK_TS_DECL_WITH_VIS (code
);
579 case TS_DECL_WITH_VIS
:
583 MARK_TS_DECL_WRTL (code
);
587 MARK_TS_DECL_COMMON (code
);
591 MARK_TS_DECL_WITH_VIS (code
);
595 case TS_FUNCTION_DECL
:
596 MARK_TS_DECL_NON_COMMON (code
);
599 case TS_TRANSLATION_UNIT_DECL
:
600 MARK_TS_DECL_COMMON (code
);
608 /* Basic consistency checks for attributes used in fold. */
609 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_NON_COMMON
]);
610 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_NON_COMMON
]);
611 gcc_assert (tree_contains_struct
[CONST_DECL
][TS_DECL_COMMON
]);
612 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_COMMON
]);
613 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_DECL_COMMON
]);
614 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_DECL_COMMON
]);
615 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_COMMON
]);
616 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_COMMON
]);
617 gcc_assert (tree_contains_struct
[TRANSLATION_UNIT_DECL
][TS_DECL_COMMON
]);
618 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_DECL_COMMON
]);
619 gcc_assert (tree_contains_struct
[FIELD_DECL
][TS_DECL_COMMON
]);
620 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_WRTL
]);
621 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_DECL_WRTL
]);
622 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_DECL_WRTL
]);
623 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_WRTL
]);
624 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_DECL_WRTL
]);
625 gcc_assert (tree_contains_struct
[CONST_DECL
][TS_DECL_MINIMAL
]);
626 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_MINIMAL
]);
627 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_DECL_MINIMAL
]);
628 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_DECL_MINIMAL
]);
629 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_MINIMAL
]);
630 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_MINIMAL
]);
631 gcc_assert (tree_contains_struct
[TRANSLATION_UNIT_DECL
][TS_DECL_MINIMAL
]);
632 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_DECL_MINIMAL
]);
633 gcc_assert (tree_contains_struct
[FIELD_DECL
][TS_DECL_MINIMAL
]);
634 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_WITH_VIS
]);
635 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_WITH_VIS
]);
636 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_WITH_VIS
]);
637 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_VAR_DECL
]);
638 gcc_assert (tree_contains_struct
[FIELD_DECL
][TS_FIELD_DECL
]);
639 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_PARM_DECL
]);
640 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_LABEL_DECL
]);
641 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_RESULT_DECL
]);
642 gcc_assert (tree_contains_struct
[CONST_DECL
][TS_CONST_DECL
]);
643 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_TYPE_DECL
]);
644 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_FUNCTION_DECL
]);
645 gcc_assert (tree_contains_struct
[IMPORTED_DECL
][TS_DECL_MINIMAL
]);
646 gcc_assert (tree_contains_struct
[IMPORTED_DECL
][TS_DECL_COMMON
]);
647 gcc_assert (tree_contains_struct
[NAMELIST_DECL
][TS_DECL_MINIMAL
]);
648 gcc_assert (tree_contains_struct
[NAMELIST_DECL
][TS_DECL_COMMON
]);
657 /* Initialize the hash table of types. */
659 = hash_table
<type_cache_hasher
>::create_ggc (TYPE_HASH_INITIAL_SIZE
);
662 = hash_table
<tree_decl_map_cache_hasher
>::create_ggc (512);
665 = hash_table
<tree_decl_map_cache_hasher
>::create_ggc (512);
667 int_cst_hash_table
= hash_table
<int_cst_hasher
>::create_ggc (1024);
669 poly_int_cst_hash_table
= hash_table
<poly_int_cst_hasher
>::create_ggc (64);
671 int_cst_node
= make_int_cst (1, 1);
673 cl_option_hash_table
= hash_table
<cl_option_hasher
>::create_ggc (64);
675 cl_optimization_node
= make_node (OPTIMIZATION_NODE
);
676 cl_target_option_node
= make_node (TARGET_OPTION_NODE
);
678 /* Initialize the tree_contains_struct array. */
679 initialize_tree_contains_struct ();
680 lang_hooks
.init_ts ();
684 /* The name of the object as the assembler will see it (but before any
685 translations made by ASM_OUTPUT_LABELREF). Often this is the same
686 as DECL_NAME. It is an IDENTIFIER_NODE. */
688 decl_assembler_name (tree decl
)
690 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
691 lang_hooks
.set_decl_assembler_name (decl
);
692 return DECL_ASSEMBLER_NAME_RAW (decl
);
695 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
696 (either of which may be NULL). Inform the FE, if this changes the
700 overwrite_decl_assembler_name (tree decl
, tree name
)
702 if (DECL_ASSEMBLER_NAME_RAW (decl
) != name
)
703 lang_hooks
.overwrite_decl_assembler_name (decl
, name
);
706 /* When the target supports COMDAT groups, this indicates which group the
707 DECL is associated with. This can be either an IDENTIFIER_NODE or a
708 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
710 decl_comdat_group (const_tree node
)
712 struct symtab_node
*snode
= symtab_node::get (node
);
715 return snode
->get_comdat_group ();
718 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
720 decl_comdat_group_id (const_tree node
)
722 struct symtab_node
*snode
= symtab_node::get (node
);
725 return snode
->get_comdat_group_id ();
728 /* When the target supports named section, return its name as IDENTIFIER_NODE
729 or NULL if it is in no section. */
731 decl_section_name (const_tree node
)
733 struct symtab_node
*snode
= symtab_node::get (node
);
736 return snode
->get_section ();
739 /* Set section name of NODE to VALUE (that is expected to be
742 set_decl_section_name (tree node
, const char *value
)
744 struct symtab_node
*snode
;
748 snode
= symtab_node::get (node
);
752 else if (VAR_P (node
))
753 snode
= varpool_node::get_create (node
);
755 snode
= cgraph_node::get_create (node
);
756 snode
->set_section (value
);
759 /* Return TLS model of a variable NODE. */
761 decl_tls_model (const_tree node
)
763 struct varpool_node
*snode
= varpool_node::get (node
);
765 return TLS_MODEL_NONE
;
766 return snode
->tls_model
;
769 /* Set TLS model of variable NODE to MODEL. */
771 set_decl_tls_model (tree node
, enum tls_model model
)
773 struct varpool_node
*vnode
;
775 if (model
== TLS_MODEL_NONE
)
777 vnode
= varpool_node::get (node
);
782 vnode
= varpool_node::get_create (node
);
783 vnode
->tls_model
= model
;
786 /* Compute the number of bytes occupied by a tree with code CODE.
787 This function cannot be used for nodes that have variable sizes,
788 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
790 tree_code_size (enum tree_code code
)
792 switch (TREE_CODE_CLASS (code
))
794 case tcc_declaration
: /* A decl node */
797 case FIELD_DECL
: return sizeof (tree_field_decl
);
798 case PARM_DECL
: return sizeof (tree_parm_decl
);
799 case VAR_DECL
: return sizeof (tree_var_decl
);
800 case LABEL_DECL
: return sizeof (tree_label_decl
);
801 case RESULT_DECL
: return sizeof (tree_result_decl
);
802 case CONST_DECL
: return sizeof (tree_const_decl
);
803 case TYPE_DECL
: return sizeof (tree_type_decl
);
804 case FUNCTION_DECL
: return sizeof (tree_function_decl
);
805 case DEBUG_EXPR_DECL
: return sizeof (tree_decl_with_rtl
);
806 case TRANSLATION_UNIT_DECL
: return sizeof (tree_translation_unit_decl
);
809 case NAMELIST_DECL
: return sizeof (tree_decl_non_common
);
811 gcc_checking_assert (code
>= NUM_TREE_CODES
);
812 return lang_hooks
.tree_size (code
);
815 case tcc_type
: /* a type node */
826 case FIXED_POINT_TYPE
:
832 case QUAL_UNION_TYPE
:
836 case LANG_TYPE
: return sizeof (tree_type_non_common
);
838 gcc_checking_assert (code
>= NUM_TREE_CODES
);
839 return lang_hooks
.tree_size (code
);
842 case tcc_reference
: /* a reference */
843 case tcc_expression
: /* an expression */
844 case tcc_statement
: /* an expression with side effects */
845 case tcc_comparison
: /* a comparison expression */
846 case tcc_unary
: /* a unary arithmetic expression */
847 case tcc_binary
: /* a binary arithmetic expression */
848 return (sizeof (struct tree_exp
)
849 + (TREE_CODE_LENGTH (code
) - 1) * sizeof (tree
));
851 case tcc_constant
: /* a constant */
854 case VOID_CST
: return sizeof (tree_typed
);
855 case INTEGER_CST
: gcc_unreachable ();
856 case POLY_INT_CST
: return sizeof (tree_poly_int_cst
);
857 case REAL_CST
: return sizeof (tree_real_cst
);
858 case FIXED_CST
: return sizeof (tree_fixed_cst
);
859 case COMPLEX_CST
: return sizeof (tree_complex
);
860 case VECTOR_CST
: gcc_unreachable ();
861 case STRING_CST
: gcc_unreachable ();
863 gcc_checking_assert (code
>= NUM_TREE_CODES
);
864 return lang_hooks
.tree_size (code
);
867 case tcc_exceptional
: /* something random, like an identifier. */
870 case IDENTIFIER_NODE
: return lang_hooks
.identifier_size
;
871 case TREE_LIST
: return sizeof (tree_list
);
874 case PLACEHOLDER_EXPR
: return sizeof (tree_common
);
876 case TREE_VEC
: gcc_unreachable ();
877 case OMP_CLAUSE
: gcc_unreachable ();
879 case SSA_NAME
: return sizeof (tree_ssa_name
);
881 case STATEMENT_LIST
: return sizeof (tree_statement_list
);
882 case BLOCK
: return sizeof (struct tree_block
);
883 case CONSTRUCTOR
: return sizeof (tree_constructor
);
884 case OPTIMIZATION_NODE
: return sizeof (tree_optimization_option
);
885 case TARGET_OPTION_NODE
: return sizeof (tree_target_option
);
888 gcc_checking_assert (code
>= NUM_TREE_CODES
);
889 return lang_hooks
.tree_size (code
);
897 /* Compute the number of bytes occupied by NODE. This routine only
898 looks at TREE_CODE, except for those nodes that have variable sizes. */
900 tree_size (const_tree node
)
902 const enum tree_code code
= TREE_CODE (node
);
906 return (sizeof (struct tree_int_cst
)
907 + (TREE_INT_CST_EXT_NUNITS (node
) - 1) * sizeof (HOST_WIDE_INT
));
910 return (offsetof (struct tree_binfo
, base_binfos
)
912 ::embedded_size (BINFO_N_BASE_BINFOS (node
)));
915 return (sizeof (struct tree_vec
)
916 + (TREE_VEC_LENGTH (node
) - 1) * sizeof (tree
));
919 return (sizeof (struct tree_vector
)
920 + (vector_cst_encoded_nelts (node
) - 1) * sizeof (tree
));
923 return TREE_STRING_LENGTH (node
) + offsetof (struct tree_string
, str
) + 1;
926 return (sizeof (struct tree_omp_clause
)
927 + (omp_clause_num_ops
[OMP_CLAUSE_CODE (node
)] - 1)
931 if (TREE_CODE_CLASS (code
) == tcc_vl_exp
)
932 return (sizeof (struct tree_exp
)
933 + (VL_EXP_OPERAND_LENGTH (node
) - 1) * sizeof (tree
));
935 return tree_code_size (code
);
939 /* Return tree node kind based on tree CODE. */
941 static tree_node_kind
942 get_stats_node_kind (enum tree_code code
)
944 enum tree_code_class type
= TREE_CODE_CLASS (code
);
948 case tcc_declaration
: /* A decl node */
950 case tcc_type
: /* a type node */
952 case tcc_statement
: /* an expression with side effects */
954 case tcc_reference
: /* a reference */
956 case tcc_expression
: /* an expression */
957 case tcc_comparison
: /* a comparison expression */
958 case tcc_unary
: /* a unary arithmetic expression */
959 case tcc_binary
: /* a binary arithmetic expression */
961 case tcc_constant
: /* a constant */
963 case tcc_exceptional
: /* something random, like an identifier. */
966 case IDENTIFIER_NODE
:
973 return ssa_name_kind
;
979 return omp_clause_kind
;
991 /* Record interesting allocation statistics for a tree node with CODE
995 record_node_allocation_statistics (enum tree_code code
, size_t length
)
997 if (!GATHER_STATISTICS
)
1000 tree_node_kind kind
= get_stats_node_kind (code
);
1002 tree_code_counts
[(int) code
]++;
1003 tree_node_counts
[(int) kind
]++;
1004 tree_node_sizes
[(int) kind
] += length
;
1007 /* Allocate and return a new UID from the DECL_UID namespace. */
1010 allocate_decl_uid (void)
1012 return next_decl_uid
++;
1015 /* Return a newly allocated node of code CODE. For decl and type
1016 nodes, some other fields are initialized. The rest of the node is
1017 initialized to zero. This function cannot be used for TREE_VEC,
1018 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1021 Achoo! I got a code in the node. */
1024 make_node (enum tree_code code MEM_STAT_DECL
)
1027 enum tree_code_class type
= TREE_CODE_CLASS (code
);
1028 size_t length
= tree_code_size (code
);
1030 record_node_allocation_statistics (code
, length
);
1032 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
1033 TREE_SET_CODE (t
, code
);
1038 if (code
!= DEBUG_BEGIN_STMT
)
1039 TREE_SIDE_EFFECTS (t
) = 1;
1042 case tcc_declaration
:
1043 if (CODE_CONTAINS_STRUCT (code
, TS_DECL_COMMON
))
1045 if (code
== FUNCTION_DECL
)
1047 SET_DECL_ALIGN (t
, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY
));
1048 SET_DECL_MODE (t
, FUNCTION_MODE
);
1051 SET_DECL_ALIGN (t
, 1);
1053 DECL_SOURCE_LOCATION (t
) = input_location
;
1054 if (TREE_CODE (t
) == DEBUG_EXPR_DECL
)
1055 DECL_UID (t
) = --next_debug_decl_uid
;
1058 DECL_UID (t
) = allocate_decl_uid ();
1059 SET_DECL_PT_UID (t
, -1);
1061 if (TREE_CODE (t
) == LABEL_DECL
)
1062 LABEL_DECL_UID (t
) = -1;
1067 TYPE_UID (t
) = next_type_uid
++;
1068 SET_TYPE_ALIGN (t
, BITS_PER_UNIT
);
1069 TYPE_USER_ALIGN (t
) = 0;
1070 TYPE_MAIN_VARIANT (t
) = t
;
1071 TYPE_CANONICAL (t
) = t
;
1073 /* Default to no attributes for type, but let target change that. */
1074 TYPE_ATTRIBUTES (t
) = NULL_TREE
;
1075 targetm
.set_default_type_attributes (t
);
1077 /* We have not yet computed the alias set for this type. */
1078 TYPE_ALIAS_SET (t
) = -1;
1082 TREE_CONSTANT (t
) = 1;
1085 case tcc_expression
:
1091 case PREDECREMENT_EXPR
:
1092 case PREINCREMENT_EXPR
:
1093 case POSTDECREMENT_EXPR
:
1094 case POSTINCREMENT_EXPR
:
1095 /* All of these have side-effects, no matter what their
1097 TREE_SIDE_EFFECTS (t
) = 1;
1105 case tcc_exceptional
:
1108 case TARGET_OPTION_NODE
:
1109 TREE_TARGET_OPTION(t
)
1110 = ggc_cleared_alloc
<struct cl_target_option
> ();
1113 case OPTIMIZATION_NODE
:
1114 TREE_OPTIMIZATION (t
)
1115 = ggc_cleared_alloc
<struct cl_optimization
> ();
1124 /* Other classes need no special treatment. */
1131 /* Free tree node. */
1134 free_node (tree node
)
1136 enum tree_code code
= TREE_CODE (node
);
1137 if (GATHER_STATISTICS
)
1139 enum tree_node_kind kind
= get_stats_node_kind (code
);
1141 gcc_checking_assert (tree_code_counts
[(int) TREE_CODE (node
)] != 0);
1142 gcc_checking_assert (tree_node_counts
[(int) kind
] != 0);
1143 gcc_checking_assert (tree_node_sizes
[(int) kind
] >= tree_size (node
));
1145 tree_code_counts
[(int) TREE_CODE (node
)]--;
1146 tree_node_counts
[(int) kind
]--;
1147 tree_node_sizes
[(int) kind
] -= tree_size (node
);
1149 if (CODE_CONTAINS_STRUCT (code
, TS_CONSTRUCTOR
))
1150 vec_free (CONSTRUCTOR_ELTS (node
));
1151 else if (code
== BLOCK
)
1152 vec_free (BLOCK_NONLOCALIZED_VARS (node
));
1153 else if (code
== TREE_BINFO
)
1154 vec_free (BINFO_BASE_ACCESSES (node
));
1158 /* Return a new node with the same contents as NODE except that its
1159 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1162 copy_node (tree node MEM_STAT_DECL
)
1165 enum tree_code code
= TREE_CODE (node
);
1168 gcc_assert (code
!= STATEMENT_LIST
);
1170 length
= tree_size (node
);
1171 record_node_allocation_statistics (code
, length
);
1172 t
= ggc_alloc_tree_node_stat (length PASS_MEM_STAT
);
1173 memcpy (t
, node
, length
);
1175 if (CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
1177 TREE_ASM_WRITTEN (t
) = 0;
1178 TREE_VISITED (t
) = 0;
1180 if (TREE_CODE_CLASS (code
) == tcc_declaration
)
1182 if (code
== DEBUG_EXPR_DECL
)
1183 DECL_UID (t
) = --next_debug_decl_uid
;
1186 DECL_UID (t
) = allocate_decl_uid ();
1187 if (DECL_PT_UID_SET_P (node
))
1188 SET_DECL_PT_UID (t
, DECL_PT_UID (node
));
1190 if ((TREE_CODE (node
) == PARM_DECL
|| VAR_P (node
))
1191 && DECL_HAS_VALUE_EXPR_P (node
))
1193 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (node
));
1194 DECL_HAS_VALUE_EXPR_P (t
) = 1;
1196 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1199 DECL_HAS_DEBUG_EXPR_P (t
) = 0;
1200 t
->decl_with_vis
.symtab_node
= NULL
;
1202 if (VAR_P (node
) && DECL_HAS_INIT_PRIORITY_P (node
))
1204 SET_DECL_INIT_PRIORITY (t
, DECL_INIT_PRIORITY (node
));
1205 DECL_HAS_INIT_PRIORITY_P (t
) = 1;
1207 if (TREE_CODE (node
) == FUNCTION_DECL
)
1209 DECL_STRUCT_FUNCTION (t
) = NULL
;
1210 t
->decl_with_vis
.symtab_node
= NULL
;
1213 else if (TREE_CODE_CLASS (code
) == tcc_type
)
1215 TYPE_UID (t
) = next_type_uid
++;
1216 /* The following is so that the debug code for
1217 the copy is different from the original type.
1218 The two statements usually duplicate each other
1219 (because they clear fields of the same union),
1220 but the optimizer should catch that. */
1221 TYPE_SYMTAB_ADDRESS (t
) = 0;
1222 TYPE_SYMTAB_DIE (t
) = 0;
1224 /* Do not copy the values cache. */
1225 if (TYPE_CACHED_VALUES_P (t
))
1227 TYPE_CACHED_VALUES_P (t
) = 0;
1228 TYPE_CACHED_VALUES (t
) = NULL_TREE
;
1231 else if (code
== TARGET_OPTION_NODE
)
1233 TREE_TARGET_OPTION (t
) = ggc_alloc
<struct cl_target_option
>();
1234 memcpy (TREE_TARGET_OPTION (t
), TREE_TARGET_OPTION (node
),
1235 sizeof (struct cl_target_option
));
1237 else if (code
== OPTIMIZATION_NODE
)
1239 TREE_OPTIMIZATION (t
) = ggc_alloc
<struct cl_optimization
>();
1240 memcpy (TREE_OPTIMIZATION (t
), TREE_OPTIMIZATION (node
),
1241 sizeof (struct cl_optimization
));
1247 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1248 For example, this can copy a list made of TREE_LIST nodes. */
1251 copy_list (tree list
)
1259 head
= prev
= copy_node (list
);
1260 next
= TREE_CHAIN (list
);
1263 TREE_CHAIN (prev
) = copy_node (next
);
1264 prev
= TREE_CHAIN (prev
);
1265 next
= TREE_CHAIN (next
);
1271 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1272 INTEGER_CST with value CST and type TYPE. */
1275 get_int_cst_ext_nunits (tree type
, const wide_int
&cst
)
1277 gcc_checking_assert (cst
.get_precision () == TYPE_PRECISION (type
));
1278 /* We need extra HWIs if CST is an unsigned integer with its
1280 if (TYPE_UNSIGNED (type
) && wi::neg_p (cst
))
1281 return cst
.get_precision () / HOST_BITS_PER_WIDE_INT
+ 1;
1282 return cst
.get_len ();
1285 /* Return a new INTEGER_CST with value CST and type TYPE. */
1288 build_new_int_cst (tree type
, const wide_int
&cst
)
1290 unsigned int len
= cst
.get_len ();
1291 unsigned int ext_len
= get_int_cst_ext_nunits (type
, cst
);
1292 tree nt
= make_int_cst (len
, ext_len
);
1297 TREE_INT_CST_ELT (nt
, ext_len
)
1298 = zext_hwi (-1, cst
.get_precision () % HOST_BITS_PER_WIDE_INT
);
1299 for (unsigned int i
= len
; i
< ext_len
; ++i
)
1300 TREE_INT_CST_ELT (nt
, i
) = -1;
1302 else if (TYPE_UNSIGNED (type
)
1303 && cst
.get_precision () < len
* HOST_BITS_PER_WIDE_INT
)
1306 TREE_INT_CST_ELT (nt
, len
)
1307 = zext_hwi (cst
.elt (len
),
1308 cst
.get_precision () % HOST_BITS_PER_WIDE_INT
);
1311 for (unsigned int i
= 0; i
< len
; i
++)
1312 TREE_INT_CST_ELT (nt
, i
) = cst
.elt (i
);
1313 TREE_TYPE (nt
) = type
;
1317 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1320 build_new_poly_int_cst (tree type
, tree (&coeffs
)[NUM_POLY_INT_COEFFS
]
1323 size_t length
= sizeof (struct tree_poly_int_cst
);
1324 record_node_allocation_statistics (POLY_INT_CST
, length
);
1326 tree t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
1328 TREE_SET_CODE (t
, POLY_INT_CST
);
1329 TREE_CONSTANT (t
) = 1;
1330 TREE_TYPE (t
) = type
;
1331 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1332 POLY_INT_CST_COEFF (t
, i
) = coeffs
[i
];
1336 /* Create a constant tree that contains CST sign-extended to TYPE. */
1339 build_int_cst (tree type
, poly_int64 cst
)
1341 /* Support legacy code. */
1343 type
= integer_type_node
;
1345 return wide_int_to_tree (type
, wi::shwi (cst
, TYPE_PRECISION (type
)));
1348 /* Create a constant tree that contains CST zero-extended to TYPE. */
1351 build_int_cstu (tree type
, poly_uint64 cst
)
1353 return wide_int_to_tree (type
, wi::uhwi (cst
, TYPE_PRECISION (type
)));
1356 /* Create a constant tree that contains CST sign-extended to TYPE. */
1359 build_int_cst_type (tree type
, poly_int64 cst
)
1362 return wide_int_to_tree (type
, wi::shwi (cst
, TYPE_PRECISION (type
)));
1365 /* Constructs tree in type TYPE from with value given by CST. Signedness
1366 of CST is assumed to be the same as the signedness of TYPE. */
1369 double_int_to_tree (tree type
, double_int cst
)
1371 return wide_int_to_tree (type
, widest_int::from (cst
, TYPE_SIGN (type
)));
1374 /* We force the wide_int CST to the range of the type TYPE by sign or
1375 zero extending it. OVERFLOWABLE indicates if we are interested in
1376 overflow of the value, when >0 we are only interested in signed
1377 overflow, for <0 we are interested in any overflow. OVERFLOWED
1378 indicates whether overflow has already occurred. CONST_OVERFLOWED
1379 indicates whether constant overflow has already occurred. We force
1380 T's value to be within range of T's type (by setting to 0 or 1 all
1381 the bits outside the type's range). We set TREE_OVERFLOWED if,
1382 OVERFLOWED is nonzero,
1383 or OVERFLOWABLE is >0 and signed overflow occurs
1384 or OVERFLOWABLE is <0 and any overflow occurs
1385 We return a new tree node for the extended wide_int. The node
1386 is shared if no overflow flags are set. */
1390 force_fit_type (tree type
, const poly_wide_int_ref
&cst
,
1391 int overflowable
, bool overflowed
)
1393 signop sign
= TYPE_SIGN (type
);
1395 /* If we need to set overflow flags, return a new unshared node. */
1396 if (overflowed
|| !wi::fits_to_tree_p (cst
, type
))
1400 || (overflowable
> 0 && sign
== SIGNED
))
1402 poly_wide_int tmp
= poly_wide_int::from (cst
, TYPE_PRECISION (type
),
1405 if (tmp
.is_constant ())
1406 t
= build_new_int_cst (type
, tmp
.coeffs
[0]);
1409 tree coeffs
[NUM_POLY_INT_COEFFS
];
1410 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1412 coeffs
[i
] = build_new_int_cst (type
, tmp
.coeffs
[i
]);
1413 TREE_OVERFLOW (coeffs
[i
]) = 1;
1415 t
= build_new_poly_int_cst (type
, coeffs
);
1417 TREE_OVERFLOW (t
) = 1;
1422 /* Else build a shared node. */
1423 return wide_int_to_tree (type
, cst
);
1426 /* These are the hash table functions for the hash table of INTEGER_CST
1427 nodes of a sizetype. */
1429 /* Return the hash code X, an INTEGER_CST. */
1432 int_cst_hasher::hash (tree x
)
1434 const_tree
const t
= x
;
1435 hashval_t code
= TYPE_UID (TREE_TYPE (t
));
1438 for (i
= 0; i
< TREE_INT_CST_NUNITS (t
); i
++)
1439 code
= iterative_hash_host_wide_int (TREE_INT_CST_ELT(t
, i
), code
);
1444 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1445 is the same as that given by *Y, which is the same. */
1448 int_cst_hasher::equal (tree x
, tree y
)
1450 const_tree
const xt
= x
;
1451 const_tree
const yt
= y
;
1453 if (TREE_TYPE (xt
) != TREE_TYPE (yt
)
1454 || TREE_INT_CST_NUNITS (xt
) != TREE_INT_CST_NUNITS (yt
)
1455 || TREE_INT_CST_EXT_NUNITS (xt
) != TREE_INT_CST_EXT_NUNITS (yt
))
1458 for (int i
= 0; i
< TREE_INT_CST_NUNITS (xt
); i
++)
1459 if (TREE_INT_CST_ELT (xt
, i
) != TREE_INT_CST_ELT (yt
, i
))
1465 /* Create an INT_CST node of TYPE and value CST.
1466 The returned node is always shared. For small integers we use a
1467 per-type vector cache, for larger ones we use a single hash table.
1468 The value is extended from its precision according to the sign of
1469 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1470 the upper bits and ensures that hashing and value equality based
1471 upon the underlying HOST_WIDE_INTs works without masking. */
1474 wide_int_to_tree_1 (tree type
, const wide_int_ref
&pcst
)
1481 unsigned int prec
= TYPE_PRECISION (type
);
1482 signop sgn
= TYPE_SIGN (type
);
1484 /* Verify that everything is canonical. */
1485 int l
= pcst
.get_len ();
1488 if (pcst
.elt (l
- 1) == 0)
1489 gcc_checking_assert (pcst
.elt (l
- 2) < 0);
1490 if (pcst
.elt (l
- 1) == HOST_WIDE_INT_M1
)
1491 gcc_checking_assert (pcst
.elt (l
- 2) >= 0);
1494 wide_int cst
= wide_int::from (pcst
, prec
, sgn
);
1495 unsigned int ext_len
= get_int_cst_ext_nunits (type
, cst
);
1499 /* We just need to store a single HOST_WIDE_INT. */
1501 if (TYPE_UNSIGNED (type
))
1502 hwi
= cst
.to_uhwi ();
1504 hwi
= cst
.to_shwi ();
1506 switch (TREE_CODE (type
))
1509 gcc_assert (hwi
== 0);
1513 case REFERENCE_TYPE
:
1514 /* Cache NULL pointer and zero bounds. */
1523 /* Cache false or true. */
1525 if (IN_RANGE (hwi
, 0, 1))
1531 if (TYPE_SIGN (type
) == UNSIGNED
)
1534 limit
= INTEGER_SHARE_LIMIT
;
1535 if (IN_RANGE (hwi
, 0, INTEGER_SHARE_LIMIT
- 1))
1540 /* Cache [-1, N). */
1541 limit
= INTEGER_SHARE_LIMIT
+ 1;
1542 if (IN_RANGE (hwi
, -1, INTEGER_SHARE_LIMIT
- 1))
1556 /* Look for it in the type's vector of small shared ints. */
1557 if (!TYPE_CACHED_VALUES_P (type
))
1559 TYPE_CACHED_VALUES_P (type
) = 1;
1560 TYPE_CACHED_VALUES (type
) = make_tree_vec (limit
);
1563 t
= TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
);
1565 /* Make sure no one is clobbering the shared constant. */
1566 gcc_checking_assert (TREE_TYPE (t
) == type
1567 && TREE_INT_CST_NUNITS (t
) == 1
1568 && TREE_INT_CST_OFFSET_NUNITS (t
) == 1
1569 && TREE_INT_CST_EXT_NUNITS (t
) == 1
1570 && TREE_INT_CST_ELT (t
, 0) == hwi
);
1573 /* Create a new shared int. */
1574 t
= build_new_int_cst (type
, cst
);
1575 TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
) = t
;
1580 /* Use the cache of larger shared ints, using int_cst_node as
1583 TREE_INT_CST_ELT (int_cst_node
, 0) = hwi
;
1584 TREE_TYPE (int_cst_node
) = type
;
1586 tree
*slot
= int_cst_hash_table
->find_slot (int_cst_node
, INSERT
);
1590 /* Insert this one into the hash table. */
1593 /* Make a new node for next time round. */
1594 int_cst_node
= make_int_cst (1, 1);
1600 /* The value either hashes properly or we drop it on the floor
1601 for the gc to take care of. There will not be enough of them
1604 tree nt
= build_new_int_cst (type
, cst
);
1605 tree
*slot
= int_cst_hash_table
->find_slot (nt
, INSERT
);
1609 /* Insert this one into the hash table. */
1621 poly_int_cst_hasher::hash (tree t
)
1623 inchash::hash hstate
;
1625 hstate
.add_int (TYPE_UID (TREE_TYPE (t
)));
1626 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1627 hstate
.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t
, i
)));
1629 return hstate
.end ();
1633 poly_int_cst_hasher::equal (tree x
, const compare_type
&y
)
1635 if (TREE_TYPE (x
) != y
.first
)
1637 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1638 if (wi::to_wide (POLY_INT_CST_COEFF (x
, i
)) != y
.second
->coeffs
[i
])
1643 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1644 The elements must also have type TYPE. */
1647 build_poly_int_cst (tree type
, const poly_wide_int_ref
&values
)
1649 unsigned int prec
= TYPE_PRECISION (type
);
1650 gcc_assert (prec
<= values
.coeffs
[0].get_precision ());
1651 poly_wide_int c
= poly_wide_int::from (values
, prec
, SIGNED
);
1654 h
.add_int (TYPE_UID (type
));
1655 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1656 h
.add_wide_int (c
.coeffs
[i
]);
1657 poly_int_cst_hasher::compare_type
comp (type
, &c
);
1658 tree
*slot
= poly_int_cst_hash_table
->find_slot_with_hash (comp
, h
.end (),
1660 if (*slot
== NULL_TREE
)
1662 tree coeffs
[NUM_POLY_INT_COEFFS
];
1663 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1664 coeffs
[i
] = wide_int_to_tree_1 (type
, c
.coeffs
[i
]);
1665 *slot
= build_new_poly_int_cst (type
, coeffs
);
1670 /* Create a constant tree with value VALUE in type TYPE. */
1673 wide_int_to_tree (tree type
, const poly_wide_int_ref
&value
)
1675 if (value
.is_constant ())
1676 return wide_int_to_tree_1 (type
, value
.coeffs
[0]);
1677 return build_poly_int_cst (type
, value
);
1681 cache_integer_cst (tree t
)
1683 tree type
= TREE_TYPE (t
);
1686 int prec
= TYPE_PRECISION (type
);
1688 gcc_assert (!TREE_OVERFLOW (t
));
1690 switch (TREE_CODE (type
))
1693 gcc_assert (integer_zerop (t
));
1697 case REFERENCE_TYPE
:
1698 /* Cache NULL pointer. */
1699 if (integer_zerop (t
))
1707 /* Cache false or true. */
1709 if (wi::ltu_p (wi::to_wide (t
), 2))
1710 ix
= TREE_INT_CST_ELT (t
, 0);
1715 if (TYPE_UNSIGNED (type
))
1718 limit
= INTEGER_SHARE_LIMIT
;
1720 /* This is a little hokie, but if the prec is smaller than
1721 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1722 obvious test will not get the correct answer. */
1723 if (prec
< HOST_BITS_PER_WIDE_INT
)
1725 if (tree_to_uhwi (t
) < (unsigned HOST_WIDE_INT
) INTEGER_SHARE_LIMIT
)
1726 ix
= tree_to_uhwi (t
);
1728 else if (wi::ltu_p (wi::to_wide (t
), INTEGER_SHARE_LIMIT
))
1729 ix
= tree_to_uhwi (t
);
1734 limit
= INTEGER_SHARE_LIMIT
+ 1;
1736 if (integer_minus_onep (t
))
1738 else if (!wi::neg_p (wi::to_wide (t
)))
1740 if (prec
< HOST_BITS_PER_WIDE_INT
)
1742 if (tree_to_shwi (t
) < INTEGER_SHARE_LIMIT
)
1743 ix
= tree_to_shwi (t
) + 1;
1745 else if (wi::ltu_p (wi::to_wide (t
), INTEGER_SHARE_LIMIT
))
1746 ix
= tree_to_shwi (t
) + 1;
1760 /* Look for it in the type's vector of small shared ints. */
1761 if (!TYPE_CACHED_VALUES_P (type
))
1763 TYPE_CACHED_VALUES_P (type
) = 1;
1764 TYPE_CACHED_VALUES (type
) = make_tree_vec (limit
);
1767 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
) == NULL_TREE
);
1768 TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
) = t
;
1772 /* Use the cache of larger shared ints. */
1773 tree
*slot
= int_cst_hash_table
->find_slot (t
, INSERT
);
1774 /* If there is already an entry for the number verify it's the
1777 gcc_assert (wi::to_wide (tree (*slot
)) == wi::to_wide (t
));
1779 /* Otherwise insert this one into the hash table. */
1785 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1786 and the rest are zeros. */
1789 build_low_bits_mask (tree type
, unsigned bits
)
1791 gcc_assert (bits
<= TYPE_PRECISION (type
));
1793 return wide_int_to_tree (type
, wi::mask (bits
, false,
1794 TYPE_PRECISION (type
)));
1797 /* Checks that X is integer constant that can be expressed in (unsigned)
1798 HOST_WIDE_INT without loss of precision. */
1801 cst_and_fits_in_hwi (const_tree x
)
1803 return (TREE_CODE (x
) == INTEGER_CST
1804 && (tree_fits_shwi_p (x
) || tree_fits_uhwi_p (x
)));
1807 /* Build a newly constructed VECTOR_CST with the given values of
1808 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1811 make_vector (unsigned log2_npatterns
,
1812 unsigned int nelts_per_pattern MEM_STAT_DECL
)
1814 gcc_assert (IN_RANGE (nelts_per_pattern
, 1, 3));
1816 unsigned npatterns
= 1 << log2_npatterns
;
1817 unsigned encoded_nelts
= npatterns
* nelts_per_pattern
;
1818 unsigned length
= (sizeof (struct tree_vector
)
1819 + (encoded_nelts
- 1) * sizeof (tree
));
1821 record_node_allocation_statistics (VECTOR_CST
, length
);
1823 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
1825 TREE_SET_CODE (t
, VECTOR_CST
);
1826 TREE_CONSTANT (t
) = 1;
1827 VECTOR_CST_LOG2_NPATTERNS (t
) = log2_npatterns
;
1828 VECTOR_CST_NELTS_PER_PATTERN (t
) = nelts_per_pattern
;
1833 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1834 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1837 build_vector_from_ctor (tree type
, vec
<constructor_elt
, va_gc
> *v
)
1839 unsigned HOST_WIDE_INT idx
, nelts
;
1842 /* We can't construct a VECTOR_CST for a variable number of elements. */
1843 nelts
= TYPE_VECTOR_SUBPARTS (type
).to_constant ();
1844 tree_vector_builder
vec (type
, nelts
, 1);
1845 FOR_EACH_CONSTRUCTOR_VALUE (v
, idx
, value
)
1847 if (TREE_CODE (value
) == VECTOR_CST
)
1849 /* If NELTS is constant then this must be too. */
1850 unsigned int sub_nelts
= VECTOR_CST_NELTS (value
).to_constant ();
1851 for (unsigned i
= 0; i
< sub_nelts
; ++i
)
1852 vec
.quick_push (VECTOR_CST_ELT (value
, i
));
1855 vec
.quick_push (value
);
1857 while (vec
.length () < nelts
)
1858 vec
.quick_push (build_zero_cst (TREE_TYPE (type
)));
1860 return vec
.build ();
1863 /* Build a vector of type VECTYPE where all the elements are SCs. */
1865 build_vector_from_val (tree vectype
, tree sc
)
1867 unsigned HOST_WIDE_INT i
, nunits
;
1869 if (sc
== error_mark_node
)
1872 /* Verify that the vector type is suitable for SC. Note that there
1873 is some inconsistency in the type-system with respect to restrict
1874 qualifications of pointers. Vector types always have a main-variant
1875 element type and the qualification is applied to the vector-type.
1876 So TREE_TYPE (vector-type) does not return a properly qualified
1877 vector element-type. */
1878 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc
)),
1879 TREE_TYPE (vectype
)));
1881 if (CONSTANT_CLASS_P (sc
))
1883 tree_vector_builder
v (vectype
, 1, 1);
1887 else if (!TYPE_VECTOR_SUBPARTS (vectype
).is_constant (&nunits
))
1888 return fold_build1 (VEC_DUPLICATE_EXPR
, vectype
, sc
);
1891 vec
<constructor_elt
, va_gc
> *v
;
1892 vec_alloc (v
, nunits
);
1893 for (i
= 0; i
< nunits
; ++i
)
1894 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, sc
);
1895 return build_constructor (vectype
, v
);
1899 /* Build a vector series of type TYPE in which element I has the value
1900 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1901 and a VEC_SERIES_EXPR otherwise. */
1904 build_vec_series (tree type
, tree base
, tree step
)
1906 if (integer_zerop (step
))
1907 return build_vector_from_val (type
, base
);
1908 if (TREE_CODE (base
) == INTEGER_CST
&& TREE_CODE (step
) == INTEGER_CST
)
1910 tree_vector_builder
builder (type
, 1, 3);
1911 tree elt1
= wide_int_to_tree (TREE_TYPE (base
),
1912 wi::to_wide (base
) + wi::to_wide (step
));
1913 tree elt2
= wide_int_to_tree (TREE_TYPE (base
),
1914 wi::to_wide (elt1
) + wi::to_wide (step
));
1915 builder
.quick_push (base
);
1916 builder
.quick_push (elt1
);
1917 builder
.quick_push (elt2
);
1918 return builder
.build ();
1920 return build2 (VEC_SERIES_EXPR
, type
, base
, step
);
1923 /* Return a vector with the same number of units and number of bits
1924 as VEC_TYPE, but in which the elements are a linear series of unsigned
1925 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1928 build_index_vector (tree vec_type
, poly_uint64 base
, poly_uint64 step
)
1930 tree index_vec_type
= vec_type
;
1931 tree index_elt_type
= TREE_TYPE (vec_type
);
1932 poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (vec_type
);
1933 if (!INTEGRAL_TYPE_P (index_elt_type
) || !TYPE_UNSIGNED (index_elt_type
))
1935 index_elt_type
= build_nonstandard_integer_type
1936 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type
)), true);
1937 index_vec_type
= build_vector_type (index_elt_type
, nunits
);
1940 tree_vector_builder
v (index_vec_type
, 1, 3);
1941 for (unsigned int i
= 0; i
< 3; ++i
)
1942 v
.quick_push (build_int_cstu (index_elt_type
, base
+ i
* step
));
1946 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1947 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1950 recompute_constructor_flags (tree c
)
1954 bool constant_p
= true;
1955 bool side_effects_p
= false;
1956 vec
<constructor_elt
, va_gc
> *vals
= CONSTRUCTOR_ELTS (c
);
1958 FOR_EACH_CONSTRUCTOR_VALUE (vals
, i
, val
)
1960 /* Mostly ctors will have elts that don't have side-effects, so
1961 the usual case is to scan all the elements. Hence a single
1962 loop for both const and side effects, rather than one loop
1963 each (with early outs). */
1964 if (!TREE_CONSTANT (val
))
1966 if (TREE_SIDE_EFFECTS (val
))
1967 side_effects_p
= true;
1970 TREE_SIDE_EFFECTS (c
) = side_effects_p
;
1971 TREE_CONSTANT (c
) = constant_p
;
1974 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1978 verify_constructor_flags (tree c
)
1982 bool constant_p
= TREE_CONSTANT (c
);
1983 bool side_effects_p
= TREE_SIDE_EFFECTS (c
);
1984 vec
<constructor_elt
, va_gc
> *vals
= CONSTRUCTOR_ELTS (c
);
1986 FOR_EACH_CONSTRUCTOR_VALUE (vals
, i
, val
)
1988 if (constant_p
&& !TREE_CONSTANT (val
))
1989 internal_error ("non-constant element in constant CONSTRUCTOR");
1990 if (!side_effects_p
&& TREE_SIDE_EFFECTS (val
))
1991 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
1995 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1996 are in the vec pointed to by VALS. */
1998 build_constructor (tree type
, vec
<constructor_elt
, va_gc
> *vals
)
2000 tree c
= make_node (CONSTRUCTOR
);
2002 TREE_TYPE (c
) = type
;
2003 CONSTRUCTOR_ELTS (c
) = vals
;
2005 recompute_constructor_flags (c
);
2010 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2013 build_constructor_single (tree type
, tree index
, tree value
)
2015 vec
<constructor_elt
, va_gc
> *v
;
2016 constructor_elt elt
= {index
, value
};
2019 v
->quick_push (elt
);
2021 return build_constructor (type
, v
);
2025 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2026 are in a list pointed to by VALS. */
2028 build_constructor_from_list (tree type
, tree vals
)
2031 vec
<constructor_elt
, va_gc
> *v
= NULL
;
2035 vec_alloc (v
, list_length (vals
));
2036 for (t
= vals
; t
; t
= TREE_CHAIN (t
))
2037 CONSTRUCTOR_APPEND_ELT (v
, TREE_PURPOSE (t
), TREE_VALUE (t
));
2040 return build_constructor (type
, v
);
2043 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2044 of elements, provided as index/value pairs. */
2047 build_constructor_va (tree type
, int nelts
, ...)
2049 vec
<constructor_elt
, va_gc
> *v
= NULL
;
2052 va_start (p
, nelts
);
2053 vec_alloc (v
, nelts
);
2056 tree index
= va_arg (p
, tree
);
2057 tree value
= va_arg (p
, tree
);
2058 CONSTRUCTOR_APPEND_ELT (v
, index
, value
);
2061 return build_constructor (type
, v
);
2064 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2067 build_clobber (tree type
)
2069 tree clobber
= build_constructor (type
, NULL
);
2070 TREE_THIS_VOLATILE (clobber
) = true;
2074 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2077 build_fixed (tree type
, FIXED_VALUE_TYPE f
)
2080 FIXED_VALUE_TYPE
*fp
;
2082 v
= make_node (FIXED_CST
);
2083 fp
= ggc_alloc
<fixed_value
> ();
2084 memcpy (fp
, &f
, sizeof (FIXED_VALUE_TYPE
));
2086 TREE_TYPE (v
) = type
;
2087 TREE_FIXED_CST_PTR (v
) = fp
;
2091 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2094 build_real (tree type
, REAL_VALUE_TYPE d
)
2097 REAL_VALUE_TYPE
*dp
;
2100 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2101 Consider doing it via real_convert now. */
2103 v
= make_node (REAL_CST
);
2104 dp
= ggc_alloc
<real_value
> ();
2105 memcpy (dp
, &d
, sizeof (REAL_VALUE_TYPE
));
2107 TREE_TYPE (v
) = type
;
2108 TREE_REAL_CST_PTR (v
) = dp
;
2109 TREE_OVERFLOW (v
) = overflow
;
2113 /* Like build_real, but first truncate D to the type. */
2116 build_real_truncate (tree type
, REAL_VALUE_TYPE d
)
2118 return build_real (type
, real_value_truncate (TYPE_MODE (type
), d
));
2121 /* Return a new REAL_CST node whose type is TYPE
2122 and whose value is the integer value of the INTEGER_CST node I. */
2125 real_value_from_int_cst (const_tree type
, const_tree i
)
2129 /* Clear all bits of the real value type so that we can later do
2130 bitwise comparisons to see if two values are the same. */
2131 memset (&d
, 0, sizeof d
);
2133 real_from_integer (&d
, type
? TYPE_MODE (type
) : VOIDmode
, wi::to_wide (i
),
2134 TYPE_SIGN (TREE_TYPE (i
)));
2138 /* Given a tree representing an integer constant I, return a tree
2139 representing the same value as a floating-point constant of type TYPE. */
2142 build_real_from_int_cst (tree type
, const_tree i
)
2145 int overflow
= TREE_OVERFLOW (i
);
2147 v
= build_real (type
, real_value_from_int_cst (type
, i
));
2149 TREE_OVERFLOW (v
) |= overflow
;
2153 /* Return a newly constructed STRING_CST node whose value is
2154 the LEN characters at STR.
2155 Note that for a C string literal, LEN should include the trailing NUL.
2156 The TREE_TYPE is not initialized. */
2159 build_string (int len
, const char *str
)
2164 /* Do not waste bytes provided by padding of struct tree_string. */
2165 length
= len
+ offsetof (struct tree_string
, str
) + 1;
2167 record_node_allocation_statistics (STRING_CST
, length
);
2169 s
= (tree
) ggc_internal_alloc (length
);
2171 memset (s
, 0, sizeof (struct tree_typed
));
2172 TREE_SET_CODE (s
, STRING_CST
);
2173 TREE_CONSTANT (s
) = 1;
2174 TREE_STRING_LENGTH (s
) = len
;
2175 memcpy (s
->string
.str
, str
, len
);
2176 s
->string
.str
[len
] = '\0';
2181 /* Return a newly constructed COMPLEX_CST node whose value is
2182 specified by the real and imaginary parts REAL and IMAG.
2183 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2184 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2187 build_complex (tree type
, tree real
, tree imag
)
2189 tree t
= make_node (COMPLEX_CST
);
2191 TREE_REALPART (t
) = real
;
2192 TREE_IMAGPART (t
) = imag
;
2193 TREE_TYPE (t
) = type
? type
: build_complex_type (TREE_TYPE (real
));
2194 TREE_OVERFLOW (t
) = TREE_OVERFLOW (real
) | TREE_OVERFLOW (imag
);
2198 /* Build a complex (inf +- 0i), such as for the result of cproj.
2199 TYPE is the complex tree type of the result. If NEG is true, the
2200 imaginary zero is negative. */
2203 build_complex_inf (tree type
, bool neg
)
2205 REAL_VALUE_TYPE rinf
, rzero
= dconst0
;
2209 return build_complex (type
, build_real (TREE_TYPE (type
), rinf
),
2210 build_real (TREE_TYPE (type
), rzero
));
2213 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2214 element is set to 1. In particular, this is 1 + i for complex types. */
2217 build_each_one_cst (tree type
)
2219 if (TREE_CODE (type
) == COMPLEX_TYPE
)
2221 tree scalar
= build_one_cst (TREE_TYPE (type
));
2222 return build_complex (type
, scalar
, scalar
);
2225 return build_one_cst (type
);
2228 /* Return a constant of arithmetic type TYPE which is the
2229 multiplicative identity of the set TYPE. */
2232 build_one_cst (tree type
)
2234 switch (TREE_CODE (type
))
2236 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2237 case POINTER_TYPE
: case REFERENCE_TYPE
:
2239 return build_int_cst (type
, 1);
2242 return build_real (type
, dconst1
);
2244 case FIXED_POINT_TYPE
:
2245 /* We can only generate 1 for accum types. */
2246 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type
)));
2247 return build_fixed (type
, FCONST1 (TYPE_MODE (type
)));
2251 tree scalar
= build_one_cst (TREE_TYPE (type
));
2253 return build_vector_from_val (type
, scalar
);
2257 return build_complex (type
,
2258 build_one_cst (TREE_TYPE (type
)),
2259 build_zero_cst (TREE_TYPE (type
)));
2266 /* Return an integer of type TYPE containing all 1's in as much precision as
2267 it contains, or a complex or vector whose subparts are such integers. */
2270 build_all_ones_cst (tree type
)
2272 if (TREE_CODE (type
) == COMPLEX_TYPE
)
2274 tree scalar
= build_all_ones_cst (TREE_TYPE (type
));
2275 return build_complex (type
, scalar
, scalar
);
2278 return build_minus_one_cst (type
);
2281 /* Return a constant of arithmetic type TYPE which is the
2282 opposite of the multiplicative identity of the set TYPE. */
2285 build_minus_one_cst (tree type
)
2287 switch (TREE_CODE (type
))
2289 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2290 case POINTER_TYPE
: case REFERENCE_TYPE
:
2292 return build_int_cst (type
, -1);
2295 return build_real (type
, dconstm1
);
2297 case FIXED_POINT_TYPE
:
2298 /* We can only generate 1 for accum types. */
2299 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type
)));
2300 return build_fixed (type
,
2301 fixed_from_double_int (double_int_minus_one
,
2302 SCALAR_TYPE_MODE (type
)));
2306 tree scalar
= build_minus_one_cst (TREE_TYPE (type
));
2308 return build_vector_from_val (type
, scalar
);
2312 return build_complex (type
,
2313 build_minus_one_cst (TREE_TYPE (type
)),
2314 build_zero_cst (TREE_TYPE (type
)));
2321 /* Build 0 constant of type TYPE. This is used by constructor folding
2322 and thus the constant should be represented in memory by
2326 build_zero_cst (tree type
)
2328 switch (TREE_CODE (type
))
2330 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2331 case POINTER_TYPE
: case REFERENCE_TYPE
:
2332 case OFFSET_TYPE
: case NULLPTR_TYPE
:
2333 return build_int_cst (type
, 0);
2336 return build_real (type
, dconst0
);
2338 case FIXED_POINT_TYPE
:
2339 return build_fixed (type
, FCONST0 (TYPE_MODE (type
)));
2343 tree scalar
= build_zero_cst (TREE_TYPE (type
));
2345 return build_vector_from_val (type
, scalar
);
2350 tree zero
= build_zero_cst (TREE_TYPE (type
));
2352 return build_complex (type
, zero
, zero
);
2356 if (!AGGREGATE_TYPE_P (type
))
2357 return fold_convert (type
, integer_zero_node
);
2358 return build_constructor (type
, NULL
);
2363 /* Build a BINFO with LEN language slots. */
2366 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL
)
2369 size_t length
= (offsetof (struct tree_binfo
, base_binfos
)
2370 + vec
<tree
, va_gc
>::embedded_size (base_binfos
));
2372 record_node_allocation_statistics (TREE_BINFO
, length
);
2374 t
= ggc_alloc_tree_node_stat (length PASS_MEM_STAT
);
2376 memset (t
, 0, offsetof (struct tree_binfo
, base_binfos
));
2378 TREE_SET_CODE (t
, TREE_BINFO
);
2380 BINFO_BASE_BINFOS (t
)->embedded_init (base_binfos
);
2385 /* Create a CASE_LABEL_EXPR tree node and return it. */
2388 build_case_label (tree low_value
, tree high_value
, tree label_decl
)
2390 tree t
= make_node (CASE_LABEL_EXPR
);
2392 TREE_TYPE (t
) = void_type_node
;
2393 SET_EXPR_LOCATION (t
, DECL_SOURCE_LOCATION (label_decl
));
2395 CASE_LOW (t
) = low_value
;
2396 CASE_HIGH (t
) = high_value
;
2397 CASE_LABEL (t
) = label_decl
;
2398 CASE_CHAIN (t
) = NULL_TREE
;
2403 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2404 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2405 The latter determines the length of the HOST_WIDE_INT vector. */
2408 make_int_cst (int len
, int ext_len MEM_STAT_DECL
)
2411 int length
= ((ext_len
- 1) * sizeof (HOST_WIDE_INT
)
2412 + sizeof (struct tree_int_cst
));
2415 record_node_allocation_statistics (INTEGER_CST
, length
);
2417 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
2419 TREE_SET_CODE (t
, INTEGER_CST
);
2420 TREE_INT_CST_NUNITS (t
) = len
;
2421 TREE_INT_CST_EXT_NUNITS (t
) = ext_len
;
2422 /* to_offset can only be applied to trees that are offset_int-sized
2423 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2424 must be exactly the precision of offset_int and so LEN is correct. */
2425 if (ext_len
<= OFFSET_INT_ELTS
)
2426 TREE_INT_CST_OFFSET_NUNITS (t
) = ext_len
;
2428 TREE_INT_CST_OFFSET_NUNITS (t
) = len
;
2430 TREE_CONSTANT (t
) = 1;
2435 /* Build a newly constructed TREE_VEC node of length LEN. */
2438 make_tree_vec (int len MEM_STAT_DECL
)
2441 size_t length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
2443 record_node_allocation_statistics (TREE_VEC
, length
);
2445 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
2447 TREE_SET_CODE (t
, TREE_VEC
);
2448 TREE_VEC_LENGTH (t
) = len
;
2453 /* Grow a TREE_VEC node to new length LEN. */
2456 grow_tree_vec (tree v
, int len MEM_STAT_DECL
)
2458 gcc_assert (TREE_CODE (v
) == TREE_VEC
);
2460 int oldlen
= TREE_VEC_LENGTH (v
);
2461 gcc_assert (len
> oldlen
);
2463 size_t oldlength
= (oldlen
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
2464 size_t length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
2466 record_node_allocation_statistics (TREE_VEC
, length
- oldlength
);
2468 v
= (tree
) ggc_realloc (v
, length PASS_MEM_STAT
);
2470 TREE_VEC_LENGTH (v
) = len
;
2475 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2476 fixed, and scalar, complex or vector. */
2479 zerop (const_tree expr
)
2481 return (integer_zerop (expr
)
2482 || real_zerop (expr
)
2483 || fixed_zerop (expr
));
2486 /* Return 1 if EXPR is the integer constant zero or a complex constant
2490 integer_zerop (const_tree expr
)
2492 switch (TREE_CODE (expr
))
2495 return wi::to_wide (expr
) == 0;
2497 return (integer_zerop (TREE_REALPART (expr
))
2498 && integer_zerop (TREE_IMAGPART (expr
)));
2500 return (VECTOR_CST_NPATTERNS (expr
) == 1
2501 && VECTOR_CST_DUPLICATE_P (expr
)
2502 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2508 /* Return 1 if EXPR is the integer constant one or the corresponding
2509 complex constant. */
2512 integer_onep (const_tree expr
)
2514 switch (TREE_CODE (expr
))
2517 return wi::eq_p (wi::to_widest (expr
), 1);
2519 return (integer_onep (TREE_REALPART (expr
))
2520 && integer_zerop (TREE_IMAGPART (expr
)));
2522 return (VECTOR_CST_NPATTERNS (expr
) == 1
2523 && VECTOR_CST_DUPLICATE_P (expr
)
2524 && integer_onep (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2530 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2531 return 1 if every piece is the integer constant one. */
2534 integer_each_onep (const_tree expr
)
2536 if (TREE_CODE (expr
) == COMPLEX_CST
)
2537 return (integer_onep (TREE_REALPART (expr
))
2538 && integer_onep (TREE_IMAGPART (expr
)));
2540 return integer_onep (expr
);
2543 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2544 it contains, or a complex or vector whose subparts are such integers. */
2547 integer_all_onesp (const_tree expr
)
2549 if (TREE_CODE (expr
) == COMPLEX_CST
2550 && integer_all_onesp (TREE_REALPART (expr
))
2551 && integer_all_onesp (TREE_IMAGPART (expr
)))
2554 else if (TREE_CODE (expr
) == VECTOR_CST
)
2555 return (VECTOR_CST_NPATTERNS (expr
) == 1
2556 && VECTOR_CST_DUPLICATE_P (expr
)
2557 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2559 else if (TREE_CODE (expr
) != INTEGER_CST
)
2562 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr
)), UNSIGNED
)
2563 == wi::to_wide (expr
));
2566 /* Return 1 if EXPR is the integer constant minus one. */
2569 integer_minus_onep (const_tree expr
)
2571 if (TREE_CODE (expr
) == COMPLEX_CST
)
2572 return (integer_all_onesp (TREE_REALPART (expr
))
2573 && integer_zerop (TREE_IMAGPART (expr
)));
2575 return integer_all_onesp (expr
);
2578 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2582 integer_pow2p (const_tree expr
)
2584 if (TREE_CODE (expr
) == COMPLEX_CST
2585 && integer_pow2p (TREE_REALPART (expr
))
2586 && integer_zerop (TREE_IMAGPART (expr
)))
2589 if (TREE_CODE (expr
) != INTEGER_CST
)
2592 return wi::popcount (wi::to_wide (expr
)) == 1;
2595 /* Return 1 if EXPR is an integer constant other than zero or a
2596 complex constant other than zero. */
2599 integer_nonzerop (const_tree expr
)
2601 return ((TREE_CODE (expr
) == INTEGER_CST
2602 && wi::to_wide (expr
) != 0)
2603 || (TREE_CODE (expr
) == COMPLEX_CST
2604 && (integer_nonzerop (TREE_REALPART (expr
))
2605 || integer_nonzerop (TREE_IMAGPART (expr
)))));
2608 /* Return 1 if EXPR is the integer constant one. For vector,
2609 return 1 if every piece is the integer constant minus one
2610 (representing the value TRUE). */
2613 integer_truep (const_tree expr
)
2615 if (TREE_CODE (expr
) == VECTOR_CST
)
2616 return integer_all_onesp (expr
);
2617 return integer_onep (expr
);
2620 /* Return 1 if EXPR is the fixed-point constant zero. */
2623 fixed_zerop (const_tree expr
)
2625 return (TREE_CODE (expr
) == FIXED_CST
2626 && TREE_FIXED_CST (expr
).data
.is_zero ());
2629 /* Return the power of two represented by a tree node known to be a
2633 tree_log2 (const_tree expr
)
2635 if (TREE_CODE (expr
) == COMPLEX_CST
)
2636 return tree_log2 (TREE_REALPART (expr
));
2638 return wi::exact_log2 (wi::to_wide (expr
));
2641 /* Similar, but return the largest integer Y such that 2 ** Y is less
2642 than or equal to EXPR. */
2645 tree_floor_log2 (const_tree expr
)
2647 if (TREE_CODE (expr
) == COMPLEX_CST
)
2648 return tree_log2 (TREE_REALPART (expr
));
2650 return wi::floor_log2 (wi::to_wide (expr
));
2653 /* Return number of known trailing zero bits in EXPR, or, if the value of
2654 EXPR is known to be zero, the precision of it's type. */
2657 tree_ctz (const_tree expr
)
2659 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
2660 && !POINTER_TYPE_P (TREE_TYPE (expr
)))
2663 unsigned int ret1
, ret2
, prec
= TYPE_PRECISION (TREE_TYPE (expr
));
2664 switch (TREE_CODE (expr
))
2667 ret1
= wi::ctz (wi::to_wide (expr
));
2668 return MIN (ret1
, prec
);
2670 ret1
= wi::ctz (get_nonzero_bits (expr
));
2671 return MIN (ret1
, prec
);
2678 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2681 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2682 return MIN (ret1
, ret2
);
2683 case POINTER_PLUS_EXPR
:
2684 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2685 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2686 /* Second operand is sizetype, which could be in theory
2687 wider than pointer's precision. Make sure we never
2688 return more than prec. */
2689 ret2
= MIN (ret2
, prec
);
2690 return MIN (ret1
, ret2
);
2692 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2693 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2694 return MAX (ret1
, ret2
);
2696 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2697 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2698 return MIN (ret1
+ ret2
, prec
);
2700 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2701 if (tree_fits_uhwi_p (TREE_OPERAND (expr
, 1))
2702 && (tree_to_uhwi (TREE_OPERAND (expr
, 1)) < prec
))
2704 ret2
= tree_to_uhwi (TREE_OPERAND (expr
, 1));
2705 return MIN (ret1
+ ret2
, prec
);
2709 if (tree_fits_uhwi_p (TREE_OPERAND (expr
, 1))
2710 && (tree_to_uhwi (TREE_OPERAND (expr
, 1)) < prec
))
2712 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2713 ret2
= tree_to_uhwi (TREE_OPERAND (expr
, 1));
2718 case TRUNC_DIV_EXPR
:
2720 case FLOOR_DIV_EXPR
:
2721 case ROUND_DIV_EXPR
:
2722 case EXACT_DIV_EXPR
:
2723 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
2724 && tree_int_cst_sgn (TREE_OPERAND (expr
, 1)) == 1)
2726 int l
= tree_log2 (TREE_OPERAND (expr
, 1));
2729 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2737 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2738 if (ret1
&& ret1
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2740 return MIN (ret1
, prec
);
2742 return tree_ctz (TREE_OPERAND (expr
, 0));
2744 ret1
= tree_ctz (TREE_OPERAND (expr
, 1));
2747 ret2
= tree_ctz (TREE_OPERAND (expr
, 2));
2748 return MIN (ret1
, ret2
);
2750 return tree_ctz (TREE_OPERAND (expr
, 1));
2752 ret1
= get_pointer_alignment (CONST_CAST_TREE (expr
));
2753 if (ret1
> BITS_PER_UNIT
)
2755 ret1
= ctz_hwi (ret1
/ BITS_PER_UNIT
);
2756 return MIN (ret1
, prec
);
2764 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2765 decimal float constants, so don't return 1 for them. */
2768 real_zerop (const_tree expr
)
2770 switch (TREE_CODE (expr
))
2773 return real_equal (&TREE_REAL_CST (expr
), &dconst0
)
2774 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr
))));
2776 return real_zerop (TREE_REALPART (expr
))
2777 && real_zerop (TREE_IMAGPART (expr
));
2780 /* Don't simply check for a duplicate because the predicate
2781 accepts both +0.0 and -0.0. */
2782 unsigned count
= vector_cst_encoded_nelts (expr
);
2783 for (unsigned int i
= 0; i
< count
; ++i
)
2784 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr
, i
)))
2793 /* Return 1 if EXPR is the real constant one in real or complex form.
2794 Trailing zeroes matter for decimal float constants, so don't return
2798 real_onep (const_tree expr
)
2800 switch (TREE_CODE (expr
))
2803 return real_equal (&TREE_REAL_CST (expr
), &dconst1
)
2804 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr
))));
2806 return real_onep (TREE_REALPART (expr
))
2807 && real_zerop (TREE_IMAGPART (expr
));
2809 return (VECTOR_CST_NPATTERNS (expr
) == 1
2810 && VECTOR_CST_DUPLICATE_P (expr
)
2811 && real_onep (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2817 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2818 matter for decimal float constants, so don't return 1 for them. */
2821 real_minus_onep (const_tree expr
)
2823 switch (TREE_CODE (expr
))
2826 return real_equal (&TREE_REAL_CST (expr
), &dconstm1
)
2827 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr
))));
2829 return real_minus_onep (TREE_REALPART (expr
))
2830 && real_zerop (TREE_IMAGPART (expr
));
2832 return (VECTOR_CST_NPATTERNS (expr
) == 1
2833 && VECTOR_CST_DUPLICATE_P (expr
)
2834 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2840 /* Nonzero if EXP is a constant or a cast of a constant. */
2843 really_constant_p (const_tree exp
)
2845 /* This is not quite the same as STRIP_NOPS. It does more. */
2846 while (CONVERT_EXPR_P (exp
)
2847 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
2848 exp
= TREE_OPERAND (exp
, 0);
2849 return TREE_CONSTANT (exp
);
2852 /* Return true if T holds a polynomial pointer difference, storing it in
2853 *VALUE if so. A true return means that T's precision is no greater
2854 than 64 bits, which is the largest address space we support, so *VALUE
2855 never loses precision. However, the signedness of the result does
2856 not necessarily match the signedness of T: sometimes an unsigned type
2857 like sizetype is used to encode a value that is actually negative. */
2860 ptrdiff_tree_p (const_tree t
, poly_int64_pod
*value
)
2864 if (TREE_CODE (t
) == INTEGER_CST
)
2866 if (!cst_and_fits_in_hwi (t
))
2868 *value
= int_cst_value (t
);
2871 if (POLY_INT_CST_P (t
))
2873 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2874 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t
, i
)))
2876 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2877 value
->coeffs
[i
] = int_cst_value (POLY_INT_CST_COEFF (t
, i
));
2884 tree_to_poly_int64 (const_tree t
)
2886 gcc_assert (tree_fits_poly_int64_p (t
));
2887 if (POLY_INT_CST_P (t
))
2888 return poly_int_cst_value (t
).force_shwi ();
2889 return TREE_INT_CST_LOW (t
);
2893 tree_to_poly_uint64 (const_tree t
)
2895 gcc_assert (tree_fits_poly_uint64_p (t
));
2896 if (POLY_INT_CST_P (t
))
2897 return poly_int_cst_value (t
).force_uhwi ();
2898 return TREE_INT_CST_LOW (t
);
2901 /* Return first list element whose TREE_VALUE is ELEM.
2902 Return 0 if ELEM is not in LIST. */
2905 value_member (tree elem
, tree list
)
2909 if (elem
== TREE_VALUE (list
))
2911 list
= TREE_CHAIN (list
);
2916 /* Return first list element whose TREE_PURPOSE is ELEM.
2917 Return 0 if ELEM is not in LIST. */
2920 purpose_member (const_tree elem
, tree list
)
2924 if (elem
== TREE_PURPOSE (list
))
2926 list
= TREE_CHAIN (list
);
2931 /* Return true if ELEM is in V. */
2934 vec_member (const_tree elem
, vec
<tree
, va_gc
> *v
)
2938 FOR_EACH_VEC_SAFE_ELT (v
, ix
, t
)
2944 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2948 chain_index (int idx
, tree chain
)
2950 for (; chain
&& idx
> 0; --idx
)
2951 chain
= TREE_CHAIN (chain
);
2955 /* Return nonzero if ELEM is part of the chain CHAIN. */
2958 chain_member (const_tree elem
, const_tree chain
)
2964 chain
= DECL_CHAIN (chain
);
2970 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2971 We expect a null pointer to mark the end of the chain.
2972 This is the Lisp primitive `length'. */
2975 list_length (const_tree t
)
2978 #ifdef ENABLE_TREE_CHECKING
2986 #ifdef ENABLE_TREE_CHECKING
2989 gcc_assert (p
!= q
);
2997 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2998 UNION_TYPE TYPE, or NULL_TREE if none. */
3001 first_field (const_tree type
)
3003 tree t
= TYPE_FIELDS (type
);
3004 while (t
&& TREE_CODE (t
) != FIELD_DECL
)
3009 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3010 by modifying the last node in chain 1 to point to chain 2.
3011 This is the Lisp primitive `nconc'. */
3014 chainon (tree op1
, tree op2
)
3023 for (t1
= op1
; TREE_CHAIN (t1
); t1
= TREE_CHAIN (t1
))
3025 TREE_CHAIN (t1
) = op2
;
3027 #ifdef ENABLE_TREE_CHECKING
3030 for (t2
= op2
; t2
; t2
= TREE_CHAIN (t2
))
3031 gcc_assert (t2
!= t1
);
3038 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3041 tree_last (tree chain
)
3045 while ((next
= TREE_CHAIN (chain
)))
3050 /* Reverse the order of elements in the chain T,
3051 and return the new head of the chain (old last element). */
3056 tree prev
= 0, decl
, next
;
3057 for (decl
= t
; decl
; decl
= next
)
3059 /* We shouldn't be using this function to reverse BLOCK chains; we
3060 have blocks_nreverse for that. */
3061 gcc_checking_assert (TREE_CODE (decl
) != BLOCK
);
3062 next
= TREE_CHAIN (decl
);
3063 TREE_CHAIN (decl
) = prev
;
3069 /* Return a newly created TREE_LIST node whose
3070 purpose and value fields are PARM and VALUE. */
3073 build_tree_list (tree parm
, tree value MEM_STAT_DECL
)
3075 tree t
= make_node (TREE_LIST PASS_MEM_STAT
);
3076 TREE_PURPOSE (t
) = parm
;
3077 TREE_VALUE (t
) = value
;
3081 /* Build a chain of TREE_LIST nodes from a vector. */
3084 build_tree_list_vec (const vec
<tree
, va_gc
> *vec MEM_STAT_DECL
)
3086 tree ret
= NULL_TREE
;
3090 FOR_EACH_VEC_SAFE_ELT (vec
, i
, t
)
3092 *pp
= build_tree_list (NULL
, t PASS_MEM_STAT
);
3093 pp
= &TREE_CHAIN (*pp
);
3098 /* Return a newly created TREE_LIST node whose
3099 purpose and value fields are PURPOSE and VALUE
3100 and whose TREE_CHAIN is CHAIN. */
3103 tree_cons (tree purpose
, tree value
, tree chain MEM_STAT_DECL
)
3107 node
= ggc_alloc_tree_node_stat (sizeof (struct tree_list
) PASS_MEM_STAT
);
3108 memset (node
, 0, sizeof (struct tree_common
));
3110 record_node_allocation_statistics (TREE_LIST
, sizeof (struct tree_list
));
3112 TREE_SET_CODE (node
, TREE_LIST
);
3113 TREE_CHAIN (node
) = chain
;
3114 TREE_PURPOSE (node
) = purpose
;
3115 TREE_VALUE (node
) = value
;
3119 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3123 ctor_to_vec (tree ctor
)
3125 vec
<tree
, va_gc
> *vec
;
3126 vec_alloc (vec
, CONSTRUCTOR_NELTS (ctor
));
3130 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor
), ix
, val
)
3131 vec
->quick_push (val
);
3136 /* Return the size nominally occupied by an object of type TYPE
3137 when it resides in memory. The value is measured in units of bytes,
3138 and its data type is that normally used for type sizes
3139 (which is the first type created by make_signed_type or
3140 make_unsigned_type). */
3143 size_in_bytes_loc (location_t loc
, const_tree type
)
3147 if (type
== error_mark_node
)
3148 return integer_zero_node
;
3150 type
= TYPE_MAIN_VARIANT (type
);
3151 t
= TYPE_SIZE_UNIT (type
);
3155 lang_hooks
.types
.incomplete_type_error (loc
, NULL_TREE
, type
);
3156 return size_zero_node
;
3162 /* Return the size of TYPE (in bytes) as a wide integer
3163 or return -1 if the size can vary or is larger than an integer. */
3166 int_size_in_bytes (const_tree type
)
3170 if (type
== error_mark_node
)
3173 type
= TYPE_MAIN_VARIANT (type
);
3174 t
= TYPE_SIZE_UNIT (type
);
3176 if (t
&& tree_fits_uhwi_p (t
))
3177 return TREE_INT_CST_LOW (t
);
3182 /* Return the maximum size of TYPE (in bytes) as a wide integer
3183 or return -1 if the size can vary or is larger than an integer. */
3186 max_int_size_in_bytes (const_tree type
)
3188 HOST_WIDE_INT size
= -1;
3191 /* If this is an array type, check for a possible MAX_SIZE attached. */
3193 if (TREE_CODE (type
) == ARRAY_TYPE
)
3195 size_tree
= TYPE_ARRAY_MAX_SIZE (type
);
3197 if (size_tree
&& tree_fits_uhwi_p (size_tree
))
3198 size
= tree_to_uhwi (size_tree
);
3201 /* If we still haven't been able to get a size, see if the language
3202 can compute a maximum size. */
3206 size_tree
= lang_hooks
.types
.max_size (type
);
3208 if (size_tree
&& tree_fits_uhwi_p (size_tree
))
3209 size
= tree_to_uhwi (size_tree
);
3215 /* Return the bit position of FIELD, in bits from the start of the record.
3216 This is a tree of type bitsizetype. */
3219 bit_position (const_tree field
)
3221 return bit_from_pos (DECL_FIELD_OFFSET (field
),
3222 DECL_FIELD_BIT_OFFSET (field
));
3225 /* Return the byte position of FIELD, in bytes from the start of the record.
3226 This is a tree of type sizetype. */
3229 byte_position (const_tree field
)
3231 return byte_from_pos (DECL_FIELD_OFFSET (field
),
3232 DECL_FIELD_BIT_OFFSET (field
));
3235 /* Likewise, but return as an integer. It must be representable in
3236 that way (since it could be a signed value, we don't have the
3237 option of returning -1 like int_size_in_byte can. */
3240 int_byte_position (const_tree field
)
3242 return tree_to_shwi (byte_position (field
));
3245 /* Return the strictest alignment, in bits, that T is known to have. */
3248 expr_align (const_tree t
)
3250 unsigned int align0
, align1
;
3252 switch (TREE_CODE (t
))
3254 CASE_CONVERT
: case NON_LVALUE_EXPR
:
3255 /* If we have conversions, we know that the alignment of the
3256 object must meet each of the alignments of the types. */
3257 align0
= expr_align (TREE_OPERAND (t
, 0));
3258 align1
= TYPE_ALIGN (TREE_TYPE (t
));
3259 return MAX (align0
, align1
);
3261 case SAVE_EXPR
: case COMPOUND_EXPR
: case MODIFY_EXPR
:
3262 case INIT_EXPR
: case TARGET_EXPR
: case WITH_CLEANUP_EXPR
:
3263 case CLEANUP_POINT_EXPR
:
3264 /* These don't change the alignment of an object. */
3265 return expr_align (TREE_OPERAND (t
, 0));
3268 /* The best we can do is say that the alignment is the least aligned
3270 align0
= expr_align (TREE_OPERAND (t
, 1));
3271 align1
= expr_align (TREE_OPERAND (t
, 2));
3272 return MIN (align0
, align1
);
3274 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3275 meaningfully, it's always 1. */
3276 case LABEL_DECL
: case CONST_DECL
:
3277 case VAR_DECL
: case PARM_DECL
: case RESULT_DECL
:
3279 gcc_assert (DECL_ALIGN (t
) != 0);
3280 return DECL_ALIGN (t
);
3286 /* Otherwise take the alignment from that of the type. */
3287 return TYPE_ALIGN (TREE_TYPE (t
));
3290 /* Return, as a tree node, the number of elements for TYPE (which is an
3291 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3294 array_type_nelts (const_tree type
)
3296 tree index_type
, min
, max
;
3298 /* If they did it with unspecified bounds, then we should have already
3299 given an error about it before we got here. */
3300 if (! TYPE_DOMAIN (type
))
3301 return error_mark_node
;
3303 index_type
= TYPE_DOMAIN (type
);
3304 min
= TYPE_MIN_VALUE (index_type
);
3305 max
= TYPE_MAX_VALUE (index_type
);
3307 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3309 return error_mark_node
;
3311 return (integer_zerop (min
)
3313 : fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
, min
));
3316 /* If arg is static -- a reference to an object in static storage -- then
3317 return the object. This is not the same as the C meaning of `static'.
3318 If arg isn't static, return NULL. */
3323 switch (TREE_CODE (arg
))
3326 /* Nested functions are static, even though taking their address will
3327 involve a trampoline as we unnest the nested function and create
3328 the trampoline on the tree level. */
3332 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
3333 && ! DECL_THREAD_LOCAL_P (arg
)
3334 && ! DECL_DLLIMPORT_P (arg
)
3338 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
3342 return TREE_STATIC (arg
) ? arg
: NULL
;
3349 /* If the thing being referenced is not a field, then it is
3350 something language specific. */
3351 gcc_assert (TREE_CODE (TREE_OPERAND (arg
, 1)) == FIELD_DECL
);
3353 /* If we are referencing a bitfield, we can't evaluate an
3354 ADDR_EXPR at compile time and so it isn't a constant. */
3355 if (DECL_BIT_FIELD (TREE_OPERAND (arg
, 1)))
3358 return staticp (TREE_OPERAND (arg
, 0));
3364 return TREE_CONSTANT (TREE_OPERAND (arg
, 0)) ? arg
: NULL
;
3367 case ARRAY_RANGE_REF
:
3368 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg
))) == INTEGER_CST
3369 && TREE_CODE (TREE_OPERAND (arg
, 1)) == INTEGER_CST
)
3370 return staticp (TREE_OPERAND (arg
, 0));
3374 case COMPOUND_LITERAL_EXPR
:
3375 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg
)) ? arg
: NULL
;
3385 /* Return whether OP is a DECL whose address is function-invariant. */
3388 decl_address_invariant_p (const_tree op
)
3390 /* The conditions below are slightly less strict than the one in
3393 switch (TREE_CODE (op
))
3402 if ((TREE_STATIC (op
) || DECL_EXTERNAL (op
))
3403 || DECL_THREAD_LOCAL_P (op
)
3404 || DECL_CONTEXT (op
) == current_function_decl
3405 || decl_function_context (op
) == current_function_decl
)
3410 if ((TREE_STATIC (op
) || DECL_EXTERNAL (op
))
3411 || decl_function_context (op
) == current_function_decl
)
3422 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3425 decl_address_ip_invariant_p (const_tree op
)
3427 /* The conditions below are slightly less strict than the one in
3430 switch (TREE_CODE (op
))
3438 if (((TREE_STATIC (op
) || DECL_EXTERNAL (op
))
3439 && !DECL_DLLIMPORT_P (op
))
3440 || DECL_THREAD_LOCAL_P (op
))
3445 if ((TREE_STATIC (op
) || DECL_EXTERNAL (op
)))
3457 /* Return true if T is function-invariant (internal function, does
3458 not handle arithmetic; that's handled in skip_simple_arithmetic and
3459 tree_invariant_p). */
3462 tree_invariant_p_1 (tree t
)
3466 if (TREE_CONSTANT (t
)
3467 || (TREE_READONLY (t
) && !TREE_SIDE_EFFECTS (t
)))
3470 switch (TREE_CODE (t
))
3476 op
= TREE_OPERAND (t
, 0);
3477 while (handled_component_p (op
))
3479 switch (TREE_CODE (op
))
3482 case ARRAY_RANGE_REF
:
3483 if (!tree_invariant_p (TREE_OPERAND (op
, 1))
3484 || TREE_OPERAND (op
, 2) != NULL_TREE
3485 || TREE_OPERAND (op
, 3) != NULL_TREE
)
3490 if (TREE_OPERAND (op
, 2) != NULL_TREE
)
3496 op
= TREE_OPERAND (op
, 0);
3499 return CONSTANT_CLASS_P (op
) || decl_address_invariant_p (op
);
3508 /* Return true if T is function-invariant. */
3511 tree_invariant_p (tree t
)
3513 tree inner
= skip_simple_arithmetic (t
);
3514 return tree_invariant_p_1 (inner
);
3517 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3518 Do this to any expression which may be used in more than one place,
3519 but must be evaluated only once.
3521 Normally, expand_expr would reevaluate the expression each time.
3522 Calling save_expr produces something that is evaluated and recorded
3523 the first time expand_expr is called on it. Subsequent calls to
3524 expand_expr just reuse the recorded value.
3526 The call to expand_expr that generates code that actually computes
3527 the value is the first call *at compile time*. Subsequent calls
3528 *at compile time* generate code to use the saved value.
3529 This produces correct result provided that *at run time* control
3530 always flows through the insns made by the first expand_expr
3531 before reaching the other places where the save_expr was evaluated.
3532 You, the caller of save_expr, must make sure this is so.
3534 Constants, and certain read-only nodes, are returned with no
3535 SAVE_EXPR because that is safe. Expressions containing placeholders
3536 are not touched; see tree.def for an explanation of what these
3540 save_expr (tree expr
)
3544 /* If the tree evaluates to a constant, then we don't want to hide that
3545 fact (i.e. this allows further folding, and direct checks for constants).
3546 However, a read-only object that has side effects cannot be bypassed.
3547 Since it is no problem to reevaluate literals, we just return the
3549 inner
= skip_simple_arithmetic (expr
);
3550 if (TREE_CODE (inner
) == ERROR_MARK
)
3553 if (tree_invariant_p_1 (inner
))
3556 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3557 it means that the size or offset of some field of an object depends on
3558 the value within another field.
3560 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3561 and some variable since it would then need to be both evaluated once and
3562 evaluated more than once. Front-ends must assure this case cannot
3563 happen by surrounding any such subexpressions in their own SAVE_EXPR
3564 and forcing evaluation at the proper time. */
3565 if (contains_placeholder_p (inner
))
3568 expr
= build1_loc (EXPR_LOCATION (expr
), SAVE_EXPR
, TREE_TYPE (expr
), expr
);
3570 /* This expression might be placed ahead of a jump to ensure that the
3571 value was computed on both sides of the jump. So make sure it isn't
3572 eliminated as dead. */
3573 TREE_SIDE_EFFECTS (expr
) = 1;
3577 /* Look inside EXPR into any simple arithmetic operations. Return the
3578 outermost non-arithmetic or non-invariant node. */
3581 skip_simple_arithmetic (tree expr
)
3583 /* We don't care about whether this can be used as an lvalue in this
3585 while (TREE_CODE (expr
) == NON_LVALUE_EXPR
)
3586 expr
= TREE_OPERAND (expr
, 0);
3588 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3589 a constant, it will be more efficient to not make another SAVE_EXPR since
3590 it will allow better simplification and GCSE will be able to merge the
3591 computations if they actually occur. */
3594 if (UNARY_CLASS_P (expr
))
3595 expr
= TREE_OPERAND (expr
, 0);
3596 else if (BINARY_CLASS_P (expr
))
3598 if (tree_invariant_p (TREE_OPERAND (expr
, 1)))
3599 expr
= TREE_OPERAND (expr
, 0);
3600 else if (tree_invariant_p (TREE_OPERAND (expr
, 0)))
3601 expr
= TREE_OPERAND (expr
, 1);
3612 /* Look inside EXPR into simple arithmetic operations involving constants.
3613 Return the outermost non-arithmetic or non-constant node. */
3616 skip_simple_constant_arithmetic (tree expr
)
3618 while (TREE_CODE (expr
) == NON_LVALUE_EXPR
)
3619 expr
= TREE_OPERAND (expr
, 0);
3623 if (UNARY_CLASS_P (expr
))
3624 expr
= TREE_OPERAND (expr
, 0);
3625 else if (BINARY_CLASS_P (expr
))
3627 if (TREE_CONSTANT (TREE_OPERAND (expr
, 1)))
3628 expr
= TREE_OPERAND (expr
, 0);
3629 else if (TREE_CONSTANT (TREE_OPERAND (expr
, 0)))
3630 expr
= TREE_OPERAND (expr
, 1);
3641 /* Return which tree structure is used by T. */
3643 enum tree_node_structure_enum
3644 tree_node_structure (const_tree t
)
3646 const enum tree_code code
= TREE_CODE (t
);
3647 return tree_node_structure_for_code (code
);
3650 /* Set various status flags when building a CALL_EXPR object T. */
3653 process_call_operands (tree t
)
3655 bool side_effects
= TREE_SIDE_EFFECTS (t
);
3656 bool read_only
= false;
3657 int i
= call_expr_flags (t
);
3659 /* Calls have side-effects, except those to const or pure functions. */
3660 if ((i
& ECF_LOOPING_CONST_OR_PURE
) || !(i
& (ECF_CONST
| ECF_PURE
)))
3661 side_effects
= true;
3662 /* Propagate TREE_READONLY of arguments for const functions. */
3666 if (!side_effects
|| read_only
)
3667 for (i
= 1; i
< TREE_OPERAND_LENGTH (t
); i
++)
3669 tree op
= TREE_OPERAND (t
, i
);
3670 if (op
&& TREE_SIDE_EFFECTS (op
))
3671 side_effects
= true;
3672 if (op
&& !TREE_READONLY (op
) && !CONSTANT_CLASS_P (op
))
3676 TREE_SIDE_EFFECTS (t
) = side_effects
;
3677 TREE_READONLY (t
) = read_only
;
3680 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3681 size or offset that depends on a field within a record. */
3684 contains_placeholder_p (const_tree exp
)
3686 enum tree_code code
;
3691 code
= TREE_CODE (exp
);
3692 if (code
== PLACEHOLDER_EXPR
)
3695 switch (TREE_CODE_CLASS (code
))
3698 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3699 position computations since they will be converted into a
3700 WITH_RECORD_EXPR involving the reference, which will assume
3701 here will be valid. */
3702 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
3704 case tcc_exceptional
:
3705 if (code
== TREE_LIST
)
3706 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp
))
3707 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp
)));
3712 case tcc_comparison
:
3713 case tcc_expression
:
3717 /* Ignoring the first operand isn't quite right, but works best. */
3718 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
3721 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
3722 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1))
3723 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 2)));
3726 /* The save_expr function never wraps anything containing
3727 a PLACEHOLDER_EXPR. */
3734 switch (TREE_CODE_LENGTH (code
))
3737 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
3739 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
3740 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1)));
3751 const_call_expr_arg_iterator iter
;
3752 FOR_EACH_CONST_CALL_EXPR_ARG (arg
, iter
, exp
)
3753 if (CONTAINS_PLACEHOLDER_P (arg
))
3767 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3768 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3772 type_contains_placeholder_1 (const_tree type
)
3774 /* If the size contains a placeholder or the parent type (component type in
3775 the case of arrays) type involves a placeholder, this type does. */
3776 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type
))
3777 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type
))
3778 || (!POINTER_TYPE_P (type
)
3780 && type_contains_placeholder_p (TREE_TYPE (type
))))
3783 /* Now do type-specific checks. Note that the last part of the check above
3784 greatly limits what we have to do below. */
3785 switch (TREE_CODE (type
))
3793 case REFERENCE_TYPE
:
3802 case FIXED_POINT_TYPE
:
3803 /* Here we just check the bounds. */
3804 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type
))
3805 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type
)));
3808 /* We have already checked the component type above, so just check
3809 the domain type. Flexible array members have a null domain. */
3810 return TYPE_DOMAIN (type
) ?
3811 type_contains_placeholder_p (TYPE_DOMAIN (type
)) : false;
3815 case QUAL_UNION_TYPE
:
3819 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
3820 if (TREE_CODE (field
) == FIELD_DECL
3821 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field
))
3822 || (TREE_CODE (type
) == QUAL_UNION_TYPE
3823 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field
)))
3824 || type_contains_placeholder_p (TREE_TYPE (field
))))
3835 /* Wrapper around above function used to cache its result. */
3838 type_contains_placeholder_p (tree type
)
3842 /* If the contains_placeholder_bits field has been initialized,
3843 then we know the answer. */
3844 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) > 0)
3845 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) - 1;
3847 /* Indicate that we've seen this type node, and the answer is false.
3848 This is what we want to return if we run into recursion via fields. */
3849 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) = 1;
3851 /* Compute the real value. */
3852 result
= type_contains_placeholder_1 (type
);
3854 /* Store the real value. */
3855 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) = result
+ 1;
3860 /* Push tree EXP onto vector QUEUE if it is not already present. */
3863 push_without_duplicates (tree exp
, vec
<tree
> *queue
)
3868 FOR_EACH_VEC_ELT (*queue
, i
, iter
)
3869 if (simple_cst_equal (iter
, exp
) == 1)
3873 queue
->safe_push (exp
);
3876 /* Given a tree EXP, find all occurrences of references to fields
3877 in a PLACEHOLDER_EXPR and place them in vector REFS without
3878 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3879 we assume here that EXP contains only arithmetic expressions
3880 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3884 find_placeholder_in_expr (tree exp
, vec
<tree
> *refs
)
3886 enum tree_code code
= TREE_CODE (exp
);
3890 /* We handle TREE_LIST and COMPONENT_REF separately. */
3891 if (code
== TREE_LIST
)
3893 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp
), refs
);
3894 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp
), refs
);
3896 else if (code
== COMPONENT_REF
)
3898 for (inner
= TREE_OPERAND (exp
, 0);
3899 REFERENCE_CLASS_P (inner
);
3900 inner
= TREE_OPERAND (inner
, 0))
3903 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
3904 push_without_duplicates (exp
, refs
);
3906 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), refs
);
3909 switch (TREE_CODE_CLASS (code
))
3914 case tcc_declaration
:
3915 /* Variables allocated to static storage can stay. */
3916 if (!TREE_STATIC (exp
))
3917 push_without_duplicates (exp
, refs
);
3920 case tcc_expression
:
3921 /* This is the pattern built in ada/make_aligning_type. */
3922 if (code
== ADDR_EXPR
3923 && TREE_CODE (TREE_OPERAND (exp
, 0)) == PLACEHOLDER_EXPR
)
3925 push_without_duplicates (exp
, refs
);
3931 case tcc_exceptional
:
3934 case tcc_comparison
:
3936 for (i
= 0; i
< TREE_CODE_LENGTH (code
); i
++)
3937 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, i
), refs
);
3941 for (i
= 1; i
< TREE_OPERAND_LENGTH (exp
); i
++)
3942 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, i
), refs
);
3950 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3951 return a tree with all occurrences of references to F in a
3952 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3953 CONST_DECLs. Note that we assume here that EXP contains only
3954 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3955 occurring only in their argument list. */
3958 substitute_in_expr (tree exp
, tree f
, tree r
)
3960 enum tree_code code
= TREE_CODE (exp
);
3961 tree op0
, op1
, op2
, op3
;
3964 /* We handle TREE_LIST and COMPONENT_REF separately. */
3965 if (code
== TREE_LIST
)
3967 op0
= SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp
), f
, r
);
3968 op1
= SUBSTITUTE_IN_EXPR (TREE_VALUE (exp
), f
, r
);
3969 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
3972 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
3974 else if (code
== COMPONENT_REF
)
3978 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3979 and it is the right field, replace it with R. */
3980 for (inner
= TREE_OPERAND (exp
, 0);
3981 REFERENCE_CLASS_P (inner
);
3982 inner
= TREE_OPERAND (inner
, 0))
3986 op1
= TREE_OPERAND (exp
, 1);
3988 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
&& op1
== f
)
3991 /* If this expression hasn't been completed let, leave it alone. */
3992 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
&& !TREE_TYPE (inner
))
3995 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
3996 if (op0
== TREE_OPERAND (exp
, 0))
4000 = fold_build3 (COMPONENT_REF
, TREE_TYPE (exp
), op0
, op1
, NULL_TREE
);
4003 switch (TREE_CODE_CLASS (code
))
4008 case tcc_declaration
:
4014 case tcc_expression
:
4020 case tcc_exceptional
:
4023 case tcc_comparison
:
4025 switch (TREE_CODE_LENGTH (code
))
4031 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4032 if (op0
== TREE_OPERAND (exp
, 0))
4035 new_tree
= fold_build1 (code
, TREE_TYPE (exp
), op0
);
4039 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4040 op1
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 1), f
, r
);
4042 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
4045 new_tree
= fold_build2 (code
, TREE_TYPE (exp
), op0
, op1
);
4049 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4050 op1
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 1), f
, r
);
4051 op2
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 2), f
, r
);
4053 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4054 && op2
== TREE_OPERAND (exp
, 2))
4057 new_tree
= fold_build3 (code
, TREE_TYPE (exp
), op0
, op1
, op2
);
4061 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4062 op1
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 1), f
, r
);
4063 op2
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 2), f
, r
);
4064 op3
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 3), f
, r
);
4066 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4067 && op2
== TREE_OPERAND (exp
, 2)
4068 && op3
== TREE_OPERAND (exp
, 3))
4072 = fold (build4 (code
, TREE_TYPE (exp
), op0
, op1
, op2
, op3
));
4084 new_tree
= NULL_TREE
;
4086 /* If we are trying to replace F with a constant or with another
4087 instance of one of the arguments of the call, inline back
4088 functions which do nothing else than computing a value from
4089 the arguments they are passed. This makes it possible to
4090 fold partially or entirely the replacement expression. */
4091 if (code
== CALL_EXPR
)
4093 bool maybe_inline
= false;
4094 if (CONSTANT_CLASS_P (r
))
4095 maybe_inline
= true;
4097 for (i
= 3; i
< TREE_OPERAND_LENGTH (exp
); i
++)
4098 if (operand_equal_p (TREE_OPERAND (exp
, i
), r
, 0))
4100 maybe_inline
= true;
4105 tree t
= maybe_inline_call_in_expr (exp
);
4107 return SUBSTITUTE_IN_EXPR (t
, f
, r
);
4111 for (i
= 1; i
< TREE_OPERAND_LENGTH (exp
); i
++)
4113 tree op
= TREE_OPERAND (exp
, i
);
4114 tree new_op
= SUBSTITUTE_IN_EXPR (op
, f
, r
);
4118 new_tree
= copy_node (exp
);
4119 TREE_OPERAND (new_tree
, i
) = new_op
;
4125 new_tree
= fold (new_tree
);
4126 if (TREE_CODE (new_tree
) == CALL_EXPR
)
4127 process_call_operands (new_tree
);
4138 TREE_READONLY (new_tree
) |= TREE_READONLY (exp
);
4140 if (code
== INDIRECT_REF
|| code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
4141 TREE_THIS_NOTRAP (new_tree
) |= TREE_THIS_NOTRAP (exp
);
4146 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4147 for it within OBJ, a tree that is an object or a chain of references. */
4150 substitute_placeholder_in_expr (tree exp
, tree obj
)
4152 enum tree_code code
= TREE_CODE (exp
);
4153 tree op0
, op1
, op2
, op3
;
4156 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4157 in the chain of OBJ. */
4158 if (code
== PLACEHOLDER_EXPR
)
4160 tree need_type
= TYPE_MAIN_VARIANT (TREE_TYPE (exp
));
4163 for (elt
= obj
; elt
!= 0;
4164 elt
= ((TREE_CODE (elt
) == COMPOUND_EXPR
4165 || TREE_CODE (elt
) == COND_EXPR
)
4166 ? TREE_OPERAND (elt
, 1)
4167 : (REFERENCE_CLASS_P (elt
)
4168 || UNARY_CLASS_P (elt
)
4169 || BINARY_CLASS_P (elt
)
4170 || VL_EXP_CLASS_P (elt
)
4171 || EXPRESSION_CLASS_P (elt
))
4172 ? TREE_OPERAND (elt
, 0) : 0))
4173 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt
)) == need_type
)
4176 for (elt
= obj
; elt
!= 0;
4177 elt
= ((TREE_CODE (elt
) == COMPOUND_EXPR
4178 || TREE_CODE (elt
) == COND_EXPR
)
4179 ? TREE_OPERAND (elt
, 1)
4180 : (REFERENCE_CLASS_P (elt
)
4181 || UNARY_CLASS_P (elt
)
4182 || BINARY_CLASS_P (elt
)
4183 || VL_EXP_CLASS_P (elt
)
4184 || EXPRESSION_CLASS_P (elt
))
4185 ? TREE_OPERAND (elt
, 0) : 0))
4186 if (POINTER_TYPE_P (TREE_TYPE (elt
))
4187 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt
)))
4189 return fold_build1 (INDIRECT_REF
, need_type
, elt
);
4191 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4192 survives until RTL generation, there will be an error. */
4196 /* TREE_LIST is special because we need to look at TREE_VALUE
4197 and TREE_CHAIN, not TREE_OPERANDS. */
4198 else if (code
== TREE_LIST
)
4200 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp
), obj
);
4201 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp
), obj
);
4202 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
4205 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
4208 switch (TREE_CODE_CLASS (code
))
4211 case tcc_declaration
:
4214 case tcc_exceptional
:
4217 case tcc_comparison
:
4218 case tcc_expression
:
4221 switch (TREE_CODE_LENGTH (code
))
4227 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4228 if (op0
== TREE_OPERAND (exp
, 0))
4231 new_tree
= fold_build1 (code
, TREE_TYPE (exp
), op0
);
4235 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4236 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 1), obj
);
4238 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
4241 new_tree
= fold_build2 (code
, TREE_TYPE (exp
), op0
, op1
);
4245 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4246 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 1), obj
);
4247 op2
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 2), obj
);
4249 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4250 && op2
== TREE_OPERAND (exp
, 2))
4253 new_tree
= fold_build3 (code
, TREE_TYPE (exp
), op0
, op1
, op2
);
4257 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4258 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 1), obj
);
4259 op2
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 2), obj
);
4260 op3
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 3), obj
);
4262 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4263 && op2
== TREE_OPERAND (exp
, 2)
4264 && op3
== TREE_OPERAND (exp
, 3))
4268 = fold (build4 (code
, TREE_TYPE (exp
), op0
, op1
, op2
, op3
));
4280 new_tree
= NULL_TREE
;
4282 for (i
= 1; i
< TREE_OPERAND_LENGTH (exp
); i
++)
4284 tree op
= TREE_OPERAND (exp
, i
);
4285 tree new_op
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (op
, obj
);
4289 new_tree
= copy_node (exp
);
4290 TREE_OPERAND (new_tree
, i
) = new_op
;
4296 new_tree
= fold (new_tree
);
4297 if (TREE_CODE (new_tree
) == CALL_EXPR
)
4298 process_call_operands (new_tree
);
4309 TREE_READONLY (new_tree
) |= TREE_READONLY (exp
);
4311 if (code
== INDIRECT_REF
|| code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
4312 TREE_THIS_NOTRAP (new_tree
) |= TREE_THIS_NOTRAP (exp
);
4318 /* Subroutine of stabilize_reference; this is called for subtrees of
4319 references. Any expression with side-effects must be put in a SAVE_EXPR
4320 to ensure that it is only evaluated once.
4322 We don't put SAVE_EXPR nodes around everything, because assigning very
4323 simple expressions to temporaries causes us to miss good opportunities
4324 for optimizations. Among other things, the opportunity to fold in the
4325 addition of a constant into an addressing mode often gets lost, e.g.
4326 "y[i+1] += x;". In general, we take the approach that we should not make
4327 an assignment unless we are forced into it - i.e., that any non-side effect
4328 operator should be allowed, and that cse should take care of coalescing
4329 multiple utterances of the same expression should that prove fruitful. */
4332 stabilize_reference_1 (tree e
)
4335 enum tree_code code
= TREE_CODE (e
);
4337 /* We cannot ignore const expressions because it might be a reference
4338 to a const array but whose index contains side-effects. But we can
4339 ignore things that are actual constant or that already have been
4340 handled by this function. */
4342 if (tree_invariant_p (e
))
4345 switch (TREE_CODE_CLASS (code
))
4347 case tcc_exceptional
:
4348 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4349 have side-effects. */
4350 if (code
== STATEMENT_LIST
)
4351 return save_expr (e
);
4354 case tcc_declaration
:
4355 case tcc_comparison
:
4357 case tcc_expression
:
4360 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4361 so that it will only be evaluated once. */
4362 /* The reference (r) and comparison (<) classes could be handled as
4363 below, but it is generally faster to only evaluate them once. */
4364 if (TREE_SIDE_EFFECTS (e
))
4365 return save_expr (e
);
4369 /* Constants need no processing. In fact, we should never reach
4374 /* Division is slow and tends to be compiled with jumps,
4375 especially the division by powers of 2 that is often
4376 found inside of an array reference. So do it just once. */
4377 if (code
== TRUNC_DIV_EXPR
|| code
== TRUNC_MOD_EXPR
4378 || code
== FLOOR_DIV_EXPR
|| code
== FLOOR_MOD_EXPR
4379 || code
== CEIL_DIV_EXPR
|| code
== CEIL_MOD_EXPR
4380 || code
== ROUND_DIV_EXPR
|| code
== ROUND_MOD_EXPR
)
4381 return save_expr (e
);
4382 /* Recursively stabilize each operand. */
4383 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)),
4384 stabilize_reference_1 (TREE_OPERAND (e
, 1)));
4388 /* Recursively stabilize each operand. */
4389 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)));
4396 TREE_TYPE (result
) = TREE_TYPE (e
);
4397 TREE_READONLY (result
) = TREE_READONLY (e
);
4398 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (e
);
4399 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (e
);
4404 /* Stabilize a reference so that we can use it any number of times
4405 without causing its operands to be evaluated more than once.
4406 Returns the stabilized reference. This works by means of save_expr,
4407 so see the caveats in the comments about save_expr.
4409 Also allows conversion expressions whose operands are references.
4410 Any other kind of expression is returned unchanged. */
4413 stabilize_reference (tree ref
)
4416 enum tree_code code
= TREE_CODE (ref
);
4423 /* No action is needed in this case. */
4428 case FIX_TRUNC_EXPR
:
4429 result
= build_nt (code
, stabilize_reference (TREE_OPERAND (ref
, 0)));
4433 result
= build_nt (INDIRECT_REF
,
4434 stabilize_reference_1 (TREE_OPERAND (ref
, 0)));
4438 result
= build_nt (COMPONENT_REF
,
4439 stabilize_reference (TREE_OPERAND (ref
, 0)),
4440 TREE_OPERAND (ref
, 1), NULL_TREE
);
4444 result
= build_nt (BIT_FIELD_REF
,
4445 stabilize_reference (TREE_OPERAND (ref
, 0)),
4446 TREE_OPERAND (ref
, 1), TREE_OPERAND (ref
, 2));
4447 REF_REVERSE_STORAGE_ORDER (result
) = REF_REVERSE_STORAGE_ORDER (ref
);
4451 result
= build_nt (ARRAY_REF
,
4452 stabilize_reference (TREE_OPERAND (ref
, 0)),
4453 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
4454 TREE_OPERAND (ref
, 2), TREE_OPERAND (ref
, 3));
4457 case ARRAY_RANGE_REF
:
4458 result
= build_nt (ARRAY_RANGE_REF
,
4459 stabilize_reference (TREE_OPERAND (ref
, 0)),
4460 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
4461 TREE_OPERAND (ref
, 2), TREE_OPERAND (ref
, 3));
4465 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4466 it wouldn't be ignored. This matters when dealing with
4468 return stabilize_reference_1 (ref
);
4470 /* If arg isn't a kind of lvalue we recognize, make no change.
4471 Caller should recognize the error for an invalid lvalue. */
4476 return error_mark_node
;
4479 TREE_TYPE (result
) = TREE_TYPE (ref
);
4480 TREE_READONLY (result
) = TREE_READONLY (ref
);
4481 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (ref
);
4482 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (ref
);
4487 /* Low-level constructors for expressions. */
4489 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4490 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4493 recompute_tree_invariant_for_addr_expr (tree t
)
4496 bool tc
= true, se
= false;
4498 gcc_assert (TREE_CODE (t
) == ADDR_EXPR
);
4500 /* We started out assuming this address is both invariant and constant, but
4501 does not have side effects. Now go down any handled components and see if
4502 any of them involve offsets that are either non-constant or non-invariant.
4503 Also check for side-effects.
4505 ??? Note that this code makes no attempt to deal with the case where
4506 taking the address of something causes a copy due to misalignment. */
4508 #define UPDATE_FLAGS(NODE) \
4509 do { tree _node = (NODE); \
4510 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4511 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4513 for (node
= TREE_OPERAND (t
, 0); handled_component_p (node
);
4514 node
= TREE_OPERAND (node
, 0))
4516 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4517 array reference (probably made temporarily by the G++ front end),
4518 so ignore all the operands. */
4519 if ((TREE_CODE (node
) == ARRAY_REF
4520 || TREE_CODE (node
) == ARRAY_RANGE_REF
)
4521 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node
, 0))) == ARRAY_TYPE
)
4523 UPDATE_FLAGS (TREE_OPERAND (node
, 1));
4524 if (TREE_OPERAND (node
, 2))
4525 UPDATE_FLAGS (TREE_OPERAND (node
, 2));
4526 if (TREE_OPERAND (node
, 3))
4527 UPDATE_FLAGS (TREE_OPERAND (node
, 3));
4529 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4530 FIELD_DECL, apparently. The G++ front end can put something else
4531 there, at least temporarily. */
4532 else if (TREE_CODE (node
) == COMPONENT_REF
4533 && TREE_CODE (TREE_OPERAND (node
, 1)) == FIELD_DECL
)
4535 if (TREE_OPERAND (node
, 2))
4536 UPDATE_FLAGS (TREE_OPERAND (node
, 2));
4540 node
= lang_hooks
.expr_to_decl (node
, &tc
, &se
);
4542 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4543 the address, since &(*a)->b is a form of addition. If it's a constant, the
4544 address is constant too. If it's a decl, its address is constant if the
4545 decl is static. Everything else is not constant and, furthermore,
4546 taking the address of a volatile variable is not volatile. */
4547 if (TREE_CODE (node
) == INDIRECT_REF
4548 || TREE_CODE (node
) == MEM_REF
)
4549 UPDATE_FLAGS (TREE_OPERAND (node
, 0));
4550 else if (CONSTANT_CLASS_P (node
))
4552 else if (DECL_P (node
))
4553 tc
&= (staticp (node
) != NULL_TREE
);
4557 se
|= TREE_SIDE_EFFECTS (node
);
4561 TREE_CONSTANT (t
) = tc
;
4562 TREE_SIDE_EFFECTS (t
) = se
;
4566 /* Build an expression of code CODE, data type TYPE, and operands as
4567 specified. Expressions and reference nodes can be created this way.
4568 Constants, decls, types and misc nodes cannot be.
4570 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4571 enough for all extant tree codes. */
4574 build0 (enum tree_code code
, tree tt MEM_STAT_DECL
)
4578 gcc_assert (TREE_CODE_LENGTH (code
) == 0);
4580 t
= make_node (code PASS_MEM_STAT
);
4587 build1 (enum tree_code code
, tree type
, tree node MEM_STAT_DECL
)
4589 int length
= sizeof (struct tree_exp
);
4592 record_node_allocation_statistics (code
, length
);
4594 gcc_assert (TREE_CODE_LENGTH (code
) == 1);
4596 t
= ggc_alloc_tree_node_stat (length PASS_MEM_STAT
);
4598 memset (t
, 0, sizeof (struct tree_common
));
4600 TREE_SET_CODE (t
, code
);
4602 TREE_TYPE (t
) = type
;
4603 SET_EXPR_LOCATION (t
, UNKNOWN_LOCATION
);
4604 TREE_OPERAND (t
, 0) = node
;
4605 if (node
&& !TYPE_P (node
))
4607 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (node
);
4608 TREE_READONLY (t
) = TREE_READONLY (node
);
4611 if (TREE_CODE_CLASS (code
) == tcc_statement
)
4613 if (code
!= DEBUG_BEGIN_STMT
)
4614 TREE_SIDE_EFFECTS (t
) = 1;
4619 /* All of these have side-effects, no matter what their
4621 TREE_SIDE_EFFECTS (t
) = 1;
4622 TREE_READONLY (t
) = 0;
4626 /* Whether a dereference is readonly has nothing to do with whether
4627 its operand is readonly. */
4628 TREE_READONLY (t
) = 0;
4633 recompute_tree_invariant_for_addr_expr (t
);
4637 if ((TREE_CODE_CLASS (code
) == tcc_unary
|| code
== VIEW_CONVERT_EXPR
)
4638 && node
&& !TYPE_P (node
)
4639 && TREE_CONSTANT (node
))
4640 TREE_CONSTANT (t
) = 1;
4641 if (TREE_CODE_CLASS (code
) == tcc_reference
4642 && node
&& TREE_THIS_VOLATILE (node
))
4643 TREE_THIS_VOLATILE (t
) = 1;
4650 #define PROCESS_ARG(N) \
4652 TREE_OPERAND (t, N) = arg##N; \
4653 if (arg##N &&!TYPE_P (arg##N)) \
4655 if (TREE_SIDE_EFFECTS (arg##N)) \
4657 if (!TREE_READONLY (arg##N) \
4658 && !CONSTANT_CLASS_P (arg##N)) \
4659 (void) (read_only = 0); \
4660 if (!TREE_CONSTANT (arg##N)) \
4661 (void) (constant = 0); \
4666 build2 (enum tree_code code
, tree tt
, tree arg0
, tree arg1 MEM_STAT_DECL
)
4668 bool constant
, read_only
, side_effects
, div_by_zero
;
4671 gcc_assert (TREE_CODE_LENGTH (code
) == 2);
4673 if ((code
== MINUS_EXPR
|| code
== PLUS_EXPR
|| code
== MULT_EXPR
)
4674 && arg0
&& arg1
&& tt
&& POINTER_TYPE_P (tt
)
4675 /* When sizetype precision doesn't match that of pointers
4676 we need to be able to build explicit extensions or truncations
4677 of the offset argument. */
4678 && TYPE_PRECISION (sizetype
) == TYPE_PRECISION (tt
))
4679 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
4680 && TREE_CODE (arg1
) == INTEGER_CST
);
4682 if (code
== POINTER_PLUS_EXPR
&& arg0
&& arg1
&& tt
)
4683 gcc_assert (POINTER_TYPE_P (tt
) && POINTER_TYPE_P (TREE_TYPE (arg0
))
4684 && ptrofftype_p (TREE_TYPE (arg1
)));
4686 t
= make_node (code PASS_MEM_STAT
);
4689 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4690 result based on those same flags for the arguments. But if the
4691 arguments aren't really even `tree' expressions, we shouldn't be trying
4694 /* Expressions without side effects may be constant if their
4695 arguments are as well. */
4696 constant
= (TREE_CODE_CLASS (code
) == tcc_comparison
4697 || TREE_CODE_CLASS (code
) == tcc_binary
);
4699 side_effects
= TREE_SIDE_EFFECTS (t
);
4703 case TRUNC_DIV_EXPR
:
4705 case FLOOR_DIV_EXPR
:
4706 case ROUND_DIV_EXPR
:
4707 case EXACT_DIV_EXPR
:
4709 case FLOOR_MOD_EXPR
:
4710 case ROUND_MOD_EXPR
:
4711 case TRUNC_MOD_EXPR
:
4712 div_by_zero
= integer_zerop (arg1
);
4715 div_by_zero
= false;
4721 TREE_SIDE_EFFECTS (t
) = side_effects
;
4722 if (code
== MEM_REF
)
4724 if (arg0
&& TREE_CODE (arg0
) == ADDR_EXPR
)
4726 tree o
= TREE_OPERAND (arg0
, 0);
4727 TREE_READONLY (t
) = TREE_READONLY (o
);
4728 TREE_THIS_VOLATILE (t
) = TREE_THIS_VOLATILE (o
);
4733 TREE_READONLY (t
) = read_only
;
4734 /* Don't mark X / 0 as constant. */
4735 TREE_CONSTANT (t
) = constant
&& !div_by_zero
;
4736 TREE_THIS_VOLATILE (t
)
4737 = (TREE_CODE_CLASS (code
) == tcc_reference
4738 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4746 build3 (enum tree_code code
, tree tt
, tree arg0
, tree arg1
,
4747 tree arg2 MEM_STAT_DECL
)
4749 bool constant
, read_only
, side_effects
;
4752 gcc_assert (TREE_CODE_LENGTH (code
) == 3);
4753 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
4755 t
= make_node (code PASS_MEM_STAT
);
4760 /* As a special exception, if COND_EXPR has NULL branches, we
4761 assume that it is a gimple statement and always consider
4762 it to have side effects. */
4763 if (code
== COND_EXPR
4764 && tt
== void_type_node
4765 && arg1
== NULL_TREE
4766 && arg2
== NULL_TREE
)
4767 side_effects
= true;
4769 side_effects
= TREE_SIDE_EFFECTS (t
);
4775 if (code
== COND_EXPR
)
4776 TREE_READONLY (t
) = read_only
;
4778 TREE_SIDE_EFFECTS (t
) = side_effects
;
4779 TREE_THIS_VOLATILE (t
)
4780 = (TREE_CODE_CLASS (code
) == tcc_reference
4781 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4787 build4 (enum tree_code code
, tree tt
, tree arg0
, tree arg1
,
4788 tree arg2
, tree arg3 MEM_STAT_DECL
)
4790 bool constant
, read_only
, side_effects
;
4793 gcc_assert (TREE_CODE_LENGTH (code
) == 4);
4795 t
= make_node (code PASS_MEM_STAT
);
4798 side_effects
= TREE_SIDE_EFFECTS (t
);
4805 TREE_SIDE_EFFECTS (t
) = side_effects
;
4806 TREE_THIS_VOLATILE (t
)
4807 = (TREE_CODE_CLASS (code
) == tcc_reference
4808 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4814 build5 (enum tree_code code
, tree tt
, tree arg0
, tree arg1
,
4815 tree arg2
, tree arg3
, tree arg4 MEM_STAT_DECL
)
4817 bool constant
, read_only
, side_effects
;
4820 gcc_assert (TREE_CODE_LENGTH (code
) == 5);
4822 t
= make_node (code PASS_MEM_STAT
);
4825 side_effects
= TREE_SIDE_EFFECTS (t
);
4833 TREE_SIDE_EFFECTS (t
) = side_effects
;
4834 if (code
== TARGET_MEM_REF
)
4836 if (arg0
&& TREE_CODE (arg0
) == ADDR_EXPR
)
4838 tree o
= TREE_OPERAND (arg0
, 0);
4839 TREE_READONLY (t
) = TREE_READONLY (o
);
4840 TREE_THIS_VOLATILE (t
) = TREE_THIS_VOLATILE (o
);
4844 TREE_THIS_VOLATILE (t
)
4845 = (TREE_CODE_CLASS (code
) == tcc_reference
4846 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4851 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4852 on the pointer PTR. */
4855 build_simple_mem_ref_loc (location_t loc
, tree ptr
)
4857 poly_int64 offset
= 0;
4858 tree ptype
= TREE_TYPE (ptr
);
4860 /* For convenience allow addresses that collapse to a simple base
4862 if (TREE_CODE (ptr
) == ADDR_EXPR
4863 && (handled_component_p (TREE_OPERAND (ptr
, 0))
4864 || TREE_CODE (TREE_OPERAND (ptr
, 0)) == MEM_REF
))
4866 ptr
= get_addr_base_and_unit_offset (TREE_OPERAND (ptr
, 0), &offset
);
4868 if (TREE_CODE (ptr
) == MEM_REF
)
4870 offset
+= mem_ref_offset (ptr
).force_shwi ();
4871 ptr
= TREE_OPERAND (ptr
, 0);
4874 ptr
= build_fold_addr_expr (ptr
);
4875 gcc_assert (is_gimple_reg (ptr
) || is_gimple_min_invariant (ptr
));
4877 tem
= build2 (MEM_REF
, TREE_TYPE (ptype
),
4878 ptr
, build_int_cst (ptype
, offset
));
4879 SET_EXPR_LOCATION (tem
, loc
);
4883 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4886 mem_ref_offset (const_tree t
)
4888 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t
, 1)),
4892 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4893 offsetted by OFFSET units. */
4896 build_invariant_address (tree type
, tree base
, poly_int64 offset
)
4898 tree ref
= fold_build2 (MEM_REF
, TREE_TYPE (type
),
4899 build_fold_addr_expr (base
),
4900 build_int_cst (ptr_type_node
, offset
));
4901 tree addr
= build1 (ADDR_EXPR
, type
, ref
);
4902 recompute_tree_invariant_for_addr_expr (addr
);
4906 /* Similar except don't specify the TREE_TYPE
4907 and leave the TREE_SIDE_EFFECTS as 0.
4908 It is permissible for arguments to be null,
4909 or even garbage if their values do not matter. */
4912 build_nt (enum tree_code code
, ...)
4919 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
4923 t
= make_node (code
);
4924 length
= TREE_CODE_LENGTH (code
);
4926 for (i
= 0; i
< length
; i
++)
4927 TREE_OPERAND (t
, i
) = va_arg (p
, tree
);
4933 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4937 build_nt_call_vec (tree fn
, vec
<tree
, va_gc
> *args
)
4942 ret
= build_vl_exp (CALL_EXPR
, vec_safe_length (args
) + 3);
4943 CALL_EXPR_FN (ret
) = fn
;
4944 CALL_EXPR_STATIC_CHAIN (ret
) = NULL_TREE
;
4945 FOR_EACH_VEC_SAFE_ELT (args
, ix
, t
)
4946 CALL_EXPR_ARG (ret
, ix
) = t
;
4950 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4951 We do NOT enter this node in any sort of symbol table.
4953 LOC is the location of the decl.
4955 layout_decl is used to set up the decl's storage layout.
4956 Other slots are initialized to 0 or null pointers. */
4959 build_decl (location_t loc
, enum tree_code code
, tree name
,
4960 tree type MEM_STAT_DECL
)
4964 t
= make_node (code PASS_MEM_STAT
);
4965 DECL_SOURCE_LOCATION (t
) = loc
;
4967 /* if (type == error_mark_node)
4968 type = integer_type_node; */
4969 /* That is not done, deliberately, so that having error_mark_node
4970 as the type can suppress useless errors in the use of this variable. */
4972 DECL_NAME (t
) = name
;
4973 TREE_TYPE (t
) = type
;
4975 if (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
)
4981 /* Builds and returns function declaration with NAME and TYPE. */
4984 build_fn_decl (const char *name
, tree type
)
4986 tree id
= get_identifier (name
);
4987 tree decl
= build_decl (input_location
, FUNCTION_DECL
, id
, type
);
4989 DECL_EXTERNAL (decl
) = 1;
4990 TREE_PUBLIC (decl
) = 1;
4991 DECL_ARTIFICIAL (decl
) = 1;
4992 TREE_NOTHROW (decl
) = 1;
4997 vec
<tree
, va_gc
> *all_translation_units
;
4999 /* Builds a new translation-unit decl with name NAME, queues it in the
5000 global list of translation-unit decls and returns it. */
5003 build_translation_unit_decl (tree name
)
5005 tree tu
= build_decl (UNKNOWN_LOCATION
, TRANSLATION_UNIT_DECL
,
5007 TRANSLATION_UNIT_LANGUAGE (tu
) = lang_hooks
.name
;
5008 vec_safe_push (all_translation_units
, tu
);
5013 /* BLOCK nodes are used to represent the structure of binding contours
5014 and declarations, once those contours have been exited and their contents
5015 compiled. This information is used for outputting debugging info. */
5018 build_block (tree vars
, tree subblocks
, tree supercontext
, tree chain
)
5020 tree block
= make_node (BLOCK
);
5022 BLOCK_VARS (block
) = vars
;
5023 BLOCK_SUBBLOCKS (block
) = subblocks
;
5024 BLOCK_SUPERCONTEXT (block
) = supercontext
;
5025 BLOCK_CHAIN (block
) = chain
;
5030 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5032 LOC is the location to use in tree T. */
5035 protected_set_expr_location (tree t
, location_t loc
)
5037 if (CAN_HAVE_LOCATION_P (t
))
5038 SET_EXPR_LOCATION (t
, loc
);
5041 /* Reset the expression *EXPR_P, a size or position.
5043 ??? We could reset all non-constant sizes or positions. But it's cheap
5044 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5046 We need to reset self-referential sizes or positions because they cannot
5047 be gimplified and thus can contain a CALL_EXPR after the gimplification
5048 is finished, which will run afoul of LTO streaming. And they need to be
5049 reset to something essentially dummy but not constant, so as to preserve
5050 the properties of the object they are attached to. */
5053 free_lang_data_in_one_sizepos (tree
*expr_p
)
5055 tree expr
= *expr_p
;
5056 if (CONTAINS_PLACEHOLDER_P (expr
))
5057 *expr_p
= build0 (PLACEHOLDER_EXPR
, TREE_TYPE (expr
));
5061 /* Reset all the fields in a binfo node BINFO. We only keep
5062 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5065 free_lang_data_in_binfo (tree binfo
)
5070 gcc_assert (TREE_CODE (binfo
) == TREE_BINFO
);
5072 BINFO_VIRTUALS (binfo
) = NULL_TREE
;
5073 BINFO_BASE_ACCESSES (binfo
) = NULL
;
5074 BINFO_INHERITANCE_CHAIN (binfo
) = NULL_TREE
;
5075 BINFO_SUBVTT_INDEX (binfo
) = NULL_TREE
;
5076 BINFO_VPTR_FIELD (binfo
) = NULL_TREE
;
5078 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo
), i
, t
)
5079 free_lang_data_in_binfo (t
);
5083 /* Reset all language specific information still present in TYPE. */
5086 free_lang_data_in_type (tree type
)
5088 gcc_assert (TYPE_P (type
));
5090 /* Give the FE a chance to remove its own data first. */
5091 lang_hooks
.free_lang_data (type
);
5093 TREE_LANG_FLAG_0 (type
) = 0;
5094 TREE_LANG_FLAG_1 (type
) = 0;
5095 TREE_LANG_FLAG_2 (type
) = 0;
5096 TREE_LANG_FLAG_3 (type
) = 0;
5097 TREE_LANG_FLAG_4 (type
) = 0;
5098 TREE_LANG_FLAG_5 (type
) = 0;
5099 TREE_LANG_FLAG_6 (type
) = 0;
5101 if (TREE_CODE (type
) == FUNCTION_TYPE
)
5103 /* Remove the const and volatile qualifiers from arguments. The
5104 C++ front end removes them, but the C front end does not,
5105 leading to false ODR violation errors when merging two
5106 instances of the same function signature compiled by
5107 different front ends. */
5108 for (tree p
= TYPE_ARG_TYPES (type
); p
; p
= TREE_CHAIN (p
))
5110 tree arg_type
= TREE_VALUE (p
);
5112 if (TYPE_READONLY (arg_type
) || TYPE_VOLATILE (arg_type
))
5114 int quals
= TYPE_QUALS (arg_type
)
5116 & ~TYPE_QUAL_VOLATILE
;
5117 TREE_VALUE (p
) = build_qualified_type (arg_type
, quals
);
5118 free_lang_data_in_type (TREE_VALUE (p
));
5120 /* C++ FE uses TREE_PURPOSE to store initial values. */
5121 TREE_PURPOSE (p
) = NULL
;
5124 else if (TREE_CODE (type
) == METHOD_TYPE
)
5125 for (tree p
= TYPE_ARG_TYPES (type
); p
; p
= TREE_CHAIN (p
))
5126 /* C++ FE uses TREE_PURPOSE to store initial values. */
5127 TREE_PURPOSE (p
) = NULL
;
5128 else if (RECORD_OR_UNION_TYPE_P (type
))
5130 /* Remove members that are not FIELD_DECLs from the field list
5131 of an aggregate. These occur in C++. */
5132 for (tree
*prev
= &TYPE_FIELDS (type
), member
; (member
= *prev
);)
5133 if (TREE_CODE (member
) == FIELD_DECL
)
5134 prev
= &DECL_CHAIN (member
);
5136 *prev
= DECL_CHAIN (member
);
5138 TYPE_VFIELD (type
) = NULL_TREE
;
5140 if (TYPE_BINFO (type
))
5142 free_lang_data_in_binfo (TYPE_BINFO (type
));
5143 /* We need to preserve link to bases and virtual table for all
5144 polymorphic types to make devirtualization machinery working. */
5145 if (!BINFO_VTABLE (TYPE_BINFO (type
))
5146 || !flag_devirtualize
)
5147 TYPE_BINFO (type
) = NULL
;
5150 else if (INTEGRAL_TYPE_P (type
)
5151 || SCALAR_FLOAT_TYPE_P (type
)
5152 || FIXED_POINT_TYPE_P (type
))
5154 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type
));
5155 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type
));
5158 TYPE_LANG_SLOT_1 (type
) = NULL_TREE
;
5160 free_lang_data_in_one_sizepos (&TYPE_SIZE (type
));
5161 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type
));
5163 if (TYPE_CONTEXT (type
)
5164 && TREE_CODE (TYPE_CONTEXT (type
)) == BLOCK
)
5166 tree ctx
= TYPE_CONTEXT (type
);
5169 ctx
= BLOCK_SUPERCONTEXT (ctx
);
5171 while (ctx
&& TREE_CODE (ctx
) == BLOCK
);
5172 TYPE_CONTEXT (type
) = ctx
;
5175 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5176 TYPE_DECL if the type doesn't have linkage. */
5177 if (! type_with_linkage_p (type
))
5179 TYPE_NAME (type
) = TYPE_IDENTIFIER (type
);
5180 TYPE_STUB_DECL (type
) = NULL
;
5185 /* Return true if DECL may need an assembler name to be set. */
5188 need_assembler_name_p (tree decl
)
5190 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5191 Rule merging. This makes type_odr_p to return true on those types during
5192 LTO and by comparing the mangled name, we can say what types are intended
5193 to be equivalent across compilation unit.
5195 We do not store names of type_in_anonymous_namespace_p.
5197 Record, union and enumeration type have linkage that allows use
5198 to check type_in_anonymous_namespace_p. We do not mangle compound types
5199 that always can be compared structurally.
5201 Similarly for builtin types, we compare properties of their main variant.
5202 A special case are integer types where mangling do make differences
5203 between char/signed char/unsigned char etc. Storing name for these makes
5204 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5205 See cp/mangle.c:write_builtin_type for details. */
5207 if (flag_lto_odr_type_mering
5208 && TREE_CODE (decl
) == TYPE_DECL
5210 && decl
== TYPE_NAME (TREE_TYPE (decl
))
5211 && TYPE_MAIN_VARIANT (TREE_TYPE (decl
)) == TREE_TYPE (decl
)
5212 && !TYPE_ARTIFICIAL (TREE_TYPE (decl
))
5213 && (type_with_linkage_p (TREE_TYPE (decl
))
5214 || TREE_CODE (TREE_TYPE (decl
)) == INTEGER_TYPE
)
5215 && !variably_modified_type_p (TREE_TYPE (decl
), NULL_TREE
))
5216 return !DECL_ASSEMBLER_NAME_SET_P (decl
);
5217 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5218 if (!VAR_OR_FUNCTION_DECL_P (decl
))
5221 /* If DECL already has its assembler name set, it does not need a
5223 if (!HAS_DECL_ASSEMBLER_NAME_P (decl
)
5224 || DECL_ASSEMBLER_NAME_SET_P (decl
))
5227 /* Abstract decls do not need an assembler name. */
5228 if (DECL_ABSTRACT_P (decl
))
5231 /* For VAR_DECLs, only static, public and external symbols need an
5234 && !TREE_STATIC (decl
)
5235 && !TREE_PUBLIC (decl
)
5236 && !DECL_EXTERNAL (decl
))
5239 if (TREE_CODE (decl
) == FUNCTION_DECL
)
5241 /* Do not set assembler name on builtins. Allow RTL expansion to
5242 decide whether to expand inline or via a regular call. */
5243 if (DECL_BUILT_IN (decl
)
5244 && DECL_BUILT_IN_CLASS (decl
) != BUILT_IN_FRONTEND
)
5247 /* Functions represented in the callgraph need an assembler name. */
5248 if (cgraph_node::get (decl
) != NULL
)
5251 /* Unused and not public functions don't need an assembler name. */
5252 if (!TREE_USED (decl
) && !TREE_PUBLIC (decl
))
5260 /* Reset all language specific information still present in symbol
5264 free_lang_data_in_decl (tree decl
)
5266 gcc_assert (DECL_P (decl
));
5268 /* Give the FE a chance to remove its own data first. */
5269 lang_hooks
.free_lang_data (decl
);
5271 TREE_LANG_FLAG_0 (decl
) = 0;
5272 TREE_LANG_FLAG_1 (decl
) = 0;
5273 TREE_LANG_FLAG_2 (decl
) = 0;
5274 TREE_LANG_FLAG_3 (decl
) = 0;
5275 TREE_LANG_FLAG_4 (decl
) = 0;
5276 TREE_LANG_FLAG_5 (decl
) = 0;
5277 TREE_LANG_FLAG_6 (decl
) = 0;
5279 free_lang_data_in_one_sizepos (&DECL_SIZE (decl
));
5280 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl
));
5281 if (TREE_CODE (decl
) == FIELD_DECL
)
5283 DECL_FCONTEXT (decl
) = NULL
;
5284 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl
));
5285 if (TREE_CODE (DECL_CONTEXT (decl
)) == QUAL_UNION_TYPE
)
5286 DECL_QUALIFIER (decl
) = NULL_TREE
;
5289 if (TREE_CODE (decl
) == FUNCTION_DECL
)
5291 struct cgraph_node
*node
;
5292 if (!(node
= cgraph_node::get (decl
))
5293 || (!node
->definition
&& !node
->clones
))
5296 node
->release_body ();
5299 release_function_body (decl
);
5300 DECL_ARGUMENTS (decl
) = NULL
;
5301 DECL_RESULT (decl
) = NULL
;
5302 DECL_INITIAL (decl
) = error_mark_node
;
5305 if (gimple_has_body_p (decl
) || (node
&& node
->thunk
.thunk_p
))
5309 /* If DECL has a gimple body, then the context for its
5310 arguments must be DECL. Otherwise, it doesn't really
5311 matter, as we will not be emitting any code for DECL. In
5312 general, there may be other instances of DECL created by
5313 the front end and since PARM_DECLs are generally shared,
5314 their DECL_CONTEXT changes as the replicas of DECL are
5315 created. The only time where DECL_CONTEXT is important
5316 is for the FUNCTION_DECLs that have a gimple body (since
5317 the PARM_DECL will be used in the function's body). */
5318 for (t
= DECL_ARGUMENTS (decl
); t
; t
= TREE_CHAIN (t
))
5319 DECL_CONTEXT (t
) = decl
;
5320 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl
))
5321 DECL_FUNCTION_SPECIFIC_TARGET (decl
)
5322 = target_option_default_node
;
5323 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl
))
5324 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl
)
5325 = optimization_default_node
;
5328 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5329 At this point, it is not needed anymore. */
5330 DECL_SAVED_TREE (decl
) = NULL_TREE
;
5332 /* Clear the abstract origin if it refers to a method.
5333 Otherwise dwarf2out.c will ICE as we splice functions out of
5334 TYPE_FIELDS and thus the origin will not be output
5336 if (DECL_ABSTRACT_ORIGIN (decl
)
5337 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl
))
5338 && RECORD_OR_UNION_TYPE_P
5339 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl
))))
5340 DECL_ABSTRACT_ORIGIN (decl
) = NULL_TREE
;
5342 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5343 DECL_VINDEX referring to itself into a vtable slot number as it
5344 should. Happens with functions that are copied and then forgotten
5345 about. Just clear it, it won't matter anymore. */
5346 if (DECL_VINDEX (decl
) && !tree_fits_shwi_p (DECL_VINDEX (decl
)))
5347 DECL_VINDEX (decl
) = NULL_TREE
;
5349 else if (VAR_P (decl
))
5351 if ((DECL_EXTERNAL (decl
)
5352 && (!TREE_STATIC (decl
) || !TREE_READONLY (decl
)))
5353 || (decl_function_context (decl
) && !TREE_STATIC (decl
)))
5354 DECL_INITIAL (decl
) = NULL_TREE
;
5356 else if (TREE_CODE (decl
) == TYPE_DECL
)
5358 DECL_VISIBILITY (decl
) = VISIBILITY_DEFAULT
;
5359 DECL_VISIBILITY_SPECIFIED (decl
) = 0;
5360 DECL_INITIAL (decl
) = NULL_TREE
;
5361 DECL_ORIGINAL_TYPE (decl
) = NULL_TREE
;
5363 else if (TREE_CODE (decl
) == FIELD_DECL
)
5364 DECL_INITIAL (decl
) = NULL_TREE
;
5365 else if (TREE_CODE (decl
) == TRANSLATION_UNIT_DECL
5366 && DECL_INITIAL (decl
)
5367 && TREE_CODE (DECL_INITIAL (decl
)) == BLOCK
)
5369 /* Strip builtins from the translation-unit BLOCK. We still have targets
5370 without builtin_decl_explicit support and also builtins are shared
5371 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5372 tree
*nextp
= &BLOCK_VARS (DECL_INITIAL (decl
));
5376 if (TREE_CODE (var
) == FUNCTION_DECL
5377 && DECL_BUILT_IN (var
))
5378 *nextp
= TREE_CHAIN (var
);
5380 nextp
= &TREE_CHAIN (var
);
5386 /* Data used when collecting DECLs and TYPEs for language data removal. */
5388 struct free_lang_data_d
5390 free_lang_data_d () : decls (100), types (100) {}
5392 /* Worklist to avoid excessive recursion. */
5393 auto_vec
<tree
> worklist
;
5395 /* Set of traversed objects. Used to avoid duplicate visits. */
5396 hash_set
<tree
> pset
;
5398 /* Array of symbols to process with free_lang_data_in_decl. */
5399 auto_vec
<tree
> decls
;
5401 /* Array of types to process with free_lang_data_in_type. */
5402 auto_vec
<tree
> types
;
5406 /* Add type or decl T to one of the list of tree nodes that need their
5407 language data removed. The lists are held inside FLD. */
5410 add_tree_to_fld_list (tree t
, struct free_lang_data_d
*fld
)
5413 fld
->decls
.safe_push (t
);
5414 else if (TYPE_P (t
))
5415 fld
->types
.safe_push (t
);
5420 /* Push tree node T into FLD->WORKLIST. */
5423 fld_worklist_push (tree t
, struct free_lang_data_d
*fld
)
5425 if (t
&& !is_lang_specific (t
) && !fld
->pset
.contains (t
))
5426 fld
->worklist
.safe_push ((t
));
5430 /* Operand callback helper for free_lang_data_in_node. *TP is the
5431 subtree operand being considered. */
5434 find_decls_types_r (tree
*tp
, int *ws
, void *data
)
5437 struct free_lang_data_d
*fld
= (struct free_lang_data_d
*) data
;
5439 if (TREE_CODE (t
) == TREE_LIST
)
5442 /* Language specific nodes will be removed, so there is no need
5443 to gather anything under them. */
5444 if (is_lang_specific (t
))
5452 /* Note that walk_tree does not traverse every possible field in
5453 decls, so we have to do our own traversals here. */
5454 add_tree_to_fld_list (t
, fld
);
5456 fld_worklist_push (DECL_NAME (t
), fld
);
5457 fld_worklist_push (DECL_CONTEXT (t
), fld
);
5458 fld_worklist_push (DECL_SIZE (t
), fld
);
5459 fld_worklist_push (DECL_SIZE_UNIT (t
), fld
);
5461 /* We are going to remove everything under DECL_INITIAL for
5462 TYPE_DECLs. No point walking them. */
5463 if (TREE_CODE (t
) != TYPE_DECL
)
5464 fld_worklist_push (DECL_INITIAL (t
), fld
);
5466 fld_worklist_push (DECL_ATTRIBUTES (t
), fld
);
5467 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t
), fld
);
5469 if (TREE_CODE (t
) == FUNCTION_DECL
)
5471 fld_worklist_push (DECL_ARGUMENTS (t
), fld
);
5472 fld_worklist_push (DECL_RESULT (t
), fld
);
5474 else if (TREE_CODE (t
) == FIELD_DECL
)
5476 fld_worklist_push (DECL_FIELD_OFFSET (t
), fld
);
5477 fld_worklist_push (DECL_BIT_FIELD_TYPE (t
), fld
);
5478 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t
), fld
);
5479 fld_worklist_push (DECL_FCONTEXT (t
), fld
);
5482 if ((VAR_P (t
) || TREE_CODE (t
) == PARM_DECL
)
5483 && DECL_HAS_VALUE_EXPR_P (t
))
5484 fld_worklist_push (DECL_VALUE_EXPR (t
), fld
);
5486 if (TREE_CODE (t
) != FIELD_DECL
5487 && TREE_CODE (t
) != TYPE_DECL
)
5488 fld_worklist_push (TREE_CHAIN (t
), fld
);
5491 else if (TYPE_P (t
))
5493 /* Note that walk_tree does not traverse every possible field in
5494 types, so we have to do our own traversals here. */
5495 add_tree_to_fld_list (t
, fld
);
5497 if (!RECORD_OR_UNION_TYPE_P (t
))
5498 fld_worklist_push (TYPE_CACHED_VALUES (t
), fld
);
5499 fld_worklist_push (TYPE_SIZE (t
), fld
);
5500 fld_worklist_push (TYPE_SIZE_UNIT (t
), fld
);
5501 fld_worklist_push (TYPE_ATTRIBUTES (t
), fld
);
5502 fld_worklist_push (TYPE_POINTER_TO (t
), fld
);
5503 fld_worklist_push (TYPE_REFERENCE_TO (t
), fld
);
5504 fld_worklist_push (TYPE_NAME (t
), fld
);
5505 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5506 them and thus do not and want not to reach unused pointer types
5508 if (!POINTER_TYPE_P (t
))
5509 fld_worklist_push (TYPE_MIN_VALUE_RAW (t
), fld
);
5510 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5511 if (!RECORD_OR_UNION_TYPE_P (t
))
5512 fld_worklist_push (TYPE_MAX_VALUE_RAW (t
), fld
);
5513 fld_worklist_push (TYPE_MAIN_VARIANT (t
), fld
);
5514 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5515 do not and want not to reach unused variants this way. */
5516 if (TYPE_CONTEXT (t
))
5518 tree ctx
= TYPE_CONTEXT (t
);
5519 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5520 So push that instead. */
5521 while (ctx
&& TREE_CODE (ctx
) == BLOCK
)
5522 ctx
= BLOCK_SUPERCONTEXT (ctx
);
5523 fld_worklist_push (ctx
, fld
);
5525 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5526 and want not to reach unused types this way. */
5528 if (RECORD_OR_UNION_TYPE_P (t
) && TYPE_BINFO (t
))
5532 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t
)), i
, tem
)
5533 fld_worklist_push (TREE_TYPE (tem
), fld
);
5534 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t
)), fld
);
5535 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t
)), fld
);
5537 if (RECORD_OR_UNION_TYPE_P (t
))
5540 /* Push all TYPE_FIELDS - there can be interleaving interesting
5541 and non-interesting things. */
5542 tem
= TYPE_FIELDS (t
);
5545 if (TREE_CODE (tem
) == FIELD_DECL
5546 || (TREE_CODE (tem
) == TYPE_DECL
5547 && !DECL_IGNORED_P (tem
)
5548 && debug_info_level
> DINFO_LEVEL_TERSE
5549 && !is_redundant_typedef (tem
)))
5550 fld_worklist_push (tem
, fld
);
5551 tem
= TREE_CHAIN (tem
);
5554 if (FUNC_OR_METHOD_TYPE_P (t
))
5555 fld_worklist_push (TYPE_METHOD_BASETYPE (t
), fld
);
5557 fld_worklist_push (TYPE_STUB_DECL (t
), fld
);
5560 else if (TREE_CODE (t
) == BLOCK
)
5562 for (tree
*tem
= &BLOCK_VARS (t
); *tem
; )
5564 if (TREE_CODE (*tem
) != VAR_DECL
5565 || !auto_var_in_fn_p (*tem
, DECL_CONTEXT (*tem
)))
5567 gcc_assert (TREE_CODE (*tem
) != RESULT_DECL
5568 && TREE_CODE (*tem
) != PARM_DECL
);
5569 *tem
= TREE_CHAIN (*tem
);
5573 fld_worklist_push (*tem
, fld
);
5574 tem
= &TREE_CHAIN (*tem
);
5577 for (tree tem
= BLOCK_SUBBLOCKS (t
); tem
; tem
= BLOCK_CHAIN (tem
))
5578 fld_worklist_push (tem
, fld
);
5579 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t
), fld
);
5582 if (TREE_CODE (t
) != IDENTIFIER_NODE
5583 && CODE_CONTAINS_STRUCT (TREE_CODE (t
), TS_TYPED
))
5584 fld_worklist_push (TREE_TYPE (t
), fld
);
5590 /* Find decls and types in T. */
5593 find_decls_types (tree t
, struct free_lang_data_d
*fld
)
5597 if (!fld
->pset
.contains (t
))
5598 walk_tree (&t
, find_decls_types_r
, fld
, &fld
->pset
);
5599 if (fld
->worklist
.is_empty ())
5601 t
= fld
->worklist
.pop ();
5605 /* Translate all the types in LIST with the corresponding runtime
5609 get_eh_types_for_runtime (tree list
)
5613 if (list
== NULL_TREE
)
5616 head
= build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list
)));
5618 list
= TREE_CHAIN (list
);
5621 tree n
= build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list
)));
5622 TREE_CHAIN (prev
) = n
;
5623 prev
= TREE_CHAIN (prev
);
5624 list
= TREE_CHAIN (list
);
5631 /* Find decls and types referenced in EH region R and store them in
5632 FLD->DECLS and FLD->TYPES. */
5635 find_decls_types_in_eh_region (eh_region r
, struct free_lang_data_d
*fld
)
5646 /* The types referenced in each catch must first be changed to the
5647 EH types used at runtime. This removes references to FE types
5649 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
5651 c
->type_list
= get_eh_types_for_runtime (c
->type_list
);
5652 walk_tree (&c
->type_list
, find_decls_types_r
, fld
, &fld
->pset
);
5657 case ERT_ALLOWED_EXCEPTIONS
:
5658 r
->u
.allowed
.type_list
5659 = get_eh_types_for_runtime (r
->u
.allowed
.type_list
);
5660 walk_tree (&r
->u
.allowed
.type_list
, find_decls_types_r
, fld
, &fld
->pset
);
5663 case ERT_MUST_NOT_THROW
:
5664 walk_tree (&r
->u
.must_not_throw
.failure_decl
,
5665 find_decls_types_r
, fld
, &fld
->pset
);
5671 /* Find decls and types referenced in cgraph node N and store them in
5672 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5673 look for *every* kind of DECL and TYPE node reachable from N,
5674 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5675 NAMESPACE_DECLs, etc). */
5678 find_decls_types_in_node (struct cgraph_node
*n
, struct free_lang_data_d
*fld
)
5681 struct function
*fn
;
5685 find_decls_types (n
->decl
, fld
);
5687 if (!gimple_has_body_p (n
->decl
))
5690 gcc_assert (current_function_decl
== NULL_TREE
&& cfun
== NULL
);
5692 fn
= DECL_STRUCT_FUNCTION (n
->decl
);
5694 /* Traverse locals. */
5695 FOR_EACH_LOCAL_DECL (fn
, ix
, t
)
5696 find_decls_types (t
, fld
);
5698 /* Traverse EH regions in FN. */
5701 FOR_ALL_EH_REGION_FN (r
, fn
)
5702 find_decls_types_in_eh_region (r
, fld
);
5705 /* Traverse every statement in FN. */
5706 FOR_EACH_BB_FN (bb
, fn
)
5709 gimple_stmt_iterator si
;
5712 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
5714 gphi
*phi
= psi
.phi ();
5716 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5718 tree
*arg_p
= gimple_phi_arg_def_ptr (phi
, i
);
5719 find_decls_types (*arg_p
, fld
);
5723 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5725 gimple
*stmt
= gsi_stmt (si
);
5727 if (is_gimple_call (stmt
))
5728 find_decls_types (gimple_call_fntype (stmt
), fld
);
5730 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
5732 tree arg
= gimple_op (stmt
, i
);
5733 find_decls_types (arg
, fld
);
5740 /* Find decls and types referenced in varpool node N and store them in
5741 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5742 look for *every* kind of DECL and TYPE node reachable from N,
5743 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5744 NAMESPACE_DECLs, etc). */
5747 find_decls_types_in_var (varpool_node
*v
, struct free_lang_data_d
*fld
)
5749 find_decls_types (v
->decl
, fld
);
5752 /* If T needs an assembler name, have one created for it. */
5755 assign_assembler_name_if_needed (tree t
)
5757 if (need_assembler_name_p (t
))
5759 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5760 diagnostics that use input_location to show locus
5761 information. The problem here is that, at this point,
5762 input_location is generally anchored to the end of the file
5763 (since the parser is long gone), so we don't have a good
5764 position to pin it to.
5766 To alleviate this problem, this uses the location of T's
5767 declaration. Examples of this are
5768 testsuite/g++.dg/template/cond2.C and
5769 testsuite/g++.dg/template/pr35240.C. */
5770 location_t saved_location
= input_location
;
5771 input_location
= DECL_SOURCE_LOCATION (t
);
5773 decl_assembler_name (t
);
5775 input_location
= saved_location
;
5780 /* Free language specific information for every operand and expression
5781 in every node of the call graph. This process operates in three stages:
5783 1- Every callgraph node and varpool node is traversed looking for
5784 decls and types embedded in them. This is a more exhaustive
5785 search than that done by find_referenced_vars, because it will
5786 also collect individual fields, decls embedded in types, etc.
5788 2- All the decls found are sent to free_lang_data_in_decl.
5790 3- All the types found are sent to free_lang_data_in_type.
5792 The ordering between decls and types is important because
5793 free_lang_data_in_decl sets assembler names, which includes
5794 mangling. So types cannot be freed up until assembler names have
5798 free_lang_data_in_cgraph (void)
5800 struct cgraph_node
*n
;
5802 struct free_lang_data_d fld
;
5807 /* Find decls and types in the body of every function in the callgraph. */
5808 FOR_EACH_FUNCTION (n
)
5809 find_decls_types_in_node (n
, &fld
);
5811 FOR_EACH_VEC_SAFE_ELT (alias_pairs
, i
, p
)
5812 find_decls_types (p
->decl
, &fld
);
5814 /* Find decls and types in every varpool symbol. */
5815 FOR_EACH_VARIABLE (v
)
5816 find_decls_types_in_var (v
, &fld
);
5818 /* Set the assembler name on every decl found. We need to do this
5819 now because free_lang_data_in_decl will invalidate data needed
5820 for mangling. This breaks mangling on interdependent decls. */
5821 FOR_EACH_VEC_ELT (fld
.decls
, i
, t
)
5822 assign_assembler_name_if_needed (t
);
5824 /* Traverse every decl found freeing its language data. */
5825 FOR_EACH_VEC_ELT (fld
.decls
, i
, t
)
5826 free_lang_data_in_decl (t
);
5828 /* Traverse every type found freeing its language data. */
5829 FOR_EACH_VEC_ELT (fld
.types
, i
, t
)
5830 free_lang_data_in_type (t
);
5833 FOR_EACH_VEC_ELT (fld
.types
, i
, t
)
5839 /* Free resources that are used by FE but are not needed once they are done. */
5842 free_lang_data (void)
5846 /* If we are the LTO frontend we have freed lang-specific data already. */
5848 || (!flag_generate_lto
&& !flag_generate_offload
))
5851 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5852 if (vec_safe_is_empty (all_translation_units
))
5853 build_translation_unit_decl (NULL_TREE
);
5855 /* Allocate and assign alias sets to the standard integer types
5856 while the slots are still in the way the frontends generated them. */
5857 for (i
= 0; i
< itk_none
; ++i
)
5858 if (integer_types
[i
])
5859 TYPE_ALIAS_SET (integer_types
[i
]) = get_alias_set (integer_types
[i
]);
5861 /* Traverse the IL resetting language specific information for
5862 operands, expressions, etc. */
5863 free_lang_data_in_cgraph ();
5865 /* Create gimple variants for common types. */
5866 for (unsigned i
= 0;
5867 i
< sizeof (builtin_structptr_types
) / sizeof (builtin_structptr_type
);
5869 builtin_structptr_types
[i
].node
= builtin_structptr_types
[i
].base
;
5871 /* Reset some langhooks. Do not reset types_compatible_p, it may
5872 still be used indirectly via the get_alias_set langhook. */
5873 lang_hooks
.dwarf_name
= lhd_dwarf_name
;
5874 lang_hooks
.decl_printable_name
= gimple_decl_printable_name
;
5875 lang_hooks
.gimplify_expr
= lhd_gimplify_expr
;
5877 /* We do not want the default decl_assembler_name implementation,
5878 rather if we have fixed everything we want a wrapper around it
5879 asserting that all non-local symbols already got their assembler
5880 name and only produce assembler names for local symbols. Or rather
5881 make sure we never call decl_assembler_name on local symbols and
5882 devise a separate, middle-end private scheme for it. */
5884 /* Reset diagnostic machinery. */
5885 tree_diagnostics_defaults (global_dc
);
5887 rebuild_type_inheritance_graph ();
5895 const pass_data pass_data_ipa_free_lang_data
=
5897 SIMPLE_IPA_PASS
, /* type */
5898 "*free_lang_data", /* name */
5899 OPTGROUP_NONE
, /* optinfo_flags */
5900 TV_IPA_FREE_LANG_DATA
, /* tv_id */
5901 0, /* properties_required */
5902 0, /* properties_provided */
5903 0, /* properties_destroyed */
5904 0, /* todo_flags_start */
5905 0, /* todo_flags_finish */
5908 class pass_ipa_free_lang_data
: public simple_ipa_opt_pass
5911 pass_ipa_free_lang_data (gcc::context
*ctxt
)
5912 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data
, ctxt
)
5915 /* opt_pass methods: */
5916 virtual unsigned int execute (function
*) { return free_lang_data (); }
5918 }; // class pass_ipa_free_lang_data
5922 simple_ipa_opt_pass
*
5923 make_pass_ipa_free_lang_data (gcc::context
*ctxt
)
5925 return new pass_ipa_free_lang_data (ctxt
);
5928 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5929 of the various TYPE_QUAL values. */
5932 set_type_quals (tree type
, int type_quals
)
5934 TYPE_READONLY (type
) = (type_quals
& TYPE_QUAL_CONST
) != 0;
5935 TYPE_VOLATILE (type
) = (type_quals
& TYPE_QUAL_VOLATILE
) != 0;
5936 TYPE_RESTRICT (type
) = (type_quals
& TYPE_QUAL_RESTRICT
) != 0;
5937 TYPE_ATOMIC (type
) = (type_quals
& TYPE_QUAL_ATOMIC
) != 0;
5938 TYPE_ADDR_SPACE (type
) = DECODE_QUAL_ADDR_SPACE (type_quals
);
5941 /* Returns true iff CAND and BASE have equivalent language-specific
5945 check_lang_type (const_tree cand
, const_tree base
)
5947 if (lang_hooks
.types
.type_hash_eq
== NULL
)
5949 /* type_hash_eq currently only applies to these types. */
5950 if (TREE_CODE (cand
) != FUNCTION_TYPE
5951 && TREE_CODE (cand
) != METHOD_TYPE
)
5953 return lang_hooks
.types
.type_hash_eq (cand
, base
);
5956 /* Returns true iff unqualified CAND and BASE are equivalent. */
5959 check_base_type (const_tree cand
, const_tree base
)
5961 return (TYPE_NAME (cand
) == TYPE_NAME (base
)
5962 /* Apparently this is needed for Objective-C. */
5963 && TYPE_CONTEXT (cand
) == TYPE_CONTEXT (base
)
5964 /* Check alignment. */
5965 && TYPE_ALIGN (cand
) == TYPE_ALIGN (base
)
5966 && attribute_list_equal (TYPE_ATTRIBUTES (cand
),
5967 TYPE_ATTRIBUTES (base
)));
5970 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5973 check_qualified_type (const_tree cand
, const_tree base
, int type_quals
)
5975 return (TYPE_QUALS (cand
) == type_quals
5976 && check_base_type (cand
, base
)
5977 && check_lang_type (cand
, base
));
5980 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5983 check_aligned_type (const_tree cand
, const_tree base
, unsigned int align
)
5985 return (TYPE_QUALS (cand
) == TYPE_QUALS (base
)
5986 && TYPE_NAME (cand
) == TYPE_NAME (base
)
5987 /* Apparently this is needed for Objective-C. */
5988 && TYPE_CONTEXT (cand
) == TYPE_CONTEXT (base
)
5989 /* Check alignment. */
5990 && TYPE_ALIGN (cand
) == align
5991 && attribute_list_equal (TYPE_ATTRIBUTES (cand
),
5992 TYPE_ATTRIBUTES (base
))
5993 && check_lang_type (cand
, base
));
5996 /* This function checks to see if TYPE matches the size one of the built-in
5997 atomic types, and returns that core atomic type. */
6000 find_atomic_core_type (tree type
)
6002 tree base_atomic_type
;
6004 /* Only handle complete types. */
6005 if (!tree_fits_uhwi_p (TYPE_SIZE (type
)))
6008 switch (tree_to_uhwi (TYPE_SIZE (type
)))
6011 base_atomic_type
= atomicQI_type_node
;
6015 base_atomic_type
= atomicHI_type_node
;
6019 base_atomic_type
= atomicSI_type_node
;
6023 base_atomic_type
= atomicDI_type_node
;
6027 base_atomic_type
= atomicTI_type_node
;
6031 base_atomic_type
= NULL_TREE
;
6034 return base_atomic_type
;
6037 /* Return a version of the TYPE, qualified as indicated by the
6038 TYPE_QUALS, if one exists. If no qualified version exists yet,
6039 return NULL_TREE. */
6042 get_qualified_type (tree type
, int type_quals
)
6046 if (TYPE_QUALS (type
) == type_quals
)
6049 /* Search the chain of variants to see if there is already one there just
6050 like the one we need to have. If so, use that existing one. We must
6051 preserve the TYPE_NAME, since there is code that depends on this. */
6052 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
6053 if (check_qualified_type (t
, type
, type_quals
))
6059 /* Like get_qualified_type, but creates the type if it does not
6060 exist. This function never returns NULL_TREE. */
6063 build_qualified_type (tree type
, int type_quals MEM_STAT_DECL
)
6067 /* See if we already have the appropriate qualified variant. */
6068 t
= get_qualified_type (type
, type_quals
);
6070 /* If not, build it. */
6073 t
= build_variant_type_copy (type PASS_MEM_STAT
);
6074 set_type_quals (t
, type_quals
);
6076 if (((type_quals
& TYPE_QUAL_ATOMIC
) == TYPE_QUAL_ATOMIC
))
6078 /* See if this object can map to a basic atomic type. */
6079 tree atomic_type
= find_atomic_core_type (type
);
6082 /* Ensure the alignment of this type is compatible with
6083 the required alignment of the atomic type. */
6084 if (TYPE_ALIGN (atomic_type
) > TYPE_ALIGN (t
))
6085 SET_TYPE_ALIGN (t
, TYPE_ALIGN (atomic_type
));
6089 if (TYPE_STRUCTURAL_EQUALITY_P (type
))
6090 /* Propagate structural equality. */
6091 SET_TYPE_STRUCTURAL_EQUALITY (t
);
6092 else if (TYPE_CANONICAL (type
) != type
)
6093 /* Build the underlying canonical type, since it is different
6096 tree c
= build_qualified_type (TYPE_CANONICAL (type
), type_quals
);
6097 TYPE_CANONICAL (t
) = TYPE_CANONICAL (c
);
6100 /* T is its own canonical type. */
6101 TYPE_CANONICAL (t
) = t
;
6108 /* Create a variant of type T with alignment ALIGN. */
6111 build_aligned_type (tree type
, unsigned int align
)
6115 if (TYPE_PACKED (type
)
6116 || TYPE_ALIGN (type
) == align
)
6119 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
6120 if (check_aligned_type (t
, type
, align
))
6123 t
= build_variant_type_copy (type
);
6124 SET_TYPE_ALIGN (t
, align
);
6125 TYPE_USER_ALIGN (t
) = 1;
6130 /* Create a new distinct copy of TYPE. The new type is made its own
6131 MAIN_VARIANT. If TYPE requires structural equality checks, the
6132 resulting type requires structural equality checks; otherwise, its
6133 TYPE_CANONICAL points to itself. */
6136 build_distinct_type_copy (tree type MEM_STAT_DECL
)
6138 tree t
= copy_node (type PASS_MEM_STAT
);
6140 TYPE_POINTER_TO (t
) = 0;
6141 TYPE_REFERENCE_TO (t
) = 0;
6143 /* Set the canonical type either to a new equivalence class, or
6144 propagate the need for structural equality checks. */
6145 if (TYPE_STRUCTURAL_EQUALITY_P (type
))
6146 SET_TYPE_STRUCTURAL_EQUALITY (t
);
6148 TYPE_CANONICAL (t
) = t
;
6150 /* Make it its own variant. */
6151 TYPE_MAIN_VARIANT (t
) = t
;
6152 TYPE_NEXT_VARIANT (t
) = 0;
6154 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6155 whose TREE_TYPE is not t. This can also happen in the Ada
6156 frontend when using subtypes. */
6161 /* Create a new variant of TYPE, equivalent but distinct. This is so
6162 the caller can modify it. TYPE_CANONICAL for the return type will
6163 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6164 are considered equal by the language itself (or that both types
6165 require structural equality checks). */
6168 build_variant_type_copy (tree type MEM_STAT_DECL
)
6170 tree t
, m
= TYPE_MAIN_VARIANT (type
);
6172 t
= build_distinct_type_copy (type PASS_MEM_STAT
);
6174 /* Since we're building a variant, assume that it is a non-semantic
6175 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6176 TYPE_CANONICAL (t
) = TYPE_CANONICAL (type
);
6177 /* Type variants have no alias set defined. */
6178 TYPE_ALIAS_SET (t
) = -1;
6180 /* Add the new type to the chain of variants of TYPE. */
6181 TYPE_NEXT_VARIANT (t
) = TYPE_NEXT_VARIANT (m
);
6182 TYPE_NEXT_VARIANT (m
) = t
;
6183 TYPE_MAIN_VARIANT (t
) = m
;
6188 /* Return true if the from tree in both tree maps are equal. */
6191 tree_map_base_eq (const void *va
, const void *vb
)
6193 const struct tree_map_base
*const a
= (const struct tree_map_base
*) va
,
6194 *const b
= (const struct tree_map_base
*) vb
;
6195 return (a
->from
== b
->from
);
6198 /* Hash a from tree in a tree_base_map. */
6201 tree_map_base_hash (const void *item
)
6203 return htab_hash_pointer (((const struct tree_map_base
*)item
)->from
);
6206 /* Return true if this tree map structure is marked for garbage collection
6207 purposes. We simply return true if the from tree is marked, so that this
6208 structure goes away when the from tree goes away. */
6211 tree_map_base_marked_p (const void *p
)
6213 return ggc_marked_p (((const struct tree_map_base
*) p
)->from
);
6216 /* Hash a from tree in a tree_map. */
6219 tree_map_hash (const void *item
)
6221 return (((const struct tree_map
*) item
)->hash
);
6224 /* Hash a from tree in a tree_decl_map. */
6227 tree_decl_map_hash (const void *item
)
6229 return DECL_UID (((const struct tree_decl_map
*) item
)->base
.from
);
6232 /* Return the initialization priority for DECL. */
6235 decl_init_priority_lookup (tree decl
)
6237 symtab_node
*snode
= symtab_node::get (decl
);
6240 return DEFAULT_INIT_PRIORITY
;
6242 snode
->get_init_priority ();
6245 /* Return the finalization priority for DECL. */
6248 decl_fini_priority_lookup (tree decl
)
6250 cgraph_node
*node
= cgraph_node::get (decl
);
6253 return DEFAULT_INIT_PRIORITY
;
6255 node
->get_fini_priority ();
6258 /* Set the initialization priority for DECL to PRIORITY. */
6261 decl_init_priority_insert (tree decl
, priority_type priority
)
6263 struct symtab_node
*snode
;
6265 if (priority
== DEFAULT_INIT_PRIORITY
)
6267 snode
= symtab_node::get (decl
);
6271 else if (VAR_P (decl
))
6272 snode
= varpool_node::get_create (decl
);
6274 snode
= cgraph_node::get_create (decl
);
6275 snode
->set_init_priority (priority
);
6278 /* Set the finalization priority for DECL to PRIORITY. */
6281 decl_fini_priority_insert (tree decl
, priority_type priority
)
6283 struct cgraph_node
*node
;
6285 if (priority
== DEFAULT_INIT_PRIORITY
)
6287 node
= cgraph_node::get (decl
);
6292 node
= cgraph_node::get_create (decl
);
6293 node
->set_fini_priority (priority
);
6296 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6299 print_debug_expr_statistics (void)
6301 fprintf (stderr
, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6302 (long) debug_expr_for_decl
->size (),
6303 (long) debug_expr_for_decl
->elements (),
6304 debug_expr_for_decl
->collisions ());
6307 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6310 print_value_expr_statistics (void)
6312 fprintf (stderr
, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6313 (long) value_expr_for_decl
->size (),
6314 (long) value_expr_for_decl
->elements (),
6315 value_expr_for_decl
->collisions ());
6318 /* Lookup a debug expression for FROM, and return it if we find one. */
6321 decl_debug_expr_lookup (tree from
)
6323 struct tree_decl_map
*h
, in
;
6324 in
.base
.from
= from
;
6326 h
= debug_expr_for_decl
->find_with_hash (&in
, DECL_UID (from
));
6332 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6335 decl_debug_expr_insert (tree from
, tree to
)
6337 struct tree_decl_map
*h
;
6339 h
= ggc_alloc
<tree_decl_map
> ();
6340 h
->base
.from
= from
;
6342 *debug_expr_for_decl
->find_slot_with_hash (h
, DECL_UID (from
), INSERT
) = h
;
6345 /* Lookup a value expression for FROM, and return it if we find one. */
6348 decl_value_expr_lookup (tree from
)
6350 struct tree_decl_map
*h
, in
;
6351 in
.base
.from
= from
;
6353 h
= value_expr_for_decl
->find_with_hash (&in
, DECL_UID (from
));
6359 /* Insert a mapping FROM->TO in the value expression hashtable. */
6362 decl_value_expr_insert (tree from
, tree to
)
6364 struct tree_decl_map
*h
;
6366 h
= ggc_alloc
<tree_decl_map
> ();
6367 h
->base
.from
= from
;
6369 *value_expr_for_decl
->find_slot_with_hash (h
, DECL_UID (from
), INSERT
) = h
;
6372 /* Lookup a vector of debug arguments for FROM, and return it if we
6376 decl_debug_args_lookup (tree from
)
6378 struct tree_vec_map
*h
, in
;
6380 if (!DECL_HAS_DEBUG_ARGS_P (from
))
6382 gcc_checking_assert (debug_args_for_decl
!= NULL
);
6383 in
.base
.from
= from
;
6384 h
= debug_args_for_decl
->find_with_hash (&in
, DECL_UID (from
));
6390 /* Insert a mapping FROM->empty vector of debug arguments in the value
6391 expression hashtable. */
6394 decl_debug_args_insert (tree from
)
6396 struct tree_vec_map
*h
;
6399 if (DECL_HAS_DEBUG_ARGS_P (from
))
6400 return decl_debug_args_lookup (from
);
6401 if (debug_args_for_decl
== NULL
)
6402 debug_args_for_decl
= hash_table
<tree_vec_map_cache_hasher
>::create_ggc (64);
6403 h
= ggc_alloc
<tree_vec_map
> ();
6404 h
->base
.from
= from
;
6406 loc
= debug_args_for_decl
->find_slot_with_hash (h
, DECL_UID (from
), INSERT
);
6408 DECL_HAS_DEBUG_ARGS_P (from
) = 1;
6412 /* Hashing of types so that we don't make duplicates.
6413 The entry point is `type_hash_canon'. */
6415 /* Generate the default hash code for TYPE. This is designed for
6416 speed, rather than maximum entropy. */
6419 type_hash_canon_hash (tree type
)
6421 inchash::hash hstate
;
6423 hstate
.add_int (TREE_CODE (type
));
6425 if (TREE_TYPE (type
))
6426 hstate
.add_object (TYPE_HASH (TREE_TYPE (type
)));
6428 for (tree t
= TYPE_ATTRIBUTES (type
); t
; t
= TREE_CHAIN (t
))
6429 /* Just the identifier is adequate to distinguish. */
6430 hstate
.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t
)));
6432 switch (TREE_CODE (type
))
6435 hstate
.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type
)));
6438 for (tree t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
6439 if (TREE_VALUE (t
) != error_mark_node
)
6440 hstate
.add_object (TYPE_HASH (TREE_VALUE (t
)));
6444 hstate
.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type
)));
6449 if (TYPE_DOMAIN (type
))
6450 hstate
.add_object (TYPE_HASH (TYPE_DOMAIN (type
)));
6451 if (!AGGREGATE_TYPE_P (TREE_TYPE (type
)))
6453 unsigned typeless
= TYPE_TYPELESS_STORAGE (type
);
6454 hstate
.add_object (typeless
);
6461 tree t
= TYPE_MAX_VALUE (type
);
6463 t
= TYPE_MIN_VALUE (type
);
6464 for (int i
= 0; i
< TREE_INT_CST_NUNITS (t
); i
++)
6465 hstate
.add_object (TREE_INT_CST_ELT (t
, i
));
6470 case FIXED_POINT_TYPE
:
6472 unsigned prec
= TYPE_PRECISION (type
);
6473 hstate
.add_object (prec
);
6478 hstate
.add_poly_int (TYPE_VECTOR_SUBPARTS (type
));
6485 return hstate
.end ();
6488 /* These are the Hashtable callback functions. */
6490 /* Returns true iff the types are equivalent. */
6493 type_cache_hasher::equal (type_hash
*a
, type_hash
*b
)
6495 /* First test the things that are the same for all types. */
6496 if (a
->hash
!= b
->hash
6497 || TREE_CODE (a
->type
) != TREE_CODE (b
->type
)
6498 || TREE_TYPE (a
->type
) != TREE_TYPE (b
->type
)
6499 || !attribute_list_equal (TYPE_ATTRIBUTES (a
->type
),
6500 TYPE_ATTRIBUTES (b
->type
))
6501 || (TREE_CODE (a
->type
) != COMPLEX_TYPE
6502 && TYPE_NAME (a
->type
) != TYPE_NAME (b
->type
)))
6505 /* Be careful about comparing arrays before and after the element type
6506 has been completed; don't compare TYPE_ALIGN unless both types are
6508 if (COMPLETE_TYPE_P (a
->type
) && COMPLETE_TYPE_P (b
->type
)
6509 && (TYPE_ALIGN (a
->type
) != TYPE_ALIGN (b
->type
)
6510 || TYPE_MODE (a
->type
) != TYPE_MODE (b
->type
)))
6513 switch (TREE_CODE (a
->type
))
6518 case REFERENCE_TYPE
:
6523 return known_eq (TYPE_VECTOR_SUBPARTS (a
->type
),
6524 TYPE_VECTOR_SUBPARTS (b
->type
));
6527 if (TYPE_VALUES (a
->type
) != TYPE_VALUES (b
->type
)
6528 && !(TYPE_VALUES (a
->type
)
6529 && TREE_CODE (TYPE_VALUES (a
->type
)) == TREE_LIST
6530 && TYPE_VALUES (b
->type
)
6531 && TREE_CODE (TYPE_VALUES (b
->type
)) == TREE_LIST
6532 && type_list_equal (TYPE_VALUES (a
->type
),
6533 TYPE_VALUES (b
->type
))))
6541 if (TYPE_PRECISION (a
->type
) != TYPE_PRECISION (b
->type
))
6543 return ((TYPE_MAX_VALUE (a
->type
) == TYPE_MAX_VALUE (b
->type
)
6544 || tree_int_cst_equal (TYPE_MAX_VALUE (a
->type
),
6545 TYPE_MAX_VALUE (b
->type
)))
6546 && (TYPE_MIN_VALUE (a
->type
) == TYPE_MIN_VALUE (b
->type
)
6547 || tree_int_cst_equal (TYPE_MIN_VALUE (a
->type
),
6548 TYPE_MIN_VALUE (b
->type
))));
6550 case FIXED_POINT_TYPE
:
6551 return TYPE_SATURATING (a
->type
) == TYPE_SATURATING (b
->type
);
6554 return TYPE_OFFSET_BASETYPE (a
->type
) == TYPE_OFFSET_BASETYPE (b
->type
);
6557 if (TYPE_METHOD_BASETYPE (a
->type
) == TYPE_METHOD_BASETYPE (b
->type
)
6558 && (TYPE_ARG_TYPES (a
->type
) == TYPE_ARG_TYPES (b
->type
)
6559 || (TYPE_ARG_TYPES (a
->type
)
6560 && TREE_CODE (TYPE_ARG_TYPES (a
->type
)) == TREE_LIST
6561 && TYPE_ARG_TYPES (b
->type
)
6562 && TREE_CODE (TYPE_ARG_TYPES (b
->type
)) == TREE_LIST
6563 && type_list_equal (TYPE_ARG_TYPES (a
->type
),
6564 TYPE_ARG_TYPES (b
->type
)))))
6568 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6569 where the flag should be inherited from the element type
6570 and can change after ARRAY_TYPEs are created; on non-aggregates
6571 compare it and hash it, scalars will never have that flag set
6572 and we need to differentiate between arrays created by different
6573 front-ends or middle-end created arrays. */
6574 return (TYPE_DOMAIN (a
->type
) == TYPE_DOMAIN (b
->type
)
6575 && (AGGREGATE_TYPE_P (TREE_TYPE (a
->type
))
6576 || (TYPE_TYPELESS_STORAGE (a
->type
)
6577 == TYPE_TYPELESS_STORAGE (b
->type
))));
6581 case QUAL_UNION_TYPE
:
6582 return (TYPE_FIELDS (a
->type
) == TYPE_FIELDS (b
->type
)
6583 || (TYPE_FIELDS (a
->type
)
6584 && TREE_CODE (TYPE_FIELDS (a
->type
)) == TREE_LIST
6585 && TYPE_FIELDS (b
->type
)
6586 && TREE_CODE (TYPE_FIELDS (b
->type
)) == TREE_LIST
6587 && type_list_equal (TYPE_FIELDS (a
->type
),
6588 TYPE_FIELDS (b
->type
))));
6591 if (TYPE_ARG_TYPES (a
->type
) == TYPE_ARG_TYPES (b
->type
)
6592 || (TYPE_ARG_TYPES (a
->type
)
6593 && TREE_CODE (TYPE_ARG_TYPES (a
->type
)) == TREE_LIST
6594 && TYPE_ARG_TYPES (b
->type
)
6595 && TREE_CODE (TYPE_ARG_TYPES (b
->type
)) == TREE_LIST
6596 && type_list_equal (TYPE_ARG_TYPES (a
->type
),
6597 TYPE_ARG_TYPES (b
->type
))))
6605 if (lang_hooks
.types
.type_hash_eq
!= NULL
)
6606 return lang_hooks
.types
.type_hash_eq (a
->type
, b
->type
);
6611 /* Given TYPE, and HASHCODE its hash code, return the canonical
6612 object for an identical type if one already exists.
6613 Otherwise, return TYPE, and record it as the canonical object.
6615 To use this function, first create a type of the sort you want.
6616 Then compute its hash code from the fields of the type that
6617 make it different from other similar types.
6618 Then call this function and use the value. */
6621 type_hash_canon (unsigned int hashcode
, tree type
)
6626 /* The hash table only contains main variants, so ensure that's what we're
6628 gcc_assert (TYPE_MAIN_VARIANT (type
) == type
);
6630 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6631 must call that routine before comparing TYPE_ALIGNs. */
6637 loc
= type_hash_table
->find_slot_with_hash (&in
, hashcode
, INSERT
);
6640 tree t1
= ((type_hash
*) *loc
)->type
;
6641 gcc_assert (TYPE_MAIN_VARIANT (t1
) == t1
6643 if (TYPE_UID (type
) + 1 == next_type_uid
)
6645 /* Free also min/max values and the cache for integer
6646 types. This can't be done in free_node, as LTO frees
6647 those on its own. */
6648 if (TREE_CODE (type
) == INTEGER_TYPE
)
6650 if (TYPE_MIN_VALUE (type
)
6651 && TREE_TYPE (TYPE_MIN_VALUE (type
)) == type
)
6653 /* Zero is always in TYPE_CACHED_VALUES. */
6654 if (! TYPE_UNSIGNED (type
))
6655 int_cst_hash_table
->remove_elt (TYPE_MIN_VALUE (type
));
6656 ggc_free (TYPE_MIN_VALUE (type
));
6658 if (TYPE_MAX_VALUE (type
)
6659 && TREE_TYPE (TYPE_MAX_VALUE (type
)) == type
)
6661 int_cst_hash_table
->remove_elt (TYPE_MAX_VALUE (type
));
6662 ggc_free (TYPE_MAX_VALUE (type
));
6664 if (TYPE_CACHED_VALUES_P (type
))
6665 ggc_free (TYPE_CACHED_VALUES (type
));
6672 struct type_hash
*h
;
6674 h
= ggc_alloc
<type_hash
> ();
6684 print_type_hash_statistics (void)
6686 fprintf (stderr
, "Type hash: size %ld, %ld elements, %f collisions\n",
6687 (long) type_hash_table
->size (),
6688 (long) type_hash_table
->elements (),
6689 type_hash_table
->collisions ());
6692 /* Given two lists of types
6693 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6694 return 1 if the lists contain the same types in the same order.
6695 Also, the TREE_PURPOSEs must match. */
6698 type_list_equal (const_tree l1
, const_tree l2
)
6702 for (t1
= l1
, t2
= l2
; t1
&& t2
; t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
))
6703 if (TREE_VALUE (t1
) != TREE_VALUE (t2
)
6704 || (TREE_PURPOSE (t1
) != TREE_PURPOSE (t2
)
6705 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1
), TREE_PURPOSE (t2
))
6706 && (TREE_TYPE (TREE_PURPOSE (t1
))
6707 == TREE_TYPE (TREE_PURPOSE (t2
))))))
6713 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6714 given by TYPE. If the argument list accepts variable arguments,
6715 then this function counts only the ordinary arguments. */
6718 type_num_arguments (const_tree type
)
6723 for (t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
6724 /* If the function does not take a variable number of arguments,
6725 the last element in the list will have type `void'. */
6726 if (VOID_TYPE_P (TREE_VALUE (t
)))
6734 /* Nonzero if integer constants T1 and T2
6735 represent the same constant value. */
6738 tree_int_cst_equal (const_tree t1
, const_tree t2
)
6743 if (t1
== 0 || t2
== 0)
6746 if (TREE_CODE (t1
) == INTEGER_CST
6747 && TREE_CODE (t2
) == INTEGER_CST
6748 && wi::to_widest (t1
) == wi::to_widest (t2
))
6754 /* Return true if T is an INTEGER_CST whose numerical value (extended
6755 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6758 tree_fits_shwi_p (const_tree t
)
6760 return (t
!= NULL_TREE
6761 && TREE_CODE (t
) == INTEGER_CST
6762 && wi::fits_shwi_p (wi::to_widest (t
)));
6765 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6766 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6769 tree_fits_poly_int64_p (const_tree t
)
6773 if (POLY_INT_CST_P (t
))
6775 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; i
++)
6776 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t
, i
))))
6780 return (TREE_CODE (t
) == INTEGER_CST
6781 && wi::fits_shwi_p (wi::to_widest (t
)));
6784 /* Return true if T is an INTEGER_CST whose numerical value (extended
6785 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6788 tree_fits_uhwi_p (const_tree t
)
6790 return (t
!= NULL_TREE
6791 && TREE_CODE (t
) == INTEGER_CST
6792 && wi::fits_uhwi_p (wi::to_widest (t
)));
6795 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6796 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6799 tree_fits_poly_uint64_p (const_tree t
)
6803 if (POLY_INT_CST_P (t
))
6805 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; i
++)
6806 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t
, i
))))
6810 return (TREE_CODE (t
) == INTEGER_CST
6811 && wi::fits_uhwi_p (wi::to_widest (t
)));
6814 /* T is an INTEGER_CST whose numerical value (extended according to
6815 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6819 tree_to_shwi (const_tree t
)
6821 gcc_assert (tree_fits_shwi_p (t
));
6822 return TREE_INT_CST_LOW (t
);
6825 /* T is an INTEGER_CST whose numerical value (extended according to
6826 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6829 unsigned HOST_WIDE_INT
6830 tree_to_uhwi (const_tree t
)
6832 gcc_assert (tree_fits_uhwi_p (t
));
6833 return TREE_INT_CST_LOW (t
);
6836 /* Return the most significant (sign) bit of T. */
6839 tree_int_cst_sign_bit (const_tree t
)
6841 unsigned bitno
= TYPE_PRECISION (TREE_TYPE (t
)) - 1;
6843 return wi::extract_uhwi (wi::to_wide (t
), bitno
, 1);
6846 /* Return an indication of the sign of the integer constant T.
6847 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6848 Note that -1 will never be returned if T's type is unsigned. */
6851 tree_int_cst_sgn (const_tree t
)
6853 if (wi::to_wide (t
) == 0)
6855 else if (TYPE_UNSIGNED (TREE_TYPE (t
)))
6857 else if (wi::neg_p (wi::to_wide (t
)))
6863 /* Return the minimum number of bits needed to represent VALUE in a
6864 signed or unsigned type, UNSIGNEDP says which. */
6867 tree_int_cst_min_precision (tree value
, signop sgn
)
6869 /* If the value is negative, compute its negative minus 1. The latter
6870 adjustment is because the absolute value of the largest negative value
6871 is one larger than the largest positive value. This is equivalent to
6872 a bit-wise negation, so use that operation instead. */
6874 if (tree_int_cst_sgn (value
) < 0)
6875 value
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (value
), value
);
6877 /* Return the number of bits needed, taking into account the fact
6878 that we need one more bit for a signed than unsigned type.
6879 If value is 0 or -1, the minimum precision is 1 no matter
6880 whether unsignedp is true or false. */
6882 if (integer_zerop (value
))
6885 return tree_floor_log2 (value
) + 1 + (sgn
== SIGNED
? 1 : 0) ;
6888 /* Return truthvalue of whether T1 is the same tree structure as T2.
6889 Return 1 if they are the same.
6890 Return 0 if they are understandably different.
6891 Return -1 if either contains tree structure not understood by
6895 simple_cst_equal (const_tree t1
, const_tree t2
)
6897 enum tree_code code1
, code2
;
6903 if (t1
== 0 || t2
== 0)
6906 code1
= TREE_CODE (t1
);
6907 code2
= TREE_CODE (t2
);
6909 if (CONVERT_EXPR_CODE_P (code1
) || code1
== NON_LVALUE_EXPR
)
6911 if (CONVERT_EXPR_CODE_P (code2
)
6912 || code2
== NON_LVALUE_EXPR
)
6913 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
6915 return simple_cst_equal (TREE_OPERAND (t1
, 0), t2
);
6918 else if (CONVERT_EXPR_CODE_P (code2
)
6919 || code2
== NON_LVALUE_EXPR
)
6920 return simple_cst_equal (t1
, TREE_OPERAND (t2
, 0));
6928 return wi::to_widest (t1
) == wi::to_widest (t2
);
6931 return real_identical (&TREE_REAL_CST (t1
), &TREE_REAL_CST (t2
));
6934 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1
), TREE_FIXED_CST (t2
));
6937 return (TREE_STRING_LENGTH (t1
) == TREE_STRING_LENGTH (t2
)
6938 && ! memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
6939 TREE_STRING_LENGTH (t1
)));
6943 unsigned HOST_WIDE_INT idx
;
6944 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (t1
);
6945 vec
<constructor_elt
, va_gc
> *v2
= CONSTRUCTOR_ELTS (t2
);
6947 if (vec_safe_length (v1
) != vec_safe_length (v2
))
6950 for (idx
= 0; idx
< vec_safe_length (v1
); ++idx
)
6951 /* ??? Should we handle also fields here? */
6952 if (!simple_cst_equal ((*v1
)[idx
].value
, (*v2
)[idx
].value
))
6958 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
6961 cmp
= simple_cst_equal (CALL_EXPR_FN (t1
), CALL_EXPR_FN (t2
));
6964 if (call_expr_nargs (t1
) != call_expr_nargs (t2
))
6967 const_tree arg1
, arg2
;
6968 const_call_expr_arg_iterator iter1
, iter2
;
6969 for (arg1
= first_const_call_expr_arg (t1
, &iter1
),
6970 arg2
= first_const_call_expr_arg (t2
, &iter2
);
6972 arg1
= next_const_call_expr_arg (&iter1
),
6973 arg2
= next_const_call_expr_arg (&iter2
))
6975 cmp
= simple_cst_equal (arg1
, arg2
);
6979 return arg1
== arg2
;
6983 /* Special case: if either target is an unallocated VAR_DECL,
6984 it means that it's going to be unified with whatever the
6985 TARGET_EXPR is really supposed to initialize, so treat it
6986 as being equivalent to anything. */
6987 if ((TREE_CODE (TREE_OPERAND (t1
, 0)) == VAR_DECL
6988 && DECL_NAME (TREE_OPERAND (t1
, 0)) == NULL_TREE
6989 && !DECL_RTL_SET_P (TREE_OPERAND (t1
, 0)))
6990 || (TREE_CODE (TREE_OPERAND (t2
, 0)) == VAR_DECL
6991 && DECL_NAME (TREE_OPERAND (t2
, 0)) == NULL_TREE
6992 && !DECL_RTL_SET_P (TREE_OPERAND (t2
, 0))))
6995 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
7000 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
7002 case WITH_CLEANUP_EXPR
:
7003 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
7007 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t1
, 1));
7010 if (TREE_OPERAND (t1
, 1) == TREE_OPERAND (t2
, 1))
7011 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
7022 if (POLY_INT_CST_P (t1
))
7023 /* A false return means maybe_ne rather than known_ne. */
7024 return known_eq (poly_widest_int::from (poly_int_cst_value (t1
),
7025 TYPE_SIGN (TREE_TYPE (t1
))),
7026 poly_widest_int::from (poly_int_cst_value (t2
),
7027 TYPE_SIGN (TREE_TYPE (t2
))));
7031 /* This general rule works for most tree codes. All exceptions should be
7032 handled above. If this is a language-specific tree code, we can't
7033 trust what might be in the operand, so say we don't know
7035 if ((int) code1
>= (int) LAST_AND_UNUSED_TREE_CODE
)
7038 switch (TREE_CODE_CLASS (code1
))
7042 case tcc_comparison
:
7043 case tcc_expression
:
7047 for (i
= 0; i
< TREE_CODE_LENGTH (code1
); i
++)
7049 cmp
= simple_cst_equal (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
7061 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7062 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7063 than U, respectively. */
7066 compare_tree_int (const_tree t
, unsigned HOST_WIDE_INT u
)
7068 if (tree_int_cst_sgn (t
) < 0)
7070 else if (!tree_fits_uhwi_p (t
))
7072 else if (TREE_INT_CST_LOW (t
) == u
)
7074 else if (TREE_INT_CST_LOW (t
) < u
)
7080 /* Return true if SIZE represents a constant size that is in bounds of
7081 what the middle-end and the backend accepts (covering not more than
7082 half of the address-space). */
7085 valid_constant_size_p (const_tree size
)
7087 if (POLY_INT_CST_P (size
))
7089 if (TREE_OVERFLOW (size
))
7091 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
7092 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size
, i
)))
7096 if (! tree_fits_uhwi_p (size
)
7097 || TREE_OVERFLOW (size
)
7098 || tree_int_cst_sign_bit (size
) != 0)
7103 /* Return the precision of the type, or for a complex or vector type the
7104 precision of the type of its elements. */
7107 element_precision (const_tree type
)
7110 type
= TREE_TYPE (type
);
7111 enum tree_code code
= TREE_CODE (type
);
7112 if (code
== COMPLEX_TYPE
|| code
== VECTOR_TYPE
)
7113 type
= TREE_TYPE (type
);
7115 return TYPE_PRECISION (type
);
7118 /* Return true if CODE represents an associative tree code. Otherwise
7121 associative_tree_code (enum tree_code code
)
7140 /* Return true if CODE represents a commutative tree code. Otherwise
7143 commutative_tree_code (enum tree_code code
)
7149 case MULT_HIGHPART_EXPR
:
7157 case UNORDERED_EXPR
:
7161 case TRUTH_AND_EXPR
:
7162 case TRUTH_XOR_EXPR
:
7164 case WIDEN_MULT_EXPR
:
7165 case VEC_WIDEN_MULT_HI_EXPR
:
7166 case VEC_WIDEN_MULT_LO_EXPR
:
7167 case VEC_WIDEN_MULT_EVEN_EXPR
:
7168 case VEC_WIDEN_MULT_ODD_EXPR
:
7177 /* Return true if CODE represents a ternary tree code for which the
7178 first two operands are commutative. Otherwise return false. */
7180 commutative_ternary_tree_code (enum tree_code code
)
7184 case WIDEN_MULT_PLUS_EXPR
:
7185 case WIDEN_MULT_MINUS_EXPR
:
7195 /* Returns true if CODE can overflow. */
7198 operation_can_overflow (enum tree_code code
)
7206 /* Can overflow in various ways. */
7208 case TRUNC_DIV_EXPR
:
7209 case EXACT_DIV_EXPR
:
7210 case FLOOR_DIV_EXPR
:
7212 /* For INT_MIN / -1. */
7219 /* These operators cannot overflow. */
7224 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7225 ftrapv doesn't generate trapping insns for CODE. */
7228 operation_no_trapping_overflow (tree type
, enum tree_code code
)
7230 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type
));
7232 /* We don't generate instructions that trap on overflow for complex or vector
7234 if (!INTEGRAL_TYPE_P (type
))
7237 if (!TYPE_OVERFLOW_TRAPS (type
))
7247 /* These operators can overflow, and -ftrapv generates trapping code for
7250 case TRUNC_DIV_EXPR
:
7251 case EXACT_DIV_EXPR
:
7252 case FLOOR_DIV_EXPR
:
7255 /* These operators can overflow, but -ftrapv does not generate trapping
7259 /* These operators cannot overflow. */
7267 /* Generate a hash value for an expression. This can be used iteratively
7268 by passing a previous result as the HSTATE argument.
7270 This function is intended to produce the same hash for expressions which
7271 would compare equal using operand_equal_p. */
7273 add_expr (const_tree t
, inchash::hash
&hstate
, unsigned int flags
)
7276 enum tree_code code
;
7277 enum tree_code_class tclass
;
7279 if (t
== NULL_TREE
|| t
== error_mark_node
)
7281 hstate
.merge_hash (0);
7285 if (!(flags
& OEP_ADDRESS_OF
))
7288 code
= TREE_CODE (t
);
7292 /* Alas, constants aren't shared, so we can't rely on pointer
7295 hstate
.merge_hash (0);
7298 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
7299 for (i
= 0; i
< TREE_INT_CST_EXT_NUNITS (t
); i
++)
7300 hstate
.add_hwi (TREE_INT_CST_ELT (t
, i
));
7305 if (!HONOR_SIGNED_ZEROS (t
) && real_zerop (t
))
7308 val2
= real_hash (TREE_REAL_CST_PTR (t
));
7309 hstate
.merge_hash (val2
);
7314 unsigned int val2
= fixed_hash (TREE_FIXED_CST_PTR (t
));
7315 hstate
.merge_hash (val2
);
7319 hstate
.add ((const void *) TREE_STRING_POINTER (t
),
7320 TREE_STRING_LENGTH (t
));
7323 inchash::add_expr (TREE_REALPART (t
), hstate
, flags
);
7324 inchash::add_expr (TREE_IMAGPART (t
), hstate
, flags
);
7328 hstate
.add_int (VECTOR_CST_NPATTERNS (t
));
7329 hstate
.add_int (VECTOR_CST_NELTS_PER_PATTERN (t
));
7330 unsigned int count
= vector_cst_encoded_nelts (t
);
7331 for (unsigned int i
= 0; i
< count
; ++i
)
7332 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t
, i
), hstate
, flags
);
7336 /* We can just compare by pointer. */
7337 hstate
.add_hwi (SSA_NAME_VERSION (t
));
7339 case PLACEHOLDER_EXPR
:
7340 /* The node itself doesn't matter. */
7347 /* A list of expressions, for a CALL_EXPR or as the elements of a
7349 for (; t
; t
= TREE_CHAIN (t
))
7350 inchash::add_expr (TREE_VALUE (t
), hstate
, flags
);
7354 unsigned HOST_WIDE_INT idx
;
7356 flags
&= ~OEP_ADDRESS_OF
;
7357 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t
), idx
, field
, value
)
7359 inchash::add_expr (field
, hstate
, flags
);
7360 inchash::add_expr (value
, hstate
, flags
);
7364 case STATEMENT_LIST
:
7366 tree_stmt_iterator i
;
7367 for (i
= tsi_start (CONST_CAST_TREE (t
));
7368 !tsi_end_p (i
); tsi_next (&i
))
7369 inchash::add_expr (tsi_stmt (i
), hstate
, flags
);
7373 for (i
= 0; i
< TREE_VEC_LENGTH (t
); ++i
)
7374 inchash::add_expr (TREE_VEC_ELT (t
, i
), hstate
, flags
);
7376 case IDENTIFIER_NODE
:
7377 hstate
.add_object (IDENTIFIER_HASH_VALUE (t
));
7380 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7381 Otherwise nodes that compare equal according to operand_equal_p might
7382 get different hash codes. However, don't do this for machine specific
7383 or front end builtins, since the function code is overloaded in those
7385 if (DECL_BUILT_IN_CLASS (t
) == BUILT_IN_NORMAL
7386 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t
)))
7388 t
= builtin_decl_explicit (DECL_FUNCTION_CODE (t
));
7389 code
= TREE_CODE (t
);
7393 if (POLY_INT_CST_P (t
))
7395 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
7396 hstate
.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t
, i
)));
7399 tclass
= TREE_CODE_CLASS (code
);
7401 if (tclass
== tcc_declaration
)
7403 /* DECL's have a unique ID */
7404 hstate
.add_hwi (DECL_UID (t
));
7406 else if (tclass
== tcc_comparison
&& !commutative_tree_code (code
))
7408 /* For comparisons that can be swapped, use the lower
7410 enum tree_code ccode
= swap_tree_comparison (code
);
7413 hstate
.add_object (ccode
);
7414 inchash::add_expr (TREE_OPERAND (t
, ccode
!= code
), hstate
, flags
);
7415 inchash::add_expr (TREE_OPERAND (t
, ccode
== code
), hstate
, flags
);
7417 else if (CONVERT_EXPR_CODE_P (code
))
7419 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7421 enum tree_code ccode
= NOP_EXPR
;
7422 hstate
.add_object (ccode
);
7424 /* Don't hash the type, that can lead to having nodes which
7425 compare equal according to operand_equal_p, but which
7426 have different hash codes. Make sure to include signedness
7427 in the hash computation. */
7428 hstate
.add_int (TYPE_UNSIGNED (TREE_TYPE (t
)));
7429 inchash::add_expr (TREE_OPERAND (t
, 0), hstate
, flags
);
7431 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7432 else if (code
== MEM_REF
7433 && (flags
& OEP_ADDRESS_OF
) != 0
7434 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
7435 && DECL_P (TREE_OPERAND (TREE_OPERAND (t
, 0), 0))
7436 && integer_zerop (TREE_OPERAND (t
, 1)))
7437 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t
, 0), 0),
7439 /* Don't ICE on FE specific trees, or their arguments etc.
7440 during operand_equal_p hash verification. */
7441 else if (!IS_EXPR_CODE_CLASS (tclass
))
7442 gcc_assert (flags
& OEP_HASH_CHECK
);
7445 unsigned int sflags
= flags
;
7447 hstate
.add_object (code
);
7452 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
7453 flags
|= OEP_ADDRESS_OF
;
7459 case TARGET_MEM_REF
:
7460 flags
&= ~OEP_ADDRESS_OF
;
7465 case ARRAY_RANGE_REF
:
7468 sflags
&= ~OEP_ADDRESS_OF
;
7472 flags
&= ~OEP_ADDRESS_OF
;
7475 case WIDEN_MULT_PLUS_EXPR
:
7476 case WIDEN_MULT_MINUS_EXPR
:
7478 /* The multiplication operands are commutative. */
7479 inchash::hash one
, two
;
7480 inchash::add_expr (TREE_OPERAND (t
, 0), one
, flags
);
7481 inchash::add_expr (TREE_OPERAND (t
, 1), two
, flags
);
7482 hstate
.add_commutative (one
, two
);
7483 inchash::add_expr (TREE_OPERAND (t
, 2), two
, flags
);
7488 if (CALL_EXPR_FN (t
) == NULL_TREE
)
7489 hstate
.add_int (CALL_EXPR_IFN (t
));
7493 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7494 Usually different TARGET_EXPRs just should use
7495 different temporaries in their slots. */
7496 inchash::add_expr (TARGET_EXPR_SLOT (t
), hstate
, flags
);
7503 /* Don't hash the type, that can lead to having nodes which
7504 compare equal according to operand_equal_p, but which
7505 have different hash codes. */
7506 if (code
== NON_LVALUE_EXPR
)
7508 /* Make sure to include signness in the hash computation. */
7509 hstate
.add_int (TYPE_UNSIGNED (TREE_TYPE (t
)));
7510 inchash::add_expr (TREE_OPERAND (t
, 0), hstate
, flags
);
7513 else if (commutative_tree_code (code
))
7515 /* It's a commutative expression. We want to hash it the same
7516 however it appears. We do this by first hashing both operands
7517 and then rehashing based on the order of their independent
7519 inchash::hash one
, two
;
7520 inchash::add_expr (TREE_OPERAND (t
, 0), one
, flags
);
7521 inchash::add_expr (TREE_OPERAND (t
, 1), two
, flags
);
7522 hstate
.add_commutative (one
, two
);
7525 for (i
= TREE_OPERAND_LENGTH (t
) - 1; i
>= 0; --i
)
7526 inchash::add_expr (TREE_OPERAND (t
, i
), hstate
,
7527 i
== 0 ? flags
: sflags
);
7535 /* Constructors for pointer, array and function types.
7536 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7537 constructed by language-dependent code, not here.) */
7539 /* Construct, lay out and return the type of pointers to TO_TYPE with
7540 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7541 reference all of memory. If such a type has already been
7542 constructed, reuse it. */
7545 build_pointer_type_for_mode (tree to_type
, machine_mode mode
,
7549 bool could_alias
= can_alias_all
;
7551 if (to_type
== error_mark_node
)
7552 return error_mark_node
;
7554 /* If the pointed-to type has the may_alias attribute set, force
7555 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7556 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type
)))
7557 can_alias_all
= true;
7559 /* In some cases, languages will have things that aren't a POINTER_TYPE
7560 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7561 In that case, return that type without regard to the rest of our
7564 ??? This is a kludge, but consistent with the way this function has
7565 always operated and there doesn't seem to be a good way to avoid this
7567 if (TYPE_POINTER_TO (to_type
) != 0
7568 && TREE_CODE (TYPE_POINTER_TO (to_type
)) != POINTER_TYPE
)
7569 return TYPE_POINTER_TO (to_type
);
7571 /* First, if we already have a type for pointers to TO_TYPE and it's
7572 the proper mode, use it. */
7573 for (t
= TYPE_POINTER_TO (to_type
); t
; t
= TYPE_NEXT_PTR_TO (t
))
7574 if (TYPE_MODE (t
) == mode
&& TYPE_REF_CAN_ALIAS_ALL (t
) == can_alias_all
)
7577 t
= make_node (POINTER_TYPE
);
7579 TREE_TYPE (t
) = to_type
;
7580 SET_TYPE_MODE (t
, mode
);
7581 TYPE_REF_CAN_ALIAS_ALL (t
) = can_alias_all
;
7582 TYPE_NEXT_PTR_TO (t
) = TYPE_POINTER_TO (to_type
);
7583 TYPE_POINTER_TO (to_type
) = t
;
7585 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7586 if (TYPE_STRUCTURAL_EQUALITY_P (to_type
) || in_lto_p
)
7587 SET_TYPE_STRUCTURAL_EQUALITY (t
);
7588 else if (TYPE_CANONICAL (to_type
) != to_type
|| could_alias
)
7590 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type
),
7593 /* Lay out the type. This function has many callers that are concerned
7594 with expression-construction, and this simplifies them all. */
7600 /* By default build pointers in ptr_mode. */
7603 build_pointer_type (tree to_type
)
7605 addr_space_t as
= to_type
== error_mark_node
? ADDR_SPACE_GENERIC
7606 : TYPE_ADDR_SPACE (to_type
);
7607 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7608 return build_pointer_type_for_mode (to_type
, pointer_mode
, false);
7611 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7614 build_reference_type_for_mode (tree to_type
, machine_mode mode
,
7618 bool could_alias
= can_alias_all
;
7620 if (to_type
== error_mark_node
)
7621 return error_mark_node
;
7623 /* If the pointed-to type has the may_alias attribute set, force
7624 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7625 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type
)))
7626 can_alias_all
= true;
7628 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7629 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7630 In that case, return that type without regard to the rest of our
7633 ??? This is a kludge, but consistent with the way this function has
7634 always operated and there doesn't seem to be a good way to avoid this
7636 if (TYPE_REFERENCE_TO (to_type
) != 0
7637 && TREE_CODE (TYPE_REFERENCE_TO (to_type
)) != REFERENCE_TYPE
)
7638 return TYPE_REFERENCE_TO (to_type
);
7640 /* First, if we already have a type for pointers to TO_TYPE and it's
7641 the proper mode, use it. */
7642 for (t
= TYPE_REFERENCE_TO (to_type
); t
; t
= TYPE_NEXT_REF_TO (t
))
7643 if (TYPE_MODE (t
) == mode
&& TYPE_REF_CAN_ALIAS_ALL (t
) == can_alias_all
)
7646 t
= make_node (REFERENCE_TYPE
);
7648 TREE_TYPE (t
) = to_type
;
7649 SET_TYPE_MODE (t
, mode
);
7650 TYPE_REF_CAN_ALIAS_ALL (t
) = can_alias_all
;
7651 TYPE_NEXT_REF_TO (t
) = TYPE_REFERENCE_TO (to_type
);
7652 TYPE_REFERENCE_TO (to_type
) = t
;
7654 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7655 if (TYPE_STRUCTURAL_EQUALITY_P (to_type
) || in_lto_p
)
7656 SET_TYPE_STRUCTURAL_EQUALITY (t
);
7657 else if (TYPE_CANONICAL (to_type
) != to_type
|| could_alias
)
7659 = build_reference_type_for_mode (TYPE_CANONICAL (to_type
),
7668 /* Build the node for the type of references-to-TO_TYPE by default
7672 build_reference_type (tree to_type
)
7674 addr_space_t as
= to_type
== error_mark_node
? ADDR_SPACE_GENERIC
7675 : TYPE_ADDR_SPACE (to_type
);
7676 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7677 return build_reference_type_for_mode (to_type
, pointer_mode
, false);
7680 #define MAX_INT_CACHED_PREC \
7681 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7682 static GTY(()) tree nonstandard_integer_type_cache
[2 * MAX_INT_CACHED_PREC
+ 2];
7684 /* Builds a signed or unsigned integer type of precision PRECISION.
7685 Used for C bitfields whose precision does not match that of
7686 built-in target types. */
7688 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision
,
7694 unsignedp
= MAX_INT_CACHED_PREC
+ 1;
7696 if (precision
<= MAX_INT_CACHED_PREC
)
7698 itype
= nonstandard_integer_type_cache
[precision
+ unsignedp
];
7703 itype
= make_node (INTEGER_TYPE
);
7704 TYPE_PRECISION (itype
) = precision
;
7707 fixup_unsigned_type (itype
);
7709 fixup_signed_type (itype
);
7713 inchash::hash hstate
;
7714 inchash::add_expr (TYPE_MAX_VALUE (itype
), hstate
);
7715 ret
= type_hash_canon (hstate
.end (), itype
);
7716 if (precision
<= MAX_INT_CACHED_PREC
)
7717 nonstandard_integer_type_cache
[precision
+ unsignedp
] = ret
;
7722 #define MAX_BOOL_CACHED_PREC \
7723 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7724 static GTY(()) tree nonstandard_boolean_type_cache
[MAX_BOOL_CACHED_PREC
+ 1];
7726 /* Builds a boolean type of precision PRECISION.
7727 Used for boolean vectors to choose proper vector element size. */
7729 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision
)
7733 if (precision
<= MAX_BOOL_CACHED_PREC
)
7735 type
= nonstandard_boolean_type_cache
[precision
];
7740 type
= make_node (BOOLEAN_TYPE
);
7741 TYPE_PRECISION (type
) = precision
;
7742 fixup_signed_type (type
);
7744 if (precision
<= MAX_INT_CACHED_PREC
)
7745 nonstandard_boolean_type_cache
[precision
] = type
;
7750 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7751 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7752 is true, reuse such a type that has already been constructed. */
7755 build_range_type_1 (tree type
, tree lowval
, tree highval
, bool shared
)
7757 tree itype
= make_node (INTEGER_TYPE
);
7759 TREE_TYPE (itype
) = type
;
7761 TYPE_MIN_VALUE (itype
) = fold_convert (type
, lowval
);
7762 TYPE_MAX_VALUE (itype
) = highval
? fold_convert (type
, highval
) : NULL
;
7764 TYPE_PRECISION (itype
) = TYPE_PRECISION (type
);
7765 SET_TYPE_MODE (itype
, TYPE_MODE (type
));
7766 TYPE_SIZE (itype
) = TYPE_SIZE (type
);
7767 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (type
);
7768 SET_TYPE_ALIGN (itype
, TYPE_ALIGN (type
));
7769 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (type
);
7770 SET_TYPE_WARN_IF_NOT_ALIGN (itype
, TYPE_WARN_IF_NOT_ALIGN (type
));
7775 if ((TYPE_MIN_VALUE (itype
)
7776 && TREE_CODE (TYPE_MIN_VALUE (itype
)) != INTEGER_CST
)
7777 || (TYPE_MAX_VALUE (itype
)
7778 && TREE_CODE (TYPE_MAX_VALUE (itype
)) != INTEGER_CST
))
7780 /* Since we cannot reliably merge this type, we need to compare it using
7781 structural equality checks. */
7782 SET_TYPE_STRUCTURAL_EQUALITY (itype
);
7786 hashval_t hash
= type_hash_canon_hash (itype
);
7787 itype
= type_hash_canon (hash
, itype
);
7792 /* Wrapper around build_range_type_1 with SHARED set to true. */
7795 build_range_type (tree type
, tree lowval
, tree highval
)
7797 return build_range_type_1 (type
, lowval
, highval
, true);
7800 /* Wrapper around build_range_type_1 with SHARED set to false. */
7803 build_nonshared_range_type (tree type
, tree lowval
, tree highval
)
7805 return build_range_type_1 (type
, lowval
, highval
, false);
7808 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7809 MAXVAL should be the maximum value in the domain
7810 (one less than the length of the array).
7812 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7813 We don't enforce this limit, that is up to caller (e.g. language front end).
7814 The limit exists because the result is a signed type and we don't handle
7815 sizes that use more than one HOST_WIDE_INT. */
7818 build_index_type (tree maxval
)
7820 return build_range_type (sizetype
, size_zero_node
, maxval
);
7823 /* Return true if the debug information for TYPE, a subtype, should be emitted
7824 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7825 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7826 debug info and doesn't reflect the source code. */
7829 subrange_type_for_debug_p (const_tree type
, tree
*lowval
, tree
*highval
)
7831 tree base_type
= TREE_TYPE (type
), low
, high
;
7833 /* Subrange types have a base type which is an integral type. */
7834 if (!INTEGRAL_TYPE_P (base_type
))
7837 /* Get the real bounds of the subtype. */
7838 if (lang_hooks
.types
.get_subrange_bounds
)
7839 lang_hooks
.types
.get_subrange_bounds (type
, &low
, &high
);
7842 low
= TYPE_MIN_VALUE (type
);
7843 high
= TYPE_MAX_VALUE (type
);
7846 /* If the type and its base type have the same representation and the same
7847 name, then the type is not a subrange but a copy of the base type. */
7848 if ((TREE_CODE (base_type
) == INTEGER_TYPE
7849 || TREE_CODE (base_type
) == BOOLEAN_TYPE
)
7850 && int_size_in_bytes (type
) == int_size_in_bytes (base_type
)
7851 && tree_int_cst_equal (low
, TYPE_MIN_VALUE (base_type
))
7852 && tree_int_cst_equal (high
, TYPE_MAX_VALUE (base_type
))
7853 && TYPE_IDENTIFIER (type
) == TYPE_IDENTIFIER (base_type
))
7863 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7864 and number of elements specified by the range of values of INDEX_TYPE.
7865 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7866 If SHARED is true, reuse such a type that has already been constructed. */
7869 build_array_type_1 (tree elt_type
, tree index_type
, bool typeless_storage
,
7874 if (TREE_CODE (elt_type
) == FUNCTION_TYPE
)
7876 error ("arrays of functions are not meaningful");
7877 elt_type
= integer_type_node
;
7880 t
= make_node (ARRAY_TYPE
);
7881 TREE_TYPE (t
) = elt_type
;
7882 TYPE_DOMAIN (t
) = index_type
;
7883 TYPE_ADDR_SPACE (t
) = TYPE_ADDR_SPACE (elt_type
);
7884 TYPE_TYPELESS_STORAGE (t
) = typeless_storage
;
7887 /* If the element type is incomplete at this point we get marked for
7888 structural equality. Do not record these types in the canonical
7890 if (TYPE_STRUCTURAL_EQUALITY_P (t
))
7895 hashval_t hash
= type_hash_canon_hash (t
);
7896 t
= type_hash_canon (hash
, t
);
7899 if (TYPE_CANONICAL (t
) == t
)
7901 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type
)
7902 || (index_type
&& TYPE_STRUCTURAL_EQUALITY_P (index_type
))
7904 SET_TYPE_STRUCTURAL_EQUALITY (t
);
7905 else if (TYPE_CANONICAL (elt_type
) != elt_type
7906 || (index_type
&& TYPE_CANONICAL (index_type
) != index_type
))
7908 = build_array_type_1 (TYPE_CANONICAL (elt_type
),
7910 ? TYPE_CANONICAL (index_type
) : NULL_TREE
,
7911 typeless_storage
, shared
);
7917 /* Wrapper around build_array_type_1 with SHARED set to true. */
7920 build_array_type (tree elt_type
, tree index_type
, bool typeless_storage
)
7922 return build_array_type_1 (elt_type
, index_type
, typeless_storage
, true);
7925 /* Wrapper around build_array_type_1 with SHARED set to false. */
7928 build_nonshared_array_type (tree elt_type
, tree index_type
)
7930 return build_array_type_1 (elt_type
, index_type
, false, false);
7933 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7937 build_array_type_nelts (tree elt_type
, poly_uint64 nelts
)
7939 return build_array_type (elt_type
, build_index_type (size_int (nelts
- 1)));
7942 /* Recursively examines the array elements of TYPE, until a non-array
7943 element type is found. */
7946 strip_array_types (tree type
)
7948 while (TREE_CODE (type
) == ARRAY_TYPE
)
7949 type
= TREE_TYPE (type
);
7954 /* Computes the canonical argument types from the argument type list
7957 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7958 on entry to this function, or if any of the ARGTYPES are
7961 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7962 true on entry to this function, or if any of the ARGTYPES are
7965 Returns a canonical argument list, which may be ARGTYPES when the
7966 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7967 true) or would not differ from ARGTYPES. */
7970 maybe_canonicalize_argtypes (tree argtypes
,
7971 bool *any_structural_p
,
7972 bool *any_noncanonical_p
)
7975 bool any_noncanonical_argtypes_p
= false;
7977 for (arg
= argtypes
; arg
&& !(*any_structural_p
); arg
= TREE_CHAIN (arg
))
7979 if (!TREE_VALUE (arg
) || TREE_VALUE (arg
) == error_mark_node
)
7980 /* Fail gracefully by stating that the type is structural. */
7981 *any_structural_p
= true;
7982 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg
)))
7983 *any_structural_p
= true;
7984 else if (TYPE_CANONICAL (TREE_VALUE (arg
)) != TREE_VALUE (arg
)
7985 || TREE_PURPOSE (arg
))
7986 /* If the argument has a default argument, we consider it
7987 non-canonical even though the type itself is canonical.
7988 That way, different variants of function and method types
7989 with default arguments will all point to the variant with
7990 no defaults as their canonical type. */
7991 any_noncanonical_argtypes_p
= true;
7994 if (*any_structural_p
)
7997 if (any_noncanonical_argtypes_p
)
7999 /* Build the canonical list of argument types. */
8000 tree canon_argtypes
= NULL_TREE
;
8001 bool is_void
= false;
8003 for (arg
= argtypes
; arg
; arg
= TREE_CHAIN (arg
))
8005 if (arg
== void_list_node
)
8008 canon_argtypes
= tree_cons (NULL_TREE
,
8009 TYPE_CANONICAL (TREE_VALUE (arg
)),
8013 canon_argtypes
= nreverse (canon_argtypes
);
8015 canon_argtypes
= chainon (canon_argtypes
, void_list_node
);
8017 /* There is a non-canonical type. */
8018 *any_noncanonical_p
= true;
8019 return canon_argtypes
;
8022 /* The canonical argument types are the same as ARGTYPES. */
8026 /* Construct, lay out and return
8027 the type of functions returning type VALUE_TYPE
8028 given arguments of types ARG_TYPES.
8029 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8030 are data type nodes for the arguments of the function.
8031 If such a type has already been constructed, reuse it. */
8034 build_function_type (tree value_type
, tree arg_types
)
8037 inchash::hash hstate
;
8038 bool any_structural_p
, any_noncanonical_p
;
8039 tree canon_argtypes
;
8041 if (TREE_CODE (value_type
) == FUNCTION_TYPE
)
8043 error ("function return type cannot be function");
8044 value_type
= integer_type_node
;
8047 /* Make a node of the sort we want. */
8048 t
= make_node (FUNCTION_TYPE
);
8049 TREE_TYPE (t
) = value_type
;
8050 TYPE_ARG_TYPES (t
) = arg_types
;
8052 /* If we already have such a type, use the old one. */
8053 hashval_t hash
= type_hash_canon_hash (t
);
8054 t
= type_hash_canon (hash
, t
);
8056 /* Set up the canonical type. */
8057 any_structural_p
= TYPE_STRUCTURAL_EQUALITY_P (value_type
);
8058 any_noncanonical_p
= TYPE_CANONICAL (value_type
) != value_type
;
8059 canon_argtypes
= maybe_canonicalize_argtypes (arg_types
,
8061 &any_noncanonical_p
);
8062 if (any_structural_p
)
8063 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8064 else if (any_noncanonical_p
)
8065 TYPE_CANONICAL (t
) = build_function_type (TYPE_CANONICAL (value_type
),
8068 if (!COMPLETE_TYPE_P (t
))
8073 /* Build a function type. The RETURN_TYPE is the type returned by the
8074 function. If VAARGS is set, no void_type_node is appended to the
8075 list. ARGP must be always be terminated be a NULL_TREE. */
8078 build_function_type_list_1 (bool vaargs
, tree return_type
, va_list argp
)
8082 t
= va_arg (argp
, tree
);
8083 for (args
= NULL_TREE
; t
!= NULL_TREE
; t
= va_arg (argp
, tree
))
8084 args
= tree_cons (NULL_TREE
, t
, args
);
8089 if (args
!= NULL_TREE
)
8090 args
= nreverse (args
);
8091 gcc_assert (last
!= void_list_node
);
8093 else if (args
== NULL_TREE
)
8094 args
= void_list_node
;
8098 args
= nreverse (args
);
8099 TREE_CHAIN (last
) = void_list_node
;
8101 args
= build_function_type (return_type
, args
);
8106 /* Build a function type. The RETURN_TYPE is the type returned by the
8107 function. If additional arguments are provided, they are
8108 additional argument types. The list of argument types must always
8109 be terminated by NULL_TREE. */
8112 build_function_type_list (tree return_type
, ...)
8117 va_start (p
, return_type
);
8118 args
= build_function_type_list_1 (false, return_type
, p
);
8123 /* Build a variable argument function type. The RETURN_TYPE is the
8124 type returned by the function. If additional arguments are provided,
8125 they are additional argument types. The list of argument types must
8126 always be terminated by NULL_TREE. */
8129 build_varargs_function_type_list (tree return_type
, ...)
8134 va_start (p
, return_type
);
8135 args
= build_function_type_list_1 (true, return_type
, p
);
8141 /* Build a function type. RETURN_TYPE is the type returned by the
8142 function; VAARGS indicates whether the function takes varargs. The
8143 function takes N named arguments, the types of which are provided in
8147 build_function_type_array_1 (bool vaargs
, tree return_type
, int n
,
8151 tree t
= vaargs
? NULL_TREE
: void_list_node
;
8153 for (i
= n
- 1; i
>= 0; i
--)
8154 t
= tree_cons (NULL_TREE
, arg_types
[i
], t
);
8156 return build_function_type (return_type
, t
);
8159 /* Build a function type. RETURN_TYPE is the type returned by the
8160 function. The function takes N named arguments, the types of which
8161 are provided in ARG_TYPES. */
8164 build_function_type_array (tree return_type
, int n
, tree
*arg_types
)
8166 return build_function_type_array_1 (false, return_type
, n
, arg_types
);
8169 /* Build a variable argument function type. RETURN_TYPE is the type
8170 returned by the function. The function takes N named arguments, the
8171 types of which are provided in ARG_TYPES. */
8174 build_varargs_function_type_array (tree return_type
, int n
, tree
*arg_types
)
8176 return build_function_type_array_1 (true, return_type
, n
, arg_types
);
8179 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8180 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8181 for the method. An implicit additional parameter (of type
8182 pointer-to-BASETYPE) is added to the ARGTYPES. */
8185 build_method_type_directly (tree basetype
,
8191 bool any_structural_p
, any_noncanonical_p
;
8192 tree canon_argtypes
;
8194 /* Make a node of the sort we want. */
8195 t
= make_node (METHOD_TYPE
);
8197 TYPE_METHOD_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
8198 TREE_TYPE (t
) = rettype
;
8199 ptype
= build_pointer_type (basetype
);
8201 /* The actual arglist for this function includes a "hidden" argument
8202 which is "this". Put it into the list of argument types. */
8203 argtypes
= tree_cons (NULL_TREE
, ptype
, argtypes
);
8204 TYPE_ARG_TYPES (t
) = argtypes
;
8206 /* If we already have such a type, use the old one. */
8207 hashval_t hash
= type_hash_canon_hash (t
);
8208 t
= type_hash_canon (hash
, t
);
8210 /* Set up the canonical type. */
8212 = (TYPE_STRUCTURAL_EQUALITY_P (basetype
)
8213 || TYPE_STRUCTURAL_EQUALITY_P (rettype
));
8215 = (TYPE_CANONICAL (basetype
) != basetype
8216 || TYPE_CANONICAL (rettype
) != rettype
);
8217 canon_argtypes
= maybe_canonicalize_argtypes (TREE_CHAIN (argtypes
),
8219 &any_noncanonical_p
);
8220 if (any_structural_p
)
8221 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8222 else if (any_noncanonical_p
)
8224 = build_method_type_directly (TYPE_CANONICAL (basetype
),
8225 TYPE_CANONICAL (rettype
),
8227 if (!COMPLETE_TYPE_P (t
))
8233 /* Construct, lay out and return the type of methods belonging to class
8234 BASETYPE and whose arguments and values are described by TYPE.
8235 If that type exists already, reuse it.
8236 TYPE must be a FUNCTION_TYPE node. */
8239 build_method_type (tree basetype
, tree type
)
8241 gcc_assert (TREE_CODE (type
) == FUNCTION_TYPE
);
8243 return build_method_type_directly (basetype
,
8245 TYPE_ARG_TYPES (type
));
8248 /* Construct, lay out and return the type of offsets to a value
8249 of type TYPE, within an object of type BASETYPE.
8250 If a suitable offset type exists already, reuse it. */
8253 build_offset_type (tree basetype
, tree type
)
8257 /* Make a node of the sort we want. */
8258 t
= make_node (OFFSET_TYPE
);
8260 TYPE_OFFSET_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
8261 TREE_TYPE (t
) = type
;
8263 /* If we already have such a type, use the old one. */
8264 hashval_t hash
= type_hash_canon_hash (t
);
8265 t
= type_hash_canon (hash
, t
);
8267 if (!COMPLETE_TYPE_P (t
))
8270 if (TYPE_CANONICAL (t
) == t
)
8272 if (TYPE_STRUCTURAL_EQUALITY_P (basetype
)
8273 || TYPE_STRUCTURAL_EQUALITY_P (type
))
8274 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8275 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype
)) != basetype
8276 || TYPE_CANONICAL (type
) != type
)
8278 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype
)),
8279 TYPE_CANONICAL (type
));
8285 /* Create a complex type whose components are COMPONENT_TYPE.
8287 If NAMED is true, the type is given a TYPE_NAME. We do not always
8288 do so because this creates a DECL node and thus make the DECL_UIDs
8289 dependent on the type canonicalization hashtable, which is GC-ed,
8290 so the DECL_UIDs would not be stable wrt garbage collection. */
8293 build_complex_type (tree component_type
, bool named
)
8295 gcc_assert (INTEGRAL_TYPE_P (component_type
)
8296 || SCALAR_FLOAT_TYPE_P (component_type
)
8297 || FIXED_POINT_TYPE_P (component_type
));
8299 /* Make a node of the sort we want. */
8300 tree probe
= make_node (COMPLEX_TYPE
);
8302 TREE_TYPE (probe
) = TYPE_MAIN_VARIANT (component_type
);
8304 /* If we already have such a type, use the old one. */
8305 hashval_t hash
= type_hash_canon_hash (probe
);
8306 tree t
= type_hash_canon (hash
, probe
);
8310 /* We created a new type. The hash insertion will have laid
8311 out the type. We need to check the canonicalization and
8312 maybe set the name. */
8313 gcc_checking_assert (COMPLETE_TYPE_P (t
)
8315 && TYPE_CANONICAL (t
) == t
);
8317 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t
)))
8318 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8319 else if (TYPE_CANONICAL (TREE_TYPE (t
)) != TREE_TYPE (t
))
8321 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t
)), named
);
8323 /* We need to create a name, since complex is a fundamental type. */
8326 const char *name
= NULL
;
8328 if (TREE_TYPE (t
) == char_type_node
)
8329 name
= "complex char";
8330 else if (TREE_TYPE (t
) == signed_char_type_node
)
8331 name
= "complex signed char";
8332 else if (TREE_TYPE (t
) == unsigned_char_type_node
)
8333 name
= "complex unsigned char";
8334 else if (TREE_TYPE (t
) == short_integer_type_node
)
8335 name
= "complex short int";
8336 else if (TREE_TYPE (t
) == short_unsigned_type_node
)
8337 name
= "complex short unsigned int";
8338 else if (TREE_TYPE (t
) == integer_type_node
)
8339 name
= "complex int";
8340 else if (TREE_TYPE (t
) == unsigned_type_node
)
8341 name
= "complex unsigned int";
8342 else if (TREE_TYPE (t
) == long_integer_type_node
)
8343 name
= "complex long int";
8344 else if (TREE_TYPE (t
) == long_unsigned_type_node
)
8345 name
= "complex long unsigned int";
8346 else if (TREE_TYPE (t
) == long_long_integer_type_node
)
8347 name
= "complex long long int";
8348 else if (TREE_TYPE (t
) == long_long_unsigned_type_node
)
8349 name
= "complex long long unsigned int";
8352 TYPE_NAME (t
) = build_decl (UNKNOWN_LOCATION
, TYPE_DECL
,
8353 get_identifier (name
), t
);
8357 return build_qualified_type (t
, TYPE_QUALS (component_type
));
8360 /* If TYPE is a real or complex floating-point type and the target
8361 does not directly support arithmetic on TYPE then return the wider
8362 type to be used for arithmetic on TYPE. Otherwise, return
8366 excess_precision_type (tree type
)
8368 /* The target can give two different responses to the question of
8369 which excess precision mode it would like depending on whether we
8370 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8372 enum excess_precision_type requested_type
8373 = (flag_excess_precision
== EXCESS_PRECISION_FAST
8374 ? EXCESS_PRECISION_TYPE_FAST
8375 : EXCESS_PRECISION_TYPE_STANDARD
);
8377 enum flt_eval_method target_flt_eval_method
8378 = targetm
.c
.excess_precision (requested_type
);
8380 /* The target should not ask for unpredictable float evaluation (though
8381 it might advertise that implicitly the evaluation is unpredictable,
8382 but we don't care about that here, it will have been reported
8383 elsewhere). If it does ask for unpredictable evaluation, we have
8384 nothing to do here. */
8385 gcc_assert (target_flt_eval_method
!= FLT_EVAL_METHOD_UNPREDICTABLE
);
8387 /* Nothing to do. The target has asked for all types we know about
8388 to be computed with their native precision and range. */
8389 if (target_flt_eval_method
== FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16
)
8392 /* The target will promote this type in a target-dependent way, so excess
8393 precision ought to leave it alone. */
8394 if (targetm
.promoted_type (type
) != NULL_TREE
)
8397 machine_mode float16_type_mode
= (float16_type_node
8398 ? TYPE_MODE (float16_type_node
)
8400 machine_mode float_type_mode
= TYPE_MODE (float_type_node
);
8401 machine_mode double_type_mode
= TYPE_MODE (double_type_node
);
8403 switch (TREE_CODE (type
))
8407 machine_mode type_mode
= TYPE_MODE (type
);
8408 switch (target_flt_eval_method
)
8410 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT
:
8411 if (type_mode
== float16_type_mode
)
8412 return float_type_node
;
8414 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE
:
8415 if (type_mode
== float16_type_mode
8416 || type_mode
== float_type_mode
)
8417 return double_type_node
;
8419 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE
:
8420 if (type_mode
== float16_type_mode
8421 || type_mode
== float_type_mode
8422 || type_mode
== double_type_mode
)
8423 return long_double_type_node
;
8432 if (TREE_CODE (TREE_TYPE (type
)) != REAL_TYPE
)
8434 machine_mode type_mode
= TYPE_MODE (TREE_TYPE (type
));
8435 switch (target_flt_eval_method
)
8437 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT
:
8438 if (type_mode
== float16_type_mode
)
8439 return complex_float_type_node
;
8441 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE
:
8442 if (type_mode
== float16_type_mode
8443 || type_mode
== float_type_mode
)
8444 return complex_double_type_node
;
8446 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE
:
8447 if (type_mode
== float16_type_mode
8448 || type_mode
== float_type_mode
8449 || type_mode
== double_type_mode
)
8450 return complex_long_double_type_node
;
8464 /* Return OP, stripped of any conversions to wider types as much as is safe.
8465 Converting the value back to OP's type makes a value equivalent to OP.
8467 If FOR_TYPE is nonzero, we return a value which, if converted to
8468 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8470 OP must have integer, real or enumeral type. Pointers are not allowed!
8472 There are some cases where the obvious value we could return
8473 would regenerate to OP if converted to OP's type,
8474 but would not extend like OP to wider types.
8475 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8476 For example, if OP is (unsigned short)(signed char)-1,
8477 we avoid returning (signed char)-1 if FOR_TYPE is int,
8478 even though extending that to an unsigned short would regenerate OP,
8479 since the result of extending (signed char)-1 to (int)
8480 is different from (int) OP. */
8483 get_unwidened (tree op
, tree for_type
)
8485 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8486 tree type
= TREE_TYPE (op
);
8488 = TYPE_PRECISION (for_type
!= 0 ? for_type
: type
);
8490 = (for_type
!= 0 && for_type
!= type
8491 && final_prec
> TYPE_PRECISION (type
)
8492 && TYPE_UNSIGNED (type
));
8495 while (CONVERT_EXPR_P (op
))
8499 /* TYPE_PRECISION on vector types has different meaning
8500 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8501 so avoid them here. */
8502 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op
, 0))) == VECTOR_TYPE
)
8505 bitschange
= TYPE_PRECISION (TREE_TYPE (op
))
8506 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0)));
8508 /* Truncations are many-one so cannot be removed.
8509 Unless we are later going to truncate down even farther. */
8511 && final_prec
> TYPE_PRECISION (TREE_TYPE (op
)))
8514 /* See what's inside this conversion. If we decide to strip it,
8516 op
= TREE_OPERAND (op
, 0);
8518 /* If we have not stripped any zero-extensions (uns is 0),
8519 we can strip any kind of extension.
8520 If we have previously stripped a zero-extension,
8521 only zero-extensions can safely be stripped.
8522 Any extension can be stripped if the bits it would produce
8523 are all going to be discarded later by truncating to FOR_TYPE. */
8527 if (! uns
|| final_prec
<= TYPE_PRECISION (TREE_TYPE (op
)))
8529 /* TYPE_UNSIGNED says whether this is a zero-extension.
8530 Let's avoid computing it if it does not affect WIN
8531 and if UNS will not be needed again. */
8533 || CONVERT_EXPR_P (op
))
8534 && TYPE_UNSIGNED (TREE_TYPE (op
)))
8542 /* If we finally reach a constant see if it fits in sth smaller and
8543 in that case convert it. */
8544 if (TREE_CODE (win
) == INTEGER_CST
)
8546 tree wtype
= TREE_TYPE (win
);
8547 unsigned prec
= wi::min_precision (wi::to_wide (win
), TYPE_SIGN (wtype
));
8549 prec
= MAX (prec
, final_prec
);
8550 if (prec
< TYPE_PRECISION (wtype
))
8552 tree t
= lang_hooks
.types
.type_for_size (prec
, TYPE_UNSIGNED (wtype
));
8553 if (t
&& TYPE_PRECISION (t
) < TYPE_PRECISION (wtype
))
8554 win
= fold_convert (t
, win
);
8561 /* Return OP or a simpler expression for a narrower value
8562 which can be sign-extended or zero-extended to give back OP.
8563 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8564 or 0 if the value should be sign-extended. */
8567 get_narrower (tree op
, int *unsignedp_ptr
)
8572 bool integral_p
= INTEGRAL_TYPE_P (TREE_TYPE (op
));
8574 while (TREE_CODE (op
) == NOP_EXPR
)
8577 = (TYPE_PRECISION (TREE_TYPE (op
))
8578 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0))));
8580 /* Truncations are many-one so cannot be removed. */
8584 /* See what's inside this conversion. If we decide to strip it,
8589 op
= TREE_OPERAND (op
, 0);
8590 /* An extension: the outermost one can be stripped,
8591 but remember whether it is zero or sign extension. */
8593 uns
= TYPE_UNSIGNED (TREE_TYPE (op
));
8594 /* Otherwise, if a sign extension has been stripped,
8595 only sign extensions can now be stripped;
8596 if a zero extension has been stripped, only zero-extensions. */
8597 else if (uns
!= TYPE_UNSIGNED (TREE_TYPE (op
)))
8601 else /* bitschange == 0 */
8603 /* A change in nominal type can always be stripped, but we must
8604 preserve the unsignedness. */
8606 uns
= TYPE_UNSIGNED (TREE_TYPE (op
));
8608 op
= TREE_OPERAND (op
, 0);
8609 /* Keep trying to narrow, but don't assign op to win if it
8610 would turn an integral type into something else. */
8611 if (INTEGRAL_TYPE_P (TREE_TYPE (op
)) != integral_p
)
8618 if (TREE_CODE (op
) == COMPONENT_REF
8619 /* Since type_for_size always gives an integer type. */
8620 && TREE_CODE (TREE_TYPE (op
)) != REAL_TYPE
8621 && TREE_CODE (TREE_TYPE (op
)) != FIXED_POINT_TYPE
8622 /* Ensure field is laid out already. */
8623 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0
8624 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op
, 1))))
8626 unsigned HOST_WIDE_INT innerprec
8627 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op
, 1)));
8628 int unsignedp
= (DECL_UNSIGNED (TREE_OPERAND (op
, 1))
8629 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op
, 1))));
8630 tree type
= lang_hooks
.types
.type_for_size (innerprec
, unsignedp
);
8632 /* We can get this structure field in a narrower type that fits it,
8633 but the resulting extension to its nominal type (a fullword type)
8634 must satisfy the same conditions as for other extensions.
8636 Do this only for fields that are aligned (not bit-fields),
8637 because when bit-field insns will be used there is no
8638 advantage in doing this. */
8640 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
8641 && ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1))
8642 && (first
|| uns
== DECL_UNSIGNED (TREE_OPERAND (op
, 1)))
8646 uns
= DECL_UNSIGNED (TREE_OPERAND (op
, 1));
8647 win
= fold_convert (type
, op
);
8651 *unsignedp_ptr
= uns
;
8655 /* Return true if integer constant C has a value that is permissible
8656 for TYPE, an integral type. */
8659 int_fits_type_p (const_tree c
, const_tree type
)
8661 tree type_low_bound
, type_high_bound
;
8662 bool ok_for_low_bound
, ok_for_high_bound
;
8663 signop sgn_c
= TYPE_SIGN (TREE_TYPE (c
));
8665 /* Non-standard boolean types can have arbitrary precision but various
8666 transformations assume that they can only take values 0 and +/-1. */
8667 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
8668 return wi::fits_to_boolean_p (wi::to_wide (c
), type
);
8671 type_low_bound
= TYPE_MIN_VALUE (type
);
8672 type_high_bound
= TYPE_MAX_VALUE (type
);
8674 /* If at least one bound of the type is a constant integer, we can check
8675 ourselves and maybe make a decision. If no such decision is possible, but
8676 this type is a subtype, try checking against that. Otherwise, use
8677 fits_to_tree_p, which checks against the precision.
8679 Compute the status for each possibly constant bound, and return if we see
8680 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8681 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8682 for "constant known to fit". */
8684 /* Check if c >= type_low_bound. */
8685 if (type_low_bound
&& TREE_CODE (type_low_bound
) == INTEGER_CST
)
8687 if (tree_int_cst_lt (c
, type_low_bound
))
8689 ok_for_low_bound
= true;
8692 ok_for_low_bound
= false;
8694 /* Check if c <= type_high_bound. */
8695 if (type_high_bound
&& TREE_CODE (type_high_bound
) == INTEGER_CST
)
8697 if (tree_int_cst_lt (type_high_bound
, c
))
8699 ok_for_high_bound
= true;
8702 ok_for_high_bound
= false;
8704 /* If the constant fits both bounds, the result is known. */
8705 if (ok_for_low_bound
&& ok_for_high_bound
)
8708 /* Perform some generic filtering which may allow making a decision
8709 even if the bounds are not constant. First, negative integers
8710 never fit in unsigned types, */
8711 if (TYPE_UNSIGNED (type
) && sgn_c
== SIGNED
&& wi::neg_p (wi::to_wide (c
)))
8714 /* Second, narrower types always fit in wider ones. */
8715 if (TYPE_PRECISION (type
) > TYPE_PRECISION (TREE_TYPE (c
)))
8718 /* Third, unsigned integers with top bit set never fit signed types. */
8719 if (!TYPE_UNSIGNED (type
) && sgn_c
== UNSIGNED
)
8721 int prec
= GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c
))) - 1;
8722 if (prec
< TYPE_PRECISION (TREE_TYPE (c
)))
8724 /* When a tree_cst is converted to a wide-int, the precision
8725 is taken from the type. However, if the precision of the
8726 mode underneath the type is smaller than that, it is
8727 possible that the value will not fit. The test below
8728 fails if any bit is set between the sign bit of the
8729 underlying mode and the top bit of the type. */
8730 if (wi::zext (wi::to_wide (c
), prec
- 1) != wi::to_wide (c
))
8733 else if (wi::neg_p (wi::to_wide (c
)))
8737 /* If we haven't been able to decide at this point, there nothing more we
8738 can check ourselves here. Look at the base type if we have one and it
8739 has the same precision. */
8740 if (TREE_CODE (type
) == INTEGER_TYPE
8741 && TREE_TYPE (type
) != 0
8742 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (type
)))
8744 type
= TREE_TYPE (type
);
8748 /* Or to fits_to_tree_p, if nothing else. */
8749 return wi::fits_to_tree_p (wi::to_wide (c
), type
);
8752 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8753 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8754 represented (assuming two's-complement arithmetic) within the bit
8755 precision of the type are returned instead. */
8758 get_type_static_bounds (const_tree type
, mpz_t min
, mpz_t max
)
8760 if (!POINTER_TYPE_P (type
) && TYPE_MIN_VALUE (type
)
8761 && TREE_CODE (TYPE_MIN_VALUE (type
)) == INTEGER_CST
)
8762 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type
)), min
, TYPE_SIGN (type
));
8765 if (TYPE_UNSIGNED (type
))
8766 mpz_set_ui (min
, 0);
8769 wide_int mn
= wi::min_value (TYPE_PRECISION (type
), SIGNED
);
8770 wi::to_mpz (mn
, min
, SIGNED
);
8774 if (!POINTER_TYPE_P (type
) && TYPE_MAX_VALUE (type
)
8775 && TREE_CODE (TYPE_MAX_VALUE (type
)) == INTEGER_CST
)
8776 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type
)), max
, TYPE_SIGN (type
));
8779 wide_int mn
= wi::max_value (TYPE_PRECISION (type
), TYPE_SIGN (type
));
8780 wi::to_mpz (mn
, max
, TYPE_SIGN (type
));
8784 /* Return true if VAR is an automatic variable defined in function FN. */
8787 auto_var_in_fn_p (const_tree var
, const_tree fn
)
8789 return (DECL_P (var
) && DECL_CONTEXT (var
) == fn
8790 && ((((VAR_P (var
) && ! DECL_EXTERNAL (var
))
8791 || TREE_CODE (var
) == PARM_DECL
)
8792 && ! TREE_STATIC (var
))
8793 || TREE_CODE (var
) == LABEL_DECL
8794 || TREE_CODE (var
) == RESULT_DECL
));
8797 /* Subprogram of following function. Called by walk_tree.
8799 Return *TP if it is an automatic variable or parameter of the
8800 function passed in as DATA. */
8803 find_var_from_fn (tree
*tp
, int *walk_subtrees
, void *data
)
8805 tree fn
= (tree
) data
;
8810 else if (DECL_P (*tp
)
8811 && auto_var_in_fn_p (*tp
, fn
))
8817 /* Returns true if T is, contains, or refers to a type with variable
8818 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8819 arguments, but not the return type. If FN is nonzero, only return
8820 true if a modifier of the type or position of FN is a variable or
8821 parameter inside FN.
8823 This concept is more general than that of C99 'variably modified types':
8824 in C99, a struct type is never variably modified because a VLA may not
8825 appear as a structure member. However, in GNU C code like:
8827 struct S { int i[f()]; };
8829 is valid, and other languages may define similar constructs. */
8832 variably_modified_type_p (tree type
, tree fn
)
8836 /* Test if T is either variable (if FN is zero) or an expression containing
8837 a variable in FN. If TYPE isn't gimplified, return true also if
8838 gimplify_one_sizepos would gimplify the expression into a local
8840 #define RETURN_TRUE_IF_VAR(T) \
8841 do { tree _t = (T); \
8842 if (_t != NULL_TREE \
8843 && _t != error_mark_node \
8844 && !CONSTANT_CLASS_P (_t) \
8845 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8847 || (!TYPE_SIZES_GIMPLIFIED (type) \
8848 && (TREE_CODE (_t) != VAR_DECL \
8849 && !CONTAINS_PLACEHOLDER_P (_t))) \
8850 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8851 return true; } while (0)
8853 if (type
== error_mark_node
)
8856 /* If TYPE itself has variable size, it is variably modified. */
8857 RETURN_TRUE_IF_VAR (TYPE_SIZE (type
));
8858 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type
));
8860 switch (TREE_CODE (type
))
8863 case REFERENCE_TYPE
:
8865 /* Ada can have pointer types refering to themselves indirectly. */
8866 if (TREE_VISITED (type
))
8868 TREE_VISITED (type
) = true;
8869 if (variably_modified_type_p (TREE_TYPE (type
), fn
))
8871 TREE_VISITED (type
) = false;
8874 TREE_VISITED (type
) = false;
8879 /* If TYPE is a function type, it is variably modified if the
8880 return type is variably modified. */
8881 if (variably_modified_type_p (TREE_TYPE (type
), fn
))
8887 case FIXED_POINT_TYPE
:
8890 /* Scalar types are variably modified if their end points
8892 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type
));
8893 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type
));
8898 case QUAL_UNION_TYPE
:
8899 /* We can't see if any of the fields are variably-modified by the
8900 definition we normally use, since that would produce infinite
8901 recursion via pointers. */
8902 /* This is variably modified if some field's type is. */
8903 for (t
= TYPE_FIELDS (type
); t
; t
= DECL_CHAIN (t
))
8904 if (TREE_CODE (t
) == FIELD_DECL
)
8906 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t
));
8907 RETURN_TRUE_IF_VAR (DECL_SIZE (t
));
8908 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t
));
8910 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
8911 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t
));
8916 /* Do not call ourselves to avoid infinite recursion. This is
8917 variably modified if the element type is. */
8918 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type
)));
8919 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type
)));
8926 /* The current language may have other cases to check, but in general,
8927 all other types are not variably modified. */
8928 return lang_hooks
.tree_inlining
.var_mod_type_p (type
, fn
);
8930 #undef RETURN_TRUE_IF_VAR
8933 /* Given a DECL or TYPE, return the scope in which it was declared, or
8934 NULL_TREE if there is no containing scope. */
8937 get_containing_scope (const_tree t
)
8939 return (TYPE_P (t
) ? TYPE_CONTEXT (t
) : DECL_CONTEXT (t
));
8942 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
8945 get_ultimate_context (const_tree decl
)
8947 while (decl
&& TREE_CODE (decl
) != TRANSLATION_UNIT_DECL
)
8949 if (TREE_CODE (decl
) == BLOCK
)
8950 decl
= BLOCK_SUPERCONTEXT (decl
);
8952 decl
= get_containing_scope (decl
);
8957 /* Return the innermost context enclosing DECL that is
8958 a FUNCTION_DECL, or zero if none. */
8961 decl_function_context (const_tree decl
)
8965 if (TREE_CODE (decl
) == ERROR_MARK
)
8968 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8969 where we look up the function at runtime. Such functions always take
8970 a first argument of type 'pointer to real context'.
8972 C++ should really be fixed to use DECL_CONTEXT for the real context,
8973 and use something else for the "virtual context". */
8974 else if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_VINDEX (decl
))
8977 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
8979 context
= DECL_CONTEXT (decl
);
8981 while (context
&& TREE_CODE (context
) != FUNCTION_DECL
)
8983 if (TREE_CODE (context
) == BLOCK
)
8984 context
= BLOCK_SUPERCONTEXT (context
);
8986 context
= get_containing_scope (context
);
8992 /* Return the innermost context enclosing DECL that is
8993 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8994 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8997 decl_type_context (const_tree decl
)
8999 tree context
= DECL_CONTEXT (decl
);
9002 switch (TREE_CODE (context
))
9004 case NAMESPACE_DECL
:
9005 case TRANSLATION_UNIT_DECL
:
9010 case QUAL_UNION_TYPE
:
9015 context
= DECL_CONTEXT (context
);
9019 context
= BLOCK_SUPERCONTEXT (context
);
9029 /* CALL is a CALL_EXPR. Return the declaration for the function
9030 called, or NULL_TREE if the called function cannot be
9034 get_callee_fndecl (const_tree call
)
9038 if (call
== error_mark_node
)
9039 return error_mark_node
;
9041 /* It's invalid to call this function with anything but a
9043 gcc_assert (TREE_CODE (call
) == CALL_EXPR
);
9045 /* The first operand to the CALL is the address of the function
9047 addr
= CALL_EXPR_FN (call
);
9049 /* If there is no function, return early. */
9050 if (addr
== NULL_TREE
)
9055 /* If this is a readonly function pointer, extract its initial value. */
9056 if (DECL_P (addr
) && TREE_CODE (addr
) != FUNCTION_DECL
9057 && TREE_READONLY (addr
) && ! TREE_THIS_VOLATILE (addr
)
9058 && DECL_INITIAL (addr
))
9059 addr
= DECL_INITIAL (addr
);
9061 /* If the address is just `&f' for some function `f', then we know
9062 that `f' is being called. */
9063 if (TREE_CODE (addr
) == ADDR_EXPR
9064 && TREE_CODE (TREE_OPERAND (addr
, 0)) == FUNCTION_DECL
)
9065 return TREE_OPERAND (addr
, 0);
9067 /* We couldn't figure out what was being called. */
9071 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9072 return the associated function code, otherwise return CFN_LAST. */
9075 get_call_combined_fn (const_tree call
)
9077 /* It's invalid to call this function with anything but a CALL_EXPR. */
9078 gcc_assert (TREE_CODE (call
) == CALL_EXPR
);
9080 if (!CALL_EXPR_FN (call
))
9081 return as_combined_fn (CALL_EXPR_IFN (call
));
9083 tree fndecl
= get_callee_fndecl (call
);
9084 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
9085 return as_combined_fn (DECL_FUNCTION_CODE (fndecl
));
9090 #define TREE_MEM_USAGE_SPACES 40
9092 /* Print debugging information about tree nodes generated during the compile,
9093 and any language-specific information. */
9096 dump_tree_statistics (void)
9098 if (GATHER_STATISTICS
)
9101 uint64_t total_nodes
, total_bytes
;
9102 fprintf (stderr
, "\nKind Nodes Bytes\n");
9103 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9104 total_nodes
= total_bytes
= 0;
9105 for (i
= 0; i
< (int) all_kinds
; i
++)
9107 fprintf (stderr
, "%-20s %7" PRIu64
" %10" PRIu64
"\n",
9108 tree_node_kind_names
[i
], tree_node_counts
[i
],
9109 tree_node_sizes
[i
]);
9110 total_nodes
+= tree_node_counts
[i
];
9111 total_bytes
+= tree_node_sizes
[i
];
9113 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9114 fprintf (stderr
, "%-20s %7" PRIu64
" %10" PRIu64
"\n", "Total",
9115 total_nodes
, total_bytes
);
9116 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9117 fprintf (stderr
, "Code Nodes\n");
9118 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9119 for (i
= 0; i
< (int) MAX_TREE_CODES
; i
++)
9120 fprintf (stderr
, "%-32s %7" PRIu64
"\n",
9121 get_tree_code_name ((enum tree_code
) i
), tree_code_counts
[i
]);
9122 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9123 fprintf (stderr
, "\n");
9124 ssanames_print_statistics ();
9125 fprintf (stderr
, "\n");
9126 phinodes_print_statistics ();
9127 fprintf (stderr
, "\n");
9130 fprintf (stderr
, "(No per-node statistics)\n");
9132 print_type_hash_statistics ();
9133 print_debug_expr_statistics ();
9134 print_value_expr_statistics ();
9135 lang_hooks
.print_statistics ();
9138 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9140 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9143 crc32_unsigned_n (unsigned chksum
, unsigned value
, unsigned bytes
)
9145 /* This relies on the raw feedback's top 4 bits being zero. */
9146 #define FEEDBACK(X) ((X) * 0x04c11db7)
9147 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9148 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9149 static const unsigned syndromes
[16] =
9151 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9152 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9153 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9154 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9159 value
<<= (32 - bytes
* 8);
9160 for (unsigned ix
= bytes
* 2; ix
--; value
<<= 4)
9162 unsigned feedback
= syndromes
[((value
^ chksum
) >> 28) & 0xf];
9164 chksum
= (chksum
<< 4) ^ feedback
;
9170 /* Generate a crc32 of a string. */
9173 crc32_string (unsigned chksum
, const char *string
)
9176 chksum
= crc32_byte (chksum
, *string
);
9181 /* P is a string that will be used in a symbol. Mask out any characters
9182 that are not valid in that context. */
9185 clean_symbol_name (char *p
)
9189 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9192 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9199 /* For anonymous aggregate types, we need some sort of name to
9200 hold on to. In practice, this should not appear, but it should
9201 not be harmful if it does. */
9203 anon_aggrname_p(const_tree id_node
)
9205 #ifndef NO_DOT_IN_LABEL
9206 return (IDENTIFIER_POINTER (id_node
)[0] == '.'
9207 && IDENTIFIER_POINTER (id_node
)[1] == '_');
9208 #else /* NO_DOT_IN_LABEL */
9209 #ifndef NO_DOLLAR_IN_LABEL
9210 return (IDENTIFIER_POINTER (id_node
)[0] == '$' \
9211 && IDENTIFIER_POINTER (id_node
)[1] == '_');
9212 #else /* NO_DOLLAR_IN_LABEL */
9213 #define ANON_AGGRNAME_PREFIX "__anon_"
9214 return (!strncmp (IDENTIFIER_POINTER (id_node
), ANON_AGGRNAME_PREFIX
,
9215 sizeof (ANON_AGGRNAME_PREFIX
) - 1));
9216 #endif /* NO_DOLLAR_IN_LABEL */
9217 #endif /* NO_DOT_IN_LABEL */
9220 /* Return a format for an anonymous aggregate name. */
9222 anon_aggrname_format()
9224 #ifndef NO_DOT_IN_LABEL
9226 #else /* NO_DOT_IN_LABEL */
9227 #ifndef NO_DOLLAR_IN_LABEL
9229 #else /* NO_DOLLAR_IN_LABEL */
9231 #endif /* NO_DOLLAR_IN_LABEL */
9232 #endif /* NO_DOT_IN_LABEL */
9235 /* Generate a name for a special-purpose function.
9236 The generated name may need to be unique across the whole link.
9237 Changes to this function may also require corresponding changes to
9238 xstrdup_mask_random.
9239 TYPE is some string to identify the purpose of this function to the
9240 linker or collect2; it must start with an uppercase letter,
9242 I - for constructors
9244 N - for C++ anonymous namespaces
9245 F - for DWARF unwind frame information. */
9248 get_file_function_name (const char *type
)
9254 /* If we already have a name we know to be unique, just use that. */
9255 if (first_global_object_name
)
9256 p
= q
= ASTRDUP (first_global_object_name
);
9257 /* If the target is handling the constructors/destructors, they
9258 will be local to this file and the name is only necessary for
9260 We also assign sub_I and sub_D sufixes to constructors called from
9261 the global static constructors. These are always local. */
9262 else if (((type
[0] == 'I' || type
[0] == 'D') && targetm
.have_ctors_dtors
)
9263 || (strncmp (type
, "sub_", 4) == 0
9264 && (type
[4] == 'I' || type
[4] == 'D')))
9266 const char *file
= main_input_filename
;
9268 file
= LOCATION_FILE (input_location
);
9269 /* Just use the file's basename, because the full pathname
9270 might be quite long. */
9271 p
= q
= ASTRDUP (lbasename (file
));
9275 /* Otherwise, the name must be unique across the entire link.
9276 We don't have anything that we know to be unique to this translation
9277 unit, so use what we do have and throw in some randomness. */
9279 const char *name
= weak_global_object_name
;
9280 const char *file
= main_input_filename
;
9285 file
= LOCATION_FILE (input_location
);
9287 len
= strlen (file
);
9288 q
= (char *) alloca (9 + 19 + len
+ 1);
9289 memcpy (q
, file
, len
+ 1);
9291 snprintf (q
+ len
, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX
,
9292 crc32_string (0, name
), get_random_seed (false));
9297 clean_symbol_name (q
);
9298 buf
= (char *) alloca (sizeof (FILE_FUNCTION_FORMAT
) + strlen (p
)
9301 /* Set up the name of the file-level functions we may need.
9302 Use a global object (which is already required to be unique over
9303 the program) rather than the file name (which imposes extra
9305 sprintf (buf
, FILE_FUNCTION_FORMAT
, type
, p
);
9307 return get_identifier (buf
);
9310 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9312 /* Complain that the tree code of NODE does not match the expected 0
9313 terminated list of trailing codes. The trailing code list can be
9314 empty, for a more vague error message. FILE, LINE, and FUNCTION
9315 are of the caller. */
9318 tree_check_failed (const_tree node
, const char *file
,
9319 int line
, const char *function
, ...)
9323 unsigned length
= 0;
9324 enum tree_code code
;
9326 va_start (args
, function
);
9327 while ((code
= (enum tree_code
) va_arg (args
, int)))
9328 length
+= 4 + strlen (get_tree_code_name (code
));
9333 va_start (args
, function
);
9334 length
+= strlen ("expected ");
9335 buffer
= tmp
= (char *) alloca (length
);
9337 while ((code
= (enum tree_code
) va_arg (args
, int)))
9339 const char *prefix
= length
? " or " : "expected ";
9341 strcpy (tmp
+ length
, prefix
);
9342 length
+= strlen (prefix
);
9343 strcpy (tmp
+ length
, get_tree_code_name (code
));
9344 length
+= strlen (get_tree_code_name (code
));
9349 buffer
= "unexpected node";
9351 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9352 buffer
, get_tree_code_name (TREE_CODE (node
)),
9353 function
, trim_filename (file
), line
);
9356 /* Complain that the tree code of NODE does match the expected 0
9357 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9361 tree_not_check_failed (const_tree node
, const char *file
,
9362 int line
, const char *function
, ...)
9366 unsigned length
= 0;
9367 enum tree_code code
;
9369 va_start (args
, function
);
9370 while ((code
= (enum tree_code
) va_arg (args
, int)))
9371 length
+= 4 + strlen (get_tree_code_name (code
));
9373 va_start (args
, function
);
9374 buffer
= (char *) alloca (length
);
9376 while ((code
= (enum tree_code
) va_arg (args
, int)))
9380 strcpy (buffer
+ length
, " or ");
9383 strcpy (buffer
+ length
, get_tree_code_name (code
));
9384 length
+= strlen (get_tree_code_name (code
));
9388 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9389 buffer
, get_tree_code_name (TREE_CODE (node
)),
9390 function
, trim_filename (file
), line
);
9393 /* Similar to tree_check_failed, except that we check for a class of tree
9394 code, given in CL. */
9397 tree_class_check_failed (const_tree node
, const enum tree_code_class cl
,
9398 const char *file
, int line
, const char *function
)
9401 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9402 TREE_CODE_CLASS_STRING (cl
),
9403 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node
))),
9404 get_tree_code_name (TREE_CODE (node
)), function
, trim_filename (file
), line
);
9407 /* Similar to tree_check_failed, except that instead of specifying a
9408 dozen codes, use the knowledge that they're all sequential. */
9411 tree_range_check_failed (const_tree node
, const char *file
, int line
,
9412 const char *function
, enum tree_code c1
,
9416 unsigned length
= 0;
9419 for (c
= c1
; c
<= c2
; ++c
)
9420 length
+= 4 + strlen (get_tree_code_name ((enum tree_code
) c
));
9422 length
+= strlen ("expected ");
9423 buffer
= (char *) alloca (length
);
9426 for (c
= c1
; c
<= c2
; ++c
)
9428 const char *prefix
= length
? " or " : "expected ";
9430 strcpy (buffer
+ length
, prefix
);
9431 length
+= strlen (prefix
);
9432 strcpy (buffer
+ length
, get_tree_code_name ((enum tree_code
) c
));
9433 length
+= strlen (get_tree_code_name ((enum tree_code
) c
));
9436 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9437 buffer
, get_tree_code_name (TREE_CODE (node
)),
9438 function
, trim_filename (file
), line
);
9442 /* Similar to tree_check_failed, except that we check that a tree does
9443 not have the specified code, given in CL. */
9446 tree_not_class_check_failed (const_tree node
, const enum tree_code_class cl
,
9447 const char *file
, int line
, const char *function
)
9450 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9451 TREE_CODE_CLASS_STRING (cl
),
9452 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node
))),
9453 get_tree_code_name (TREE_CODE (node
)), function
, trim_filename (file
), line
);
9457 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9460 omp_clause_check_failed (const_tree node
, const char *file
, int line
,
9461 const char *function
, enum omp_clause_code code
)
9463 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9464 omp_clause_code_name
[code
], get_tree_code_name (TREE_CODE (node
)),
9465 function
, trim_filename (file
), line
);
9469 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9472 omp_clause_range_check_failed (const_tree node
, const char *file
, int line
,
9473 const char *function
, enum omp_clause_code c1
,
9474 enum omp_clause_code c2
)
9477 unsigned length
= 0;
9480 for (c
= c1
; c
<= c2
; ++c
)
9481 length
+= 4 + strlen (omp_clause_code_name
[c
]);
9483 length
+= strlen ("expected ");
9484 buffer
= (char *) alloca (length
);
9487 for (c
= c1
; c
<= c2
; ++c
)
9489 const char *prefix
= length
? " or " : "expected ";
9491 strcpy (buffer
+ length
, prefix
);
9492 length
+= strlen (prefix
);
9493 strcpy (buffer
+ length
, omp_clause_code_name
[c
]);
9494 length
+= strlen (omp_clause_code_name
[c
]);
9497 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9498 buffer
, omp_clause_code_name
[TREE_CODE (node
)],
9499 function
, trim_filename (file
), line
);
9503 #undef DEFTREESTRUCT
9504 #define DEFTREESTRUCT(VAL, NAME) NAME,
9506 static const char *ts_enum_names
[] = {
9507 #include "treestruct.def"
9509 #undef DEFTREESTRUCT
9511 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9513 /* Similar to tree_class_check_failed, except that we check for
9514 whether CODE contains the tree structure identified by EN. */
9517 tree_contains_struct_check_failed (const_tree node
,
9518 const enum tree_node_structure_enum en
,
9519 const char *file
, int line
,
9520 const char *function
)
9523 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9525 get_tree_code_name (TREE_CODE (node
)), function
, trim_filename (file
), line
);
9529 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9530 (dynamically sized) vector. */
9533 tree_int_cst_elt_check_failed (int idx
, int len
, const char *file
, int line
,
9534 const char *function
)
9537 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9538 idx
+ 1, len
, function
, trim_filename (file
), line
);
9541 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9542 (dynamically sized) vector. */
9545 tree_vec_elt_check_failed (int idx
, int len
, const char *file
, int line
,
9546 const char *function
)
9549 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9550 idx
+ 1, len
, function
, trim_filename (file
), line
);
9553 /* Similar to above, except that the check is for the bounds of the operand
9554 vector of an expression node EXP. */
9557 tree_operand_check_failed (int idx
, const_tree exp
, const char *file
,
9558 int line
, const char *function
)
9560 enum tree_code code
= TREE_CODE (exp
);
9562 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9563 idx
+ 1, get_tree_code_name (code
), TREE_OPERAND_LENGTH (exp
),
9564 function
, trim_filename (file
), line
);
9567 /* Similar to above, except that the check is for the number of
9568 operands of an OMP_CLAUSE node. */
9571 omp_clause_operand_check_failed (int idx
, const_tree t
, const char *file
,
9572 int line
, const char *function
)
9575 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9576 "in %s, at %s:%d", idx
+ 1, omp_clause_code_name
[OMP_CLAUSE_CODE (t
)],
9577 omp_clause_num_ops
[OMP_CLAUSE_CODE (t
)], function
,
9578 trim_filename (file
), line
);
9580 #endif /* ENABLE_TREE_CHECKING */
9582 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9583 and mapped to the machine mode MODE. Initialize its fields and build
9584 the information necessary for debugging output. */
9587 make_vector_type (tree innertype
, poly_int64 nunits
, machine_mode mode
)
9590 tree mv_innertype
= TYPE_MAIN_VARIANT (innertype
);
9592 t
= make_node (VECTOR_TYPE
);
9593 TREE_TYPE (t
) = mv_innertype
;
9594 SET_TYPE_VECTOR_SUBPARTS (t
, nunits
);
9595 SET_TYPE_MODE (t
, mode
);
9597 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype
) || in_lto_p
)
9598 SET_TYPE_STRUCTURAL_EQUALITY (t
);
9599 else if ((TYPE_CANONICAL (mv_innertype
) != innertype
9600 || mode
!= VOIDmode
)
9601 && !VECTOR_BOOLEAN_TYPE_P (t
))
9603 = make_vector_type (TYPE_CANONICAL (mv_innertype
), nunits
, VOIDmode
);
9607 hashval_t hash
= type_hash_canon_hash (t
);
9608 t
= type_hash_canon (hash
, t
);
9610 /* We have built a main variant, based on the main variant of the
9611 inner type. Use it to build the variant we return. */
9612 if ((TYPE_ATTRIBUTES (innertype
) || TYPE_QUALS (innertype
))
9613 && TREE_TYPE (t
) != innertype
)
9614 return build_type_attribute_qual_variant (t
,
9615 TYPE_ATTRIBUTES (innertype
),
9616 TYPE_QUALS (innertype
));
9622 make_or_reuse_type (unsigned size
, int unsignedp
)
9626 if (size
== INT_TYPE_SIZE
)
9627 return unsignedp
? unsigned_type_node
: integer_type_node
;
9628 if (size
== CHAR_TYPE_SIZE
)
9629 return unsignedp
? unsigned_char_type_node
: signed_char_type_node
;
9630 if (size
== SHORT_TYPE_SIZE
)
9631 return unsignedp
? short_unsigned_type_node
: short_integer_type_node
;
9632 if (size
== LONG_TYPE_SIZE
)
9633 return unsignedp
? long_unsigned_type_node
: long_integer_type_node
;
9634 if (size
== LONG_LONG_TYPE_SIZE
)
9635 return (unsignedp
? long_long_unsigned_type_node
9636 : long_long_integer_type_node
);
9638 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9639 if (size
== int_n_data
[i
].bitsize
9640 && int_n_enabled_p
[i
])
9641 return (unsignedp
? int_n_trees
[i
].unsigned_type
9642 : int_n_trees
[i
].signed_type
);
9645 return make_unsigned_type (size
);
9647 return make_signed_type (size
);
9650 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9653 make_or_reuse_fract_type (unsigned size
, int unsignedp
, int satp
)
9657 if (size
== SHORT_FRACT_TYPE_SIZE
)
9658 return unsignedp
? sat_unsigned_short_fract_type_node
9659 : sat_short_fract_type_node
;
9660 if (size
== FRACT_TYPE_SIZE
)
9661 return unsignedp
? sat_unsigned_fract_type_node
: sat_fract_type_node
;
9662 if (size
== LONG_FRACT_TYPE_SIZE
)
9663 return unsignedp
? sat_unsigned_long_fract_type_node
9664 : sat_long_fract_type_node
;
9665 if (size
== LONG_LONG_FRACT_TYPE_SIZE
)
9666 return unsignedp
? sat_unsigned_long_long_fract_type_node
9667 : sat_long_long_fract_type_node
;
9671 if (size
== SHORT_FRACT_TYPE_SIZE
)
9672 return unsignedp
? unsigned_short_fract_type_node
9673 : short_fract_type_node
;
9674 if (size
== FRACT_TYPE_SIZE
)
9675 return unsignedp
? unsigned_fract_type_node
: fract_type_node
;
9676 if (size
== LONG_FRACT_TYPE_SIZE
)
9677 return unsignedp
? unsigned_long_fract_type_node
9678 : long_fract_type_node
;
9679 if (size
== LONG_LONG_FRACT_TYPE_SIZE
)
9680 return unsignedp
? unsigned_long_long_fract_type_node
9681 : long_long_fract_type_node
;
9684 return make_fract_type (size
, unsignedp
, satp
);
9687 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9690 make_or_reuse_accum_type (unsigned size
, int unsignedp
, int satp
)
9694 if (size
== SHORT_ACCUM_TYPE_SIZE
)
9695 return unsignedp
? sat_unsigned_short_accum_type_node
9696 : sat_short_accum_type_node
;
9697 if (size
== ACCUM_TYPE_SIZE
)
9698 return unsignedp
? sat_unsigned_accum_type_node
: sat_accum_type_node
;
9699 if (size
== LONG_ACCUM_TYPE_SIZE
)
9700 return unsignedp
? sat_unsigned_long_accum_type_node
9701 : sat_long_accum_type_node
;
9702 if (size
== LONG_LONG_ACCUM_TYPE_SIZE
)
9703 return unsignedp
? sat_unsigned_long_long_accum_type_node
9704 : sat_long_long_accum_type_node
;
9708 if (size
== SHORT_ACCUM_TYPE_SIZE
)
9709 return unsignedp
? unsigned_short_accum_type_node
9710 : short_accum_type_node
;
9711 if (size
== ACCUM_TYPE_SIZE
)
9712 return unsignedp
? unsigned_accum_type_node
: accum_type_node
;
9713 if (size
== LONG_ACCUM_TYPE_SIZE
)
9714 return unsignedp
? unsigned_long_accum_type_node
9715 : long_accum_type_node
;
9716 if (size
== LONG_LONG_ACCUM_TYPE_SIZE
)
9717 return unsignedp
? unsigned_long_long_accum_type_node
9718 : long_long_accum_type_node
;
9721 return make_accum_type (size
, unsignedp
, satp
);
9725 /* Create an atomic variant node for TYPE. This routine is called
9726 during initialization of data types to create the 5 basic atomic
9727 types. The generic build_variant_type function requires these to
9728 already be set up in order to function properly, so cannot be
9729 called from there. If ALIGN is non-zero, then ensure alignment is
9730 overridden to this value. */
9733 build_atomic_base (tree type
, unsigned int align
)
9737 /* Make sure its not already registered. */
9738 if ((t
= get_qualified_type (type
, TYPE_QUAL_ATOMIC
)))
9741 t
= build_variant_type_copy (type
);
9742 set_type_quals (t
, TYPE_QUAL_ATOMIC
);
9745 SET_TYPE_ALIGN (t
, align
);
9750 /* Information about the _FloatN and _FloatNx types. This must be in
9751 the same order as the corresponding TI_* enum values. */
9752 const floatn_type_info floatn_nx_types
[NUM_FLOATN_NX_TYPES
] =
9764 /* Create nodes for all integer types (and error_mark_node) using the sizes
9765 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9768 build_common_tree_nodes (bool signed_char
)
9772 error_mark_node
= make_node (ERROR_MARK
);
9773 TREE_TYPE (error_mark_node
) = error_mark_node
;
9775 initialize_sizetypes ();
9777 /* Define both `signed char' and `unsigned char'. */
9778 signed_char_type_node
= make_signed_type (CHAR_TYPE_SIZE
);
9779 TYPE_STRING_FLAG (signed_char_type_node
) = 1;
9780 unsigned_char_type_node
= make_unsigned_type (CHAR_TYPE_SIZE
);
9781 TYPE_STRING_FLAG (unsigned_char_type_node
) = 1;
9783 /* Define `char', which is like either `signed char' or `unsigned char'
9784 but not the same as either. */
9787 ? make_signed_type (CHAR_TYPE_SIZE
)
9788 : make_unsigned_type (CHAR_TYPE_SIZE
));
9789 TYPE_STRING_FLAG (char_type_node
) = 1;
9791 short_integer_type_node
= make_signed_type (SHORT_TYPE_SIZE
);
9792 short_unsigned_type_node
= make_unsigned_type (SHORT_TYPE_SIZE
);
9793 integer_type_node
= make_signed_type (INT_TYPE_SIZE
);
9794 unsigned_type_node
= make_unsigned_type (INT_TYPE_SIZE
);
9795 long_integer_type_node
= make_signed_type (LONG_TYPE_SIZE
);
9796 long_unsigned_type_node
= make_unsigned_type (LONG_TYPE_SIZE
);
9797 long_long_integer_type_node
= make_signed_type (LONG_LONG_TYPE_SIZE
);
9798 long_long_unsigned_type_node
= make_unsigned_type (LONG_LONG_TYPE_SIZE
);
9800 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9802 int_n_trees
[i
].signed_type
= make_signed_type (int_n_data
[i
].bitsize
);
9803 int_n_trees
[i
].unsigned_type
= make_unsigned_type (int_n_data
[i
].bitsize
);
9805 if (int_n_data
[i
].bitsize
> LONG_LONG_TYPE_SIZE
9806 && int_n_enabled_p
[i
])
9808 integer_types
[itk_intN_0
+ i
* 2] = int_n_trees
[i
].signed_type
;
9809 integer_types
[itk_unsigned_intN_0
+ i
* 2] = int_n_trees
[i
].unsigned_type
;
9813 /* Define a boolean type. This type only represents boolean values but
9814 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9815 boolean_type_node
= make_unsigned_type (BOOL_TYPE_SIZE
);
9816 TREE_SET_CODE (boolean_type_node
, BOOLEAN_TYPE
);
9817 TYPE_PRECISION (boolean_type_node
) = 1;
9818 TYPE_MAX_VALUE (boolean_type_node
) = build_int_cst (boolean_type_node
, 1);
9820 /* Define what type to use for size_t. */
9821 if (strcmp (SIZE_TYPE
, "unsigned int") == 0)
9822 size_type_node
= unsigned_type_node
;
9823 else if (strcmp (SIZE_TYPE
, "long unsigned int") == 0)
9824 size_type_node
= long_unsigned_type_node
;
9825 else if (strcmp (SIZE_TYPE
, "long long unsigned int") == 0)
9826 size_type_node
= long_long_unsigned_type_node
;
9827 else if (strcmp (SIZE_TYPE
, "short unsigned int") == 0)
9828 size_type_node
= short_unsigned_type_node
;
9833 size_type_node
= NULL_TREE
;
9834 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9835 if (int_n_enabled_p
[i
])
9838 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
9840 if (strcmp (name
, SIZE_TYPE
) == 0)
9842 size_type_node
= int_n_trees
[i
].unsigned_type
;
9845 if (size_type_node
== NULL_TREE
)
9849 /* Define what type to use for ptrdiff_t. */
9850 if (strcmp (PTRDIFF_TYPE
, "int") == 0)
9851 ptrdiff_type_node
= integer_type_node
;
9852 else if (strcmp (PTRDIFF_TYPE
, "long int") == 0)
9853 ptrdiff_type_node
= long_integer_type_node
;
9854 else if (strcmp (PTRDIFF_TYPE
, "long long int") == 0)
9855 ptrdiff_type_node
= long_long_integer_type_node
;
9856 else if (strcmp (PTRDIFF_TYPE
, "short int") == 0)
9857 ptrdiff_type_node
= short_integer_type_node
;
9860 ptrdiff_type_node
= NULL_TREE
;
9861 for (int i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9862 if (int_n_enabled_p
[i
])
9865 sprintf (name
, "__int%d", int_n_data
[i
].bitsize
);
9866 if (strcmp (name
, PTRDIFF_TYPE
) == 0)
9867 ptrdiff_type_node
= int_n_trees
[i
].signed_type
;
9869 if (ptrdiff_type_node
== NULL_TREE
)
9873 /* Fill in the rest of the sized types. Reuse existing type nodes
9875 intQI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (QImode
), 0);
9876 intHI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (HImode
), 0);
9877 intSI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (SImode
), 0);
9878 intDI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (DImode
), 0);
9879 intTI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (TImode
), 0);
9881 unsigned_intQI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (QImode
), 1);
9882 unsigned_intHI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (HImode
), 1);
9883 unsigned_intSI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (SImode
), 1);
9884 unsigned_intDI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (DImode
), 1);
9885 unsigned_intTI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (TImode
), 1);
9887 /* Don't call build_qualified type for atomics. That routine does
9888 special processing for atomics, and until they are initialized
9889 it's better not to make that call.
9891 Check to see if there is a target override for atomic types. */
9893 atomicQI_type_node
= build_atomic_base (unsigned_intQI_type_node
,
9894 targetm
.atomic_align_for_mode (QImode
));
9895 atomicHI_type_node
= build_atomic_base (unsigned_intHI_type_node
,
9896 targetm
.atomic_align_for_mode (HImode
));
9897 atomicSI_type_node
= build_atomic_base (unsigned_intSI_type_node
,
9898 targetm
.atomic_align_for_mode (SImode
));
9899 atomicDI_type_node
= build_atomic_base (unsigned_intDI_type_node
,
9900 targetm
.atomic_align_for_mode (DImode
));
9901 atomicTI_type_node
= build_atomic_base (unsigned_intTI_type_node
,
9902 targetm
.atomic_align_for_mode (TImode
));
9904 access_public_node
= get_identifier ("public");
9905 access_protected_node
= get_identifier ("protected");
9906 access_private_node
= get_identifier ("private");
9908 /* Define these next since types below may used them. */
9909 integer_zero_node
= build_int_cst (integer_type_node
, 0);
9910 integer_one_node
= build_int_cst (integer_type_node
, 1);
9911 integer_three_node
= build_int_cst (integer_type_node
, 3);
9912 integer_minus_one_node
= build_int_cst (integer_type_node
, -1);
9914 size_zero_node
= size_int (0);
9915 size_one_node
= size_int (1);
9916 bitsize_zero_node
= bitsize_int (0);
9917 bitsize_one_node
= bitsize_int (1);
9918 bitsize_unit_node
= bitsize_int (BITS_PER_UNIT
);
9920 boolean_false_node
= TYPE_MIN_VALUE (boolean_type_node
);
9921 boolean_true_node
= TYPE_MAX_VALUE (boolean_type_node
);
9923 void_type_node
= make_node (VOID_TYPE
);
9924 layout_type (void_type_node
);
9926 /* We are not going to have real types in C with less than byte alignment,
9927 so we might as well not have any types that claim to have it. */
9928 SET_TYPE_ALIGN (void_type_node
, BITS_PER_UNIT
);
9929 TYPE_USER_ALIGN (void_type_node
) = 0;
9931 void_node
= make_node (VOID_CST
);
9932 TREE_TYPE (void_node
) = void_type_node
;
9934 null_pointer_node
= build_int_cst (build_pointer_type (void_type_node
), 0);
9935 layout_type (TREE_TYPE (null_pointer_node
));
9937 ptr_type_node
= build_pointer_type (void_type_node
);
9939 = build_pointer_type (build_type_variant (void_type_node
, 1, 0));
9940 for (unsigned i
= 0;
9941 i
< sizeof (builtin_structptr_types
) / sizeof (builtin_structptr_type
);
9943 builtin_structptr_types
[i
].node
= builtin_structptr_types
[i
].base
;
9945 pointer_sized_int_node
= build_nonstandard_integer_type (POINTER_SIZE
, 1);
9947 float_type_node
= make_node (REAL_TYPE
);
9948 TYPE_PRECISION (float_type_node
) = FLOAT_TYPE_SIZE
;
9949 layout_type (float_type_node
);
9951 double_type_node
= make_node (REAL_TYPE
);
9952 TYPE_PRECISION (double_type_node
) = DOUBLE_TYPE_SIZE
;
9953 layout_type (double_type_node
);
9955 long_double_type_node
= make_node (REAL_TYPE
);
9956 TYPE_PRECISION (long_double_type_node
) = LONG_DOUBLE_TYPE_SIZE
;
9957 layout_type (long_double_type_node
);
9959 for (i
= 0; i
< NUM_FLOATN_NX_TYPES
; i
++)
9961 int n
= floatn_nx_types
[i
].n
;
9962 bool extended
= floatn_nx_types
[i
].extended
;
9963 scalar_float_mode mode
;
9964 if (!targetm
.floatn_mode (n
, extended
).exists (&mode
))
9966 int precision
= GET_MODE_PRECISION (mode
);
9967 /* Work around the rs6000 KFmode having precision 113 not
9969 const struct real_format
*fmt
= REAL_MODE_FORMAT (mode
);
9970 gcc_assert (fmt
->b
== 2 && fmt
->emin
+ fmt
->emax
== 3);
9971 int min_precision
= fmt
->p
+ ceil_log2 (fmt
->emax
- fmt
->emin
);
9973 gcc_assert (min_precision
== n
);
9974 if (precision
< min_precision
)
9975 precision
= min_precision
;
9976 FLOATN_NX_TYPE_NODE (i
) = make_node (REAL_TYPE
);
9977 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i
)) = precision
;
9978 layout_type (FLOATN_NX_TYPE_NODE (i
));
9979 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i
), mode
);
9982 float_ptr_type_node
= build_pointer_type (float_type_node
);
9983 double_ptr_type_node
= build_pointer_type (double_type_node
);
9984 long_double_ptr_type_node
= build_pointer_type (long_double_type_node
);
9985 integer_ptr_type_node
= build_pointer_type (integer_type_node
);
9987 /* Fixed size integer types. */
9988 uint16_type_node
= make_or_reuse_type (16, 1);
9989 uint32_type_node
= make_or_reuse_type (32, 1);
9990 uint64_type_node
= make_or_reuse_type (64, 1);
9992 /* Decimal float types. */
9993 dfloat32_type_node
= make_node (REAL_TYPE
);
9994 TYPE_PRECISION (dfloat32_type_node
) = DECIMAL32_TYPE_SIZE
;
9995 SET_TYPE_MODE (dfloat32_type_node
, SDmode
);
9996 layout_type (dfloat32_type_node
);
9997 dfloat32_ptr_type_node
= build_pointer_type (dfloat32_type_node
);
9999 dfloat64_type_node
= make_node (REAL_TYPE
);
10000 TYPE_PRECISION (dfloat64_type_node
) = DECIMAL64_TYPE_SIZE
;
10001 SET_TYPE_MODE (dfloat64_type_node
, DDmode
);
10002 layout_type (dfloat64_type_node
);
10003 dfloat64_ptr_type_node
= build_pointer_type (dfloat64_type_node
);
10005 dfloat128_type_node
= make_node (REAL_TYPE
);
10006 TYPE_PRECISION (dfloat128_type_node
) = DECIMAL128_TYPE_SIZE
;
10007 SET_TYPE_MODE (dfloat128_type_node
, TDmode
);
10008 layout_type (dfloat128_type_node
);
10009 dfloat128_ptr_type_node
= build_pointer_type (dfloat128_type_node
);
10011 complex_integer_type_node
= build_complex_type (integer_type_node
, true);
10012 complex_float_type_node
= build_complex_type (float_type_node
, true);
10013 complex_double_type_node
= build_complex_type (double_type_node
, true);
10014 complex_long_double_type_node
= build_complex_type (long_double_type_node
,
10017 for (i
= 0; i
< NUM_FLOATN_NX_TYPES
; i
++)
10019 if (FLOATN_NX_TYPE_NODE (i
) != NULL_TREE
)
10020 COMPLEX_FLOATN_NX_TYPE_NODE (i
)
10021 = build_complex_type (FLOATN_NX_TYPE_NODE (i
));
10024 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10025 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10026 sat_ ## KIND ## _type_node = \
10027 make_sat_signed_ ## KIND ## _type (SIZE); \
10028 sat_unsigned_ ## KIND ## _type_node = \
10029 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10030 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10031 unsigned_ ## KIND ## _type_node = \
10032 make_unsigned_ ## KIND ## _type (SIZE);
10034 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10035 sat_ ## WIDTH ## KIND ## _type_node = \
10036 make_sat_signed_ ## KIND ## _type (SIZE); \
10037 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10038 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10039 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10040 unsigned_ ## WIDTH ## KIND ## _type_node = \
10041 make_unsigned_ ## KIND ## _type (SIZE);
10043 /* Make fixed-point type nodes based on four different widths. */
10044 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10045 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10046 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10047 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10048 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10050 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10051 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10052 NAME ## _type_node = \
10053 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10054 u ## NAME ## _type_node = \
10055 make_or_reuse_unsigned_ ## KIND ## _type \
10056 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10057 sat_ ## NAME ## _type_node = \
10058 make_or_reuse_sat_signed_ ## KIND ## _type \
10059 (GET_MODE_BITSIZE (MODE ## mode)); \
10060 sat_u ## NAME ## _type_node = \
10061 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10062 (GET_MODE_BITSIZE (U ## MODE ## mode));
10064 /* Fixed-point type and mode nodes. */
10065 MAKE_FIXED_TYPE_NODE_FAMILY (fract
, FRACT
)
10066 MAKE_FIXED_TYPE_NODE_FAMILY (accum
, ACCUM
)
10067 MAKE_FIXED_MODE_NODE (fract
, qq
, QQ
)
10068 MAKE_FIXED_MODE_NODE (fract
, hq
, HQ
)
10069 MAKE_FIXED_MODE_NODE (fract
, sq
, SQ
)
10070 MAKE_FIXED_MODE_NODE (fract
, dq
, DQ
)
10071 MAKE_FIXED_MODE_NODE (fract
, tq
, TQ
)
10072 MAKE_FIXED_MODE_NODE (accum
, ha
, HA
)
10073 MAKE_FIXED_MODE_NODE (accum
, sa
, SA
)
10074 MAKE_FIXED_MODE_NODE (accum
, da
, DA
)
10075 MAKE_FIXED_MODE_NODE (accum
, ta
, TA
)
10078 tree t
= targetm
.build_builtin_va_list ();
10080 /* Many back-ends define record types without setting TYPE_NAME.
10081 If we copied the record type here, we'd keep the original
10082 record type without a name. This breaks name mangling. So,
10083 don't copy record types and let c_common_nodes_and_builtins()
10084 declare the type to be __builtin_va_list. */
10085 if (TREE_CODE (t
) != RECORD_TYPE
)
10086 t
= build_variant_type_copy (t
);
10088 va_list_type_node
= t
;
10092 /* Modify DECL for given flags.
10093 TM_PURE attribute is set only on types, so the function will modify
10094 DECL's type when ECF_TM_PURE is used. */
10097 set_call_expr_flags (tree decl
, int flags
)
10099 if (flags
& ECF_NOTHROW
)
10100 TREE_NOTHROW (decl
) = 1;
10101 if (flags
& ECF_CONST
)
10102 TREE_READONLY (decl
) = 1;
10103 if (flags
& ECF_PURE
)
10104 DECL_PURE_P (decl
) = 1;
10105 if (flags
& ECF_LOOPING_CONST_OR_PURE
)
10106 DECL_LOOPING_CONST_OR_PURE_P (decl
) = 1;
10107 if (flags
& ECF_NOVOPS
)
10108 DECL_IS_NOVOPS (decl
) = 1;
10109 if (flags
& ECF_NORETURN
)
10110 TREE_THIS_VOLATILE (decl
) = 1;
10111 if (flags
& ECF_MALLOC
)
10112 DECL_IS_MALLOC (decl
) = 1;
10113 if (flags
& ECF_RETURNS_TWICE
)
10114 DECL_IS_RETURNS_TWICE (decl
) = 1;
10115 if (flags
& ECF_LEAF
)
10116 DECL_ATTRIBUTES (decl
) = tree_cons (get_identifier ("leaf"),
10117 NULL
, DECL_ATTRIBUTES (decl
));
10118 if (flags
& ECF_COLD
)
10119 DECL_ATTRIBUTES (decl
) = tree_cons (get_identifier ("cold"),
10120 NULL
, DECL_ATTRIBUTES (decl
));
10121 if (flags
& ECF_RET1
)
10122 DECL_ATTRIBUTES (decl
)
10123 = tree_cons (get_identifier ("fn spec"),
10124 build_tree_list (NULL_TREE
, build_string (1, "1")),
10125 DECL_ATTRIBUTES (decl
));
10126 if ((flags
& ECF_TM_PURE
) && flag_tm
)
10127 apply_tm_attr (decl
, get_identifier ("transaction_pure"));
10128 /* Looping const or pure is implied by noreturn.
10129 There is currently no way to declare looping const or looping pure alone. */
10130 gcc_assert (!(flags
& ECF_LOOPING_CONST_OR_PURE
)
10131 || ((flags
& ECF_NORETURN
) && (flags
& (ECF_CONST
| ECF_PURE
))));
10135 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10138 local_define_builtin (const char *name
, tree type
, enum built_in_function code
,
10139 const char *library_name
, int ecf_flags
)
10143 decl
= add_builtin_function (name
, type
, code
, BUILT_IN_NORMAL
,
10144 library_name
, NULL_TREE
);
10145 set_call_expr_flags (decl
, ecf_flags
);
10147 set_builtin_decl (code
, decl
, true);
10150 /* Call this function after instantiating all builtins that the language
10151 front end cares about. This will build the rest of the builtins
10152 and internal functions that are relied upon by the tree optimizers and
10156 build_common_builtin_nodes (void)
10161 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE
)
10162 || !builtin_decl_explicit_p (BUILT_IN_ABORT
))
10164 ftype
= build_function_type (void_type_node
, void_list_node
);
10165 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE
))
10166 local_define_builtin ("__builtin_unreachable", ftype
,
10167 BUILT_IN_UNREACHABLE
,
10168 "__builtin_unreachable",
10169 ECF_NOTHROW
| ECF_LEAF
| ECF_NORETURN
10170 | ECF_CONST
| ECF_COLD
);
10171 if (!builtin_decl_explicit_p (BUILT_IN_ABORT
))
10172 local_define_builtin ("__builtin_abort", ftype
, BUILT_IN_ABORT
,
10174 ECF_LEAF
| ECF_NORETURN
| ECF_CONST
| ECF_COLD
);
10177 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY
)
10178 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE
))
10180 ftype
= build_function_type_list (ptr_type_node
,
10181 ptr_type_node
, const_ptr_type_node
,
10182 size_type_node
, NULL_TREE
);
10184 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY
))
10185 local_define_builtin ("__builtin_memcpy", ftype
, BUILT_IN_MEMCPY
,
10186 "memcpy", ECF_NOTHROW
| ECF_LEAF
| ECF_RET1
);
10187 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE
))
10188 local_define_builtin ("__builtin_memmove", ftype
, BUILT_IN_MEMMOVE
,
10189 "memmove", ECF_NOTHROW
| ECF_LEAF
| ECF_RET1
);
10192 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP
))
10194 ftype
= build_function_type_list (integer_type_node
, const_ptr_type_node
,
10195 const_ptr_type_node
, size_type_node
,
10197 local_define_builtin ("__builtin_memcmp", ftype
, BUILT_IN_MEMCMP
,
10198 "memcmp", ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10201 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET
))
10203 ftype
= build_function_type_list (ptr_type_node
,
10204 ptr_type_node
, integer_type_node
,
10205 size_type_node
, NULL_TREE
);
10206 local_define_builtin ("__builtin_memset", ftype
, BUILT_IN_MEMSET
,
10207 "memset", ECF_NOTHROW
| ECF_LEAF
| ECF_RET1
);
10210 /* If we're checking the stack, `alloca' can throw. */
10211 const int alloca_flags
10212 = ECF_MALLOC
| ECF_LEAF
| (flag_stack_check
? 0 : ECF_NOTHROW
);
10214 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA
))
10216 ftype
= build_function_type_list (ptr_type_node
,
10217 size_type_node
, NULL_TREE
);
10218 local_define_builtin ("__builtin_alloca", ftype
, BUILT_IN_ALLOCA
,
10219 "alloca", alloca_flags
);
10222 ftype
= build_function_type_list (ptr_type_node
, size_type_node
,
10223 size_type_node
, NULL_TREE
);
10224 local_define_builtin ("__builtin_alloca_with_align", ftype
,
10225 BUILT_IN_ALLOCA_WITH_ALIGN
,
10226 "__builtin_alloca_with_align",
10229 ftype
= build_function_type_list (ptr_type_node
, size_type_node
,
10230 size_type_node
, size_type_node
, NULL_TREE
);
10231 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype
,
10232 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX
,
10233 "__builtin_alloca_with_align_and_max",
10236 ftype
= build_function_type_list (void_type_node
,
10237 ptr_type_node
, ptr_type_node
,
10238 ptr_type_node
, NULL_TREE
);
10239 local_define_builtin ("__builtin_init_trampoline", ftype
,
10240 BUILT_IN_INIT_TRAMPOLINE
,
10241 "__builtin_init_trampoline", ECF_NOTHROW
| ECF_LEAF
);
10242 local_define_builtin ("__builtin_init_heap_trampoline", ftype
,
10243 BUILT_IN_INIT_HEAP_TRAMPOLINE
,
10244 "__builtin_init_heap_trampoline",
10245 ECF_NOTHROW
| ECF_LEAF
);
10246 local_define_builtin ("__builtin_init_descriptor", ftype
,
10247 BUILT_IN_INIT_DESCRIPTOR
,
10248 "__builtin_init_descriptor", ECF_NOTHROW
| ECF_LEAF
);
10250 ftype
= build_function_type_list (ptr_type_node
, ptr_type_node
, NULL_TREE
);
10251 local_define_builtin ("__builtin_adjust_trampoline", ftype
,
10252 BUILT_IN_ADJUST_TRAMPOLINE
,
10253 "__builtin_adjust_trampoline",
10254 ECF_CONST
| ECF_NOTHROW
);
10255 local_define_builtin ("__builtin_adjust_descriptor", ftype
,
10256 BUILT_IN_ADJUST_DESCRIPTOR
,
10257 "__builtin_adjust_descriptor",
10258 ECF_CONST
| ECF_NOTHROW
);
10260 ftype
= build_function_type_list (void_type_node
,
10261 ptr_type_node
, ptr_type_node
, NULL_TREE
);
10262 local_define_builtin ("__builtin_nonlocal_goto", ftype
,
10263 BUILT_IN_NONLOCAL_GOTO
,
10264 "__builtin_nonlocal_goto",
10265 ECF_NORETURN
| ECF_NOTHROW
);
10267 ftype
= build_function_type_list (void_type_node
,
10268 ptr_type_node
, ptr_type_node
, NULL_TREE
);
10269 local_define_builtin ("__builtin_setjmp_setup", ftype
,
10270 BUILT_IN_SETJMP_SETUP
,
10271 "__builtin_setjmp_setup", ECF_NOTHROW
);
10273 ftype
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
10274 local_define_builtin ("__builtin_setjmp_receiver", ftype
,
10275 BUILT_IN_SETJMP_RECEIVER
,
10276 "__builtin_setjmp_receiver", ECF_NOTHROW
| ECF_LEAF
);
10278 ftype
= build_function_type_list (ptr_type_node
, NULL_TREE
);
10279 local_define_builtin ("__builtin_stack_save", ftype
, BUILT_IN_STACK_SAVE
,
10280 "__builtin_stack_save", ECF_NOTHROW
| ECF_LEAF
);
10282 ftype
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
10283 local_define_builtin ("__builtin_stack_restore", ftype
,
10284 BUILT_IN_STACK_RESTORE
,
10285 "__builtin_stack_restore", ECF_NOTHROW
| ECF_LEAF
);
10287 ftype
= build_function_type_list (integer_type_node
, const_ptr_type_node
,
10288 const_ptr_type_node
, size_type_node
,
10290 local_define_builtin ("__builtin_memcmp_eq", ftype
, BUILT_IN_MEMCMP_EQ
,
10291 "__builtin_memcmp_eq",
10292 ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10294 local_define_builtin ("__builtin_strncmp_eq", ftype
, BUILT_IN_STRNCMP_EQ
,
10295 "__builtin_strncmp_eq",
10296 ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10298 local_define_builtin ("__builtin_strcmp_eq", ftype
, BUILT_IN_STRCMP_EQ
,
10299 "__builtin_strcmp_eq",
10300 ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10302 /* If there's a possibility that we might use the ARM EABI, build the
10303 alternate __cxa_end_cleanup node used to resume from C++. */
10304 if (targetm
.arm_eabi_unwinder
)
10306 ftype
= build_function_type_list (void_type_node
, NULL_TREE
);
10307 local_define_builtin ("__builtin_cxa_end_cleanup", ftype
,
10308 BUILT_IN_CXA_END_CLEANUP
,
10309 "__cxa_end_cleanup", ECF_NORETURN
| ECF_LEAF
);
10312 ftype
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
10313 local_define_builtin ("__builtin_unwind_resume", ftype
,
10314 BUILT_IN_UNWIND_RESUME
,
10315 ((targetm_common
.except_unwind_info (&global_options
)
10317 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10320 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS
) == NULL_TREE
)
10322 ftype
= build_function_type_list (ptr_type_node
, integer_type_node
,
10324 local_define_builtin ("__builtin_return_address", ftype
,
10325 BUILT_IN_RETURN_ADDRESS
,
10326 "__builtin_return_address",
10330 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER
)
10331 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT
))
10333 ftype
= build_function_type_list (void_type_node
, ptr_type_node
,
10334 ptr_type_node
, NULL_TREE
);
10335 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER
))
10336 local_define_builtin ("__cyg_profile_func_enter", ftype
,
10337 BUILT_IN_PROFILE_FUNC_ENTER
,
10338 "__cyg_profile_func_enter", 0);
10339 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT
))
10340 local_define_builtin ("__cyg_profile_func_exit", ftype
,
10341 BUILT_IN_PROFILE_FUNC_EXIT
,
10342 "__cyg_profile_func_exit", 0);
10345 /* The exception object and filter values from the runtime. The argument
10346 must be zero before exception lowering, i.e. from the front end. After
10347 exception lowering, it will be the region number for the exception
10348 landing pad. These functions are PURE instead of CONST to prevent
10349 them from being hoisted past the exception edge that will initialize
10350 its value in the landing pad. */
10351 ftype
= build_function_type_list (ptr_type_node
,
10352 integer_type_node
, NULL_TREE
);
10353 ecf_flags
= ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
;
10354 /* Only use TM_PURE if we have TM language support. */
10355 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1
))
10356 ecf_flags
|= ECF_TM_PURE
;
10357 local_define_builtin ("__builtin_eh_pointer", ftype
, BUILT_IN_EH_POINTER
,
10358 "__builtin_eh_pointer", ecf_flags
);
10360 tmp
= lang_hooks
.types
.type_for_mode (targetm
.eh_return_filter_mode (), 0);
10361 ftype
= build_function_type_list (tmp
, integer_type_node
, NULL_TREE
);
10362 local_define_builtin ("__builtin_eh_filter", ftype
, BUILT_IN_EH_FILTER
,
10363 "__builtin_eh_filter", ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10365 ftype
= build_function_type_list (void_type_node
,
10366 integer_type_node
, integer_type_node
,
10368 local_define_builtin ("__builtin_eh_copy_values", ftype
,
10369 BUILT_IN_EH_COPY_VALUES
,
10370 "__builtin_eh_copy_values", ECF_NOTHROW
);
10372 /* Complex multiplication and division. These are handled as builtins
10373 rather than optabs because emit_library_call_value doesn't support
10374 complex. Further, we can do slightly better with folding these
10375 beasties if the real and complex parts of the arguments are separate. */
10379 for (mode
= MIN_MODE_COMPLEX_FLOAT
; mode
<= MAX_MODE_COMPLEX_FLOAT
; ++mode
)
10381 char mode_name_buf
[4], *q
;
10383 enum built_in_function mcode
, dcode
;
10384 tree type
, inner_type
;
10385 const char *prefix
= "__";
10387 if (targetm
.libfunc_gnu_prefix
)
10390 type
= lang_hooks
.types
.type_for_mode ((machine_mode
) mode
, 0);
10393 inner_type
= TREE_TYPE (type
);
10395 ftype
= build_function_type_list (type
, inner_type
, inner_type
,
10396 inner_type
, inner_type
, NULL_TREE
);
10398 mcode
= ((enum built_in_function
)
10399 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
10400 dcode
= ((enum built_in_function
)
10401 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
10403 for (p
= GET_MODE_NAME (mode
), q
= mode_name_buf
; *p
; p
++, q
++)
10407 /* For -ftrapping-math these should throw from a former
10408 -fnon-call-exception stmt. */
10409 built_in_names
[mcode
] = concat (prefix
, "mul", mode_name_buf
, "3",
10411 local_define_builtin (built_in_names
[mcode
], ftype
, mcode
,
10412 built_in_names
[mcode
],
10413 ECF_CONST
| ECF_LEAF
);
10415 built_in_names
[dcode
] = concat (prefix
, "div", mode_name_buf
, "3",
10417 local_define_builtin (built_in_names
[dcode
], ftype
, dcode
,
10418 built_in_names
[dcode
],
10419 ECF_CONST
| ECF_LEAF
);
10423 init_internal_fns ();
10426 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10429 If we requested a pointer to a vector, build up the pointers that
10430 we stripped off while looking for the inner type. Similarly for
10431 return values from functions.
10433 The argument TYPE is the top of the chain, and BOTTOM is the
10434 new type which we will point to. */
10437 reconstruct_complex_type (tree type
, tree bottom
)
10441 if (TREE_CODE (type
) == POINTER_TYPE
)
10443 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10444 outer
= build_pointer_type_for_mode (inner
, TYPE_MODE (type
),
10445 TYPE_REF_CAN_ALIAS_ALL (type
));
10447 else if (TREE_CODE (type
) == REFERENCE_TYPE
)
10449 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10450 outer
= build_reference_type_for_mode (inner
, TYPE_MODE (type
),
10451 TYPE_REF_CAN_ALIAS_ALL (type
));
10453 else if (TREE_CODE (type
) == ARRAY_TYPE
)
10455 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10456 outer
= build_array_type (inner
, TYPE_DOMAIN (type
));
10458 else if (TREE_CODE (type
) == FUNCTION_TYPE
)
10460 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10461 outer
= build_function_type (inner
, TYPE_ARG_TYPES (type
));
10463 else if (TREE_CODE (type
) == METHOD_TYPE
)
10465 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10466 /* The build_method_type_directly() routine prepends 'this' to argument list,
10467 so we must compensate by getting rid of it. */
10469 = build_method_type_directly
10470 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type
))),
10472 TREE_CHAIN (TYPE_ARG_TYPES (type
)));
10474 else if (TREE_CODE (type
) == OFFSET_TYPE
)
10476 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10477 outer
= build_offset_type (TYPE_OFFSET_BASETYPE (type
), inner
);
10482 return build_type_attribute_qual_variant (outer
, TYPE_ATTRIBUTES (type
),
10483 TYPE_QUALS (type
));
10486 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10489 build_vector_type_for_mode (tree innertype
, machine_mode mode
)
10492 unsigned int bitsize
;
10494 switch (GET_MODE_CLASS (mode
))
10496 case MODE_VECTOR_BOOL
:
10497 case MODE_VECTOR_INT
:
10498 case MODE_VECTOR_FLOAT
:
10499 case MODE_VECTOR_FRACT
:
10500 case MODE_VECTOR_UFRACT
:
10501 case MODE_VECTOR_ACCUM
:
10502 case MODE_VECTOR_UACCUM
:
10503 nunits
= GET_MODE_NUNITS (mode
);
10507 /* Check that there are no leftover bits. */
10508 bitsize
= GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (mode
));
10509 gcc_assert (bitsize
% TREE_INT_CST_LOW (TYPE_SIZE (innertype
)) == 0);
10510 nunits
= bitsize
/ TREE_INT_CST_LOW (TYPE_SIZE (innertype
));
10514 gcc_unreachable ();
10517 return make_vector_type (innertype
, nunits
, mode
);
10520 /* Similarly, but takes the inner type and number of units, which must be
10524 build_vector_type (tree innertype
, poly_int64 nunits
)
10526 return make_vector_type (innertype
, nunits
, VOIDmode
);
10529 /* Build truth vector with specified length and number of units. */
10532 build_truth_vector_type (poly_uint64 nunits
, poly_uint64 vector_size
)
10534 machine_mode mask_mode
10535 = targetm
.vectorize
.get_mask_mode (nunits
, vector_size
).else_blk ();
10538 if (mask_mode
== BLKmode
)
10539 vsize
= vector_size
* BITS_PER_UNIT
;
10541 vsize
= GET_MODE_BITSIZE (mask_mode
);
10543 unsigned HOST_WIDE_INT esize
= vector_element_size (vsize
, nunits
);
10545 tree bool_type
= build_nonstandard_boolean_type (esize
);
10547 return make_vector_type (bool_type
, nunits
, mask_mode
);
10550 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10553 build_same_sized_truth_vector_type (tree vectype
)
10555 if (VECTOR_BOOLEAN_TYPE_P (vectype
))
10558 poly_uint64 size
= GET_MODE_SIZE (TYPE_MODE (vectype
));
10560 if (known_eq (size
, 0U))
10561 size
= tree_to_uhwi (TYPE_SIZE_UNIT (vectype
));
10563 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype
), size
);
10566 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10569 build_opaque_vector_type (tree innertype
, poly_int64 nunits
)
10571 tree t
= make_vector_type (innertype
, nunits
, VOIDmode
);
10573 /* We always build the non-opaque variant before the opaque one,
10574 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10575 cand
= TYPE_NEXT_VARIANT (t
);
10577 && TYPE_VECTOR_OPAQUE (cand
)
10578 && check_qualified_type (cand
, t
, TYPE_QUALS (t
)))
10580 /* Othewise build a variant type and make sure to queue it after
10581 the non-opaque type. */
10582 cand
= build_distinct_type_copy (t
);
10583 TYPE_VECTOR_OPAQUE (cand
) = true;
10584 TYPE_CANONICAL (cand
) = TYPE_CANONICAL (t
);
10585 TYPE_NEXT_VARIANT (cand
) = TYPE_NEXT_VARIANT (t
);
10586 TYPE_NEXT_VARIANT (t
) = cand
;
10587 TYPE_MAIN_VARIANT (cand
) = TYPE_MAIN_VARIANT (t
);
10591 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10594 vector_cst_int_elt (const_tree t
, unsigned int i
)
10596 /* First handle elements that are directly encoded. */
10597 unsigned int encoded_nelts
= vector_cst_encoded_nelts (t
);
10598 if (i
< encoded_nelts
)
10599 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t
, i
));
10601 /* Identify the pattern that contains element I and work out the index of
10602 the last encoded element for that pattern. */
10603 unsigned int npatterns
= VECTOR_CST_NPATTERNS (t
);
10604 unsigned int pattern
= i
% npatterns
;
10605 unsigned int count
= i
/ npatterns
;
10606 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
10608 /* If there are no steps, the final encoded value is the right one. */
10609 if (!VECTOR_CST_STEPPED_P (t
))
10610 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t
, final_i
));
10612 /* Otherwise work out the value from the last two encoded elements. */
10613 tree v1
= VECTOR_CST_ENCODED_ELT (t
, final_i
- npatterns
);
10614 tree v2
= VECTOR_CST_ENCODED_ELT (t
, final_i
);
10615 wide_int diff
= wi::to_wide (v2
) - wi::to_wide (v1
);
10616 return wi::to_wide (v2
) + (count
- 2) * diff
;
10619 /* Return the value of element I of VECTOR_CST T. */
10622 vector_cst_elt (const_tree t
, unsigned int i
)
10624 /* First handle elements that are directly encoded. */
10625 unsigned int encoded_nelts
= vector_cst_encoded_nelts (t
);
10626 if (i
< encoded_nelts
)
10627 return VECTOR_CST_ENCODED_ELT (t
, i
);
10629 /* If there are no steps, the final encoded value is the right one. */
10630 if (!VECTOR_CST_STEPPED_P (t
))
10632 /* Identify the pattern that contains element I and work out the index of
10633 the last encoded element for that pattern. */
10634 unsigned int npatterns
= VECTOR_CST_NPATTERNS (t
);
10635 unsigned int pattern
= i
% npatterns
;
10636 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
10637 return VECTOR_CST_ENCODED_ELT (t
, final_i
);
10640 /* Otherwise work out the value from the last two encoded elements. */
10641 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t
)),
10642 vector_cst_int_elt (t
, i
));
10645 /* Given an initializer INIT, return TRUE if INIT is zero or some
10646 aggregate of zeros. Otherwise return FALSE. */
10648 initializer_zerop (const_tree init
)
10654 switch (TREE_CODE (init
))
10657 return integer_zerop (init
);
10660 /* ??? Note that this is not correct for C4X float formats. There,
10661 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10662 negative exponent. */
10663 return real_zerop (init
)
10664 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init
));
10667 return fixed_zerop (init
);
10670 return integer_zerop (init
)
10671 || (real_zerop (init
)
10672 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init
)))
10673 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init
))));
10676 return (VECTOR_CST_NPATTERNS (init
) == 1
10677 && VECTOR_CST_DUPLICATE_P (init
)
10678 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init
, 0)));
10682 unsigned HOST_WIDE_INT idx
;
10684 if (TREE_CLOBBER_P (init
))
10686 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init
), idx
, elt
)
10687 if (!initializer_zerop (elt
))
10696 /* We need to loop through all elements to handle cases like
10697 "\0" and "\0foobar". */
10698 for (i
= 0; i
< TREE_STRING_LENGTH (init
); ++i
)
10699 if (TREE_STRING_POINTER (init
)[i
] != '\0')
10710 /* Check if vector VEC consists of all the equal elements and
10711 that the number of elements corresponds to the type of VEC.
10712 The function returns first element of the vector
10713 or NULL_TREE if the vector is not uniform. */
10715 uniform_vector_p (const_tree vec
)
10718 unsigned HOST_WIDE_INT i
, nelts
;
10720 if (vec
== NULL_TREE
)
10723 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec
)));
10725 if (TREE_CODE (vec
) == VEC_DUPLICATE_EXPR
)
10726 return TREE_OPERAND (vec
, 0);
10728 else if (TREE_CODE (vec
) == VECTOR_CST
)
10730 if (VECTOR_CST_NPATTERNS (vec
) == 1 && VECTOR_CST_DUPLICATE_P (vec
))
10731 return VECTOR_CST_ENCODED_ELT (vec
, 0);
10735 else if (TREE_CODE (vec
) == CONSTRUCTOR
10736 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec
)).is_constant (&nelts
))
10738 first
= error_mark_node
;
10740 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec
), i
, t
)
10747 if (!operand_equal_p (first
, t
, 0))
10759 /* Build an empty statement at location LOC. */
10762 build_empty_stmt (location_t loc
)
10764 tree t
= build1 (NOP_EXPR
, void_type_node
, size_zero_node
);
10765 SET_EXPR_LOCATION (t
, loc
);
10770 /* Build an OpenMP clause with code CODE. LOC is the location of the
10774 build_omp_clause (location_t loc
, enum omp_clause_code code
)
10779 length
= omp_clause_num_ops
[code
];
10780 size
= (sizeof (struct tree_omp_clause
) + (length
- 1) * sizeof (tree
));
10782 record_node_allocation_statistics (OMP_CLAUSE
, size
);
10784 t
= (tree
) ggc_internal_alloc (size
);
10785 memset (t
, 0, size
);
10786 TREE_SET_CODE (t
, OMP_CLAUSE
);
10787 OMP_CLAUSE_SET_CODE (t
, code
);
10788 OMP_CLAUSE_LOCATION (t
) = loc
;
10793 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10794 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10795 Except for the CODE and operand count field, other storage for the
10796 object is initialized to zeros. */
10799 build_vl_exp (enum tree_code code
, int len MEM_STAT_DECL
)
10802 int length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_exp
);
10804 gcc_assert (TREE_CODE_CLASS (code
) == tcc_vl_exp
);
10805 gcc_assert (len
>= 1);
10807 record_node_allocation_statistics (code
, length
);
10809 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
10811 TREE_SET_CODE (t
, code
);
10813 /* Can't use TREE_OPERAND to store the length because if checking is
10814 enabled, it will try to check the length before we store it. :-P */
10815 t
->exp
.operands
[0] = build_int_cst (sizetype
, len
);
10820 /* Helper function for build_call_* functions; build a CALL_EXPR with
10821 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10822 the argument slots. */
10825 build_call_1 (tree return_type
, tree fn
, int nargs
)
10829 t
= build_vl_exp (CALL_EXPR
, nargs
+ 3);
10830 TREE_TYPE (t
) = return_type
;
10831 CALL_EXPR_FN (t
) = fn
;
10832 CALL_EXPR_STATIC_CHAIN (t
) = NULL
;
10837 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10838 FN and a null static chain slot. NARGS is the number of call arguments
10839 which are specified as "..." arguments. */
10842 build_call_nary (tree return_type
, tree fn
, int nargs
, ...)
10846 va_start (args
, nargs
);
10847 ret
= build_call_valist (return_type
, fn
, nargs
, args
);
10852 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10853 FN and a null static chain slot. NARGS is the number of call arguments
10854 which are specified as a va_list ARGS. */
10857 build_call_valist (tree return_type
, tree fn
, int nargs
, va_list args
)
10862 t
= build_call_1 (return_type
, fn
, nargs
);
10863 for (i
= 0; i
< nargs
; i
++)
10864 CALL_EXPR_ARG (t
, i
) = va_arg (args
, tree
);
10865 process_call_operands (t
);
10869 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10870 FN and a null static chain slot. NARGS is the number of call arguments
10871 which are specified as a tree array ARGS. */
10874 build_call_array_loc (location_t loc
, tree return_type
, tree fn
,
10875 int nargs
, const tree
*args
)
10880 t
= build_call_1 (return_type
, fn
, nargs
);
10881 for (i
= 0; i
< nargs
; i
++)
10882 CALL_EXPR_ARG (t
, i
) = args
[i
];
10883 process_call_operands (t
);
10884 SET_EXPR_LOCATION (t
, loc
);
10888 /* Like build_call_array, but takes a vec. */
10891 build_call_vec (tree return_type
, tree fn
, vec
<tree
, va_gc
> *args
)
10896 ret
= build_call_1 (return_type
, fn
, vec_safe_length (args
));
10897 FOR_EACH_VEC_SAFE_ELT (args
, ix
, t
)
10898 CALL_EXPR_ARG (ret
, ix
) = t
;
10899 process_call_operands (ret
);
10903 /* Conveniently construct a function call expression. FNDECL names the
10904 function to be called and N arguments are passed in the array
10908 build_call_expr_loc_array (location_t loc
, tree fndecl
, int n
, tree
*argarray
)
10910 tree fntype
= TREE_TYPE (fndecl
);
10911 tree fn
= build1 (ADDR_EXPR
, build_pointer_type (fntype
), fndecl
);
10913 return fold_build_call_array_loc (loc
, TREE_TYPE (fntype
), fn
, n
, argarray
);
10916 /* Conveniently construct a function call expression. FNDECL names the
10917 function to be called and the arguments are passed in the vector
10921 build_call_expr_loc_vec (location_t loc
, tree fndecl
, vec
<tree
, va_gc
> *vec
)
10923 return build_call_expr_loc_array (loc
, fndecl
, vec_safe_length (vec
),
10924 vec_safe_address (vec
));
10928 /* Conveniently construct a function call expression. FNDECL names the
10929 function to be called, N is the number of arguments, and the "..."
10930 parameters are the argument expressions. */
10933 build_call_expr_loc (location_t loc
, tree fndecl
, int n
, ...)
10936 tree
*argarray
= XALLOCAVEC (tree
, n
);
10940 for (i
= 0; i
< n
; i
++)
10941 argarray
[i
] = va_arg (ap
, tree
);
10943 return build_call_expr_loc_array (loc
, fndecl
, n
, argarray
);
10946 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10947 varargs macros aren't supported by all bootstrap compilers. */
10950 build_call_expr (tree fndecl
, int n
, ...)
10953 tree
*argarray
= XALLOCAVEC (tree
, n
);
10957 for (i
= 0; i
< n
; i
++)
10958 argarray
[i
] = va_arg (ap
, tree
);
10960 return build_call_expr_loc_array (UNKNOWN_LOCATION
, fndecl
, n
, argarray
);
10963 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10964 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10965 It will get gimplified later into an ordinary internal function. */
10968 build_call_expr_internal_loc_array (location_t loc
, internal_fn ifn
,
10969 tree type
, int n
, const tree
*args
)
10971 tree t
= build_call_1 (type
, NULL_TREE
, n
);
10972 for (int i
= 0; i
< n
; ++i
)
10973 CALL_EXPR_ARG (t
, i
) = args
[i
];
10974 SET_EXPR_LOCATION (t
, loc
);
10975 CALL_EXPR_IFN (t
) = ifn
;
10979 /* Build internal call expression. This is just like CALL_EXPR, except
10980 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10981 internal function. */
10984 build_call_expr_internal_loc (location_t loc
, enum internal_fn ifn
,
10985 tree type
, int n
, ...)
10988 tree
*argarray
= XALLOCAVEC (tree
, n
);
10992 for (i
= 0; i
< n
; i
++)
10993 argarray
[i
] = va_arg (ap
, tree
);
10995 return build_call_expr_internal_loc_array (loc
, ifn
, type
, n
, argarray
);
10998 /* Return a function call to FN, if the target is guaranteed to support it,
11001 N is the number of arguments, passed in the "...", and TYPE is the
11002 type of the return value. */
11005 maybe_build_call_expr_loc (location_t loc
, combined_fn fn
, tree type
,
11009 tree
*argarray
= XALLOCAVEC (tree
, n
);
11013 for (i
= 0; i
< n
; i
++)
11014 argarray
[i
] = va_arg (ap
, tree
);
11016 if (internal_fn_p (fn
))
11018 internal_fn ifn
= as_internal_fn (fn
);
11019 if (direct_internal_fn_p (ifn
))
11021 tree_pair types
= direct_internal_fn_types (ifn
, type
, argarray
);
11022 if (!direct_internal_fn_supported_p (ifn
, types
,
11023 OPTIMIZE_FOR_BOTH
))
11026 return build_call_expr_internal_loc_array (loc
, ifn
, type
, n
, argarray
);
11030 tree fndecl
= builtin_decl_implicit (as_builtin_fn (fn
));
11033 return build_call_expr_loc_array (loc
, fndecl
, n
, argarray
);
11037 /* Return a function call to the appropriate builtin alloca variant.
11039 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11040 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11041 bound for SIZE in case it is not a fixed value. */
11044 build_alloca_call_expr (tree size
, unsigned int align
, HOST_WIDE_INT max_size
)
11048 tree t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX
);
11050 build_call_expr (t
, 3, size
, size_int (align
), size_int (max_size
));
11052 else if (align
> 0)
11054 tree t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
11055 return build_call_expr (t
, 2, size
, size_int (align
));
11059 tree t
= builtin_decl_explicit (BUILT_IN_ALLOCA
);
11060 return build_call_expr (t
, 1, size
);
11064 /* Create a new constant string literal and return a char* pointer to it.
11065 The STRING_CST value is the LEN characters at STR. */
11067 build_string_literal (int len
, const char *str
)
11069 tree t
, elem
, index
, type
;
11071 t
= build_string (len
, str
);
11072 elem
= build_type_variant (char_type_node
, 1, 0);
11073 index
= build_index_type (size_int (len
- 1));
11074 type
= build_array_type (elem
, index
);
11075 TREE_TYPE (t
) = type
;
11076 TREE_CONSTANT (t
) = 1;
11077 TREE_READONLY (t
) = 1;
11078 TREE_STATIC (t
) = 1;
11080 type
= build_pointer_type (elem
);
11081 t
= build1 (ADDR_EXPR
, type
,
11082 build4 (ARRAY_REF
, elem
,
11083 t
, integer_zero_node
, NULL_TREE
, NULL_TREE
));
11089 /* Return true if T (assumed to be a DECL) must be assigned a memory
11093 needs_to_live_in_memory (const_tree t
)
11095 return (TREE_ADDRESSABLE (t
)
11096 || is_global_var (t
)
11097 || (TREE_CODE (t
) == RESULT_DECL
11098 && !DECL_BY_REFERENCE (t
)
11099 && aggregate_value_p (t
, current_function_decl
)));
11102 /* Return value of a constant X and sign-extend it. */
11105 int_cst_value (const_tree x
)
11107 unsigned bits
= TYPE_PRECISION (TREE_TYPE (x
));
11108 unsigned HOST_WIDE_INT val
= TREE_INT_CST_LOW (x
);
11110 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11111 gcc_assert (cst_and_fits_in_hwi (x
));
11113 if (bits
< HOST_BITS_PER_WIDE_INT
)
11115 bool negative
= ((val
>> (bits
- 1)) & 1) != 0;
11117 val
|= HOST_WIDE_INT_M1U
<< (bits
- 1) << 1;
11119 val
&= ~(HOST_WIDE_INT_M1U
<< (bits
- 1) << 1);
11125 /* If TYPE is an integral or pointer type, return an integer type with
11126 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11127 if TYPE is already an integer type of signedness UNSIGNEDP. */
11130 signed_or_unsigned_type_for (int unsignedp
, tree type
)
11132 if (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
) == unsignedp
)
11135 if (TREE_CODE (type
) == VECTOR_TYPE
)
11137 tree inner
= TREE_TYPE (type
);
11138 tree inner2
= signed_or_unsigned_type_for (unsignedp
, inner
);
11141 if (inner
== inner2
)
11143 return build_vector_type (inner2
, TYPE_VECTOR_SUBPARTS (type
));
11146 if (!INTEGRAL_TYPE_P (type
)
11147 && !POINTER_TYPE_P (type
)
11148 && TREE_CODE (type
) != OFFSET_TYPE
)
11151 return build_nonstandard_integer_type (TYPE_PRECISION (type
), unsignedp
);
11154 /* If TYPE is an integral or pointer type, return an integer type with
11155 the same precision which is unsigned, or itself if TYPE is already an
11156 unsigned integer type. */
11159 unsigned_type_for (tree type
)
11161 return signed_or_unsigned_type_for (1, type
);
11164 /* If TYPE is an integral or pointer type, return an integer type with
11165 the same precision which is signed, or itself if TYPE is already a
11166 signed integer type. */
11169 signed_type_for (tree type
)
11171 return signed_or_unsigned_type_for (0, type
);
11174 /* If TYPE is a vector type, return a signed integer vector type with the
11175 same width and number of subparts. Otherwise return boolean_type_node. */
11178 truth_type_for (tree type
)
11180 if (TREE_CODE (type
) == VECTOR_TYPE
)
11182 if (VECTOR_BOOLEAN_TYPE_P (type
))
11184 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type
),
11185 GET_MODE_SIZE (TYPE_MODE (type
)));
11188 return boolean_type_node
;
11191 /* Returns the largest value obtainable by casting something in INNER type to
11195 upper_bound_in_type (tree outer
, tree inner
)
11197 unsigned int det
= 0;
11198 unsigned oprec
= TYPE_PRECISION (outer
);
11199 unsigned iprec
= TYPE_PRECISION (inner
);
11202 /* Compute a unique number for every combination. */
11203 det
|= (oprec
> iprec
) ? 4 : 0;
11204 det
|= TYPE_UNSIGNED (outer
) ? 2 : 0;
11205 det
|= TYPE_UNSIGNED (inner
) ? 1 : 0;
11207 /* Determine the exponent to use. */
11212 /* oprec <= iprec, outer: signed, inner: don't care. */
11217 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11221 /* oprec > iprec, outer: signed, inner: signed. */
11225 /* oprec > iprec, outer: signed, inner: unsigned. */
11229 /* oprec > iprec, outer: unsigned, inner: signed. */
11233 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11237 gcc_unreachable ();
11240 return wide_int_to_tree (outer
,
11241 wi::mask (prec
, false, TYPE_PRECISION (outer
)));
11244 /* Returns the smallest value obtainable by casting something in INNER type to
11248 lower_bound_in_type (tree outer
, tree inner
)
11250 unsigned oprec
= TYPE_PRECISION (outer
);
11251 unsigned iprec
= TYPE_PRECISION (inner
);
11253 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11255 if (TYPE_UNSIGNED (outer
)
11256 /* If we are widening something of an unsigned type, OUTER type
11257 contains all values of INNER type. In particular, both INNER
11258 and OUTER types have zero in common. */
11259 || (oprec
> iprec
&& TYPE_UNSIGNED (inner
)))
11260 return build_int_cst (outer
, 0);
11263 /* If we are widening a signed type to another signed type, we
11264 want to obtain -2^^(iprec-1). If we are keeping the
11265 precision or narrowing to a signed type, we want to obtain
11267 unsigned prec
= oprec
> iprec
? iprec
: oprec
;
11268 return wide_int_to_tree (outer
,
11269 wi::mask (prec
- 1, true,
11270 TYPE_PRECISION (outer
)));
11274 /* Return nonzero if two operands that are suitable for PHI nodes are
11275 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11276 SSA_NAME or invariant. Note that this is strictly an optimization.
11277 That is, callers of this function can directly call operand_equal_p
11278 and get the same result, only slower. */
11281 operand_equal_for_phi_arg_p (const_tree arg0
, const_tree arg1
)
11285 if (TREE_CODE (arg0
) == SSA_NAME
|| TREE_CODE (arg1
) == SSA_NAME
)
11287 return operand_equal_p (arg0
, arg1
, 0);
11290 /* Returns number of zeros at the end of binary representation of X. */
11293 num_ending_zeros (const_tree x
)
11295 return build_int_cst (TREE_TYPE (x
), wi::ctz (wi::to_wide (x
)));
11299 #define WALK_SUBTREE(NODE) \
11302 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11308 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11309 be walked whenever a type is seen in the tree. Rest of operands and return
11310 value are as for walk_tree. */
11313 walk_type_fields (tree type
, walk_tree_fn func
, void *data
,
11314 hash_set
<tree
> *pset
, walk_tree_lh lh
)
11316 tree result
= NULL_TREE
;
11318 switch (TREE_CODE (type
))
11321 case REFERENCE_TYPE
:
11323 /* We have to worry about mutually recursive pointers. These can't
11324 be written in C. They can in Ada. It's pathological, but
11325 there's an ACATS test (c38102a) that checks it. Deal with this
11326 by checking if we're pointing to another pointer, that one
11327 points to another pointer, that one does too, and we have no htab.
11328 If so, get a hash table. We check three levels deep to avoid
11329 the cost of the hash table if we don't need one. */
11330 if (POINTER_TYPE_P (TREE_TYPE (type
))
11331 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type
)))
11332 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type
))))
11335 result
= walk_tree_without_duplicates (&TREE_TYPE (type
),
11346 WALK_SUBTREE (TREE_TYPE (type
));
11350 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type
));
11352 /* Fall through. */
11354 case FUNCTION_TYPE
:
11355 WALK_SUBTREE (TREE_TYPE (type
));
11359 /* We never want to walk into default arguments. */
11360 for (arg
= TYPE_ARG_TYPES (type
); arg
; arg
= TREE_CHAIN (arg
))
11361 WALK_SUBTREE (TREE_VALUE (arg
));
11366 /* Don't follow this nodes's type if a pointer for fear that
11367 we'll have infinite recursion. If we have a PSET, then we
11370 || (!POINTER_TYPE_P (TREE_TYPE (type
))
11371 && TREE_CODE (TREE_TYPE (type
)) != OFFSET_TYPE
))
11372 WALK_SUBTREE (TREE_TYPE (type
));
11373 WALK_SUBTREE (TYPE_DOMAIN (type
));
11377 WALK_SUBTREE (TREE_TYPE (type
));
11378 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type
));
11388 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11389 called with the DATA and the address of each sub-tree. If FUNC returns a
11390 non-NULL value, the traversal is stopped, and the value returned by FUNC
11391 is returned. If PSET is non-NULL it is used to record the nodes visited,
11392 and to avoid visiting a node more than once. */
11395 walk_tree_1 (tree
*tp
, walk_tree_fn func
, void *data
,
11396 hash_set
<tree
> *pset
, walk_tree_lh lh
)
11398 enum tree_code code
;
11402 #define WALK_SUBTREE_TAIL(NODE) \
11406 goto tail_recurse; \
11411 /* Skip empty subtrees. */
11415 /* Don't walk the same tree twice, if the user has requested
11416 that we avoid doing so. */
11417 if (pset
&& pset
->add (*tp
))
11420 /* Call the function. */
11422 result
= (*func
) (tp
, &walk_subtrees
, data
);
11424 /* If we found something, return it. */
11428 code
= TREE_CODE (*tp
);
11430 /* Even if we didn't, FUNC may have decided that there was nothing
11431 interesting below this point in the tree. */
11432 if (!walk_subtrees
)
11434 /* But we still need to check our siblings. */
11435 if (code
== TREE_LIST
)
11436 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp
));
11437 else if (code
== OMP_CLAUSE
)
11438 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11445 result
= (*lh
) (tp
, &walk_subtrees
, func
, data
, pset
);
11446 if (result
|| !walk_subtrees
)
11453 case IDENTIFIER_NODE
:
11460 case PLACEHOLDER_EXPR
:
11464 /* None of these have subtrees other than those already walked
11469 WALK_SUBTREE (TREE_VALUE (*tp
));
11470 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp
));
11475 int len
= TREE_VEC_LENGTH (*tp
);
11480 /* Walk all elements but the first. */
11482 WALK_SUBTREE (TREE_VEC_ELT (*tp
, len
));
11484 /* Now walk the first one as a tail call. */
11485 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp
, 0));
11489 WALK_SUBTREE (TREE_REALPART (*tp
));
11490 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp
));
11494 unsigned HOST_WIDE_INT idx
;
11495 constructor_elt
*ce
;
11497 for (idx
= 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp
), idx
, &ce
);
11499 WALK_SUBTREE (ce
->value
);
11504 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp
, 0));
11509 for (decl
= BIND_EXPR_VARS (*tp
); decl
; decl
= DECL_CHAIN (decl
))
11511 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11512 into declarations that are just mentioned, rather than
11513 declared; they don't really belong to this part of the tree.
11514 And, we can see cycles: the initializer for a declaration
11515 can refer to the declaration itself. */
11516 WALK_SUBTREE (DECL_INITIAL (decl
));
11517 WALK_SUBTREE (DECL_SIZE (decl
));
11518 WALK_SUBTREE (DECL_SIZE_UNIT (decl
));
11520 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp
));
11523 case STATEMENT_LIST
:
11525 tree_stmt_iterator i
;
11526 for (i
= tsi_start (*tp
); !tsi_end_p (i
); tsi_next (&i
))
11527 WALK_SUBTREE (*tsi_stmt_ptr (i
));
11532 switch (OMP_CLAUSE_CODE (*tp
))
11534 case OMP_CLAUSE_GANG
:
11535 case OMP_CLAUSE__GRIDDIM_
:
11536 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, 1));
11539 case OMP_CLAUSE_ASYNC
:
11540 case OMP_CLAUSE_WAIT
:
11541 case OMP_CLAUSE_WORKER
:
11542 case OMP_CLAUSE_VECTOR
:
11543 case OMP_CLAUSE_NUM_GANGS
:
11544 case OMP_CLAUSE_NUM_WORKERS
:
11545 case OMP_CLAUSE_VECTOR_LENGTH
:
11546 case OMP_CLAUSE_PRIVATE
:
11547 case OMP_CLAUSE_SHARED
:
11548 case OMP_CLAUSE_FIRSTPRIVATE
:
11549 case OMP_CLAUSE_COPYIN
:
11550 case OMP_CLAUSE_COPYPRIVATE
:
11551 case OMP_CLAUSE_FINAL
:
11552 case OMP_CLAUSE_IF
:
11553 case OMP_CLAUSE_NUM_THREADS
:
11554 case OMP_CLAUSE_SCHEDULE
:
11555 case OMP_CLAUSE_UNIFORM
:
11556 case OMP_CLAUSE_DEPEND
:
11557 case OMP_CLAUSE_NUM_TEAMS
:
11558 case OMP_CLAUSE_THREAD_LIMIT
:
11559 case OMP_CLAUSE_DEVICE
:
11560 case OMP_CLAUSE_DIST_SCHEDULE
:
11561 case OMP_CLAUSE_SAFELEN
:
11562 case OMP_CLAUSE_SIMDLEN
:
11563 case OMP_CLAUSE_ORDERED
:
11564 case OMP_CLAUSE_PRIORITY
:
11565 case OMP_CLAUSE_GRAINSIZE
:
11566 case OMP_CLAUSE_NUM_TASKS
:
11567 case OMP_CLAUSE_HINT
:
11568 case OMP_CLAUSE_TO_DECLARE
:
11569 case OMP_CLAUSE_LINK
:
11570 case OMP_CLAUSE_USE_DEVICE_PTR
:
11571 case OMP_CLAUSE_IS_DEVICE_PTR
:
11572 case OMP_CLAUSE__LOOPTEMP_
:
11573 case OMP_CLAUSE__SIMDUID_
:
11574 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, 0));
11577 case OMP_CLAUSE_INDEPENDENT
:
11578 case OMP_CLAUSE_NOWAIT
:
11579 case OMP_CLAUSE_DEFAULT
:
11580 case OMP_CLAUSE_UNTIED
:
11581 case OMP_CLAUSE_MERGEABLE
:
11582 case OMP_CLAUSE_PROC_BIND
:
11583 case OMP_CLAUSE_INBRANCH
:
11584 case OMP_CLAUSE_NOTINBRANCH
:
11585 case OMP_CLAUSE_FOR
:
11586 case OMP_CLAUSE_PARALLEL
:
11587 case OMP_CLAUSE_SECTIONS
:
11588 case OMP_CLAUSE_TASKGROUP
:
11589 case OMP_CLAUSE_NOGROUP
:
11590 case OMP_CLAUSE_THREADS
:
11591 case OMP_CLAUSE_SIMD
:
11592 case OMP_CLAUSE_DEFAULTMAP
:
11593 case OMP_CLAUSE_AUTO
:
11594 case OMP_CLAUSE_SEQ
:
11595 case OMP_CLAUSE_TILE
:
11596 case OMP_CLAUSE__SIMT_
:
11597 case OMP_CLAUSE_IF_PRESENT
:
11598 case OMP_CLAUSE_FINALIZE
:
11599 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11601 case OMP_CLAUSE_LASTPRIVATE
:
11602 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp
));
11603 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp
));
11604 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11606 case OMP_CLAUSE_COLLAPSE
:
11609 for (i
= 0; i
< 3; i
++)
11610 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, i
));
11611 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11614 case OMP_CLAUSE_LINEAR
:
11615 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp
));
11616 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp
));
11617 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp
));
11618 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11620 case OMP_CLAUSE_ALIGNED
:
11621 case OMP_CLAUSE_FROM
:
11622 case OMP_CLAUSE_TO
:
11623 case OMP_CLAUSE_MAP
:
11624 case OMP_CLAUSE__CACHE_
:
11625 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp
));
11626 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, 1));
11627 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11629 case OMP_CLAUSE_REDUCTION
:
11632 for (i
= 0; i
< 5; i
++)
11633 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, i
));
11634 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11638 gcc_unreachable ();
11646 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11647 But, we only want to walk once. */
11648 len
= (TREE_OPERAND (*tp
, 3) == TREE_OPERAND (*tp
, 1)) ? 2 : 3;
11649 for (i
= 0; i
< len
; ++i
)
11650 WALK_SUBTREE (TREE_OPERAND (*tp
, i
));
11651 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp
, len
));
11655 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11656 defining. We only want to walk into these fields of a type in this
11657 case and not in the general case of a mere reference to the type.
11659 The criterion is as follows: if the field can be an expression, it
11660 must be walked only here. This should be in keeping with the fields
11661 that are directly gimplified in gimplify_type_sizes in order for the
11662 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11663 variable-sized types.
11665 Note that DECLs get walked as part of processing the BIND_EXPR. */
11666 if (TREE_CODE (DECL_EXPR_DECL (*tp
)) == TYPE_DECL
)
11668 tree
*type_p
= &TREE_TYPE (DECL_EXPR_DECL (*tp
));
11669 if (TREE_CODE (*type_p
) == ERROR_MARK
)
11672 /* Call the function for the type. See if it returns anything or
11673 doesn't want us to continue. If we are to continue, walk both
11674 the normal fields and those for the declaration case. */
11675 result
= (*func
) (type_p
, &walk_subtrees
, data
);
11676 if (result
|| !walk_subtrees
)
11679 /* But do not walk a pointed-to type since it may itself need to
11680 be walked in the declaration case if it isn't anonymous. */
11681 if (!POINTER_TYPE_P (*type_p
))
11683 result
= walk_type_fields (*type_p
, func
, data
, pset
, lh
);
11688 /* If this is a record type, also walk the fields. */
11689 if (RECORD_OR_UNION_TYPE_P (*type_p
))
11693 for (field
= TYPE_FIELDS (*type_p
); field
;
11694 field
= DECL_CHAIN (field
))
11696 /* We'd like to look at the type of the field, but we can
11697 easily get infinite recursion. So assume it's pointed
11698 to elsewhere in the tree. Also, ignore things that
11700 if (TREE_CODE (field
) != FIELD_DECL
)
11703 WALK_SUBTREE (DECL_FIELD_OFFSET (field
));
11704 WALK_SUBTREE (DECL_SIZE (field
));
11705 WALK_SUBTREE (DECL_SIZE_UNIT (field
));
11706 if (TREE_CODE (*type_p
) == QUAL_UNION_TYPE
)
11707 WALK_SUBTREE (DECL_QUALIFIER (field
));
11711 /* Same for scalar types. */
11712 else if (TREE_CODE (*type_p
) == BOOLEAN_TYPE
11713 || TREE_CODE (*type_p
) == ENUMERAL_TYPE
11714 || TREE_CODE (*type_p
) == INTEGER_TYPE
11715 || TREE_CODE (*type_p
) == FIXED_POINT_TYPE
11716 || TREE_CODE (*type_p
) == REAL_TYPE
)
11718 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p
));
11719 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p
));
11722 WALK_SUBTREE (TYPE_SIZE (*type_p
));
11723 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p
));
11728 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
11732 /* Walk over all the sub-trees of this operand. */
11733 len
= TREE_OPERAND_LENGTH (*tp
);
11735 /* Go through the subtrees. We need to do this in forward order so
11736 that the scope of a FOR_EXPR is handled properly. */
11739 for (i
= 0; i
< len
- 1; ++i
)
11740 WALK_SUBTREE (TREE_OPERAND (*tp
, i
));
11741 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp
, len
- 1));
11744 /* If this is a type, walk the needed fields in the type. */
11745 else if (TYPE_P (*tp
))
11746 return walk_type_fields (*tp
, func
, data
, pset
, lh
);
11750 /* We didn't find what we were looking for. */
11753 #undef WALK_SUBTREE_TAIL
11755 #undef WALK_SUBTREE
11757 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11760 walk_tree_without_duplicates_1 (tree
*tp
, walk_tree_fn func
, void *data
,
11765 hash_set
<tree
> pset
;
11766 result
= walk_tree_1 (tp
, func
, data
, &pset
, lh
);
11772 tree_block (tree t
)
11774 const enum tree_code_class c
= TREE_CODE_CLASS (TREE_CODE (t
));
11776 if (IS_EXPR_CODE_CLASS (c
))
11777 return LOCATION_BLOCK (t
->exp
.locus
);
11778 gcc_unreachable ();
11783 tree_set_block (tree t
, tree b
)
11785 const enum tree_code_class c
= TREE_CODE_CLASS (TREE_CODE (t
));
11787 if (IS_EXPR_CODE_CLASS (c
))
11789 t
->exp
.locus
= set_block (t
->exp
.locus
, b
);
11792 gcc_unreachable ();
11795 /* Create a nameless artificial label and put it in the current
11796 function context. The label has a location of LOC. Returns the
11797 newly created label. */
11800 create_artificial_label (location_t loc
)
11802 tree lab
= build_decl (loc
,
11803 LABEL_DECL
, NULL_TREE
, void_type_node
);
11805 DECL_ARTIFICIAL (lab
) = 1;
11806 DECL_IGNORED_P (lab
) = 1;
11807 DECL_CONTEXT (lab
) = current_function_decl
;
11811 /* Given a tree, try to return a useful variable name that we can use
11812 to prefix a temporary that is being assigned the value of the tree.
11813 I.E. given <temp> = &A, return A. */
11818 tree stripped_decl
;
11821 STRIP_NOPS (stripped_decl
);
11822 if (DECL_P (stripped_decl
) && DECL_NAME (stripped_decl
))
11823 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl
));
11824 else if (TREE_CODE (stripped_decl
) == SSA_NAME
)
11826 tree name
= SSA_NAME_IDENTIFIER (stripped_decl
);
11829 return IDENTIFIER_POINTER (name
);
11833 switch (TREE_CODE (stripped_decl
))
11836 return get_name (TREE_OPERAND (stripped_decl
, 0));
11843 /* Return true if TYPE has a variable argument list. */
11846 stdarg_p (const_tree fntype
)
11848 function_args_iterator args_iter
;
11849 tree n
= NULL_TREE
, t
;
11854 FOREACH_FUNCTION_ARGS (fntype
, t
, args_iter
)
11859 return n
!= NULL_TREE
&& n
!= void_type_node
;
11862 /* Return true if TYPE has a prototype. */
11865 prototype_p (const_tree fntype
)
11869 gcc_assert (fntype
!= NULL_TREE
);
11871 t
= TYPE_ARG_TYPES (fntype
);
11872 return (t
!= NULL_TREE
);
11875 /* If BLOCK is inlined from an __attribute__((__artificial__))
11876 routine, return pointer to location from where it has been
11879 block_nonartificial_location (tree block
)
11881 location_t
*ret
= NULL
;
11883 while (block
&& TREE_CODE (block
) == BLOCK
11884 && BLOCK_ABSTRACT_ORIGIN (block
))
11886 tree ao
= BLOCK_ABSTRACT_ORIGIN (block
);
11888 while (TREE_CODE (ao
) == BLOCK
11889 && BLOCK_ABSTRACT_ORIGIN (ao
)
11890 && BLOCK_ABSTRACT_ORIGIN (ao
) != ao
)
11891 ao
= BLOCK_ABSTRACT_ORIGIN (ao
);
11893 if (TREE_CODE (ao
) == FUNCTION_DECL
)
11895 /* If AO is an artificial inline, point RET to the
11896 call site locus at which it has been inlined and continue
11897 the loop, in case AO's caller is also an artificial
11899 if (DECL_DECLARED_INLINE_P (ao
)
11900 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao
)))
11901 ret
= &BLOCK_SOURCE_LOCATION (block
);
11905 else if (TREE_CODE (ao
) != BLOCK
)
11908 block
= BLOCK_SUPERCONTEXT (block
);
11914 /* If EXP is inlined from an __attribute__((__artificial__))
11915 function, return the location of the original call expression. */
11918 tree_nonartificial_location (tree exp
)
11920 location_t
*loc
= block_nonartificial_location (TREE_BLOCK (exp
));
11925 return EXPR_LOCATION (exp
);
11929 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11932 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11935 cl_option_hasher::hash (tree x
)
11937 const_tree
const t
= x
;
11941 hashval_t hash
= 0;
11943 if (TREE_CODE (t
) == OPTIMIZATION_NODE
)
11945 p
= (const char *)TREE_OPTIMIZATION (t
);
11946 len
= sizeof (struct cl_optimization
);
11949 else if (TREE_CODE (t
) == TARGET_OPTION_NODE
)
11950 return cl_target_option_hash (TREE_TARGET_OPTION (t
));
11953 gcc_unreachable ();
11955 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11957 for (i
= 0; i
< len
; i
++)
11959 hash
= (hash
<< 4) ^ ((i
<< 2) | p
[i
]);
11964 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11965 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11969 cl_option_hasher::equal (tree x
, tree y
)
11971 const_tree
const xt
= x
;
11972 const_tree
const yt
= y
;
11974 if (TREE_CODE (xt
) != TREE_CODE (yt
))
11977 if (TREE_CODE (xt
) == OPTIMIZATION_NODE
)
11978 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt
),
11979 TREE_OPTIMIZATION (yt
));
11980 else if (TREE_CODE (xt
) == TARGET_OPTION_NODE
)
11981 return cl_target_option_eq (TREE_TARGET_OPTION (xt
),
11982 TREE_TARGET_OPTION (yt
));
11984 gcc_unreachable ();
11987 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11990 build_optimization_node (struct gcc_options
*opts
)
11994 /* Use the cache of optimization nodes. */
11996 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node
),
11999 tree
*slot
= cl_option_hash_table
->find_slot (cl_optimization_node
, INSERT
);
12003 /* Insert this one into the hash table. */
12004 t
= cl_optimization_node
;
12007 /* Make a new node for next time round. */
12008 cl_optimization_node
= make_node (OPTIMIZATION_NODE
);
12014 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12017 build_target_option_node (struct gcc_options
*opts
)
12021 /* Use the cache of optimization nodes. */
12023 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node
),
12026 tree
*slot
= cl_option_hash_table
->find_slot (cl_target_option_node
, INSERT
);
12030 /* Insert this one into the hash table. */
12031 t
= cl_target_option_node
;
12034 /* Make a new node for next time round. */
12035 cl_target_option_node
= make_node (TARGET_OPTION_NODE
);
12041 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12042 so that they aren't saved during PCH writing. */
12045 prepare_target_option_nodes_for_pch (void)
12047 hash_table
<cl_option_hasher
>::iterator iter
= cl_option_hash_table
->begin ();
12048 for (; iter
!= cl_option_hash_table
->end (); ++iter
)
12049 if (TREE_CODE (*iter
) == TARGET_OPTION_NODE
)
12050 TREE_TARGET_GLOBALS (*iter
) = NULL
;
12053 /* Determine the "ultimate origin" of a block. The block may be an inlined
12054 instance of an inlined instance of a block which is local to an inline
12055 function, so we have to trace all of the way back through the origin chain
12056 to find out what sort of node actually served as the original seed for the
12060 block_ultimate_origin (const_tree block
)
12062 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
12064 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12065 we're trying to output the abstract instance of this function. */
12066 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
12069 if (immediate_origin
== NULL_TREE
)
12074 tree lookahead
= immediate_origin
;
12078 ret_val
= lookahead
;
12079 lookahead
= (TREE_CODE (ret_val
) == BLOCK
12080 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
12082 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
12084 /* The block's abstract origin chain may not be the *ultimate* origin of
12085 the block. It could lead to a DECL that has an abstract origin set.
12086 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12087 will give us if it has one). Note that DECL's abstract origins are
12088 supposed to be the most distant ancestor (or so decl_ultimate_origin
12089 claims), so we don't need to loop following the DECL origins. */
12090 if (DECL_P (ret_val
))
12091 return DECL_ORIGIN (ret_val
);
12097 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12101 tree_nop_conversion_p (const_tree outer_type
, const_tree inner_type
)
12103 /* Do not strip casts into or out of differing address spaces. */
12104 if (POINTER_TYPE_P (outer_type
)
12105 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type
)) != ADDR_SPACE_GENERIC
)
12107 if (!POINTER_TYPE_P (inner_type
)
12108 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type
))
12109 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type
))))
12112 else if (POINTER_TYPE_P (inner_type
)
12113 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type
)) != ADDR_SPACE_GENERIC
)
12115 /* We already know that outer_type is not a pointer with
12116 a non-generic address space. */
12120 /* Use precision rather then machine mode when we can, which gives
12121 the correct answer even for submode (bit-field) types. */
12122 if ((INTEGRAL_TYPE_P (outer_type
)
12123 || POINTER_TYPE_P (outer_type
)
12124 || TREE_CODE (outer_type
) == OFFSET_TYPE
)
12125 && (INTEGRAL_TYPE_P (inner_type
)
12126 || POINTER_TYPE_P (inner_type
)
12127 || TREE_CODE (inner_type
) == OFFSET_TYPE
))
12128 return TYPE_PRECISION (outer_type
) == TYPE_PRECISION (inner_type
);
12130 /* Otherwise fall back on comparing machine modes (e.g. for
12131 aggregate types, floats). */
12132 return TYPE_MODE (outer_type
) == TYPE_MODE (inner_type
);
12135 /* Return true iff conversion in EXP generates no instruction. Mark
12136 it inline so that we fully inline into the stripping functions even
12137 though we have two uses of this function. */
12140 tree_nop_conversion (const_tree exp
)
12142 tree outer_type
, inner_type
;
12144 if (location_wrapper_p (exp
))
12146 if (!CONVERT_EXPR_P (exp
)
12147 && TREE_CODE (exp
) != NON_LVALUE_EXPR
)
12149 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
12152 outer_type
= TREE_TYPE (exp
);
12153 inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
12158 return tree_nop_conversion_p (outer_type
, inner_type
);
12161 /* Return true iff conversion in EXP generates no instruction. Don't
12162 consider conversions changing the signedness. */
12165 tree_sign_nop_conversion (const_tree exp
)
12167 tree outer_type
, inner_type
;
12169 if (!tree_nop_conversion (exp
))
12172 outer_type
= TREE_TYPE (exp
);
12173 inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
12175 return (TYPE_UNSIGNED (outer_type
) == TYPE_UNSIGNED (inner_type
)
12176 && POINTER_TYPE_P (outer_type
) == POINTER_TYPE_P (inner_type
));
12179 /* Strip conversions from EXP according to tree_nop_conversion and
12180 return the resulting expression. */
12183 tree_strip_nop_conversions (tree exp
)
12185 while (tree_nop_conversion (exp
))
12186 exp
= TREE_OPERAND (exp
, 0);
12190 /* Strip conversions from EXP according to tree_sign_nop_conversion
12191 and return the resulting expression. */
12194 tree_strip_sign_nop_conversions (tree exp
)
12196 while (tree_sign_nop_conversion (exp
))
12197 exp
= TREE_OPERAND (exp
, 0);
12201 /* Avoid any floating point extensions from EXP. */
12203 strip_float_extensions (tree exp
)
12205 tree sub
, expt
, subt
;
12207 /* For floating point constant look up the narrowest type that can hold
12208 it properly and handle it like (type)(narrowest_type)constant.
12209 This way we can optimize for instance a=a*2.0 where "a" is float
12210 but 2.0 is double constant. */
12211 if (TREE_CODE (exp
) == REAL_CST
&& !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp
)))
12213 REAL_VALUE_TYPE orig
;
12216 orig
= TREE_REAL_CST (exp
);
12217 if (TYPE_PRECISION (TREE_TYPE (exp
)) > TYPE_PRECISION (float_type_node
)
12218 && exact_real_truncate (TYPE_MODE (float_type_node
), &orig
))
12219 type
= float_type_node
;
12220 else if (TYPE_PRECISION (TREE_TYPE (exp
))
12221 > TYPE_PRECISION (double_type_node
)
12222 && exact_real_truncate (TYPE_MODE (double_type_node
), &orig
))
12223 type
= double_type_node
;
12225 return build_real_truncate (type
, orig
);
12228 if (!CONVERT_EXPR_P (exp
))
12231 sub
= TREE_OPERAND (exp
, 0);
12232 subt
= TREE_TYPE (sub
);
12233 expt
= TREE_TYPE (exp
);
12235 if (!FLOAT_TYPE_P (subt
))
12238 if (DECIMAL_FLOAT_TYPE_P (expt
) != DECIMAL_FLOAT_TYPE_P (subt
))
12241 if (TYPE_PRECISION (subt
) > TYPE_PRECISION (expt
))
12244 return strip_float_extensions (sub
);
12247 /* Strip out all handled components that produce invariant
12251 strip_invariant_refs (const_tree op
)
12253 while (handled_component_p (op
))
12255 switch (TREE_CODE (op
))
12258 case ARRAY_RANGE_REF
:
12259 if (!is_gimple_constant (TREE_OPERAND (op
, 1))
12260 || TREE_OPERAND (op
, 2) != NULL_TREE
12261 || TREE_OPERAND (op
, 3) != NULL_TREE
)
12265 case COMPONENT_REF
:
12266 if (TREE_OPERAND (op
, 2) != NULL_TREE
)
12272 op
= TREE_OPERAND (op
, 0);
12278 static GTY(()) tree gcc_eh_personality_decl
;
12280 /* Return the GCC personality function decl. */
12283 lhd_gcc_personality (void)
12285 if (!gcc_eh_personality_decl
)
12286 gcc_eh_personality_decl
= build_personality_function ("gcc");
12287 return gcc_eh_personality_decl
;
12290 /* TARGET is a call target of GIMPLE call statement
12291 (obtained by gimple_call_fn). Return true if it is
12292 OBJ_TYPE_REF representing an virtual call of C++ method.
12293 (As opposed to OBJ_TYPE_REF representing objc calls
12294 through a cast where middle-end devirtualization machinery
12298 virtual_method_call_p (const_tree target
)
12300 if (TREE_CODE (target
) != OBJ_TYPE_REF
)
12302 tree t
= TREE_TYPE (target
);
12303 gcc_checking_assert (TREE_CODE (t
) == POINTER_TYPE
);
12305 if (TREE_CODE (t
) == FUNCTION_TYPE
)
12307 gcc_checking_assert (TREE_CODE (t
) == METHOD_TYPE
);
12308 /* If we do not have BINFO associated, it means that type was built
12309 without devirtualization enabled. Do not consider this a virtual
12311 if (!TYPE_BINFO (obj_type_ref_class (target
)))
12316 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12319 obj_type_ref_class (const_tree ref
)
12321 gcc_checking_assert (TREE_CODE (ref
) == OBJ_TYPE_REF
);
12322 ref
= TREE_TYPE (ref
);
12323 gcc_checking_assert (TREE_CODE (ref
) == POINTER_TYPE
);
12324 ref
= TREE_TYPE (ref
);
12325 /* We look for type THIS points to. ObjC also builds
12326 OBJ_TYPE_REF with non-method calls, Their first parameter
12327 ID however also corresponds to class type. */
12328 gcc_checking_assert (TREE_CODE (ref
) == METHOD_TYPE
12329 || TREE_CODE (ref
) == FUNCTION_TYPE
);
12330 ref
= TREE_VALUE (TYPE_ARG_TYPES (ref
));
12331 gcc_checking_assert (TREE_CODE (ref
) == POINTER_TYPE
);
12332 return TREE_TYPE (ref
);
12335 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12338 lookup_binfo_at_offset (tree binfo
, tree type
, HOST_WIDE_INT pos
)
12341 tree base_binfo
, b
;
12343 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
12344 if (pos
== tree_to_shwi (BINFO_OFFSET (base_binfo
))
12345 && types_same_for_odr (TREE_TYPE (base_binfo
), type
))
12347 else if ((b
= lookup_binfo_at_offset (base_binfo
, type
, pos
)) != NULL
)
12352 /* Try to find a base info of BINFO that would have its field decl at offset
12353 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12354 found, return, otherwise return NULL_TREE. */
12357 get_binfo_at_offset (tree binfo
, poly_int64 offset
, tree expected_type
)
12359 tree type
= BINFO_TYPE (binfo
);
12363 HOST_WIDE_INT pos
, size
;
12367 if (types_same_for_odr (type
, expected_type
))
12369 if (maybe_lt (offset
, 0))
12372 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
12374 if (TREE_CODE (fld
) != FIELD_DECL
|| !DECL_ARTIFICIAL (fld
))
12377 pos
= int_bit_position (fld
);
12378 size
= tree_to_uhwi (DECL_SIZE (fld
));
12379 if (known_in_range_p (offset
, pos
, size
))
12382 if (!fld
|| TREE_CODE (TREE_TYPE (fld
)) != RECORD_TYPE
)
12385 /* Offset 0 indicates the primary base, whose vtable contents are
12386 represented in the binfo for the derived class. */
12387 else if (maybe_ne (offset
, 0))
12389 tree found_binfo
= NULL
, base_binfo
;
12390 /* Offsets in BINFO are in bytes relative to the whole structure
12391 while POS is in bits relative to the containing field. */
12392 int binfo_offset
= (tree_to_shwi (BINFO_OFFSET (binfo
)) + pos
12395 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
12396 if (tree_to_shwi (BINFO_OFFSET (base_binfo
)) == binfo_offset
12397 && types_same_for_odr (TREE_TYPE (base_binfo
), TREE_TYPE (fld
)))
12399 found_binfo
= base_binfo
;
12403 binfo
= found_binfo
;
12405 binfo
= lookup_binfo_at_offset (binfo
, TREE_TYPE (fld
),
12409 type
= TREE_TYPE (fld
);
12414 /* Returns true if X is a typedef decl. */
12417 is_typedef_decl (const_tree x
)
12419 return (x
&& TREE_CODE (x
) == TYPE_DECL
12420 && DECL_ORIGINAL_TYPE (x
) != NULL_TREE
);
12423 /* Returns true iff TYPE is a type variant created for a typedef. */
12426 typedef_variant_p (const_tree type
)
12428 return is_typedef_decl (TYPE_NAME (type
));
12431 /* A class to handle converting a string that might contain
12432 control characters, (eg newline, form-feed, etc), into one
12433 in which contains escape sequences instead. */
12435 class escaped_string
12438 escaped_string () { m_owned
= false; m_str
= NULL
; };
12439 ~escaped_string () { if (m_owned
) free (m_str
); }
12440 operator const char *() const { return (const char *) m_str
; }
12441 void escape (const char *);
12447 /* PR 84195: Replace control characters in "unescaped" with their
12448 escaped equivalents. Allow newlines if -fmessage-length has
12449 been set to a non-zero value. This is done here, rather than
12450 where the attribute is recorded as the message length can
12451 change between these two locations. */
12454 escaped_string::escape (const char *unescaped
)
12457 size_t i
, new_i
, len
;
12462 m_str
= const_cast<char *> (unescaped
);
12465 if (unescaped
== NULL
|| *unescaped
== 0)
12468 len
= strlen (unescaped
);
12472 for (i
= 0; i
< len
; i
++)
12474 char c
= unescaped
[i
];
12479 escaped
[new_i
++] = c
;
12483 if (c
!= '\n' || !pp_is_wrapping_line (global_dc
->printer
))
12485 if (escaped
== NULL
)
12487 /* We only allocate space for a new string if we
12488 actually encounter a control character that
12489 needs replacing. */
12490 escaped
= (char *) xmalloc (len
* 2 + 1);
12491 strncpy (escaped
, unescaped
, i
);
12495 escaped
[new_i
++] = '\\';
12499 case '\a': escaped
[new_i
++] = 'a'; break;
12500 case '\b': escaped
[new_i
++] = 'b'; break;
12501 case '\f': escaped
[new_i
++] = 'f'; break;
12502 case '\n': escaped
[new_i
++] = 'n'; break;
12503 case '\r': escaped
[new_i
++] = 'r'; break;
12504 case '\t': escaped
[new_i
++] = 't'; break;
12505 case '\v': escaped
[new_i
++] = 'v'; break;
12506 default: escaped
[new_i
++] = '?'; break;
12510 escaped
[new_i
++] = c
;
12515 escaped
[new_i
] = 0;
12521 /* Warn about a use of an identifier which was marked deprecated. Returns
12522 whether a warning was given. */
12525 warn_deprecated_use (tree node
, tree attr
)
12527 escaped_string msg
;
12529 if (node
== 0 || !warn_deprecated_decl
)
12535 attr
= DECL_ATTRIBUTES (node
);
12536 else if (TYPE_P (node
))
12538 tree decl
= TYPE_STUB_DECL (node
);
12540 attr
= lookup_attribute ("deprecated",
12541 TYPE_ATTRIBUTES (TREE_TYPE (decl
)));
12546 attr
= lookup_attribute ("deprecated", attr
);
12549 msg
.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
12555 w
= warning (OPT_Wdeprecated_declarations
,
12556 "%qD is deprecated: %s", node
, (const char *) msg
);
12558 w
= warning (OPT_Wdeprecated_declarations
,
12559 "%qD is deprecated", node
);
12561 inform (DECL_SOURCE_LOCATION (node
), "declared here");
12563 else if (TYPE_P (node
))
12565 tree what
= NULL_TREE
;
12566 tree decl
= TYPE_STUB_DECL (node
);
12568 if (TYPE_NAME (node
))
12570 if (TREE_CODE (TYPE_NAME (node
)) == IDENTIFIER_NODE
)
12571 what
= TYPE_NAME (node
);
12572 else if (TREE_CODE (TYPE_NAME (node
)) == TYPE_DECL
12573 && DECL_NAME (TYPE_NAME (node
)))
12574 what
= DECL_NAME (TYPE_NAME (node
));
12580 w
= warning (OPT_Wdeprecated_declarations
,
12581 "%qE is deprecated: %s", what
, (const char *) msg
);
12583 w
= warning (OPT_Wdeprecated_declarations
,
12584 "%qE is deprecated", what
);
12589 w
= warning (OPT_Wdeprecated_declarations
,
12590 "type is deprecated: %s", (const char *) msg
);
12592 w
= warning (OPT_Wdeprecated_declarations
,
12593 "type is deprecated");
12597 inform (DECL_SOURCE_LOCATION (decl
), "declared here");
12603 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12604 somewhere in it. */
12607 contains_bitfld_component_ref_p (const_tree ref
)
12609 while (handled_component_p (ref
))
12611 if (TREE_CODE (ref
) == COMPONENT_REF
12612 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
12614 ref
= TREE_OPERAND (ref
, 0);
12620 /* Try to determine whether a TRY_CATCH expression can fall through.
12621 This is a subroutine of block_may_fallthru. */
12624 try_catch_may_fallthru (const_tree stmt
)
12626 tree_stmt_iterator i
;
12628 /* If the TRY block can fall through, the whole TRY_CATCH can
12630 if (block_may_fallthru (TREE_OPERAND (stmt
, 0)))
12633 i
= tsi_start (TREE_OPERAND (stmt
, 1));
12634 switch (TREE_CODE (tsi_stmt (i
)))
12637 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12638 catch expression and a body. The whole TRY_CATCH may fall
12639 through iff any of the catch bodies falls through. */
12640 for (; !tsi_end_p (i
); tsi_next (&i
))
12642 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i
))))
12647 case EH_FILTER_EXPR
:
12648 /* The exception filter expression only matters if there is an
12649 exception. If the exception does not match EH_FILTER_TYPES,
12650 we will execute EH_FILTER_FAILURE, and we will fall through
12651 if that falls through. If the exception does match
12652 EH_FILTER_TYPES, the stack unwinder will continue up the
12653 stack, so we will not fall through. We don't know whether we
12654 will throw an exception which matches EH_FILTER_TYPES or not,
12655 so we just ignore EH_FILTER_TYPES and assume that we might
12656 throw an exception which doesn't match. */
12657 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i
)));
12660 /* This case represents statements to be executed when an
12661 exception occurs. Those statements are implicitly followed
12662 by a RESX statement to resume execution after the exception.
12663 So in this case the TRY_CATCH never falls through. */
12668 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12669 need not be 100% accurate; simply be conservative and return true if we
12670 don't know. This is used only to avoid stupidly generating extra code.
12671 If we're wrong, we'll just delete the extra code later. */
12674 block_may_fallthru (const_tree block
)
12676 /* This CONST_CAST is okay because expr_last returns its argument
12677 unmodified and we assign it to a const_tree. */
12678 const_tree stmt
= expr_last (CONST_CAST_TREE (block
));
12680 switch (stmt
? TREE_CODE (stmt
) : ERROR_MARK
)
12684 /* Easy cases. If the last statement of the block implies
12685 control transfer, then we can't fall through. */
12689 /* If there is a default: label or case labels cover all possible
12690 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12691 to some case label in all cases and all we care is whether the
12692 SWITCH_BODY falls through. */
12693 if (SWITCH_ALL_CASES_P (stmt
))
12694 return block_may_fallthru (SWITCH_BODY (stmt
));
12698 if (block_may_fallthru (COND_EXPR_THEN (stmt
)))
12700 return block_may_fallthru (COND_EXPR_ELSE (stmt
));
12703 return block_may_fallthru (BIND_EXPR_BODY (stmt
));
12705 case TRY_CATCH_EXPR
:
12706 return try_catch_may_fallthru (stmt
);
12708 case TRY_FINALLY_EXPR
:
12709 /* The finally clause is always executed after the try clause,
12710 so if it does not fall through, then the try-finally will not
12711 fall through. Otherwise, if the try clause does not fall
12712 through, then when the finally clause falls through it will
12713 resume execution wherever the try clause was going. So the
12714 whole try-finally will only fall through if both the try
12715 clause and the finally clause fall through. */
12716 return (block_may_fallthru (TREE_OPERAND (stmt
, 0))
12717 && block_may_fallthru (TREE_OPERAND (stmt
, 1)));
12720 if (TREE_CODE (TREE_OPERAND (stmt
, 1)) == CALL_EXPR
)
12721 stmt
= TREE_OPERAND (stmt
, 1);
12727 /* Functions that do not return do not fall through. */
12728 return (call_expr_flags (stmt
) & ECF_NORETURN
) == 0;
12730 case CLEANUP_POINT_EXPR
:
12731 return block_may_fallthru (TREE_OPERAND (stmt
, 0));
12734 return block_may_fallthru (TREE_OPERAND (stmt
, 1));
12740 return lang_hooks
.block_may_fallthru (stmt
);
12744 /* True if we are using EH to handle cleanups. */
12745 static bool using_eh_for_cleanups_flag
= false;
12747 /* This routine is called from front ends to indicate eh should be used for
12750 using_eh_for_cleanups (void)
12752 using_eh_for_cleanups_flag
= true;
12755 /* Query whether EH is used for cleanups. */
12757 using_eh_for_cleanups_p (void)
12759 return using_eh_for_cleanups_flag
;
12762 /* Wrapper for tree_code_name to ensure that tree code is valid */
12764 get_tree_code_name (enum tree_code code
)
12766 const char *invalid
= "<invalid tree code>";
12768 if (code
>= MAX_TREE_CODES
)
12771 return tree_code_name
[code
];
12774 /* Drops the TREE_OVERFLOW flag from T. */
12777 drop_tree_overflow (tree t
)
12779 gcc_checking_assert (TREE_OVERFLOW (t
));
12781 /* For tree codes with a sharing machinery re-build the result. */
12782 if (poly_int_tree_p (t
))
12783 return wide_int_to_tree (TREE_TYPE (t
), wi::to_poly_wide (t
));
12785 /* For VECTOR_CST, remove the overflow bits from the encoded elements
12786 and canonicalize the result. */
12787 if (TREE_CODE (t
) == VECTOR_CST
)
12789 tree_vector_builder builder
;
12790 builder
.new_unary_operation (TREE_TYPE (t
), t
, true);
12791 unsigned int count
= builder
.encoded_nelts ();
12792 for (unsigned int i
= 0; i
< count
; ++i
)
12794 tree elt
= VECTOR_CST_ELT (t
, i
);
12795 if (TREE_OVERFLOW (elt
))
12796 elt
= drop_tree_overflow (elt
);
12797 builder
.quick_push (elt
);
12799 return builder
.build ();
12802 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12803 and drop the flag. */
12805 TREE_OVERFLOW (t
) = 0;
12807 /* For constants that contain nested constants, drop the flag
12808 from those as well. */
12809 if (TREE_CODE (t
) == COMPLEX_CST
)
12811 if (TREE_OVERFLOW (TREE_REALPART (t
)))
12812 TREE_REALPART (t
) = drop_tree_overflow (TREE_REALPART (t
));
12813 if (TREE_OVERFLOW (TREE_IMAGPART (t
)))
12814 TREE_IMAGPART (t
) = drop_tree_overflow (TREE_IMAGPART (t
));
12820 /* Given a memory reference expression T, return its base address.
12821 The base address of a memory reference expression is the main
12822 object being referenced. For instance, the base address for
12823 'array[i].fld[j]' is 'array'. You can think of this as stripping
12824 away the offset part from a memory address.
12826 This function calls handled_component_p to strip away all the inner
12827 parts of the memory reference until it reaches the base object. */
12830 get_base_address (tree t
)
12832 while (handled_component_p (t
))
12833 t
= TREE_OPERAND (t
, 0);
12835 if ((TREE_CODE (t
) == MEM_REF
12836 || TREE_CODE (t
) == TARGET_MEM_REF
)
12837 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
)
12838 t
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
12840 /* ??? Either the alias oracle or all callers need to properly deal
12841 with WITH_SIZE_EXPRs before we can look through those. */
12842 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
12848 /* Return a tree of sizetype representing the size, in bytes, of the element
12849 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12852 array_ref_element_size (tree exp
)
12854 tree aligned_size
= TREE_OPERAND (exp
, 3);
12855 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
12856 location_t loc
= EXPR_LOCATION (exp
);
12858 /* If a size was specified in the ARRAY_REF, it's the size measured
12859 in alignment units of the element type. So multiply by that value. */
12862 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12863 sizetype from another type of the same width and signedness. */
12864 if (TREE_TYPE (aligned_size
) != sizetype
)
12865 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
12866 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
12867 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
12870 /* Otherwise, take the size from that of the element type. Substitute
12871 any PLACEHOLDER_EXPR that we have. */
12873 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
12876 /* Return a tree representing the lower bound of the array mentioned in
12877 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12880 array_ref_low_bound (tree exp
)
12882 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
12884 /* If a lower bound is specified in EXP, use it. */
12885 if (TREE_OPERAND (exp
, 2))
12886 return TREE_OPERAND (exp
, 2);
12888 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12889 substituting for a PLACEHOLDER_EXPR as needed. */
12890 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
12891 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
12893 /* Otherwise, return a zero of the appropriate type. */
12894 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
12897 /* Return a tree representing the upper bound of the array mentioned in
12898 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12901 array_ref_up_bound (tree exp
)
12903 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
12905 /* If there is a domain type and it has an upper bound, use it, substituting
12906 for a PLACEHOLDER_EXPR as needed. */
12907 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
12908 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
12910 /* Otherwise fail. */
12914 /* Returns true if REF is an array reference or a component reference
12915 to an array at the end of a structure.
12916 If this is the case, the array may be allocated larger
12917 than its upper bound implies. */
12920 array_at_struct_end_p (tree ref
)
12924 if (TREE_CODE (ref
) == ARRAY_REF
12925 || TREE_CODE (ref
) == ARRAY_RANGE_REF
)
12927 atype
= TREE_TYPE (TREE_OPERAND (ref
, 0));
12928 ref
= TREE_OPERAND (ref
, 0);
12930 else if (TREE_CODE (ref
) == COMPONENT_REF
12931 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 1))) == ARRAY_TYPE
)
12932 atype
= TREE_TYPE (TREE_OPERAND (ref
, 1));
12936 if (TREE_CODE (ref
) == STRING_CST
)
12939 tree ref_to_array
= ref
;
12940 while (handled_component_p (ref
))
12942 /* If the reference chain contains a component reference to a
12943 non-union type and there follows another field the reference
12944 is not at the end of a structure. */
12945 if (TREE_CODE (ref
) == COMPONENT_REF
)
12947 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
12949 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
12950 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
12951 nextf
= DECL_CHAIN (nextf
);
12956 /* If we have a multi-dimensional array we do not consider
12957 a non-innermost dimension as flex array if the whole
12958 multi-dimensional array is at struct end.
12959 Same for an array of aggregates with a trailing array
12961 else if (TREE_CODE (ref
) == ARRAY_REF
)
12963 else if (TREE_CODE (ref
) == ARRAY_RANGE_REF
)
12965 /* If we view an underlying object as sth else then what we
12966 gathered up to now is what we have to rely on. */
12967 else if (TREE_CODE (ref
) == VIEW_CONVERT_EXPR
)
12970 gcc_unreachable ();
12972 ref
= TREE_OPERAND (ref
, 0);
12975 /* The array now is at struct end. Treat flexible arrays as
12976 always subject to extend, even into just padding constrained by
12977 an underlying decl. */
12978 if (! TYPE_SIZE (atype
)
12979 || ! TYPE_DOMAIN (atype
)
12980 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype
)))
12983 if (TREE_CODE (ref
) == MEM_REF
12984 && TREE_CODE (TREE_OPERAND (ref
, 0)) == ADDR_EXPR
)
12985 ref
= TREE_OPERAND (TREE_OPERAND (ref
, 0), 0);
12987 /* If the reference is based on a declared entity, the size of the array
12988 is constrained by its given domain. (Do not trust commons PR/69368). */
12990 && !(flag_unconstrained_commons
12991 && VAR_P (ref
) && DECL_COMMON (ref
))
12992 && DECL_SIZE_UNIT (ref
)
12993 && TREE_CODE (DECL_SIZE_UNIT (ref
)) == INTEGER_CST
)
12995 /* Check whether the array domain covers all of the available
12998 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype
))) != INTEGER_CST
12999 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype
))) != INTEGER_CST
13000 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype
))) != INTEGER_CST
)
13002 if (! get_addr_base_and_unit_offset (ref_to_array
, &offset
))
13005 /* If at least one extra element fits it is a flexarray. */
13006 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype
)))
13007 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype
)))
13009 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype
))),
13010 wi::to_offset (DECL_SIZE_UNIT (ref
)) - offset
))
13019 /* Return a tree representing the offset, in bytes, of the field referenced
13020 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13023 component_ref_field_offset (tree exp
)
13025 tree aligned_offset
= TREE_OPERAND (exp
, 2);
13026 tree field
= TREE_OPERAND (exp
, 1);
13027 location_t loc
= EXPR_LOCATION (exp
);
13029 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13030 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13032 if (aligned_offset
)
13034 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13035 sizetype from another type of the same width and signedness. */
13036 if (TREE_TYPE (aligned_offset
) != sizetype
)
13037 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
13038 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
13039 size_int (DECL_OFFSET_ALIGN (field
)
13043 /* Otherwise, take the offset from that of the field. Substitute
13044 any PLACEHOLDER_EXPR that we have. */
13046 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
13049 /* Return the machine mode of T. For vectors, returns the mode of the
13050 inner type. The main use case is to feed the result to HONOR_NANS,
13051 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13054 element_mode (const_tree t
)
13058 if (VECTOR_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
13060 return TYPE_MODE (t
);
13063 /* Vector types need to re-check the target flags each time we report
13064 the machine mode. We need to do this because attribute target can
13065 change the result of vector_mode_supported_p and have_regs_of_mode
13066 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13067 change on a per-function basis. */
13068 /* ??? Possibly a better solution is to run through all the types
13069 referenced by a function and re-compute the TYPE_MODE once, rather
13070 than make the TYPE_MODE macro call a function. */
13073 vector_type_mode (const_tree t
)
13077 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
13079 mode
= t
->type_common
.mode
;
13080 if (VECTOR_MODE_P (mode
)
13081 && (!targetm
.vector_mode_supported_p (mode
)
13082 || !have_regs_of_mode
[mode
]))
13084 scalar_int_mode innermode
;
13086 /* For integers, try mapping it to a same-sized scalar mode. */
13087 if (is_int_mode (TREE_TYPE (t
)->type_common
.mode
, &innermode
))
13089 poly_int64 size
= (TYPE_VECTOR_SUBPARTS (t
)
13090 * GET_MODE_BITSIZE (innermode
));
13091 scalar_int_mode mode
;
13092 if (int_mode_for_size (size
, 0).exists (&mode
)
13093 && have_regs_of_mode
[mode
])
13103 /* Verify that basic properties of T match TV and thus T can be a variant of
13104 TV. TV should be the more specified variant (i.e. the main variant). */
13107 verify_type_variant (const_tree t
, tree tv
)
13109 /* Type variant can differ by:
13111 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13112 ENCODE_QUAL_ADDR_SPACE.
13113 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13114 in this case some values may not be set in the variant types
13115 (see TYPE_COMPLETE_P checks).
13116 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13117 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13118 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13119 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13120 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13121 this is necessary to make it possible to merge types form different TUs
13122 - arrays, pointers and references may have TREE_TYPE that is a variant
13123 of TREE_TYPE of their main variants.
13124 - aggregates may have new TYPE_FIELDS list that list variants of
13125 the main variant TYPE_FIELDS.
13126 - vector types may differ by TYPE_VECTOR_OPAQUE
13129 /* Convenience macro for matching individual fields. */
13130 #define verify_variant_match(flag) \
13132 if (flag (tv) != flag (t)) \
13134 error ("type variant differs by %s", #flag); \
13140 /* tree_base checks. */
13142 verify_variant_match (TREE_CODE
);
13143 /* FIXME: Ada builds non-artificial variants of artificial types. */
13144 if (TYPE_ARTIFICIAL (tv
) && 0)
13145 verify_variant_match (TYPE_ARTIFICIAL
);
13146 if (POINTER_TYPE_P (tv
))
13147 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL
);
13148 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13149 verify_variant_match (TYPE_UNSIGNED
);
13150 verify_variant_match (TYPE_PACKED
);
13151 if (TREE_CODE (t
) == REFERENCE_TYPE
)
13152 verify_variant_match (TYPE_REF_IS_RVALUE
);
13153 if (AGGREGATE_TYPE_P (t
))
13154 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER
);
13156 verify_variant_match (TYPE_SATURATING
);
13157 /* FIXME: This check trigger during libstdc++ build. */
13158 if (RECORD_OR_UNION_TYPE_P (t
) && COMPLETE_TYPE_P (t
) && 0)
13159 verify_variant_match (TYPE_FINAL_P
);
13161 /* tree_type_common checks. */
13163 if (COMPLETE_TYPE_P (t
))
13165 verify_variant_match (TYPE_MODE
);
13166 if (TREE_CODE (TYPE_SIZE (t
)) != PLACEHOLDER_EXPR
13167 && TREE_CODE (TYPE_SIZE (tv
)) != PLACEHOLDER_EXPR
)
13168 verify_variant_match (TYPE_SIZE
);
13169 if (TREE_CODE (TYPE_SIZE_UNIT (t
)) != PLACEHOLDER_EXPR
13170 && TREE_CODE (TYPE_SIZE_UNIT (tv
)) != PLACEHOLDER_EXPR
13171 && TYPE_SIZE_UNIT (t
) != TYPE_SIZE_UNIT (tv
))
13173 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t
),
13174 TYPE_SIZE_UNIT (tv
), 0));
13175 error ("type variant has different TYPE_SIZE_UNIT");
13177 error ("type variant's TYPE_SIZE_UNIT");
13178 debug_tree (TYPE_SIZE_UNIT (tv
));
13179 error ("type's TYPE_SIZE_UNIT");
13180 debug_tree (TYPE_SIZE_UNIT (t
));
13184 verify_variant_match (TYPE_PRECISION
);
13185 verify_variant_match (TYPE_NEEDS_CONSTRUCTING
);
13186 if (RECORD_OR_UNION_TYPE_P (t
))
13187 verify_variant_match (TYPE_TRANSPARENT_AGGR
);
13188 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13189 verify_variant_match (TYPE_NONALIASED_COMPONENT
);
13190 /* During LTO we merge variant lists from diferent translation units
13191 that may differ BY TYPE_CONTEXT that in turn may point
13192 to TRANSLATION_UNIT_DECL.
13193 Ada also builds variants of types with different TYPE_CONTEXT. */
13194 if ((!in_lto_p
|| !TYPE_FILE_SCOPE_P (t
)) && 0)
13195 verify_variant_match (TYPE_CONTEXT
);
13196 verify_variant_match (TYPE_STRING_FLAG
);
13197 if (TYPE_ALIAS_SET_KNOWN_P (t
))
13199 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13204 /* tree_type_non_common checks. */
13206 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13207 and dangle the pointer from time to time. */
13208 if (RECORD_OR_UNION_TYPE_P (t
) && TYPE_VFIELD (t
) != TYPE_VFIELD (tv
)
13209 && (in_lto_p
|| !TYPE_VFIELD (tv
)
13210 || TREE_CODE (TYPE_VFIELD (tv
)) != TREE_LIST
))
13212 error ("type variant has different TYPE_VFIELD");
13216 if ((TREE_CODE (t
) == ENUMERAL_TYPE
&& COMPLETE_TYPE_P (t
))
13217 || TREE_CODE (t
) == INTEGER_TYPE
13218 || TREE_CODE (t
) == BOOLEAN_TYPE
13219 || TREE_CODE (t
) == REAL_TYPE
13220 || TREE_CODE (t
) == FIXED_POINT_TYPE
)
13222 verify_variant_match (TYPE_MAX_VALUE
);
13223 verify_variant_match (TYPE_MIN_VALUE
);
13225 if (TREE_CODE (t
) == METHOD_TYPE
)
13226 verify_variant_match (TYPE_METHOD_BASETYPE
);
13227 if (TREE_CODE (t
) == OFFSET_TYPE
)
13228 verify_variant_match (TYPE_OFFSET_BASETYPE
);
13229 if (TREE_CODE (t
) == ARRAY_TYPE
)
13230 verify_variant_match (TYPE_ARRAY_MAX_SIZE
);
13231 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13232 or even type's main variant. This is needed to make bootstrap pass
13233 and the bug seems new in GCC 5.
13234 C++ FE should be updated to make this consistent and we should check
13235 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13236 is a match with main variant.
13238 Also disable the check for Java for now because of parser hack that builds
13239 first an dummy BINFO and then sometimes replace it by real BINFO in some
13241 if (RECORD_OR_UNION_TYPE_P (t
) && TYPE_BINFO (t
) && TYPE_BINFO (tv
)
13242 && TYPE_BINFO (t
) != TYPE_BINFO (tv
)
13243 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13244 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13245 at LTO time only. */
13246 && (in_lto_p
&& odr_type_p (t
)))
13248 error ("type variant has different TYPE_BINFO");
13250 error ("type variant's TYPE_BINFO");
13251 debug_tree (TYPE_BINFO (tv
));
13252 error ("type's TYPE_BINFO");
13253 debug_tree (TYPE_BINFO (t
));
13257 /* Check various uses of TYPE_VALUES_RAW. */
13258 if (TREE_CODE (t
) == ENUMERAL_TYPE
)
13259 verify_variant_match (TYPE_VALUES
);
13260 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13261 verify_variant_match (TYPE_DOMAIN
);
13262 /* Permit incomplete variants of complete type. While FEs may complete
13263 all variants, this does not happen for C++ templates in all cases. */
13264 else if (RECORD_OR_UNION_TYPE_P (t
)
13265 && COMPLETE_TYPE_P (t
)
13266 && TYPE_FIELDS (t
) != TYPE_FIELDS (tv
))
13270 /* Fortran builds qualified variants as new records with items of
13271 qualified type. Verify that they looks same. */
13272 for (f1
= TYPE_FIELDS (t
), f2
= TYPE_FIELDS (tv
);
13274 f1
= TREE_CHAIN (f1
), f2
= TREE_CHAIN (f2
))
13275 if (TREE_CODE (f1
) != FIELD_DECL
|| TREE_CODE (f2
) != FIELD_DECL
13276 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1
))
13277 != TYPE_MAIN_VARIANT (TREE_TYPE (f2
))
13278 /* FIXME: gfc_nonrestricted_type builds all types as variants
13279 with exception of pointer types. It deeply copies the type
13280 which means that we may end up with a variant type
13281 referring non-variant pointer. We may change it to
13282 produce types as variants, too, like
13283 objc_get_protocol_qualified_type does. */
13284 && !POINTER_TYPE_P (TREE_TYPE (f1
)))
13285 || DECL_FIELD_OFFSET (f1
) != DECL_FIELD_OFFSET (f2
)
13286 || DECL_FIELD_BIT_OFFSET (f1
) != DECL_FIELD_BIT_OFFSET (f2
))
13290 error ("type variant has different TYPE_FIELDS");
13292 error ("first mismatch is field");
13294 error ("and field");
13299 else if ((TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
))
13300 verify_variant_match (TYPE_ARG_TYPES
);
13301 /* For C++ the qualified variant of array type is really an array type
13302 of qualified TREE_TYPE.
13303 objc builds variants of pointer where pointer to type is a variant, too
13304 in objc_get_protocol_qualified_type. */
13305 if (TREE_TYPE (t
) != TREE_TYPE (tv
)
13306 && ((TREE_CODE (t
) != ARRAY_TYPE
13307 && !POINTER_TYPE_P (t
))
13308 || TYPE_MAIN_VARIANT (TREE_TYPE (t
))
13309 != TYPE_MAIN_VARIANT (TREE_TYPE (tv
))))
13311 error ("type variant has different TREE_TYPE");
13313 error ("type variant's TREE_TYPE");
13314 debug_tree (TREE_TYPE (tv
));
13315 error ("type's TREE_TYPE");
13316 debug_tree (TREE_TYPE (t
));
13319 if (type_with_alias_set_p (t
)
13320 && !gimple_canonical_types_compatible_p (t
, tv
, false))
13322 error ("type is not compatible with its variant");
13324 error ("type variant's TREE_TYPE");
13325 debug_tree (TREE_TYPE (tv
));
13326 error ("type's TREE_TYPE");
13327 debug_tree (TREE_TYPE (t
));
13331 #undef verify_variant_match
13335 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13336 the middle-end types_compatible_p function. It needs to avoid
13337 claiming types are different for types that should be treated
13338 the same with respect to TBAA. Canonical types are also used
13339 for IL consistency checks via the useless_type_conversion_p
13340 predicate which does not handle all type kinds itself but falls
13341 back to pointer-comparison of TYPE_CANONICAL for aggregates
13344 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13345 type calculation because we need to allow inter-operability between signed
13346 and unsigned variants. */
13349 type_with_interoperable_signedness (const_tree type
)
13351 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13352 signed char and unsigned char. Similarly fortran FE builds
13353 C_SIZE_T as signed type, while C defines it unsigned. */
13355 return tree_code_for_canonical_type_merging (TREE_CODE (type
))
13357 && (TYPE_PRECISION (type
) == TYPE_PRECISION (signed_char_type_node
)
13358 || TYPE_PRECISION (type
) == TYPE_PRECISION (size_type_node
));
13361 /* Return true iff T1 and T2 are structurally identical for what
13363 This function is used both by lto.c canonical type merging and by the
13364 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13365 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13366 only for LTO because only in these cases TYPE_CANONICAL equivalence
13367 correspond to one defined by gimple_canonical_types_compatible_p. */
13370 gimple_canonical_types_compatible_p (const_tree t1
, const_tree t2
,
13371 bool trust_type_canonical
)
13373 /* Type variants should be same as the main variant. When not doing sanity
13374 checking to verify this fact, go to main variants and save some work. */
13375 if (trust_type_canonical
)
13377 t1
= TYPE_MAIN_VARIANT (t1
);
13378 t2
= TYPE_MAIN_VARIANT (t2
);
13381 /* Check first for the obvious case of pointer identity. */
13385 /* Check that we have two types to compare. */
13386 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
13389 /* We consider complete types always compatible with incomplete type.
13390 This does not make sense for canonical type calculation and thus we
13391 need to ensure that we are never called on it.
13393 FIXME: For more correctness the function probably should have three modes
13394 1) mode assuming that types are complete mathcing their structure
13395 2) mode allowing incomplete types but producing equivalence classes
13396 and thus ignoring all info from complete types
13397 3) mode allowing incomplete types to match complete but checking
13398 compatibility between complete types.
13400 1 and 2 can be used for canonical type calculation. 3 is the real
13401 definition of type compatibility that can be used i.e. for warnings during
13402 declaration merging. */
13404 gcc_assert (!trust_type_canonical
13405 || (type_with_alias_set_p (t1
) && type_with_alias_set_p (t2
)));
13406 /* If the types have been previously registered and found equal
13409 if (TYPE_CANONICAL (t1
) && TYPE_CANONICAL (t2
)
13410 && trust_type_canonical
)
13412 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13413 they are always NULL, but they are set to non-NULL for types
13414 constructed by build_pointer_type and variants. In this case the
13415 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13416 all pointers are considered equal. Be sure to not return false
13418 gcc_checking_assert (canonical_type_used_p (t1
)
13419 && canonical_type_used_p (t2
));
13420 return TYPE_CANONICAL (t1
) == TYPE_CANONICAL (t2
);
13423 /* Can't be the same type if the types don't have the same code. */
13424 enum tree_code code
= tree_code_for_canonical_type_merging (TREE_CODE (t1
));
13425 if (code
!= tree_code_for_canonical_type_merging (TREE_CODE (t2
)))
13428 /* Qualifiers do not matter for canonical type comparison purposes. */
13430 /* Void types and nullptr types are always the same. */
13431 if (TREE_CODE (t1
) == VOID_TYPE
13432 || TREE_CODE (t1
) == NULLPTR_TYPE
)
13435 /* Can't be the same type if they have different mode. */
13436 if (TYPE_MODE (t1
) != TYPE_MODE (t2
))
13439 /* Non-aggregate types can be handled cheaply. */
13440 if (INTEGRAL_TYPE_P (t1
)
13441 || SCALAR_FLOAT_TYPE_P (t1
)
13442 || FIXED_POINT_TYPE_P (t1
)
13443 || TREE_CODE (t1
) == VECTOR_TYPE
13444 || TREE_CODE (t1
) == COMPLEX_TYPE
13445 || TREE_CODE (t1
) == OFFSET_TYPE
13446 || POINTER_TYPE_P (t1
))
13448 /* Can't be the same type if they have different recision. */
13449 if (TYPE_PRECISION (t1
) != TYPE_PRECISION (t2
))
13452 /* In some cases the signed and unsigned types are required to be
13454 if (TYPE_UNSIGNED (t1
) != TYPE_UNSIGNED (t2
)
13455 && !type_with_interoperable_signedness (t1
))
13458 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13459 interoperable with "signed char". Unless all frontends are revisited
13460 to agree on these types, we must ignore the flag completely. */
13462 /* Fortran standard define C_PTR type that is compatible with every
13463 C pointer. For this reason we need to glob all pointers into one.
13464 Still pointers in different address spaces are not compatible. */
13465 if (POINTER_TYPE_P (t1
))
13467 if (TYPE_ADDR_SPACE (TREE_TYPE (t1
))
13468 != TYPE_ADDR_SPACE (TREE_TYPE (t2
)))
13472 /* Tail-recurse to components. */
13473 if (TREE_CODE (t1
) == VECTOR_TYPE
13474 || TREE_CODE (t1
) == COMPLEX_TYPE
)
13475 return gimple_canonical_types_compatible_p (TREE_TYPE (t1
),
13477 trust_type_canonical
);
13482 /* Do type-specific comparisons. */
13483 switch (TREE_CODE (t1
))
13486 /* Array types are the same if the element types are the same and
13487 the number of elements are the same. */
13488 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
),
13489 trust_type_canonical
)
13490 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)
13491 || TYPE_REVERSE_STORAGE_ORDER (t1
) != TYPE_REVERSE_STORAGE_ORDER (t2
)
13492 || TYPE_NONALIASED_COMPONENT (t1
) != TYPE_NONALIASED_COMPONENT (t2
))
13496 tree i1
= TYPE_DOMAIN (t1
);
13497 tree i2
= TYPE_DOMAIN (t2
);
13499 /* For an incomplete external array, the type domain can be
13500 NULL_TREE. Check this condition also. */
13501 if (i1
== NULL_TREE
&& i2
== NULL_TREE
)
13503 else if (i1
== NULL_TREE
|| i2
== NULL_TREE
)
13507 tree min1
= TYPE_MIN_VALUE (i1
);
13508 tree min2
= TYPE_MIN_VALUE (i2
);
13509 tree max1
= TYPE_MAX_VALUE (i1
);
13510 tree max2
= TYPE_MAX_VALUE (i2
);
13512 /* The minimum/maximum values have to be the same. */
13515 && ((TREE_CODE (min1
) == PLACEHOLDER_EXPR
13516 && TREE_CODE (min2
) == PLACEHOLDER_EXPR
)
13517 || operand_equal_p (min1
, min2
, 0))))
13520 && ((TREE_CODE (max1
) == PLACEHOLDER_EXPR
13521 && TREE_CODE (max2
) == PLACEHOLDER_EXPR
)
13522 || operand_equal_p (max1
, max2
, 0)))))
13530 case FUNCTION_TYPE
:
13531 /* Function types are the same if the return type and arguments types
13533 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
),
13534 trust_type_canonical
))
13537 if (TYPE_ARG_TYPES (t1
) == TYPE_ARG_TYPES (t2
))
13541 tree parms1
, parms2
;
13543 for (parms1
= TYPE_ARG_TYPES (t1
), parms2
= TYPE_ARG_TYPES (t2
);
13545 parms1
= TREE_CHAIN (parms1
), parms2
= TREE_CHAIN (parms2
))
13547 if (!gimple_canonical_types_compatible_p
13548 (TREE_VALUE (parms1
), TREE_VALUE (parms2
),
13549 trust_type_canonical
))
13553 if (parms1
|| parms2
)
13561 case QUAL_UNION_TYPE
:
13565 /* Don't try to compare variants of an incomplete type, before
13566 TYPE_FIELDS has been copied around. */
13567 if (!COMPLETE_TYPE_P (t1
) && !COMPLETE_TYPE_P (t2
))
13571 if (TYPE_REVERSE_STORAGE_ORDER (t1
) != TYPE_REVERSE_STORAGE_ORDER (t2
))
13574 /* For aggregate types, all the fields must be the same. */
13575 for (f1
= TYPE_FIELDS (t1
), f2
= TYPE_FIELDS (t2
);
13577 f1
= TREE_CHAIN (f1
), f2
= TREE_CHAIN (f2
))
13579 /* Skip non-fields and zero-sized fields. */
13580 while (f1
&& (TREE_CODE (f1
) != FIELD_DECL
13582 && integer_zerop (DECL_SIZE (f1
)))))
13583 f1
= TREE_CHAIN (f1
);
13584 while (f2
&& (TREE_CODE (f2
) != FIELD_DECL
13586 && integer_zerop (DECL_SIZE (f2
)))))
13587 f2
= TREE_CHAIN (f2
);
13590 /* The fields must have the same name, offset and type. */
13591 if (DECL_NONADDRESSABLE_P (f1
) != DECL_NONADDRESSABLE_P (f2
)
13592 || !gimple_compare_field_offset (f1
, f2
)
13593 || !gimple_canonical_types_compatible_p
13594 (TREE_TYPE (f1
), TREE_TYPE (f2
),
13595 trust_type_canonical
))
13599 /* If one aggregate has more fields than the other, they
13600 are not the same. */
13608 /* Consider all types with language specific trees in them mutually
13609 compatible. This is executed only from verify_type and false
13610 positives can be tolerated. */
13611 gcc_assert (!in_lto_p
);
13616 /* Verify type T. */
13619 verify_type (const_tree t
)
13621 bool error_found
= false;
13622 tree mv
= TYPE_MAIN_VARIANT (t
);
13625 error ("Main variant is not defined");
13626 error_found
= true;
13628 else if (mv
!= TYPE_MAIN_VARIANT (mv
))
13630 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13632 error_found
= true;
13634 else if (t
!= mv
&& !verify_type_variant (t
, mv
))
13635 error_found
= true;
13637 tree ct
= TYPE_CANONICAL (t
);
13640 else if (TYPE_CANONICAL (t
) != ct
)
13642 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13644 error_found
= true;
13646 /* Method and function types can not be used to address memory and thus
13647 TYPE_CANONICAL really matters only for determining useless conversions.
13649 FIXME: C++ FE produce declarations of builtin functions that are not
13650 compatible with main variants. */
13651 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
13654 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13655 with variably sized arrays because their sizes possibly
13656 gimplified to different variables. */
13657 && !variably_modified_type_p (ct
, NULL
)
13658 && !gimple_canonical_types_compatible_p (t
, ct
, false))
13660 error ("TYPE_CANONICAL is not compatible");
13662 error_found
= true;
13665 if (COMPLETE_TYPE_P (t
) && TYPE_CANONICAL (t
)
13666 && TYPE_MODE (t
) != TYPE_MODE (TYPE_CANONICAL (t
)))
13668 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13670 error_found
= true;
13672 if (TYPE_MAIN_VARIANT (t
) == t
&& ct
&& TYPE_MAIN_VARIANT (ct
) != ct
)
13674 error ("TYPE_CANONICAL of main variant is not main variant");
13676 debug_tree (TYPE_MAIN_VARIANT (ct
));
13677 error_found
= true;
13681 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13682 if (RECORD_OR_UNION_TYPE_P (t
))
13684 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13685 and danagle the pointer from time to time. */
13686 if (TYPE_VFIELD (t
)
13687 && TREE_CODE (TYPE_VFIELD (t
)) != FIELD_DECL
13688 && TREE_CODE (TYPE_VFIELD (t
)) != TREE_LIST
)
13690 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13691 debug_tree (TYPE_VFIELD (t
));
13692 error_found
= true;
13695 else if (TREE_CODE (t
) == POINTER_TYPE
)
13697 if (TYPE_NEXT_PTR_TO (t
)
13698 && TREE_CODE (TYPE_NEXT_PTR_TO (t
)) != POINTER_TYPE
)
13700 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13701 debug_tree (TYPE_NEXT_PTR_TO (t
));
13702 error_found
= true;
13705 else if (TREE_CODE (t
) == REFERENCE_TYPE
)
13707 if (TYPE_NEXT_REF_TO (t
)
13708 && TREE_CODE (TYPE_NEXT_REF_TO (t
)) != REFERENCE_TYPE
)
13710 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13711 debug_tree (TYPE_NEXT_REF_TO (t
));
13712 error_found
= true;
13715 else if (INTEGRAL_TYPE_P (t
) || TREE_CODE (t
) == REAL_TYPE
13716 || TREE_CODE (t
) == FIXED_POINT_TYPE
)
13718 /* FIXME: The following check should pass:
13719 useless_type_conversion_p (const_cast <tree> (t),
13720 TREE_TYPE (TYPE_MIN_VALUE (t))
13721 but does not for C sizetypes in LTO. */
13724 /* Check various uses of TYPE_MAXVAL_RAW. */
13725 if (RECORD_OR_UNION_TYPE_P (t
))
13727 if (!TYPE_BINFO (t
))
13729 else if (TREE_CODE (TYPE_BINFO (t
)) != TREE_BINFO
)
13731 error ("TYPE_BINFO is not TREE_BINFO");
13732 debug_tree (TYPE_BINFO (t
));
13733 error_found
= true;
13735 else if (TREE_TYPE (TYPE_BINFO (t
)) != TYPE_MAIN_VARIANT (t
))
13737 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13738 debug_tree (TREE_TYPE (TYPE_BINFO (t
)));
13739 error_found
= true;
13742 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
13744 if (TYPE_METHOD_BASETYPE (t
)
13745 && TREE_CODE (TYPE_METHOD_BASETYPE (t
)) != RECORD_TYPE
13746 && TREE_CODE (TYPE_METHOD_BASETYPE (t
)) != UNION_TYPE
)
13748 error ("TYPE_METHOD_BASETYPE is not record nor union");
13749 debug_tree (TYPE_METHOD_BASETYPE (t
));
13750 error_found
= true;
13753 else if (TREE_CODE (t
) == OFFSET_TYPE
)
13755 if (TYPE_OFFSET_BASETYPE (t
)
13756 && TREE_CODE (TYPE_OFFSET_BASETYPE (t
)) != RECORD_TYPE
13757 && TREE_CODE (TYPE_OFFSET_BASETYPE (t
)) != UNION_TYPE
)
13759 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13760 debug_tree (TYPE_OFFSET_BASETYPE (t
));
13761 error_found
= true;
13764 else if (INTEGRAL_TYPE_P (t
) || TREE_CODE (t
) == REAL_TYPE
13765 || TREE_CODE (t
) == FIXED_POINT_TYPE
)
13767 /* FIXME: The following check should pass:
13768 useless_type_conversion_p (const_cast <tree> (t),
13769 TREE_TYPE (TYPE_MAX_VALUE (t))
13770 but does not for C sizetypes in LTO. */
13772 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13774 if (TYPE_ARRAY_MAX_SIZE (t
)
13775 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t
)) != INTEGER_CST
)
13777 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13778 debug_tree (TYPE_ARRAY_MAX_SIZE (t
));
13779 error_found
= true;
13782 else if (TYPE_MAX_VALUE_RAW (t
))
13784 error ("TYPE_MAX_VALUE_RAW non-NULL");
13785 debug_tree (TYPE_MAX_VALUE_RAW (t
));
13786 error_found
= true;
13789 if (TYPE_LANG_SLOT_1 (t
) && in_lto_p
)
13791 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13792 debug_tree (TYPE_LANG_SLOT_1 (t
));
13793 error_found
= true;
13796 /* Check various uses of TYPE_VALUES_RAW. */
13797 if (TREE_CODE (t
) == ENUMERAL_TYPE
)
13798 for (tree l
= TYPE_VALUES (t
); l
; l
= TREE_CHAIN (l
))
13800 tree value
= TREE_VALUE (l
);
13801 tree name
= TREE_PURPOSE (l
);
13803 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13804 CONST_DECL of ENUMERAL TYPE. */
13805 if (TREE_CODE (value
) != INTEGER_CST
&& TREE_CODE (value
) != CONST_DECL
)
13807 error ("Enum value is not CONST_DECL or INTEGER_CST");
13808 debug_tree (value
);
13810 error_found
= true;
13812 if (TREE_CODE (TREE_TYPE (value
)) != INTEGER_TYPE
13813 && !useless_type_conversion_p (const_cast <tree
> (t
), TREE_TYPE (value
)))
13815 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13816 debug_tree (value
);
13818 error_found
= true;
13820 if (TREE_CODE (name
) != IDENTIFIER_NODE
)
13822 error ("Enum value name is not IDENTIFIER_NODE");
13823 debug_tree (value
);
13825 error_found
= true;
13828 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13830 if (TYPE_DOMAIN (t
) && TREE_CODE (TYPE_DOMAIN (t
)) != INTEGER_TYPE
)
13832 error ("Array TYPE_DOMAIN is not integer type");
13833 debug_tree (TYPE_DOMAIN (t
));
13834 error_found
= true;
13837 else if (RECORD_OR_UNION_TYPE_P (t
))
13839 if (TYPE_FIELDS (t
) && !COMPLETE_TYPE_P (t
) && in_lto_p
)
13841 error ("TYPE_FIELDS defined in incomplete type");
13842 error_found
= true;
13844 for (tree fld
= TYPE_FIELDS (t
); fld
; fld
= TREE_CHAIN (fld
))
13846 /* TODO: verify properties of decls. */
13847 if (TREE_CODE (fld
) == FIELD_DECL
)
13849 else if (TREE_CODE (fld
) == TYPE_DECL
)
13851 else if (TREE_CODE (fld
) == CONST_DECL
)
13853 else if (VAR_P (fld
))
13855 else if (TREE_CODE (fld
) == TEMPLATE_DECL
)
13857 else if (TREE_CODE (fld
) == USING_DECL
)
13859 else if (TREE_CODE (fld
) == FUNCTION_DECL
)
13863 error ("Wrong tree in TYPE_FIELDS list");
13865 error_found
= true;
13869 else if (TREE_CODE (t
) == INTEGER_TYPE
13870 || TREE_CODE (t
) == BOOLEAN_TYPE
13871 || TREE_CODE (t
) == OFFSET_TYPE
13872 || TREE_CODE (t
) == REFERENCE_TYPE
13873 || TREE_CODE (t
) == NULLPTR_TYPE
13874 || TREE_CODE (t
) == POINTER_TYPE
)
13876 if (TYPE_CACHED_VALUES_P (t
) != (TYPE_CACHED_VALUES (t
) != NULL
))
13878 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13879 TYPE_CACHED_VALUES_P (t
), (void *)TYPE_CACHED_VALUES (t
));
13880 error_found
= true;
13882 else if (TYPE_CACHED_VALUES_P (t
) && TREE_CODE (TYPE_CACHED_VALUES (t
)) != TREE_VEC
)
13884 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13885 debug_tree (TYPE_CACHED_VALUES (t
));
13886 error_found
= true;
13888 /* Verify just enough of cache to ensure that no one copied it to new type.
13889 All copying should go by copy_node that should clear it. */
13890 else if (TYPE_CACHED_VALUES_P (t
))
13893 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t
)); i
++)
13894 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t
), i
)
13895 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t
), i
)) != t
)
13897 error ("wrong TYPE_CACHED_VALUES entry");
13898 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t
), i
));
13899 error_found
= true;
13904 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
13905 for (tree l
= TYPE_ARG_TYPES (t
); l
; l
= TREE_CHAIN (l
))
13907 /* C++ FE uses TREE_PURPOSE to store initial values. */
13908 if (TREE_PURPOSE (l
) && in_lto_p
)
13910 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13912 error_found
= true;
13914 if (!TYPE_P (TREE_VALUE (l
)))
13916 error ("Wrong entry in TYPE_ARG_TYPES list");
13918 error_found
= true;
13921 else if (!is_lang_specific (t
) && TYPE_VALUES_RAW (t
))
13923 error ("TYPE_VALUES_RAW field is non-NULL");
13924 debug_tree (TYPE_VALUES_RAW (t
));
13925 error_found
= true;
13927 if (TREE_CODE (t
) != INTEGER_TYPE
13928 && TREE_CODE (t
) != BOOLEAN_TYPE
13929 && TREE_CODE (t
) != OFFSET_TYPE
13930 && TREE_CODE (t
) != REFERENCE_TYPE
13931 && TREE_CODE (t
) != NULLPTR_TYPE
13932 && TREE_CODE (t
) != POINTER_TYPE
13933 && TYPE_CACHED_VALUES_P (t
))
13935 error ("TYPE_CACHED_VALUES_P is set while it should not");
13936 error_found
= true;
13938 if (TYPE_STRING_FLAG (t
)
13939 && TREE_CODE (t
) != ARRAY_TYPE
&& TREE_CODE (t
) != INTEGER_TYPE
)
13941 error ("TYPE_STRING_FLAG is set on wrong type code");
13942 error_found
= true;
13945 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13946 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13948 if (TREE_CODE (t
) == METHOD_TYPE
13949 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t
)) != TYPE_METHOD_BASETYPE (t
))
13951 error ("TYPE_METHOD_BASETYPE is not main variant");
13952 error_found
= true;
13957 debug_tree (const_cast <tree
> (t
));
13958 internal_error ("verify_type failed");
13963 /* Return 1 if ARG interpreted as signed in its precision is known to be
13964 always positive or 2 if ARG is known to be always negative, or 3 if
13965 ARG may be positive or negative. */
13968 get_range_pos_neg (tree arg
)
13970 if (arg
== error_mark_node
)
13973 int prec
= TYPE_PRECISION (TREE_TYPE (arg
));
13975 if (TREE_CODE (arg
) == INTEGER_CST
)
13977 wide_int w
= wi::sext (wi::to_wide (arg
), prec
);
13983 while (CONVERT_EXPR_P (arg
)
13984 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg
, 0)))
13985 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg
, 0))) <= prec
)
13987 arg
= TREE_OPERAND (arg
, 0);
13988 /* Narrower value zero extended into wider type
13989 will always result in positive values. */
13990 if (TYPE_UNSIGNED (TREE_TYPE (arg
))
13991 && TYPE_PRECISION (TREE_TYPE (arg
)) < prec
)
13993 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
13998 if (TREE_CODE (arg
) != SSA_NAME
)
14000 wide_int arg_min
, arg_max
;
14001 while (get_range_info (arg
, &arg_min
, &arg_max
) != VR_RANGE
)
14003 gimple
*g
= SSA_NAME_DEF_STMT (arg
);
14004 if (is_gimple_assign (g
)
14005 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g
)))
14007 tree t
= gimple_assign_rhs1 (g
);
14008 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
14009 && TYPE_PRECISION (TREE_TYPE (t
)) <= prec
)
14011 if (TYPE_UNSIGNED (TREE_TYPE (t
))
14012 && TYPE_PRECISION (TREE_TYPE (t
)) < prec
)
14014 prec
= TYPE_PRECISION (TREE_TYPE (t
));
14023 if (TYPE_UNSIGNED (TREE_TYPE (arg
)))
14025 /* For unsigned values, the "positive" range comes
14026 below the "negative" range. */
14027 if (!wi::neg_p (wi::sext (arg_max
, prec
), SIGNED
))
14029 if (wi::neg_p (wi::sext (arg_min
, prec
), SIGNED
))
14034 if (!wi::neg_p (wi::sext (arg_min
, prec
), SIGNED
))
14036 if (wi::neg_p (wi::sext (arg_max
, prec
), SIGNED
))
14045 /* Return true if ARG is marked with the nonnull attribute in the
14046 current function signature. */
14049 nonnull_arg_p (const_tree arg
)
14051 tree t
, attrs
, fntype
;
14052 unsigned HOST_WIDE_INT arg_num
;
14054 gcc_assert (TREE_CODE (arg
) == PARM_DECL
14055 && (POINTER_TYPE_P (TREE_TYPE (arg
))
14056 || TREE_CODE (TREE_TYPE (arg
)) == OFFSET_TYPE
));
14058 /* The static chain decl is always non null. */
14059 if (arg
== cfun
->static_chain_decl
)
14062 /* THIS argument of method is always non-NULL. */
14063 if (TREE_CODE (TREE_TYPE (cfun
->decl
)) == METHOD_TYPE
14064 && arg
== DECL_ARGUMENTS (cfun
->decl
)
14065 && flag_delete_null_pointer_checks
)
14068 /* Values passed by reference are always non-NULL. */
14069 if (TREE_CODE (TREE_TYPE (arg
)) == REFERENCE_TYPE
14070 && flag_delete_null_pointer_checks
)
14073 fntype
= TREE_TYPE (cfun
->decl
);
14074 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
14076 attrs
= lookup_attribute ("nonnull", attrs
);
14078 /* If "nonnull" wasn't specified, we know nothing about the argument. */
14079 if (attrs
== NULL_TREE
)
14082 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14083 if (TREE_VALUE (attrs
) == NULL_TREE
)
14086 /* Get the position number for ARG in the function signature. */
14087 for (arg_num
= 1, t
= DECL_ARGUMENTS (cfun
->decl
);
14089 t
= DECL_CHAIN (t
), arg_num
++)
14095 gcc_assert (t
== arg
);
14097 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14098 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
14100 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
14108 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14112 set_block (location_t loc
, tree block
)
14114 location_t pure_loc
= get_pure_location (loc
);
14115 source_range src_range
= get_range_from_loc (line_table
, loc
);
14116 return COMBINE_LOCATION_DATA (line_table
, pure_loc
, src_range
, block
);
14120 set_source_range (tree expr
, location_t start
, location_t finish
)
14122 source_range src_range
;
14123 src_range
.m_start
= start
;
14124 src_range
.m_finish
= finish
;
14125 return set_source_range (expr
, src_range
);
14129 set_source_range (tree expr
, source_range src_range
)
14131 if (!EXPR_P (expr
))
14132 return UNKNOWN_LOCATION
;
14134 location_t pure_loc
= get_pure_location (EXPR_LOCATION (expr
));
14135 location_t adhoc
= COMBINE_LOCATION_DATA (line_table
,
14139 SET_EXPR_LOCATION (expr
, adhoc
);
14143 /* Return EXPR, potentially wrapped with a node expression LOC,
14144 if !CAN_HAVE_LOCATION_P (expr).
14146 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14147 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14149 Wrapper nodes can be identified using location_wrapper_p. */
14152 maybe_wrap_with_location (tree expr
, location_t loc
)
14156 if (loc
== UNKNOWN_LOCATION
)
14158 if (CAN_HAVE_LOCATION_P (expr
))
14160 /* We should only be adding wrappers for constants and for decls,
14161 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14162 gcc_assert (CONSTANT_CLASS_P (expr
)
14164 || EXCEPTIONAL_CLASS_P (expr
));
14166 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14167 any impact of the wrapper nodes. */
14168 if (EXCEPTIONAL_CLASS_P (expr
))
14172 = (((CONSTANT_CLASS_P (expr
) && TREE_CODE (expr
) != STRING_CST
)
14173 || (TREE_CODE (expr
) == CONST_DECL
&& !TREE_STATIC (expr
)))
14174 ? NON_LVALUE_EXPR
: VIEW_CONVERT_EXPR
);
14175 tree wrapper
= build1_loc (loc
, code
, TREE_TYPE (expr
), expr
);
14176 /* Mark this node as being a wrapper. */
14177 EXPR_LOCATION_WRAPPER_P (wrapper
) = 1;
14181 /* Return the name of combined function FN, for debugging purposes. */
14184 combined_fn_name (combined_fn fn
)
14186 if (builtin_fn_p (fn
))
14188 tree fndecl
= builtin_decl_explicit (as_builtin_fn (fn
));
14189 return IDENTIFIER_POINTER (DECL_NAME (fndecl
));
14192 return internal_fn_name (as_internal_fn (fn
));
14195 /* Return a bitmap with a bit set corresponding to each argument in
14196 a function call type FNTYPE declared with attribute nonnull,
14197 or null if none of the function's argument are nonnull. The caller
14198 must free the bitmap. */
14201 get_nonnull_args (const_tree fntype
)
14203 if (fntype
== NULL_TREE
)
14206 tree attrs
= TYPE_ATTRIBUTES (fntype
);
14210 bitmap argmap
= NULL
;
14212 /* A function declaration can specify multiple attribute nonnull,
14213 each with zero or more arguments. The loop below creates a bitmap
14214 representing a union of all the arguments. An empty (but non-null)
14215 bitmap means that all arguments have been declaraed nonnull. */
14216 for ( ; attrs
; attrs
= TREE_CHAIN (attrs
))
14218 attrs
= lookup_attribute ("nonnull", attrs
);
14223 argmap
= BITMAP_ALLOC (NULL
);
14225 if (!TREE_VALUE (attrs
))
14227 /* Clear the bitmap in case a previous attribute nonnull
14228 set it and this one overrides it for all arguments. */
14229 bitmap_clear (argmap
);
14233 /* Iterate over the indices of the format arguments declared nonnull
14234 and set a bit for each. */
14235 for (tree idx
= TREE_VALUE (attrs
); idx
; idx
= TREE_CHAIN (idx
))
14237 unsigned int val
= TREE_INT_CST_LOW (TREE_VALUE (idx
)) - 1;
14238 bitmap_set_bit (argmap
, val
);
14245 /* Returns true if TYPE is a type where it and all of its subobjects
14246 (recursively) are of structure, union, or array type. */
14249 default_is_empty_type (tree type
)
14251 if (RECORD_OR_UNION_TYPE_P (type
))
14253 for (tree field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
14254 if (TREE_CODE (field
) == FIELD_DECL
14255 && !DECL_PADDING_P (field
)
14256 && !default_is_empty_type (TREE_TYPE (field
)))
14260 else if (TREE_CODE (type
) == ARRAY_TYPE
)
14261 return (integer_minus_onep (array_type_nelts (type
))
14262 || TYPE_DOMAIN (type
) == NULL_TREE
14263 || default_is_empty_type (TREE_TYPE (type
)));
14267 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14268 that shouldn't be passed via stack. */
14271 default_is_empty_record (const_tree type
)
14273 if (!abi_version_at_least (12))
14276 if (type
== error_mark_node
)
14279 if (TREE_ADDRESSABLE (type
))
14282 return default_is_empty_type (TYPE_MAIN_VARIANT (type
));
14285 /* Like int_size_in_bytes, but handle empty records specially. */
14288 arg_int_size_in_bytes (const_tree type
)
14290 return TYPE_EMPTY_P (type
) ? 0 : int_size_in_bytes (type
);
14293 /* Like size_in_bytes, but handle empty records specially. */
14296 arg_size_in_bytes (const_tree type
)
14298 return TYPE_EMPTY_P (type
) ? size_zero_node
: size_in_bytes (type
);
14301 /* Return true if an expression with CODE has to have the same result type as
14302 its first operand. */
14305 expr_type_first_operand_type_p (tree_code code
)
14318 case TRUNC_DIV_EXPR
:
14319 case CEIL_DIV_EXPR
:
14320 case FLOOR_DIV_EXPR
:
14321 case ROUND_DIV_EXPR
:
14322 case TRUNC_MOD_EXPR
:
14323 case CEIL_MOD_EXPR
:
14324 case FLOOR_MOD_EXPR
:
14325 case ROUND_MOD_EXPR
:
14327 case EXACT_DIV_EXPR
:
14345 /* List of pointer types used to declare builtins before we have seen their
14348 Keep the size up to date in tree.h ! */
14349 const builtin_structptr_type builtin_structptr_types
[6] =
14351 { fileptr_type_node
, ptr_type_node
, "FILE" },
14352 { const_tm_ptr_type_node
, const_ptr_type_node
, "tm" },
14353 { fenv_t_ptr_type_node
, ptr_type_node
, "fenv_t" },
14354 { const_fenv_t_ptr_type_node
, const_ptr_type_node
, "fenv_t" },
14355 { fexcept_t_ptr_type_node
, ptr_type_node
, "fexcept_t" },
14356 { const_fexcept_t_ptr_type_node
, const_ptr_type_node
, "fexcept_t" }
14361 namespace selftest
{
14363 /* Selftests for tree. */
14365 /* Verify that integer constants are sane. */
14368 test_integer_constants ()
14370 ASSERT_TRUE (integer_type_node
!= NULL
);
14371 ASSERT_TRUE (build_int_cst (integer_type_node
, 0) != NULL
);
14373 tree type
= integer_type_node
;
14375 tree zero
= build_zero_cst (type
);
14376 ASSERT_EQ (INTEGER_CST
, TREE_CODE (zero
));
14377 ASSERT_EQ (type
, TREE_TYPE (zero
));
14379 tree one
= build_int_cst (type
, 1);
14380 ASSERT_EQ (INTEGER_CST
, TREE_CODE (one
));
14381 ASSERT_EQ (type
, TREE_TYPE (zero
));
14384 /* Verify identifiers. */
14387 test_identifiers ()
14389 tree identifier
= get_identifier ("foo");
14390 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier
));
14391 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier
));
14394 /* Verify LABEL_DECL. */
14399 tree identifier
= get_identifier ("err");
14400 tree label_decl
= build_decl (UNKNOWN_LOCATION
, LABEL_DECL
,
14401 identifier
, void_type_node
);
14402 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl
));
14403 ASSERT_FALSE (FORCED_LABEL (label_decl
));
14406 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14407 are given by VALS. */
14410 build_vector (tree type
, vec
<tree
> vals MEM_STAT_DECL
)
14412 gcc_assert (known_eq (vals
.length (), TYPE_VECTOR_SUBPARTS (type
)));
14413 tree_vector_builder
builder (type
, vals
.length (), 1);
14414 builder
.splice (vals
);
14415 return builder
.build ();
14418 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
14421 check_vector_cst (vec
<tree
> expected
, tree actual
)
14423 ASSERT_KNOWN_EQ (expected
.length (),
14424 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual
)));
14425 for (unsigned int i
= 0; i
< expected
.length (); ++i
)
14426 ASSERT_EQ (wi::to_wide (expected
[i
]),
14427 wi::to_wide (vector_cst_elt (actual
, i
)));
14430 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14431 and that its elements match EXPECTED. */
14434 check_vector_cst_duplicate (vec
<tree
> expected
, tree actual
,
14435 unsigned int npatterns
)
14437 ASSERT_EQ (npatterns
, VECTOR_CST_NPATTERNS (actual
));
14438 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual
));
14439 ASSERT_EQ (npatterns
, vector_cst_encoded_nelts (actual
));
14440 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual
));
14441 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual
));
14442 check_vector_cst (expected
, actual
);
14445 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14446 and NPATTERNS background elements, and that its elements match
14450 check_vector_cst_fill (vec
<tree
> expected
, tree actual
,
14451 unsigned int npatterns
)
14453 ASSERT_EQ (npatterns
, VECTOR_CST_NPATTERNS (actual
));
14454 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual
));
14455 ASSERT_EQ (2 * npatterns
, vector_cst_encoded_nelts (actual
));
14456 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual
));
14457 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual
));
14458 check_vector_cst (expected
, actual
);
14461 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14462 and that its elements match EXPECTED. */
14465 check_vector_cst_stepped (vec
<tree
> expected
, tree actual
,
14466 unsigned int npatterns
)
14468 ASSERT_EQ (npatterns
, VECTOR_CST_NPATTERNS (actual
));
14469 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual
));
14470 ASSERT_EQ (3 * npatterns
, vector_cst_encoded_nelts (actual
));
14471 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual
));
14472 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual
));
14473 check_vector_cst (expected
, actual
);
14476 /* Test the creation of VECTOR_CSTs. */
14479 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO
)
14481 auto_vec
<tree
, 8> elements (8);
14482 elements
.quick_grow (8);
14483 tree element_type
= build_nonstandard_integer_type (16, true);
14484 tree vector_type
= build_vector_type (element_type
, 8);
14486 /* Test a simple linear series with a base of 0 and a step of 1:
14487 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
14488 for (unsigned int i
= 0; i
< 8; ++i
)
14489 elements
[i
] = build_int_cst (element_type
, i
);
14490 tree vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14491 check_vector_cst_stepped (elements
, vector
, 1);
14493 /* Try the same with the first element replaced by 100:
14494 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
14495 elements
[0] = build_int_cst (element_type
, 100);
14496 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14497 check_vector_cst_stepped (elements
, vector
, 1);
14499 /* Try a series that wraps around.
14500 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
14501 for (unsigned int i
= 1; i
< 8; ++i
)
14502 elements
[i
] = build_int_cst (element_type
, (65530 + i
) & 0xffff);
14503 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14504 check_vector_cst_stepped (elements
, vector
, 1);
14506 /* Try a downward series:
14507 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
14508 for (unsigned int i
= 1; i
< 8; ++i
)
14509 elements
[i
] = build_int_cst (element_type
, 80 - i
);
14510 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14511 check_vector_cst_stepped (elements
, vector
, 1);
14513 /* Try two interleaved series with different bases and steps:
14514 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
14515 elements
[1] = build_int_cst (element_type
, 53);
14516 for (unsigned int i
= 2; i
< 8; i
+= 2)
14518 elements
[i
] = build_int_cst (element_type
, 70 - i
* 2);
14519 elements
[i
+ 1] = build_int_cst (element_type
, 200 + i
* 3);
14521 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14522 check_vector_cst_stepped (elements
, vector
, 2);
14524 /* Try a duplicated value:
14525 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
14526 for (unsigned int i
= 1; i
< 8; ++i
)
14527 elements
[i
] = elements
[0];
14528 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14529 check_vector_cst_duplicate (elements
, vector
, 1);
14531 /* Try an interleaved duplicated value:
14532 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
14533 elements
[1] = build_int_cst (element_type
, 55);
14534 for (unsigned int i
= 2; i
< 8; ++i
)
14535 elements
[i
] = elements
[i
- 2];
14536 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14537 check_vector_cst_duplicate (elements
, vector
, 2);
14539 /* Try a duplicated value with 2 exceptions
14540 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
14541 elements
[0] = build_int_cst (element_type
, 41);
14542 elements
[1] = build_int_cst (element_type
, 97);
14543 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14544 check_vector_cst_fill (elements
, vector
, 2);
14546 /* Try with and without a step
14547 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
14548 for (unsigned int i
= 3; i
< 8; i
+= 2)
14549 elements
[i
] = build_int_cst (element_type
, i
* 7);
14550 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14551 check_vector_cst_stepped (elements
, vector
, 2);
14553 /* Try a fully-general constant:
14554 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
14555 elements
[5] = build_int_cst (element_type
, 9990);
14556 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14557 check_vector_cst_fill (elements
, vector
, 4);
14560 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14561 Helper function for test_location_wrappers, to deal with STRIP_NOPS
14562 modifying its argument in-place. */
14565 check_strip_nops (tree node
, tree expected
)
14568 ASSERT_EQ (expected
, node
);
14571 /* Verify location wrappers. */
14574 test_location_wrappers ()
14576 location_t loc
= BUILTINS_LOCATION
;
14578 ASSERT_EQ (NULL_TREE
, maybe_wrap_with_location (NULL_TREE
, loc
));
14580 /* Wrapping a constant. */
14581 tree int_cst
= build_int_cst (integer_type_node
, 42);
14582 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst
));
14583 ASSERT_FALSE (location_wrapper_p (int_cst
));
14585 tree wrapped_int_cst
= maybe_wrap_with_location (int_cst
, loc
);
14586 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst
));
14587 ASSERT_EQ (loc
, EXPR_LOCATION (wrapped_int_cst
));
14588 ASSERT_EQ (int_cst
, tree_strip_any_location_wrapper (wrapped_int_cst
));
14590 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
14591 ASSERT_EQ (int_cst
, maybe_wrap_with_location (int_cst
, UNKNOWN_LOCATION
));
14593 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
14594 tree cast
= build1 (NOP_EXPR
, char_type_node
, int_cst
);
14595 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast
));
14596 ASSERT_EQ (cast
, maybe_wrap_with_location (cast
, loc
));
14598 /* Wrapping a STRING_CST. */
14599 tree string_cst
= build_string (4, "foo");
14600 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst
));
14601 ASSERT_FALSE (location_wrapper_p (string_cst
));
14603 tree wrapped_string_cst
= maybe_wrap_with_location (string_cst
, loc
);
14604 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst
));
14605 ASSERT_EQ (VIEW_CONVERT_EXPR
, TREE_CODE (wrapped_string_cst
));
14606 ASSERT_EQ (loc
, EXPR_LOCATION (wrapped_string_cst
));
14607 ASSERT_EQ (string_cst
, tree_strip_any_location_wrapper (wrapped_string_cst
));
14610 /* Wrapping a variable. */
14611 tree int_var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
,
14612 get_identifier ("some_int_var"),
14613 integer_type_node
);
14614 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var
));
14615 ASSERT_FALSE (location_wrapper_p (int_var
));
14617 tree wrapped_int_var
= maybe_wrap_with_location (int_var
, loc
);
14618 ASSERT_TRUE (location_wrapper_p (wrapped_int_var
));
14619 ASSERT_EQ (loc
, EXPR_LOCATION (wrapped_int_var
));
14620 ASSERT_EQ (int_var
, tree_strip_any_location_wrapper (wrapped_int_var
));
14622 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14624 tree r_cast
= build1 (NON_LVALUE_EXPR
, integer_type_node
, int_var
);
14625 ASSERT_FALSE (location_wrapper_p (r_cast
));
14626 ASSERT_EQ (r_cast
, tree_strip_any_location_wrapper (r_cast
));
14628 /* Verify that STRIP_NOPS removes wrappers. */
14629 check_strip_nops (wrapped_int_cst
, int_cst
);
14630 check_strip_nops (wrapped_string_cst
, string_cst
);
14631 check_strip_nops (wrapped_int_var
, int_var
);
14634 /* Check that string escaping works correctly. */
14637 test_escaped_strings (void)
14640 escaped_string msg
;
14643 /* ASSERT_STREQ does not accept NULL as a valid test
14644 result, so we have to use ASSERT_EQ instead. */
14645 ASSERT_EQ (NULL
, (const char *) msg
);
14648 ASSERT_STREQ ("", (const char *) msg
);
14650 msg
.escape ("foobar");
14651 ASSERT_STREQ ("foobar", (const char *) msg
);
14653 /* Ensure that we have -fmessage-length set to 0. */
14654 saved_cutoff
= pp_line_cutoff (global_dc
->printer
);
14655 pp_line_cutoff (global_dc
->printer
) = 0;
14657 msg
.escape ("foo\nbar");
14658 ASSERT_STREQ ("foo\\nbar", (const char *) msg
);
14660 msg
.escape ("\a\b\f\n\r\t\v");
14661 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg
);
14663 /* Now repeat the tests with -fmessage-length set to 5. */
14664 pp_line_cutoff (global_dc
->printer
) = 5;
14666 /* Note that the newline is not translated into an escape. */
14667 msg
.escape ("foo\nbar");
14668 ASSERT_STREQ ("foo\nbar", (const char *) msg
);
14670 msg
.escape ("\a\b\f\n\r\t\v");
14671 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg
);
14673 /* Restore the original message length setting. */
14674 pp_line_cutoff (global_dc
->printer
) = saved_cutoff
;
14677 /* Run all of the selftests within this file. */
14682 test_integer_constants ();
14683 test_identifiers ();
14685 test_vector_cst_patterns ();
14686 test_location_wrappers ();
14687 test_escaped_strings ();
14690 } // namespace selftest
14692 #endif /* CHECKING_P */
14694 #include "gt-tree.h"