1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
34 #include "diagnostic-core.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-vectorizer.h"
37 #include "langhooks.h"
39 /*************************************************************************
40 Simple Loop Peeling Utilities
42 Utilities to support loop peeling for vectorization purposes.
43 *************************************************************************/
46 /* Renames the use *OP_P. */
49 rename_use_op (use_operand_p op_p
)
53 if (TREE_CODE (USE_FROM_PTR (op_p
)) != SSA_NAME
)
56 new_name
= get_current_def (USE_FROM_PTR (op_p
));
58 /* Something defined outside of the loop. */
62 /* An ordinary ssa name defined in the loop. */
64 SET_USE (op_p
, new_name
);
68 /* Renames the variables in basic block BB. */
71 rename_variables_in_bb (basic_block bb
)
73 gimple_stmt_iterator gsi
;
79 struct loop
*loop
= bb
->loop_father
;
81 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
83 stmt
= gsi_stmt (gsi
);
84 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
85 rename_use_op (use_p
);
88 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
90 if (!flow_bb_inside_loop_p (loop
, e
->src
))
92 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
93 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi
), e
));
104 /* A stack of values to be adjusted in debug stmts. We have to
105 process them LIFO, so that the closest substitution applies. If we
106 processed them FIFO, without the stack, we might substitute uses
107 with a PHI DEF that would soon become non-dominant, and when we got
108 to the suitable one, it wouldn't have anything to substitute any
110 static vec
<adjust_info
, va_stack
> adjust_vec
;
112 /* Adjust any debug stmts that referenced AI->from values to use the
113 loop-closed AI->to, if the references are dominated by AI->bb and
114 not by the definition of AI->from. */
117 adjust_debug_stmts_now (adjust_info
*ai
)
119 basic_block bbphi
= ai
->bb
;
120 tree orig_def
= ai
->from
;
121 tree new_def
= ai
->to
;
122 imm_use_iterator imm_iter
;
124 basic_block bbdef
= gimple_bb (SSA_NAME_DEF_STMT (orig_def
));
126 gcc_assert (dom_info_available_p (CDI_DOMINATORS
));
128 /* Adjust any debug stmts that held onto non-loop-closed
130 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, orig_def
)
135 if (!is_gimple_debug (stmt
))
138 gcc_assert (gimple_debug_bind_p (stmt
));
140 bbuse
= gimple_bb (stmt
);
143 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbphi
))
145 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
)))
148 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
149 SET_USE (use_p
, new_def
);
152 gimple_debug_bind_reset_value (stmt
);
159 /* Adjust debug stmts as scheduled before. */
162 adjust_vec_debug_stmts (void)
164 if (!MAY_HAVE_DEBUG_STMTS
)
167 gcc_assert (adjust_vec
.exists ());
169 while (!adjust_vec
.is_empty ())
171 adjust_debug_stmts_now (&adjust_vec
.last ());
175 adjust_vec
.release ();
178 /* Adjust any debug stmts that referenced FROM values to use the
179 loop-closed TO, if the references are dominated by BB and not by
180 the definition of FROM. If adjust_vec is non-NULL, adjustments
181 will be postponed until adjust_vec_debug_stmts is called. */
184 adjust_debug_stmts (tree from
, tree to
, basic_block bb
)
188 if (MAY_HAVE_DEBUG_STMTS
189 && TREE_CODE (from
) == SSA_NAME
190 && ! SSA_NAME_IS_DEFAULT_DEF (from
)
191 && ! virtual_operand_p (from
))
197 if (adjust_vec
.exists ())
198 adjust_vec
.safe_push (ai
);
200 adjust_debug_stmts_now (&ai
);
204 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
205 to adjust any debug stmts that referenced the old phi arg,
206 presumably non-loop-closed references left over from other
210 adjust_phi_and_debug_stmts (gimple update_phi
, edge e
, tree new_def
)
212 tree orig_def
= PHI_ARG_DEF_FROM_EDGE (update_phi
, e
);
214 SET_PHI_ARG_DEF (update_phi
, e
->dest_idx
, new_def
);
216 if (MAY_HAVE_DEBUG_STMTS
)
217 adjust_debug_stmts (orig_def
, PHI_RESULT (update_phi
),
218 gimple_bb (update_phi
));
222 /* Update PHI nodes for a guard of the LOOP.
225 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
226 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
227 originates from the guard-bb, skips LOOP and reaches the (unique) exit
228 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
229 We denote this bb NEW_MERGE_BB because before the guard code was added
230 it had a single predecessor (the LOOP header), and now it became a merge
231 point of two paths - the path that ends with the LOOP exit-edge, and
232 the path that ends with GUARD_EDGE.
233 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
234 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
236 ===> The CFG before the guard-code was added:
239 if (exit_loop) goto update_bb
240 else goto LOOP_header_bb
243 ==> The CFG after the guard-code was added:
245 if (LOOP_guard_condition) goto new_merge_bb
246 else goto LOOP_header_bb
249 if (exit_loop_condition) goto new_merge_bb
250 else goto LOOP_header_bb
255 ==> The CFG after this function:
257 if (LOOP_guard_condition) goto new_merge_bb
258 else goto LOOP_header_bb
261 if (exit_loop_condition) goto new_exit_bb
262 else goto LOOP_header_bb
269 1. creates and updates the relevant phi nodes to account for the new
270 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
271 1.1. Create phi nodes at NEW_MERGE_BB.
272 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
273 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
274 2. preserves loop-closed-ssa-form by creating the required phi nodes
275 at the exit of LOOP (i.e, in NEW_EXIT_BB).
277 There are two flavors to this function:
279 slpeel_update_phi_nodes_for_guard1:
280 Here the guard controls whether we enter or skip LOOP, where LOOP is a
281 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
282 for variables that have phis in the loop header.
284 slpeel_update_phi_nodes_for_guard2:
285 Here the guard controls whether we enter or skip LOOP, where LOOP is an
286 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
287 for variables that have phis in the loop exit.
289 I.E., the overall structure is:
292 guard1 (goto loop1/merge1_bb)
295 guard2 (goto merge1_bb/merge2_bb)
302 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
303 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
304 that have phis in loop1->header).
306 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
307 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
308 that have phis in next_bb). It also adds some of these phis to
311 slpeel_update_phi_nodes_for_guard1 is always called before
312 slpeel_update_phi_nodes_for_guard2. They are both needed in order
313 to create correct data-flow and loop-closed-ssa-form.
315 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
316 that change between iterations of a loop (and therefore have a phi-node
317 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
318 phis for variables that are used out of the loop (and therefore have
319 loop-closed exit phis). Some variables may be both updated between
320 iterations and used after the loop. This is why in loop1_exit_bb we
321 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
322 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
324 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
325 an original loop. i.e., we have:
328 guard_bb (goto LOOP/new_merge)
334 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
338 guard_bb (goto LOOP/new_merge)
344 The SSA names defined in the original loop have a current
345 reaching definition that that records the corresponding new
346 ssa-name used in the new duplicated loop copy.
349 /* Function slpeel_update_phi_nodes_for_guard1
352 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
353 - DEFS - a bitmap of ssa names to mark new names for which we recorded
356 In the context of the overall structure, we have:
359 guard1 (goto loop1/merge1_bb)
362 guard2 (goto merge1_bb/merge2_bb)
369 For each name updated between loop iterations (i.e - for each name that has
370 an entry (loop-header) phi in LOOP) we create a new phi in:
371 1. merge1_bb (to account for the edge from guard1)
372 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
376 slpeel_update_phi_nodes_for_guard1 (edge guard_edge
, struct loop
*loop
,
377 bool is_new_loop
, basic_block
*new_exit_bb
)
379 gimple orig_phi
, new_phi
;
380 gimple update_phi
, update_phi2
;
381 tree guard_arg
, loop_arg
;
382 basic_block new_merge_bb
= guard_edge
->dest
;
383 edge e
= EDGE_SUCC (new_merge_bb
, 0);
384 basic_block update_bb
= e
->dest
;
385 basic_block orig_bb
= loop
->header
;
387 tree current_new_name
;
388 gimple_stmt_iterator gsi_orig
, gsi_update
;
390 /* Create new bb between loop and new_merge_bb. */
391 *new_exit_bb
= split_edge (single_exit (loop
));
393 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
395 for (gsi_orig
= gsi_start_phis (orig_bb
),
396 gsi_update
= gsi_start_phis (update_bb
);
397 !gsi_end_p (gsi_orig
) && !gsi_end_p (gsi_update
);
398 gsi_next (&gsi_orig
), gsi_next (&gsi_update
))
400 source_location loop_locus
, guard_locus
;
402 orig_phi
= gsi_stmt (gsi_orig
);
403 update_phi
= gsi_stmt (gsi_update
);
405 /** 1. Handle new-merge-point phis **/
407 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
408 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
409 new_phi
= create_phi_node (new_res
, new_merge_bb
);
411 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
412 of LOOP. Set the two phi args in NEW_PHI for these edges: */
413 loop_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, EDGE_SUCC (loop
->latch
, 0));
414 loop_locus
= gimple_phi_arg_location_from_edge (orig_phi
,
415 EDGE_SUCC (loop
->latch
,
417 guard_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, loop_preheader_edge (loop
));
419 = gimple_phi_arg_location_from_edge (orig_phi
,
420 loop_preheader_edge (loop
));
422 add_phi_arg (new_phi
, loop_arg
, new_exit_e
, loop_locus
);
423 add_phi_arg (new_phi
, guard_arg
, guard_edge
, guard_locus
);
425 /* 1.3. Update phi in successor block. */
426 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == loop_arg
427 || PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == guard_arg
);
428 adjust_phi_and_debug_stmts (update_phi
, e
, PHI_RESULT (new_phi
));
429 update_phi2
= new_phi
;
432 /** 2. Handle loop-closed-ssa-form phis **/
434 if (virtual_operand_p (PHI_RESULT (orig_phi
)))
437 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
438 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
439 new_phi
= create_phi_node (new_res
, *new_exit_bb
);
441 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
442 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
), loop_locus
);
444 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
445 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
446 adjust_phi_and_debug_stmts (update_phi2
, new_exit_e
,
447 PHI_RESULT (new_phi
));
449 /* 2.4. Record the newly created name with set_current_def.
450 We want to find a name such that
451 name = get_current_def (orig_loop_name)
452 and to set its current definition as follows:
453 set_current_def (name, new_phi_name)
455 If LOOP is a new loop then loop_arg is already the name we're
456 looking for. If LOOP is the original loop, then loop_arg is
457 the orig_loop_name and the relevant name is recorded in its
458 current reaching definition. */
460 current_new_name
= loop_arg
;
463 current_new_name
= get_current_def (loop_arg
);
464 /* current_def is not available only if the variable does not
465 change inside the loop, in which case we also don't care
466 about recording a current_def for it because we won't be
467 trying to create loop-exit-phis for it. */
468 if (!current_new_name
)
471 gcc_assert (get_current_def (current_new_name
) == NULL_TREE
);
473 set_current_def (current_new_name
, PHI_RESULT (new_phi
));
478 /* Function slpeel_update_phi_nodes_for_guard2
481 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
483 In the context of the overall structure, we have:
486 guard1 (goto loop1/merge1_bb)
489 guard2 (goto merge1_bb/merge2_bb)
496 For each name used out side the loop (i.e - for each name that has an exit
497 phi in next_bb) we create a new phi in:
498 1. merge2_bb (to account for the edge from guard_bb)
499 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
500 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
501 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
505 slpeel_update_phi_nodes_for_guard2 (edge guard_edge
, struct loop
*loop
,
506 bool is_new_loop
, basic_block
*new_exit_bb
)
508 gimple orig_phi
, new_phi
;
509 gimple update_phi
, update_phi2
;
510 tree guard_arg
, loop_arg
;
511 basic_block new_merge_bb
= guard_edge
->dest
;
512 edge e
= EDGE_SUCC (new_merge_bb
, 0);
513 basic_block update_bb
= e
->dest
;
515 tree orig_def
, orig_def_new_name
;
516 tree new_name
, new_name2
;
518 gimple_stmt_iterator gsi
;
520 /* Create new bb between loop and new_merge_bb. */
521 *new_exit_bb
= split_edge (single_exit (loop
));
523 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
525 for (gsi
= gsi_start_phis (update_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
528 update_phi
= gsi_stmt (gsi
);
529 orig_phi
= update_phi
;
530 orig_def
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
531 /* This loop-closed-phi actually doesn't represent a use
532 out of the loop - the phi arg is a constant. */
533 if (TREE_CODE (orig_def
) != SSA_NAME
)
535 orig_def_new_name
= get_current_def (orig_def
);
538 /** 1. Handle new-merge-point phis **/
540 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
541 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
542 new_phi
= create_phi_node (new_res
, new_merge_bb
);
544 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
545 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
547 new_name2
= NULL_TREE
;
548 if (orig_def_new_name
)
550 new_name
= orig_def_new_name
;
551 /* Some variables have both loop-entry-phis and loop-exit-phis.
552 Such variables were given yet newer names by phis placed in
553 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
554 new_name2 = get_current_def (get_current_def (orig_name)). */
555 new_name2
= get_current_def (new_name
);
560 guard_arg
= orig_def
;
565 guard_arg
= new_name
;
569 guard_arg
= new_name2
;
571 add_phi_arg (new_phi
, loop_arg
, new_exit_e
, UNKNOWN_LOCATION
);
572 add_phi_arg (new_phi
, guard_arg
, guard_edge
, UNKNOWN_LOCATION
);
574 /* 1.3. Update phi in successor block. */
575 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == orig_def
);
576 adjust_phi_and_debug_stmts (update_phi
, e
, PHI_RESULT (new_phi
));
577 update_phi2
= new_phi
;
580 /** 2. Handle loop-closed-ssa-form phis **/
582 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
583 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
584 new_phi
= create_phi_node (new_res
, *new_exit_bb
);
586 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
587 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
), UNKNOWN_LOCATION
);
589 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
590 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
591 adjust_phi_and_debug_stmts (update_phi2
, new_exit_e
,
592 PHI_RESULT (new_phi
));
595 /** 3. Handle loop-closed-ssa-form phis for first loop **/
597 /* 3.1. Find the relevant names that need an exit-phi in
598 GUARD_BB, i.e. names for which
599 slpeel_update_phi_nodes_for_guard1 had not already created a
600 phi node. This is the case for names that are used outside
601 the loop (and therefore need an exit phi) but are not updated
602 across loop iterations (and therefore don't have a
605 slpeel_update_phi_nodes_for_guard1 is responsible for
606 creating loop-exit phis in GUARD_BB for names that have a
607 loop-header-phi. When such a phi is created we also record
608 the new name in its current definition. If this new name
609 exists, then guard_arg was set to this new name (see 1.2
610 above). Therefore, if guard_arg is not this new name, this
611 is an indication that an exit-phi in GUARD_BB was not yet
612 created, so we take care of it here. */
613 if (guard_arg
== new_name2
)
617 /* 3.2. Generate new phi node in GUARD_BB: */
618 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
619 new_phi
= create_phi_node (new_res
, guard_edge
->src
);
621 /* 3.3. GUARD_BB has one incoming edge: */
622 gcc_assert (EDGE_COUNT (guard_edge
->src
->preds
) == 1);
623 add_phi_arg (new_phi
, arg
, EDGE_PRED (guard_edge
->src
, 0),
626 /* 3.4. Update phi in successor of GUARD_BB: */
627 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, guard_edge
)
629 adjust_phi_and_debug_stmts (update_phi2
, guard_edge
,
630 PHI_RESULT (new_phi
));
635 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
636 that starts at zero, increases by one and its limit is NITERS.
638 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
641 slpeel_make_loop_iterate_ntimes (struct loop
*loop
, tree niters
)
643 tree indx_before_incr
, indx_after_incr
;
646 edge exit_edge
= single_exit (loop
);
647 gimple_stmt_iterator loop_cond_gsi
;
648 gimple_stmt_iterator incr_gsi
;
650 tree init
= build_int_cst (TREE_TYPE (niters
), 0);
651 tree step
= build_int_cst (TREE_TYPE (niters
), 1);
655 orig_cond
= get_loop_exit_condition (loop
);
656 gcc_assert (orig_cond
);
657 loop_cond_gsi
= gsi_for_stmt (orig_cond
);
659 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
660 create_iv (init
, step
, NULL_TREE
, loop
,
661 &incr_gsi
, insert_after
, &indx_before_incr
, &indx_after_incr
);
663 indx_after_incr
= force_gimple_operand_gsi (&loop_cond_gsi
, indx_after_incr
,
664 true, NULL_TREE
, true,
666 niters
= force_gimple_operand_gsi (&loop_cond_gsi
, niters
, true, NULL_TREE
,
667 true, GSI_SAME_STMT
);
669 code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? GE_EXPR
: LT_EXPR
;
670 cond_stmt
= gimple_build_cond (code
, indx_after_incr
, niters
, NULL_TREE
,
673 gsi_insert_before (&loop_cond_gsi
, cond_stmt
, GSI_SAME_STMT
);
675 /* Remove old loop exit test: */
676 gsi_remove (&loop_cond_gsi
, true);
677 free_stmt_vec_info (orig_cond
);
679 loop_loc
= find_loop_location (loop
);
680 if (dump_enabled_p ())
682 if (LOCATION_LOCUS (loop_loc
) != UNKNOWN_LOC
)
683 dump_printf (MSG_NOTE
, "\nloop at %s:%d: ", LOC_FILE (loop_loc
),
684 LOC_LINE (loop_loc
));
685 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, cond_stmt
, 0);
687 loop
->nb_iterations
= niters
;
691 /* Given LOOP this function generates a new copy of it and puts it
692 on E which is either the entry or exit of LOOP. */
695 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop
*loop
, edge e
)
697 struct loop
*new_loop
;
698 basic_block
*new_bbs
, *bbs
;
701 basic_block exit_dest
;
704 exit
= single_exit (loop
);
705 at_exit
= (e
== exit
);
706 if (!at_exit
&& e
!= loop_preheader_edge (loop
))
709 bbs
= XNEWVEC (basic_block
, loop
->num_nodes
+ 1);
710 get_loop_body_with_size (loop
, bbs
, loop
->num_nodes
);
712 /* Check whether duplication is possible. */
713 if (!can_copy_bbs_p (bbs
, loop
->num_nodes
))
719 /* Generate new loop structure. */
720 new_loop
= duplicate_loop (loop
, loop_outer (loop
));
721 duplicate_subloops (loop
, new_loop
);
723 exit_dest
= exit
->dest
;
724 was_imm_dom
= (get_immediate_dominator (CDI_DOMINATORS
,
725 exit_dest
) == loop
->header
?
728 /* Also copy the pre-header, this avoids jumping through hoops to
729 duplicate the loop entry PHI arguments. Create an empty
730 pre-header unconditionally for this. */
731 basic_block preheader
= split_edge (loop_preheader_edge (loop
));
732 edge entry_e
= single_pred_edge (preheader
);
733 bbs
[loop
->num_nodes
] = preheader
;
734 new_bbs
= XNEWVEC (basic_block
, loop
->num_nodes
+ 1);
736 copy_bbs (bbs
, loop
->num_nodes
+ 1, new_bbs
,
737 &exit
, 1, &new_exit
, NULL
,
739 basic_block new_preheader
= new_bbs
[loop
->num_nodes
];
741 add_phi_args_after_copy (new_bbs
, loop
->num_nodes
+ 1, NULL
);
743 if (at_exit
) /* Add the loop copy at exit. */
745 redirect_edge_and_branch_force (e
, new_preheader
);
746 flush_pending_stmts (e
);
747 set_immediate_dominator (CDI_DOMINATORS
, new_preheader
, e
->src
);
749 set_immediate_dominator (CDI_DOMINATORS
, exit_dest
, new_loop
->header
);
751 /* And remove the non-necessary forwarder again. Keep the other
752 one so we have a proper pre-header for the loop at the exit edge. */
753 redirect_edge_pred (single_succ_edge (preheader
), single_pred (preheader
));
754 delete_basic_block (preheader
);
755 set_immediate_dominator (CDI_DOMINATORS
, loop
->header
,
756 loop_preheader_edge (loop
)->src
);
758 else /* Add the copy at entry. */
760 redirect_edge_and_branch_force (entry_e
, new_preheader
);
761 flush_pending_stmts (entry_e
);
762 set_immediate_dominator (CDI_DOMINATORS
, new_preheader
, entry_e
->src
);
764 redirect_edge_and_branch_force (new_exit
, preheader
);
765 flush_pending_stmts (new_exit
);
766 set_immediate_dominator (CDI_DOMINATORS
, preheader
, new_exit
->src
);
768 /* And remove the non-necessary forwarder again. Keep the other
769 one so we have a proper pre-header for the loop at the exit edge. */
770 redirect_edge_pred (single_succ_edge (new_preheader
), single_pred (new_preheader
));
771 delete_basic_block (new_preheader
);
772 set_immediate_dominator (CDI_DOMINATORS
, new_loop
->header
,
773 loop_preheader_edge (new_loop
)->src
);
776 for (unsigned i
= 0; i
< loop
->num_nodes
+1; i
++)
777 rename_variables_in_bb (new_bbs
[i
]);
782 #ifdef ENABLE_CHECKING
783 verify_dominators (CDI_DOMINATORS
);
790 /* Given the condition statement COND, put it as the last statement
791 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
792 Assumes that this is the single exit of the guarded loop.
793 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
796 slpeel_add_loop_guard (basic_block guard_bb
, tree cond
,
797 gimple_seq cond_expr_stmt_list
,
798 basic_block exit_bb
, basic_block dom_bb
,
801 gimple_stmt_iterator gsi
;
804 gimple_seq gimplify_stmt_list
= NULL
;
806 enter_e
= EDGE_SUCC (guard_bb
, 0);
807 enter_e
->flags
&= ~EDGE_FALLTHRU
;
808 enter_e
->flags
|= EDGE_FALSE_VALUE
;
809 gsi
= gsi_last_bb (guard_bb
);
811 cond
= force_gimple_operand_1 (cond
, &gimplify_stmt_list
, is_gimple_condexpr
,
813 if (gimplify_stmt_list
)
814 gimple_seq_add_seq (&cond_expr_stmt_list
, gimplify_stmt_list
);
815 cond_stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
816 if (cond_expr_stmt_list
)
817 gsi_insert_seq_after (&gsi
, cond_expr_stmt_list
, GSI_NEW_STMT
);
819 gsi
= gsi_last_bb (guard_bb
);
820 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
822 /* Add new edge to connect guard block to the merge/loop-exit block. */
823 new_e
= make_edge (guard_bb
, exit_bb
, EDGE_TRUE_VALUE
);
825 new_e
->count
= guard_bb
->count
;
826 new_e
->probability
= probability
;
827 new_e
->count
= apply_probability (enter_e
->count
, probability
);
828 enter_e
->count
-= new_e
->count
;
829 enter_e
->probability
= inverse_probability (probability
);
830 set_immediate_dominator (CDI_DOMINATORS
, exit_bb
, dom_bb
);
835 /* This function verifies that the following restrictions apply to LOOP:
837 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
838 (3) it is single entry, single exit
839 (4) its exit condition is the last stmt in the header
840 (5) E is the entry/exit edge of LOOP.
844 slpeel_can_duplicate_loop_p (const struct loop
*loop
, const_edge e
)
846 edge exit_e
= single_exit (loop
);
847 edge entry_e
= loop_preheader_edge (loop
);
848 gimple orig_cond
= get_loop_exit_condition (loop
);
849 gimple_stmt_iterator loop_exit_gsi
= gsi_last_bb (exit_e
->src
);
852 /* All loops have an outer scope; the only case loop->outer is NULL is for
853 the function itself. */
854 || !loop_outer (loop
)
855 || loop
->num_nodes
!= 2
856 || !empty_block_p (loop
->latch
)
857 || !single_exit (loop
)
858 /* Verify that new loop exit condition can be trivially modified. */
859 || (!orig_cond
|| orig_cond
!= gsi_stmt (loop_exit_gsi
))
860 || (e
!= exit_e
&& e
!= entry_e
))
866 #ifdef ENABLE_CHECKING
868 slpeel_verify_cfg_after_peeling (struct loop
*first_loop
,
869 struct loop
*second_loop
)
871 basic_block loop1_exit_bb
= single_exit (first_loop
)->dest
;
872 basic_block loop2_entry_bb
= loop_preheader_edge (second_loop
)->src
;
873 basic_block loop1_entry_bb
= loop_preheader_edge (first_loop
)->src
;
875 /* A guard that controls whether the second_loop is to be executed or skipped
876 is placed in first_loop->exit. first_loop->exit therefore has two
877 successors - one is the preheader of second_loop, and the other is a bb
880 gcc_assert (EDGE_COUNT (loop1_exit_bb
->succs
) == 2);
882 /* 1. Verify that one of the successors of first_loop->exit is the preheader
885 /* The preheader of new_loop is expected to have two predecessors:
886 first_loop->exit and the block that precedes first_loop. */
888 gcc_assert (EDGE_COUNT (loop2_entry_bb
->preds
) == 2
889 && ((EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_exit_bb
890 && EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_entry_bb
)
891 || (EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_exit_bb
892 && EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_entry_bb
)));
894 /* Verify that the other successor of first_loop->exit is after the
900 /* If the run time cost model check determines that vectorization is
901 not profitable and hence scalar loop should be generated then set
902 FIRST_NITERS to prologue peeled iterations. This will allow all the
903 iterations to be executed in the prologue peeled scalar loop. */
906 set_prologue_iterations (basic_block bb_before_first_loop
,
913 basic_block cond_bb
, then_bb
;
914 tree var
, prologue_after_cost_adjust_name
;
915 gimple_stmt_iterator gsi
;
917 edge e_true
, e_false
, e_fallthru
;
919 gimple_seq stmts
= NULL
;
920 tree cost_pre_condition
= NULL_TREE
;
921 tree scalar_loop_iters
=
922 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop
)));
924 e
= single_pred_edge (bb_before_first_loop
);
925 cond_bb
= split_edge(e
);
927 e
= single_pred_edge (bb_before_first_loop
);
928 then_bb
= split_edge(e
);
929 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, cond_bb
);
931 e_false
= make_single_succ_edge (cond_bb
, bb_before_first_loop
,
933 set_immediate_dominator (CDI_DOMINATORS
, bb_before_first_loop
, cond_bb
);
935 e_true
= EDGE_PRED (then_bb
, 0);
936 e_true
->flags
&= ~EDGE_FALLTHRU
;
937 e_true
->flags
|= EDGE_TRUE_VALUE
;
939 e_true
->probability
= probability
;
940 e_false
->probability
= inverse_probability (probability
);
941 e_true
->count
= apply_probability (cond_bb
->count
, probability
);
942 e_false
->count
= cond_bb
->count
- e_true
->count
;
943 then_bb
->frequency
= EDGE_FREQUENCY (e_true
);
944 then_bb
->count
= e_true
->count
;
946 e_fallthru
= EDGE_SUCC (then_bb
, 0);
947 e_fallthru
->count
= then_bb
->count
;
949 gsi
= gsi_last_bb (cond_bb
);
951 fold_build2 (LE_EXPR
, boolean_type_node
, scalar_loop_iters
,
952 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
954 force_gimple_operand_gsi_1 (&gsi
, cost_pre_condition
, is_gimple_condexpr
,
955 NULL_TREE
, false, GSI_CONTINUE_LINKING
);
956 cond_stmt
= gimple_build_cond_from_tree (cost_pre_condition
,
957 NULL_TREE
, NULL_TREE
);
958 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
960 var
= create_tmp_var (TREE_TYPE (scalar_loop_iters
),
961 "prologue_after_cost_adjust");
962 prologue_after_cost_adjust_name
=
963 force_gimple_operand (scalar_loop_iters
, &stmts
, false, var
);
965 gsi
= gsi_last_bb (then_bb
);
967 gsi_insert_seq_after (&gsi
, stmts
, GSI_NEW_STMT
);
969 newphi
= create_phi_node (var
, bb_before_first_loop
);
970 add_phi_arg (newphi
, prologue_after_cost_adjust_name
, e_fallthru
,
972 add_phi_arg (newphi
, *first_niters
, e_false
, UNKNOWN_LOCATION
);
974 *first_niters
= PHI_RESULT (newphi
);
977 /* Function slpeel_tree_peel_loop_to_edge.
979 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
980 that is placed on the entry (exit) edge E of LOOP. After this transformation
981 we have two loops one after the other - first-loop iterates FIRST_NITERS
982 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
983 If the cost model indicates that it is profitable to emit a scalar
984 loop instead of the vector one, then the prolog (epilog) loop will iterate
985 for the entire unchanged scalar iterations of the loop.
988 - LOOP: the loop to be peeled.
989 - E: the exit or entry edge of LOOP.
990 If it is the entry edge, we peel the first iterations of LOOP. In this
991 case first-loop is LOOP, and second-loop is the newly created loop.
992 If it is the exit edge, we peel the last iterations of LOOP. In this
993 case, first-loop is the newly created loop, and second-loop is LOOP.
994 - NITERS: the number of iterations that LOOP iterates.
995 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
996 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
997 for updating the loop bound of the first-loop to FIRST_NITERS. If it
998 is false, the caller of this function may want to take care of this
999 (this can be useful if we don't want new stmts added to first-loop).
1000 - TH: cost model profitability threshold of iterations for vectorization.
1001 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1002 during versioning and hence needs to occur during
1003 prologue generation or whether cost model check
1004 has not occurred during prologue generation and hence
1005 needs to occur during epilogue generation.
1006 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1007 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1011 The function returns a pointer to the new loop-copy, or NULL if it failed
1012 to perform the transformation.
1014 The function generates two if-then-else guards: one before the first loop,
1015 and the other before the second loop:
1017 if (FIRST_NITERS == 0) then skip the first loop,
1018 and go directly to the second loop.
1019 The second guard is:
1020 if (FIRST_NITERS == NITERS) then skip the second loop.
1022 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1023 then the generated condition is combined with COND_EXPR and the
1024 statements in COND_EXPR_STMT_LIST are emitted together with it.
1026 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1027 FORNOW the resulting code will not be in loop-closed-ssa form.
1031 slpeel_tree_peel_loop_to_edge (struct loop
*loop
,
1032 edge e
, tree
*first_niters
,
1033 tree niters
, bool update_first_loop_count
,
1034 unsigned int th
, bool check_profitability
,
1035 tree cond_expr
, gimple_seq cond_expr_stmt_list
,
1036 int bound1
, int bound2
)
1038 struct loop
*new_loop
= NULL
, *first_loop
, *second_loop
;
1040 tree pre_condition
= NULL_TREE
;
1041 basic_block bb_before_second_loop
, bb_after_second_loop
;
1042 basic_block bb_before_first_loop
;
1043 basic_block bb_between_loops
;
1044 basic_block new_exit_bb
;
1045 gimple_stmt_iterator gsi
;
1046 edge exit_e
= single_exit (loop
);
1048 tree cost_pre_condition
= NULL_TREE
;
1049 /* There are many aspects to how likely the first loop is going to be executed.
1050 Without histogram we can't really do good job. Simply set it to
1051 2/3, so the first loop is not reordered to the end of function and
1052 the hot path through stays short. */
1053 int first_guard_probability
= 2 * REG_BR_PROB_BASE
/ 3;
1054 int second_guard_probability
= 2 * REG_BR_PROB_BASE
/ 3;
1055 int probability_of_second_loop
;
1057 if (!slpeel_can_duplicate_loop_p (loop
, e
))
1060 /* We might have a queued need to update virtual SSA form. As we
1061 delete the update SSA machinery below after doing a regular
1062 incremental SSA update during loop copying make sure we don't
1064 ??? Needing to update virtual SSA form by renaming is unfortunate
1065 but not all of the vectorizer code inserting new loads / stores
1066 properly assigns virtual operands to those statements. */
1067 update_ssa (TODO_update_ssa_only_virtuals
);
1069 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1070 in the exit bb and rename all the uses after the loop. This simplifies
1071 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1072 (but normally loop closed SSA form doesn't require virtual PHIs to be
1073 in the same form). Doing this early simplifies the checking what
1074 uses should be renamed. */
1075 for (gsi
= gsi_start_phis (loop
->header
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1076 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi
))))
1078 gimple phi
= gsi_stmt (gsi
);
1079 for (gsi
= gsi_start_phis (exit_e
->dest
);
1080 !gsi_end_p (gsi
); gsi_next (&gsi
))
1081 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi
))))
1083 if (gsi_end_p (gsi
))
1085 tree new_vop
= copy_ssa_name (PHI_RESULT (phi
), NULL
);
1086 gimple new_phi
= create_phi_node (new_vop
, exit_e
->dest
);
1087 tree vop
= PHI_ARG_DEF_FROM_EDGE (phi
, EDGE_SUCC (loop
->latch
, 0));
1088 imm_use_iterator imm_iter
;
1090 use_operand_p use_p
;
1092 add_phi_arg (new_phi
, vop
, exit_e
, UNKNOWN_LOCATION
);
1093 gimple_phi_set_result (new_phi
, new_vop
);
1094 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, vop
)
1095 if (stmt
!= new_phi
&& gimple_bb (stmt
) != loop
->header
)
1096 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1097 SET_USE (use_p
, new_vop
);
1102 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1103 Resulting CFG would be:
1116 if (!(new_loop
= slpeel_tree_duplicate_loop_to_edge_cfg (loop
, e
)))
1118 loop_loc
= find_loop_location (loop
);
1119 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, loop_loc
,
1120 "tree_duplicate_loop_to_edge_cfg failed.\n");
1124 if (MAY_HAVE_DEBUG_STMTS
)
1126 gcc_assert (!adjust_vec
.exists ());
1127 vec_stack_alloc (adjust_info
, adjust_vec
, 32);
1132 /* NEW_LOOP was placed after LOOP. */
1134 second_loop
= new_loop
;
1138 /* NEW_LOOP was placed before LOOP. */
1139 first_loop
= new_loop
;
1143 /* 2. Add the guard code in one of the following ways:
1145 2.a Add the guard that controls whether the first loop is executed.
1146 This occurs when this function is invoked for prologue or epilogue
1147 generation and when the cost model check can be done at compile time.
1149 Resulting CFG would be:
1151 bb_before_first_loop:
1152 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1159 bb_before_second_loop:
1167 2.b Add the cost model check that allows the prologue
1168 to iterate for the entire unchanged scalar
1169 iterations of the loop in the event that the cost
1170 model indicates that the scalar loop is more
1171 profitable than the vector one. This occurs when
1172 this function is invoked for prologue generation
1173 and the cost model check needs to be done at run
1176 Resulting CFG after prologue peeling would be:
1178 if (scalar_loop_iterations <= th)
1179 FIRST_NITERS = scalar_loop_iterations
1181 bb_before_first_loop:
1182 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1189 bb_before_second_loop:
1197 2.c Add the cost model check that allows the epilogue
1198 to iterate for the entire unchanged scalar
1199 iterations of the loop in the event that the cost
1200 model indicates that the scalar loop is more
1201 profitable than the vector one. This occurs when
1202 this function is invoked for epilogue generation
1203 and the cost model check needs to be done at run
1204 time. This check is combined with any pre-existing
1205 check in COND_EXPR to avoid versioning.
1207 Resulting CFG after prologue peeling would be:
1209 bb_before_first_loop:
1210 if ((scalar_loop_iterations <= th)
1212 FIRST_NITERS == 0) GOTO bb_before_second_loop
1219 bb_before_second_loop:
1228 bb_before_first_loop
= split_edge (loop_preheader_edge (first_loop
));
1229 /* Loop copying insterted a forwarder block for us here. */
1230 bb_before_second_loop
= single_exit (first_loop
)->dest
;
1232 probability_of_second_loop
= (inverse_probability (first_guard_probability
)
1233 + combine_probabilities (second_guard_probability
,
1234 first_guard_probability
));
1235 /* Theoretically preheader edge of first loop and exit edge should have
1236 same frequencies. Loop exit probablities are however easy to get wrong.
1237 It is safer to copy value from original loop entry. */
1238 bb_before_second_loop
->frequency
1239 = combine_probabilities (bb_before_first_loop
->frequency
,
1240 probability_of_second_loop
);
1241 bb_before_second_loop
->count
1242 = apply_probability (bb_before_first_loop
->count
,
1243 probability_of_second_loop
);
1244 single_succ_edge (bb_before_second_loop
)->count
1245 = bb_before_second_loop
->count
;
1247 /* Epilogue peeling. */
1248 if (!update_first_loop_count
)
1251 fold_build2 (LE_EXPR
, boolean_type_node
, *first_niters
,
1252 build_int_cst (TREE_TYPE (*first_niters
), 0));
1253 if (check_profitability
)
1255 tree scalar_loop_iters
1256 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1257 (loop_vec_info_for_loop (loop
)));
1258 cost_pre_condition
=
1259 fold_build2 (LE_EXPR
, boolean_type_node
, scalar_loop_iters
,
1260 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
1262 pre_condition
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1263 cost_pre_condition
, pre_condition
);
1268 fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1270 fold_build1 (TRUTH_NOT_EXPR
, boolean_type_node
,
1275 /* Prologue peeling. */
1278 if (check_profitability
)
1279 set_prologue_iterations (bb_before_first_loop
, first_niters
,
1280 loop
, th
, first_guard_probability
);
1283 fold_build2 (LE_EXPR
, boolean_type_node
, *first_niters
,
1284 build_int_cst (TREE_TYPE (*first_niters
), 0));
1287 skip_e
= slpeel_add_loop_guard (bb_before_first_loop
, pre_condition
,
1288 cond_expr_stmt_list
,
1289 bb_before_second_loop
, bb_before_first_loop
,
1290 inverse_probability (first_guard_probability
));
1291 scale_loop_profile (first_loop
, first_guard_probability
,
1292 check_profitability
&& (int)th
> bound1
? th
: bound1
);
1293 slpeel_update_phi_nodes_for_guard1 (skip_e
, first_loop
,
1294 first_loop
== new_loop
,
1298 /* 3. Add the guard that controls whether the second loop is executed.
1299 Resulting CFG would be:
1301 bb_before_first_loop:
1302 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1310 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1311 GOTO bb_before_second_loop
1313 bb_before_second_loop:
1319 bb_after_second_loop:
1324 bb_between_loops
= new_exit_bb
;
1325 bb_after_second_loop
= split_edge (single_exit (second_loop
));
1328 fold_build2 (EQ_EXPR
, boolean_type_node
, *first_niters
, niters
);
1329 skip_e
= slpeel_add_loop_guard (bb_between_loops
, pre_condition
, NULL
,
1330 bb_after_second_loop
, bb_before_first_loop
,
1331 inverse_probability (second_guard_probability
));
1332 scale_loop_profile (second_loop
, probability_of_second_loop
, bound2
);
1333 slpeel_update_phi_nodes_for_guard2 (skip_e
, second_loop
,
1334 second_loop
== new_loop
, &new_exit_bb
);
1336 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1338 if (update_first_loop_count
)
1339 slpeel_make_loop_iterate_ntimes (first_loop
, *first_niters
);
1341 delete_update_ssa ();
1343 adjust_vec_debug_stmts ();
1348 /* Function vect_get_loop_location.
1350 Extract the location of the loop in the source code.
1351 If the loop is not well formed for vectorization, an estimated
1352 location is calculated.
1353 Return the loop location if succeed and NULL if not. */
1356 find_loop_location (struct loop
*loop
)
1360 gimple_stmt_iterator si
;
1365 stmt
= get_loop_exit_condition (loop
);
1368 && LOCATION_LOCUS (gimple_location (stmt
)) > BUILTINS_LOCATION
)
1369 return gimple_location (stmt
);
1371 /* If we got here the loop is probably not "well formed",
1372 try to estimate the loop location */
1379 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
1381 stmt
= gsi_stmt (si
);
1382 if (LOCATION_LOCUS (gimple_location (stmt
)) > BUILTINS_LOCATION
)
1383 return gimple_location (stmt
);
1390 /* This function builds ni_name = number of iterations loop executes
1391 on the loop preheader. If SEQ is given the stmt is instead emitted
1395 vect_build_loop_niters (loop_vec_info loop_vinfo
, gimple_seq seq
)
1398 gimple_seq stmts
= NULL
;
1400 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1401 tree ni
= unshare_expr (LOOP_VINFO_NITERS (loop_vinfo
));
1403 var
= create_tmp_var (TREE_TYPE (ni
), "niters");
1404 ni_name
= force_gimple_operand (ni
, &stmts
, false, var
);
1406 pe
= loop_preheader_edge (loop
);
1410 gimple_seq_add_seq (&seq
, stmts
);
1413 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1414 gcc_assert (!new_bb
);
1422 /* This function generates the following statements:
1424 ni_name = number of iterations loop executes
1425 ratio = ni_name / vf
1426 ratio_mult_vf_name = ratio * vf
1428 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1429 if that is non-NULL. */
1432 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo
,
1434 tree
*ratio_mult_vf_name_ptr
,
1435 tree
*ratio_name_ptr
,
1436 gimple_seq cond_expr_stmt_list
)
1442 tree ni_name
, ni_minus_gap_name
;
1445 tree ratio_mult_vf_name
;
1446 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1447 tree ni
= LOOP_VINFO_NITERS (loop_vinfo
);
1448 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1451 pe
= loop_preheader_edge (loop
);
1453 /* Generate temporary variable that contains
1454 number of iterations loop executes. */
1456 ni_name
= vect_build_loop_niters (loop_vinfo
, cond_expr_stmt_list
);
1457 log_vf
= build_int_cst (TREE_TYPE (ni
), exact_log2 (vf
));
1459 /* If epilogue loop is required because of data accesses with gaps, we
1460 subtract one iteration from the total number of iterations here for
1461 correct calculation of RATIO. */
1462 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
1464 ni_minus_gap_name
= fold_build2 (MINUS_EXPR
, TREE_TYPE (ni_name
),
1466 build_one_cst (TREE_TYPE (ni_name
)));
1467 if (!is_gimple_val (ni_minus_gap_name
))
1469 var
= create_tmp_var (TREE_TYPE (ni
), "ni_gap");
1472 ni_minus_gap_name
= force_gimple_operand (ni_minus_gap_name
, &stmts
,
1474 if (cond_expr_stmt_list
)
1475 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1478 pe
= loop_preheader_edge (loop
);
1479 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1480 gcc_assert (!new_bb
);
1485 ni_minus_gap_name
= ni_name
;
1487 /* Create: ratio = ni >> log2(vf) */
1489 ratio_name
= fold_build2 (RSHIFT_EXPR
, TREE_TYPE (ni_minus_gap_name
),
1490 ni_minus_gap_name
, log_vf
);
1491 if (!is_gimple_val (ratio_name
))
1493 var
= create_tmp_var (TREE_TYPE (ni
), "bnd");
1496 ratio_name
= force_gimple_operand (ratio_name
, &stmts
, true, var
);
1497 if (cond_expr_stmt_list
)
1498 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1501 pe
= loop_preheader_edge (loop
);
1502 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1503 gcc_assert (!new_bb
);
1507 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1509 ratio_mult_vf_name
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (ratio_name
),
1510 ratio_name
, log_vf
);
1511 if (!is_gimple_val (ratio_mult_vf_name
))
1513 var
= create_tmp_var (TREE_TYPE (ni
), "ratio_mult_vf");
1516 ratio_mult_vf_name
= force_gimple_operand (ratio_mult_vf_name
, &stmts
,
1518 if (cond_expr_stmt_list
)
1519 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1522 pe
= loop_preheader_edge (loop
);
1523 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1524 gcc_assert (!new_bb
);
1528 *ni_name_ptr
= ni_name
;
1529 *ratio_mult_vf_name_ptr
= ratio_mult_vf_name
;
1530 *ratio_name_ptr
= ratio_name
;
1535 /* Function vect_can_advance_ivs_p
1537 In case the number of iterations that LOOP iterates is unknown at compile
1538 time, an epilog loop will be generated, and the loop induction variables
1539 (IVs) will be "advanced" to the value they are supposed to take just before
1540 the epilog loop. Here we check that the access function of the loop IVs
1541 and the expression that represents the loop bound are simple enough.
1542 These restrictions will be relaxed in the future. */
1545 vect_can_advance_ivs_p (loop_vec_info loop_vinfo
)
1547 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1548 basic_block bb
= loop
->header
;
1550 gimple_stmt_iterator gsi
;
1552 /* Analyze phi functions of the loop header. */
1554 if (dump_enabled_p ())
1555 dump_printf_loc (MSG_NOTE
, vect_location
, "vect_can_advance_ivs_p:");
1556 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1558 tree access_fn
= NULL
;
1559 tree evolution_part
;
1561 phi
= gsi_stmt (gsi
);
1562 if (dump_enabled_p ())
1564 dump_printf_loc (MSG_NOTE
, vect_location
, "Analyze phi: ");
1565 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
1568 /* Skip virtual phi's. The data dependences that are associated with
1569 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1571 if (virtual_operand_p (PHI_RESULT (phi
)))
1573 if (dump_enabled_p ())
1574 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1575 "virtual phi. skip.");
1579 /* Skip reduction phis. */
1581 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi
)) == vect_reduction_def
)
1583 if (dump_enabled_p ())
1584 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1585 "reduc phi. skip.");
1589 /* Analyze the evolution function. */
1591 access_fn
= instantiate_parameters
1592 (loop
, analyze_scalar_evolution (loop
, PHI_RESULT (phi
)));
1596 if (dump_enabled_p ())
1597 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1598 "No Access function.");
1602 STRIP_NOPS (access_fn
);
1603 if (dump_enabled_p ())
1605 dump_printf_loc (MSG_NOTE
, vect_location
,
1606 "Access function of PHI: ");
1607 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, access_fn
);
1610 evolution_part
= evolution_part_in_loop_num (access_fn
, loop
->num
);
1612 if (evolution_part
== NULL_TREE
)
1614 if (dump_enabled_p ())
1615 dump_printf (MSG_MISSED_OPTIMIZATION
, "No evolution.");
1619 /* FORNOW: We do not transform initial conditions of IVs
1620 which evolution functions are a polynomial of degree >= 2. */
1622 if (tree_is_chrec (evolution_part
))
1630 /* Function vect_update_ivs_after_vectorizer.
1632 "Advance" the induction variables of LOOP to the value they should take
1633 after the execution of LOOP. This is currently necessary because the
1634 vectorizer does not handle induction variables that are used after the
1635 loop. Such a situation occurs when the last iterations of LOOP are
1637 1. We introduced new uses after LOOP for IVs that were not originally used
1638 after LOOP: the IVs of LOOP are now used by an epilog loop.
1639 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1640 times, whereas the loop IVs should be bumped N times.
1643 - LOOP - a loop that is going to be vectorized. The last few iterations
1644 of LOOP were peeled.
1645 - NITERS - the number of iterations that LOOP executes (before it is
1646 vectorized). i.e, the number of times the ivs should be bumped.
1647 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1648 coming out from LOOP on which there are uses of the LOOP ivs
1649 (this is the path from LOOP->exit to epilog_loop->preheader).
1651 The new definitions of the ivs are placed in LOOP->exit.
1652 The phi args associated with the edge UPDATE_E in the bb
1653 UPDATE_E->dest are updated accordingly.
1655 Assumption 1: Like the rest of the vectorizer, this function assumes
1656 a single loop exit that has a single predecessor.
1658 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1659 organized in the same order.
1661 Assumption 3: The access function of the ivs is simple enough (see
1662 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1664 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1665 coming out of LOOP on which the ivs of LOOP are used (this is the path
1666 that leads to the epilog loop; other paths skip the epilog loop). This
1667 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1668 needs to have its phis updated.
1672 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo
, tree niters
,
1675 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1676 basic_block exit_bb
= single_exit (loop
)->dest
;
1678 gimple_stmt_iterator gsi
, gsi1
;
1679 basic_block update_bb
= update_e
->dest
;
1681 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1683 /* Make sure there exists a single-predecessor exit bb: */
1684 gcc_assert (single_pred_p (exit_bb
));
1686 for (gsi
= gsi_start_phis (loop
->header
), gsi1
= gsi_start_phis (update_bb
);
1687 !gsi_end_p (gsi
) && !gsi_end_p (gsi1
);
1688 gsi_next (&gsi
), gsi_next (&gsi1
))
1691 tree step_expr
, off
;
1693 tree var
, ni
, ni_name
;
1694 gimple_stmt_iterator last_gsi
;
1695 stmt_vec_info stmt_info
;
1697 phi
= gsi_stmt (gsi
);
1698 phi1
= gsi_stmt (gsi1
);
1699 if (dump_enabled_p ())
1701 dump_printf_loc (MSG_NOTE
, vect_location
,
1702 "vect_update_ivs_after_vectorizer: phi: ");
1703 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
1706 /* Skip virtual phi's. */
1707 if (virtual_operand_p (PHI_RESULT (phi
)))
1709 if (dump_enabled_p ())
1710 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1711 "virtual phi. skip.");
1715 /* Skip reduction phis. */
1716 stmt_info
= vinfo_for_stmt (phi
);
1717 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_reduction_def
)
1719 if (dump_enabled_p ())
1720 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1721 "reduc phi. skip.");
1725 type
= TREE_TYPE (gimple_phi_result (phi
));
1726 step_expr
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info
);
1727 step_expr
= unshare_expr (step_expr
);
1729 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1730 of degree >= 2 or exponential. */
1731 gcc_assert (!tree_is_chrec (step_expr
));
1733 init_expr
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1735 off
= fold_build2 (MULT_EXPR
, TREE_TYPE (step_expr
),
1736 fold_convert (TREE_TYPE (step_expr
), niters
),
1738 if (POINTER_TYPE_P (type
))
1739 ni
= fold_build_pointer_plus (init_expr
, off
);
1741 ni
= fold_build2 (PLUS_EXPR
, type
,
1742 init_expr
, fold_convert (type
, off
));
1744 var
= create_tmp_var (type
, "tmp");
1746 last_gsi
= gsi_last_bb (exit_bb
);
1747 ni_name
= force_gimple_operand_gsi (&last_gsi
, ni
, false, var
,
1748 true, GSI_SAME_STMT
);
1750 /* Fix phi expressions in the successor bb. */
1751 adjust_phi_and_debug_stmts (phi1
, update_e
, ni_name
);
1755 /* Function vect_do_peeling_for_loop_bound
1757 Peel the last iterations of the loop represented by LOOP_VINFO.
1758 The peeled iterations form a new epilog loop. Given that the loop now
1759 iterates NITERS times, the new epilog loop iterates
1760 NITERS % VECTORIZATION_FACTOR times.
1762 The original loop will later be made to iterate
1763 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1765 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1769 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo
, tree
*ratio
,
1770 unsigned int th
, bool check_profitability
)
1772 tree ni_name
, ratio_mult_vf_name
;
1773 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1774 struct loop
*new_loop
;
1776 basic_block preheader
;
1779 tree cond_expr
= NULL_TREE
;
1780 gimple_seq cond_expr_stmt_list
= NULL
;
1782 if (dump_enabled_p ())
1783 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
1784 "=== vect_do_peeling_for_loop_bound ===");
1786 initialize_original_copy_tables ();
1788 /* Generate the following variables on the preheader of original loop:
1790 ni_name = number of iteration the original loop executes
1791 ratio = ni_name / vf
1792 ratio_mult_vf_name = ratio * vf */
1793 vect_generate_tmps_on_preheader (loop_vinfo
, &ni_name
,
1794 &ratio_mult_vf_name
, ratio
,
1795 cond_expr_stmt_list
);
1797 loop_num
= loop
->num
;
1799 new_loop
= slpeel_tree_peel_loop_to_edge (loop
, single_exit (loop
),
1800 &ratio_mult_vf_name
, ni_name
, false,
1801 th
, check_profitability
,
1802 cond_expr
, cond_expr_stmt_list
,
1803 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
1804 gcc_assert (new_loop
);
1805 gcc_assert (loop_num
== loop
->num
);
1806 #ifdef ENABLE_CHECKING
1807 slpeel_verify_cfg_after_peeling (loop
, new_loop
);
1810 /* A guard that controls whether the new_loop is to be executed or skipped
1811 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1812 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1813 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1814 is on the path where the LOOP IVs are used and need to be updated. */
1816 preheader
= loop_preheader_edge (new_loop
)->src
;
1817 if (EDGE_PRED (preheader
, 0)->src
== single_exit (loop
)->dest
)
1818 update_e
= EDGE_PRED (preheader
, 0);
1820 update_e
= EDGE_PRED (preheader
, 1);
1822 /* Update IVs of original loop as if they were advanced
1823 by ratio_mult_vf_name steps. */
1824 vect_update_ivs_after_vectorizer (loop_vinfo
, ratio_mult_vf_name
, update_e
);
1826 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1827 and this means N-2 loopback edge executions.
1829 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1830 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1831 max_iter
= (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
)
1832 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo
) * 2
1833 : LOOP_VINFO_VECT_FACTOR (loop_vinfo
)) - 2;
1834 if (check_profitability
)
1835 max_iter
= MAX (max_iter
, (int) th
- 1);
1836 record_niter_bound (new_loop
, double_int::from_shwi (max_iter
), false, true);
1837 dump_printf (MSG_OPTIMIZED_LOCATIONS
,
1838 "Setting upper bound of nb iterations for epilogue "
1839 "loop to %d\n", max_iter
);
1841 /* After peeling we have to reset scalar evolution analyzer. */
1844 free_original_copy_tables ();
1848 /* Function vect_gen_niters_for_prolog_loop
1850 Set the number of iterations for the loop represented by LOOP_VINFO
1851 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1852 and the misalignment of DR - the data reference recorded in
1853 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1854 this loop, the data reference DR will refer to an aligned location.
1856 The following computation is generated:
1858 If the misalignment of DR is known at compile time:
1859 addr_mis = int mis = DR_MISALIGNMENT (dr);
1860 Else, compute address misalignment in bytes:
1861 addr_mis = addr & (vectype_align - 1)
1863 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1865 (elem_size = element type size; an element is the scalar element whose type
1866 is the inner type of the vectype)
1868 When the step of the data-ref in the loop is not 1 (as in interleaved data
1869 and SLP), the number of iterations of the prolog must be divided by the step
1870 (which is equal to the size of interleaved group).
1872 The above formulas assume that VF == number of elements in the vector. This
1873 may not hold when there are multiple-types in the loop.
1874 In this case, for some data-references in the loop the VF does not represent
1875 the number of elements that fit in the vector. Therefore, instead of VF we
1876 use TYPE_VECTOR_SUBPARTS. */
1879 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo
, tree loop_niters
, int *bound
)
1881 struct data_reference
*dr
= LOOP_VINFO_UNALIGNED_DR (loop_vinfo
);
1882 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1885 tree iters
, iters_name
;
1888 gimple dr_stmt
= DR_STMT (dr
);
1889 stmt_vec_info stmt_info
= vinfo_for_stmt (dr_stmt
);
1890 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
1891 int vectype_align
= TYPE_ALIGN (vectype
) / BITS_PER_UNIT
;
1892 tree niters_type
= TREE_TYPE (loop_niters
);
1893 int nelements
= TYPE_VECTOR_SUBPARTS (vectype
);
1895 pe
= loop_preheader_edge (loop
);
1897 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
) > 0)
1899 int npeel
= LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
);
1901 if (dump_enabled_p ())
1902 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
1903 "known peeling = %d.", npeel
);
1905 iters
= build_int_cst (niters_type
, npeel
);
1906 *bound
= LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
);
1910 gimple_seq new_stmts
= NULL
;
1911 bool negative
= tree_int_cst_compare (DR_STEP (dr
), size_zero_node
) < 0;
1912 tree offset
= negative
1913 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype
) + 1) : NULL_TREE
;
1914 tree start_addr
= vect_create_addr_base_for_vector_ref (dr_stmt
,
1915 &new_stmts
, offset
, loop
);
1916 tree type
= unsigned_type_for (TREE_TYPE (start_addr
));
1917 tree vectype_align_minus_1
= build_int_cst (type
, vectype_align
- 1);
1918 HOST_WIDE_INT elem_size
=
1919 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype
)));
1920 tree elem_size_log
= build_int_cst (type
, exact_log2 (elem_size
));
1921 tree nelements_minus_1
= build_int_cst (type
, nelements
- 1);
1922 tree nelements_tree
= build_int_cst (type
, nelements
);
1926 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, new_stmts
);
1927 gcc_assert (!new_bb
);
1929 /* Create: byte_misalign = addr & (vectype_align - 1) */
1931 fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, start_addr
),
1932 vectype_align_minus_1
);
1934 /* Create: elem_misalign = byte_misalign / element_size */
1936 fold_build2 (RSHIFT_EXPR
, type
, byte_misalign
, elem_size_log
);
1938 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1940 iters
= fold_build2 (MINUS_EXPR
, type
, elem_misalign
, nelements_tree
);
1942 iters
= fold_build2 (MINUS_EXPR
, type
, nelements_tree
, elem_misalign
);
1943 iters
= fold_build2 (BIT_AND_EXPR
, type
, iters
, nelements_minus_1
);
1944 iters
= fold_convert (niters_type
, iters
);
1948 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1949 /* If the loop bound is known at compile time we already verified that it is
1950 greater than vf; since the misalignment ('iters') is at most vf, there's
1951 no need to generate the MIN_EXPR in this case. */
1952 if (TREE_CODE (loop_niters
) != INTEGER_CST
)
1953 iters
= fold_build2 (MIN_EXPR
, niters_type
, iters
, loop_niters
);
1955 if (dump_enabled_p ())
1957 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
1958 "niters for prolog loop: ");
1959 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS
, TDF_SLIM
, iters
);
1962 var
= create_tmp_var (niters_type
, "prolog_loop_niters");
1964 iters_name
= force_gimple_operand (iters
, &stmts
, false, var
);
1966 /* Insert stmt on loop preheader edge. */
1969 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1970 gcc_assert (!new_bb
);
1977 /* Function vect_update_init_of_dr
1979 NITERS iterations were peeled from LOOP. DR represents a data reference
1980 in LOOP. This function updates the information recorded in DR to
1981 account for the fact that the first NITERS iterations had already been
1982 executed. Specifically, it updates the OFFSET field of DR. */
1985 vect_update_init_of_dr (struct data_reference
*dr
, tree niters
)
1987 tree offset
= DR_OFFSET (dr
);
1989 niters
= fold_build2 (MULT_EXPR
, sizetype
,
1990 fold_convert (sizetype
, niters
),
1991 fold_convert (sizetype
, DR_STEP (dr
)));
1992 offset
= fold_build2 (PLUS_EXPR
, sizetype
,
1993 fold_convert (sizetype
, offset
), niters
);
1994 DR_OFFSET (dr
) = offset
;
1998 /* Function vect_update_inits_of_drs
2000 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2001 This function updates the information recorded for the data references in
2002 the loop to account for the fact that the first NITERS iterations had
2003 already been executed. Specifically, it updates the initial_condition of
2004 the access_function of all the data_references in the loop. */
2007 vect_update_inits_of_drs (loop_vec_info loop_vinfo
, tree niters
)
2010 vec
<data_reference_p
> datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
2011 struct data_reference
*dr
;
2013 if (dump_enabled_p ())
2014 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2015 "=== vect_update_inits_of_dr ===");
2017 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
2018 vect_update_init_of_dr (dr
, niters
);
2022 /* Function vect_do_peeling_for_alignment
2024 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2025 'niters' is set to the misalignment of one of the data references in the
2026 loop, thereby forcing it to refer to an aligned location at the beginning
2027 of the execution of this loop. The data reference for which we are
2028 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2031 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo
,
2032 unsigned int th
, bool check_profitability
)
2034 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2035 tree niters_of_prolog_loop
, ni_name
;
2037 tree wide_prolog_niters
;
2038 struct loop
*new_loop
;
2042 if (dump_enabled_p ())
2043 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2044 "=== vect_do_peeling_for_alignment ===");
2046 initialize_original_copy_tables ();
2048 ni_name
= vect_build_loop_niters (loop_vinfo
, NULL
);
2049 niters_of_prolog_loop
= vect_gen_niters_for_prolog_loop (loop_vinfo
,
2053 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2055 slpeel_tree_peel_loop_to_edge (loop
, loop_preheader_edge (loop
),
2056 &niters_of_prolog_loop
, ni_name
, true,
2057 th
, check_profitability
, NULL_TREE
, NULL
,
2061 gcc_assert (new_loop
);
2062 #ifdef ENABLE_CHECKING
2063 slpeel_verify_cfg_after_peeling (new_loop
, loop
);
2065 /* For vectorization factor N, we need to copy at most N-1 values
2066 for alignment and this means N-2 loopback edge executions. */
2067 max_iter
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
) - 2;
2068 if (check_profitability
)
2069 max_iter
= MAX (max_iter
, (int) th
- 1);
2070 record_niter_bound (new_loop
, double_int::from_shwi (max_iter
), false, true);
2071 dump_printf (MSG_OPTIMIZED_LOCATIONS
,
2072 "Setting upper bound of nb iterations for prologue "
2073 "loop to %d\n", max_iter
);
2075 /* Update number of times loop executes. */
2076 n_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2077 LOOP_VINFO_NITERS (loop_vinfo
) = fold_build2 (MINUS_EXPR
,
2078 TREE_TYPE (n_iters
), n_iters
, niters_of_prolog_loop
);
2080 if (types_compatible_p (sizetype
, TREE_TYPE (niters_of_prolog_loop
)))
2081 wide_prolog_niters
= niters_of_prolog_loop
;
2084 gimple_seq seq
= NULL
;
2085 edge pe
= loop_preheader_edge (loop
);
2086 tree wide_iters
= fold_convert (sizetype
, niters_of_prolog_loop
);
2087 tree var
= create_tmp_var (sizetype
, "prolog_loop_adjusted_niters");
2088 wide_prolog_niters
= force_gimple_operand (wide_iters
, &seq
, false,
2092 /* Insert stmt on loop preheader edge. */
2093 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, seq
);
2094 gcc_assert (!new_bb
);
2098 /* Update the init conditions of the access functions of all data refs. */
2099 vect_update_inits_of_drs (loop_vinfo
, wide_prolog_niters
);
2101 /* After peeling we have to reset scalar evolution analyzer. */
2104 free_original_copy_tables ();
2108 /* Function vect_create_cond_for_align_checks.
2110 Create a conditional expression that represents the alignment checks for
2111 all of data references (array element references) whose alignment must be
2115 COND_EXPR - input conditional expression. New conditions will be chained
2116 with logical AND operation.
2117 LOOP_VINFO - two fields of the loop information are used.
2118 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2119 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2122 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2124 The returned value is the conditional expression to be used in the if
2125 statement that controls which version of the loop gets executed at runtime.
2127 The algorithm makes two assumptions:
2128 1) The number of bytes "n" in a vector is a power of 2.
2129 2) An address "a" is aligned if a%n is zero and that this
2130 test can be done as a&(n-1) == 0. For example, for 16
2131 byte vectors the test is a&0xf == 0. */
2134 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo
,
2136 gimple_seq
*cond_expr_stmt_list
)
2138 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2139 vec
<gimple
> may_misalign_stmts
2140 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
);
2142 int mask
= LOOP_VINFO_PTR_MASK (loop_vinfo
);
2145 tree int_ptrsize_type
;
2147 tree or_tmp_name
= NULL_TREE
;
2151 tree part_cond_expr
;
2153 /* Check that mask is one less than a power of 2, i.e., mask is
2154 all zeros followed by all ones. */
2155 gcc_assert ((mask
!= 0) && ((mask
& (mask
+1)) == 0));
2157 int_ptrsize_type
= signed_type_for (ptr_type_node
);
2159 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2160 of the first vector of the i'th data reference. */
2162 FOR_EACH_VEC_ELT (may_misalign_stmts
, i
, ref_stmt
)
2164 gimple_seq new_stmt_list
= NULL
;
2167 tree new_or_tmp_name
;
2168 gimple addr_stmt
, or_stmt
;
2169 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (ref_stmt
);
2170 tree vectype
= STMT_VINFO_VECTYPE (stmt_vinfo
);
2171 bool negative
= tree_int_cst_compare
2172 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo
)), size_zero_node
) < 0;
2173 tree offset
= negative
2174 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype
) + 1) : NULL_TREE
;
2176 /* create: addr_tmp = (int)(address_of_first_vector) */
2178 vect_create_addr_base_for_vector_ref (ref_stmt
, &new_stmt_list
,
2180 if (new_stmt_list
!= NULL
)
2181 gimple_seq_add_seq (cond_expr_stmt_list
, new_stmt_list
);
2183 sprintf (tmp_name
, "addr2int%d", i
);
2184 addr_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, tmp_name
);
2185 addr_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, addr_tmp_name
,
2186 addr_base
, NULL_TREE
);
2187 gimple_seq_add_stmt (cond_expr_stmt_list
, addr_stmt
);
2189 /* The addresses are OR together. */
2191 if (or_tmp_name
!= NULL_TREE
)
2193 /* create: or_tmp = or_tmp | addr_tmp */
2194 sprintf (tmp_name
, "orptrs%d", i
);
2195 new_or_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, tmp_name
);
2196 or_stmt
= gimple_build_assign_with_ops (BIT_IOR_EXPR
,
2198 or_tmp_name
, addr_tmp_name
);
2199 gimple_seq_add_stmt (cond_expr_stmt_list
, or_stmt
);
2200 or_tmp_name
= new_or_tmp_name
;
2203 or_tmp_name
= addr_tmp_name
;
2207 mask_cst
= build_int_cst (int_ptrsize_type
, mask
);
2209 /* create: and_tmp = or_tmp & mask */
2210 and_tmp_name
= make_temp_ssa_name (int_ptrsize_type
, NULL
, "andmask");
2212 and_stmt
= gimple_build_assign_with_ops (BIT_AND_EXPR
, and_tmp_name
,
2213 or_tmp_name
, mask_cst
);
2214 gimple_seq_add_stmt (cond_expr_stmt_list
, and_stmt
);
2216 /* Make and_tmp the left operand of the conditional test against zero.
2217 if and_tmp has a nonzero bit then some address is unaligned. */
2218 ptrsize_zero
= build_int_cst (int_ptrsize_type
, 0);
2219 part_cond_expr
= fold_build2 (EQ_EXPR
, boolean_type_node
,
2220 and_tmp_name
, ptrsize_zero
);
2222 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2223 *cond_expr
, part_cond_expr
);
2225 *cond_expr
= part_cond_expr
;
2229 /* Function vect_vfa_segment_size.
2231 Create an expression that computes the size of segment
2232 that will be accessed for a data reference. The functions takes into
2233 account that realignment loads may access one more vector.
2236 DR: The data reference.
2237 LENGTH_FACTOR: segment length to consider.
2239 Return an expression whose value is the size of segment which will be
2243 vect_vfa_segment_size (struct data_reference
*dr
, tree length_factor
)
2245 tree segment_length
;
2247 if (integer_zerop (DR_STEP (dr
)))
2248 segment_length
= TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr
)));
2250 segment_length
= size_binop (MULT_EXPR
,
2251 fold_convert (sizetype
, DR_STEP (dr
)),
2252 fold_convert (sizetype
, length_factor
));
2254 if (vect_supportable_dr_alignment (dr
, false)
2255 == dr_explicit_realign_optimized
)
2257 tree vector_size
= TYPE_SIZE_UNIT
2258 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr
))));
2260 segment_length
= size_binop (PLUS_EXPR
, segment_length
, vector_size
);
2262 return segment_length
;
2266 /* Function vect_create_cond_for_alias_checks.
2268 Create a conditional expression that represents the run-time checks for
2269 overlapping of address ranges represented by a list of data references
2270 relations passed as input.
2273 COND_EXPR - input conditional expression. New conditions will be chained
2274 with logical AND operation.
2275 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2279 COND_EXPR - conditional expression.
2281 The returned value is the conditional expression to be used in the if
2282 statement that controls which version of the loop gets executed at runtime.
2286 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo
, tree
* cond_expr
)
2288 vec
<ddr_p
> may_alias_ddrs
=
2289 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
);
2290 int vect_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2291 tree scalar_loop_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2295 tree part_cond_expr
, length_factor
;
2297 /* Create expression
2298 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2299 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2303 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2304 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2306 if (may_alias_ddrs
.is_empty ())
2309 FOR_EACH_VEC_ELT (may_alias_ddrs
, i
, ddr
)
2311 struct data_reference
*dr_a
, *dr_b
;
2312 gimple dr_group_first_a
, dr_group_first_b
;
2313 tree addr_base_a
, addr_base_b
;
2314 tree segment_length_a
, segment_length_b
;
2315 gimple stmt_a
, stmt_b
;
2316 tree seg_a_min
, seg_a_max
, seg_b_min
, seg_b_max
;
2319 stmt_a
= DR_STMT (DDR_A (ddr
));
2320 dr_group_first_a
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a
));
2321 if (dr_group_first_a
)
2323 stmt_a
= dr_group_first_a
;
2324 dr_a
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a
));
2328 stmt_b
= DR_STMT (DDR_B (ddr
));
2329 dr_group_first_b
= GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b
));
2330 if (dr_group_first_b
)
2332 stmt_b
= dr_group_first_b
;
2333 dr_b
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b
));
2337 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a
),
2338 size_binop (PLUS_EXPR
, DR_OFFSET (dr_a
),
2341 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b
),
2342 size_binop (PLUS_EXPR
, DR_OFFSET (dr_b
),
2345 if (!operand_equal_p (DR_STEP (dr_a
), DR_STEP (dr_b
), 0))
2346 length_factor
= scalar_loop_iters
;
2348 length_factor
= size_int (vect_factor
);
2349 segment_length_a
= vect_vfa_segment_size (dr_a
, length_factor
);
2350 segment_length_b
= vect_vfa_segment_size (dr_b
, length_factor
);
2352 if (dump_enabled_p ())
2354 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2355 "create runtime check for data references ");
2356 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS
, TDF_SLIM
, DR_REF (dr_a
));
2357 dump_printf (MSG_OPTIMIZED_LOCATIONS
, " and ");
2358 dump_generic_expr (MSG_OPTIMIZED_LOCATIONS
, TDF_SLIM
, DR_REF (dr_b
));
2361 seg_a_min
= addr_base_a
;
2362 seg_a_max
= fold_build_pointer_plus (addr_base_a
, segment_length_a
);
2363 if (tree_int_cst_compare (DR_STEP (dr_a
), size_zero_node
) < 0)
2364 seg_a_min
= seg_a_max
, seg_a_max
= addr_base_a
;
2366 seg_b_min
= addr_base_b
;
2367 seg_b_max
= fold_build_pointer_plus (addr_base_b
, segment_length_b
);
2368 if (tree_int_cst_compare (DR_STEP (dr_b
), size_zero_node
) < 0)
2369 seg_b_min
= seg_b_max
, seg_b_max
= addr_base_b
;
2372 fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
2373 fold_build2 (LE_EXPR
, boolean_type_node
, seg_a_max
, seg_b_min
),
2374 fold_build2 (LE_EXPR
, boolean_type_node
, seg_b_max
, seg_a_min
));
2377 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2378 *cond_expr
, part_cond_expr
);
2380 *cond_expr
= part_cond_expr
;
2383 if (dump_enabled_p ())
2384 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS
, vect_location
,
2385 "created %u versioning for alias checks.\n",
2386 may_alias_ddrs
.length ());
2390 /* Function vect_loop_versioning.
2392 If the loop has data references that may or may not be aligned or/and
2393 has data reference relations whose independence was not proven then
2394 two versions of the loop need to be generated, one which is vectorized
2395 and one which isn't. A test is then generated to control which of the
2396 loops is executed. The test checks for the alignment of all of the
2397 data references that may or may not be aligned. An additional
2398 sequence of runtime tests is generated for each pairs of DDRs whose
2399 independence was not proven. The vectorized version of loop is
2400 executed only if both alias and alignment tests are passed.
2402 The test generated to check which version of loop is executed
2403 is modified to also check for profitability as indicated by the
2404 cost model initially.
2406 The versioning precondition(s) are placed in *COND_EXPR and
2407 *COND_EXPR_STMT_LIST. */
2410 vect_loop_versioning (loop_vec_info loop_vinfo
,
2411 unsigned int th
, bool check_profitability
)
2413 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2414 basic_block condition_bb
;
2415 gimple_stmt_iterator gsi
, cond_exp_gsi
;
2416 basic_block merge_bb
;
2417 basic_block new_exit_bb
;
2419 gimple orig_phi
, new_phi
;
2420 tree cond_expr
= NULL_TREE
;
2421 gimple_seq cond_expr_stmt_list
= NULL
;
2423 unsigned prob
= 4 * REG_BR_PROB_BASE
/ 5;
2424 gimple_seq gimplify_stmt_list
= NULL
;
2425 tree scalar_loop_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2427 if (check_profitability
)
2429 cond_expr
= fold_build2 (GT_EXPR
, boolean_type_node
, scalar_loop_iters
,
2430 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
2431 cond_expr
= force_gimple_operand_1 (cond_expr
, &cond_expr_stmt_list
,
2432 is_gimple_condexpr
, NULL_TREE
);
2435 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
))
2436 vect_create_cond_for_align_checks (loop_vinfo
, &cond_expr
,
2437 &cond_expr_stmt_list
);
2439 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
2440 vect_create_cond_for_alias_checks (loop_vinfo
, &cond_expr
);
2442 cond_expr
= force_gimple_operand_1 (cond_expr
, &gimplify_stmt_list
,
2443 is_gimple_condexpr
, NULL_TREE
);
2444 gimple_seq_add_seq (&cond_expr_stmt_list
, gimplify_stmt_list
);
2446 initialize_original_copy_tables ();
2447 loop_version (loop
, cond_expr
, &condition_bb
,
2448 prob
, prob
, REG_BR_PROB_BASE
- prob
, true);
2449 free_original_copy_tables();
2451 /* Loop versioning violates an assumption we try to maintain during
2452 vectorization - that the loop exit block has a single predecessor.
2453 After versioning, the exit block of both loop versions is the same
2454 basic block (i.e. it has two predecessors). Just in order to simplify
2455 following transformations in the vectorizer, we fix this situation
2456 here by adding a new (empty) block on the exit-edge of the loop,
2457 with the proper loop-exit phis to maintain loop-closed-form. */
2459 merge_bb
= single_exit (loop
)->dest
;
2460 gcc_assert (EDGE_COUNT (merge_bb
->preds
) == 2);
2461 new_exit_bb
= split_edge (single_exit (loop
));
2462 new_exit_e
= single_exit (loop
);
2463 e
= EDGE_SUCC (new_exit_bb
, 0);
2465 for (gsi
= gsi_start_phis (merge_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2468 orig_phi
= gsi_stmt (gsi
);
2469 new_res
= copy_ssa_name (PHI_RESULT (orig_phi
), NULL
);
2470 new_phi
= create_phi_node (new_res
, new_exit_bb
);
2471 arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
2472 add_phi_arg (new_phi
, arg
, new_exit_e
,
2473 gimple_phi_arg_location_from_edge (orig_phi
, e
));
2474 adjust_phi_and_debug_stmts (orig_phi
, e
, PHI_RESULT (new_phi
));
2477 /* End loop-exit-fixes after versioning. */
2479 if (cond_expr_stmt_list
)
2481 cond_exp_gsi
= gsi_last_bb (condition_bb
);
2482 gsi_insert_seq_before (&cond_exp_gsi
, cond_expr_stmt_list
,
2485 update_ssa (TODO_update_ssa
);