1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Elists
; use Elists
;
31 with Einfo
; use Einfo
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Pakd
; use Exp_Pakd
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch13
; use Sem_Ch13
;
61 with Sem_Dim
; use Sem_Dim
;
62 with Sem_Disp
; use Sem_Disp
;
63 with Sem_Dist
; use Sem_Dist
;
64 with Sem_Elim
; use Sem_Elim
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Res
; use Sem_Res
;
68 with Sem_Smem
; use Sem_Smem
;
69 with Sem_Type
; use Sem_Type
;
70 with Sem_Util
; use Sem_Util
;
71 with Sem_Warn
; use Sem_Warn
;
72 with Stand
; use Stand
;
73 with Sinfo
; use Sinfo
;
74 with Sinput
; use Sinput
;
75 with Snames
; use Snames
;
76 with Targparm
; use Targparm
;
77 with Tbuild
; use Tbuild
;
78 with Ttypes
; use Ttypes
;
79 with Uintp
; use Uintp
;
80 with Urealp
; use Urealp
;
82 package body Sem_Ch3
is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
93 procedure Build_Derived_Type
95 Parent_Type
: Entity_Id
;
96 Derived_Type
: Entity_Id
;
97 Is_Completion
: Boolean;
98 Derive_Subps
: Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
118 procedure Build_Derived_Access_Type
120 Parent_Type
: Entity_Id
;
121 Derived_Type
: Entity_Id
);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
126 procedure Build_Derived_Array_Type
128 Parent_Type
: Entity_Id
;
129 Derived_Type
: Entity_Id
);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
134 procedure Build_Derived_Concurrent_Type
136 Parent_Type
: Entity_Id
;
137 Derived_Type
: Entity_Id
);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
142 procedure Build_Derived_Enumeration_Type
144 Parent_Type
: Entity_Id
;
145 Derived_Type
: Entity_Id
);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
150 procedure Build_Derived_Numeric_Type
152 Parent_Type
: Entity_Id
;
153 Derived_Type
: Entity_Id
);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
157 procedure Build_Derived_Private_Type
159 Parent_Type
: Entity_Id
;
160 Derived_Type
: Entity_Id
;
161 Is_Completion
: Boolean;
162 Derive_Subps
: Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
167 procedure Build_Derived_Record_Type
169 Parent_Type
: Entity_Id
;
170 Derived_Type
: Entity_Id
;
171 Derive_Subps
: Boolean := True);
172 -- Subsidiary procedure for Build_Derived_Type and
173 -- Analyze_Private_Extension_Declaration used for tagged and untagged
174 -- record types. All parameters are as in Build_Derived_Type except that
175 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should
178 -- be derived from the parent type. The only case where Derive_Subps is
179 -- False is for an implicit derived full type for a type derived from a
180 -- private type (see Build_Derived_Type).
182 procedure Build_Discriminal
(Discrim
: Entity_Id
);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
190 function Build_Discriminant_Constraints
193 Derived_Def
: Boolean := False) return Elist_Id
;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
204 procedure Build_Discriminated_Subtype
208 Related_Nod
: Node_Id
;
209 For_Access
: Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
227 function Build_Scalar_Bound
230 Der_T
: Entity_Id
) return Node_Id
;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
236 procedure Build_Underlying_Full_View
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
248 procedure Check_Access_Discriminant_Requires_Limited
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
255 procedure Check_Anonymous_Access_Components
259 Comp_List
: Node_Id
);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
269 procedure Check_Delta_Expression
(E
: Node_Id
);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
273 procedure Check_Digits_Expression
(E
: Node_Id
);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
277 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
281 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284 procedure Check_Or_Process_Discriminants
287 Prev
: Entity_Id
:= Empty
);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
294 procedure Check_Real_Bound
(Bound
: Node_Id
);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
298 procedure Constant_Redeclaration
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
306 function Contain_Interface
308 Ifaces
: Elist_Id
) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311 procedure Convert_Scalar_Bounds
313 Parent_Type
: Entity_Id
;
314 Derived_Type
: Entity_Id
;
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
324 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
328 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
332 procedure Create_Constrained_Components
336 Constraints
: Elist_Id
);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
346 function Constrain_Component_Type
348 Constrained_Typ
: Entity_Id
;
349 Related_Node
: Node_Id
;
351 Constraints
: Elist_Id
) return Entity_Id
;
352 -- Given a discriminated base type Typ, a list of discriminant constraint
353 -- Constraints for Typ and a component of Typ, with type Compon_Type,
354 -- create and return the type corresponding to Compon_type where all
355 -- discriminant references are replaced with the corresponding constraint.
356 -- If no discriminant references occur in Compon_Typ then return it as is.
357 -- Constrained_Typ is the final constrained subtype to which the
358 -- constrained Compon_Type belongs. Related_Node is the node where we will
359 -- attach all the itypes created.
361 -- Above description is confused, what is Compon_Type???
363 procedure Constrain_Access
364 (Def_Id
: in out Entity_Id
;
366 Related_Nod
: Node_Id
);
367 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
368 -- an anonymous type created for a subtype indication. In that case it is
369 -- created in the procedure and attached to Related_Nod.
371 procedure Constrain_Array
372 (Def_Id
: in out Entity_Id
;
374 Related_Nod
: Node_Id
;
375 Related_Id
: Entity_Id
;
377 -- Apply a list of index constraints to an unconstrained array type. The
378 -- first parameter is the entity for the resulting subtype. A value of
379 -- Empty for Def_Id indicates that an implicit type must be created, but
380 -- creation is delayed (and must be done by this procedure) because other
381 -- subsidiary implicit types must be created first (which is why Def_Id
382 -- is an in/out parameter). The second parameter is a subtype indication
383 -- node for the constrained array to be created (e.g. something of the
384 -- form string (1 .. 10)). Related_Nod gives the place where this type
385 -- has to be inserted in the tree. The Related_Id and Suffix parameters
386 -- are used to build the associated Implicit type name.
388 procedure Constrain_Concurrent
389 (Def_Id
: in out Entity_Id
;
391 Related_Nod
: Node_Id
;
392 Related_Id
: Entity_Id
;
394 -- Apply list of discriminant constraints to an unconstrained concurrent
397 -- SI is the N_Subtype_Indication node containing the constraint and
398 -- the unconstrained type to constrain.
400 -- Def_Id is the entity for the resulting constrained subtype. A value
401 -- of Empty for Def_Id indicates that an implicit type must be created,
402 -- but creation is delayed (and must be done by this procedure) because
403 -- other subsidiary implicit types must be created first (which is why
404 -- Def_Id is an in/out parameter).
406 -- Related_Nod gives the place where this type has to be inserted
409 -- The last two arguments are used to create its external name if needed.
411 function Constrain_Corresponding_Record
412 (Prot_Subt
: Entity_Id
;
413 Corr_Rec
: Entity_Id
;
414 Related_Nod
: Node_Id
;
415 Related_Id
: Entity_Id
) return Entity_Id
;
416 -- When constraining a protected type or task type with discriminants,
417 -- constrain the corresponding record with the same discriminant values.
419 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
420 -- Constrain a decimal fixed point type with a digits constraint and/or a
421 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
423 procedure Constrain_Discriminated_Type
426 Related_Nod
: Node_Id
;
427 For_Access
: Boolean := False);
428 -- Process discriminant constraints of composite type. Verify that values
429 -- have been provided for all discriminants, that the original type is
430 -- unconstrained, and that the types of the supplied expressions match
431 -- the discriminant types. The first three parameters are like in routine
432 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
435 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
436 -- Constrain an enumeration type with a range constraint. This is identical
437 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
439 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
440 -- Constrain a floating point type with either a digits constraint
441 -- and/or a range constraint, building a E_Floating_Point_Subtype.
443 procedure Constrain_Index
446 Related_Nod
: Node_Id
;
447 Related_Id
: Entity_Id
;
450 -- Process an index constraint S in a constrained array declaration. The
451 -- constraint can be a subtype name, or a range with or without an explicit
452 -- subtype mark. The index is the corresponding index of the unconstrained
453 -- array. The Related_Id and Suffix parameters are used to build the
454 -- associated Implicit type name.
456 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
457 -- Build subtype of a signed or modular integer type
459 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
460 -- Constrain an ordinary fixed point type with a range constraint, and
461 -- build an E_Ordinary_Fixed_Point_Subtype entity.
463 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
464 -- Copy the Priv entity into the entity of its full declaration then swap
465 -- the two entities in such a manner that the former private type is now
466 -- seen as a full type.
468 procedure Decimal_Fixed_Point_Type_Declaration
471 -- Create a new decimal fixed point type, and apply the constraint to
472 -- obtain a subtype of this new type.
474 procedure Complete_Private_Subtype
477 Full_Base
: Entity_Id
;
478 Related_Nod
: Node_Id
);
479 -- Complete the implicit full view of a private subtype by setting the
480 -- appropriate semantic fields. If the full view of the parent is a record
481 -- type, build constrained components of subtype.
483 procedure Derive_Progenitor_Subprograms
484 (Parent_Type
: Entity_Id
;
485 Tagged_Type
: Entity_Id
);
486 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
487 -- operations of progenitors of Tagged_Type, and replace the subsidiary
488 -- subtypes with Tagged_Type, to build the specs of the inherited interface
489 -- primitives. The derived primitives are aliased to those of the
490 -- interface. This routine takes care also of transferring to the full view
491 -- subprograms associated with the partial view of Tagged_Type that cover
492 -- interface primitives.
494 procedure Derived_Standard_Character
496 Parent_Type
: Entity_Id
;
497 Derived_Type
: Entity_Id
);
498 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
499 -- derivations from types Standard.Character and Standard.Wide_Character.
501 procedure Derived_Type_Declaration
504 Is_Completion
: Boolean);
505 -- Process a derived type declaration. Build_Derived_Type is invoked
506 -- to process the actual derived type definition. Parameters N and
507 -- Is_Completion have the same meaning as in Build_Derived_Type.
508 -- T is the N_Defining_Identifier for the entity defined in the
509 -- N_Full_Type_Declaration node N, that is T is the derived type.
511 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
512 -- Insert each literal in symbol table, as an overloadable identifier. Each
513 -- enumeration type is mapped into a sequence of integers, and each literal
514 -- is defined as a constant with integer value. If any of the literals are
515 -- character literals, the type is a character type, which means that
516 -- strings are legal aggregates for arrays of components of the type.
518 function Expand_To_Stored_Constraint
520 Constraint
: Elist_Id
) return Elist_Id
;
521 -- Given a constraint (i.e. a list of expressions) on the discriminants of
522 -- Typ, expand it into a constraint on the stored discriminants and return
523 -- the new list of expressions constraining the stored discriminants.
525 function Find_Type_Of_Object
527 Related_Nod
: Node_Id
) return Entity_Id
;
528 -- Get type entity for object referenced by Obj_Def, attaching the
529 -- implicit types generated to Related_Nod
531 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
532 -- Create a new float and apply the constraint to obtain subtype of it
534 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
535 -- Given an N_Subtype_Indication node N, return True if a range constraint
536 -- is present, either directly, or as part of a digits or delta constraint.
537 -- In addition, a digits constraint in the decimal case returns True, since
538 -- it establishes a default range if no explicit range is present.
540 function Inherit_Components
542 Parent_Base
: Entity_Id
;
543 Derived_Base
: Entity_Id
;
545 Inherit_Discr
: Boolean;
546 Discs
: Elist_Id
) return Elist_Id
;
547 -- Called from Build_Derived_Record_Type to inherit the components of
548 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
549 -- For more information on derived types and component inheritance please
550 -- consult the comment above the body of Build_Derived_Record_Type.
552 -- N is the original derived type declaration
554 -- Is_Tagged is set if we are dealing with tagged types
556 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
557 -- Parent_Base, otherwise no discriminants are inherited.
559 -- Discs gives the list of constraints that apply to Parent_Base in the
560 -- derived type declaration. If Discs is set to No_Elist, then we have
561 -- the following situation:
563 -- type Parent (D1..Dn : ..) is [tagged] record ...;
564 -- type Derived is new Parent [with ...];
566 -- which gets treated as
568 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
570 -- For untagged types the returned value is an association list. The list
571 -- starts from the association (Parent_Base => Derived_Base), and then it
572 -- contains a sequence of the associations of the form
574 -- (Old_Component => New_Component),
576 -- where Old_Component is the Entity_Id of a component in Parent_Base and
577 -- New_Component is the Entity_Id of the corresponding component in
578 -- Derived_Base. For untagged records, this association list is needed when
579 -- copying the record declaration for the derived base. In the tagged case
580 -- the value returned is irrelevant.
582 function Is_Valid_Constraint_Kind
584 Constraint_Kind
: Node_Kind
) return Boolean;
585 -- Returns True if it is legal to apply the given kind of constraint to the
586 -- given kind of type (index constraint to an array type, for example).
588 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
589 -- Create new modular type. Verify that modulus is in bounds
591 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
592 -- Create an abbreviated declaration for an operator in order to
593 -- materialize concatenation on array types.
595 procedure Ordinary_Fixed_Point_Type_Declaration
598 -- Create a new ordinary fixed point type, and apply the constraint to
599 -- obtain subtype of it.
601 procedure Prepare_Private_Subtype_Completion
603 Related_Nod
: Node_Id
);
604 -- Id is a subtype of some private type. Creates the full declaration
605 -- associated with Id whenever possible, i.e. when the full declaration
606 -- of the base type is already known. Records each subtype into
607 -- Private_Dependents of the base type.
609 procedure Process_Incomplete_Dependents
613 -- Process all entities that depend on an incomplete type. There include
614 -- subtypes, subprogram types that mention the incomplete type in their
615 -- profiles, and subprogram with access parameters that designate the
618 -- Inc_T is the defining identifier of an incomplete type declaration, its
619 -- Ekind is E_Incomplete_Type.
621 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
623 -- Full_T is N's defining identifier.
625 -- Subtypes of incomplete types with discriminants are completed when the
626 -- parent type is. This is simpler than private subtypes, because they can
627 -- only appear in the same scope, and there is no need to exchange views.
628 -- Similarly, access_to_subprogram types may have a parameter or a return
629 -- type that is an incomplete type, and that must be replaced with the
632 -- If the full type is tagged, subprogram with access parameters that
633 -- designated the incomplete may be primitive operations of the full type,
634 -- and have to be processed accordingly.
636 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
637 -- Given the type definition for a real type, this procedure processes and
638 -- checks the real range specification of this type definition if one is
639 -- present. If errors are found, error messages are posted, and the
640 -- Real_Range_Specification of Def is reset to Empty.
642 procedure Record_Type_Declaration
646 -- Process a record type declaration (for both untagged and tagged
647 -- records). Parameters T and N are exactly like in procedure
648 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
649 -- for this routine. If this is the completion of an incomplete type
650 -- declaration, Prev is the entity of the incomplete declaration, used for
651 -- cross-referencing. Otherwise Prev = T.
653 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
654 -- This routine is used to process the actual record type definition (both
655 -- for untagged and tagged records). Def is a record type definition node.
656 -- This procedure analyzes the components in this record type definition.
657 -- Prev_T is the entity for the enclosing record type. It is provided so
658 -- that its Has_Task flag can be set if any of the component have Has_Task
659 -- set. If the declaration is the completion of an incomplete type
660 -- declaration, Prev_T is the original incomplete type, whose full view is
663 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
664 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
665 -- build a copy of the declaration tree of the parent, and we create
666 -- independently the list of components for the derived type. Semantic
667 -- information uses the component entities, but record representation
668 -- clauses are validated on the declaration tree. This procedure replaces
669 -- discriminants and components in the declaration with those that have
670 -- been created by Inherit_Components.
672 procedure Set_Fixed_Range
677 -- Build a range node with the given bounds and set it as the Scalar_Range
678 -- of the given fixed-point type entity. Loc is the source location used
679 -- for the constructed range. See body for further details.
681 procedure Set_Scalar_Range_For_Subtype
685 -- This routine is used to set the scalar range field for a subtype given
686 -- Def_Id, the entity for the subtype, and R, the range expression for the
687 -- scalar range. Subt provides the parent subtype to be used to analyze,
688 -- resolve, and check the given range.
690 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
691 -- Create a new signed integer entity, and apply the constraint to obtain
692 -- the required first named subtype of this type.
694 procedure Set_Stored_Constraint_From_Discriminant_Constraint
696 -- E is some record type. This routine computes E's Stored_Constraint
697 -- from its Discriminant_Constraint.
699 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
700 -- Check that an entity in a list of progenitors is an interface,
701 -- emit error otherwise.
703 -----------------------
704 -- Access_Definition --
705 -----------------------
707 function Access_Definition
708 (Related_Nod
: Node_Id
;
709 N
: Node_Id
) return Entity_Id
711 Anon_Type
: Entity_Id
;
712 Anon_Scope
: Entity_Id
;
713 Desig_Type
: Entity_Id
;
714 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
717 Check_SPARK_Restriction
("access type is not allowed", N
);
719 if Is_Entry
(Current_Scope
)
720 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
722 Error_Msg_N
("task entries cannot have access parameters", N
);
726 -- Ada 2005: for an object declaration the corresponding anonymous
727 -- type is declared in the current scope.
729 -- If the access definition is the return type of another access to
730 -- function, scope is the current one, because it is the one of the
731 -- current type declaration, except for the pathological case below.
733 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
734 N_Access_Function_Definition
)
736 Anon_Scope
:= Current_Scope
;
738 -- A pathological case: function returning access functions that
739 -- return access functions, etc. Each anonymous access type created
740 -- is in the enclosing scope of the outermost function.
747 while Nkind_In
(Par
, N_Access_Function_Definition
,
753 if Nkind
(Par
) = N_Function_Specification
then
754 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
758 -- For the anonymous function result case, retrieve the scope of the
759 -- function specification's associated entity rather than using the
760 -- current scope. The current scope will be the function itself if the
761 -- formal part is currently being analyzed, but will be the parent scope
762 -- in the case of a parameterless function, and we always want to use
763 -- the function's parent scope. Finally, if the function is a child
764 -- unit, we must traverse the tree to retrieve the proper entity.
766 elsif Nkind
(Related_Nod
) = N_Function_Specification
767 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
769 -- If the current scope is a protected type, the anonymous access
770 -- is associated with one of the protected operations, and must
771 -- be available in the scope that encloses the protected declaration.
772 -- Otherwise the type is in the scope enclosing the subprogram.
774 -- If the function has formals, The return type of a subprogram
775 -- declaration is analyzed in the scope of the subprogram (see
776 -- Process_Formals) and thus the protected type, if present, is
777 -- the scope of the current function scope.
779 if Ekind
(Current_Scope
) = E_Protected_Type
then
780 Enclosing_Prot_Type
:= Current_Scope
;
782 elsif Ekind
(Current_Scope
) = E_Function
783 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
785 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
788 if Present
(Enclosing_Prot_Type
) then
789 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
792 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
795 -- For an access type definition, if the current scope is a child
796 -- unit it is the scope of the type.
798 elsif Is_Compilation_Unit
(Current_Scope
) then
799 Anon_Scope
:= Current_Scope
;
801 -- For access formals, access components, and access discriminants, the
802 -- scope is that of the enclosing declaration,
805 Anon_Scope
:= Scope
(Current_Scope
);
810 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
813 and then Ada_Version
>= Ada_2005
815 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
818 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
819 -- the corresponding semantic routine
821 if Present
(Access_To_Subprogram_Definition
(N
)) then
823 -- Compiler runtime units are compiled in Ada 2005 mode when building
824 -- the runtime library but must also be compilable in Ada 95 mode
825 -- (when bootstrapping the compiler).
827 Check_Compiler_Unit
(N
);
829 Access_Subprogram_Declaration
830 (T_Name
=> Anon_Type
,
831 T_Def
=> Access_To_Subprogram_Definition
(N
));
833 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
835 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
838 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
841 Set_Can_Use_Internal_Rep
842 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
844 -- If the anonymous access is associated with a protected operation,
845 -- create a reference to it after the enclosing protected definition
846 -- because the itype will be used in the subsequent bodies.
848 if Ekind
(Current_Scope
) = E_Protected_Type
then
849 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
855 Find_Type
(Subtype_Mark
(N
));
856 Desig_Type
:= Entity
(Subtype_Mark
(N
));
858 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
859 Set_Etype
(Anon_Type
, Anon_Type
);
861 -- Make sure the anonymous access type has size and alignment fields
862 -- set, as required by gigi. This is necessary in the case of the
863 -- Task_Body_Procedure.
865 if not Has_Private_Component
(Desig_Type
) then
866 Layout_Type
(Anon_Type
);
869 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
870 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
871 -- the null value is allowed. In Ada 95 the null value is never allowed.
873 if Ada_Version
>= Ada_2005
then
874 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
876 Set_Can_Never_Be_Null
(Anon_Type
, True);
879 -- The anonymous access type is as public as the discriminated type or
880 -- subprogram that defines it. It is imported (for back-end purposes)
881 -- if the designated type is.
883 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
885 -- Ada 2005 (AI-231): Propagate the access-constant attribute
887 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
889 -- The context is either a subprogram declaration, object declaration,
890 -- or an access discriminant, in a private or a full type declaration.
891 -- In the case of a subprogram, if the designated type is incomplete,
892 -- the operation will be a primitive operation of the full type, to be
893 -- updated subsequently. If the type is imported through a limited_with
894 -- clause, the subprogram is not a primitive operation of the type
895 -- (which is declared elsewhere in some other scope).
897 if Ekind
(Desig_Type
) = E_Incomplete_Type
898 and then not From_With_Type
(Desig_Type
)
899 and then Is_Overloadable
(Current_Scope
)
901 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
902 Set_Has_Delayed_Freeze
(Current_Scope
);
905 -- Ada 2005: if the designated type is an interface that may contain
906 -- tasks, create a Master entity for the declaration. This must be done
907 -- before expansion of the full declaration, because the declaration may
908 -- include an expression that is an allocator, whose expansion needs the
909 -- proper Master for the created tasks.
911 if Nkind
(Related_Nod
) = N_Object_Declaration
912 and then Expander_Active
914 if Is_Interface
(Desig_Type
)
915 and then Is_Limited_Record
(Desig_Type
)
917 Build_Class_Wide_Master
(Anon_Type
);
919 -- Similarly, if the type is an anonymous access that designates
920 -- tasks, create a master entity for it in the current context.
922 elsif Has_Task
(Desig_Type
)
923 and then Comes_From_Source
(Related_Nod
)
925 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
926 Build_Master_Renaming
(Anon_Type
);
930 -- For a private component of a protected type, it is imperative that
931 -- the back-end elaborate the type immediately after the protected
932 -- declaration, because this type will be used in the declarations
933 -- created for the component within each protected body, so we must
934 -- create an itype reference for it now.
936 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
937 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
939 -- Similarly, if the access definition is the return result of a
940 -- function, create an itype reference for it because it will be used
941 -- within the function body. For a regular function that is not a
942 -- compilation unit, insert reference after the declaration. For a
943 -- protected operation, insert it after the enclosing protected type
944 -- declaration. In either case, do not create a reference for a type
945 -- obtained through a limited_with clause, because this would introduce
946 -- semantic dependencies.
948 -- Similarly, do not create a reference if the designated type is a
949 -- generic formal, because no use of it will reach the backend.
951 elsif Nkind
(Related_Nod
) = N_Function_Specification
952 and then not From_With_Type
(Desig_Type
)
953 and then not Is_Generic_Type
(Desig_Type
)
955 if Present
(Enclosing_Prot_Type
) then
956 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
958 elsif Is_List_Member
(Parent
(Related_Nod
))
959 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
961 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
964 -- Finally, create an itype reference for an object declaration of an
965 -- anonymous access type. This is strictly necessary only for deferred
966 -- constants, but in any case will avoid out-of-scope problems in the
969 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
970 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
974 end Access_Definition
;
976 -----------------------------------
977 -- Access_Subprogram_Declaration --
978 -----------------------------------
980 procedure Access_Subprogram_Declaration
985 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
986 -- Check that type T_Name is not used, directly or recursively, as a
987 -- parameter or a return type in Def. Def is either a subtype, an
988 -- access_definition, or an access_to_subprogram_definition.
990 -------------------------------
991 -- Check_For_Premature_Usage --
992 -------------------------------
994 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
998 -- Check for a subtype mark
1000 if Nkind
(Def
) in N_Has_Etype
then
1001 if Etype
(Def
) = T_Name
then
1003 ("type& cannot be used before end of its declaration", Def
);
1006 -- If this is not a subtype, then this is an access_definition
1008 elsif Nkind
(Def
) = N_Access_Definition
then
1009 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1010 Check_For_Premature_Usage
1011 (Access_To_Subprogram_Definition
(Def
));
1013 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1016 -- The only cases left are N_Access_Function_Definition and
1017 -- N_Access_Procedure_Definition.
1020 if Present
(Parameter_Specifications
(Def
)) then
1021 Param
:= First
(Parameter_Specifications
(Def
));
1022 while Present
(Param
) loop
1023 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1024 Param
:= Next
(Param
);
1028 if Nkind
(Def
) = N_Access_Function_Definition
then
1029 Check_For_Premature_Usage
(Result_Definition
(Def
));
1032 end Check_For_Premature_Usage
;
1036 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1039 Desig_Type
: constant Entity_Id
:=
1040 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1042 -- Start of processing for Access_Subprogram_Declaration
1045 Check_SPARK_Restriction
("access type is not allowed", T_Def
);
1047 -- Associate the Itype node with the inner full-type declaration or
1048 -- subprogram spec or entry body. This is required to handle nested
1049 -- anonymous declarations. For example:
1052 -- (X : access procedure
1053 -- (Y : access procedure
1056 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1057 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1058 N_Private_Type_Declaration
,
1059 N_Private_Extension_Declaration
,
1060 N_Procedure_Specification
,
1061 N_Function_Specification
,
1065 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1066 N_Object_Renaming_Declaration
,
1067 N_Formal_Object_Declaration
,
1068 N_Formal_Type_Declaration
,
1069 N_Task_Type_Declaration
,
1070 N_Protected_Type_Declaration
))
1072 D_Ityp
:= Parent
(D_Ityp
);
1073 pragma Assert
(D_Ityp
/= Empty
);
1076 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1078 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1079 N_Function_Specification
)
1081 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1083 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1084 N_Object_Declaration
,
1085 N_Object_Renaming_Declaration
,
1086 N_Formal_Type_Declaration
)
1088 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1091 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1092 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1094 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1097 if Present
(Access_To_Subprogram_Definition
(Acc
))
1099 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1103 Replace_Anonymous_Access_To_Protected_Subprogram
1109 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1114 Analyze
(Result_Definition
(T_Def
));
1117 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1120 -- If a null exclusion is imposed on the result type, then
1121 -- create a null-excluding itype (an access subtype) and use
1122 -- it as the function's Etype.
1124 if Is_Access_Type
(Typ
)
1125 and then Null_Exclusion_In_Return_Present
(T_Def
)
1127 Set_Etype
(Desig_Type
,
1128 Create_Null_Excluding_Itype
1130 Related_Nod
=> T_Def
,
1131 Scope_Id
=> Current_Scope
));
1134 if From_With_Type
(Typ
) then
1136 -- AI05-151: Incomplete types are allowed in all basic
1137 -- declarations, including access to subprograms.
1139 if Ada_Version
>= Ada_2012
then
1144 ("illegal use of incomplete type&",
1145 Result_Definition
(T_Def
), Typ
);
1148 elsif Ekind
(Current_Scope
) = E_Package
1149 and then In_Private_Part
(Current_Scope
)
1151 if Ekind
(Typ
) = E_Incomplete_Type
then
1152 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1154 elsif Is_Class_Wide_Type
(Typ
)
1155 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1158 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1162 Set_Etype
(Desig_Type
, Typ
);
1167 if not (Is_Type
(Etype
(Desig_Type
))) then
1169 ("expect type in function specification",
1170 Result_Definition
(T_Def
));
1174 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1177 if Present
(Formals
) then
1178 Push_Scope
(Desig_Type
);
1180 -- A bit of a kludge here. These kludges will be removed when Itypes
1181 -- have proper parent pointers to their declarations???
1183 -- Kludge 1) Link defining_identifier of formals. Required by
1184 -- First_Formal to provide its functionality.
1190 F
:= First
(Formals
);
1192 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1193 -- when it is part of an unconstrained type and subtype expansion
1194 -- is disabled. To avoid back-end problems with shared profiles,
1195 -- use previous subprogram type as the designated type, and then
1196 -- remove scope added above.
1199 and then Present
(Scope
(Defining_Identifier
(F
)))
1201 Set_Etype
(T_Name
, T_Name
);
1202 Init_Size_Align
(T_Name
);
1203 Set_Directly_Designated_Type
(T_Name
,
1204 Scope
(Defining_Identifier
(F
)));
1209 while Present
(F
) loop
1210 if No
(Parent
(Defining_Identifier
(F
))) then
1211 Set_Parent
(Defining_Identifier
(F
), F
);
1218 Process_Formals
(Formals
, Parent
(T_Def
));
1220 -- Kludge 2) End_Scope requires that the parent pointer be set to
1221 -- something reasonable, but Itypes don't have parent pointers. So
1222 -- we set it and then unset it ???
1224 Set_Parent
(Desig_Type
, T_Name
);
1226 Set_Parent
(Desig_Type
, Empty
);
1229 -- Check for premature usage of the type being defined
1231 Check_For_Premature_Usage
(T_Def
);
1233 -- The return type and/or any parameter type may be incomplete. Mark the
1234 -- subprogram_type as depending on the incomplete type, so that it can
1235 -- be updated when the full type declaration is seen. This only applies
1236 -- to incomplete types declared in some enclosing scope, not to limited
1237 -- views from other packages.
1239 if Present
(Formals
) then
1240 Formal
:= First_Formal
(Desig_Type
);
1241 while Present
(Formal
) loop
1242 if Ekind
(Formal
) /= E_In_Parameter
1243 and then Nkind
(T_Def
) = N_Access_Function_Definition
1245 Error_Msg_N
("functions can only have IN parameters", Formal
);
1248 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1249 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1251 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1252 Set_Has_Delayed_Freeze
(Desig_Type
);
1255 Next_Formal
(Formal
);
1259 -- If the return type is incomplete, this is legal as long as the type
1260 -- is declared in the current scope and will be completed in it (rather
1261 -- than being part of limited view).
1263 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1264 and then not Has_Delayed_Freeze
(Desig_Type
)
1265 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1267 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1268 Set_Has_Delayed_Freeze
(Desig_Type
);
1271 Check_Delayed_Subprogram
(Desig_Type
);
1273 if Protected_Present
(T_Def
) then
1274 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1275 Set_Convention
(Desig_Type
, Convention_Protected
);
1277 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1280 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1282 Set_Etype
(T_Name
, T_Name
);
1283 Init_Size_Align
(T_Name
);
1284 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1286 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1288 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1290 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1291 end Access_Subprogram_Declaration
;
1293 ----------------------------
1294 -- Access_Type_Declaration --
1295 ----------------------------
1297 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1298 P
: constant Node_Id
:= Parent
(Def
);
1299 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1301 Full_Desig
: Entity_Id
;
1304 Check_SPARK_Restriction
("access type is not allowed", Def
);
1306 -- Check for permissible use of incomplete type
1308 if Nkind
(S
) /= N_Subtype_Indication
then
1311 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1312 Set_Directly_Designated_Type
(T
, Entity
(S
));
1314 Set_Directly_Designated_Type
(T
,
1315 Process_Subtype
(S
, P
, T
, 'P'));
1319 Set_Directly_Designated_Type
(T
,
1320 Process_Subtype
(S
, P
, T
, 'P'));
1323 if All_Present
(Def
) or Constant_Present
(Def
) then
1324 Set_Ekind
(T
, E_General_Access_Type
);
1326 Set_Ekind
(T
, E_Access_Type
);
1329 Full_Desig
:= Designated_Type
(T
);
1331 if Base_Type
(Full_Desig
) = T
then
1332 Error_Msg_N
("access type cannot designate itself", S
);
1334 -- In Ada 2005, the type may have a limited view through some unit in
1335 -- its own context, allowing the following circularity that cannot be
1338 elsif Is_Class_Wide_Type
(Full_Desig
)
1339 and then Etype
(Full_Desig
) = T
1342 ("access type cannot designate its own classwide type", S
);
1344 -- Clean up indication of tagged status to prevent cascaded errors
1346 Set_Is_Tagged_Type
(T
, False);
1351 -- If the type has appeared already in a with_type clause, it is frozen
1352 -- and the pointer size is already set. Else, initialize.
1354 if not From_With_Type
(T
) then
1355 Init_Size_Align
(T
);
1358 -- Note that Has_Task is always false, since the access type itself
1359 -- is not a task type. See Einfo for more description on this point.
1360 -- Exactly the same consideration applies to Has_Controlled_Component.
1362 Set_Has_Task
(T
, False);
1363 Set_Has_Controlled_Component
(T
, False);
1365 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1366 -- problems where an incomplete view of this entity has been previously
1367 -- established by a limited with and an overlaid version of this field
1368 -- (Stored_Constraint) was initialized for the incomplete view.
1370 -- This reset is performed in most cases except where the access type
1371 -- has been created for the purposes of allocating or deallocating a
1372 -- build-in-place object. Such access types have explicitly set pools
1373 -- and finalization masters.
1375 if No
(Associated_Storage_Pool
(T
)) then
1376 Set_Finalization_Master
(T
, Empty
);
1379 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1382 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1383 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1384 end Access_Type_Declaration
;
1386 ----------------------------------
1387 -- Add_Interface_Tag_Components --
1388 ----------------------------------
1390 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1391 Loc
: constant Source_Ptr
:= Sloc
(N
);
1395 procedure Add_Tag
(Iface
: Entity_Id
);
1396 -- Add tag for one of the progenitor interfaces
1402 procedure Add_Tag
(Iface
: Entity_Id
) is
1409 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1411 -- This is a reasonable place to propagate predicates
1413 if Has_Predicates
(Iface
) then
1414 Set_Has_Predicates
(Typ
);
1418 Make_Component_Definition
(Loc
,
1419 Aliased_Present
=> True,
1420 Subtype_Indication
=>
1421 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1423 Tag
:= Make_Temporary
(Loc
, 'V');
1426 Make_Component_Declaration
(Loc
,
1427 Defining_Identifier
=> Tag
,
1428 Component_Definition
=> Def
);
1430 Analyze_Component_Declaration
(Decl
);
1432 Set_Analyzed
(Decl
);
1433 Set_Ekind
(Tag
, E_Component
);
1435 Set_Is_Aliased
(Tag
);
1436 Set_Related_Type
(Tag
, Iface
);
1437 Init_Component_Location
(Tag
);
1439 pragma Assert
(Is_Frozen
(Iface
));
1441 Set_DT_Entry_Count
(Tag
,
1442 DT_Entry_Count
(First_Entity
(Iface
)));
1444 if No
(Last_Tag
) then
1447 Insert_After
(Last_Tag
, Decl
);
1452 -- If the ancestor has discriminants we need to give special support
1453 -- to store the offset_to_top value of the secondary dispatch tables.
1454 -- For this purpose we add a supplementary component just after the
1455 -- field that contains the tag associated with each secondary DT.
1457 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1459 Make_Component_Definition
(Loc
,
1460 Subtype_Indication
=>
1461 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1463 Offset
:= Make_Temporary
(Loc
, 'V');
1466 Make_Component_Declaration
(Loc
,
1467 Defining_Identifier
=> Offset
,
1468 Component_Definition
=> Def
);
1470 Analyze_Component_Declaration
(Decl
);
1472 Set_Analyzed
(Decl
);
1473 Set_Ekind
(Offset
, E_Component
);
1474 Set_Is_Aliased
(Offset
);
1475 Set_Related_Type
(Offset
, Iface
);
1476 Init_Component_Location
(Offset
);
1477 Insert_After
(Last_Tag
, Decl
);
1488 -- Start of processing for Add_Interface_Tag_Components
1491 if not RTE_Available
(RE_Interface_Tag
) then
1493 ("(Ada 2005) interface types not supported by this run-time!",
1498 if Ekind
(Typ
) /= E_Record_Type
1499 or else (Is_Concurrent_Record_Type
(Typ
)
1500 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1501 or else (not Is_Concurrent_Record_Type
(Typ
)
1502 and then No
(Interfaces
(Typ
))
1503 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1508 -- Find the current last tag
1510 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1511 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1513 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1514 Ext
:= Type_Definition
(N
);
1519 if not (Present
(Component_List
(Ext
))) then
1520 Set_Null_Present
(Ext
, False);
1522 Set_Component_List
(Ext
,
1523 Make_Component_List
(Loc
,
1524 Component_Items
=> L
,
1525 Null_Present
=> False));
1527 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1528 L
:= Component_Items
1530 (Record_Extension_Part
1531 (Type_Definition
(N
))));
1533 L
:= Component_Items
1535 (Type_Definition
(N
)));
1538 -- Find the last tag component
1541 while Present
(Comp
) loop
1542 if Nkind
(Comp
) = N_Component_Declaration
1543 and then Is_Tag
(Defining_Identifier
(Comp
))
1552 -- At this point L references the list of components and Last_Tag
1553 -- references the current last tag (if any). Now we add the tag
1554 -- corresponding with all the interfaces that are not implemented
1557 if Present
(Interfaces
(Typ
)) then
1558 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1559 while Present
(Elmt
) loop
1560 Add_Tag
(Node
(Elmt
));
1564 end Add_Interface_Tag_Components
;
1566 -------------------------------------
1567 -- Add_Internal_Interface_Entities --
1568 -------------------------------------
1570 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1573 Iface_Elmt
: Elmt_Id
;
1574 Iface_Prim
: Entity_Id
;
1575 Ifaces_List
: Elist_Id
;
1576 New_Subp
: Entity_Id
:= Empty
;
1578 Restore_Scope
: Boolean := False;
1581 pragma Assert
(Ada_Version
>= Ada_2005
1582 and then Is_Record_Type
(Tagged_Type
)
1583 and then Is_Tagged_Type
(Tagged_Type
)
1584 and then Has_Interfaces
(Tagged_Type
)
1585 and then not Is_Interface
(Tagged_Type
));
1587 -- Ensure that the internal entities are added to the scope of the type
1589 if Scope
(Tagged_Type
) /= Current_Scope
then
1590 Push_Scope
(Scope
(Tagged_Type
));
1591 Restore_Scope
:= True;
1594 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1596 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1597 while Present
(Iface_Elmt
) loop
1598 Iface
:= Node
(Iface_Elmt
);
1600 -- Originally we excluded here from this processing interfaces that
1601 -- are parents of Tagged_Type because their primitives are located
1602 -- in the primary dispatch table (and hence no auxiliary internal
1603 -- entities are required to handle secondary dispatch tables in such
1604 -- case). However, these auxiliary entities are also required to
1605 -- handle derivations of interfaces in formals of generics (see
1606 -- Derive_Subprograms).
1608 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1609 while Present
(Elmt
) loop
1610 Iface_Prim
:= Node
(Elmt
);
1612 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1614 Find_Primitive_Covering_Interface
1615 (Tagged_Type
=> Tagged_Type
,
1616 Iface_Prim
=> Iface_Prim
);
1618 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1622 pragma Assert
(Present
(Prim
));
1624 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1625 -- differs from the name of the interface primitive then it is
1626 -- a private primitive inherited from a parent type. In such
1627 -- case, given that Tagged_Type covers the interface, the
1628 -- inherited private primitive becomes visible. For such
1629 -- purpose we add a new entity that renames the inherited
1630 -- private primitive.
1632 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1633 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1635 (New_Subp
=> New_Subp
,
1636 Parent_Subp
=> Iface_Prim
,
1637 Derived_Type
=> Tagged_Type
,
1638 Parent_Type
=> Iface
);
1639 Set_Alias
(New_Subp
, Prim
);
1640 Set_Is_Abstract_Subprogram
1641 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1645 (New_Subp
=> New_Subp
,
1646 Parent_Subp
=> Iface_Prim
,
1647 Derived_Type
=> Tagged_Type
,
1648 Parent_Type
=> Iface
);
1650 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1651 -- associated with interface types. These entities are
1652 -- only registered in the list of primitives of its
1653 -- corresponding tagged type because they are only used
1654 -- to fill the contents of the secondary dispatch tables.
1655 -- Therefore they are removed from the homonym chains.
1657 Set_Is_Hidden
(New_Subp
);
1658 Set_Is_Internal
(New_Subp
);
1659 Set_Alias
(New_Subp
, Prim
);
1660 Set_Is_Abstract_Subprogram
1661 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1662 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1664 -- If the returned type is an interface then propagate it to
1665 -- the returned type. Needed by the thunk to generate the code
1666 -- which displaces "this" to reference the corresponding
1667 -- secondary dispatch table in the returned object.
1669 if Is_Interface
(Etype
(Iface_Prim
)) then
1670 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1673 -- Internal entities associated with interface types are
1674 -- only registered in the list of primitives of the tagged
1675 -- type. They are only used to fill the contents of the
1676 -- secondary dispatch tables. Therefore they are not needed
1677 -- in the homonym chains.
1679 Remove_Homonym
(New_Subp
);
1681 -- Hidden entities associated with interfaces must have set
1682 -- the Has_Delay_Freeze attribute to ensure that, in case of
1683 -- locally defined tagged types (or compiling with static
1684 -- dispatch tables generation disabled) the corresponding
1685 -- entry of the secondary dispatch table is filled when
1686 -- such an entity is frozen.
1688 Set_Has_Delayed_Freeze
(New_Subp
);
1695 Next_Elmt
(Iface_Elmt
);
1698 if Restore_Scope
then
1701 end Add_Internal_Interface_Entities
;
1703 -----------------------------------
1704 -- Analyze_Component_Declaration --
1705 -----------------------------------
1707 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1708 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1709 E
: constant Node_Id
:= Expression
(N
);
1710 Typ
: constant Node_Id
:=
1711 Subtype_Indication
(Component_Definition
(N
));
1715 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1716 -- Determines whether a constraint uses the discriminant of a record
1717 -- type thus becoming a per-object constraint (POC).
1719 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1720 -- Typ is the type of the current component, check whether this type is
1721 -- a limited type. Used to validate declaration against that of
1722 -- enclosing record.
1728 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1730 -- Prevent cascaded errors
1732 if Error_Posted
(Constr
) then
1736 case Nkind
(Constr
) is
1737 when N_Attribute_Reference
=>
1739 Attribute_Name
(Constr
) = Name_Access
1740 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1742 when N_Discriminant_Association
=>
1743 return Denotes_Discriminant
(Expression
(Constr
));
1745 when N_Identifier
=>
1746 return Denotes_Discriminant
(Constr
);
1748 when N_Index_Or_Discriminant_Constraint
=>
1753 IDC
:= First
(Constraints
(Constr
));
1754 while Present
(IDC
) loop
1756 -- One per-object constraint is sufficient
1758 if Contains_POC
(IDC
) then
1769 return Denotes_Discriminant
(Low_Bound
(Constr
))
1771 Denotes_Discriminant
(High_Bound
(Constr
));
1773 when N_Range_Constraint
=>
1774 return Denotes_Discriminant
(Range_Expression
(Constr
));
1782 ----------------------
1783 -- Is_Known_Limited --
1784 ----------------------
1786 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1787 P
: constant Entity_Id
:= Etype
(Typ
);
1788 R
: constant Entity_Id
:= Root_Type
(Typ
);
1791 if Is_Limited_Record
(Typ
) then
1794 -- If the root type is limited (and not a limited interface)
1795 -- so is the current type
1797 elsif Is_Limited_Record
(R
)
1798 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1802 -- Else the type may have a limited interface progenitor, but a
1803 -- limited record parent.
1805 elsif R
/= P
and then Is_Limited_Record
(P
) then
1811 end Is_Known_Limited
;
1813 -- Start of processing for Analyze_Component_Declaration
1816 Generate_Definition
(Id
);
1819 if Present
(Typ
) then
1820 T
:= Find_Type_Of_Object
1821 (Subtype_Indication
(Component_Definition
(N
)), N
);
1823 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1824 Check_SPARK_Restriction
("subtype mark required", Typ
);
1827 -- Ada 2005 (AI-230): Access Definition case
1830 pragma Assert
(Present
1831 (Access_Definition
(Component_Definition
(N
))));
1833 T
:= Access_Definition
1835 N
=> Access_Definition
(Component_Definition
(N
)));
1836 Set_Is_Local_Anonymous_Access
(T
);
1838 -- Ada 2005 (AI-254)
1840 if Present
(Access_To_Subprogram_Definition
1841 (Access_Definition
(Component_Definition
(N
))))
1842 and then Protected_Present
(Access_To_Subprogram_Definition
1844 (Component_Definition
(N
))))
1846 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1850 -- If the subtype is a constrained subtype of the enclosing record,
1851 -- (which must have a partial view) the back-end does not properly
1852 -- handle the recursion. Rewrite the component declaration with an
1853 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1854 -- the tree directly because side effects have already been removed from
1855 -- discriminant constraints.
1857 if Ekind
(T
) = E_Access_Subtype
1858 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1859 and then Comes_From_Source
(T
)
1860 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1861 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1864 (Subtype_Indication
(Component_Definition
(N
)),
1865 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1866 T
:= Find_Type_Of_Object
1867 (Subtype_Indication
(Component_Definition
(N
)), N
);
1870 -- If the component declaration includes a default expression, then we
1871 -- check that the component is not of a limited type (RM 3.7(5)),
1872 -- and do the special preanalysis of the expression (see section on
1873 -- "Handling of Default and Per-Object Expressions" in the spec of
1877 Check_SPARK_Restriction
("default expression is not allowed", E
);
1878 Preanalyze_Spec_Expression
(E
, T
);
1879 Check_Initialization
(T
, E
);
1881 if Ada_Version
>= Ada_2005
1882 and then Ekind
(T
) = E_Anonymous_Access_Type
1883 and then Etype
(E
) /= Any_Type
1885 -- Check RM 3.9.2(9): "if the expected type for an expression is
1886 -- an anonymous access-to-specific tagged type, then the object
1887 -- designated by the expression shall not be dynamically tagged
1888 -- unless it is a controlling operand in a call on a dispatching
1891 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1893 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1895 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1899 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1902 -- (Ada 2005: AI-230): Accessibility check for anonymous
1905 if Type_Access_Level
(Etype
(E
)) >
1906 Deepest_Type_Access_Level
(T
)
1909 ("expression has deeper access level than component " &
1910 "(RM 3.10.2 (12.2))", E
);
1913 -- The initialization expression is a reference to an access
1914 -- discriminant. The type of the discriminant is always deeper
1915 -- than any access type.
1917 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1918 and then Is_Entity_Name
(E
)
1919 and then Ekind
(Entity
(E
)) = E_In_Parameter
1920 and then Present
(Discriminal_Link
(Entity
(E
)))
1923 ("discriminant has deeper accessibility level than target",
1929 -- The parent type may be a private view with unknown discriminants,
1930 -- and thus unconstrained. Regular components must be constrained.
1932 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1933 if Is_Class_Wide_Type
(T
) then
1935 ("class-wide subtype with unknown discriminants" &
1936 " in component declaration",
1937 Subtype_Indication
(Component_Definition
(N
)));
1940 ("unconstrained subtype in component declaration",
1941 Subtype_Indication
(Component_Definition
(N
)));
1944 -- Components cannot be abstract, except for the special case of
1945 -- the _Parent field (case of extending an abstract tagged type)
1947 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
1948 Error_Msg_N
("type of a component cannot be abstract", N
);
1952 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1954 -- The component declaration may have a per-object constraint, set
1955 -- the appropriate flag in the defining identifier of the subtype.
1957 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1959 Sindic
: constant Node_Id
:=
1960 Subtype_Indication
(Component_Definition
(N
));
1962 if Nkind
(Sindic
) = N_Subtype_Indication
1963 and then Present
(Constraint
(Sindic
))
1964 and then Contains_POC
(Constraint
(Sindic
))
1966 Set_Has_Per_Object_Constraint
(Id
);
1971 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1972 -- out some static checks.
1974 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
1975 Null_Exclusion_Static_Checks
(N
);
1978 -- If this component is private (or depends on a private type), flag the
1979 -- record type to indicate that some operations are not available.
1981 P
:= Private_Component
(T
);
1985 -- Check for circular definitions
1987 if P
= Any_Type
then
1988 Set_Etype
(Id
, Any_Type
);
1990 -- There is a gap in the visibility of operations only if the
1991 -- component type is not defined in the scope of the record type.
1993 elsif Scope
(P
) = Scope
(Current_Scope
) then
1996 elsif Is_Limited_Type
(P
) then
1997 Set_Is_Limited_Composite
(Current_Scope
);
2000 Set_Is_Private_Composite
(Current_Scope
);
2005 and then Is_Limited_Type
(T
)
2006 and then Chars
(Id
) /= Name_uParent
2007 and then Is_Tagged_Type
(Current_Scope
)
2009 if Is_Derived_Type
(Current_Scope
)
2010 and then not Is_Known_Limited
(Current_Scope
)
2013 ("extension of nonlimited type cannot have limited components",
2016 if Is_Interface
(Root_Type
(Current_Scope
)) then
2018 ("\limitedness is not inherited from limited interface", N
);
2019 Error_Msg_N
("\add LIMITED to type indication", N
);
2022 Explain_Limited_Type
(T
, N
);
2023 Set_Etype
(Id
, Any_Type
);
2024 Set_Is_Limited_Composite
(Current_Scope
, False);
2026 elsif not Is_Derived_Type
(Current_Scope
)
2027 and then not Is_Limited_Record
(Current_Scope
)
2028 and then not Is_Concurrent_Type
(Current_Scope
)
2031 ("nonlimited tagged type cannot have limited components", N
);
2032 Explain_Limited_Type
(T
, N
);
2033 Set_Etype
(Id
, Any_Type
);
2034 Set_Is_Limited_Composite
(Current_Scope
, False);
2038 Set_Original_Record_Component
(Id
, Id
);
2040 if Has_Aspects
(N
) then
2041 Analyze_Aspect_Specifications
(N
, Id
);
2044 Analyze_Dimension
(N
);
2045 end Analyze_Component_Declaration
;
2047 --------------------------
2048 -- Analyze_Declarations --
2049 --------------------------
2051 procedure Analyze_Declarations
(L
: List_Id
) is
2053 Freeze_From
: Entity_Id
:= Empty
;
2054 Next_Node
: Node_Id
;
2057 -- Adjust D not to include implicit label declarations, since these
2058 -- have strange Sloc values that result in elaboration check problems.
2059 -- (They have the sloc of the label as found in the source, and that
2060 -- is ahead of the current declarative part).
2066 procedure Adjust_D
is
2068 while Present
(Prev
(D
))
2069 and then Nkind
(D
) = N_Implicit_Label_Declaration
2075 -- Start of processing for Analyze_Declarations
2078 if Restriction_Check_Required
(SPARK
) then
2079 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2083 while Present
(D
) loop
2085 -- Package spec cannot contain a package declaration in SPARK
2087 if Nkind
(D
) = N_Package_Declaration
2088 and then Nkind
(Parent
(L
)) = N_Package_Specification
2090 Check_SPARK_Restriction
2091 ("package specification cannot contain a package declaration",
2095 -- Complete analysis of declaration
2098 Next_Node
:= Next
(D
);
2100 if No
(Freeze_From
) then
2101 Freeze_From
:= First_Entity
(Current_Scope
);
2104 -- At the end of a declarative part, freeze remaining entities
2105 -- declared in it. The end of the visible declarations of package
2106 -- specification is not the end of a declarative part if private
2107 -- declarations are present. The end of a package declaration is a
2108 -- freezing point only if it a library package. A task definition or
2109 -- protected type definition is not a freeze point either. Finally,
2110 -- we do not freeze entities in generic scopes, because there is no
2111 -- code generated for them and freeze nodes will be generated for
2114 -- The end of a package instantiation is not a freeze point, but
2115 -- for now we make it one, because the generic body is inserted
2116 -- (currently) immediately after. Generic instantiations will not
2117 -- be a freeze point once delayed freezing of bodies is implemented.
2118 -- (This is needed in any case for early instantiations ???).
2120 if No
(Next_Node
) then
2121 if Nkind_In
(Parent
(L
), N_Component_List
,
2123 N_Protected_Definition
)
2127 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2128 if Nkind
(Parent
(L
)) = N_Package_Body
then
2129 Freeze_From
:= First_Entity
(Current_Scope
);
2133 Freeze_All
(Freeze_From
, D
);
2134 Freeze_From
:= Last_Entity
(Current_Scope
);
2136 elsif Scope
(Current_Scope
) /= Standard_Standard
2137 and then not Is_Child_Unit
(Current_Scope
)
2138 and then No
(Generic_Parent
(Parent
(L
)))
2142 elsif L
/= Visible_Declarations
(Parent
(L
))
2143 or else No
(Private_Declarations
(Parent
(L
)))
2144 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2147 Freeze_All
(Freeze_From
, D
);
2148 Freeze_From
:= Last_Entity
(Current_Scope
);
2151 -- If next node is a body then freeze all types before the body.
2152 -- An exception occurs for some expander-generated bodies. If these
2153 -- are generated at places where in general language rules would not
2154 -- allow a freeze point, then we assume that the expander has
2155 -- explicitly checked that all required types are properly frozen,
2156 -- and we do not cause general freezing here. This special circuit
2157 -- is used when the encountered body is marked as having already
2160 -- In all other cases (bodies that come from source, and expander
2161 -- generated bodies that have not been analyzed yet), freeze all
2162 -- types now. Note that in the latter case, the expander must take
2163 -- care to attach the bodies at a proper place in the tree so as to
2164 -- not cause unwanted freezing at that point.
2166 elsif not Analyzed
(Next_Node
)
2167 and then (Nkind_In
(Next_Node
, N_Subprogram_Body
,
2173 Nkind
(Next_Node
) in N_Body_Stub
)
2176 Freeze_All
(Freeze_From
, D
);
2177 Freeze_From
:= Last_Entity
(Current_Scope
);
2183 -- One more thing to do, we need to scan the declarations to check for
2184 -- any precondition/postcondition pragmas (Pre/Post aspects have by this
2185 -- stage been converted into corresponding pragmas). It is at this point
2186 -- that we analyze the expressions in such pragmas, to implement the
2187 -- delayed visibility requirement.
2191 Subp_Id
: Entity_Id
;
2195 while Present
(Decl
) loop
2196 if Nkind
(Decl
) = N_Subprogram_Declaration
then
2197 Subp_Id
:= Defining_Unit_Name
(Specification
(Decl
));
2198 Analyze_Subprogram_Contract
(Subp_Id
);
2204 end Analyze_Declarations
;
2206 -----------------------------------
2207 -- Analyze_Full_Type_Declaration --
2208 -----------------------------------
2210 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2211 Def
: constant Node_Id
:= Type_Definition
(N
);
2212 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2216 Is_Remote
: constant Boolean :=
2217 (Is_Remote_Types
(Current_Scope
)
2218 or else Is_Remote_Call_Interface
(Current_Scope
))
2219 and then not (In_Private_Part
(Current_Scope
)
2220 or else In_Package_Body
(Current_Scope
));
2222 procedure Check_Ops_From_Incomplete_Type
;
2223 -- If there is a tagged incomplete partial view of the type, traverse
2224 -- the primitives of the incomplete view and change the type of any
2225 -- controlling formals and result to indicate the full view. The
2226 -- primitives will be added to the full type's primitive operations
2227 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2228 -- is called from Process_Incomplete_Dependents).
2230 ------------------------------------
2231 -- Check_Ops_From_Incomplete_Type --
2232 ------------------------------------
2234 procedure Check_Ops_From_Incomplete_Type
is
2241 and then Ekind
(Prev
) = E_Incomplete_Type
2242 and then Is_Tagged_Type
(Prev
)
2243 and then Is_Tagged_Type
(T
)
2245 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2246 while Present
(Elmt
) loop
2249 Formal
:= First_Formal
(Op
);
2250 while Present
(Formal
) loop
2251 if Etype
(Formal
) = Prev
then
2252 Set_Etype
(Formal
, T
);
2255 Next_Formal
(Formal
);
2258 if Etype
(Op
) = Prev
then
2265 end Check_Ops_From_Incomplete_Type
;
2267 -- Start of processing for Analyze_Full_Type_Declaration
2270 Prev
:= Find_Type_Name
(N
);
2272 -- The full view, if present, now points to the current type
2274 -- Ada 2005 (AI-50217): If the type was previously decorated when
2275 -- imported through a LIMITED WITH clause, it appears as incomplete
2276 -- but has no full view.
2278 if Ekind
(Prev
) = E_Incomplete_Type
2279 and then Present
(Full_View
(Prev
))
2281 T
:= Full_View
(Prev
);
2286 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2288 -- We set the flag Is_First_Subtype here. It is needed to set the
2289 -- corresponding flag for the Implicit class-wide-type created
2290 -- during tagged types processing.
2292 Set_Is_First_Subtype
(T
, True);
2294 -- Only composite types other than array types are allowed to have
2299 -- For derived types, the rule will be checked once we've figured
2300 -- out the parent type.
2302 when N_Derived_Type_Definition
=>
2305 -- For record types, discriminants are allowed, unless we are in
2308 when N_Record_Definition
=>
2309 if Present
(Discriminant_Specifications
(N
)) then
2310 Check_SPARK_Restriction
2311 ("discriminant type is not allowed",
2313 (First
(Discriminant_Specifications
(N
))));
2317 if Present
(Discriminant_Specifications
(N
)) then
2319 ("elementary or array type cannot have discriminants",
2321 (First
(Discriminant_Specifications
(N
))));
2325 -- Elaborate the type definition according to kind, and generate
2326 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2327 -- already done (this happens during the reanalysis that follows a call
2328 -- to the high level optimizer).
2330 if not Analyzed
(T
) then
2335 when N_Access_To_Subprogram_Definition
=>
2336 Access_Subprogram_Declaration
(T
, Def
);
2338 -- If this is a remote access to subprogram, we must create the
2339 -- equivalent fat pointer type, and related subprograms.
2342 Process_Remote_AST_Declaration
(N
);
2345 -- Validate categorization rule against access type declaration
2346 -- usually a violation in Pure unit, Shared_Passive unit.
2348 Validate_Access_Type_Declaration
(T
, N
);
2350 when N_Access_To_Object_Definition
=>
2351 Access_Type_Declaration
(T
, Def
);
2353 -- Validate categorization rule against access type declaration
2354 -- usually a violation in Pure unit, Shared_Passive unit.
2356 Validate_Access_Type_Declaration
(T
, N
);
2358 -- If we are in a Remote_Call_Interface package and define a
2359 -- RACW, then calling stubs and specific stream attributes
2363 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2365 Add_RACW_Features
(Def_Id
);
2368 -- Set no strict aliasing flag if config pragma seen
2370 if Opt
.No_Strict_Aliasing
then
2371 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2374 when N_Array_Type_Definition
=>
2375 Array_Type_Declaration
(T
, Def
);
2377 when N_Derived_Type_Definition
=>
2378 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2380 when N_Enumeration_Type_Definition
=>
2381 Enumeration_Type_Declaration
(T
, Def
);
2383 when N_Floating_Point_Definition
=>
2384 Floating_Point_Type_Declaration
(T
, Def
);
2386 when N_Decimal_Fixed_Point_Definition
=>
2387 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2389 when N_Ordinary_Fixed_Point_Definition
=>
2390 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2392 when N_Signed_Integer_Type_Definition
=>
2393 Signed_Integer_Type_Declaration
(T
, Def
);
2395 when N_Modular_Type_Definition
=>
2396 Modular_Type_Declaration
(T
, Def
);
2398 when N_Record_Definition
=>
2399 Record_Type_Declaration
(T
, N
, Prev
);
2401 -- If declaration has a parse error, nothing to elaborate.
2407 raise Program_Error
;
2412 if Etype
(T
) = Any_Type
then
2416 -- Controlled type is not allowed in SPARK
2418 if Is_Visibly_Controlled
(T
) then
2419 Check_SPARK_Restriction
("controlled type is not allowed", N
);
2422 -- Some common processing for all types
2424 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2425 Check_Ops_From_Incomplete_Type
;
2427 -- Both the declared entity, and its anonymous base type if one
2428 -- was created, need freeze nodes allocated.
2431 B
: constant Entity_Id
:= Base_Type
(T
);
2434 -- In the case where the base type differs from the first subtype, we
2435 -- pre-allocate a freeze node, and set the proper link to the first
2436 -- subtype. Freeze_Entity will use this preallocated freeze node when
2437 -- it freezes the entity.
2439 -- This does not apply if the base type is a generic type, whose
2440 -- declaration is independent of the current derived definition.
2442 if B
/= T
and then not Is_Generic_Type
(B
) then
2443 Ensure_Freeze_Node
(B
);
2444 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2447 -- A type that is imported through a limited_with clause cannot
2448 -- generate any code, and thus need not be frozen. However, an access
2449 -- type with an imported designated type needs a finalization list,
2450 -- which may be referenced in some other package that has non-limited
2451 -- visibility on the designated type. Thus we must create the
2452 -- finalization list at the point the access type is frozen, to
2453 -- prevent unsatisfied references at link time.
2455 if not From_With_Type
(T
) or else Is_Access_Type
(T
) then
2456 Set_Has_Delayed_Freeze
(T
);
2460 -- Case where T is the full declaration of some private type which has
2461 -- been swapped in Defining_Identifier (N).
2463 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2464 Process_Full_View
(N
, T
, Def_Id
);
2466 -- Record the reference. The form of this is a little strange, since
2467 -- the full declaration has been swapped in. So the first parameter
2468 -- here represents the entity to which a reference is made which is
2469 -- the "real" entity, i.e. the one swapped in, and the second
2470 -- parameter provides the reference location.
2472 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2473 -- since we don't want a complaint about the full type being an
2474 -- unwanted reference to the private type
2477 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2479 Set_Has_Pragma_Unreferenced
(T
, False);
2480 Generate_Reference
(T
, T
, 'c');
2481 Set_Has_Pragma_Unreferenced
(T
, B
);
2484 Set_Completion_Referenced
(Def_Id
);
2486 -- For completion of incomplete type, process incomplete dependents
2487 -- and always mark the full type as referenced (it is the incomplete
2488 -- type that we get for any real reference).
2490 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2491 Process_Incomplete_Dependents
(N
, T
, Prev
);
2492 Generate_Reference
(Prev
, Def_Id
, 'c');
2493 Set_Completion_Referenced
(Def_Id
);
2495 -- If not private type or incomplete type completion, this is a real
2496 -- definition of a new entity, so record it.
2499 Generate_Definition
(Def_Id
);
2502 if Chars
(Scope
(Def_Id
)) = Name_System
2503 and then Chars
(Def_Id
) = Name_Address
2504 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2506 Set_Is_Descendent_Of_Address
(Def_Id
);
2507 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
2508 Set_Is_Descendent_Of_Address
(Prev
);
2511 Set_Optimize_Alignment_Flags
(Def_Id
);
2512 Check_Eliminated
(Def_Id
);
2514 -- If the declaration is a completion and aspects are present, apply
2515 -- them to the entity for the type which is currently the partial
2516 -- view, but which is the one that will be frozen.
2518 if Has_Aspects
(N
) then
2519 if Prev
/= Def_Id
then
2520 Analyze_Aspect_Specifications
(N
, Prev
);
2522 Analyze_Aspect_Specifications
(N
, Def_Id
);
2525 end Analyze_Full_Type_Declaration
;
2527 ----------------------------------
2528 -- Analyze_Incomplete_Type_Decl --
2529 ----------------------------------
2531 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2532 F
: constant Boolean := Is_Pure
(Current_Scope
);
2536 Check_SPARK_Restriction
("incomplete type is not allowed", N
);
2538 Generate_Definition
(Defining_Identifier
(N
));
2540 -- Process an incomplete declaration. The identifier must not have been
2541 -- declared already in the scope. However, an incomplete declaration may
2542 -- appear in the private part of a package, for a private type that has
2543 -- already been declared.
2545 -- In this case, the discriminants (if any) must match
2547 T
:= Find_Type_Name
(N
);
2549 Set_Ekind
(T
, E_Incomplete_Type
);
2550 Init_Size_Align
(T
);
2551 Set_Is_First_Subtype
(T
, True);
2554 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2555 -- incomplete types.
2557 if Tagged_Present
(N
) then
2558 Set_Is_Tagged_Type
(T
);
2559 Make_Class_Wide_Type
(T
);
2560 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2565 Set_Stored_Constraint
(T
, No_Elist
);
2567 if Present
(Discriminant_Specifications
(N
)) then
2568 Process_Discriminants
(N
);
2573 -- If the type has discriminants, non-trivial subtypes may be
2574 -- declared before the full view of the type. The full views of those
2575 -- subtypes will be built after the full view of the type.
2577 Set_Private_Dependents
(T
, New_Elmt_List
);
2579 end Analyze_Incomplete_Type_Decl
;
2581 -----------------------------------
2582 -- Analyze_Interface_Declaration --
2583 -----------------------------------
2585 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2586 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2589 Set_Is_Tagged_Type
(T
);
2591 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2592 or else Task_Present
(Def
)
2593 or else Protected_Present
(Def
)
2594 or else Synchronized_Present
(Def
));
2596 -- Type is abstract if full declaration carries keyword, or if previous
2597 -- partial view did.
2599 Set_Is_Abstract_Type
(T
);
2600 Set_Is_Interface
(T
);
2602 -- Type is a limited interface if it includes the keyword limited, task,
2603 -- protected, or synchronized.
2605 Set_Is_Limited_Interface
2606 (T
, Limited_Present
(Def
)
2607 or else Protected_Present
(Def
)
2608 or else Synchronized_Present
(Def
)
2609 or else Task_Present
(Def
));
2611 Set_Interfaces
(T
, New_Elmt_List
);
2612 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2614 -- Complete the decoration of the class-wide entity if it was already
2615 -- built (i.e. during the creation of the limited view)
2617 if Present
(CW
) then
2618 Set_Is_Interface
(CW
);
2619 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2622 -- Check runtime support for synchronized interfaces
2624 if VM_Target
= No_VM
2625 and then (Is_Task_Interface
(T
)
2626 or else Is_Protected_Interface
(T
)
2627 or else Is_Synchronized_Interface
(T
))
2628 and then not RTE_Available
(RE_Select_Specific_Data
)
2630 Error_Msg_CRT
("synchronized interfaces", T
);
2632 end Analyze_Interface_Declaration
;
2634 -----------------------------
2635 -- Analyze_Itype_Reference --
2636 -----------------------------
2638 -- Nothing to do. This node is placed in the tree only for the benefit of
2639 -- back end processing, and has no effect on the semantic processing.
2641 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2643 pragma Assert
(Is_Itype
(Itype
(N
)));
2645 end Analyze_Itype_Reference
;
2647 --------------------------------
2648 -- Analyze_Number_Declaration --
2649 --------------------------------
2651 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2652 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2653 E
: constant Node_Id
:= Expression
(N
);
2655 Index
: Interp_Index
;
2659 Generate_Definition
(Id
);
2662 -- This is an optimization of a common case of an integer literal
2664 if Nkind
(E
) = N_Integer_Literal
then
2665 Set_Is_Static_Expression
(E
, True);
2666 Set_Etype
(E
, Universal_Integer
);
2668 Set_Etype
(Id
, Universal_Integer
);
2669 Set_Ekind
(Id
, E_Named_Integer
);
2670 Set_Is_Frozen
(Id
, True);
2674 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2676 -- Process expression, replacing error by integer zero, to avoid
2677 -- cascaded errors or aborts further along in the processing
2679 -- Replace Error by integer zero, which seems least likely to cause
2683 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2684 Set_Error_Posted
(E
);
2689 -- Verify that the expression is static and numeric. If
2690 -- the expression is overloaded, we apply the preference
2691 -- rule that favors root numeric types.
2693 if not Is_Overloaded
(E
) then
2699 Get_First_Interp
(E
, Index
, It
);
2700 while Present
(It
.Typ
) loop
2701 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
2702 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
2704 if T
= Any_Type
then
2707 elsif It
.Typ
= Universal_Real
2708 or else It
.Typ
= Universal_Integer
2710 -- Choose universal interpretation over any other
2717 Get_Next_Interp
(Index
, It
);
2721 if Is_Integer_Type
(T
) then
2723 Set_Etype
(Id
, Universal_Integer
);
2724 Set_Ekind
(Id
, E_Named_Integer
);
2726 elsif Is_Real_Type
(T
) then
2728 -- Because the real value is converted to universal_real, this is a
2729 -- legal context for a universal fixed expression.
2731 if T
= Universal_Fixed
then
2733 Loc
: constant Source_Ptr
:= Sloc
(N
);
2734 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
2736 New_Occurrence_Of
(Universal_Real
, Loc
),
2737 Expression
=> Relocate_Node
(E
));
2744 elsif T
= Any_Fixed
then
2745 Error_Msg_N
("illegal context for mixed mode operation", E
);
2747 -- Expression is of the form : universal_fixed * integer. Try to
2748 -- resolve as universal_real.
2750 T
:= Universal_Real
;
2755 Set_Etype
(Id
, Universal_Real
);
2756 Set_Ekind
(Id
, E_Named_Real
);
2759 Wrong_Type
(E
, Any_Numeric
);
2763 Set_Ekind
(Id
, E_Constant
);
2764 Set_Never_Set_In_Source
(Id
, True);
2765 Set_Is_True_Constant
(Id
, True);
2769 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
2770 Set_Etype
(E
, Etype
(Id
));
2773 if not Is_OK_Static_Expression
(E
) then
2774 Flag_Non_Static_Expr
2775 ("non-static expression used in number declaration!", E
);
2776 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
2777 Set_Etype
(E
, Any_Type
);
2779 end Analyze_Number_Declaration
;
2781 --------------------------------
2782 -- Analyze_Object_Declaration --
2783 --------------------------------
2785 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
2786 Loc
: constant Source_Ptr
:= Sloc
(N
);
2787 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2791 E
: Node_Id
:= Expression
(N
);
2792 -- E is set to Expression (N) throughout this routine. When
2793 -- Expression (N) is modified, E is changed accordingly.
2795 Prev_Entity
: Entity_Id
:= Empty
;
2797 function Count_Tasks
(T
: Entity_Id
) return Uint
;
2798 -- This function is called when a non-generic library level object of a
2799 -- task type is declared. Its function is to count the static number of
2800 -- tasks declared within the type (it is only called if Has_Tasks is set
2801 -- for T). As a side effect, if an array of tasks with non-static bounds
2802 -- or a variant record type is encountered, Check_Restrictions is called
2803 -- indicating the count is unknown.
2809 function Count_Tasks
(T
: Entity_Id
) return Uint
is
2815 if Is_Task_Type
(T
) then
2818 elsif Is_Record_Type
(T
) then
2819 if Has_Discriminants
(T
) then
2820 Check_Restriction
(Max_Tasks
, N
);
2825 C
:= First_Component
(T
);
2826 while Present
(C
) loop
2827 V
:= V
+ Count_Tasks
(Etype
(C
));
2834 elsif Is_Array_Type
(T
) then
2835 X
:= First_Index
(T
);
2836 V
:= Count_Tasks
(Component_Type
(T
));
2837 while Present
(X
) loop
2840 if not Is_Static_Subtype
(C
) then
2841 Check_Restriction
(Max_Tasks
, N
);
2844 V
:= V
* (UI_Max
(Uint_0
,
2845 Expr_Value
(Type_High_Bound
(C
)) -
2846 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
2859 -- Start of processing for Analyze_Object_Declaration
2862 -- There are three kinds of implicit types generated by an
2863 -- object declaration:
2865 -- 1. Those generated by the original Object Definition
2867 -- 2. Those generated by the Expression
2869 -- 3. Those used to constrain the Object Definition with the
2870 -- expression constraints when the definition is unconstrained.
2872 -- They must be generated in this order to avoid order of elaboration
2873 -- issues. Thus the first step (after entering the name) is to analyze
2874 -- the object definition.
2876 if Constant_Present
(N
) then
2877 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
2879 if Present
(Prev_Entity
)
2882 -- If the homograph is an implicit subprogram, it is overridden
2883 -- by the current declaration.
2885 ((Is_Overloadable
(Prev_Entity
)
2886 and then Is_Inherited_Operation
(Prev_Entity
))
2888 -- The current object is a discriminal generated for an entry
2889 -- family index. Even though the index is a constant, in this
2890 -- particular context there is no true constant redeclaration.
2891 -- Enter_Name will handle the visibility.
2894 (Is_Discriminal
(Id
)
2895 and then Ekind
(Discriminal_Link
(Id
)) =
2896 E_Entry_Index_Parameter
)
2898 -- The current object is the renaming for a generic declared
2899 -- within the instance.
2902 (Ekind
(Prev_Entity
) = E_Package
2903 and then Nkind
(Parent
(Prev_Entity
)) =
2904 N_Package_Renaming_Declaration
2905 and then not Comes_From_Source
(Prev_Entity
)
2906 and then Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
2908 Prev_Entity
:= Empty
;
2912 if Present
(Prev_Entity
) then
2913 Constant_Redeclaration
(Id
, N
, T
);
2915 Generate_Reference
(Prev_Entity
, Id
, 'c');
2916 Set_Completion_Referenced
(Id
);
2918 if Error_Posted
(N
) then
2920 -- Type mismatch or illegal redeclaration, Do not analyze
2921 -- expression to avoid cascaded errors.
2923 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2925 Set_Ekind
(Id
, E_Variable
);
2929 -- In the normal case, enter identifier at the start to catch premature
2930 -- usage in the initialization expression.
2933 Generate_Definition
(Id
);
2936 Mark_Coextensions
(N
, Object_Definition
(N
));
2938 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2940 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
2942 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2943 and then Protected_Present
2944 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2946 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
2949 if Error_Posted
(Id
) then
2951 Set_Ekind
(Id
, E_Variable
);
2956 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2957 -- out some static checks
2959 if Ada_Version
>= Ada_2005
2960 and then Can_Never_Be_Null
(T
)
2962 -- In case of aggregates we must also take care of the correct
2963 -- initialization of nested aggregates bug this is done at the
2964 -- point of the analysis of the aggregate (see sem_aggr.adb)
2966 if Present
(Expression
(N
))
2967 and then Nkind
(Expression
(N
)) = N_Aggregate
2973 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
2975 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
2976 Null_Exclusion_Static_Checks
(N
);
2977 Set_Etype
(Id
, Save_Typ
);
2982 -- Object is marked pure if it is in a pure scope
2984 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2986 -- If deferred constant, make sure context is appropriate. We detect
2987 -- a deferred constant as a constant declaration with no expression.
2988 -- A deferred constant can appear in a package body if its completion
2989 -- is by means of an interface pragma.
2991 if Constant_Present
(N
) and then No
(E
) then
2993 -- A deferred constant may appear in the declarative part of the
2994 -- following constructs:
2998 -- extended return statements
3001 -- subprogram bodies
3004 -- When declared inside a package spec, a deferred constant must be
3005 -- completed by a full constant declaration or pragma Import. In all
3006 -- other cases, the only proper completion is pragma Import. Extended
3007 -- return statements are flagged as invalid contexts because they do
3008 -- not have a declarative part and so cannot accommodate the pragma.
3010 if Ekind
(Current_Scope
) = E_Return_Statement
then
3012 ("invalid context for deferred constant declaration (RM 7.4)",
3015 ("\declaration requires an initialization expression",
3017 Set_Constant_Present
(N
, False);
3019 -- In Ada 83, deferred constant must be of private type
3021 elsif not Is_Private_Type
(T
) then
3022 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3024 ("(Ada 83) deferred constant must be private type", N
);
3028 -- If not a deferred constant, then object declaration freezes its type
3031 Check_Fully_Declared
(T
, N
);
3032 Freeze_Before
(N
, T
);
3035 -- If the object was created by a constrained array definition, then
3036 -- set the link in both the anonymous base type and anonymous subtype
3037 -- that are built to represent the array type to point to the object.
3039 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3040 N_Constrained_Array_Definition
3042 Set_Related_Array_Object
(T
, Id
);
3043 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3046 -- Special checks for protected objects not at library level
3048 if Is_Protected_Type
(T
)
3049 and then not Is_Library_Level_Entity
(Id
)
3051 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3053 -- Protected objects with interrupt handlers must be at library level
3055 -- Ada 2005: this test is not needed (and the corresponding clause
3056 -- in the RM is removed) because accessibility checks are sufficient
3057 -- to make handlers not at the library level illegal.
3059 -- AI05-0303: the AI is in fact a binding interpretation, and thus
3060 -- applies to the '95 version of the language as well.
3062 if Has_Interrupt_Handler
(T
) and then Ada_Version
< Ada_95
then
3064 ("interrupt object can only be declared at library level", Id
);
3068 -- The actual subtype of the object is the nominal subtype, unless
3069 -- the nominal one is unconstrained and obtained from the expression.
3073 -- These checks should be performed before the initialization expression
3074 -- is considered, so that the Object_Definition node is still the same
3075 -- as in source code.
3077 -- In SPARK, the nominal subtype shall be given by a subtype mark and
3078 -- shall not be unconstrained. (The only exception to this is the
3079 -- admission of declarations of constants of type String.)
3082 Nkind_In
(Object_Definition
(N
), N_Identifier
, N_Expanded_Name
)
3084 Check_SPARK_Restriction
3085 ("subtype mark required", Object_Definition
(N
));
3087 elsif Is_Array_Type
(T
)
3088 and then not Is_Constrained
(T
)
3089 and then T
/= Standard_String
3091 Check_SPARK_Restriction
3092 ("subtype mark of constrained type expected",
3093 Object_Definition
(N
));
3096 -- There are no aliased objects in SPARK
3098 if Aliased_Present
(N
) then
3099 Check_SPARK_Restriction
("aliased object is not allowed", N
);
3102 -- Process initialization expression if present and not in error
3104 if Present
(E
) and then E
/= Error
then
3106 -- Generate an error in case of CPP class-wide object initialization.
3107 -- Required because otherwise the expansion of the class-wide
3108 -- assignment would try to use 'size to initialize the object
3109 -- (primitive that is not available in CPP tagged types).
3111 if Is_Class_Wide_Type
(Act_T
)
3113 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3115 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3117 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3120 ("predefined assignment not available for 'C'P'P tagged types",
3124 Mark_Coextensions
(N
, E
);
3127 -- In case of errors detected in the analysis of the expression,
3128 -- decorate it with the expected type to avoid cascaded errors
3130 if No
(Etype
(E
)) then
3134 -- If an initialization expression is present, then we set the
3135 -- Is_True_Constant flag. It will be reset if this is a variable
3136 -- and it is indeed modified.
3138 Set_Is_True_Constant
(Id
, True);
3140 -- If we are analyzing a constant declaration, set its completion
3141 -- flag after analyzing and resolving the expression.
3143 if Constant_Present
(N
) then
3144 Set_Has_Completion
(Id
);
3147 -- Set type and resolve (type may be overridden later on). Note:
3148 -- Ekind (Id) must still be E_Void at this point so that incorrect
3149 -- early usage within E is properly diagnosed.
3154 -- No further action needed if E is a call to an inlined function
3155 -- which returns an unconstrained type and it has been expanded into
3156 -- a procedure call. In that case N has been replaced by an object
3157 -- declaration without initializing expression and it has been
3158 -- analyzed (see Expand_Inlined_Call).
3161 and then Expander_Active
3162 and then Nkind
(E
) = N_Function_Call
3163 and then Nkind
(Name
(E
)) in N_Has_Entity
3164 and then Is_Inlined
(Entity
(Name
(E
)))
3165 and then not Is_Constrained
(Etype
(E
))
3166 and then Analyzed
(N
)
3167 and then No
(Expression
(N
))
3172 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3173 -- node (which was marked already-analyzed), we need to set the type
3174 -- to something other than Any_Access in order to keep gigi happy.
3176 if Etype
(E
) = Any_Access
then
3180 -- If the object is an access to variable, the initialization
3181 -- expression cannot be an access to constant.
3183 if Is_Access_Type
(T
)
3184 and then not Is_Access_Constant
(T
)
3185 and then Is_Access_Type
(Etype
(E
))
3186 and then Is_Access_Constant
(Etype
(E
))
3189 ("access to variable cannot be initialized "
3190 & "with an access-to-constant expression", E
);
3193 if not Assignment_OK
(N
) then
3194 Check_Initialization
(T
, E
);
3197 Check_Unset_Reference
(E
);
3199 -- If this is a variable, then set current value. If this is a
3200 -- declared constant of a scalar type with a static expression,
3201 -- indicate that it is always valid.
3203 if not Constant_Present
(N
) then
3204 if Compile_Time_Known_Value
(E
) then
3205 Set_Current_Value
(Id
, E
);
3208 elsif Is_Scalar_Type
(T
)
3209 and then Is_OK_Static_Expression
(E
)
3211 Set_Is_Known_Valid
(Id
);
3214 -- Deal with setting of null flags
3216 if Is_Access_Type
(T
) then
3217 if Known_Non_Null
(E
) then
3218 Set_Is_Known_Non_Null
(Id
, True);
3219 elsif Known_Null
(E
)
3220 and then not Can_Never_Be_Null
(Id
)
3222 Set_Is_Known_Null
(Id
, True);
3226 -- Check incorrect use of dynamically tagged expressions.
3228 if Is_Tagged_Type
(T
) then
3229 Check_Dynamically_Tagged_Expression
3235 Apply_Scalar_Range_Check
(E
, T
);
3236 Apply_Static_Length_Check
(E
, T
);
3238 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3239 and then Comes_From_Source
(Original_Node
(N
))
3241 -- Only call test if needed
3243 and then Restriction_Check_Required
(SPARK
)
3244 and then not Is_SPARK_Initialization_Expr
(E
)
3246 Check_SPARK_Restriction
3247 ("initialization expression is not appropriate", E
);
3251 -- If the No_Streams restriction is set, check that the type of the
3252 -- object is not, and does not contain, any subtype derived from
3253 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3254 -- Has_Stream just for efficiency reasons. There is no point in
3255 -- spending time on a Has_Stream check if the restriction is not set.
3257 if Restriction_Check_Required
(No_Streams
) then
3258 if Has_Stream
(T
) then
3259 Check_Restriction
(No_Streams
, N
);
3263 -- Deal with predicate check before we start to do major rewriting. It
3264 -- is OK to initialize and then check the initialized value, since the
3265 -- object goes out of scope if we get a predicate failure. Note that we
3266 -- do this in the analyzer and not the expander because the analyzer
3267 -- does some substantial rewriting in some cases.
3269 -- We need a predicate check if the type has predicates, and if either
3270 -- there is an initializing expression, or for default initialization
3271 -- when we have at least one case of an explicit default initial value.
3273 if not Suppress_Assignment_Checks
(N
)
3274 and then Present
(Predicate_Function
(T
))
3278 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3280 -- If the type has a static predicate and the expression is known at
3281 -- compile time, see if the expression satisfies the predicate.
3284 Check_Expression_Against_Static_Predicate
(E
, T
);
3288 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3291 -- Case of unconstrained type
3293 if Is_Indefinite_Subtype
(T
) then
3295 -- In SPARK, a declaration of unconstrained type is allowed
3296 -- only for constants of type string.
3298 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3299 Check_SPARK_Restriction
3300 ("declaration of object of unconstrained type not allowed", N
);
3303 -- Nothing to do in deferred constant case
3305 if Constant_Present
(N
) and then No
(E
) then
3308 -- Case of no initialization present
3311 if No_Initialization
(N
) then
3314 elsif Is_Class_Wide_Type
(T
) then
3316 ("initialization required in class-wide declaration ", N
);
3320 ("unconstrained subtype not allowed (need initialization)",
3321 Object_Definition
(N
));
3323 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3325 ("\provide initial value or explicit discriminant values",
3326 Object_Definition
(N
));
3329 ("\or give default discriminant values for type&",
3330 Object_Definition
(N
), T
);
3332 elsif Is_Array_Type
(T
) then
3334 ("\provide initial value or explicit array bounds",
3335 Object_Definition
(N
));
3339 -- Case of initialization present but in error. Set initial
3340 -- expression as absent (but do not make above complaints)
3342 elsif E
= Error
then
3343 Set_Expression
(N
, Empty
);
3346 -- Case of initialization present
3349 -- Check restrictions in Ada 83
3351 if not Constant_Present
(N
) then
3353 -- Unconstrained variables not allowed in Ada 83 mode
3355 if Ada_Version
= Ada_83
3356 and then Comes_From_Source
(Object_Definition
(N
))
3359 ("(Ada 83) unconstrained variable not allowed",
3360 Object_Definition
(N
));
3364 -- Now we constrain the variable from the initializing expression
3366 -- If the expression is an aggregate, it has been expanded into
3367 -- individual assignments. Retrieve the actual type from the
3368 -- expanded construct.
3370 if Is_Array_Type
(T
)
3371 and then No_Initialization
(N
)
3372 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3376 -- In case of class-wide interface object declarations we delay
3377 -- the generation of the equivalent record type declarations until
3378 -- its expansion because there are cases in they are not required.
3380 elsif Is_Interface
(T
) then
3384 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
3385 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3388 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
3390 if Aliased_Present
(N
) then
3391 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3394 Freeze_Before
(N
, Act_T
);
3395 Freeze_Before
(N
, T
);
3398 elsif Is_Array_Type
(T
)
3399 and then No_Initialization
(N
)
3400 and then Nkind
(Original_Node
(E
)) = N_Aggregate
3402 if not Is_Entity_Name
(Object_Definition
(N
)) then
3404 Check_Compile_Time_Size
(Act_T
);
3406 if Aliased_Present
(N
) then
3407 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
3411 -- When the given object definition and the aggregate are specified
3412 -- independently, and their lengths might differ do a length check.
3413 -- This cannot happen if the aggregate is of the form (others =>...)
3415 if not Is_Constrained
(T
) then
3418 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
3420 -- Aggregate is statically illegal. Place back in declaration
3422 Set_Expression
(N
, E
);
3423 Set_No_Initialization
(N
, False);
3425 elsif T
= Etype
(E
) then
3428 elsif Nkind
(E
) = N_Aggregate
3429 and then Present
(Component_Associations
(E
))
3430 and then Present
(Choices
(First
(Component_Associations
(E
))))
3431 and then Nkind
(First
3432 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
3437 Apply_Length_Check
(E
, T
);
3440 -- If the type is limited unconstrained with defaulted discriminants and
3441 -- there is no expression, then the object is constrained by the
3442 -- defaults, so it is worthwhile building the corresponding subtype.
3444 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
3445 and then not Is_Constrained
(T
)
3446 and then Has_Discriminants
(T
)
3449 Act_T
:= Build_Default_Subtype
(T
, N
);
3451 -- Ada 2005: a limited object may be initialized by means of an
3452 -- aggregate. If the type has default discriminants it has an
3453 -- unconstrained nominal type, Its actual subtype will be obtained
3454 -- from the aggregate, and not from the default discriminants.
3459 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
3461 elsif Present
(Underlying_Type
(T
))
3462 and then not Is_Constrained
(Underlying_Type
(T
))
3463 and then Has_Discriminants
(Underlying_Type
(T
))
3464 and then Nkind
(E
) = N_Function_Call
3465 and then Constant_Present
(N
)
3467 -- The back-end has problems with constants of a discriminated type
3468 -- with defaults, if the initial value is a function call. We
3469 -- generate an intermediate temporary for the result of the call.
3470 -- It is unclear why this should make it acceptable to gcc. ???
3472 Remove_Side_Effects
(E
);
3474 -- If this is a constant declaration of an unconstrained type and
3475 -- the initialization is an aggregate, we can use the subtype of the
3476 -- aggregate for the declared entity because it is immutable.
3478 elsif not Is_Constrained
(T
)
3479 and then Has_Discriminants
(T
)
3480 and then Constant_Present
(N
)
3481 and then not Has_Unchecked_Union
(T
)
3482 and then Nkind
(E
) = N_Aggregate
3487 -- Check No_Wide_Characters restriction
3489 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
3491 -- Indicate this is not set in source. Certainly true for constants, and
3492 -- true for variables so far (will be reset for a variable if and when
3493 -- we encounter a modification in the source).
3495 Set_Never_Set_In_Source
(Id
, True);
3497 -- Now establish the proper kind and type of the object
3499 if Constant_Present
(N
) then
3500 Set_Ekind
(Id
, E_Constant
);
3501 Set_Is_True_Constant
(Id
, True);
3504 Set_Ekind
(Id
, E_Variable
);
3506 -- A variable is set as shared passive if it appears in a shared
3507 -- passive package, and is at the outer level. This is not done for
3508 -- entities generated during expansion, because those are always
3509 -- manipulated locally.
3511 if Is_Shared_Passive
(Current_Scope
)
3512 and then Is_Library_Level_Entity
(Id
)
3513 and then Comes_From_Source
(Id
)
3515 Set_Is_Shared_Passive
(Id
);
3516 Check_Shared_Var
(Id
, T
, N
);
3519 -- Set Has_Initial_Value if initializing expression present. Note
3520 -- that if there is no initializing expression, we leave the state
3521 -- of this flag unchanged (usually it will be False, but notably in
3522 -- the case of exception choice variables, it will already be true).
3525 Set_Has_Initial_Value
(Id
, True);
3529 -- Initialize alignment and size and capture alignment setting
3531 Init_Alignment
(Id
);
3533 Set_Optimize_Alignment_Flags
(Id
);
3535 -- Deal with aliased case
3537 if Aliased_Present
(N
) then
3538 Set_Is_Aliased
(Id
);
3540 -- If the object is aliased and the type is unconstrained with
3541 -- defaulted discriminants and there is no expression, then the
3542 -- object is constrained by the defaults, so it is worthwhile
3543 -- building the corresponding subtype.
3545 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3546 -- unconstrained, then only establish an actual subtype if the
3547 -- nominal subtype is indefinite. In definite cases the object is
3548 -- unconstrained in Ada 2005.
3551 and then Is_Record_Type
(T
)
3552 and then not Is_Constrained
(T
)
3553 and then Has_Discriminants
(T
)
3554 and then (Ada_Version
< Ada_2005
or else Is_Indefinite_Subtype
(T
))
3556 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
3560 -- Now we can set the type of the object
3562 Set_Etype
(Id
, Act_T
);
3564 -- Object is marked to be treated as volatile if type is volatile and
3565 -- we clear the Current_Value setting that may have been set above.
3567 if Treat_As_Volatile
(Etype
(Id
)) then
3568 Set_Treat_As_Volatile
(Id
);
3569 Set_Current_Value
(Id
, Empty
);
3572 -- Deal with controlled types
3574 if Has_Controlled_Component
(Etype
(Id
))
3575 or else Is_Controlled
(Etype
(Id
))
3577 if not Is_Library_Level_Entity
(Id
) then
3578 Check_Restriction
(No_Nested_Finalization
, N
);
3580 Validate_Controlled_Object
(Id
);
3584 if Has_Task
(Etype
(Id
)) then
3585 Check_Restriction
(No_Tasking
, N
);
3587 -- Deal with counting max tasks
3589 -- Nothing to do if inside a generic
3591 if Inside_A_Generic
then
3594 -- If library level entity, then count tasks
3596 elsif Is_Library_Level_Entity
(Id
) then
3597 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
3599 -- If not library level entity, then indicate we don't know max
3600 -- tasks and also check task hierarchy restriction and blocking
3601 -- operation (since starting a task is definitely blocking!)
3604 Check_Restriction
(Max_Tasks
, N
);
3605 Check_Restriction
(No_Task_Hierarchy
, N
);
3606 Check_Potentially_Blocking_Operation
(N
);
3609 -- A rather specialized test. If we see two tasks being declared
3610 -- of the same type in the same object declaration, and the task
3611 -- has an entry with an address clause, we know that program error
3612 -- will be raised at run time since we can't have two tasks with
3613 -- entries at the same address.
3615 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
3620 E
:= First_Entity
(Etype
(Id
));
3621 while Present
(E
) loop
3622 if Ekind
(E
) = E_Entry
3623 and then Present
(Get_Attribute_Definition_Clause
3624 (E
, Attribute_Address
))
3627 ("??more than one task with same entry address", N
);
3629 ("\??Program_Error will be raised at run time", N
);
3631 Make_Raise_Program_Error
(Loc
,
3632 Reason
=> PE_Duplicated_Entry_Address
));
3642 -- Some simple constant-propagation: if the expression is a constant
3643 -- string initialized with a literal, share the literal. This avoids
3647 and then Is_Entity_Name
(E
)
3648 and then Ekind
(Entity
(E
)) = E_Constant
3649 and then Base_Type
(Etype
(E
)) = Standard_String
3652 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
3655 and then Nkind
(Val
) = N_String_Literal
3657 Rewrite
(E
, New_Copy
(Val
));
3662 -- Another optimization: if the nominal subtype is unconstrained and
3663 -- the expression is a function call that returns an unconstrained
3664 -- type, rewrite the declaration as a renaming of the result of the
3665 -- call. The exceptions below are cases where the copy is expected,
3666 -- either by the back end (Aliased case) or by the semantics, as for
3667 -- initializing controlled types or copying tags for classwide types.
3670 and then Nkind
(E
) = N_Explicit_Dereference
3671 and then Nkind
(Original_Node
(E
)) = N_Function_Call
3672 and then not Is_Library_Level_Entity
(Id
)
3673 and then not Is_Constrained
(Underlying_Type
(T
))
3674 and then not Is_Aliased
(Id
)
3675 and then not Is_Class_Wide_Type
(T
)
3676 and then not Is_Controlled
(T
)
3677 and then not Has_Controlled_Component
(Base_Type
(T
))
3678 and then Expander_Active
3681 Make_Object_Renaming_Declaration
(Loc
,
3682 Defining_Identifier
=> Id
,
3683 Access_Definition
=> Empty
,
3684 Subtype_Mark
=> New_Occurrence_Of
3685 (Base_Type
(Etype
(Id
)), Loc
),
3688 Set_Renamed_Object
(Id
, E
);
3690 -- Force generation of debugging information for the constant and for
3691 -- the renamed function call.
3693 Set_Debug_Info_Needed
(Id
);
3694 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
3697 if Present
(Prev_Entity
)
3698 and then Is_Frozen
(Prev_Entity
)
3699 and then not Error_Posted
(Id
)
3701 Error_Msg_N
("full constant declaration appears too late", N
);
3704 Check_Eliminated
(Id
);
3706 -- Deal with setting In_Private_Part flag if in private part
3708 if Ekind
(Scope
(Id
)) = E_Package
3709 and then In_Private_Part
(Scope
(Id
))
3711 Set_In_Private_Part
(Id
);
3714 -- Check for violation of No_Local_Timing_Events
3716 if Restriction_Check_Required
(No_Local_Timing_Events
)
3717 and then not Is_Library_Level_Entity
(Id
)
3718 and then Is_RTE
(Etype
(Id
), RE_Timing_Event
)
3720 Check_Restriction
(No_Local_Timing_Events
, N
);
3724 if Has_Aspects
(N
) then
3725 Analyze_Aspect_Specifications
(N
, Id
);
3728 Analyze_Dimension
(N
);
3730 -- Verify whether the object declaration introduces an illegal hidden
3731 -- state within a package subject to a null abstract state.
3733 if Formal_Extensions
and then Ekind
(Id
) = E_Variable
then
3734 Check_No_Hidden_State
(Id
);
3736 end Analyze_Object_Declaration
;
3738 ---------------------------
3739 -- Analyze_Others_Choice --
3740 ---------------------------
3742 -- Nothing to do for the others choice node itself, the semantic analysis
3743 -- of the others choice will occur as part of the processing of the parent
3745 procedure Analyze_Others_Choice
(N
: Node_Id
) is
3746 pragma Warnings
(Off
, N
);
3749 end Analyze_Others_Choice
;
3751 -------------------------------------------
3752 -- Analyze_Private_Extension_Declaration --
3753 -------------------------------------------
3755 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
3756 T
: constant Entity_Id
:= Defining_Identifier
(N
);
3757 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
3758 Parent_Type
: Entity_Id
;
3759 Parent_Base
: Entity_Id
;
3762 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3764 if Is_Non_Empty_List
(Interface_List
(N
)) then
3770 Intf
:= First
(Interface_List
(N
));
3771 while Present
(Intf
) loop
3772 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
3774 Diagnose_Interface
(Intf
, T
);
3780 Generate_Definition
(T
);
3782 -- For other than Ada 2012, just enter the name in the current scope
3784 if Ada_Version
< Ada_2012
then
3787 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
3788 -- case of private type that completes an incomplete type.
3795 Prev
:= Find_Type_Name
(N
);
3797 pragma Assert
(Prev
= T
3798 or else (Ekind
(Prev
) = E_Incomplete_Type
3799 and then Present
(Full_View
(Prev
))
3800 and then Full_View
(Prev
) = T
));
3804 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
3805 Parent_Base
:= Base_Type
(Parent_Type
);
3807 if Parent_Type
= Any_Type
3808 or else Etype
(Parent_Type
) = Any_Type
3810 Set_Ekind
(T
, Ekind
(Parent_Type
));
3811 Set_Etype
(T
, Any_Type
);
3814 elsif not Is_Tagged_Type
(Parent_Type
) then
3816 ("parent of type extension must be a tagged type ", Indic
);
3819 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
3820 Error_Msg_N
("premature derivation of incomplete type", Indic
);
3823 elsif Is_Concurrent_Type
(Parent_Type
) then
3825 ("parent type of a private extension cannot be "
3826 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
3828 Set_Etype
(T
, Any_Type
);
3829 Set_Ekind
(T
, E_Limited_Private_Type
);
3830 Set_Private_Dependents
(T
, New_Elmt_List
);
3831 Set_Error_Posted
(T
);
3835 -- Perhaps the parent type should be changed to the class-wide type's
3836 -- specific type in this case to prevent cascading errors ???
3838 if Is_Class_Wide_Type
(Parent_Type
) then
3840 ("parent of type extension must not be a class-wide type", Indic
);
3844 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
3845 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
3846 or else In_Private_Part
(Current_Scope
)
3849 Error_Msg_N
("invalid context for private extension", N
);
3852 -- Set common attributes
3854 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3855 Set_Scope
(T
, Current_Scope
);
3856 Set_Ekind
(T
, E_Record_Type_With_Private
);
3857 Init_Size_Align
(T
);
3859 Set_Etype
(T
, Parent_Base
);
3860 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
3862 Set_Convention
(T
, Convention
(Parent_Type
));
3863 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
3864 Set_Is_First_Subtype
(T
);
3865 Make_Class_Wide_Type
(T
);
3867 if Unknown_Discriminants_Present
(N
) then
3868 Set_Discriminant_Constraint
(T
, No_Elist
);
3871 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
3873 -- Propagate inherited invariant information. The new type has
3874 -- invariants, if the parent type has inheritable invariants,
3875 -- and these invariants can in turn be inherited.
3877 if Has_Inheritable_Invariants
(Parent_Type
) then
3878 Set_Has_Inheritable_Invariants
(T
);
3879 Set_Has_Invariants
(T
);
3882 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3883 -- synchronized formal derived type.
3885 if Ada_Version
>= Ada_2005
3886 and then Synchronized_Present
(N
)
3888 Set_Is_Limited_Record
(T
);
3890 -- Formal derived type case
3892 if Is_Generic_Type
(T
) then
3894 -- The parent must be a tagged limited type or a synchronized
3897 if (not Is_Tagged_Type
(Parent_Type
)
3898 or else not Is_Limited_Type
(Parent_Type
))
3900 (not Is_Interface
(Parent_Type
)
3901 or else not Is_Synchronized_Interface
(Parent_Type
))
3903 Error_Msg_NE
("parent type of & must be tagged limited " &
3904 "or synchronized", N
, T
);
3907 -- The progenitors (if any) must be limited or synchronized
3910 if Present
(Interfaces
(T
)) then
3913 Iface_Elmt
: Elmt_Id
;
3916 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
3917 while Present
(Iface_Elmt
) loop
3918 Iface
:= Node
(Iface_Elmt
);
3920 if not Is_Limited_Interface
(Iface
)
3921 and then not Is_Synchronized_Interface
(Iface
)
3923 Error_Msg_NE
("progenitor & must be limited " &
3924 "or synchronized", N
, Iface
);
3927 Next_Elmt
(Iface_Elmt
);
3932 -- Regular derived extension, the parent must be a limited or
3933 -- synchronized interface.
3936 if not Is_Interface
(Parent_Type
)
3937 or else (not Is_Limited_Interface
(Parent_Type
)
3939 not Is_Synchronized_Interface
(Parent_Type
))
3942 ("parent type of & must be limited interface", N
, T
);
3946 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3947 -- extension with a synchronized parent must be explicitly declared
3948 -- synchronized, because the full view will be a synchronized type.
3949 -- This must be checked before the check for limited types below,
3950 -- to ensure that types declared limited are not allowed to extend
3951 -- synchronized interfaces.
3953 elsif Is_Interface
(Parent_Type
)
3954 and then Is_Synchronized_Interface
(Parent_Type
)
3955 and then not Synchronized_Present
(N
)
3958 ("private extension of& must be explicitly synchronized",
3961 elsif Limited_Present
(N
) then
3962 Set_Is_Limited_Record
(T
);
3964 if not Is_Limited_Type
(Parent_Type
)
3966 (not Is_Interface
(Parent_Type
)
3967 or else not Is_Limited_Interface
(Parent_Type
))
3969 Error_Msg_NE
("parent type& of limited extension must be limited",
3975 if Has_Aspects
(N
) then
3976 Analyze_Aspect_Specifications
(N
, T
);
3978 end Analyze_Private_Extension_Declaration
;
3980 ---------------------------------
3981 -- Analyze_Subtype_Declaration --
3982 ---------------------------------
3984 procedure Analyze_Subtype_Declaration
3986 Skip
: Boolean := False)
3988 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3990 R_Checks
: Check_Result
;
3993 Generate_Definition
(Id
);
3994 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3995 Init_Size_Align
(Id
);
3997 -- The following guard condition on Enter_Name is to handle cases where
3998 -- the defining identifier has already been entered into the scope but
3999 -- the declaration as a whole needs to be analyzed.
4001 -- This case in particular happens for derived enumeration types. The
4002 -- derived enumeration type is processed as an inserted enumeration type
4003 -- declaration followed by a rewritten subtype declaration. The defining
4004 -- identifier, however, is entered into the name scope very early in the
4005 -- processing of the original type declaration and therefore needs to be
4006 -- avoided here, when the created subtype declaration is analyzed. (See
4007 -- Build_Derived_Types)
4009 -- This also happens when the full view of a private type is derived
4010 -- type with constraints. In this case the entity has been introduced
4011 -- in the private declaration.
4014 or else (Present
(Etype
(Id
))
4015 and then (Is_Private_Type
(Etype
(Id
))
4016 or else Is_Task_Type
(Etype
(Id
))
4017 or else Is_Rewrite_Substitution
(N
)))
4025 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4027 -- Class-wide equivalent types of records with unknown discriminants
4028 -- involve the generation of an itype which serves as the private view
4029 -- of a constrained record subtype. In such cases the base type of the
4030 -- current subtype we are processing is the private itype. Use the full
4031 -- of the private itype when decorating various attributes.
4034 and then Is_Private_Type
(T
)
4035 and then Present
(Full_View
(T
))
4040 -- Inherit common attributes
4042 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4043 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4044 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4045 Set_Convention
(Id
, Convention
(T
));
4047 -- If ancestor has predicates then so does the subtype, and in addition
4048 -- we must delay the freeze to properly arrange predicate inheritance.
4050 -- The Ancestor_Type test is a big kludge, there seem to be cases in
4051 -- which T = ID, so the above tests and assignments do nothing???
4053 if Has_Predicates
(T
)
4054 or else (Present
(Ancestor_Subtype
(T
))
4055 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4057 Set_Has_Predicates
(Id
);
4058 Set_Has_Delayed_Freeze
(Id
);
4061 -- Subtype of Boolean cannot have a constraint in SPARK
4063 if Is_Boolean_Type
(T
)
4064 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4066 Check_SPARK_Restriction
4067 ("subtype of Boolean cannot have constraint", N
);
4070 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4072 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4078 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4079 One_Cstr
:= First
(Constraints
(Cstr
));
4080 while Present
(One_Cstr
) loop
4082 -- Index or discriminant constraint in SPARK must be a
4086 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4088 Check_SPARK_Restriction
4089 ("subtype mark required", One_Cstr
);
4091 -- String subtype must have a lower bound of 1 in SPARK.
4092 -- Note that we do not need to test for the non-static case
4093 -- here, since that was already taken care of in
4094 -- Process_Range_Expr_In_Decl.
4096 elsif Base_Type
(T
) = Standard_String
then
4097 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4099 if Is_OK_Static_Expression
(Low
)
4100 and then Expr_Value
(Low
) /= 1
4102 Check_SPARK_Restriction
4103 ("String subtype must have lower bound of 1", N
);
4113 -- In the case where there is no constraint given in the subtype
4114 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4115 -- semantic attributes must be established here.
4117 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4118 Set_Etype
(Id
, Base_Type
(T
));
4120 -- Subtype of unconstrained array without constraint is not allowed
4123 if Is_Array_Type
(T
)
4124 and then not Is_Constrained
(T
)
4126 Check_SPARK_Restriction
4127 ("subtype of unconstrained array must have constraint", N
);
4132 Set_Ekind
(Id
, E_Array_Subtype
);
4133 Copy_Array_Subtype_Attributes
(Id
, T
);
4135 when Decimal_Fixed_Point_Kind
=>
4136 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4137 Set_Digits_Value
(Id
, Digits_Value
(T
));
4138 Set_Delta_Value
(Id
, Delta_Value
(T
));
4139 Set_Scale_Value
(Id
, Scale_Value
(T
));
4140 Set_Small_Value
(Id
, Small_Value
(T
));
4141 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4142 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4143 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4144 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4145 Set_RM_Size
(Id
, RM_Size
(T
));
4147 when Enumeration_Kind
=>
4148 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4149 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4150 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4151 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4152 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4153 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4154 Set_RM_Size
(Id
, RM_Size
(T
));
4156 when Ordinary_Fixed_Point_Kind
=>
4157 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4158 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4159 Set_Small_Value
(Id
, Small_Value
(T
));
4160 Set_Delta_Value
(Id
, Delta_Value
(T
));
4161 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4162 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4163 Set_RM_Size
(Id
, RM_Size
(T
));
4166 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4167 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4168 Set_Digits_Value
(Id
, Digits_Value
(T
));
4169 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4171 when Signed_Integer_Kind
=>
4172 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4173 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4174 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4175 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4176 Set_RM_Size
(Id
, RM_Size
(T
));
4178 when Modular_Integer_Kind
=>
4179 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4180 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4181 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4182 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4183 Set_RM_Size
(Id
, RM_Size
(T
));
4185 when Class_Wide_Kind
=>
4186 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4187 Set_First_Entity
(Id
, First_Entity
(T
));
4188 Set_Last_Entity
(Id
, Last_Entity
(T
));
4189 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4190 Set_Cloned_Subtype
(Id
, T
);
4191 Set_Is_Tagged_Type
(Id
, True);
4192 Set_Has_Unknown_Discriminants
4195 if Ekind
(T
) = E_Class_Wide_Subtype
then
4196 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4199 when E_Record_Type | E_Record_Subtype
=>
4200 Set_Ekind
(Id
, E_Record_Subtype
);
4202 if Ekind
(T
) = E_Record_Subtype
4203 and then Present
(Cloned_Subtype
(T
))
4205 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4207 Set_Cloned_Subtype
(Id
, T
);
4210 Set_First_Entity
(Id
, First_Entity
(T
));
4211 Set_Last_Entity
(Id
, Last_Entity
(T
));
4212 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4213 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4214 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4215 Set_Has_Implicit_Dereference
4216 (Id
, Has_Implicit_Dereference
(T
));
4217 Set_Has_Unknown_Discriminants
4218 (Id
, Has_Unknown_Discriminants
(T
));
4220 if Has_Discriminants
(T
) then
4221 Set_Discriminant_Constraint
4222 (Id
, Discriminant_Constraint
(T
));
4223 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4225 elsif Has_Unknown_Discriminants
(Id
) then
4226 Set_Discriminant_Constraint
(Id
, No_Elist
);
4229 if Is_Tagged_Type
(T
) then
4230 Set_Is_Tagged_Type
(Id
);
4231 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4232 Set_Direct_Primitive_Operations
4233 (Id
, Direct_Primitive_Operations
(T
));
4234 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4236 if Is_Interface
(T
) then
4237 Set_Is_Interface
(Id
);
4238 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
4242 when Private_Kind
=>
4243 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4244 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4245 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4246 Set_First_Entity
(Id
, First_Entity
(T
));
4247 Set_Last_Entity
(Id
, Last_Entity
(T
));
4248 Set_Private_Dependents
(Id
, New_Elmt_List
);
4249 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4250 Set_Has_Implicit_Dereference
4251 (Id
, Has_Implicit_Dereference
(T
));
4252 Set_Has_Unknown_Discriminants
4253 (Id
, Has_Unknown_Discriminants
(T
));
4254 Set_Known_To_Have_Preelab_Init
4255 (Id
, Known_To_Have_Preelab_Init
(T
));
4257 if Is_Tagged_Type
(T
) then
4258 Set_Is_Tagged_Type
(Id
);
4259 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
4260 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4261 Set_Direct_Primitive_Operations
(Id
,
4262 Direct_Primitive_Operations
(T
));
4265 -- In general the attributes of the subtype of a private type
4266 -- are the attributes of the partial view of parent. However,
4267 -- the full view may be a discriminated type, and the subtype
4268 -- must share the discriminant constraint to generate correct
4269 -- calls to initialization procedures.
4271 if Has_Discriminants
(T
) then
4272 Set_Discriminant_Constraint
4273 (Id
, Discriminant_Constraint
(T
));
4274 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4276 elsif Present
(Full_View
(T
))
4277 and then Has_Discriminants
(Full_View
(T
))
4279 Set_Discriminant_Constraint
4280 (Id
, Discriminant_Constraint
(Full_View
(T
)));
4281 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4283 -- This would seem semantically correct, but apparently
4284 -- generates spurious errors about missing components ???
4286 -- Set_Has_Discriminants (Id);
4289 Prepare_Private_Subtype_Completion
(Id
, N
);
4291 -- If this is the subtype of a constrained private type with
4292 -- discriminants that has got a full view and we also have
4293 -- built a completion just above, show that the completion
4294 -- is a clone of the full view to the back-end.
4296 if Has_Discriminants
(T
)
4297 and then not Has_Unknown_Discriminants
(T
)
4298 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
4299 and then Present
(Full_View
(T
))
4300 and then Present
(Full_View
(Id
))
4302 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
4306 Set_Ekind
(Id
, E_Access_Subtype
);
4307 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4308 Set_Is_Access_Constant
4309 (Id
, Is_Access_Constant
(T
));
4310 Set_Directly_Designated_Type
4311 (Id
, Designated_Type
(T
));
4312 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
4314 -- A Pure library_item must not contain the declaration of a
4315 -- named access type, except within a subprogram, generic
4316 -- subprogram, task unit, or protected unit, or if it has
4317 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4319 if Comes_From_Source
(Id
)
4320 and then In_Pure_Unit
4321 and then not In_Subprogram_Task_Protected_Unit
4322 and then not No_Pool_Assigned
(Id
)
4325 ("named access types not allowed in pure unit", N
);
4328 when Concurrent_Kind
=>
4329 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
4330 Set_Corresponding_Record_Type
(Id
,
4331 Corresponding_Record_Type
(T
));
4332 Set_First_Entity
(Id
, First_Entity
(T
));
4333 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
4334 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4335 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4336 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4337 Set_Last_Entity
(Id
, Last_Entity
(T
));
4339 if Has_Discriminants
(T
) then
4340 Set_Discriminant_Constraint
(Id
,
4341 Discriminant_Constraint
(T
));
4342 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4345 when E_Incomplete_Type
=>
4346 if Ada_Version
>= Ada_2005
then
4348 -- In Ada 2005 an incomplete type can be explicitly tagged:
4349 -- propagate indication.
4351 Set_Ekind
(Id
, E_Incomplete_Subtype
);
4352 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
4353 Set_Private_Dependents
(Id
, New_Elmt_List
);
4355 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4356 -- incomplete type visible through a limited with clause.
4358 if From_With_Type
(T
)
4359 and then Present
(Non_Limited_View
(T
))
4361 Set_From_With_Type
(Id
);
4362 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
4364 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4365 -- to the private dependents of the original incomplete
4366 -- type for future transformation.
4369 Append_Elmt
(Id
, Private_Dependents
(T
));
4372 -- If the subtype name denotes an incomplete type an error
4373 -- was already reported by Process_Subtype.
4376 Set_Etype
(Id
, Any_Type
);
4380 raise Program_Error
;
4384 if Etype
(Id
) = Any_Type
then
4388 -- Some common processing on all types
4390 Set_Size_Info
(Id
, T
);
4391 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
4393 -- If the parent type is a generic actual, so is the subtype. This may
4394 -- happen in a nested instance. Why Comes_From_Source test???
4396 if not Comes_From_Source
(N
) then
4397 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
4402 Set_Is_Immediately_Visible
(Id
, True);
4403 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
4404 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
4406 if Is_Interface
(T
) then
4407 Set_Is_Interface
(Id
);
4410 if Present
(Generic_Parent_Type
(N
))
4413 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
4415 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
4416 /= N_Formal_Private_Type_Definition
)
4418 if Is_Tagged_Type
(Id
) then
4420 -- If this is a generic actual subtype for a synchronized type,
4421 -- the primitive operations are those of the corresponding record
4422 -- for which there is a separate subtype declaration.
4424 if Is_Concurrent_Type
(Id
) then
4426 elsif Is_Class_Wide_Type
(Id
) then
4427 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
4429 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
4432 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
4433 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
4437 if Is_Private_Type
(T
)
4438 and then Present
(Full_View
(T
))
4440 Conditional_Delay
(Id
, Full_View
(T
));
4442 -- The subtypes of components or subcomponents of protected types
4443 -- do not need freeze nodes, which would otherwise appear in the
4444 -- wrong scope (before the freeze node for the protected type). The
4445 -- proper subtypes are those of the subcomponents of the corresponding
4448 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
4449 and then Present
(Scope
(Scope
(Id
))) -- error defense!
4450 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
4452 Conditional_Delay
(Id
, T
);
4455 -- Check that Constraint_Error is raised for a scalar subtype indication
4456 -- when the lower or upper bound of a non-null range lies outside the
4457 -- range of the type mark.
4459 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4460 if Is_Scalar_Type
(Etype
(Id
))
4461 and then Scalar_Range
(Id
) /=
4462 Scalar_Range
(Etype
(Subtype_Mark
4463 (Subtype_Indication
(N
))))
4467 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
4469 -- In the array case, check compatibility for each index
4471 elsif Is_Array_Type
(Etype
(Id
))
4472 and then Present
(First_Index
(Id
))
4474 -- This really should be a subprogram that finds the indications
4478 Subt_Index
: Node_Id
:= First_Index
(Id
);
4479 Target_Index
: Node_Id
:=
4481 (Subtype_Mark
(Subtype_Indication
(N
))));
4482 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
4485 while Present
(Subt_Index
) loop
4486 if ((Nkind
(Subt_Index
) = N_Identifier
4487 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
4488 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
4490 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
4493 Target_Typ
: constant Entity_Id
:=
4494 Etype
(Target_Index
);
4498 (Scalar_Range
(Etype
(Subt_Index
)),
4501 Defining_Identifier
(N
));
4503 -- Reset Has_Dynamic_Range_Check on the subtype to
4504 -- prevent elision of the index check due to a dynamic
4505 -- check generated for a preceding index (needed since
4506 -- Insert_Range_Checks tries to avoid generating
4507 -- redundant checks on a given declaration).
4509 Set_Has_Dynamic_Range_Check
(N
, False);
4515 Sloc
(Defining_Identifier
(N
)));
4517 -- Record whether this index involved a dynamic check
4520 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
4524 Next_Index
(Subt_Index
);
4525 Next_Index
(Target_Index
);
4528 -- Finally, mark whether the subtype involves dynamic checks
4530 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
4535 -- Make sure that generic actual types are properly frozen. The subtype
4536 -- is marked as a generic actual type when the enclosing instance is
4537 -- analyzed, so here we identify the subtype from the tree structure.
4540 and then Is_Generic_Actual_Type
(Id
)
4541 and then In_Instance
4542 and then not Comes_From_Source
(N
)
4543 and then Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
4544 and then Is_Frozen
(T
)
4546 Freeze_Before
(N
, Id
);
4549 Set_Optimize_Alignment_Flags
(Id
);
4550 Check_Eliminated
(Id
);
4553 if Has_Aspects
(N
) then
4554 Analyze_Aspect_Specifications
(N
, Id
);
4557 Analyze_Dimension
(N
);
4558 end Analyze_Subtype_Declaration
;
4560 --------------------------------
4561 -- Analyze_Subtype_Indication --
4562 --------------------------------
4564 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
4565 T
: constant Entity_Id
:= Subtype_Mark
(N
);
4566 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
4573 Set_Etype
(N
, Etype
(R
));
4574 Resolve
(R
, Entity
(T
));
4576 Set_Error_Posted
(R
);
4577 Set_Error_Posted
(T
);
4579 end Analyze_Subtype_Indication
;
4581 --------------------------
4582 -- Analyze_Variant_Part --
4583 --------------------------
4585 procedure Analyze_Variant_Part
(N
: Node_Id
) is
4587 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
4588 -- Error routine invoked by the generic instantiation below when the
4589 -- variant part has a non static choice.
4591 procedure Process_Declarations
(Variant
: Node_Id
);
4592 -- Analyzes all the declarations associated with a Variant. Needed by
4593 -- the generic instantiation below.
4595 package Variant_Choices_Processing
is new
4596 Generic_Choices_Processing
4597 (Get_Alternatives
=> Variants
,
4598 Get_Choices
=> Discrete_Choices
,
4599 Process_Empty_Choice
=> No_OP
,
4600 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
4601 Process_Associated_Node
=> Process_Declarations
);
4602 use Variant_Choices_Processing
;
4603 -- Instantiation of the generic choice processing package
4605 -----------------------------
4606 -- Non_Static_Choice_Error --
4607 -----------------------------
4609 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
4611 Flag_Non_Static_Expr
4612 ("choice given in variant part is not static!", Choice
);
4613 end Non_Static_Choice_Error
;
4615 --------------------------
4616 -- Process_Declarations --
4617 --------------------------
4619 procedure Process_Declarations
(Variant
: Node_Id
) is
4621 if not Null_Present
(Component_List
(Variant
)) then
4622 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
4624 if Present
(Variant_Part
(Component_List
(Variant
))) then
4625 Analyze
(Variant_Part
(Component_List
(Variant
)));
4628 end Process_Declarations
;
4632 Discr_Name
: Node_Id
;
4633 Discr_Type
: Entity_Id
;
4635 Dont_Care
: Boolean;
4636 Others_Present
: Boolean := False;
4638 pragma Warnings
(Off
, Dont_Care
);
4639 pragma Warnings
(Off
, Others_Present
);
4640 -- We don't care about the assigned values of any of these
4642 -- Start of processing for Analyze_Variant_Part
4645 Discr_Name
:= Name
(N
);
4646 Analyze
(Discr_Name
);
4648 -- If Discr_Name bad, get out (prevent cascaded errors)
4650 if Etype
(Discr_Name
) = Any_Type
then
4654 -- Check invalid discriminant in variant part
4656 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
4657 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
4660 Discr_Type
:= Etype
(Entity
(Discr_Name
));
4662 if not Is_Discrete_Type
(Discr_Type
) then
4664 ("discriminant in a variant part must be of a discrete type",
4669 -- Call the instantiated Analyze_Choices which does the rest of the work
4671 Analyze_Choices
(N
, Discr_Type
, Dont_Care
, Others_Present
);
4672 end Analyze_Variant_Part
;
4674 ----------------------------
4675 -- Array_Type_Declaration --
4676 ----------------------------
4678 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
4679 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
4680 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
4681 Element_Type
: Entity_Id
;
4682 Implicit_Base
: Entity_Id
;
4684 Related_Id
: Entity_Id
:= Empty
;
4686 P
: constant Node_Id
:= Parent
(Def
);
4690 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4691 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
4693 Index
:= First
(Subtype_Marks
(Def
));
4696 -- Find proper names for the implicit types which may be public. In case
4697 -- of anonymous arrays we use the name of the first object of that type
4701 Related_Id
:= Defining_Identifier
(P
);
4707 while Present
(Index
) loop
4710 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
4711 Check_SPARK_Restriction
("subtype mark required", Index
);
4714 -- Add a subtype declaration for each index of private array type
4715 -- declaration whose etype is also private. For example:
4718 -- type Index is private;
4720 -- type Table is array (Index) of ...
4723 -- This is currently required by the expander for the internally
4724 -- generated equality subprogram of records with variant parts in
4725 -- which the etype of some component is such private type.
4727 if Ekind
(Current_Scope
) = E_Package
4728 and then In_Private_Part
(Current_Scope
)
4729 and then Has_Private_Declaration
(Etype
(Index
))
4732 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4737 New_E
:= Make_Temporary
(Loc
, 'T');
4738 Set_Is_Internal
(New_E
);
4741 Make_Subtype_Declaration
(Loc
,
4742 Defining_Identifier
=> New_E
,
4743 Subtype_Indication
=>
4744 New_Occurrence_Of
(Etype
(Index
), Loc
));
4746 Insert_Before
(Parent
(Def
), Decl
);
4748 Set_Etype
(Index
, New_E
);
4750 -- If the index is a range the Entity attribute is not
4751 -- available. Example:
4754 -- type T is private;
4756 -- type T is new Natural;
4757 -- Table : array (T(1) .. T(10)) of Boolean;
4760 if Nkind
(Index
) /= N_Range
then
4761 Set_Entity
(Index
, New_E
);
4766 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
4768 -- Check error of subtype with predicate for index type
4770 Bad_Predicated_Subtype_Use
4771 ("subtype& has predicate, not allowed as index subtype",
4772 Index
, Etype
(Index
));
4774 -- Move to next index
4777 Nb_Index
:= Nb_Index
+ 1;
4780 -- Process subtype indication if one is present
4782 if Present
(Component_Typ
) then
4783 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
4785 Set_Etype
(Component_Typ
, Element_Type
);
4787 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
4788 Check_SPARK_Restriction
("subtype mark required", Component_Typ
);
4791 -- Ada 2005 (AI-230): Access Definition case
4793 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
4795 -- Indicate that the anonymous access type is created by the
4796 -- array type declaration.
4798 Element_Type
:= Access_Definition
4800 N
=> Access_Definition
(Component_Def
));
4801 Set_Is_Local_Anonymous_Access
(Element_Type
);
4803 -- Propagate the parent. This field is needed if we have to generate
4804 -- the master_id associated with an anonymous access to task type
4805 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4807 Set_Parent
(Element_Type
, Parent
(T
));
4809 -- Ada 2005 (AI-230): In case of components that are anonymous access
4810 -- types the level of accessibility depends on the enclosing type
4813 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
4815 -- Ada 2005 (AI-254)
4818 CD
: constant Node_Id
:=
4819 Access_To_Subprogram_Definition
4820 (Access_Definition
(Component_Def
));
4822 if Present
(CD
) and then Protected_Present
(CD
) then
4824 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
4829 -- Constrained array case
4832 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
4835 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4837 -- Establish Implicit_Base as unconstrained base type
4839 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
4841 Set_Etype
(Implicit_Base
, Implicit_Base
);
4842 Set_Scope
(Implicit_Base
, Current_Scope
);
4843 Set_Has_Delayed_Freeze
(Implicit_Base
);
4845 -- The constrained array type is a subtype of the unconstrained one
4847 Set_Ekind
(T
, E_Array_Subtype
);
4848 Init_Size_Align
(T
);
4849 Set_Etype
(T
, Implicit_Base
);
4850 Set_Scope
(T
, Current_Scope
);
4851 Set_Is_Constrained
(T
, True);
4852 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
4853 Set_Has_Delayed_Freeze
(T
);
4855 -- Complete setup of implicit base type
4857 Set_First_Index
(Implicit_Base
, First_Index
(T
));
4858 Set_Component_Type
(Implicit_Base
, Element_Type
);
4859 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
4860 Set_Component_Size
(Implicit_Base
, Uint_0
);
4861 Set_Packed_Array_Type
(Implicit_Base
, Empty
);
4862 Set_Has_Controlled_Component
4863 (Implicit_Base
, Has_Controlled_Component
4865 or else Is_Controlled
4867 Set_Finalize_Storage_Only
4868 (Implicit_Base
, Finalize_Storage_Only
4871 -- Unconstrained array case
4874 Set_Ekind
(T
, E_Array_Type
);
4875 Init_Size_Align
(T
);
4877 Set_Scope
(T
, Current_Scope
);
4878 Set_Component_Size
(T
, Uint_0
);
4879 Set_Is_Constrained
(T
, False);
4880 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
4881 Set_Has_Delayed_Freeze
(T
, True);
4882 Set_Has_Task
(T
, Has_Task
(Element_Type
));
4883 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
4886 Is_Controlled
(Element_Type
));
4887 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
4891 -- Common attributes for both cases
4893 Set_Component_Type
(Base_Type
(T
), Element_Type
);
4894 Set_Packed_Array_Type
(T
, Empty
);
4896 if Aliased_Present
(Component_Definition
(Def
)) then
4897 Check_SPARK_Restriction
4898 ("aliased is not allowed", Component_Definition
(Def
));
4899 Set_Has_Aliased_Components
(Etype
(T
));
4902 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4903 -- array type to ensure that objects of this type are initialized.
4905 if Ada_Version
>= Ada_2005
4906 and then Can_Never_Be_Null
(Element_Type
)
4908 Set_Can_Never_Be_Null
(T
);
4910 if Null_Exclusion_Present
(Component_Definition
(Def
))
4912 -- No need to check itypes because in their case this check was
4913 -- done at their point of creation
4915 and then not Is_Itype
(Element_Type
)
4918 ("`NOT NULL` not allowed (null already excluded)",
4919 Subtype_Indication
(Component_Definition
(Def
)));
4923 Priv
:= Private_Component
(Element_Type
);
4925 if Present
(Priv
) then
4927 -- Check for circular definitions
4929 if Priv
= Any_Type
then
4930 Set_Component_Type
(Etype
(T
), Any_Type
);
4932 -- There is a gap in the visibility of operations on the composite
4933 -- type only if the component type is defined in a different scope.
4935 elsif Scope
(Priv
) = Current_Scope
then
4938 elsif Is_Limited_Type
(Priv
) then
4939 Set_Is_Limited_Composite
(Etype
(T
));
4940 Set_Is_Limited_Composite
(T
);
4942 Set_Is_Private_Composite
(Etype
(T
));
4943 Set_Is_Private_Composite
(T
);
4947 -- A syntax error in the declaration itself may lead to an empty index
4948 -- list, in which case do a minimal patch.
4950 if No
(First_Index
(T
)) then
4951 Error_Msg_N
("missing index definition in array type declaration", T
);
4954 Indexes
: constant List_Id
:=
4955 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
4957 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
4958 Set_First_Index
(T
, First
(Indexes
));
4963 -- Create a concatenation operator for the new type. Internal array
4964 -- types created for packed entities do not need such, they are
4965 -- compatible with the user-defined type.
4967 if Number_Dimensions
(T
) = 1
4968 and then not Is_Packed_Array_Type
(T
)
4970 New_Concatenation_Op
(T
);
4973 -- In the case of an unconstrained array the parser has already verified
4974 -- that all the indexes are unconstrained but we still need to make sure
4975 -- that the element type is constrained.
4977 if Is_Indefinite_Subtype
(Element_Type
) then
4979 ("unconstrained element type in array declaration",
4980 Subtype_Indication
(Component_Def
));
4982 elsif Is_Abstract_Type
(Element_Type
) then
4984 ("the type of a component cannot be abstract",
4985 Subtype_Indication
(Component_Def
));
4988 -- There may be an invariant declared for the component type, but
4989 -- the construction of the component invariant checking procedure
4990 -- takes place during expansion.
4991 end Array_Type_Declaration
;
4993 ------------------------------------------------------
4994 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4995 ------------------------------------------------------
4997 function Replace_Anonymous_Access_To_Protected_Subprogram
4998 (N
: Node_Id
) return Entity_Id
5000 Loc
: constant Source_Ptr
:= Sloc
(N
);
5002 Curr_Scope
: constant Scope_Stack_Entry
:=
5003 Scope_Stack
.Table
(Scope_Stack
.Last
);
5005 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5008 -- Access definition in declaration
5011 -- Object definition or formal definition with an access definition
5014 -- Declaration of anonymous access to subprogram type
5017 -- Original specification in access to subprogram
5022 Set_Is_Internal
(Anon
);
5025 when N_Component_Declaration |
5026 N_Unconstrained_Array_Definition |
5027 N_Constrained_Array_Definition
=>
5028 Comp
:= Component_Definition
(N
);
5029 Acc
:= Access_Definition
(Comp
);
5031 when N_Discriminant_Specification
=>
5032 Comp
:= Discriminant_Type
(N
);
5035 when N_Parameter_Specification
=>
5036 Comp
:= Parameter_Type
(N
);
5039 when N_Access_Function_Definition
=>
5040 Comp
:= Result_Definition
(N
);
5043 when N_Object_Declaration
=>
5044 Comp
:= Object_Definition
(N
);
5047 when N_Function_Specification
=>
5048 Comp
:= Result_Definition
(N
);
5052 raise Program_Error
;
5055 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5058 Make_Full_Type_Declaration
(Loc
,
5059 Defining_Identifier
=> Anon
,
5060 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5062 Mark_Rewrite_Insertion
(Decl
);
5064 -- In ASIS mode, analyze the profile on the original node, because
5065 -- the separate copy does not provide enough links to recover the
5066 -- original tree. Analysis is limited to type annotations, within
5067 -- a temporary scope that serves as an anonymous subprogram to collect
5068 -- otherwise useless temporaries and itypes.
5072 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5075 if Nkind
(Spec
) = N_Access_Function_Definition
then
5076 Set_Ekind
(Typ
, E_Function
);
5078 Set_Ekind
(Typ
, E_Procedure
);
5081 Set_Parent
(Typ
, N
);
5082 Set_Scope
(Typ
, Current_Scope
);
5085 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5087 if Nkind
(Spec
) = N_Access_Function_Definition
then
5088 if Nkind
(Result_Definition
(Spec
)) = N_Access_Definition
then
5089 Find_Type
(Subtype_Mark
(Result_Definition
(Spec
)));
5091 Find_Type
(Result_Definition
(Spec
));
5099 -- Insert the new declaration in the nearest enclosing scope. If the
5100 -- node is a body and N is its return type, the declaration belongs in
5101 -- the enclosing scope.
5105 if Nkind
(P
) = N_Subprogram_Body
5106 and then Nkind
(N
) = N_Function_Specification
5111 while Present
(P
) and then not Has_Declarations
(P
) loop
5115 pragma Assert
(Present
(P
));
5117 if Nkind
(P
) = N_Package_Specification
then
5118 Prepend
(Decl
, Visible_Declarations
(P
));
5120 Prepend
(Decl
, Declarations
(P
));
5123 -- Replace the anonymous type with an occurrence of the new declaration.
5124 -- In all cases the rewritten node does not have the null-exclusion
5125 -- attribute because (if present) it was already inherited by the
5126 -- anonymous entity (Anon). Thus, in case of components we do not
5127 -- inherit this attribute.
5129 if Nkind
(N
) = N_Parameter_Specification
then
5130 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5131 Set_Etype
(Defining_Identifier
(N
), Anon
);
5132 Set_Null_Exclusion_Present
(N
, False);
5134 elsif Nkind
(N
) = N_Object_Declaration
then
5135 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5136 Set_Etype
(Defining_Identifier
(N
), Anon
);
5138 elsif Nkind
(N
) = N_Access_Function_Definition
then
5139 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5141 elsif Nkind
(N
) = N_Function_Specification
then
5142 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5143 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5147 Make_Component_Definition
(Loc
,
5148 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5151 Mark_Rewrite_Insertion
(Comp
);
5153 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
5157 -- Temporarily remove the current scope (record or subprogram) from
5158 -- the stack to add the new declarations to the enclosing scope.
5160 Scope_Stack
.Decrement_Last
;
5162 Set_Is_Itype
(Anon
);
5163 Scope_Stack
.Append
(Curr_Scope
);
5166 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
5167 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
5169 end Replace_Anonymous_Access_To_Protected_Subprogram
;
5171 -------------------------------
5172 -- Build_Derived_Access_Type --
5173 -------------------------------
5175 procedure Build_Derived_Access_Type
5177 Parent_Type
: Entity_Id
;
5178 Derived_Type
: Entity_Id
)
5180 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
5182 Desig_Type
: Entity_Id
;
5184 Discr_Con_Elist
: Elist_Id
;
5185 Discr_Con_El
: Elmt_Id
;
5189 -- Set the designated type so it is available in case this is an access
5190 -- to a self-referential type, e.g. a standard list type with a next
5191 -- pointer. Will be reset after subtype is built.
5193 Set_Directly_Designated_Type
5194 (Derived_Type
, Designated_Type
(Parent_Type
));
5196 Subt
:= Process_Subtype
(S
, N
);
5198 if Nkind
(S
) /= N_Subtype_Indication
5199 and then Subt
/= Base_Type
(Subt
)
5201 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
5204 if Ekind
(Derived_Type
) = E_Access_Subtype
then
5206 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5207 Ibase
: constant Entity_Id
:=
5208 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
5209 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
5210 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
5213 Copy_Node
(Pbase
, Ibase
);
5215 Set_Chars
(Ibase
, Svg_Chars
);
5216 Set_Next_Entity
(Ibase
, Svg_Next_E
);
5217 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
5218 Set_Scope
(Ibase
, Scope
(Derived_Type
));
5219 Set_Freeze_Node
(Ibase
, Empty
);
5220 Set_Is_Frozen
(Ibase
, False);
5221 Set_Comes_From_Source
(Ibase
, False);
5222 Set_Is_First_Subtype
(Ibase
, False);
5224 Set_Etype
(Ibase
, Pbase
);
5225 Set_Etype
(Derived_Type
, Ibase
);
5229 Set_Directly_Designated_Type
5230 (Derived_Type
, Designated_Type
(Subt
));
5232 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
5233 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
5234 Set_Size_Info
(Derived_Type
, Parent_Type
);
5235 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5236 Set_Depends_On_Private
(Derived_Type
,
5237 Has_Private_Component
(Derived_Type
));
5238 Conditional_Delay
(Derived_Type
, Subt
);
5240 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5241 -- that it is not redundant.
5243 if Null_Exclusion_Present
(Type_Definition
(N
)) then
5244 Set_Can_Never_Be_Null
(Derived_Type
);
5246 if Can_Never_Be_Null
(Parent_Type
)
5250 ("`NOT NULL` not allowed (& already excludes null)",
5254 elsif Can_Never_Be_Null
(Parent_Type
) then
5255 Set_Can_Never_Be_Null
(Derived_Type
);
5258 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5259 -- the root type for this information.
5261 -- Apply range checks to discriminants for derived record case
5262 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5264 Desig_Type
:= Designated_Type
(Derived_Type
);
5265 if Is_Composite_Type
(Desig_Type
)
5266 and then (not Is_Array_Type
(Desig_Type
))
5267 and then Has_Discriminants
(Desig_Type
)
5268 and then Base_Type
(Desig_Type
) /= Desig_Type
5270 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
5271 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
5273 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
5274 while Present
(Discr_Con_El
) loop
5275 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
5276 Next_Elmt
(Discr_Con_El
);
5277 Next_Discriminant
(Discr
);
5280 end Build_Derived_Access_Type
;
5282 ------------------------------
5283 -- Build_Derived_Array_Type --
5284 ------------------------------
5286 procedure Build_Derived_Array_Type
5288 Parent_Type
: Entity_Id
;
5289 Derived_Type
: Entity_Id
)
5291 Loc
: constant Source_Ptr
:= Sloc
(N
);
5292 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5293 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5294 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5295 Implicit_Base
: Entity_Id
;
5296 New_Indic
: Node_Id
;
5298 procedure Make_Implicit_Base
;
5299 -- If the parent subtype is constrained, the derived type is a subtype
5300 -- of an implicit base type derived from the parent base.
5302 ------------------------
5303 -- Make_Implicit_Base --
5304 ------------------------
5306 procedure Make_Implicit_Base
is
5309 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5311 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5312 Set_Etype
(Implicit_Base
, Parent_Base
);
5314 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
5315 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
5317 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
5318 end Make_Implicit_Base
;
5320 -- Start of processing for Build_Derived_Array_Type
5323 if not Is_Constrained
(Parent_Type
) then
5324 if Nkind
(Indic
) /= N_Subtype_Indication
then
5325 Set_Ekind
(Derived_Type
, E_Array_Type
);
5327 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5328 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
5330 Set_Has_Delayed_Freeze
(Derived_Type
, True);
5334 Set_Etype
(Derived_Type
, Implicit_Base
);
5337 Make_Subtype_Declaration
(Loc
,
5338 Defining_Identifier
=> Derived_Type
,
5339 Subtype_Indication
=>
5340 Make_Subtype_Indication
(Loc
,
5341 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
5342 Constraint
=> Constraint
(Indic
)));
5344 Rewrite
(N
, New_Indic
);
5349 if Nkind
(Indic
) /= N_Subtype_Indication
then
5352 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
5353 Set_Etype
(Derived_Type
, Implicit_Base
);
5354 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
5357 Error_Msg_N
("illegal constraint on constrained type", Indic
);
5361 -- If parent type is not a derived type itself, and is declared in
5362 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5363 -- the new type's concatenation operator since Derive_Subprograms
5364 -- will not inherit the parent's operator. If the parent type is
5365 -- unconstrained, the operator is of the unconstrained base type.
5367 if Number_Dimensions
(Parent_Type
) = 1
5368 and then not Is_Limited_Type
(Parent_Type
)
5369 and then not Is_Derived_Type
(Parent_Type
)
5370 and then not Is_Package_Or_Generic_Package
5371 (Scope
(Base_Type
(Parent_Type
)))
5373 if not Is_Constrained
(Parent_Type
)
5374 and then Is_Constrained
(Derived_Type
)
5376 New_Concatenation_Op
(Implicit_Base
);
5378 New_Concatenation_Op
(Derived_Type
);
5381 end Build_Derived_Array_Type
;
5383 -----------------------------------
5384 -- Build_Derived_Concurrent_Type --
5385 -----------------------------------
5387 procedure Build_Derived_Concurrent_Type
5389 Parent_Type
: Entity_Id
;
5390 Derived_Type
: Entity_Id
)
5392 Loc
: constant Source_Ptr
:= Sloc
(N
);
5394 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
5395 Corr_Decl
: Node_Id
;
5396 Corr_Decl_Needed
: Boolean;
5397 -- If the derived type has fewer discriminants than its parent, the
5398 -- corresponding record is also a derived type, in order to account for
5399 -- the bound discriminants. We create a full type declaration for it in
5402 Constraint_Present
: constant Boolean :=
5403 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5404 N_Subtype_Indication
;
5406 D_Constraint
: Node_Id
;
5407 New_Constraint
: Elist_Id
;
5408 Old_Disc
: Entity_Id
;
5409 New_Disc
: Entity_Id
;
5413 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5414 Corr_Decl_Needed
:= False;
5417 if Present
(Discriminant_Specifications
(N
))
5418 and then Constraint_Present
5420 Old_Disc
:= First_Discriminant
(Parent_Type
);
5421 New_Disc
:= First
(Discriminant_Specifications
(N
));
5422 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
5423 Next_Discriminant
(Old_Disc
);
5428 if Present
(Old_Disc
) and then Expander_Active
then
5430 -- The new type has fewer discriminants, so we need to create a new
5431 -- corresponding record, which is derived from the corresponding
5432 -- record of the parent, and has a stored constraint that captures
5433 -- the values of the discriminant constraints. The corresponding
5434 -- record is needed only if expander is active and code generation is
5437 -- The type declaration for the derived corresponding record has the
5438 -- same discriminant part and constraints as the current declaration.
5439 -- Copy the unanalyzed tree to build declaration.
5441 Corr_Decl_Needed
:= True;
5442 New_N
:= Copy_Separate_Tree
(N
);
5445 Make_Full_Type_Declaration
(Loc
,
5446 Defining_Identifier
=> Corr_Record
,
5447 Discriminant_Specifications
=>
5448 Discriminant_Specifications
(New_N
),
5450 Make_Derived_Type_Definition
(Loc
,
5451 Subtype_Indication
=>
5452 Make_Subtype_Indication
(Loc
,
5455 (Corresponding_Record_Type
(Parent_Type
), Loc
),
5458 (Subtype_Indication
(Type_Definition
(New_N
))))));
5461 -- Copy Storage_Size and Relative_Deadline variables if task case
5463 if Is_Task_Type
(Parent_Type
) then
5464 Set_Storage_Size_Variable
(Derived_Type
,
5465 Storage_Size_Variable
(Parent_Type
));
5466 Set_Relative_Deadline_Variable
(Derived_Type
,
5467 Relative_Deadline_Variable
(Parent_Type
));
5470 if Present
(Discriminant_Specifications
(N
)) then
5471 Push_Scope
(Derived_Type
);
5472 Check_Or_Process_Discriminants
(N
, Derived_Type
);
5474 if Constraint_Present
then
5476 Expand_To_Stored_Constraint
5478 Build_Discriminant_Constraints
5480 Subtype_Indication
(Type_Definition
(N
)), True));
5485 elsif Constraint_Present
then
5487 -- Build constrained subtype, copying the constraint, and derive
5488 -- from it to create a derived constrained type.
5491 Loc
: constant Source_Ptr
:= Sloc
(N
);
5492 Anon
: constant Entity_Id
:=
5493 Make_Defining_Identifier
(Loc
,
5494 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
5499 Make_Subtype_Declaration
(Loc
,
5500 Defining_Identifier
=> Anon
,
5501 Subtype_Indication
=>
5502 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
5503 Insert_Before
(N
, Decl
);
5506 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
5507 New_Occurrence_Of
(Anon
, Loc
));
5508 Set_Analyzed
(Derived_Type
, False);
5514 -- By default, operations and private data are inherited from parent.
5515 -- However, in the presence of bound discriminants, a new corresponding
5516 -- record will be created, see below.
5518 Set_Has_Discriminants
5519 (Derived_Type
, Has_Discriminants
(Parent_Type
));
5520 Set_Corresponding_Record_Type
5521 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
5523 -- Is_Constrained is set according the parent subtype, but is set to
5524 -- False if the derived type is declared with new discriminants.
5528 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
5529 and then not Present
(Discriminant_Specifications
(N
)));
5531 if Constraint_Present
then
5532 if not Has_Discriminants
(Parent_Type
) then
5533 Error_Msg_N
("untagged parent must have discriminants", N
);
5535 elsif Present
(Discriminant_Specifications
(N
)) then
5537 -- Verify that new discriminants are used to constrain old ones
5542 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
5544 Old_Disc
:= First_Discriminant
(Parent_Type
);
5546 while Present
(D_Constraint
) loop
5547 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
5549 -- Positional constraint. If it is a reference to a new
5550 -- discriminant, it constrains the corresponding old one.
5552 if Nkind
(D_Constraint
) = N_Identifier
then
5553 New_Disc
:= First_Discriminant
(Derived_Type
);
5554 while Present
(New_Disc
) loop
5555 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
5556 Next_Discriminant
(New_Disc
);
5559 if Present
(New_Disc
) then
5560 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
5564 Next_Discriminant
(Old_Disc
);
5566 -- if this is a named constraint, search by name for the old
5567 -- discriminants constrained by the new one.
5569 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
5571 -- Find new discriminant with that name
5573 New_Disc
:= First_Discriminant
(Derived_Type
);
5574 while Present
(New_Disc
) loop
5576 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
5577 Next_Discriminant
(New_Disc
);
5580 if Present
(New_Disc
) then
5582 -- Verify that new discriminant renames some discriminant
5583 -- of the parent type, and associate the new discriminant
5584 -- with one or more old ones that it renames.
5590 Selector
:= First
(Selector_Names
(D_Constraint
));
5591 while Present
(Selector
) loop
5592 Old_Disc
:= First_Discriminant
(Parent_Type
);
5593 while Present
(Old_Disc
) loop
5594 exit when Chars
(Old_Disc
) = Chars
(Selector
);
5595 Next_Discriminant
(Old_Disc
);
5598 if Present
(Old_Disc
) then
5599 Set_Corresponding_Discriminant
5600 (New_Disc
, Old_Disc
);
5609 Next
(D_Constraint
);
5612 New_Disc
:= First_Discriminant
(Derived_Type
);
5613 while Present
(New_Disc
) loop
5614 if No
(Corresponding_Discriminant
(New_Disc
)) then
5616 ("new discriminant& must constrain old one", N
, New_Disc
);
5619 Subtypes_Statically_Compatible
5621 Etype
(Corresponding_Discriminant
(New_Disc
)))
5624 ("& not statically compatible with parent discriminant",
5628 Next_Discriminant
(New_Disc
);
5632 elsif Present
(Discriminant_Specifications
(N
)) then
5634 ("missing discriminant constraint in untagged derivation", N
);
5637 -- The entity chain of the derived type includes the new discriminants
5638 -- but shares operations with the parent.
5640 if Present
(Discriminant_Specifications
(N
)) then
5641 Old_Disc
:= First_Discriminant
(Parent_Type
);
5642 while Present
(Old_Disc
) loop
5643 if No
(Next_Entity
(Old_Disc
))
5644 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
5647 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
5651 Next_Discriminant
(Old_Disc
);
5655 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
5656 if Has_Discriminants
(Parent_Type
) then
5657 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5658 Set_Discriminant_Constraint
(
5659 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5663 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
5665 Set_Has_Completion
(Derived_Type
);
5667 if Corr_Decl_Needed
then
5668 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
5669 Insert_After
(N
, Corr_Decl
);
5670 Analyze
(Corr_Decl
);
5671 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
5673 end Build_Derived_Concurrent_Type
;
5675 ------------------------------------
5676 -- Build_Derived_Enumeration_Type --
5677 ------------------------------------
5679 procedure Build_Derived_Enumeration_Type
5681 Parent_Type
: Entity_Id
;
5682 Derived_Type
: Entity_Id
)
5684 Loc
: constant Source_Ptr
:= Sloc
(N
);
5685 Def
: constant Node_Id
:= Type_Definition
(N
);
5686 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
5687 Implicit_Base
: Entity_Id
;
5688 Literal
: Entity_Id
;
5689 New_Lit
: Entity_Id
;
5690 Literals_List
: List_Id
;
5691 Type_Decl
: Node_Id
;
5693 Rang_Expr
: Node_Id
;
5696 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5697 -- not have explicit literals lists we need to process types derived
5698 -- from them specially. This is handled by Derived_Standard_Character.
5699 -- If the parent type is a generic type, there are no literals either,
5700 -- and we construct the same skeletal representation as for the generic
5703 if Is_Standard_Character_Type
(Parent_Type
) then
5704 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
5706 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
5712 if Nkind
(Indic
) /= N_Subtype_Indication
then
5714 Make_Attribute_Reference
(Loc
,
5715 Attribute_Name
=> Name_First
,
5716 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5717 Set_Etype
(Lo
, Derived_Type
);
5720 Make_Attribute_Reference
(Loc
,
5721 Attribute_Name
=> Name_Last
,
5722 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5723 Set_Etype
(Hi
, Derived_Type
);
5725 Set_Scalar_Range
(Derived_Type
,
5731 -- Analyze subtype indication and verify compatibility
5732 -- with parent type.
5734 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
5735 Base_Type
(Parent_Type
)
5738 ("illegal constraint for formal discrete type", N
);
5744 -- If a constraint is present, analyze the bounds to catch
5745 -- premature usage of the derived literals.
5747 if Nkind
(Indic
) = N_Subtype_Indication
5748 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
5750 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
5751 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
5754 -- Introduce an implicit base type for the derived type even if there
5755 -- is no constraint attached to it, since this seems closer to the
5756 -- Ada semantics. Build a full type declaration tree for the derived
5757 -- type using the implicit base type as the defining identifier. The
5758 -- build a subtype declaration tree which applies the constraint (if
5759 -- any) have it replace the derived type declaration.
5761 Literal
:= First_Literal
(Parent_Type
);
5762 Literals_List
:= New_List
;
5763 while Present
(Literal
)
5764 and then Ekind
(Literal
) = E_Enumeration_Literal
5766 -- Literals of the derived type have the same representation as
5767 -- those of the parent type, but this representation can be
5768 -- overridden by an explicit representation clause. Indicate
5769 -- that there is no explicit representation given yet. These
5770 -- derived literals are implicit operations of the new type,
5771 -- and can be overridden by explicit ones.
5773 if Nkind
(Literal
) = N_Defining_Character_Literal
then
5775 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
5777 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
5780 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
5781 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
5782 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
5783 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
5784 Set_Alias
(New_Lit
, Literal
);
5785 Set_Is_Known_Valid
(New_Lit
, True);
5787 Append
(New_Lit
, Literals_List
);
5788 Next_Literal
(Literal
);
5792 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5793 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
5795 -- Indicate the proper nature of the derived type. This must be done
5796 -- before analysis of the literals, to recognize cases when a literal
5797 -- may be hidden by a previous explicit function definition (cf.
5800 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
5801 Set_Etype
(Derived_Type
, Implicit_Base
);
5804 Make_Full_Type_Declaration
(Loc
,
5805 Defining_Identifier
=> Implicit_Base
,
5806 Discriminant_Specifications
=> No_List
,
5808 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
5810 Mark_Rewrite_Insertion
(Type_Decl
);
5811 Insert_Before
(N
, Type_Decl
);
5812 Analyze
(Type_Decl
);
5814 -- After the implicit base is analyzed its Etype needs to be changed
5815 -- to reflect the fact that it is derived from the parent type which
5816 -- was ignored during analysis. We also set the size at this point.
5818 Set_Etype
(Implicit_Base
, Parent_Type
);
5820 Set_Size_Info
(Implicit_Base
, Parent_Type
);
5821 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
5822 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
5824 -- Copy other flags from parent type
5826 Set_Has_Non_Standard_Rep
5827 (Implicit_Base
, Has_Non_Standard_Rep
5829 Set_Has_Pragma_Ordered
5830 (Implicit_Base
, Has_Pragma_Ordered
5832 Set_Has_Delayed_Freeze
(Implicit_Base
);
5834 -- Process the subtype indication including a validation check on the
5835 -- constraint, if any. If a constraint is given, its bounds must be
5836 -- implicitly converted to the new type.
5838 if Nkind
(Indic
) = N_Subtype_Indication
then
5840 R
: constant Node_Id
:=
5841 Range_Expression
(Constraint
(Indic
));
5844 if Nkind
(R
) = N_Range
then
5845 Hi
:= Build_Scalar_Bound
5846 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
5847 Lo
:= Build_Scalar_Bound
5848 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
5851 -- Constraint is a Range attribute. Replace with explicit
5852 -- mention of the bounds of the prefix, which must be a
5855 Analyze
(Prefix
(R
));
5857 Convert_To
(Implicit_Base
,
5858 Make_Attribute_Reference
(Loc
,
5859 Attribute_Name
=> Name_Last
,
5861 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5864 Convert_To
(Implicit_Base
,
5865 Make_Attribute_Reference
(Loc
,
5866 Attribute_Name
=> Name_First
,
5868 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5875 (Type_High_Bound
(Parent_Type
),
5876 Parent_Type
, Implicit_Base
);
5879 (Type_Low_Bound
(Parent_Type
),
5880 Parent_Type
, Implicit_Base
);
5888 -- If we constructed a default range for the case where no range
5889 -- was given, then the expressions in the range must not freeze
5890 -- since they do not correspond to expressions in the source.
5892 if Nkind
(Indic
) /= N_Subtype_Indication
then
5893 Set_Must_Not_Freeze
(Lo
);
5894 Set_Must_Not_Freeze
(Hi
);
5895 Set_Must_Not_Freeze
(Rang_Expr
);
5899 Make_Subtype_Declaration
(Loc
,
5900 Defining_Identifier
=> Derived_Type
,
5901 Subtype_Indication
=>
5902 Make_Subtype_Indication
(Loc
,
5903 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5905 Make_Range_Constraint
(Loc
,
5906 Range_Expression
=> Rang_Expr
))));
5910 -- Apply a range check. Since this range expression doesn't have an
5911 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5914 if Nkind
(Indic
) = N_Subtype_Indication
then
5915 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
5917 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
5920 end Build_Derived_Enumeration_Type
;
5922 --------------------------------
5923 -- Build_Derived_Numeric_Type --
5924 --------------------------------
5926 procedure Build_Derived_Numeric_Type
5928 Parent_Type
: Entity_Id
;
5929 Derived_Type
: Entity_Id
)
5931 Loc
: constant Source_Ptr
:= Sloc
(N
);
5932 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5933 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5934 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5935 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
5936 N_Subtype_Indication
;
5937 Implicit_Base
: Entity_Id
;
5943 -- Process the subtype indication including a validation check on
5944 -- the constraint if any.
5946 Discard_Node
(Process_Subtype
(Indic
, N
));
5948 -- Introduce an implicit base type for the derived type even if there
5949 -- is no constraint attached to it, since this seems closer to the Ada
5953 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5955 Set_Etype
(Implicit_Base
, Parent_Base
);
5956 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5957 Set_Size_Info
(Implicit_Base
, Parent_Base
);
5958 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
5959 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
5960 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5962 -- Set RM Size for discrete type or decimal fixed-point type
5963 -- Ordinary fixed-point is excluded, why???
5965 if Is_Discrete_Type
(Parent_Base
)
5966 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
5968 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
5971 Set_Has_Delayed_Freeze
(Implicit_Base
);
5973 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
5974 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
5976 Set_Scalar_Range
(Implicit_Base
,
5981 if Has_Infinities
(Parent_Base
) then
5982 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
5985 -- The Derived_Type, which is the entity of the declaration, is a
5986 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5987 -- absence of an explicit constraint.
5989 Set_Etype
(Derived_Type
, Implicit_Base
);
5991 -- If we did not have a constraint, then the Ekind is set from the
5992 -- parent type (otherwise Process_Subtype has set the bounds)
5994 if No_Constraint
then
5995 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
5998 -- If we did not have a range constraint, then set the range from the
5999 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6002 or else not Has_Range_Constraint
(Indic
)
6004 Set_Scalar_Range
(Derived_Type
,
6006 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6007 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6008 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6010 if Has_Infinities
(Parent_Type
) then
6011 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6014 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6017 Set_Is_Descendent_Of_Address
(Derived_Type
,
6018 Is_Descendent_Of_Address
(Parent_Type
));
6019 Set_Is_Descendent_Of_Address
(Implicit_Base
,
6020 Is_Descendent_Of_Address
(Parent_Type
));
6022 -- Set remaining type-specific fields, depending on numeric type
6024 if Is_Modular_Integer_Type
(Parent_Type
) then
6025 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6027 Set_Non_Binary_Modulus
6028 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6031 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6033 elsif Is_Floating_Point_Type
(Parent_Type
) then
6035 -- Digits of base type is always copied from the digits value of
6036 -- the parent base type, but the digits of the derived type will
6037 -- already have been set if there was a constraint present.
6039 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6040 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6042 if No_Constraint
then
6043 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6046 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6048 -- Small of base type and derived type are always copied from the
6049 -- parent base type, since smalls never change. The delta of the
6050 -- base type is also copied from the parent base type. However the
6051 -- delta of the derived type will have been set already if a
6052 -- constraint was present.
6054 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6055 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6056 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6058 if No_Constraint
then
6059 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6062 -- The scale and machine radix in the decimal case are always
6063 -- copied from the parent base type.
6065 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6066 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6067 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6069 Set_Machine_Radix_10
6070 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6071 Set_Machine_Radix_10
6072 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6074 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6076 if No_Constraint
then
6077 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6080 -- the analysis of the subtype_indication sets the
6081 -- digits value of the derived type.
6088 -- The type of the bounds is that of the parent type, and they
6089 -- must be converted to the derived type.
6091 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6093 -- The implicit_base should be frozen when the derived type is frozen,
6094 -- but note that it is used in the conversions of the bounds. For fixed
6095 -- types we delay the determination of the bounds until the proper
6096 -- freezing point. For other numeric types this is rejected by GCC, for
6097 -- reasons that are currently unclear (???), so we choose to freeze the
6098 -- implicit base now. In the case of integers and floating point types
6099 -- this is harmless because subsequent representation clauses cannot
6100 -- affect anything, but it is still baffling that we cannot use the
6101 -- same mechanism for all derived numeric types.
6103 -- There is a further complication: actually *some* representation
6104 -- clauses can affect the implicit base type. Namely, attribute
6105 -- definition clauses for stream-oriented attributes need to set the
6106 -- corresponding TSS entries on the base type, and this normally cannot
6107 -- be done after the base type is frozen, so the circuitry in
6108 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
6109 -- not use Set_TSS in this case.
6111 if Is_Fixed_Point_Type
(Parent_Type
) then
6112 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6114 Freeze_Before
(N
, Implicit_Base
);
6116 end Build_Derived_Numeric_Type
;
6118 --------------------------------
6119 -- Build_Derived_Private_Type --
6120 --------------------------------
6122 procedure Build_Derived_Private_Type
6124 Parent_Type
: Entity_Id
;
6125 Derived_Type
: Entity_Id
;
6126 Is_Completion
: Boolean;
6127 Derive_Subps
: Boolean := True)
6129 Loc
: constant Source_Ptr
:= Sloc
(N
);
6130 Der_Base
: Entity_Id
;
6132 Full_Decl
: Node_Id
:= Empty
;
6133 Full_Der
: Entity_Id
;
6135 Last_Discr
: Entity_Id
;
6136 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
6137 Swapped
: Boolean := False;
6139 procedure Copy_And_Build
;
6140 -- Copy derived type declaration, replace parent with its full view,
6141 -- and analyze new declaration.
6143 --------------------
6144 -- Copy_And_Build --
6145 --------------------
6147 procedure Copy_And_Build
is
6151 if Ekind
(Parent_Type
) in Record_Kind
6153 (Ekind
(Parent_Type
) in Enumeration_Kind
6154 and then not Is_Standard_Character_Type
(Parent_Type
)
6155 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
6157 Full_N
:= New_Copy_Tree
(N
);
6158 Insert_After
(N
, Full_N
);
6159 Build_Derived_Type
(
6160 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6163 Build_Derived_Type
(
6164 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
6168 -- Start of processing for Build_Derived_Private_Type
6171 if Is_Tagged_Type
(Parent_Type
) then
6172 Full_P
:= Full_View
(Parent_Type
);
6174 -- A type extension of a type with unknown discriminants is an
6175 -- indefinite type that the back-end cannot handle directly.
6176 -- We treat it as a private type, and build a completion that is
6177 -- derived from the full view of the parent, and hopefully has
6178 -- known discriminants.
6180 -- If the full view of the parent type has an underlying record view,
6181 -- use it to generate the underlying record view of this derived type
6182 -- (required for chains of derivations with unknown discriminants).
6184 -- Minor optimization: we avoid the generation of useless underlying
6185 -- record view entities if the private type declaration has unknown
6186 -- discriminants but its corresponding full view has no
6189 if Has_Unknown_Discriminants
(Parent_Type
)
6190 and then Present
(Full_P
)
6191 and then (Has_Discriminants
(Full_P
)
6192 or else Present
(Underlying_Record_View
(Full_P
)))
6193 and then not In_Open_Scopes
(Par_Scope
)
6194 and then Expander_Active
6197 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
6198 New_Ext
: constant Node_Id
:=
6200 (Record_Extension_Part
(Type_Definition
(N
)));
6204 Build_Derived_Record_Type
6205 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6207 -- Build anonymous completion, as a derivation from the full
6208 -- view of the parent. This is not a completion in the usual
6209 -- sense, because the current type is not private.
6212 Make_Full_Type_Declaration
(Loc
,
6213 Defining_Identifier
=> Full_Der
,
6215 Make_Derived_Type_Definition
(Loc
,
6216 Subtype_Indication
=>
6218 (Subtype_Indication
(Type_Definition
(N
))),
6219 Record_Extension_Part
=> New_Ext
));
6221 -- If the parent type has an underlying record view, use it
6222 -- here to build the new underlying record view.
6224 if Present
(Underlying_Record_View
(Full_P
)) then
6226 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
6228 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
6229 Underlying_Record_View
(Full_P
));
6232 Install_Private_Declarations
(Par_Scope
);
6233 Install_Visible_Declarations
(Par_Scope
);
6234 Insert_Before
(N
, Decl
);
6236 -- Mark entity as an underlying record view before analysis,
6237 -- to avoid generating the list of its primitive operations
6238 -- (which is not really required for this entity) and thus
6239 -- prevent spurious errors associated with missing overriding
6240 -- of abstract primitives (overridden only for Derived_Type).
6242 Set_Ekind
(Full_Der
, E_Record_Type
);
6243 Set_Is_Underlying_Record_View
(Full_Der
);
6247 pragma Assert
(Has_Discriminants
(Full_Der
)
6248 and then not Has_Unknown_Discriminants
(Full_Der
));
6250 Uninstall_Declarations
(Par_Scope
);
6252 -- Freeze the underlying record view, to prevent generation of
6253 -- useless dispatching information, which is simply shared with
6254 -- the real derived type.
6256 Set_Is_Frozen
(Full_Der
);
6258 -- Set up links between real entity and underlying record view
6260 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
6261 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
6264 -- If discriminants are known, build derived record
6267 Build_Derived_Record_Type
6268 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6273 elsif Has_Discriminants
(Parent_Type
) then
6274 if Present
(Full_View
(Parent_Type
)) then
6275 if not Is_Completion
then
6277 -- Copy declaration for subsequent analysis, to provide a
6278 -- completion for what is a private declaration. Indicate that
6279 -- the full type is internally generated.
6281 Full_Decl
:= New_Copy_Tree
(N
);
6282 Full_Der
:= New_Copy
(Derived_Type
);
6283 Set_Comes_From_Source
(Full_Decl
, False);
6284 Set_Comes_From_Source
(Full_Der
, False);
6285 Set_Parent
(Full_Der
, Full_Decl
);
6287 Insert_After
(N
, Full_Decl
);
6290 -- If this is a completion, the full view being built is itself
6291 -- private. We build a subtype of the parent with the same
6292 -- constraints as this full view, to convey to the back end the
6293 -- constrained components and the size of this subtype. If the
6294 -- parent is constrained, its full view can serve as the
6295 -- underlying full view of the derived type.
6297 if No
(Discriminant_Specifications
(N
)) then
6298 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6299 N_Subtype_Indication
6301 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
6303 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
6304 Set_Underlying_Full_View
6305 (Derived_Type
, Full_View
(Parent_Type
));
6309 -- If there are new discriminants, the parent subtype is
6310 -- constrained by them, but it is not clear how to build
6311 -- the Underlying_Full_View in this case???
6318 -- Build partial view of derived type from partial view of parent
6320 Build_Derived_Record_Type
6321 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
6323 if Present
(Full_View
(Parent_Type
)) and then not Is_Completion
then
6324 if not In_Open_Scopes
(Par_Scope
)
6325 or else not In_Same_Source_Unit
(N
, Parent_Type
)
6327 -- Swap partial and full views temporarily
6329 Install_Private_Declarations
(Par_Scope
);
6330 Install_Visible_Declarations
(Par_Scope
);
6334 -- Build full view of derived type from full view of parent which
6335 -- is now installed. Subprograms have been derived on the partial
6336 -- view, the completion does not derive them anew.
6338 if not Is_Tagged_Type
(Parent_Type
) then
6340 -- If the parent is itself derived from another private type,
6341 -- installing the private declarations has not affected its
6342 -- privacy status, so use its own full view explicitly.
6344 if Is_Private_Type
(Parent_Type
) then
6345 Build_Derived_Record_Type
6346 (Full_Decl
, Full_View
(Parent_Type
), Full_Der
, False);
6348 Build_Derived_Record_Type
6349 (Full_Decl
, Parent_Type
, Full_Der
, False);
6353 -- If full view of parent is tagged, the completion inherits
6354 -- the proper primitive operations.
6356 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
6357 Build_Derived_Record_Type
6358 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
6361 -- The full declaration has been introduced into the tree and
6362 -- processed in the step above. It should not be analyzed again
6363 -- (when encountered later in the current list of declarations)
6364 -- to prevent spurious name conflicts. The full entity remains
6367 Set_Analyzed
(Full_Decl
);
6370 Uninstall_Declarations
(Par_Scope
);
6372 if In_Open_Scopes
(Par_Scope
) then
6373 Install_Visible_Declarations
(Par_Scope
);
6377 Der_Base
:= Base_Type
(Derived_Type
);
6378 Set_Full_View
(Derived_Type
, Full_Der
);
6379 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
6381 -- Copy the discriminant list from full view to the partial views
6382 -- (base type and its subtype). Gigi requires that the partial and
6383 -- full views have the same discriminants.
6385 -- Note that since the partial view is pointing to discriminants
6386 -- in the full view, their scope will be that of the full view.
6387 -- This might cause some front end problems and need adjustment???
6389 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
6390 Set_First_Entity
(Der_Base
, Discr
);
6393 Last_Discr
:= Discr
;
6394 Next_Discriminant
(Discr
);
6395 exit when No
(Discr
);
6398 Set_Last_Entity
(Der_Base
, Last_Discr
);
6400 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
6401 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
6402 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
6405 -- If this is a completion, the derived type stays private and
6406 -- there is no need to create a further full view, except in the
6407 -- unusual case when the derivation is nested within a child unit,
6413 elsif Present
(Full_View
(Parent_Type
))
6414 and then Has_Discriminants
(Full_View
(Parent_Type
))
6416 if Has_Unknown_Discriminants
(Parent_Type
)
6417 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6418 N_Subtype_Indication
6421 ("cannot constrain type with unknown discriminants",
6422 Subtype_Indication
(Type_Definition
(N
)));
6426 -- If full view of parent is a record type, build full view as a
6427 -- derivation from the parent's full view. Partial view remains
6428 -- private. For code generation and linking, the full view must have
6429 -- the same public status as the partial one. This full view is only
6430 -- needed if the parent type is in an enclosing scope, so that the
6431 -- full view may actually become visible, e.g. in a child unit. This
6432 -- is both more efficient, and avoids order of freezing problems with
6433 -- the added entities.
6435 if not Is_Private_Type
(Full_View
(Parent_Type
))
6436 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
6439 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6440 Chars
=> Chars
(Derived_Type
));
6442 Set_Is_Itype
(Full_Der
);
6443 Set_Has_Private_Declaration
(Full_Der
);
6444 Set_Has_Private_Declaration
(Derived_Type
);
6445 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6446 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6447 Set_Full_View
(Derived_Type
, Full_Der
);
6448 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
6449 Full_P
:= Full_View
(Parent_Type
);
6450 Exchange_Declarations
(Parent_Type
);
6452 Exchange_Declarations
(Full_P
);
6455 Build_Derived_Record_Type
6456 (N
, Full_View
(Parent_Type
), Derived_Type
,
6457 Derive_Subps
=> False);
6459 -- Except in the context of the full view of the parent, there
6460 -- are no non-extension aggregates for the derived type.
6462 Set_Has_Private_Ancestor
(Derived_Type
);
6465 -- In any case, the primitive operations are inherited from the
6466 -- parent type, not from the internal full view.
6468 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
6470 if Derive_Subps
then
6471 Derive_Subprograms
(Parent_Type
, Derived_Type
);
6475 -- Untagged type, No discriminants on either view
6477 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6478 N_Subtype_Indication
6481 ("illegal constraint on type without discriminants", N
);
6484 if Present
(Discriminant_Specifications
(N
))
6485 and then Present
(Full_View
(Parent_Type
))
6486 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6488 Error_Msg_N
("cannot add discriminants to untagged type", N
);
6491 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6492 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6493 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
6494 Set_Has_Controlled_Component
6495 (Derived_Type
, Has_Controlled_Component
6498 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6500 if not Is_Controlled
(Parent_Type
) then
6501 Set_Finalize_Storage_Only
6502 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
6505 -- Construct the implicit full view by deriving from full view of the
6506 -- parent type. In order to get proper visibility, we install the
6507 -- parent scope and its declarations.
6509 -- ??? If the parent is untagged private and its completion is
6510 -- tagged, this mechanism will not work because we cannot derive from
6511 -- the tagged full view unless we have an extension.
6513 if Present
(Full_View
(Parent_Type
))
6514 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6515 and then not Is_Completion
6518 Make_Defining_Identifier
6519 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6520 Set_Is_Itype
(Full_Der
);
6521 Set_Has_Private_Declaration
(Full_Der
);
6522 Set_Has_Private_Declaration
(Derived_Type
);
6523 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6524 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6525 Set_Full_View
(Derived_Type
, Full_Der
);
6527 if not In_Open_Scopes
(Par_Scope
) then
6528 Install_Private_Declarations
(Par_Scope
);
6529 Install_Visible_Declarations
(Par_Scope
);
6531 Uninstall_Declarations
(Par_Scope
);
6533 -- If parent scope is open and in another unit, and parent has a
6534 -- completion, then the derivation is taking place in the visible
6535 -- part of a child unit. In that case retrieve the full view of
6536 -- the parent momentarily.
6538 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6539 Full_P
:= Full_View
(Parent_Type
);
6540 Exchange_Declarations
(Parent_Type
);
6542 Exchange_Declarations
(Full_P
);
6544 -- Otherwise it is a local derivation
6550 Set_Scope
(Full_Der
, Current_Scope
);
6551 Set_Is_First_Subtype
(Full_Der
,
6552 Is_First_Subtype
(Derived_Type
));
6553 Set_Has_Size_Clause
(Full_Der
, False);
6554 Set_Has_Alignment_Clause
(Full_Der
, False);
6555 Set_Next_Entity
(Full_Der
, Empty
);
6556 Set_Has_Delayed_Freeze
(Full_Der
);
6557 Set_Is_Frozen
(Full_Der
, False);
6558 Set_Freeze_Node
(Full_Der
, Empty
);
6559 Set_Depends_On_Private
(Full_Der
,
6560 Has_Private_Component
(Full_Der
));
6561 Set_Public_Status
(Full_Der
);
6565 Set_Has_Unknown_Discriminants
(Derived_Type
,
6566 Has_Unknown_Discriminants
(Parent_Type
));
6568 if Is_Private_Type
(Derived_Type
) then
6569 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
6572 if Is_Private_Type
(Parent_Type
)
6573 and then Base_Type
(Parent_Type
) = Parent_Type
6574 and then In_Open_Scopes
(Scope
(Parent_Type
))
6576 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
6578 -- Check for unusual case where a type completed by a private
6579 -- derivation occurs within a package nested in a child unit, and
6580 -- the parent is declared in an ancestor.
6582 if Is_Child_Unit
(Scope
(Current_Scope
))
6583 and then Is_Completion
6584 and then In_Private_Part
(Current_Scope
)
6585 and then Scope
(Parent_Type
) /= Current_Scope
6587 -- Note that if the parent has a completion in the private part,
6588 -- (which is itself a derivation from some other private type)
6589 -- it is that completion that is visible, there is no full view
6590 -- available, and no special processing is needed.
6592 and then Present
(Full_View
(Parent_Type
))
6594 -- In this case, the full view of the parent type will become
6595 -- visible in the body of the enclosing child, and only then will
6596 -- the current type be possibly non-private. We build an
6597 -- underlying full view that will be installed when the enclosing
6598 -- child body is compiled.
6601 Make_Defining_Identifier
6602 (Sloc
(Derived_Type
), Chars
(Derived_Type
));
6603 Set_Is_Itype
(Full_Der
);
6604 Build_Itype_Reference
(Full_Der
, N
);
6606 -- The full view will be used to swap entities on entry/exit to
6607 -- the body, and must appear in the entity list for the package.
6609 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
6610 Set_Has_Private_Declaration
(Full_Der
);
6611 Set_Has_Private_Declaration
(Derived_Type
);
6612 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6613 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6614 Full_P
:= Full_View
(Parent_Type
);
6615 Exchange_Declarations
(Parent_Type
);
6617 Exchange_Declarations
(Full_P
);
6618 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
6621 end Build_Derived_Private_Type
;
6623 -------------------------------
6624 -- Build_Derived_Record_Type --
6625 -------------------------------
6629 -- Ideally we would like to use the same model of type derivation for
6630 -- tagged and untagged record types. Unfortunately this is not quite
6631 -- possible because the semantics of representation clauses is different
6632 -- for tagged and untagged records under inheritance. Consider the
6635 -- type R (...) is [tagged] record ... end record;
6636 -- type T (...) is new R (...) [with ...];
6638 -- The representation clauses for T can specify a completely different
6639 -- record layout from R's. Hence the same component can be placed in two
6640 -- very different positions in objects of type T and R. If R and T are
6641 -- tagged types, representation clauses for T can only specify the layout
6642 -- of non inherited components, thus components that are common in R and T
6643 -- have the same position in objects of type R and T.
6645 -- This has two implications. The first is that the entire tree for R's
6646 -- declaration needs to be copied for T in the untagged case, so that T
6647 -- can be viewed as a record type of its own with its own representation
6648 -- clauses. The second implication is the way we handle discriminants.
6649 -- Specifically, in the untagged case we need a way to communicate to Gigi
6650 -- what are the real discriminants in the record, while for the semantics
6651 -- we need to consider those introduced by the user to rename the
6652 -- discriminants in the parent type. This is handled by introducing the
6653 -- notion of stored discriminants. See below for more.
6655 -- Fortunately the way regular components are inherited can be handled in
6656 -- the same way in tagged and untagged types.
6658 -- To complicate things a bit more the private view of a private extension
6659 -- cannot be handled in the same way as the full view (for one thing the
6660 -- semantic rules are somewhat different). We will explain what differs
6663 -- 2. DISCRIMINANTS UNDER INHERITANCE
6665 -- The semantic rules governing the discriminants of derived types are
6668 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6669 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6671 -- If parent type has discriminants, then the discriminants that are
6672 -- declared in the derived type are [3.4 (11)]:
6674 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6677 -- o Otherwise, each discriminant of the parent type (implicitly declared
6678 -- in the same order with the same specifications). In this case, the
6679 -- discriminants are said to be "inherited", or if unknown in the parent
6680 -- are also unknown in the derived type.
6682 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6684 -- o The parent subtype shall be constrained;
6686 -- o If the parent type is not a tagged type, then each discriminant of
6687 -- the derived type shall be used in the constraint defining a parent
6688 -- subtype. [Implementation note: This ensures that the new discriminant
6689 -- can share storage with an existing discriminant.]
6691 -- For the derived type each discriminant of the parent type is either
6692 -- inherited, constrained to equal some new discriminant of the derived
6693 -- type, or constrained to the value of an expression.
6695 -- When inherited or constrained to equal some new discriminant, the
6696 -- parent discriminant and the discriminant of the derived type are said
6699 -- If a discriminant of the parent type is constrained to a specific value
6700 -- in the derived type definition, then the discriminant is said to be
6701 -- "specified" by that derived type definition.
6703 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6705 -- We have spoken about stored discriminants in point 1 (introduction)
6706 -- above. There are two sort of stored discriminants: implicit and
6707 -- explicit. As long as the derived type inherits the same discriminants as
6708 -- the root record type, stored discriminants are the same as regular
6709 -- discriminants, and are said to be implicit. However, if any discriminant
6710 -- in the root type was renamed in the derived type, then the derived
6711 -- type will contain explicit stored discriminants. Explicit stored
6712 -- discriminants are discriminants in addition to the semantically visible
6713 -- discriminants defined for the derived type. Stored discriminants are
6714 -- used by Gigi to figure out what are the physical discriminants in
6715 -- objects of the derived type (see precise definition in einfo.ads).
6716 -- As an example, consider the following:
6718 -- type R (D1, D2, D3 : Int) is record ... end record;
6719 -- type T1 is new R;
6720 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6721 -- type T3 is new T2;
6722 -- type T4 (Y : Int) is new T3 (Y, 99);
6724 -- The following table summarizes the discriminants and stored
6725 -- discriminants in R and T1 through T4.
6727 -- Type Discrim Stored Discrim Comment
6728 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6729 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6730 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6731 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6732 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6734 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6735 -- find the corresponding discriminant in the parent type, while
6736 -- Original_Record_Component (abbreviated ORC below), the actual physical
6737 -- component that is renamed. Finally the field Is_Completely_Hidden
6738 -- (abbreviated ICH below) is set for all explicit stored discriminants
6739 -- (see einfo.ads for more info). For the above example this gives:
6741 -- Discrim CD ORC ICH
6742 -- ^^^^^^^ ^^ ^^^ ^^^
6743 -- D1 in R empty itself no
6744 -- D2 in R empty itself no
6745 -- D3 in R empty itself no
6747 -- D1 in T1 D1 in R itself no
6748 -- D2 in T1 D2 in R itself no
6749 -- D3 in T1 D3 in R itself no
6751 -- X1 in T2 D3 in T1 D3 in T2 no
6752 -- X2 in T2 D1 in T1 D1 in T2 no
6753 -- D1 in T2 empty itself yes
6754 -- D2 in T2 empty itself yes
6755 -- D3 in T2 empty itself yes
6757 -- X1 in T3 X1 in T2 D3 in T3 no
6758 -- X2 in T3 X2 in T2 D1 in T3 no
6759 -- D1 in T3 empty itself yes
6760 -- D2 in T3 empty itself yes
6761 -- D3 in T3 empty itself yes
6763 -- Y in T4 X1 in T3 D3 in T3 no
6764 -- D1 in T3 empty itself yes
6765 -- D2 in T3 empty itself yes
6766 -- D3 in T3 empty itself yes
6768 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6770 -- Type derivation for tagged types is fairly straightforward. If no
6771 -- discriminants are specified by the derived type, these are inherited
6772 -- from the parent. No explicit stored discriminants are ever necessary.
6773 -- The only manipulation that is done to the tree is that of adding a
6774 -- _parent field with parent type and constrained to the same constraint
6775 -- specified for the parent in the derived type definition. For instance:
6777 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6778 -- type T1 is new R with null record;
6779 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6781 -- are changed into:
6783 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6784 -- _parent : R (D1, D2, D3);
6787 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6788 -- _parent : T1 (X2, 88, X1);
6791 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6792 -- ORC and ICH fields are:
6794 -- Discrim CD ORC ICH
6795 -- ^^^^^^^ ^^ ^^^ ^^^
6796 -- D1 in R empty itself no
6797 -- D2 in R empty itself no
6798 -- D3 in R empty itself no
6800 -- D1 in T1 D1 in R D1 in R no
6801 -- D2 in T1 D2 in R D2 in R no
6802 -- D3 in T1 D3 in R D3 in R no
6804 -- X1 in T2 D3 in T1 D3 in R no
6805 -- X2 in T2 D1 in T1 D1 in R no
6807 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6809 -- Regardless of whether we dealing with a tagged or untagged type
6810 -- we will transform all derived type declarations of the form
6812 -- type T is new R (...) [with ...];
6814 -- subtype S is R (...);
6815 -- type T is new S [with ...];
6817 -- type BT is new R [with ...];
6818 -- subtype T is BT (...);
6820 -- That is, the base derived type is constrained only if it has no
6821 -- discriminants. The reason for doing this is that GNAT's semantic model
6822 -- assumes that a base type with discriminants is unconstrained.
6824 -- Note that, strictly speaking, the above transformation is not always
6825 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6827 -- procedure B34011A is
6828 -- type REC (D : integer := 0) is record
6833 -- type T6 is new Rec;
6834 -- function F return T6;
6839 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6842 -- The definition of Q6.U is illegal. However transforming Q6.U into
6844 -- type BaseU is new T6;
6845 -- subtype U is BaseU (Q6.F.I)
6847 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6848 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6849 -- the transformation described above.
6851 -- There is another instance where the above transformation is incorrect.
6855 -- type Base (D : Integer) is tagged null record;
6856 -- procedure P (X : Base);
6858 -- type Der is new Base (2) with null record;
6859 -- procedure P (X : Der);
6862 -- Then the above transformation turns this into
6864 -- type Der_Base is new Base with null record;
6865 -- -- procedure P (X : Base) is implicitly inherited here
6866 -- -- as procedure P (X : Der_Base).
6868 -- subtype Der is Der_Base (2);
6869 -- procedure P (X : Der);
6870 -- -- The overriding of P (X : Der_Base) is illegal since we
6871 -- -- have a parameter conformance problem.
6873 -- To get around this problem, after having semantically processed Der_Base
6874 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6875 -- Discriminant_Constraint from Der so that when parameter conformance is
6876 -- checked when P is overridden, no semantic errors are flagged.
6878 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6880 -- Regardless of whether we are dealing with a tagged or untagged type
6881 -- we will transform all derived type declarations of the form
6883 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6884 -- type T is new R [with ...];
6886 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6888 -- The reason for such transformation is that it allows us to implement a
6889 -- very clean form of component inheritance as explained below.
6891 -- Note that this transformation is not achieved by direct tree rewriting
6892 -- and manipulation, but rather by redoing the semantic actions that the
6893 -- above transformation will entail. This is done directly in routine
6894 -- Inherit_Components.
6896 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6898 -- In both tagged and untagged derived types, regular non discriminant
6899 -- components are inherited in the derived type from the parent type. In
6900 -- the absence of discriminants component, inheritance is straightforward
6901 -- as components can simply be copied from the parent.
6903 -- If the parent has discriminants, inheriting components constrained with
6904 -- these discriminants requires caution. Consider the following example:
6906 -- type R (D1, D2 : Positive) is [tagged] record
6907 -- S : String (D1 .. D2);
6910 -- type T1 is new R [with null record];
6911 -- type T2 (X : positive) is new R (1, X) [with null record];
6913 -- As explained in 6. above, T1 is rewritten as
6914 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6915 -- which makes the treatment for T1 and T2 identical.
6917 -- What we want when inheriting S, is that references to D1 and D2 in R are
6918 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6919 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6920 -- with either discriminant references in the derived type or expressions.
6921 -- This replacement is achieved as follows: before inheriting R's
6922 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6923 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6924 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6925 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6926 -- by String (1 .. X).
6928 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6930 -- We explain here the rules governing private type extensions relevant to
6931 -- type derivation. These rules are explained on the following example:
6933 -- type D [(...)] is new A [(...)] with private; <-- partial view
6934 -- type D [(...)] is new P [(...)] with null record; <-- full view
6936 -- Type A is called the ancestor subtype of the private extension.
6937 -- Type P is the parent type of the full view of the private extension. It
6938 -- must be A or a type derived from A.
6940 -- The rules concerning the discriminants of private type extensions are
6943 -- o If a private extension inherits known discriminants from the ancestor
6944 -- subtype, then the full view shall also inherit its discriminants from
6945 -- the ancestor subtype and the parent subtype of the full view shall be
6946 -- constrained if and only if the ancestor subtype is constrained.
6948 -- o If a partial view has unknown discriminants, then the full view may
6949 -- define a definite or an indefinite subtype, with or without
6952 -- o If a partial view has neither known nor unknown discriminants, then
6953 -- the full view shall define a definite subtype.
6955 -- o If the ancestor subtype of a private extension has constrained
6956 -- discriminants, then the parent subtype of the full view shall impose a
6957 -- statically matching constraint on those discriminants.
6959 -- This means that only the following forms of private extensions are
6962 -- type D is new A with private; <-- partial view
6963 -- type D is new P with null record; <-- full view
6965 -- If A has no discriminants than P has no discriminants, otherwise P must
6966 -- inherit A's discriminants.
6968 -- type D is new A (...) with private; <-- partial view
6969 -- type D is new P (:::) with null record; <-- full view
6971 -- P must inherit A's discriminants and (...) and (:::) must statically
6974 -- subtype A is R (...);
6975 -- type D is new A with private; <-- partial view
6976 -- type D is new P with null record; <-- full view
6978 -- P must have inherited R's discriminants and must be derived from A or
6979 -- any of its subtypes.
6981 -- type D (..) is new A with private; <-- partial view
6982 -- type D (..) is new P [(:::)] with null record; <-- full view
6984 -- No specific constraints on P's discriminants or constraint (:::).
6985 -- Note that A can be unconstrained, but the parent subtype P must either
6986 -- be constrained or (:::) must be present.
6988 -- type D (..) is new A [(...)] with private; <-- partial view
6989 -- type D (..) is new P [(:::)] with null record; <-- full view
6991 -- P's constraints on A's discriminants must statically match those
6992 -- imposed by (...).
6994 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6996 -- The full view of a private extension is handled exactly as described
6997 -- above. The model chose for the private view of a private extension is
6998 -- the same for what concerns discriminants (i.e. they receive the same
6999 -- treatment as in the tagged case). However, the private view of the
7000 -- private extension always inherits the components of the parent base,
7001 -- without replacing any discriminant reference. Strictly speaking this is
7002 -- incorrect. However, Gigi never uses this view to generate code so this
7003 -- is a purely semantic issue. In theory, a set of transformations similar
7004 -- to those given in 5. and 6. above could be applied to private views of
7005 -- private extensions to have the same model of component inheritance as
7006 -- for non private extensions. However, this is not done because it would
7007 -- further complicate private type processing. Semantically speaking, this
7008 -- leaves us in an uncomfortable situation. As an example consider:
7011 -- type R (D : integer) is tagged record
7012 -- S : String (1 .. D);
7014 -- procedure P (X : R);
7015 -- type T is new R (1) with private;
7017 -- type T is new R (1) with null record;
7020 -- This is transformed into:
7023 -- type R (D : integer) is tagged record
7024 -- S : String (1 .. D);
7026 -- procedure P (X : R);
7027 -- type T is new R (1) with private;
7029 -- type BaseT is new R with null record;
7030 -- subtype T is BaseT (1);
7033 -- (strictly speaking the above is incorrect Ada)
7035 -- From the semantic standpoint the private view of private extension T
7036 -- should be flagged as constrained since one can clearly have
7040 -- in a unit withing Pack. However, when deriving subprograms for the
7041 -- private view of private extension T, T must be seen as unconstrained
7042 -- since T has discriminants (this is a constraint of the current
7043 -- subprogram derivation model). Thus, when processing the private view of
7044 -- a private extension such as T, we first mark T as unconstrained, we
7045 -- process it, we perform program derivation and just before returning from
7046 -- Build_Derived_Record_Type we mark T as constrained.
7048 -- ??? Are there are other uncomfortable cases that we will have to
7051 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7053 -- Types that are derived from a visible record type and have a private
7054 -- extension present other peculiarities. They behave mostly like private
7055 -- types, but if they have primitive operations defined, these will not
7056 -- have the proper signatures for further inheritance, because other
7057 -- primitive operations will use the implicit base that we define for
7058 -- private derivations below. This affect subprogram inheritance (see
7059 -- Derive_Subprograms for details). We also derive the implicit base from
7060 -- the base type of the full view, so that the implicit base is a record
7061 -- type and not another private type, This avoids infinite loops.
7063 procedure Build_Derived_Record_Type
7065 Parent_Type
: Entity_Id
;
7066 Derived_Type
: Entity_Id
;
7067 Derive_Subps
: Boolean := True)
7069 Discriminant_Specs
: constant Boolean :=
7070 Present
(Discriminant_Specifications
(N
));
7071 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7072 Loc
: constant Source_Ptr
:= Sloc
(N
);
7073 Private_Extension
: constant Boolean :=
7074 Nkind
(N
) = N_Private_Extension_Declaration
;
7075 Assoc_List
: Elist_Id
;
7076 Constraint_Present
: Boolean;
7078 Discrim
: Entity_Id
;
7080 Inherit_Discrims
: Boolean := False;
7081 Last_Discrim
: Entity_Id
;
7082 New_Base
: Entity_Id
;
7084 New_Discrs
: Elist_Id
;
7085 New_Indic
: Node_Id
;
7086 Parent_Base
: Entity_Id
;
7087 Save_Etype
: Entity_Id
;
7088 Save_Discr_Constr
: Elist_Id
;
7089 Save_Next_Entity
: Entity_Id
;
7092 Discs
: Elist_Id
:= New_Elmt_List
;
7093 -- An empty Discs list means that there were no constraints in the
7094 -- subtype indication or that there was an error processing it.
7097 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7098 and then Present
(Full_View
(Parent_Type
))
7099 and then Has_Discriminants
(Parent_Type
)
7101 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7103 Parent_Base
:= Base_Type
(Parent_Type
);
7106 -- AI05-0115 : if this is a derivation from a private type in some
7107 -- other scope that may lead to invisible components for the derived
7108 -- type, mark it accordingly.
7110 if Is_Private_Type
(Parent_Type
) then
7111 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
7114 elsif In_Open_Scopes
(Scope
(Parent_Type
))
7115 and then In_Private_Part
(Scope
(Parent_Type
))
7120 Set_Has_Private_Ancestor
(Derived_Type
);
7124 Set_Has_Private_Ancestor
7125 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
7128 -- Before we start the previously documented transformations, here is
7129 -- little fix for size and alignment of tagged types. Normally when we
7130 -- derive type D from type P, we copy the size and alignment of P as the
7131 -- default for D, and in the absence of explicit representation clauses
7132 -- for D, the size and alignment are indeed the same as the parent.
7134 -- But this is wrong for tagged types, since fields may be added, and
7135 -- the default size may need to be larger, and the default alignment may
7136 -- need to be larger.
7138 -- We therefore reset the size and alignment fields in the tagged case.
7139 -- Note that the size and alignment will in any case be at least as
7140 -- large as the parent type (since the derived type has a copy of the
7141 -- parent type in the _parent field)
7143 -- The type is also marked as being tagged here, which is needed when
7144 -- processing components with a self-referential anonymous access type
7145 -- in the call to Check_Anonymous_Access_Components below. Note that
7146 -- this flag is also set later on for completeness.
7149 Set_Is_Tagged_Type
(Derived_Type
);
7150 Init_Size_Align
(Derived_Type
);
7153 -- STEP 0a: figure out what kind of derived type declaration we have
7155 if Private_Extension
then
7157 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
7160 Type_Def
:= Type_Definition
(N
);
7162 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7163 -- Parent_Base can be a private type or private extension. However,
7164 -- for tagged types with an extension the newly added fields are
7165 -- visible and hence the Derived_Type is always an E_Record_Type.
7166 -- (except that the parent may have its own private fields).
7167 -- For untagged types we preserve the Ekind of the Parent_Base.
7169 if Present
(Record_Extension_Part
(Type_Def
)) then
7170 Set_Ekind
(Derived_Type
, E_Record_Type
);
7172 -- Create internal access types for components with anonymous
7175 if Ada_Version
>= Ada_2005
then
7176 Check_Anonymous_Access_Components
7177 (N
, Derived_Type
, Derived_Type
,
7178 Component_List
(Record_Extension_Part
(Type_Def
)));
7182 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7186 -- Indic can either be an N_Identifier if the subtype indication
7187 -- contains no constraint or an N_Subtype_Indication if the subtype
7188 -- indication has a constraint.
7190 Indic
:= Subtype_Indication
(Type_Def
);
7191 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
7193 -- Check that the type has visible discriminants. The type may be
7194 -- a private type with unknown discriminants whose full view has
7195 -- discriminants which are invisible.
7197 if Constraint_Present
then
7198 if not Has_Discriminants
(Parent_Base
)
7200 (Has_Unknown_Discriminants
(Parent_Base
)
7201 and then Is_Private_Type
(Parent_Base
))
7204 ("invalid constraint: type has no discriminant",
7205 Constraint
(Indic
));
7207 Constraint_Present
:= False;
7208 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7210 elsif Is_Constrained
(Parent_Type
) then
7212 ("invalid constraint: parent type is already constrained",
7213 Constraint
(Indic
));
7215 Constraint_Present
:= False;
7216 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
7220 -- STEP 0b: If needed, apply transformation given in point 5. above
7222 if not Private_Extension
7223 and then Has_Discriminants
(Parent_Type
)
7224 and then not Discriminant_Specs
7225 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
7227 -- First, we must analyze the constraint (see comment in point 5.)
7229 if Constraint_Present
then
7230 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7232 if Has_Discriminants
(Derived_Type
)
7233 and then Has_Private_Declaration
(Derived_Type
)
7234 and then Present
(Discriminant_Constraint
(Derived_Type
))
7236 -- Verify that constraints of the full view statically match
7237 -- those given in the partial view.
7243 C1
:= First_Elmt
(New_Discrs
);
7244 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
7245 while Present
(C1
) and then Present
(C2
) loop
7246 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7248 (Is_OK_Static_Expression
(Node
(C1
))
7250 Is_OK_Static_Expression
(Node
(C2
))
7252 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
7258 "constraint not conformant to previous declaration",
7269 -- Insert and analyze the declaration for the unconstrained base type
7271 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
7274 Make_Full_Type_Declaration
(Loc
,
7275 Defining_Identifier
=> New_Base
,
7277 Make_Derived_Type_Definition
(Loc
,
7278 Abstract_Present
=> Abstract_Present
(Type_Def
),
7279 Limited_Present
=> Limited_Present
(Type_Def
),
7280 Subtype_Indication
=>
7281 New_Occurrence_Of
(Parent_Base
, Loc
),
7282 Record_Extension_Part
=>
7283 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
7284 Interface_List
=> Interface_List
(Type_Def
)));
7286 Set_Parent
(New_Decl
, Parent
(N
));
7287 Mark_Rewrite_Insertion
(New_Decl
);
7288 Insert_Before
(N
, New_Decl
);
7290 -- In the extension case, make sure ancestor is frozen appropriately
7291 -- (see also non-discriminated case below).
7293 if Present
(Record_Extension_Part
(Type_Def
))
7294 or else Is_Interface
(Parent_Base
)
7296 Freeze_Before
(New_Decl
, Parent_Type
);
7299 -- Note that this call passes False for the Derive_Subps parameter
7300 -- because subprogram derivation is deferred until after creating
7301 -- the subtype (see below).
7304 (New_Decl
, Parent_Base
, New_Base
,
7305 Is_Completion
=> True, Derive_Subps
=> False);
7307 -- ??? This needs re-examination to determine whether the
7308 -- above call can simply be replaced by a call to Analyze.
7310 Set_Analyzed
(New_Decl
);
7312 -- Insert and analyze the declaration for the constrained subtype
7314 if Constraint_Present
then
7316 Make_Subtype_Indication
(Loc
,
7317 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7318 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
7322 Constr_List
: constant List_Id
:= New_List
;
7327 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
7328 while Present
(C
) loop
7331 -- It is safe here to call New_Copy_Tree since
7332 -- Force_Evaluation was called on each constraint in
7333 -- Build_Discriminant_Constraints.
7335 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
7341 Make_Subtype_Indication
(Loc
,
7342 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
7344 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
7349 Make_Subtype_Declaration
(Loc
,
7350 Defining_Identifier
=> Derived_Type
,
7351 Subtype_Indication
=> New_Indic
));
7355 -- Derivation of subprograms must be delayed until the full subtype
7356 -- has been established, to ensure proper overriding of subprograms
7357 -- inherited by full types. If the derivations occurred as part of
7358 -- the call to Build_Derived_Type above, then the check for type
7359 -- conformance would fail because earlier primitive subprograms
7360 -- could still refer to the full type prior the change to the new
7361 -- subtype and hence would not match the new base type created here.
7362 -- Subprograms are not derived, however, when Derive_Subps is False
7363 -- (since otherwise there could be redundant derivations).
7365 if Derive_Subps
then
7366 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7369 -- For tagged types the Discriminant_Constraint of the new base itype
7370 -- is inherited from the first subtype so that no subtype conformance
7371 -- problem arise when the first subtype overrides primitive
7372 -- operations inherited by the implicit base type.
7375 Set_Discriminant_Constraint
7376 (New_Base
, Discriminant_Constraint
(Derived_Type
));
7382 -- If we get here Derived_Type will have no discriminants or it will be
7383 -- a discriminated unconstrained base type.
7385 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7389 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7390 -- The declaration of a specific descendant of an interface type
7391 -- freezes the interface type (RM 13.14).
7393 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
7394 Freeze_Before
(N
, Parent_Type
);
7397 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7398 -- cannot be declared at a deeper level than its parent type is
7399 -- removed. The check on derivation within a generic body is also
7400 -- relaxed, but there's a restriction that a derived tagged type
7401 -- cannot be declared in a generic body if it's derived directly
7402 -- or indirectly from a formal type of that generic.
7404 if Ada_Version
>= Ada_2005
then
7405 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
7407 Ancestor_Type
: Entity_Id
;
7410 -- Check to see if any ancestor of the derived type is a
7413 Ancestor_Type
:= Parent_Type
;
7414 while not Is_Generic_Type
(Ancestor_Type
)
7415 and then Etype
(Ancestor_Type
) /= Ancestor_Type
7417 Ancestor_Type
:= Etype
(Ancestor_Type
);
7420 -- If the derived type does have a formal type as an
7421 -- ancestor, then it's an error if the derived type is
7422 -- declared within the body of the generic unit that
7423 -- declares the formal type in its generic formal part. It's
7424 -- sufficient to check whether the ancestor type is declared
7425 -- inside the same generic body as the derived type (such as
7426 -- within a nested generic spec), in which case the
7427 -- derivation is legal. If the formal type is declared
7428 -- outside of that generic body, then it's guaranteed that
7429 -- the derived type is declared within the generic body of
7430 -- the generic unit declaring the formal type.
7432 if Is_Generic_Type
(Ancestor_Type
)
7433 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
7434 Enclosing_Generic_Body
(Derived_Type
)
7437 ("parent type of& must not be descendant of formal type"
7438 & " of an enclosing generic body",
7439 Indic
, Derived_Type
);
7444 elsif Type_Access_Level
(Derived_Type
) /=
7445 Type_Access_Level
(Parent_Type
)
7446 and then not Is_Generic_Type
(Derived_Type
)
7448 if Is_Controlled
(Parent_Type
) then
7450 ("controlled type must be declared at the library level",
7454 ("type extension at deeper accessibility level than parent",
7460 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
7464 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
7467 ("parent type of& must not be outside generic body"
7469 Indic
, Derived_Type
);
7475 -- Ada 2005 (AI-251)
7477 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
7479 -- "The declaration of a specific descendant of an interface type
7480 -- freezes the interface type" (RM 13.14).
7485 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
7486 Iface
:= First
(Interface_List
(Type_Def
));
7487 while Present
(Iface
) loop
7488 Freeze_Before
(N
, Etype
(Iface
));
7495 -- STEP 1b : preliminary cleanup of the full view of private types
7497 -- If the type is already marked as having discriminants, then it's the
7498 -- completion of a private type or private extension and we need to
7499 -- retain the discriminants from the partial view if the current
7500 -- declaration has Discriminant_Specifications so that we can verify
7501 -- conformance. However, we must remove any existing components that
7502 -- were inherited from the parent (and attached in Copy_And_Swap)
7503 -- because the full type inherits all appropriate components anyway, and
7504 -- we do not want the partial view's components interfering.
7506 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
7507 Discrim
:= First_Discriminant
(Derived_Type
);
7509 Last_Discrim
:= Discrim
;
7510 Next_Discriminant
(Discrim
);
7511 exit when No
(Discrim
);
7514 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
7516 -- In all other cases wipe out the list of inherited components (even
7517 -- inherited discriminants), it will be properly rebuilt here.
7520 Set_First_Entity
(Derived_Type
, Empty
);
7521 Set_Last_Entity
(Derived_Type
, Empty
);
7524 -- STEP 1c: Initialize some flags for the Derived_Type
7526 -- The following flags must be initialized here so that
7527 -- Process_Discriminants can check that discriminants of tagged types do
7528 -- not have a default initial value and that access discriminants are
7529 -- only specified for limited records. For completeness, these flags are
7530 -- also initialized along with all the other flags below.
7532 -- AI-419: Limitedness is not inherited from an interface parent, so to
7533 -- be limited in that case the type must be explicitly declared as
7534 -- limited. However, task and protected interfaces are always limited.
7536 if Limited_Present
(Type_Def
) then
7537 Set_Is_Limited_Record
(Derived_Type
);
7539 elsif Is_Limited_Record
(Parent_Type
)
7540 or else (Present
(Full_View
(Parent_Type
))
7541 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
7543 if not Is_Interface
(Parent_Type
)
7544 or else Is_Synchronized_Interface
(Parent_Type
)
7545 or else Is_Protected_Interface
(Parent_Type
)
7546 or else Is_Task_Interface
(Parent_Type
)
7548 Set_Is_Limited_Record
(Derived_Type
);
7552 -- STEP 2a: process discriminants of derived type if any
7554 Push_Scope
(Derived_Type
);
7556 if Discriminant_Specs
then
7557 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
7559 -- The following call initializes fields Has_Discriminants and
7560 -- Discriminant_Constraint, unless we are processing the completion
7561 -- of a private type declaration.
7563 Check_Or_Process_Discriminants
(N
, Derived_Type
);
7565 -- For untagged types, the constraint on the Parent_Type must be
7566 -- present and is used to rename the discriminants.
7568 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
7569 Error_Msg_N
("untagged parent must have discriminants", Indic
);
7571 elsif not Is_Tagged
and then not Constraint_Present
then
7573 ("discriminant constraint needed for derived untagged records",
7576 -- Otherwise the parent subtype must be constrained unless we have a
7577 -- private extension.
7579 elsif not Constraint_Present
7580 and then not Private_Extension
7581 and then not Is_Constrained
(Parent_Type
)
7584 ("unconstrained type not allowed in this context", Indic
);
7586 elsif Constraint_Present
then
7587 -- The following call sets the field Corresponding_Discriminant
7588 -- for the discriminants in the Derived_Type.
7590 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
7592 -- For untagged types all new discriminants must rename
7593 -- discriminants in the parent. For private extensions new
7594 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7596 Discrim
:= First_Discriminant
(Derived_Type
);
7597 while Present
(Discrim
) loop
7599 and then No
(Corresponding_Discriminant
(Discrim
))
7602 ("new discriminants must constrain old ones", Discrim
);
7604 elsif Private_Extension
7605 and then Present
(Corresponding_Discriminant
(Discrim
))
7608 ("only static constraints allowed for parent"
7609 & " discriminants in the partial view", Indic
);
7613 -- If a new discriminant is used in the constraint, then its
7614 -- subtype must be statically compatible with the parent
7615 -- discriminant's subtype (3.7(15)).
7617 -- However, if the record contains an array constrained by
7618 -- the discriminant but with some different bound, the compiler
7619 -- attemps to create a smaller range for the discriminant type.
7620 -- (See exp_ch3.Adjust_Discriminants). In this case, where
7621 -- the discriminant type is a scalar type, the check must use
7622 -- the original discriminant type in the parent declaration.
7625 Corr_Disc
: constant Entity_Id
:=
7626 Corresponding_Discriminant
(Discrim
);
7627 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
7628 Corr_Type
: Entity_Id
;
7631 if Present
(Corr_Disc
) then
7632 if Is_Scalar_Type
(Disc_Type
) then
7634 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
7636 Corr_Type
:= Etype
(Corr_Disc
);
7640 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
7643 ("subtype must be compatible "
7644 & "with parent discriminant",
7650 Next_Discriminant
(Discrim
);
7653 -- Check whether the constraints of the full view statically
7654 -- match those imposed by the parent subtype [7.3(13)].
7656 if Present
(Stored_Constraint
(Derived_Type
)) then
7661 C1
:= First_Elmt
(Discs
);
7662 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
7663 while Present
(C1
) and then Present
(C2
) loop
7665 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7668 ("not conformant with previous declaration",
7679 -- STEP 2b: No new discriminants, inherit discriminants if any
7682 if Private_Extension
then
7683 Set_Has_Unknown_Discriminants
7685 Has_Unknown_Discriminants
(Parent_Type
)
7686 or else Unknown_Discriminants_Present
(N
));
7688 -- The partial view of the parent may have unknown discriminants,
7689 -- but if the full view has discriminants and the parent type is
7690 -- in scope they must be inherited.
7692 elsif Has_Unknown_Discriminants
(Parent_Type
)
7694 (not Has_Discriminants
(Parent_Type
)
7695 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
7697 Set_Has_Unknown_Discriminants
(Derived_Type
);
7700 if not Has_Unknown_Discriminants
(Derived_Type
)
7701 and then not Has_Unknown_Discriminants
(Parent_Base
)
7702 and then Has_Discriminants
(Parent_Type
)
7704 Inherit_Discrims
:= True;
7705 Set_Has_Discriminants
7706 (Derived_Type
, True);
7707 Set_Discriminant_Constraint
7708 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
7711 -- The following test is true for private types (remember
7712 -- transformation 5. is not applied to those) and in an error
7715 if Constraint_Present
then
7716 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7719 -- For now mark a new derived type as constrained only if it has no
7720 -- discriminants. At the end of Build_Derived_Record_Type we properly
7721 -- set this flag in the case of private extensions. See comments in
7722 -- point 9. just before body of Build_Derived_Record_Type.
7726 not (Inherit_Discrims
7727 or else Has_Unknown_Discriminants
(Derived_Type
)));
7730 -- STEP 3: initialize fields of derived type
7732 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
7733 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7735 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7736 -- but cannot be interfaces
7738 if not Private_Extension
7739 and then Ekind
(Derived_Type
) /= E_Private_Type
7740 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
7742 if Interface_Present
(Type_Def
) then
7743 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
7746 Set_Interfaces
(Derived_Type
, No_Elist
);
7749 -- Fields inherited from the Parent_Type
7751 Set_Has_Specified_Layout
7752 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
7753 Set_Is_Limited_Composite
7754 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
7755 Set_Is_Private_Composite
7756 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
7758 -- Fields inherited from the Parent_Base
7760 Set_Has_Controlled_Component
7761 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
7762 Set_Has_Non_Standard_Rep
7763 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7764 Set_Has_Primitive_Operations
7765 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
7767 -- Fields inherited from the Parent_Base in the non-private case
7769 if Ekind
(Derived_Type
) = E_Record_Type
then
7770 Set_Has_Complex_Representation
7771 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
7774 -- Fields inherited from the Parent_Base for record types
7776 if Is_Record_Type
(Derived_Type
) then
7779 Parent_Full
: Entity_Id
;
7782 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7783 -- Parent_Base can be a private type or private extension. Go
7784 -- to the full view here to get the E_Record_Type specific flags.
7786 if Present
(Full_View
(Parent_Base
)) then
7787 Parent_Full
:= Full_View
(Parent_Base
);
7789 Parent_Full
:= Parent_Base
;
7792 Set_OK_To_Reorder_Components
7793 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
7797 -- Set fields for private derived types
7799 if Is_Private_Type
(Derived_Type
) then
7800 Set_Depends_On_Private
(Derived_Type
, True);
7801 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7803 -- Inherit fields from non private record types. If this is the
7804 -- completion of a derivation from a private type, the parent itself
7805 -- is private, and the attributes come from its full view, which must
7809 if Is_Private_Type
(Parent_Base
)
7810 and then not Is_Record_Type
(Parent_Base
)
7812 Set_Component_Alignment
7813 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
7815 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
7817 Set_Component_Alignment
7818 (Derived_Type
, Component_Alignment
(Parent_Base
));
7820 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
7824 -- Set fields for tagged types
7827 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
7829 -- All tagged types defined in Ada.Finalization are controlled
7831 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
7832 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
7833 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
7835 Set_Is_Controlled
(Derived_Type
);
7837 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
7840 -- Minor optimization: there is no need to generate the class-wide
7841 -- entity associated with an underlying record view.
7843 if not Is_Underlying_Record_View
(Derived_Type
) then
7844 Make_Class_Wide_Type
(Derived_Type
);
7847 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
7849 if Has_Discriminants
(Derived_Type
)
7850 and then Constraint_Present
7852 Set_Stored_Constraint
7853 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
7856 if Ada_Version
>= Ada_2005
then
7858 Ifaces_List
: Elist_Id
;
7861 -- Checks rules 3.9.4 (13/2 and 14/2)
7863 if Comes_From_Source
(Derived_Type
)
7864 and then not Is_Private_Type
(Derived_Type
)
7865 and then Is_Interface
(Parent_Type
)
7866 and then not Is_Interface
(Derived_Type
)
7868 if Is_Task_Interface
(Parent_Type
) then
7870 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7873 elsif Is_Protected_Interface
(Parent_Type
) then
7875 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7880 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7882 Check_Interfaces
(N
, Type_Def
);
7884 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7885 -- not already in the parents.
7889 Ifaces_List
=> Ifaces_List
,
7890 Exclude_Parents
=> True);
7892 Set_Interfaces
(Derived_Type
, Ifaces_List
);
7894 -- If the derived type is the anonymous type created for
7895 -- a declaration whose parent has a constraint, propagate
7896 -- the interface list to the source type. This must be done
7897 -- prior to the completion of the analysis of the source type
7898 -- because the components in the extension may contain current
7899 -- instances whose legality depends on some ancestor.
7901 if Is_Itype
(Derived_Type
) then
7903 Def
: constant Node_Id
:=
7904 Associated_Node_For_Itype
(Derived_Type
);
7907 and then Nkind
(Def
) = N_Full_Type_Declaration
7910 (Defining_Identifier
(Def
), Ifaces_List
);
7918 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
7919 Set_Has_Non_Standard_Rep
7920 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7923 -- STEP 4: Inherit components from the parent base and constrain them.
7924 -- Apply the second transformation described in point 6. above.
7926 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
7927 or else not Has_Discriminants
(Parent_Type
)
7928 or else not Is_Constrained
(Parent_Type
)
7932 Constrs
:= Discriminant_Constraint
(Parent_Type
);
7937 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
7939 -- STEP 5a: Copy the parent record declaration for untagged types
7941 if not Is_Tagged
then
7943 -- Discriminant_Constraint (Derived_Type) has been properly
7944 -- constructed. Save it and temporarily set it to Empty because we
7945 -- do not want the call to New_Copy_Tree below to mess this list.
7947 if Has_Discriminants
(Derived_Type
) then
7948 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
7949 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
7951 Save_Discr_Constr
:= No_Elist
;
7954 -- Save the Etype field of Derived_Type. It is correctly set now,
7955 -- but the call to New_Copy tree may remap it to point to itself,
7956 -- which is not what we want. Ditto for the Next_Entity field.
7958 Save_Etype
:= Etype
(Derived_Type
);
7959 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
7961 -- Assoc_List maps all stored discriminants in the Parent_Base to
7962 -- stored discriminants in the Derived_Type. It is fundamental that
7963 -- no types or itypes with discriminants other than the stored
7964 -- discriminants appear in the entities declared inside
7965 -- Derived_Type, since the back end cannot deal with it.
7969 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
7971 -- Restore the fields saved prior to the New_Copy_Tree call
7972 -- and compute the stored constraint.
7974 Set_Etype
(Derived_Type
, Save_Etype
);
7975 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
7977 if Has_Discriminants
(Derived_Type
) then
7978 Set_Discriminant_Constraint
7979 (Derived_Type
, Save_Discr_Constr
);
7980 Set_Stored_Constraint
7981 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
7982 Replace_Components
(Derived_Type
, New_Decl
);
7983 Set_Has_Implicit_Dereference
7984 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
7987 -- Insert the new derived type declaration
7989 Rewrite
(N
, New_Decl
);
7991 -- STEP 5b: Complete the processing for record extensions in generics
7993 -- There is no completion for record extensions declared in the
7994 -- parameter part of a generic, so we need to complete processing for
7995 -- these generic record extensions here. The Record_Type_Definition call
7996 -- will change the Ekind of the components from E_Void to E_Component.
7998 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
7999 Record_Type_Definition
(Empty
, Derived_Type
);
8001 -- STEP 5c: Process the record extension for non private tagged types
8003 elsif not Private_Extension
then
8005 -- Add the _parent field in the derived type
8007 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8009 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8010 -- implemented interfaces if we are in expansion mode
8013 and then Has_Interfaces
(Derived_Type
)
8015 Add_Interface_Tag_Components
(N
, Derived_Type
);
8018 -- Analyze the record extension
8020 Record_Type_Definition
8021 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8026 -- Nothing else to do if there is an error in the derivation.
8027 -- An unusual case: the full view may be derived from a type in an
8028 -- instance, when the partial view was used illegally as an actual
8029 -- in that instance, leading to a circular definition.
8031 if Etype
(Derived_Type
) = Any_Type
8032 or else Etype
(Parent_Type
) = Derived_Type
8037 -- Set delayed freeze and then derive subprograms, we need to do
8038 -- this in this order so that derived subprograms inherit the
8039 -- derived freeze if necessary.
8041 Set_Has_Delayed_Freeze
(Derived_Type
);
8043 if Derive_Subps
then
8044 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8047 -- If we have a private extension which defines a constrained derived
8048 -- type mark as constrained here after we have derived subprograms. See
8049 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8051 if Private_Extension
and then Inherit_Discrims
then
8052 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
8053 Set_Is_Constrained
(Derived_Type
, True);
8054 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
8056 elsif Is_Constrained
(Parent_Type
) then
8058 (Derived_Type
, True);
8059 Set_Discriminant_Constraint
8060 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
8064 -- Update the class-wide type, which shares the now-completed entity
8065 -- list with its specific type. In case of underlying record views,
8066 -- we do not generate the corresponding class wide entity.
8069 and then not Is_Underlying_Record_View
(Derived_Type
)
8072 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
8074 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
8077 Check_Function_Writable_Actuals
(N
);
8078 end Build_Derived_Record_Type
;
8080 ------------------------
8081 -- Build_Derived_Type --
8082 ------------------------
8084 procedure Build_Derived_Type
8086 Parent_Type
: Entity_Id
;
8087 Derived_Type
: Entity_Id
;
8088 Is_Completion
: Boolean;
8089 Derive_Subps
: Boolean := True)
8091 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
8094 -- Set common attributes
8096 Set_Scope
(Derived_Type
, Current_Scope
);
8098 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8099 Set_Etype
(Derived_Type
, Parent_Base
);
8100 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
8102 Set_Size_Info
(Derived_Type
, Parent_Type
);
8103 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
8104 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
8105 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
8107 -- If the parent type is a private subtype, the convention on the base
8108 -- type may be set in the private part, and not propagated to the
8109 -- subtype until later, so we obtain the convention from the base type.
8111 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
8113 -- Propagate invariant information. The new type has invariants if
8114 -- they are inherited from the parent type, and these invariants can
8115 -- be further inherited, so both flags are set.
8117 -- We similarly inherit predicates
8119 if Has_Predicates
(Parent_Type
) then
8120 Set_Has_Predicates
(Derived_Type
);
8123 -- The derived type inherits the representation clauses of the parent.
8124 -- However, for a private type that is completed by a derivation, there
8125 -- may be operation attributes that have been specified already (stream
8126 -- attributes and External_Tag) and those must be provided. Finally,
8127 -- if the partial view is a private extension, the representation items
8128 -- of the parent have been inherited already, and should not be chained
8129 -- twice to the derived type.
8131 if Is_Tagged_Type
(Parent_Type
)
8132 and then Present
(First_Rep_Item
(Derived_Type
))
8134 -- The existing items are either operational items or items inherited
8135 -- from a private extension declaration.
8139 -- Used to iterate over representation items of the derived type
8142 -- Last representation item of the (non-empty) representation
8143 -- item list of the derived type.
8145 Found
: Boolean := False;
8148 Rep
:= First_Rep_Item
(Derived_Type
);
8150 while Present
(Rep
) loop
8151 if Rep
= First_Rep_Item
(Parent_Type
) then
8156 Rep
:= Next_Rep_Item
(Rep
);
8158 if Present
(Rep
) then
8164 -- Here if we either encountered the parent type's first rep
8165 -- item on the derived type's rep item list (in which case
8166 -- Found is True, and we have nothing else to do), or if we
8167 -- reached the last rep item of the derived type, which is
8168 -- Last_Rep, in which case we further chain the parent type's
8169 -- rep items to those of the derived type.
8172 Set_Next_Rep_Item
(Last_Rep
, First_Rep_Item
(Parent_Type
));
8177 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
8180 case Ekind
(Parent_Type
) is
8181 when Numeric_Kind
=>
8182 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
8185 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
8189 | Class_Wide_Kind
=>
8190 Build_Derived_Record_Type
8191 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
8194 when Enumeration_Kind
=>
8195 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
8198 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
8200 when Incomplete_Or_Private_Kind
=>
8201 Build_Derived_Private_Type
8202 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
8204 -- For discriminated types, the derivation includes deriving
8205 -- primitive operations. For others it is done below.
8207 if Is_Tagged_Type
(Parent_Type
)
8208 or else Has_Discriminants
(Parent_Type
)
8209 or else (Present
(Full_View
(Parent_Type
))
8210 and then Has_Discriminants
(Full_View
(Parent_Type
)))
8215 when Concurrent_Kind
=>
8216 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
8219 raise Program_Error
;
8222 if Etype
(Derived_Type
) = Any_Type
then
8226 -- Set delayed freeze and then derive subprograms, we need to do this
8227 -- in this order so that derived subprograms inherit the derived freeze
8230 Set_Has_Delayed_Freeze
(Derived_Type
);
8231 if Derive_Subps
then
8232 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8235 Set_Has_Primitive_Operations
8236 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
8237 end Build_Derived_Type
;
8239 -----------------------
8240 -- Build_Discriminal --
8241 -----------------------
8243 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
8244 D_Minal
: Entity_Id
;
8245 CR_Disc
: Entity_Id
;
8248 -- A discriminal has the same name as the discriminant
8250 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8252 Set_Ekind
(D_Minal
, E_In_Parameter
);
8253 Set_Mechanism
(D_Minal
, Default_Mechanism
);
8254 Set_Etype
(D_Minal
, Etype
(Discrim
));
8255 Set_Scope
(D_Minal
, Current_Scope
);
8257 Set_Discriminal
(Discrim
, D_Minal
);
8258 Set_Discriminal_Link
(D_Minal
, Discrim
);
8260 -- For task types, build at once the discriminants of the corresponding
8261 -- record, which are needed if discriminants are used in entry defaults
8262 -- and in family bounds.
8264 if Is_Concurrent_Type
(Current_Scope
)
8265 or else Is_Limited_Type
(Current_Scope
)
8267 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
8269 Set_Ekind
(CR_Disc
, E_In_Parameter
);
8270 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
8271 Set_Etype
(CR_Disc
, Etype
(Discrim
));
8272 Set_Scope
(CR_Disc
, Current_Scope
);
8273 Set_Discriminal_Link
(CR_Disc
, Discrim
);
8274 Set_CR_Discriminant
(Discrim
, CR_Disc
);
8276 end Build_Discriminal
;
8278 ------------------------------------
8279 -- Build_Discriminant_Constraints --
8280 ------------------------------------
8282 function Build_Discriminant_Constraints
8285 Derived_Def
: Boolean := False) return Elist_Id
8287 C
: constant Node_Id
:= Constraint
(Def
);
8288 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
8290 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
8291 -- Saves the expression corresponding to a given discriminant in T
8293 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
8294 -- Return the Position number within array Discr_Expr of a discriminant
8295 -- D within the discriminant list of the discriminated type T.
8297 procedure Process_Discriminant_Expression
8300 -- If this is a discriminant constraint on a partial view, do not
8301 -- generate an overflow check on the discriminant expression. The check
8302 -- will be generated when constraining the full view. Otherwise the
8303 -- backend creates duplicate symbols for the temporaries corresponding
8304 -- to the expressions to be checked, causing spurious assembler errors.
8310 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
8314 Disc
:= First_Discriminant
(T
);
8315 for J
in Discr_Expr
'Range loop
8320 Next_Discriminant
(Disc
);
8323 -- Note: Since this function is called on discriminants that are
8324 -- known to belong to the discriminated type, falling through the
8325 -- loop with no match signals an internal compiler error.
8327 raise Program_Error
;
8330 -------------------------------------
8331 -- Process_Discriminant_Expression --
8332 -------------------------------------
8334 procedure Process_Discriminant_Expression
8338 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
8341 -- If this is a discriminant constraint on a partial view, do
8342 -- not generate an overflow on the discriminant expression. The
8343 -- check will be generated when constraining the full view.
8345 if Is_Private_Type
(T
)
8346 and then Present
(Full_View
(T
))
8348 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
8350 Analyze_And_Resolve
(Expr
, BDT
);
8352 end Process_Discriminant_Expression
;
8354 -- Declarations local to Build_Discriminant_Constraints
8358 Elist
: constant Elist_Id
:= New_Elmt_List
;
8366 Discrim_Present
: Boolean := False;
8368 -- Start of processing for Build_Discriminant_Constraints
8371 -- The following loop will process positional associations only.
8372 -- For a positional association, the (single) discriminant is
8373 -- implicitly specified by position, in textual order (RM 3.7.2).
8375 Discr
:= First_Discriminant
(T
);
8376 Constr
:= First
(Constraints
(C
));
8377 for D
in Discr_Expr
'Range loop
8378 exit when Nkind
(Constr
) = N_Discriminant_Association
;
8381 Error_Msg_N
("too few discriminants given in constraint", C
);
8382 return New_Elmt_List
;
8384 elsif Nkind
(Constr
) = N_Range
8385 or else (Nkind
(Constr
) = N_Attribute_Reference
8387 Attribute_Name
(Constr
) = Name_Range
)
8390 ("a range is not a valid discriminant constraint", Constr
);
8391 Discr_Expr
(D
) := Error
;
8394 Process_Discriminant_Expression
(Constr
, Discr
);
8395 Discr_Expr
(D
) := Constr
;
8398 Next_Discriminant
(Discr
);
8402 if No
(Discr
) and then Present
(Constr
) then
8403 Error_Msg_N
("too many discriminants given in constraint", Constr
);
8404 return New_Elmt_List
;
8407 -- Named associations can be given in any order, but if both positional
8408 -- and named associations are used in the same discriminant constraint,
8409 -- then positional associations must occur first, at their normal
8410 -- position. Hence once a named association is used, the rest of the
8411 -- discriminant constraint must use only named associations.
8413 while Present
(Constr
) loop
8415 -- Positional association forbidden after a named association
8417 if Nkind
(Constr
) /= N_Discriminant_Association
then
8418 Error_Msg_N
("positional association follows named one", Constr
);
8419 return New_Elmt_List
;
8421 -- Otherwise it is a named association
8424 -- E records the type of the discriminants in the named
8425 -- association. All the discriminants specified in the same name
8426 -- association must have the same type.
8430 -- Search the list of discriminants in T to see if the simple name
8431 -- given in the constraint matches any of them.
8433 Id
:= First
(Selector_Names
(Constr
));
8434 while Present
(Id
) loop
8437 -- If Original_Discriminant is present, we are processing a
8438 -- generic instantiation and this is an instance node. We need
8439 -- to find the name of the corresponding discriminant in the
8440 -- actual record type T and not the name of the discriminant in
8441 -- the generic formal. Example:
8444 -- type G (D : int) is private;
8446 -- subtype W is G (D => 1);
8448 -- type Rec (X : int) is record ... end record;
8449 -- package Q is new P (G => Rec);
8451 -- At the point of the instantiation, formal type G is Rec
8452 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8453 -- which really looks like "subtype W is Rec (D => 1);" at
8454 -- the point of instantiation, we want to find the discriminant
8455 -- that corresponds to D in Rec, i.e. X.
8457 if Present
(Original_Discriminant
(Id
))
8458 and then In_Instance
8460 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
8464 Discr
:= First_Discriminant
(T
);
8465 while Present
(Discr
) loop
8466 if Chars
(Discr
) = Chars
(Id
) then
8471 Next_Discriminant
(Discr
);
8475 Error_Msg_N
("& does not match any discriminant", Id
);
8476 return New_Elmt_List
;
8478 -- If the parent type is a generic formal, preserve the
8479 -- name of the discriminant for subsequent instances.
8480 -- see comment at the beginning of this if statement.
8482 elsif Is_Generic_Type
(Root_Type
(T
)) then
8483 Set_Original_Discriminant
(Id
, Discr
);
8487 Position
:= Pos_Of_Discr
(T
, Discr
);
8489 if Present
(Discr_Expr
(Position
)) then
8490 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
8493 -- Each discriminant specified in the same named association
8494 -- must be associated with a separate copy of the
8495 -- corresponding expression.
8497 if Present
(Next
(Id
)) then
8498 Expr
:= New_Copy_Tree
(Expression
(Constr
));
8499 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
8501 Expr
:= Expression
(Constr
);
8504 Discr_Expr
(Position
) := Expr
;
8505 Process_Discriminant_Expression
(Expr
, Discr
);
8508 -- A discriminant association with more than one discriminant
8509 -- name is only allowed if the named discriminants are all of
8510 -- the same type (RM 3.7.1(8)).
8513 E
:= Base_Type
(Etype
(Discr
));
8515 elsif Base_Type
(Etype
(Discr
)) /= E
then
8517 ("all discriminants in an association " &
8518 "must have the same type", Id
);
8528 -- A discriminant constraint must provide exactly one value for each
8529 -- discriminant of the type (RM 3.7.1(8)).
8531 for J
in Discr_Expr
'Range loop
8532 if No
(Discr_Expr
(J
)) then
8533 Error_Msg_N
("too few discriminants given in constraint", C
);
8534 return New_Elmt_List
;
8538 -- Determine if there are discriminant expressions in the constraint
8540 for J
in Discr_Expr
'Range loop
8541 if Denotes_Discriminant
8542 (Discr_Expr
(J
), Check_Concurrent
=> True)
8544 Discrim_Present
:= True;
8548 -- Build an element list consisting of the expressions given in the
8549 -- discriminant constraint and apply the appropriate checks. The list
8550 -- is constructed after resolving any named discriminant associations
8551 -- and therefore the expressions appear in the textual order of the
8554 Discr
:= First_Discriminant
(T
);
8555 for J
in Discr_Expr
'Range loop
8556 if Discr_Expr
(J
) /= Error
then
8557 Append_Elmt
(Discr_Expr
(J
), Elist
);
8559 -- If any of the discriminant constraints is given by a
8560 -- discriminant and we are in a derived type declaration we
8561 -- have a discriminant renaming. Establish link between new
8562 -- and old discriminant.
8564 if Denotes_Discriminant
(Discr_Expr
(J
)) then
8566 Set_Corresponding_Discriminant
8567 (Entity
(Discr_Expr
(J
)), Discr
);
8570 -- Force the evaluation of non-discriminant expressions.
8571 -- If we have found a discriminant in the constraint 3.4(26)
8572 -- and 3.8(18) demand that no range checks are performed are
8573 -- after evaluation. If the constraint is for a component
8574 -- definition that has a per-object constraint, expressions are
8575 -- evaluated but not checked either. In all other cases perform
8579 if Discrim_Present
then
8582 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
8584 Has_Per_Object_Constraint
8585 (Defining_Identifier
(Parent
(Parent
(Def
))))
8589 elsif Is_Access_Type
(Etype
(Discr
)) then
8590 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
8593 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
8596 Force_Evaluation
(Discr_Expr
(J
));
8599 -- Check that the designated type of an access discriminant's
8600 -- expression is not a class-wide type unless the discriminant's
8601 -- designated type is also class-wide.
8603 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
8604 and then not Is_Class_Wide_Type
8605 (Designated_Type
(Etype
(Discr
)))
8606 and then Etype
(Discr_Expr
(J
)) /= Any_Type
8607 and then Is_Class_Wide_Type
8608 (Designated_Type
(Etype
(Discr_Expr
(J
))))
8610 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
8612 elsif Is_Access_Type
(Etype
(Discr
))
8613 and then not Is_Access_Constant
(Etype
(Discr
))
8614 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
8615 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
8618 ("constraint for discriminant& must be access to variable",
8623 Next_Discriminant
(Discr
);
8627 end Build_Discriminant_Constraints
;
8629 ---------------------------------
8630 -- Build_Discriminated_Subtype --
8631 ---------------------------------
8633 procedure Build_Discriminated_Subtype
8637 Related_Nod
: Node_Id
;
8638 For_Access
: Boolean := False)
8640 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
8641 Constrained
: constant Boolean :=
8643 and then not Is_Empty_Elmt_List
(Elist
)
8644 and then not Is_Class_Wide_Type
(T
))
8645 or else Is_Constrained
(T
);
8648 if Ekind
(T
) = E_Record_Type
then
8650 Set_Ekind
(Def_Id
, E_Private_Subtype
);
8651 Set_Is_For_Access_Subtype
(Def_Id
, True);
8653 Set_Ekind
(Def_Id
, E_Record_Subtype
);
8656 -- Inherit preelaboration flag from base, for types for which it
8657 -- may have been set: records, private types, protected types.
8659 Set_Known_To_Have_Preelab_Init
8660 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8662 elsif Ekind
(T
) = E_Task_Type
then
8663 Set_Ekind
(Def_Id
, E_Task_Subtype
);
8665 elsif Ekind
(T
) = E_Protected_Type
then
8666 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
8667 Set_Known_To_Have_Preelab_Init
8668 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8670 elsif Is_Private_Type
(T
) then
8671 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
8672 Set_Known_To_Have_Preelab_Init
8673 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8675 -- Private subtypes may have private dependents
8677 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
8679 elsif Is_Class_Wide_Type
(T
) then
8680 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
8683 -- Incomplete type. Attach subtype to list of dependents, to be
8684 -- completed with full view of parent type, unless is it the
8685 -- designated subtype of a record component within an init_proc.
8686 -- This last case arises for a component of an access type whose
8687 -- designated type is incomplete (e.g. a Taft Amendment type).
8688 -- The designated subtype is within an inner scope, and needs no
8689 -- elaboration, because only the access type is needed in the
8690 -- initialization procedure.
8692 Set_Ekind
(Def_Id
, Ekind
(T
));
8694 if For_Access
and then Within_Init_Proc
then
8697 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
8701 Set_Etype
(Def_Id
, T
);
8702 Init_Size_Align
(Def_Id
);
8703 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
8704 Set_Is_Constrained
(Def_Id
, Constrained
);
8706 Set_First_Entity
(Def_Id
, First_Entity
(T
));
8707 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
8708 Set_Has_Implicit_Dereference
8709 (Def_Id
, Has_Implicit_Dereference
(T
));
8711 -- If the subtype is the completion of a private declaration, there may
8712 -- have been representation clauses for the partial view, and they must
8713 -- be preserved. Build_Derived_Type chains the inherited clauses with
8714 -- the ones appearing on the extension. If this comes from a subtype
8715 -- declaration, all clauses are inherited.
8717 if No
(First_Rep_Item
(Def_Id
)) then
8718 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8721 if Is_Tagged_Type
(T
) then
8722 Set_Is_Tagged_Type
(Def_Id
);
8723 Make_Class_Wide_Type
(Def_Id
);
8726 Set_Stored_Constraint
(Def_Id
, No_Elist
);
8729 Set_Discriminant_Constraint
(Def_Id
, Elist
);
8730 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
8733 if Is_Tagged_Type
(T
) then
8735 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8736 -- concurrent record type (which has the list of primitive
8739 if Ada_Version
>= Ada_2005
8740 and then Is_Concurrent_Type
(T
)
8742 Set_Corresponding_Record_Type
(Def_Id
,
8743 Corresponding_Record_Type
(T
));
8745 Set_Direct_Primitive_Operations
(Def_Id
,
8746 Direct_Primitive_Operations
(T
));
8749 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
8752 -- Subtypes introduced by component declarations do not need to be
8753 -- marked as delayed, and do not get freeze nodes, because the semantics
8754 -- verifies that the parents of the subtypes are frozen before the
8755 -- enclosing record is frozen.
8757 if not Is_Type
(Scope
(Def_Id
)) then
8758 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
8760 if Is_Private_Type
(T
)
8761 and then Present
(Full_View
(T
))
8763 Conditional_Delay
(Def_Id
, Full_View
(T
));
8765 Conditional_Delay
(Def_Id
, T
);
8769 if Is_Record_Type
(T
) then
8770 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
8773 and then not Is_Empty_Elmt_List
(Elist
)
8774 and then not For_Access
8776 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
8777 elsif not For_Access
then
8778 Set_Cloned_Subtype
(Def_Id
, T
);
8781 end Build_Discriminated_Subtype
;
8783 ---------------------------
8784 -- Build_Itype_Reference --
8785 ---------------------------
8787 procedure Build_Itype_Reference
8791 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
8794 -- Itype references are only created for use by the back-end
8796 if Inside_A_Generic
then
8799 Set_Itype
(IR
, Ityp
);
8800 Insert_After
(Nod
, IR
);
8802 end Build_Itype_Reference
;
8804 ------------------------
8805 -- Build_Scalar_Bound --
8806 ------------------------
8808 function Build_Scalar_Bound
8811 Der_T
: Entity_Id
) return Node_Id
8813 New_Bound
: Entity_Id
;
8816 -- Note: not clear why this is needed, how can the original bound
8817 -- be unanalyzed at this point? and if it is, what business do we
8818 -- have messing around with it? and why is the base type of the
8819 -- parent type the right type for the resolution. It probably is
8820 -- not! It is OK for the new bound we are creating, but not for
8821 -- the old one??? Still if it never happens, no problem!
8823 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
8825 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
8826 New_Bound
:= New_Copy
(Bound
);
8827 Set_Etype
(New_Bound
, Der_T
);
8828 Set_Analyzed
(New_Bound
);
8830 elsif Is_Entity_Name
(Bound
) then
8831 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
8833 -- The following is almost certainly wrong. What business do we have
8834 -- relocating a node (Bound) that is presumably still attached to
8835 -- the tree elsewhere???
8838 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
8841 Set_Etype
(New_Bound
, Der_T
);
8843 end Build_Scalar_Bound
;
8845 --------------------------------
8846 -- Build_Underlying_Full_View --
8847 --------------------------------
8849 procedure Build_Underlying_Full_View
8854 Loc
: constant Source_Ptr
:= Sloc
(N
);
8855 Subt
: constant Entity_Id
:=
8856 Make_Defining_Identifier
8857 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
8864 procedure Set_Discriminant_Name
(Id
: Node_Id
);
8865 -- If the derived type has discriminants, they may rename discriminants
8866 -- of the parent. When building the full view of the parent, we need to
8867 -- recover the names of the original discriminants if the constraint is
8868 -- given by named associations.
8870 ---------------------------
8871 -- Set_Discriminant_Name --
8872 ---------------------------
8874 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
8878 Set_Original_Discriminant
(Id
, Empty
);
8880 if Has_Discriminants
(Typ
) then
8881 Disc
:= First_Discriminant
(Typ
);
8882 while Present
(Disc
) loop
8883 if Chars
(Disc
) = Chars
(Id
)
8884 and then Present
(Corresponding_Discriminant
(Disc
))
8886 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
8888 Next_Discriminant
(Disc
);
8891 end Set_Discriminant_Name
;
8893 -- Start of processing for Build_Underlying_Full_View
8896 if Nkind
(N
) = N_Full_Type_Declaration
then
8897 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
8899 elsif Nkind
(N
) = N_Subtype_Declaration
then
8900 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
8902 elsif Nkind
(N
) = N_Component_Declaration
then
8905 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
8908 raise Program_Error
;
8911 C
:= First
(Constraints
(Constr
));
8912 while Present
(C
) loop
8913 if Nkind
(C
) = N_Discriminant_Association
then
8914 Id
:= First
(Selector_Names
(C
));
8915 while Present
(Id
) loop
8916 Set_Discriminant_Name
(Id
);
8925 Make_Subtype_Declaration
(Loc
,
8926 Defining_Identifier
=> Subt
,
8927 Subtype_Indication
=>
8928 Make_Subtype_Indication
(Loc
,
8929 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
8930 Constraint
=> New_Copy_Tree
(Constr
)));
8932 -- If this is a component subtype for an outer itype, it is not
8933 -- a list member, so simply set the parent link for analysis: if
8934 -- the enclosing type does not need to be in a declarative list,
8935 -- neither do the components.
8937 if Is_List_Member
(N
)
8938 and then Nkind
(N
) /= N_Component_Declaration
8940 Insert_Before
(N
, Indic
);
8942 Set_Parent
(Indic
, Parent
(N
));
8946 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
8947 end Build_Underlying_Full_View
;
8949 -------------------------------
8950 -- Check_Abstract_Overriding --
8951 -------------------------------
8953 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
8954 Alias_Subp
: Entity_Id
;
8960 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
8961 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
8962 -- which has pragma Implemented already set. Check whether Subp's entity
8963 -- kind conforms to the implementation kind of the overridden routine.
8965 procedure Check_Pragma_Implemented
8967 Iface_Subp
: Entity_Id
);
8968 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
8969 -- Iface_Subp and both entities have pragma Implemented already set on
8970 -- them. Check whether the two implementation kinds are conforming.
8972 procedure Inherit_Pragma_Implemented
8974 Iface_Subp
: Entity_Id
);
8975 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
8976 -- subprogram Iface_Subp which has been marked by pragma Implemented.
8977 -- Propagate the implementation kind of Iface_Subp to Subp.
8979 ------------------------------
8980 -- Check_Pragma_Implemented --
8981 ------------------------------
8983 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
8984 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
8985 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
8986 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
8987 Contr_Typ
: Entity_Id
;
8988 Impl_Subp
: Entity_Id
;
8991 -- Subp must have an alias since it is a hidden entity used to link
8992 -- an interface subprogram to its overriding counterpart.
8994 pragma Assert
(Present
(Subp_Alias
));
8996 -- Handle aliases to synchronized wrappers
8998 Impl_Subp
:= Subp_Alias
;
9000 if Is_Primitive_Wrapper
(Impl_Subp
) then
9001 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9004 -- Extract the type of the controlling formal
9006 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9008 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9009 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9012 -- An interface subprogram whose implementation kind is By_Entry must
9013 -- be implemented by an entry.
9015 if Impl_Kind
= Name_By_Entry
9016 and then Ekind
(Impl_Subp
) /= E_Entry
9018 Error_Msg_Node_2
:= Iface_Alias
;
9020 ("type & must implement abstract subprogram & with an entry",
9021 Subp_Alias
, Contr_Typ
);
9023 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9025 -- An interface subprogram whose implementation kind is By_
9026 -- Protected_Procedure cannot be implemented by a primitive
9027 -- procedure of a task type.
9029 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9030 Error_Msg_Node_2
:= Contr_Typ
;
9032 ("interface subprogram & cannot be implemented by a " &
9033 "primitive procedure of task type &", Subp_Alias
,
9036 -- An interface subprogram whose implementation kind is By_
9037 -- Protected_Procedure must be implemented by a procedure.
9039 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9040 Error_Msg_Node_2
:= Iface_Alias
;
9042 ("type & must implement abstract subprogram & with a " &
9043 "procedure", Subp_Alias
, Contr_Typ
);
9046 end Check_Pragma_Implemented
;
9048 ------------------------------
9049 -- Check_Pragma_Implemented --
9050 ------------------------------
9052 procedure Check_Pragma_Implemented
9054 Iface_Subp
: Entity_Id
)
9056 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9057 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
9060 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9061 -- and overriding subprogram are different. In general this is an
9062 -- error except when the implementation kind of the overridden
9063 -- subprograms is By_Any or Optional.
9065 if Iface_Kind
/= Subp_Kind
9066 and then Iface_Kind
/= Name_By_Any
9067 and then Iface_Kind
/= Name_Optional
9069 if Iface_Kind
= Name_By_Entry
then
9071 ("incompatible implementation kind, overridden subprogram " &
9072 "is marked By_Entry", Subp
);
9075 ("incompatible implementation kind, overridden subprogram " &
9076 "is marked By_Protected_Procedure", Subp
);
9079 end Check_Pragma_Implemented
;
9081 --------------------------------
9082 -- Inherit_Pragma_Implemented --
9083 --------------------------------
9085 procedure Inherit_Pragma_Implemented
9087 Iface_Subp
: Entity_Id
)
9089 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
9090 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
9091 Impl_Prag
: Node_Id
;
9094 -- Since the implementation kind is stored as a representation item
9095 -- rather than a flag, create a pragma node.
9099 Chars
=> Name_Implemented
,
9100 Pragma_Argument_Associations
=> New_List
(
9101 Make_Pragma_Argument_Association
(Loc
,
9102 Expression
=> New_Reference_To
(Subp
, Loc
)),
9104 Make_Pragma_Argument_Association
(Loc
,
9105 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
9107 -- The pragma doesn't need to be analyzed because it is internally
9108 -- built. It is safe to directly register it as a rep item since we
9109 -- are only interested in the characters of the implementation kind.
9111 Record_Rep_Item
(Subp
, Impl_Prag
);
9112 end Inherit_Pragma_Implemented
;
9114 -- Start of processing for Check_Abstract_Overriding
9117 Op_List
:= Primitive_Operations
(T
);
9119 -- Loop to check primitive operations
9121 Elmt
:= First_Elmt
(Op_List
);
9122 while Present
(Elmt
) loop
9123 Subp
:= Node
(Elmt
);
9124 Alias_Subp
:= Alias
(Subp
);
9126 -- Inherited subprograms are identified by the fact that they do not
9127 -- come from source, and the associated source location is the
9128 -- location of the first subtype of the derived type.
9130 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9131 -- subprograms that "require overriding".
9133 -- Special exception, do not complain about failure to override the
9134 -- stream routines _Input and _Output, as well as the primitive
9135 -- operations used in dispatching selects since we always provide
9136 -- automatic overridings for these subprograms.
9138 -- Also ignore this rule for convention CIL since .NET libraries
9139 -- do bizarre things with interfaces???
9141 -- The partial view of T may have been a private extension, for
9142 -- which inherited functions dispatching on result are abstract.
9143 -- If the full view is a null extension, there is no need for
9144 -- overriding in Ada 2005, but wrappers need to be built for them
9145 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9147 if Is_Null_Extension
(T
)
9148 and then Has_Controlling_Result
(Subp
)
9149 and then Ada_Version
>= Ada_2005
9150 and then Present
(Alias_Subp
)
9151 and then not Comes_From_Source
(Subp
)
9152 and then not Is_Abstract_Subprogram
(Alias_Subp
)
9153 and then not Is_Access_Type
(Etype
(Subp
))
9157 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9158 -- processing because this check is done with the aliased
9161 elsif Present
(Interface_Alias
(Subp
)) then
9164 elsif (Is_Abstract_Subprogram
(Subp
)
9165 or else Requires_Overriding
(Subp
)
9167 (Has_Controlling_Result
(Subp
)
9168 and then Present
(Alias_Subp
)
9169 and then not Comes_From_Source
(Subp
)
9170 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
9171 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
9172 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
9173 and then not Is_Abstract_Type
(T
)
9174 and then Convention
(T
) /= Convention_CIL
9175 and then not Is_Predefined_Interface_Primitive
(Subp
)
9177 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9178 -- with abstract interface types because the check will be done
9179 -- with the aliased entity (otherwise we generate a duplicated
9182 and then not Present
(Interface_Alias
(Subp
))
9184 if Present
(Alias_Subp
) then
9186 -- Only perform the check for a derived subprogram when the
9187 -- type has an explicit record extension. This avoids incorrect
9188 -- flagging of abstract subprograms for the case of a type
9189 -- without an extension that is derived from a formal type
9190 -- with a tagged actual (can occur within a private part).
9192 -- Ada 2005 (AI-391): In the case of an inherited function with
9193 -- a controlling result of the type, the rule does not apply if
9194 -- the type is a null extension (unless the parent function
9195 -- itself is abstract, in which case the function must still be
9196 -- be overridden). The expander will generate an overriding
9197 -- wrapper function calling the parent subprogram (see
9198 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9200 Type_Def
:= Type_Definition
(Parent
(T
));
9202 if Nkind
(Type_Def
) = N_Derived_Type_Definition
9203 and then Present
(Record_Extension_Part
(Type_Def
))
9205 (Ada_Version
< Ada_2005
9206 or else not Is_Null_Extension
(T
)
9207 or else Ekind
(Subp
) = E_Procedure
9208 or else not Has_Controlling_Result
(Subp
)
9209 or else Is_Abstract_Subprogram
(Alias_Subp
)
9210 or else Requires_Overriding
(Subp
)
9211 or else Is_Access_Type
(Etype
(Subp
)))
9213 -- Avoid reporting error in case of abstract predefined
9214 -- primitive inherited from interface type because the
9215 -- body of internally generated predefined primitives
9216 -- of tagged types are generated later by Freeze_Type
9218 if Is_Interface
(Root_Type
(T
))
9219 and then Is_Abstract_Subprogram
(Subp
)
9220 and then Is_Predefined_Dispatching_Operation
(Subp
)
9221 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
9227 ("type must be declared abstract or & overridden",
9230 -- Traverse the whole chain of aliased subprograms to
9231 -- complete the error notification. This is especially
9232 -- useful for traceability of the chain of entities when
9233 -- the subprogram corresponds with an interface
9234 -- subprogram (which may be defined in another package).
9236 if Present
(Alias_Subp
) then
9242 while Present
(Alias
(E
)) loop
9244 -- Avoid reporting redundant errors on entities
9245 -- inherited from interfaces
9247 if Sloc
(E
) /= Sloc
(T
) then
9248 Error_Msg_Sloc
:= Sloc
(E
);
9250 ("\& has been inherited #", T
, Subp
);
9256 Error_Msg_Sloc
:= Sloc
(E
);
9258 -- AI05-0068: report if there is an overriding
9259 -- non-abstract subprogram that is invisible.
9262 and then not Is_Abstract_Subprogram
(E
)
9265 ("\& subprogram# is not visible",
9270 ("\& has been inherited from subprogram #",
9277 -- Ada 2005 (AI-345): Protected or task type implementing
9278 -- abstract interfaces.
9280 elsif Is_Concurrent_Record_Type
(T
)
9281 and then Present
(Interfaces
(T
))
9283 -- The controlling formal of Subp must be of mode "out",
9284 -- "in out" or an access-to-variable to be overridden.
9286 if Ekind
(First_Formal
(Subp
)) = E_In_Parameter
9287 and then Ekind
(Subp
) /= E_Function
9289 if not Is_Predefined_Dispatching_Operation
(Subp
)
9290 and then Is_Protected_Type
9291 (Corresponding_Concurrent_Type
(T
))
9293 Error_Msg_PT
(T
, Subp
);
9296 -- Some other kind of overriding failure
9300 ("interface subprogram & must be overridden",
9303 -- Examine primitive operations of synchronized type,
9304 -- to find homonyms that have the wrong profile.
9311 First_Entity
(Corresponding_Concurrent_Type
(T
));
9312 while Present
(Prim
) loop
9313 if Chars
(Prim
) = Chars
(Subp
) then
9315 ("profile is not type conformant with "
9316 & "prefixed view profile of "
9317 & "inherited operation&", Prim
, Subp
);
9327 Error_Msg_Node_2
:= T
;
9329 ("abstract subprogram& not allowed for type&", Subp
);
9331 -- Also post unconditional warning on the type (unconditional
9332 -- so that if there are more than one of these cases, we get
9333 -- them all, and not just the first one).
9335 Error_Msg_Node_2
:= Subp
;
9336 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
9340 -- Ada 2012 (AI05-0030): Perform some checks related to pragma
9343 -- Subp is an expander-generated procedure which maps an interface
9344 -- alias to a protected wrapper. The interface alias is flagged by
9345 -- pragma Implemented. Ensure that Subp is a procedure when the
9346 -- implementation kind is By_Protected_Procedure or an entry when
9349 if Ada_Version
>= Ada_2012
9350 and then Is_Hidden
(Subp
)
9351 and then Present
(Interface_Alias
(Subp
))
9352 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
9354 Check_Pragma_Implemented
(Subp
);
9357 -- Subp is an interface primitive which overrides another interface
9358 -- primitive marked with pragma Implemented.
9360 if Ada_Version
>= Ada_2012
9361 and then Present
(Overridden_Operation
(Subp
))
9362 and then Has_Rep_Pragma
9363 (Overridden_Operation
(Subp
), Name_Implemented
)
9365 -- If the overriding routine is also marked by Implemented, check
9366 -- that the two implementation kinds are conforming.
9368 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
9369 Check_Pragma_Implemented
9371 Iface_Subp
=> Overridden_Operation
(Subp
));
9373 -- Otherwise the overriding routine inherits the implementation
9374 -- kind from the overridden subprogram.
9377 Inherit_Pragma_Implemented
9379 Iface_Subp
=> Overridden_Operation
(Subp
));
9385 end Check_Abstract_Overriding
;
9387 ------------------------------------------------
9388 -- Check_Access_Discriminant_Requires_Limited --
9389 ------------------------------------------------
9391 procedure Check_Access_Discriminant_Requires_Limited
9396 -- A discriminant_specification for an access discriminant shall appear
9397 -- only in the declaration for a task or protected type, or for a type
9398 -- with the reserved word 'limited' in its definition or in one of its
9399 -- ancestors (RM 3.7(10)).
9401 -- AI-0063: The proper condition is that type must be immutably limited,
9402 -- or else be a partial view.
9404 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
9405 if Is_Immutably_Limited_Type
(Current_Scope
)
9407 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
9408 and then Limited_Present
(Parent
(Current_Scope
)))
9414 ("access discriminants allowed only for limited types", Loc
);
9417 end Check_Access_Discriminant_Requires_Limited
;
9419 -----------------------------------
9420 -- Check_Aliased_Component_Types --
9421 -----------------------------------
9423 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
9427 -- ??? Also need to check components of record extensions, but not
9428 -- components of protected types (which are always limited).
9430 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9431 -- types to be unconstrained. This is safe because it is illegal to
9432 -- create access subtypes to such types with explicit discriminant
9435 if not Is_Limited_Type
(T
) then
9436 if Ekind
(T
) = E_Record_Type
then
9437 C
:= First_Component
(T
);
9438 while Present
(C
) loop
9440 and then Has_Discriminants
(Etype
(C
))
9441 and then not Is_Constrained
(Etype
(C
))
9442 and then not In_Instance_Body
9443 and then Ada_Version
< Ada_2005
9446 ("aliased component must be constrained (RM 3.6(11))",
9453 elsif Ekind
(T
) = E_Array_Type
then
9454 if Has_Aliased_Components
(T
)
9455 and then Has_Discriminants
(Component_Type
(T
))
9456 and then not Is_Constrained
(Component_Type
(T
))
9457 and then not In_Instance_Body
9458 and then Ada_Version
< Ada_2005
9461 ("aliased component type must be constrained (RM 3.6(11))",
9466 end Check_Aliased_Component_Types
;
9468 ----------------------
9469 -- Check_Completion --
9470 ----------------------
9472 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
9475 procedure Post_Error
;
9476 -- Post error message for lack of completion for entity E
9482 procedure Post_Error
is
9484 procedure Missing_Body
;
9485 -- Output missing body message
9491 procedure Missing_Body
is
9493 -- Spec is in same unit, so we can post on spec
9495 if In_Same_Source_Unit
(Body_Id
, E
) then
9496 Error_Msg_N
("missing body for &", E
);
9498 -- Spec is in a separate unit, so we have to post on the body
9501 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
9505 -- Start of processing for Post_Error
9508 if not Comes_From_Source
(E
) then
9510 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
9511 -- It may be an anonymous protected type created for a
9512 -- single variable. Post error on variable, if present.
9518 Var
:= First_Entity
(Current_Scope
);
9519 while Present
(Var
) loop
9520 exit when Etype
(Var
) = E
9521 and then Comes_From_Source
(Var
);
9526 if Present
(Var
) then
9533 -- If a generated entity has no completion, then either previous
9534 -- semantic errors have disabled the expansion phase, or else we had
9535 -- missing subunits, or else we are compiling without expansion,
9536 -- or else something is very wrong.
9538 if not Comes_From_Source
(E
) then
9540 (Serious_Errors_Detected
> 0
9541 or else Configurable_Run_Time_Violations
> 0
9542 or else Subunits_Missing
9543 or else not Expander_Active
);
9546 -- Here for source entity
9549 -- Here if no body to post the error message, so we post the error
9550 -- on the declaration that has no completion. This is not really
9551 -- the right place to post it, think about this later ???
9553 if No
(Body_Id
) then
9556 ("missing full declaration for }", Parent
(E
), E
);
9558 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
9561 -- Package body has no completion for a declaration that appears
9562 -- in the corresponding spec. Post error on the body, with a
9563 -- reference to the non-completed declaration.
9566 Error_Msg_Sloc
:= Sloc
(E
);
9569 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
9571 elsif Is_Overloadable
(E
)
9572 and then Current_Entity_In_Scope
(E
) /= E
9574 -- It may be that the completion is mistyped and appears as
9575 -- a distinct overloading of the entity.
9578 Candidate
: constant Entity_Id
:=
9579 Current_Entity_In_Scope
(E
);
9580 Decl
: constant Node_Id
:=
9581 Unit_Declaration_Node
(Candidate
);
9584 if Is_Overloadable
(Candidate
)
9585 and then Ekind
(Candidate
) = Ekind
(E
)
9586 and then Nkind
(Decl
) = N_Subprogram_Body
9587 and then Acts_As_Spec
(Decl
)
9589 Check_Type_Conformant
(Candidate
, E
);
9603 -- Start of processing for Check_Completion
9606 E
:= First_Entity
(Current_Scope
);
9607 while Present
(E
) loop
9608 if Is_Intrinsic_Subprogram
(E
) then
9611 -- The following situation requires special handling: a child unit
9612 -- that appears in the context clause of the body of its parent:
9614 -- procedure Parent.Child (...);
9616 -- with Parent.Child;
9617 -- package body Parent is
9619 -- Here Parent.Child appears as a local entity, but should not be
9620 -- flagged as requiring completion, because it is a compilation
9623 -- Ignore missing completion for a subprogram that does not come from
9624 -- source (including the _Call primitive operation of RAS types,
9625 -- which has to have the flag Comes_From_Source for other purposes):
9626 -- we assume that the expander will provide the missing completion.
9627 -- In case of previous errors, other expansion actions that provide
9628 -- bodies for null procedures with not be invoked, so inhibit message
9631 -- Note that E_Operator is not in the list that follows, because
9632 -- this kind is reserved for predefined operators, that are
9633 -- intrinsic and do not need completion.
9635 elsif Ekind
(E
) = E_Function
9636 or else Ekind
(E
) = E_Procedure
9637 or else Ekind
(E
) = E_Generic_Function
9638 or else Ekind
(E
) = E_Generic_Procedure
9640 if Has_Completion
(E
) then
9643 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
9646 elsif Is_Subprogram
(E
)
9647 and then (not Comes_From_Source
(E
)
9648 or else Chars
(E
) = Name_uCall
)
9653 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
9657 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
9658 and then Null_Present
(Parent
(E
))
9659 and then Serious_Errors_Detected
> 0
9667 elsif Is_Entry
(E
) then
9668 if not Has_Completion
(E
) and then
9669 (Ekind
(Scope
(E
)) = E_Protected_Object
9670 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
9675 elsif Is_Package_Or_Generic_Package
(E
) then
9676 if Unit_Requires_Body
(E
) then
9677 if not Has_Completion
(E
)
9678 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
9684 elsif not Is_Child_Unit
(E
) then
9685 May_Need_Implicit_Body
(E
);
9688 -- A formal incomplete type (Ada 2012) does not require a completion;
9689 -- other incomplete type declarations do.
9691 elsif Ekind
(E
) = E_Incomplete_Type
9692 and then No
(Underlying_Type
(E
))
9693 and then not Is_Generic_Type
(E
)
9697 elsif (Ekind
(E
) = E_Task_Type
or else
9698 Ekind
(E
) = E_Protected_Type
)
9699 and then not Has_Completion
(E
)
9703 -- A single task declared in the current scope is a constant, verify
9704 -- that the body of its anonymous type is in the same scope. If the
9705 -- task is defined elsewhere, this may be a renaming declaration for
9706 -- which no completion is needed.
9708 elsif Ekind
(E
) = E_Constant
9709 and then Ekind
(Etype
(E
)) = E_Task_Type
9710 and then not Has_Completion
(Etype
(E
))
9711 and then Scope
(Etype
(E
)) = Current_Scope
9715 elsif Ekind
(E
) = E_Protected_Object
9716 and then not Has_Completion
(Etype
(E
))
9720 elsif Ekind
(E
) = E_Record_Type
then
9721 if Is_Tagged_Type
(E
) then
9722 Check_Abstract_Overriding
(E
);
9723 Check_Conventions
(E
);
9726 Check_Aliased_Component_Types
(E
);
9728 elsif Ekind
(E
) = E_Array_Type
then
9729 Check_Aliased_Component_Types
(E
);
9735 end Check_Completion
;
9737 ------------------------------------
9738 -- Check_CPP_Type_Has_No_Defaults --
9739 ------------------------------------
9741 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
9742 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
9747 -- Obtain the component list
9749 if Nkind
(Tdef
) = N_Record_Definition
then
9750 Clist
:= Component_List
(Tdef
);
9751 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
9752 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
9755 -- Check all components to ensure no default expressions
9757 if Present
(Clist
) then
9758 Comp
:= First
(Component_Items
(Clist
));
9759 while Present
(Comp
) loop
9760 if Present
(Expression
(Comp
)) then
9762 ("component of imported 'C'P'P type cannot have "
9763 & "default expression", Expression
(Comp
));
9769 end Check_CPP_Type_Has_No_Defaults
;
9771 ----------------------------
9772 -- Check_Delta_Expression --
9773 ----------------------------
9775 procedure Check_Delta_Expression
(E
: Node_Id
) is
9777 if not (Is_Real_Type
(Etype
(E
))) then
9778 Wrong_Type
(E
, Any_Real
);
9780 elsif not Is_OK_Static_Expression
(E
) then
9781 Flag_Non_Static_Expr
9782 ("non-static expression used for delta value!", E
);
9784 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
9785 Error_Msg_N
("delta expression must be positive", E
);
9791 -- If any of above errors occurred, then replace the incorrect
9792 -- expression by the real 0.1, which should prevent further errors.
9795 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
9796 Analyze_And_Resolve
(E
, Standard_Float
);
9797 end Check_Delta_Expression
;
9799 -----------------------------
9800 -- Check_Digits_Expression --
9801 -----------------------------
9803 procedure Check_Digits_Expression
(E
: Node_Id
) is
9805 if not (Is_Integer_Type
(Etype
(E
))) then
9806 Wrong_Type
(E
, Any_Integer
);
9808 elsif not Is_OK_Static_Expression
(E
) then
9809 Flag_Non_Static_Expr
9810 ("non-static expression used for digits value!", E
);
9812 elsif Expr_Value
(E
) <= 0 then
9813 Error_Msg_N
("digits value must be greater than zero", E
);
9819 -- If any of above errors occurred, then replace the incorrect
9820 -- expression by the integer 1, which should prevent further errors.
9822 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
9823 Analyze_And_Resolve
(E
, Standard_Integer
);
9825 end Check_Digits_Expression
;
9827 --------------------------
9828 -- Check_Initialization --
9829 --------------------------
9831 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
9833 if Is_Limited_Type
(T
)
9834 and then not In_Instance
9835 and then not In_Inlined_Body
9837 if not OK_For_Limited_Init
(T
, Exp
) then
9839 -- In GNAT mode, this is just a warning, to allow it to be evilly
9840 -- turned off. Otherwise it is a real error.
9844 ("?cannot initialize entities of limited type!", Exp
);
9846 elsif Ada_Version
< Ada_2005
then
9848 -- The side effect removal machinery may generate illegal Ada
9849 -- code to avoid the usage of access types and 'reference in
9850 -- SPARK mode. Since this is legal code with respect to theorem
9851 -- proving, do not emit the error.
9854 and then Nkind
(Exp
) = N_Function_Call
9855 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
9856 and then not Comes_From_Source
9857 (Defining_Identifier
(Parent
(Exp
)))
9863 ("cannot initialize entities of limited type", Exp
);
9864 Explain_Limited_Type
(T
, Exp
);
9868 -- Specialize error message according to kind of illegal
9869 -- initial expression.
9871 if Nkind
(Exp
) = N_Type_Conversion
9872 and then Nkind
(Expression
(Exp
)) = N_Function_Call
9875 ("illegal context for call"
9876 & " to function with limited result", Exp
);
9880 ("initialization of limited object requires aggregate "
9881 & "or function call", Exp
);
9886 end Check_Initialization
;
9888 ----------------------
9889 -- Check_Interfaces --
9890 ----------------------
9892 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
9893 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
9896 Iface_Def
: Node_Id
;
9897 Iface_Typ
: Entity_Id
;
9898 Parent_Node
: Node_Id
;
9900 Is_Task
: Boolean := False;
9901 -- Set True if parent type or any progenitor is a task interface
9903 Is_Protected
: Boolean := False;
9904 -- Set True if parent type or any progenitor is a protected interface
9906 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
9907 -- Check that a progenitor is compatible with declaration.
9908 -- Error is posted on Error_Node.
9914 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
9915 Iface_Id
: constant Entity_Id
:=
9916 Defining_Identifier
(Parent
(Iface_Def
));
9920 if Nkind
(N
) = N_Private_Extension_Declaration
then
9923 Type_Def
:= Type_Definition
(N
);
9926 if Is_Task_Interface
(Iface_Id
) then
9929 elsif Is_Protected_Interface
(Iface_Id
) then
9930 Is_Protected
:= True;
9933 if Is_Synchronized_Interface
(Iface_Id
) then
9935 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9936 -- extension derived from a synchronized interface must explicitly
9937 -- be declared synchronized, because the full view will be a
9938 -- synchronized type.
9940 if Nkind
(N
) = N_Private_Extension_Declaration
then
9941 if not Synchronized_Present
(N
) then
9943 ("private extension of& must be explicitly synchronized",
9947 -- However, by 3.9.4(16/2), a full type that is a record extension
9948 -- is never allowed to derive from a synchronized interface (note
9949 -- that interfaces must be excluded from this check, because those
9950 -- are represented by derived type definitions in some cases).
9952 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9953 and then not Interface_Present
(Type_Definition
(N
))
9955 Error_Msg_N
("record extension cannot derive from synchronized"
9956 & " interface", Error_Node
);
9960 -- Check that the characteristics of the progenitor are compatible
9961 -- with the explicit qualifier in the declaration.
9962 -- The check only applies to qualifiers that come from source.
9963 -- Limited_Present also appears in the declaration of corresponding
9964 -- records, and the check does not apply to them.
9966 if Limited_Present
(Type_Def
)
9968 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
9970 if Is_Limited_Interface
(Parent_Type
)
9971 and then not Is_Limited_Interface
(Iface_Id
)
9974 ("progenitor& must be limited interface",
9975 Error_Node
, Iface_Id
);
9978 (Task_Present
(Iface_Def
)
9979 or else Protected_Present
(Iface_Def
)
9980 or else Synchronized_Present
(Iface_Def
))
9981 and then Nkind
(N
) /= N_Private_Extension_Declaration
9982 and then not Error_Posted
(N
)
9985 ("progenitor& must be limited interface",
9986 Error_Node
, Iface_Id
);
9989 -- Protected interfaces can only inherit from limited, synchronized
9990 -- or protected interfaces.
9992 elsif Nkind
(N
) = N_Full_Type_Declaration
9993 and then Protected_Present
(Type_Def
)
9995 if Limited_Present
(Iface_Def
)
9996 or else Synchronized_Present
(Iface_Def
)
9997 or else Protected_Present
(Iface_Def
)
10001 elsif Task_Present
(Iface_Def
) then
10002 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
10003 & " from task interface", Error_Node
);
10006 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
10007 & " from non-limited interface", Error_Node
);
10010 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10011 -- limited and synchronized.
10013 elsif Synchronized_Present
(Type_Def
) then
10014 if Limited_Present
(Iface_Def
)
10015 or else Synchronized_Present
(Iface_Def
)
10019 elsif Protected_Present
(Iface_Def
)
10020 and then Nkind
(N
) /= N_Private_Extension_Declaration
10022 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
10023 & " from protected interface", Error_Node
);
10025 elsif Task_Present
(Iface_Def
)
10026 and then Nkind
(N
) /= N_Private_Extension_Declaration
10028 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
10029 & " from task interface", Error_Node
);
10031 elsif not Is_Limited_Interface
(Iface_Id
) then
10032 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
10033 & " from non-limited interface", Error_Node
);
10036 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10037 -- synchronized or task interfaces.
10039 elsif Nkind
(N
) = N_Full_Type_Declaration
10040 and then Task_Present
(Type_Def
)
10042 if Limited_Present
(Iface_Def
)
10043 or else Synchronized_Present
(Iface_Def
)
10044 or else Task_Present
(Iface_Def
)
10048 elsif Protected_Present
(Iface_Def
) then
10049 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
10050 & " protected interface", Error_Node
);
10053 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
10054 & " non-limited interface", Error_Node
);
10059 -- Start of processing for Check_Interfaces
10062 if Is_Interface
(Parent_Type
) then
10063 if Is_Task_Interface
(Parent_Type
) then
10066 elsif Is_Protected_Interface
(Parent_Type
) then
10067 Is_Protected
:= True;
10071 if Nkind
(N
) = N_Private_Extension_Declaration
then
10073 -- Check that progenitors are compatible with declaration
10075 Iface
:= First
(Interface_List
(Def
));
10076 while Present
(Iface
) loop
10077 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
10079 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
10080 Iface_Def
:= Type_Definition
(Parent_Node
);
10082 if not Is_Interface
(Iface_Typ
) then
10083 Diagnose_Interface
(Iface
, Iface_Typ
);
10086 Check_Ifaces
(Iface_Def
, Iface
);
10092 if Is_Task
and Is_Protected
then
10094 ("type cannot derive from task and protected interface", N
);
10100 -- Full type declaration of derived type.
10101 -- Check compatibility with parent if it is interface type
10103 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
10104 and then Is_Interface
(Parent_Type
)
10106 Parent_Node
:= Parent
(Parent_Type
);
10108 -- More detailed checks for interface varieties
10111 (Iface_Def
=> Type_Definition
(Parent_Node
),
10112 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
10115 Iface
:= First
(Interface_List
(Def
));
10116 while Present
(Iface
) loop
10117 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
10119 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
10120 Iface_Def
:= Type_Definition
(Parent_Node
);
10122 if not Is_Interface
(Iface_Typ
) then
10123 Diagnose_Interface
(Iface
, Iface_Typ
);
10126 -- "The declaration of a specific descendant of an interface
10127 -- type freezes the interface type" RM 13.14
10129 Freeze_Before
(N
, Iface_Typ
);
10130 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
10136 if Is_Task
and Is_Protected
then
10138 ("type cannot derive from task and protected interface", N
);
10140 end Check_Interfaces
;
10142 ------------------------------------
10143 -- Check_Or_Process_Discriminants --
10144 ------------------------------------
10146 -- If an incomplete or private type declaration was already given for the
10147 -- type, the discriminants may have already been processed if they were
10148 -- present on the incomplete declaration. In this case a full conformance
10149 -- check has been performed in Find_Type_Name, and we then recheck here
10150 -- some properties that can't be checked on the partial view alone.
10151 -- Otherwise we call Process_Discriminants.
10153 procedure Check_Or_Process_Discriminants
10156 Prev
: Entity_Id
:= Empty
)
10159 if Has_Discriminants
(T
) then
10161 -- Discriminants are already set on T if they were already present
10162 -- on the partial view. Make them visible to component declarations.
10166 -- Discriminant on T (full view) referencing expr on partial view
10168 Prev_D
: Entity_Id
;
10169 -- Entity of corresponding discriminant on partial view
10172 -- Discriminant specification for full view, expression is the
10173 -- syntactic copy on full view (which has been checked for
10174 -- conformance with partial view), only used here to post error
10178 D
:= First_Discriminant
(T
);
10179 New_D
:= First
(Discriminant_Specifications
(N
));
10180 while Present
(D
) loop
10181 Prev_D
:= Current_Entity
(D
);
10182 Set_Current_Entity
(D
);
10183 Set_Is_Immediately_Visible
(D
);
10184 Set_Homonym
(D
, Prev_D
);
10186 -- Handle the case where there is an untagged partial view and
10187 -- the full view is tagged: must disallow discriminants with
10188 -- defaults, unless compiling for Ada 2012, which allows a
10189 -- limited tagged type to have defaulted discriminants (see
10190 -- AI05-0214). However, suppress the error here if it was
10191 -- already reported on the default expression of the partial
10194 if Is_Tagged_Type
(T
)
10195 and then Present
(Expression
(Parent
(D
)))
10196 and then (not Is_Limited_Type
(Current_Scope
)
10197 or else Ada_Version
< Ada_2012
)
10198 and then not Error_Posted
(Expression
(Parent
(D
)))
10200 if Ada_Version
>= Ada_2012
then
10202 ("discriminants of nonlimited tagged type cannot have"
10204 Expression
(New_D
));
10207 ("discriminants of tagged type cannot have defaults",
10208 Expression
(New_D
));
10212 -- Ada 2005 (AI-230): Access discriminant allowed in
10213 -- non-limited record types.
10215 if Ada_Version
< Ada_2005
then
10217 -- This restriction gets applied to the full type here. It
10218 -- has already been applied earlier to the partial view.
10220 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
10223 Next_Discriminant
(D
);
10228 elsif Present
(Discriminant_Specifications
(N
)) then
10229 Process_Discriminants
(N
, Prev
);
10231 end Check_Or_Process_Discriminants
;
10233 ----------------------
10234 -- Check_Real_Bound --
10235 ----------------------
10237 procedure Check_Real_Bound
(Bound
: Node_Id
) is
10239 if not Is_Real_Type
(Etype
(Bound
)) then
10241 ("bound in real type definition must be of real type", Bound
);
10243 elsif not Is_OK_Static_Expression
(Bound
) then
10244 Flag_Non_Static_Expr
10245 ("non-static expression used for real type bound!", Bound
);
10252 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
10254 Resolve
(Bound
, Standard_Float
);
10255 end Check_Real_Bound
;
10257 ------------------------------
10258 -- Complete_Private_Subtype --
10259 ------------------------------
10261 procedure Complete_Private_Subtype
10264 Full_Base
: Entity_Id
;
10265 Related_Nod
: Node_Id
)
10267 Save_Next_Entity
: Entity_Id
;
10268 Save_Homonym
: Entity_Id
;
10271 -- Set semantic attributes for (implicit) private subtype completion.
10272 -- If the full type has no discriminants, then it is a copy of the full
10273 -- view of the base. Otherwise, it is a subtype of the base with a
10274 -- possible discriminant constraint. Save and restore the original
10275 -- Next_Entity field of full to ensure that the calls to Copy_Node
10276 -- do not corrupt the entity chain.
10278 -- Note that the type of the full view is the same entity as the type of
10279 -- the partial view. In this fashion, the subtype has access to the
10280 -- correct view of the parent.
10282 Save_Next_Entity
:= Next_Entity
(Full
);
10283 Save_Homonym
:= Homonym
(Priv
);
10285 case Ekind
(Full_Base
) is
10286 when E_Record_Type |
10292 Copy_Node
(Priv
, Full
);
10294 Set_Has_Discriminants
10295 (Full
, Has_Discriminants
(Full_Base
));
10296 Set_Has_Unknown_Discriminants
10297 (Full
, Has_Unknown_Discriminants
(Full_Base
));
10298 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
10299 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
10302 Copy_Node
(Full_Base
, Full
);
10304 Set_Chars
(Full
, Chars
(Priv
));
10305 Conditional_Delay
(Full
, Priv
);
10306 Set_Sloc
(Full
, Sloc
(Priv
));
10309 Set_Next_Entity
(Full
, Save_Next_Entity
);
10310 Set_Homonym
(Full
, Save_Homonym
);
10311 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
10313 -- Set common attributes for all subtypes: kind, convention, etc.
10315 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
10316 Set_Convention
(Full
, Convention
(Full_Base
));
10318 -- The Etype of the full view is inconsistent. Gigi needs to see the
10319 -- structural full view, which is what the current scheme gives:
10320 -- the Etype of the full view is the etype of the full base. However,
10321 -- if the full base is a derived type, the full view then looks like
10322 -- a subtype of the parent, not a subtype of the full base. If instead
10325 -- Set_Etype (Full, Full_Base);
10327 -- then we get inconsistencies in the front-end (confusion between
10328 -- views). Several outstanding bugs are related to this ???
10330 Set_Is_First_Subtype
(Full
, False);
10331 Set_Scope
(Full
, Scope
(Priv
));
10332 Set_Size_Info
(Full
, Full_Base
);
10333 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
10334 Set_Is_Itype
(Full
);
10336 -- A subtype of a private-type-without-discriminants, whose full-view
10337 -- has discriminants with default expressions, is not constrained!
10339 if not Has_Discriminants
(Priv
) then
10340 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
10342 if Has_Discriminants
(Full_Base
) then
10343 Set_Discriminant_Constraint
10344 (Full
, Discriminant_Constraint
(Full_Base
));
10346 -- The partial view may have been indefinite, the full view
10349 Set_Has_Unknown_Discriminants
10350 (Full
, Has_Unknown_Discriminants
(Full_Base
));
10354 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
10355 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
10357 -- Freeze the private subtype entity if its parent is delayed, and not
10358 -- already frozen. We skip this processing if the type is an anonymous
10359 -- subtype of a record component, or is the corresponding record of a
10360 -- protected type, since ???
10362 if not Is_Type
(Scope
(Full
)) then
10363 Set_Has_Delayed_Freeze
(Full
,
10364 Has_Delayed_Freeze
(Full_Base
)
10365 and then (not Is_Frozen
(Full_Base
)));
10368 Set_Freeze_Node
(Full
, Empty
);
10369 Set_Is_Frozen
(Full
, False);
10370 Set_Full_View
(Priv
, Full
);
10372 if Has_Discriminants
(Full
) then
10373 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
10374 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
10376 if Has_Unknown_Discriminants
(Full
) then
10377 Set_Discriminant_Constraint
(Full
, No_Elist
);
10381 if Ekind
(Full_Base
) = E_Record_Type
10382 and then Has_Discriminants
(Full_Base
)
10383 and then Has_Discriminants
(Priv
) -- might not, if errors
10384 and then not Has_Unknown_Discriminants
(Priv
)
10385 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
10387 Create_Constrained_Components
10388 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
10390 -- If the full base is itself derived from private, build a congruent
10391 -- subtype of its underlying type, for use by the back end. For a
10392 -- constrained record component, the declaration cannot be placed on
10393 -- the component list, but it must nevertheless be built an analyzed, to
10394 -- supply enough information for Gigi to compute the size of component.
10396 elsif Ekind
(Full_Base
) in Private_Kind
10397 and then Is_Derived_Type
(Full_Base
)
10398 and then Has_Discriminants
(Full_Base
)
10399 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
10401 if not Is_Itype
(Priv
)
10403 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
10405 Build_Underlying_Full_View
10406 (Parent
(Priv
), Full
, Etype
(Full_Base
));
10408 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
10409 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
10412 elsif Is_Record_Type
(Full_Base
) then
10414 -- Show Full is simply a renaming of Full_Base
10416 Set_Cloned_Subtype
(Full
, Full_Base
);
10419 -- It is unsafe to share the bounds of a scalar type, because the Itype
10420 -- is elaborated on demand, and if a bound is non-static then different
10421 -- orders of elaboration in different units will lead to different
10422 -- external symbols.
10424 if Is_Scalar_Type
(Full_Base
) then
10425 Set_Scalar_Range
(Full
,
10426 Make_Range
(Sloc
(Related_Nod
),
10428 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
10430 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
10432 -- This completion inherits the bounds of the full parent, but if
10433 -- the parent is an unconstrained floating point type, so is the
10436 if Is_Floating_Point_Type
(Full_Base
) then
10437 Set_Includes_Infinities
10438 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
10442 -- ??? It seems that a lot of fields are missing that should be copied
10443 -- from Full_Base to Full. Here are some that are introduced in a
10444 -- non-disruptive way but a cleanup is necessary.
10446 if Is_Tagged_Type
(Full_Base
) then
10447 Set_Is_Tagged_Type
(Full
);
10448 Set_Direct_Primitive_Operations
(Full
,
10449 Direct_Primitive_Operations
(Full_Base
));
10451 -- Inherit class_wide type of full_base in case the partial view was
10452 -- not tagged. Otherwise it has already been created when the private
10453 -- subtype was analyzed.
10455 if No
(Class_Wide_Type
(Full
)) then
10456 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
10459 -- If this is a subtype of a protected or task type, constrain its
10460 -- corresponding record, unless this is a subtype without constraints,
10461 -- i.e. a simple renaming as with an actual subtype in an instance.
10463 elsif Is_Concurrent_Type
(Full_Base
) then
10464 if Has_Discriminants
(Full
)
10465 and then Present
(Corresponding_Record_Type
(Full_Base
))
10467 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
10469 Set_Corresponding_Record_Type
(Full
,
10470 Constrain_Corresponding_Record
10471 (Full
, Corresponding_Record_Type
(Full_Base
),
10472 Related_Nod
, Full_Base
));
10475 Set_Corresponding_Record_Type
(Full
,
10476 Corresponding_Record_Type
(Full_Base
));
10480 -- Link rep item chain, and also setting of Has_Predicates from private
10481 -- subtype to full subtype, since we will need these on the full subtype
10482 -- to create the predicate function. Note that the full subtype may
10483 -- already have rep items, inherited from the full view of the base
10484 -- type, so we must be sure not to overwrite these entries.
10489 Next_Item
: Node_Id
;
10492 Item
:= First_Rep_Item
(Full
);
10494 -- If no existing rep items on full type, we can just link directly
10495 -- to the list of items on the private type.
10498 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
10500 -- Otherwise, search to the end of items currently linked to the full
10501 -- subtype and append the private items to the end. However, if Priv
10502 -- and Full already have the same list of rep items, then the append
10503 -- is not done, as that would create a circularity.
10505 elsif Item
/= First_Rep_Item
(Priv
) then
10509 Next_Item
:= Next_Rep_Item
(Item
);
10510 exit when No
(Next_Item
);
10513 -- If the private view has aspect specifications, the full view
10514 -- inherits them. Since these aspects may already have been
10515 -- attached to the full view during derivation, do not append
10516 -- them if already present.
10518 if Item
= First_Rep_Item
(Priv
) then
10524 -- And link the private type items at the end of the chain
10527 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
10532 -- Make sure Has_Predicates is set on full type if it is set on the
10533 -- private type. Note that it may already be set on the full type and
10534 -- if so, we don't want to unset it.
10536 if Has_Predicates
(Priv
) then
10537 Set_Has_Predicates
(Full
);
10539 end Complete_Private_Subtype
;
10541 ----------------------------
10542 -- Constant_Redeclaration --
10543 ----------------------------
10545 procedure Constant_Redeclaration
10550 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
10551 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
10554 procedure Check_Possible_Deferred_Completion
10555 (Prev_Id
: Entity_Id
;
10556 Prev_Obj_Def
: Node_Id
;
10557 Curr_Obj_Def
: Node_Id
);
10558 -- Determine whether the two object definitions describe the partial
10559 -- and the full view of a constrained deferred constant. Generate
10560 -- a subtype for the full view and verify that it statically matches
10561 -- the subtype of the partial view.
10563 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
10564 -- If deferred constant is an access type initialized with an allocator,
10565 -- check whether there is an illegal recursion in the definition,
10566 -- through a default value of some record subcomponent. This is normally
10567 -- detected when generating init procs, but requires this additional
10568 -- mechanism when expansion is disabled.
10570 ----------------------------------------
10571 -- Check_Possible_Deferred_Completion --
10572 ----------------------------------------
10574 procedure Check_Possible_Deferred_Completion
10575 (Prev_Id
: Entity_Id
;
10576 Prev_Obj_Def
: Node_Id
;
10577 Curr_Obj_Def
: Node_Id
)
10580 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
10581 and then Present
(Constraint
(Prev_Obj_Def
))
10582 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
10583 and then Present
(Constraint
(Curr_Obj_Def
))
10586 Loc
: constant Source_Ptr
:= Sloc
(N
);
10587 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
10588 Decl
: constant Node_Id
:=
10589 Make_Subtype_Declaration
(Loc
,
10590 Defining_Identifier
=> Def_Id
,
10591 Subtype_Indication
=>
10592 Relocate_Node
(Curr_Obj_Def
));
10595 Insert_Before_And_Analyze
(N
, Decl
);
10596 Set_Etype
(Id
, Def_Id
);
10598 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
10599 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
10600 Error_Msg_N
("subtype does not statically match deferred " &
10601 "declaration#", N
);
10605 end Check_Possible_Deferred_Completion
;
10607 ---------------------------------
10608 -- Check_Recursive_Declaration --
10609 ---------------------------------
10611 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
10615 if Is_Record_Type
(Typ
) then
10616 Comp
:= First_Component
(Typ
);
10617 while Present
(Comp
) loop
10618 if Comes_From_Source
(Comp
) then
10619 if Present
(Expression
(Parent
(Comp
)))
10620 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
10621 and then Entity
(Expression
(Parent
(Comp
))) = Prev
10623 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
10625 ("illegal circularity with declaration for&#",
10629 elsif Is_Record_Type
(Etype
(Comp
)) then
10630 Check_Recursive_Declaration
(Etype
(Comp
));
10634 Next_Component
(Comp
);
10637 end Check_Recursive_Declaration
;
10639 -- Start of processing for Constant_Redeclaration
10642 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
10643 if Nkind
(Object_Definition
10644 (Parent
(Prev
))) = N_Subtype_Indication
10646 -- Find type of new declaration. The constraints of the two
10647 -- views must match statically, but there is no point in
10648 -- creating an itype for the full view.
10650 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
10651 Find_Type
(Subtype_Mark
(Obj_Def
));
10652 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
10655 Find_Type
(Obj_Def
);
10656 New_T
:= Entity
(Obj_Def
);
10662 -- The full view may impose a constraint, even if the partial
10663 -- view does not, so construct the subtype.
10665 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
10670 -- Current declaration is illegal, diagnosed below in Enter_Name
10676 -- If previous full declaration or a renaming declaration exists, or if
10677 -- a homograph is present, let Enter_Name handle it, either with an
10678 -- error or with the removal of an overridden implicit subprogram.
10680 if Ekind
(Prev
) /= E_Constant
10681 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
10682 or else Present
(Expression
(Parent
(Prev
)))
10683 or else Present
(Full_View
(Prev
))
10687 -- Verify that types of both declarations match, or else that both types
10688 -- are anonymous access types whose designated subtypes statically match
10689 -- (as allowed in Ada 2005 by AI-385).
10691 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
10693 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
10694 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
10695 or else Is_Access_Constant
(Etype
(New_T
)) /=
10696 Is_Access_Constant
(Etype
(Prev
))
10697 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
10698 Can_Never_Be_Null
(Etype
(Prev
))
10699 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
10700 Null_Exclusion_Present
(Parent
(Id
))
10701 or else not Subtypes_Statically_Match
10702 (Designated_Type
(Etype
(Prev
)),
10703 Designated_Type
(Etype
(New_T
))))
10705 Error_Msg_Sloc
:= Sloc
(Prev
);
10706 Error_Msg_N
("type does not match declaration#", N
);
10707 Set_Full_View
(Prev
, Id
);
10708 Set_Etype
(Id
, Any_Type
);
10711 Null_Exclusion_Present
(Parent
(Prev
))
10712 and then not Null_Exclusion_Present
(N
)
10714 Error_Msg_Sloc
:= Sloc
(Prev
);
10715 Error_Msg_N
("null-exclusion does not match declaration#", N
);
10716 Set_Full_View
(Prev
, Id
);
10717 Set_Etype
(Id
, Any_Type
);
10719 -- If so, process the full constant declaration
10722 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
10723 -- the deferred declaration is constrained, then the subtype defined
10724 -- by the subtype_indication in the full declaration shall match it
10727 Check_Possible_Deferred_Completion
10729 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
10730 Curr_Obj_Def
=> Obj_Def
);
10732 Set_Full_View
(Prev
, Id
);
10733 Set_Is_Public
(Id
, Is_Public
(Prev
));
10734 Set_Is_Internal
(Id
);
10735 Append_Entity
(Id
, Current_Scope
);
10737 -- Check ALIASED present if present before (RM 7.4(7))
10739 if Is_Aliased
(Prev
)
10740 and then not Aliased_Present
(N
)
10742 Error_Msg_Sloc
:= Sloc
(Prev
);
10743 Error_Msg_N
("ALIASED required (see declaration#)", N
);
10746 -- Check that placement is in private part and that the incomplete
10747 -- declaration appeared in the visible part.
10749 if Ekind
(Current_Scope
) = E_Package
10750 and then not In_Private_Part
(Current_Scope
)
10752 Error_Msg_Sloc
:= Sloc
(Prev
);
10754 ("full constant for declaration#"
10755 & " must be in private part", N
);
10757 elsif Ekind
(Current_Scope
) = E_Package
10759 List_Containing
(Parent
(Prev
)) /=
10760 Visible_Declarations
10761 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
10764 ("deferred constant must be declared in visible part",
10768 if Is_Access_Type
(T
)
10769 and then Nkind
(Expression
(N
)) = N_Allocator
10771 Check_Recursive_Declaration
(Designated_Type
(T
));
10774 -- A deferred constant is a visible entity. If type has invariants,
10775 -- verify that the initial value satisfies them.
10777 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
10779 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
10782 end Constant_Redeclaration
;
10784 ----------------------
10785 -- Constrain_Access --
10786 ----------------------
10788 procedure Constrain_Access
10789 (Def_Id
: in out Entity_Id
;
10791 Related_Nod
: Node_Id
)
10793 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10794 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
10795 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
10796 Constraint_OK
: Boolean := True;
10798 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
10799 -- Simple predicate to test for defaulted discriminants
10800 -- Shouldn't this be in sem_util???
10802 ---------------------------------
10803 -- Has_Defaulted_Discriminants --
10804 ---------------------------------
10806 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
10808 return Has_Discriminants
(Typ
)
10809 and then Present
(First_Discriminant
(Typ
))
10811 (Discriminant_Default_Value
(First_Discriminant
(Typ
)));
10812 end Has_Defaulted_Discriminants
;
10814 -- Start of processing for Constrain_Access
10817 if Is_Array_Type
(Desig_Type
) then
10818 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
10820 elsif (Is_Record_Type
(Desig_Type
)
10821 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
10822 and then not Is_Constrained
(Desig_Type
)
10824 -- ??? The following code is a temporary kludge to ignore a
10825 -- discriminant constraint on access type if it is constraining
10826 -- the current record. Avoid creating the implicit subtype of the
10827 -- record we are currently compiling since right now, we cannot
10828 -- handle these. For now, just return the access type itself.
10830 if Desig_Type
= Current_Scope
10831 and then No
(Def_Id
)
10833 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
10834 Def_Id
:= Entity
(Subtype_Mark
(S
));
10836 -- This call added to ensure that the constraint is analyzed
10837 -- (needed for a B test). Note that we still return early from
10838 -- this procedure to avoid recursive processing. ???
10840 Constrain_Discriminated_Type
10841 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
10845 -- Enforce rule that the constraint is illegal if there is an
10846 -- unconstrained view of the designated type. This means that the
10847 -- partial view (either a private type declaration or a derivation
10848 -- from a private type) has no discriminants. (Defect Report
10849 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
10851 -- Rule updated for Ada 2005: the private type is said to have
10852 -- a constrained partial view, given that objects of the type
10853 -- can be declared. Furthermore, the rule applies to all access
10854 -- types, unlike the rule concerning default discriminants (see
10857 if (Ekind
(T
) = E_General_Access_Type
10858 or else Ada_Version
>= Ada_2005
)
10859 and then Has_Private_Declaration
(Desig_Type
)
10860 and then In_Open_Scopes
(Scope
(Desig_Type
))
10861 and then Has_Discriminants
(Desig_Type
)
10864 Pack
: constant Node_Id
:=
10865 Unit_Declaration_Node
(Scope
(Desig_Type
));
10870 if Nkind
(Pack
) = N_Package_Declaration
then
10871 Decls
:= Visible_Declarations
(Specification
(Pack
));
10872 Decl
:= First
(Decls
);
10873 while Present
(Decl
) loop
10874 if (Nkind
(Decl
) = N_Private_Type_Declaration
10876 Chars
(Defining_Identifier
(Decl
)) =
10877 Chars
(Desig_Type
))
10880 (Nkind
(Decl
) = N_Full_Type_Declaration
10882 Chars
(Defining_Identifier
(Decl
)) =
10884 and then Is_Derived_Type
(Desig_Type
)
10886 Has_Private_Declaration
(Etype
(Desig_Type
)))
10888 if No
(Discriminant_Specifications
(Decl
)) then
10890 ("cannot constrain access type if designated " &
10891 "type has constrained partial view", S
);
10903 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
10904 For_Access
=> True);
10906 elsif (Is_Task_Type
(Desig_Type
)
10907 or else Is_Protected_Type
(Desig_Type
))
10908 and then not Is_Constrained
(Desig_Type
)
10910 Constrain_Concurrent
10911 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
10914 Error_Msg_N
("invalid constraint on access type", S
);
10915 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
10916 Constraint_OK
:= False;
10919 if No
(Def_Id
) then
10920 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
10922 Set_Ekind
(Def_Id
, E_Access_Subtype
);
10925 if Constraint_OK
then
10926 Set_Etype
(Def_Id
, Base_Type
(T
));
10928 if Is_Private_Type
(Desig_Type
) then
10929 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
10932 Set_Etype
(Def_Id
, Any_Type
);
10935 Set_Size_Info
(Def_Id
, T
);
10936 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
10937 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
10938 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10939 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
10941 Conditional_Delay
(Def_Id
, T
);
10943 -- AI-363 : Subtypes of general access types whose designated types have
10944 -- default discriminants are disallowed. In instances, the rule has to
10945 -- be checked against the actual, of which T is the subtype. In a
10946 -- generic body, the rule is checked assuming that the actual type has
10947 -- defaulted discriminants.
10949 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
10950 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
10951 and then Has_Defaulted_Discriminants
(Desig_Type
)
10953 if Ada_Version
< Ada_2005
then
10955 ("access subtype of general access type would not " &
10956 "be allowed in Ada 2005?y?", S
);
10959 ("access subtype of general access type not allowed", S
);
10962 Error_Msg_N
("\discriminants have defaults", S
);
10964 elsif Is_Access_Type
(T
)
10965 and then Is_Generic_Type
(Desig_Type
)
10966 and then Has_Discriminants
(Desig_Type
)
10967 and then In_Package_Body
(Current_Scope
)
10969 if Ada_Version
< Ada_2005
then
10971 ("access subtype would not be allowed in generic body " &
10972 "in Ada 2005?y?", S
);
10975 ("access subtype not allowed in generic body", S
);
10979 ("\designated type is a discriminated formal", S
);
10982 end Constrain_Access
;
10984 ---------------------
10985 -- Constrain_Array --
10986 ---------------------
10988 procedure Constrain_Array
10989 (Def_Id
: in out Entity_Id
;
10991 Related_Nod
: Node_Id
;
10992 Related_Id
: Entity_Id
;
10993 Suffix
: Character)
10995 C
: constant Node_Id
:= Constraint
(SI
);
10996 Number_Of_Constraints
: Nat
:= 0;
10999 Constraint_OK
: Boolean := True;
11002 T
:= Entity
(Subtype_Mark
(SI
));
11004 if Ekind
(T
) in Access_Kind
then
11005 T
:= Designated_Type
(T
);
11008 -- If an index constraint follows a subtype mark in a subtype indication
11009 -- then the type or subtype denoted by the subtype mark must not already
11010 -- impose an index constraint. The subtype mark must denote either an
11011 -- unconstrained array type or an access type whose designated type
11012 -- is such an array type... (RM 3.6.1)
11014 if Is_Constrained
(T
) then
11015 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
11016 Constraint_OK
:= False;
11019 S
:= First
(Constraints
(C
));
11020 while Present
(S
) loop
11021 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
11025 -- In either case, the index constraint must provide a discrete
11026 -- range for each index of the array type and the type of each
11027 -- discrete range must be the same as that of the corresponding
11028 -- index. (RM 3.6.1)
11030 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
11031 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
11032 Constraint_OK
:= False;
11035 S
:= First
(Constraints
(C
));
11036 Index
:= First_Index
(T
);
11039 -- Apply constraints to each index type
11041 for J
in 1 .. Number_Of_Constraints
loop
11042 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
11050 if No
(Def_Id
) then
11052 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
11053 Set_Parent
(Def_Id
, Related_Nod
);
11056 Set_Ekind
(Def_Id
, E_Array_Subtype
);
11059 Set_Size_Info
(Def_Id
, (T
));
11060 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11061 Set_Etype
(Def_Id
, Base_Type
(T
));
11063 if Constraint_OK
then
11064 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
11066 Set_First_Index
(Def_Id
, First_Index
(T
));
11069 Set_Is_Constrained
(Def_Id
, True);
11070 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
11071 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11073 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
11074 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
11076 -- A subtype does not inherit the packed_array_type of is parent. We
11077 -- need to initialize the attribute because if Def_Id is previously
11078 -- analyzed through a limited_with clause, it will have the attributes
11079 -- of an incomplete type, one of which is an Elist that overlaps the
11080 -- Packed_Array_Type field.
11082 Set_Packed_Array_Type
(Def_Id
, Empty
);
11084 -- Build a freeze node if parent still needs one. Also make sure that
11085 -- the Depends_On_Private status is set because the subtype will need
11086 -- reprocessing at the time the base type does, and also we must set a
11087 -- conditional delay.
11089 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
11090 Conditional_Delay
(Def_Id
, T
);
11091 end Constrain_Array
;
11093 ------------------------------
11094 -- Constrain_Component_Type --
11095 ------------------------------
11097 function Constrain_Component_Type
11099 Constrained_Typ
: Entity_Id
;
11100 Related_Node
: Node_Id
;
11102 Constraints
: Elist_Id
) return Entity_Id
11104 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
11105 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
11106 Array_Comp
: Node_Id
;
11108 function Build_Constrained_Array_Type
11109 (Old_Type
: Entity_Id
) return Entity_Id
;
11110 -- If Old_Type is an array type, one of whose indexes is constrained
11111 -- by a discriminant, build an Itype whose constraint replaces the
11112 -- discriminant with its value in the constraint.
11114 function Build_Constrained_Discriminated_Type
11115 (Old_Type
: Entity_Id
) return Entity_Id
;
11116 -- Ditto for record components
11118 function Build_Constrained_Access_Type
11119 (Old_Type
: Entity_Id
) return Entity_Id
;
11120 -- Ditto for access types. Makes use of previous two functions, to
11121 -- constrain designated type.
11123 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
11124 -- T is an array or discriminated type, C is a list of constraints
11125 -- that apply to T. This routine builds the constrained subtype.
11127 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
11128 -- Returns True if Expr is a discriminant
11130 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
11131 -- Find the value of discriminant Discrim in Constraint
11133 -----------------------------------
11134 -- Build_Constrained_Access_Type --
11135 -----------------------------------
11137 function Build_Constrained_Access_Type
11138 (Old_Type
: Entity_Id
) return Entity_Id
11140 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
11142 Desig_Subtype
: Entity_Id
;
11146 -- if the original access type was not embedded in the enclosing
11147 -- type definition, there is no need to produce a new access
11148 -- subtype. In fact every access type with an explicit constraint
11149 -- generates an itype whose scope is the enclosing record.
11151 if not Is_Type
(Scope
(Old_Type
)) then
11154 elsif Is_Array_Type
(Desig_Type
) then
11155 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
11157 elsif Has_Discriminants
(Desig_Type
) then
11159 -- This may be an access type to an enclosing record type for
11160 -- which we are constructing the constrained components. Return
11161 -- the enclosing record subtype. This is not always correct,
11162 -- but avoids infinite recursion. ???
11164 Desig_Subtype
:= Any_Type
;
11166 for J
in reverse 0 .. Scope_Stack
.Last
loop
11167 Scop
:= Scope_Stack
.Table
(J
).Entity
;
11170 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
11172 Desig_Subtype
:= Scop
;
11175 exit when not Is_Type
(Scop
);
11178 if Desig_Subtype
= Any_Type
then
11180 Build_Constrained_Discriminated_Type
(Desig_Type
);
11187 if Desig_Subtype
/= Desig_Type
then
11189 -- The Related_Node better be here or else we won't be able
11190 -- to attach new itypes to a node in the tree.
11192 pragma Assert
(Present
(Related_Node
));
11194 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
11196 Set_Etype
(Itype
, Base_Type
(Old_Type
));
11197 Set_Size_Info
(Itype
, (Old_Type
));
11198 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
11199 Set_Depends_On_Private
(Itype
, Has_Private_Component
11201 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
11204 -- The new itype needs freezing when it depends on a not frozen
11205 -- type and the enclosing subtype needs freezing.
11207 if Has_Delayed_Freeze
(Constrained_Typ
)
11208 and then not Is_Frozen
(Constrained_Typ
)
11210 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
11218 end Build_Constrained_Access_Type
;
11220 ----------------------------------
11221 -- Build_Constrained_Array_Type --
11222 ----------------------------------
11224 function Build_Constrained_Array_Type
11225 (Old_Type
: Entity_Id
) return Entity_Id
11229 Old_Index
: Node_Id
;
11230 Range_Node
: Node_Id
;
11231 Constr_List
: List_Id
;
11233 Need_To_Create_Itype
: Boolean := False;
11236 Old_Index
:= First_Index
(Old_Type
);
11237 while Present
(Old_Index
) loop
11238 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11240 if Is_Discriminant
(Lo_Expr
)
11241 or else Is_Discriminant
(Hi_Expr
)
11243 Need_To_Create_Itype
:= True;
11246 Next_Index
(Old_Index
);
11249 if Need_To_Create_Itype
then
11250 Constr_List
:= New_List
;
11252 Old_Index
:= First_Index
(Old_Type
);
11253 while Present
(Old_Index
) loop
11254 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
11256 if Is_Discriminant
(Lo_Expr
) then
11257 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
11260 if Is_Discriminant
(Hi_Expr
) then
11261 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
11266 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
11268 Append
(Range_Node
, To
=> Constr_List
);
11270 Next_Index
(Old_Index
);
11273 return Build_Subtype
(Old_Type
, Constr_List
);
11278 end Build_Constrained_Array_Type
;
11280 ------------------------------------------
11281 -- Build_Constrained_Discriminated_Type --
11282 ------------------------------------------
11284 function Build_Constrained_Discriminated_Type
11285 (Old_Type
: Entity_Id
) return Entity_Id
11288 Constr_List
: List_Id
;
11289 Old_Constraint
: Elmt_Id
;
11291 Need_To_Create_Itype
: Boolean := False;
11294 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11295 while Present
(Old_Constraint
) loop
11296 Expr
:= Node
(Old_Constraint
);
11298 if Is_Discriminant
(Expr
) then
11299 Need_To_Create_Itype
:= True;
11302 Next_Elmt
(Old_Constraint
);
11305 if Need_To_Create_Itype
then
11306 Constr_List
:= New_List
;
11308 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
11309 while Present
(Old_Constraint
) loop
11310 Expr
:= Node
(Old_Constraint
);
11312 if Is_Discriminant
(Expr
) then
11313 Expr
:= Get_Discr_Value
(Expr
);
11316 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
11318 Next_Elmt
(Old_Constraint
);
11321 return Build_Subtype
(Old_Type
, Constr_List
);
11326 end Build_Constrained_Discriminated_Type
;
11328 -------------------
11329 -- Build_Subtype --
11330 -------------------
11332 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
11334 Subtyp_Decl
: Node_Id
;
11335 Def_Id
: Entity_Id
;
11336 Btyp
: Entity_Id
:= Base_Type
(T
);
11339 -- The Related_Node better be here or else we won't be able to
11340 -- attach new itypes to a node in the tree.
11342 pragma Assert
(Present
(Related_Node
));
11344 -- If the view of the component's type is incomplete or private
11345 -- with unknown discriminants, then the constraint must be applied
11346 -- to the full type.
11348 if Has_Unknown_Discriminants
(Btyp
)
11349 and then Present
(Underlying_Type
(Btyp
))
11351 Btyp
:= Underlying_Type
(Btyp
);
11355 Make_Subtype_Indication
(Loc
,
11356 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
11357 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
11359 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
11362 Make_Subtype_Declaration
(Loc
,
11363 Defining_Identifier
=> Def_Id
,
11364 Subtype_Indication
=> Indic
);
11366 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
11368 -- Itypes must be analyzed with checks off (see package Itypes)
11370 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
11375 ---------------------
11376 -- Get_Discr_Value --
11377 ---------------------
11379 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
11384 -- The discriminant may be declared for the type, in which case we
11385 -- find it by iterating over the list of discriminants. If the
11386 -- discriminant is inherited from a parent type, it appears as the
11387 -- corresponding discriminant of the current type. This will be the
11388 -- case when constraining an inherited component whose constraint is
11389 -- given by a discriminant of the parent.
11391 D
:= First_Discriminant
(Typ
);
11392 E
:= First_Elmt
(Constraints
);
11394 while Present
(D
) loop
11395 if D
= Entity
(Discrim
)
11396 or else D
= CR_Discriminant
(Entity
(Discrim
))
11397 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
11402 Next_Discriminant
(D
);
11406 -- The Corresponding_Discriminant mechanism is incomplete, because
11407 -- the correspondence between new and old discriminants is not one
11408 -- to one: one new discriminant can constrain several old ones. In
11409 -- that case, scan sequentially the stored_constraint, the list of
11410 -- discriminants of the parents, and the constraints.
11412 -- Previous code checked for the present of the Stored_Constraint
11413 -- list for the derived type, but did not use it at all. Should it
11414 -- be present when the component is a discriminated task type?
11416 if Is_Derived_Type
(Typ
)
11417 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
11419 D
:= First_Discriminant
(Etype
(Typ
));
11420 E
:= First_Elmt
(Constraints
);
11421 while Present
(D
) loop
11422 if D
= Entity
(Discrim
) then
11426 Next_Discriminant
(D
);
11431 -- Something is wrong if we did not find the value
11433 raise Program_Error
;
11434 end Get_Discr_Value
;
11436 ---------------------
11437 -- Is_Discriminant --
11438 ---------------------
11440 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
11441 Discrim_Scope
: Entity_Id
;
11444 if Denotes_Discriminant
(Expr
) then
11445 Discrim_Scope
:= Scope
(Entity
(Expr
));
11447 -- Either we have a reference to one of Typ's discriminants,
11449 pragma Assert
(Discrim_Scope
= Typ
11451 -- or to the discriminants of the parent type, in the case
11452 -- of a derivation of a tagged type with variants.
11454 or else Discrim_Scope
= Etype
(Typ
)
11455 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
11457 -- or same as above for the case where the discriminants
11458 -- were declared in Typ's private view.
11460 or else (Is_Private_Type
(Discrim_Scope
)
11461 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11463 -- or else we are deriving from the full view and the
11464 -- discriminant is declared in the private entity.
11466 or else (Is_Private_Type
(Typ
)
11467 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
11469 -- Or we are constrained the corresponding record of a
11470 -- synchronized type that completes a private declaration.
11472 or else (Is_Concurrent_Record_Type
(Typ
)
11474 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
11476 -- or we have a class-wide type, in which case make sure the
11477 -- discriminant found belongs to the root type.
11479 or else (Is_Class_Wide_Type
(Typ
)
11480 and then Etype
(Typ
) = Discrim_Scope
));
11485 -- In all other cases we have something wrong
11488 end Is_Discriminant
;
11490 -- Start of processing for Constrain_Component_Type
11493 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
11494 and then Comes_From_Source
(Parent
(Comp
))
11495 and then Comes_From_Source
11496 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11499 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
11501 return Compon_Type
;
11503 elsif Is_Array_Type
(Compon_Type
) then
11504 Array_Comp
:= Build_Constrained_Array_Type
(Compon_Type
);
11506 -- If the component of the parent is packed, and the record type is
11507 -- already frozen, as is the case for an itype, the component type
11508 -- itself will not be frozen, and the packed array type for it must
11509 -- be constructed explicitly. Since the creation of packed types is
11510 -- an expansion activity, we only do this if expansion is active.
11513 and then Is_Packed
(Compon_Type
)
11514 and then Is_Frozen
(Current_Scope
)
11516 Create_Packed_Array_Type
(Array_Comp
);
11521 elsif Has_Discriminants
(Compon_Type
) then
11522 return Build_Constrained_Discriminated_Type
(Compon_Type
);
11524 elsif Is_Access_Type
(Compon_Type
) then
11525 return Build_Constrained_Access_Type
(Compon_Type
);
11528 return Compon_Type
;
11530 end Constrain_Component_Type
;
11532 --------------------------
11533 -- Constrain_Concurrent --
11534 --------------------------
11536 -- For concurrent types, the associated record value type carries the same
11537 -- discriminants, so when we constrain a concurrent type, we must constrain
11538 -- the corresponding record type as well.
11540 procedure Constrain_Concurrent
11541 (Def_Id
: in out Entity_Id
;
11543 Related_Nod
: Node_Id
;
11544 Related_Id
: Entity_Id
;
11545 Suffix
: Character)
11547 -- Retrieve Base_Type to ensure getting to the concurrent type in the
11548 -- case of a private subtype (needed when only doing semantic analysis).
11550 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
11554 if Ekind
(T_Ent
) in Access_Kind
then
11555 T_Ent
:= Designated_Type
(T_Ent
);
11558 T_Val
:= Corresponding_Record_Type
(T_Ent
);
11560 if Present
(T_Val
) then
11562 if No
(Def_Id
) then
11563 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11566 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11568 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
11569 Set_Corresponding_Record_Type
(Def_Id
,
11570 Constrain_Corresponding_Record
11571 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
11574 -- If there is no associated record, expansion is disabled and this
11575 -- is a generic context. Create a subtype in any case, so that
11576 -- semantic analysis can proceed.
11578 if No
(Def_Id
) then
11579 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
11582 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
11584 end Constrain_Concurrent
;
11586 ------------------------------------
11587 -- Constrain_Corresponding_Record --
11588 ------------------------------------
11590 function Constrain_Corresponding_Record
11591 (Prot_Subt
: Entity_Id
;
11592 Corr_Rec
: Entity_Id
;
11593 Related_Nod
: Node_Id
;
11594 Related_Id
: Entity_Id
) return Entity_Id
11596 T_Sub
: constant Entity_Id
:=
11597 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
11600 Set_Etype
(T_Sub
, Corr_Rec
);
11601 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
11602 Set_Is_Constrained
(T_Sub
, True);
11603 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
11604 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
11606 -- As elsewhere, we do not want to create a freeze node for this itype
11607 -- if it is created for a constrained component of an enclosing record
11608 -- because references to outer discriminants will appear out of scope.
11610 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
11611 Conditional_Delay
(T_Sub
, Corr_Rec
);
11613 Set_Is_Frozen
(T_Sub
);
11616 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
11617 Set_Discriminant_Constraint
11618 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
11619 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
11620 Create_Constrained_Components
11621 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
11624 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
11627 end Constrain_Corresponding_Record
;
11629 -----------------------
11630 -- Constrain_Decimal --
11631 -----------------------
11633 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
11634 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11635 C
: constant Node_Id
:= Constraint
(S
);
11636 Loc
: constant Source_Ptr
:= Sloc
(C
);
11637 Range_Expr
: Node_Id
;
11638 Digits_Expr
: Node_Id
;
11643 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
11645 if Nkind
(C
) = N_Range_Constraint
then
11646 Range_Expr
:= Range_Expression
(C
);
11647 Digits_Val
:= Digits_Value
(T
);
11650 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
11652 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11654 Digits_Expr
:= Digits_Expression
(C
);
11655 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
11657 Check_Digits_Expression
(Digits_Expr
);
11658 Digits_Val
:= Expr_Value
(Digits_Expr
);
11660 if Digits_Val
> Digits_Value
(T
) then
11662 ("digits expression is incompatible with subtype", C
);
11663 Digits_Val
:= Digits_Value
(T
);
11666 if Present
(Range_Constraint
(C
)) then
11667 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
11669 Range_Expr
:= Empty
;
11673 Set_Etype
(Def_Id
, Base_Type
(T
));
11674 Set_Size_Info
(Def_Id
, (T
));
11675 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11676 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
11677 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
11678 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11679 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
11680 Set_Digits_Value
(Def_Id
, Digits_Val
);
11682 -- Manufacture range from given digits value if no range present
11684 if No
(Range_Expr
) then
11685 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
11689 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
11691 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
11694 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
11695 Set_Discrete_RM_Size
(Def_Id
);
11697 -- Unconditionally delay the freeze, since we cannot set size
11698 -- information in all cases correctly until the freeze point.
11700 Set_Has_Delayed_Freeze
(Def_Id
);
11701 end Constrain_Decimal
;
11703 ----------------------------------
11704 -- Constrain_Discriminated_Type --
11705 ----------------------------------
11707 procedure Constrain_Discriminated_Type
11708 (Def_Id
: Entity_Id
;
11710 Related_Nod
: Node_Id
;
11711 For_Access
: Boolean := False)
11713 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11716 Elist
: Elist_Id
:= New_Elmt_List
;
11718 procedure Fixup_Bad_Constraint
;
11719 -- This is called after finding a bad constraint, and after having
11720 -- posted an appropriate error message. The mission is to leave the
11721 -- entity T in as reasonable state as possible!
11723 --------------------------
11724 -- Fixup_Bad_Constraint --
11725 --------------------------
11727 procedure Fixup_Bad_Constraint
is
11729 -- Set a reasonable Ekind for the entity. For an incomplete type,
11730 -- we can't do much, but for other types, we can set the proper
11731 -- corresponding subtype kind.
11733 if Ekind
(T
) = E_Incomplete_Type
then
11734 Set_Ekind
(Def_Id
, Ekind
(T
));
11736 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
11739 -- Set Etype to the known type, to reduce chances of cascaded errors
11741 Set_Etype
(Def_Id
, E
);
11742 Set_Error_Posted
(Def_Id
);
11743 end Fixup_Bad_Constraint
;
11745 -- Start of processing for Constrain_Discriminated_Type
11748 C
:= Constraint
(S
);
11750 -- A discriminant constraint is only allowed in a subtype indication,
11751 -- after a subtype mark. This subtype mark must denote either a type
11752 -- with discriminants, or an access type whose designated type is a
11753 -- type with discriminants. A discriminant constraint specifies the
11754 -- values of these discriminants (RM 3.7.2(5)).
11756 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
11758 if Ekind
(T
) in Access_Kind
then
11759 T
:= Designated_Type
(T
);
11762 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
11763 -- Avoid generating an error for access-to-incomplete subtypes.
11765 if Ada_Version
>= Ada_2005
11766 and then Ekind
(T
) = E_Incomplete_Type
11767 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
11768 and then not Is_Itype
(Def_Id
)
11770 -- A little sanity check, emit an error message if the type
11771 -- has discriminants to begin with. Type T may be a regular
11772 -- incomplete type or imported via a limited with clause.
11774 if Has_Discriminants
(T
)
11776 (From_With_Type
(T
)
11777 and then Present
(Non_Limited_View
(T
))
11778 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
11779 N_Full_Type_Declaration
11780 and then Present
(Discriminant_Specifications
11781 (Parent
(Non_Limited_View
(T
)))))
11784 ("(Ada 2005) incomplete subtype may not be constrained", C
);
11786 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11789 Fixup_Bad_Constraint
;
11792 -- Check that the type has visible discriminants. The type may be
11793 -- a private type with unknown discriminants whose full view has
11794 -- discriminants which are invisible.
11796 elsif not Has_Discriminants
(T
)
11798 (Has_Unknown_Discriminants
(T
)
11799 and then Is_Private_Type
(T
))
11801 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
11802 Fixup_Bad_Constraint
;
11805 elsif Is_Constrained
(E
)
11806 or else (Ekind
(E
) = E_Class_Wide_Subtype
11807 and then Present
(Discriminant_Constraint
(E
)))
11809 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
11810 Fixup_Bad_Constraint
;
11814 -- T may be an unconstrained subtype (e.g. a generic actual).
11815 -- Constraint applies to the base type.
11817 T
:= Base_Type
(T
);
11819 Elist
:= Build_Discriminant_Constraints
(T
, S
);
11821 -- If the list returned was empty we had an error in building the
11822 -- discriminant constraint. We have also already signalled an error
11823 -- in the incomplete type case
11825 if Is_Empty_Elmt_List
(Elist
) then
11826 Fixup_Bad_Constraint
;
11830 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
11831 end Constrain_Discriminated_Type
;
11833 ---------------------------
11834 -- Constrain_Enumeration --
11835 ---------------------------
11837 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
11838 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11839 C
: constant Node_Id
:= Constraint
(S
);
11842 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11844 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
11846 Set_Etype
(Def_Id
, Base_Type
(T
));
11847 Set_Size_Info
(Def_Id
, (T
));
11848 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11849 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11851 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11853 Set_Discrete_RM_Size
(Def_Id
);
11854 end Constrain_Enumeration
;
11856 ----------------------
11857 -- Constrain_Float --
11858 ----------------------
11860 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
11861 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11867 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
11869 Set_Etype
(Def_Id
, Base_Type
(T
));
11870 Set_Size_Info
(Def_Id
, (T
));
11871 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11873 -- Process the constraint
11875 C
:= Constraint
(S
);
11877 -- Digits constraint present
11879 if Nkind
(C
) = N_Digits_Constraint
then
11881 Check_SPARK_Restriction
("digits constraint is not allowed", S
);
11882 Check_Restriction
(No_Obsolescent_Features
, C
);
11884 if Warn_On_Obsolescent_Feature
then
11886 ("subtype digits constraint is an " &
11887 "obsolescent feature (RM J.3(8))?j?", C
);
11890 D
:= Digits_Expression
(C
);
11891 Analyze_And_Resolve
(D
, Any_Integer
);
11892 Check_Digits_Expression
(D
);
11893 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
11895 -- Check that digits value is in range. Obviously we can do this
11896 -- at compile time, but it is strictly a runtime check, and of
11897 -- course there is an ACVC test that checks this!
11899 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
11900 Error_Msg_Uint_1
:= Digits_Value
(T
);
11901 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
11903 Make_Raise_Constraint_Error
(Sloc
(D
),
11904 Reason
=> CE_Range_Check_Failed
);
11905 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11908 C
:= Range_Constraint
(C
);
11910 -- No digits constraint present
11913 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
11916 -- Range constraint present
11918 if Nkind
(C
) = N_Range_Constraint
then
11919 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11921 -- No range constraint present
11924 pragma Assert
(No
(C
));
11925 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
11928 Set_Is_Constrained
(Def_Id
);
11929 end Constrain_Float
;
11931 ---------------------
11932 -- Constrain_Index --
11933 ---------------------
11935 procedure Constrain_Index
11938 Related_Nod
: Node_Id
;
11939 Related_Id
: Entity_Id
;
11940 Suffix
: Character;
11941 Suffix_Index
: Nat
)
11943 Def_Id
: Entity_Id
;
11944 R
: Node_Id
:= Empty
;
11945 T
: constant Entity_Id
:= Etype
(Index
);
11948 if Nkind
(S
) = N_Range
11950 (Nkind
(S
) = N_Attribute_Reference
11951 and then Attribute_Name
(S
) = Name_Range
)
11953 -- A Range attribute will be transformed into N_Range by Resolve
11959 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
11961 if not Error_Posted
(S
)
11963 (Nkind
(S
) /= N_Range
11964 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
11965 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
11967 if Base_Type
(T
) /= Any_Type
11968 and then Etype
(Low_Bound
(S
)) /= Any_Type
11969 and then Etype
(High_Bound
(S
)) /= Any_Type
11971 Error_Msg_N
("range expected", S
);
11975 elsif Nkind
(S
) = N_Subtype_Indication
then
11977 -- The parser has verified that this is a discrete indication
11979 Resolve_Discrete_Subtype_Indication
(S
, T
);
11980 R
:= Range_Expression
(Constraint
(S
));
11982 -- Capture values of bounds and generate temporaries for them if
11983 -- needed, since checks may cause duplication of the expressions
11984 -- which must not be reevaluated.
11986 -- The forced evaluation removes side effects from expressions,
11987 -- which should occur also in SPARK mode. Otherwise, we end up with
11988 -- unexpected insertions of actions at places where this is not
11989 -- supposed to occur, e.g. on default parameters of a call.
11991 if Expander_Active
then
11992 Force_Evaluation
(Low_Bound
(R
));
11993 Force_Evaluation
(High_Bound
(R
));
11996 elsif Nkind
(S
) = N_Discriminant_Association
then
11998 -- Syntactically valid in subtype indication
12000 Error_Msg_N
("invalid index constraint", S
);
12001 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
12004 -- Subtype_Mark case, no anonymous subtypes to construct
12009 if Is_Entity_Name
(S
) then
12010 if not Is_Type
(Entity
(S
)) then
12011 Error_Msg_N
("expect subtype mark for index constraint", S
);
12013 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
12014 Wrong_Type
(S
, Base_Type
(T
));
12016 -- Check error of subtype with predicate in index constraint
12019 Bad_Predicated_Subtype_Use
12020 ("subtype& has predicate, not allowed in index constraint",
12027 Error_Msg_N
("invalid index constraint", S
);
12028 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
12034 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
12036 Set_Etype
(Def_Id
, Base_Type
(T
));
12038 if Is_Modular_Integer_Type
(T
) then
12039 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
12041 elsif Is_Integer_Type
(T
) then
12042 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
12045 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
12046 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
12047 Set_First_Literal
(Def_Id
, First_Literal
(T
));
12050 Set_Size_Info
(Def_Id
, (T
));
12051 Set_RM_Size
(Def_Id
, RM_Size
(T
));
12052 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12054 Set_Scalar_Range
(Def_Id
, R
);
12056 Set_Etype
(S
, Def_Id
);
12057 Set_Discrete_RM_Size
(Def_Id
);
12058 end Constrain_Index
;
12060 -----------------------
12061 -- Constrain_Integer --
12062 -----------------------
12064 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
12065 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12066 C
: constant Node_Id
:= Constraint
(S
);
12069 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
12071 if Is_Modular_Integer_Type
(T
) then
12072 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
12074 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
12077 Set_Etype
(Def_Id
, Base_Type
(T
));
12078 Set_Size_Info
(Def_Id
, (T
));
12079 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12080 Set_Discrete_RM_Size
(Def_Id
);
12081 end Constrain_Integer
;
12083 ------------------------------
12084 -- Constrain_Ordinary_Fixed --
12085 ------------------------------
12087 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
12088 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12094 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
12095 Set_Etype
(Def_Id
, Base_Type
(T
));
12096 Set_Size_Info
(Def_Id
, (T
));
12097 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12098 Set_Small_Value
(Def_Id
, Small_Value
(T
));
12100 -- Process the constraint
12102 C
:= Constraint
(S
);
12104 -- Delta constraint present
12106 if Nkind
(C
) = N_Delta_Constraint
then
12108 Check_SPARK_Restriction
("delta constraint is not allowed", S
);
12109 Check_Restriction
(No_Obsolescent_Features
, C
);
12111 if Warn_On_Obsolescent_Feature
then
12113 ("subtype delta constraint is an " &
12114 "obsolescent feature (RM J.3(7))?j?");
12117 D
:= Delta_Expression
(C
);
12118 Analyze_And_Resolve
(D
, Any_Real
);
12119 Check_Delta_Expression
(D
);
12120 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
12122 -- Check that delta value is in range. Obviously we can do this
12123 -- at compile time, but it is strictly a runtime check, and of
12124 -- course there is an ACVC test that checks this!
12126 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
12127 Error_Msg_N
("??delta value is too small", D
);
12129 Make_Raise_Constraint_Error
(Sloc
(D
),
12130 Reason
=> CE_Range_Check_Failed
);
12131 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
12134 C
:= Range_Constraint
(C
);
12136 -- No delta constraint present
12139 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
12142 -- Range constraint present
12144 if Nkind
(C
) = N_Range_Constraint
then
12145 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
12147 -- No range constraint present
12150 pragma Assert
(No
(C
));
12151 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
12155 Set_Discrete_RM_Size
(Def_Id
);
12157 -- Unconditionally delay the freeze, since we cannot set size
12158 -- information in all cases correctly until the freeze point.
12160 Set_Has_Delayed_Freeze
(Def_Id
);
12161 end Constrain_Ordinary_Fixed
;
12163 -----------------------
12164 -- Contain_Interface --
12165 -----------------------
12167 function Contain_Interface
12168 (Iface
: Entity_Id
;
12169 Ifaces
: Elist_Id
) return Boolean
12171 Iface_Elmt
: Elmt_Id
;
12174 if Present
(Ifaces
) then
12175 Iface_Elmt
:= First_Elmt
(Ifaces
);
12176 while Present
(Iface_Elmt
) loop
12177 if Node
(Iface_Elmt
) = Iface
then
12181 Next_Elmt
(Iface_Elmt
);
12186 end Contain_Interface
;
12188 ---------------------------
12189 -- Convert_Scalar_Bounds --
12190 ---------------------------
12192 procedure Convert_Scalar_Bounds
12194 Parent_Type
: Entity_Id
;
12195 Derived_Type
: Entity_Id
;
12198 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
12205 -- Defend against previous errors
12207 if No
(Scalar_Range
(Derived_Type
)) then
12208 Check_Error_Detected
;
12212 Lo
:= Build_Scalar_Bound
12213 (Type_Low_Bound
(Derived_Type
),
12214 Parent_Type
, Implicit_Base
);
12216 Hi
:= Build_Scalar_Bound
12217 (Type_High_Bound
(Derived_Type
),
12218 Parent_Type
, Implicit_Base
);
12225 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
12227 Set_Parent
(Rng
, N
);
12228 Set_Scalar_Range
(Derived_Type
, Rng
);
12230 -- Analyze the bounds
12232 Analyze_And_Resolve
(Lo
, Implicit_Base
);
12233 Analyze_And_Resolve
(Hi
, Implicit_Base
);
12235 -- Analyze the range itself, except that we do not analyze it if
12236 -- the bounds are real literals, and we have a fixed-point type.
12237 -- The reason for this is that we delay setting the bounds in this
12238 -- case till we know the final Small and Size values (see circuit
12239 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12241 if Is_Fixed_Point_Type
(Parent_Type
)
12242 and then Nkind
(Lo
) = N_Real_Literal
12243 and then Nkind
(Hi
) = N_Real_Literal
12247 -- Here we do the analysis of the range
12249 -- Note: we do this manually, since if we do a normal Analyze and
12250 -- Resolve call, there are problems with the conversions used for
12251 -- the derived type range.
12254 Set_Etype
(Rng
, Implicit_Base
);
12255 Set_Analyzed
(Rng
, True);
12257 end Convert_Scalar_Bounds
;
12259 -------------------
12260 -- Copy_And_Swap --
12261 -------------------
12263 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
12265 -- Initialize new full declaration entity by copying the pertinent
12266 -- fields of the corresponding private declaration entity.
12268 -- We temporarily set Ekind to a value appropriate for a type to
12269 -- avoid assert failures in Einfo from checking for setting type
12270 -- attributes on something that is not a type. Ekind (Priv) is an
12271 -- appropriate choice, since it allowed the attributes to be set
12272 -- in the first place. This Ekind value will be modified later.
12274 Set_Ekind
(Full
, Ekind
(Priv
));
12276 -- Also set Etype temporarily to Any_Type, again, in the absence
12277 -- of errors, it will be properly reset, and if there are errors,
12278 -- then we want a value of Any_Type to remain.
12280 Set_Etype
(Full
, Any_Type
);
12282 -- Now start copying attributes
12284 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
12286 if Has_Discriminants
(Full
) then
12287 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
12288 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
12291 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
12292 Set_Homonym
(Full
, Homonym
(Priv
));
12293 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
12294 Set_Is_Public
(Full
, Is_Public
(Priv
));
12295 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
12296 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
12297 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
12298 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
12299 Set_Has_Pragma_Unreferenced_Objects
12300 (Full
, Has_Pragma_Unreferenced_Objects
12303 Conditional_Delay
(Full
, Priv
);
12305 if Is_Tagged_Type
(Full
) then
12306 Set_Direct_Primitive_Operations
(Full
,
12307 Direct_Primitive_Operations
(Priv
));
12309 if Is_Base_Type
(Priv
) then
12310 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
12314 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
12315 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
12316 Set_Scope
(Full
, Scope
(Priv
));
12317 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
12318 Set_First_Entity
(Full
, First_Entity
(Priv
));
12319 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
12321 -- If access types have been recorded for later handling, keep them in
12322 -- the full view so that they get handled when the full view freeze
12323 -- node is expanded.
12325 if Present
(Freeze_Node
(Priv
))
12326 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
12328 Ensure_Freeze_Node
(Full
);
12329 Set_Access_Types_To_Process
12330 (Freeze_Node
(Full
),
12331 Access_Types_To_Process
(Freeze_Node
(Priv
)));
12334 -- Swap the two entities. Now Private is the full type entity and Full
12335 -- is the private one. They will be swapped back at the end of the
12336 -- private part. This swapping ensures that the entity that is visible
12337 -- in the private part is the full declaration.
12339 Exchange_Entities
(Priv
, Full
);
12340 Append_Entity
(Full
, Scope
(Full
));
12343 -------------------------------------
12344 -- Copy_Array_Base_Type_Attributes --
12345 -------------------------------------
12347 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
12349 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
12350 Set_Component_Type
(T1
, Component_Type
(T2
));
12351 Set_Component_Size
(T1
, Component_Size
(T2
));
12352 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
12353 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
12354 Set_Has_Task
(T1
, Has_Task
(T2
));
12355 Set_Is_Packed
(T1
, Is_Packed
(T2
));
12356 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
12357 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
12358 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
12359 end Copy_Array_Base_Type_Attributes
;
12361 -----------------------------------
12362 -- Copy_Array_Subtype_Attributes --
12363 -----------------------------------
12365 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
12367 Set_Size_Info
(T1
, T2
);
12369 Set_First_Index
(T1
, First_Index
(T2
));
12370 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
12371 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
12372 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
12373 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
12374 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
12375 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
12376 Set_Convention
(T1
, Convention
(T2
));
12377 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
12378 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
12379 Set_Packed_Array_Type
(T1
, Packed_Array_Type
(T2
));
12380 end Copy_Array_Subtype_Attributes
;
12382 -----------------------------------
12383 -- Create_Constrained_Components --
12384 -----------------------------------
12386 procedure Create_Constrained_Components
12388 Decl_Node
: Node_Id
;
12390 Constraints
: Elist_Id
)
12392 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
12393 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
12394 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
12395 Assoc_List
: constant List_Id
:= New_List
;
12396 Discr_Val
: Elmt_Id
;
12400 Is_Static
: Boolean := True;
12402 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
12403 -- Collect parent type components that do not appear in a variant part
12405 procedure Create_All_Components
;
12406 -- Iterate over Comp_List to create the components of the subtype
12408 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
12409 -- Creates a new component from Old_Compon, copying all the fields from
12410 -- it, including its Etype, inserts the new component in the Subt entity
12411 -- chain and returns the new component.
12413 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
12414 -- If true, and discriminants are static, collect only components from
12415 -- variants selected by discriminant values.
12417 ------------------------------
12418 -- Collect_Fixed_Components --
12419 ------------------------------
12421 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
12423 -- Build association list for discriminants, and find components of the
12424 -- variant part selected by the values of the discriminants.
12426 Old_C
:= First_Discriminant
(Typ
);
12427 Discr_Val
:= First_Elmt
(Constraints
);
12428 while Present
(Old_C
) loop
12429 Append_To
(Assoc_List
,
12430 Make_Component_Association
(Loc
,
12431 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
12432 Expression
=> New_Copy
(Node
(Discr_Val
))));
12434 Next_Elmt
(Discr_Val
);
12435 Next_Discriminant
(Old_C
);
12438 -- The tag and the possible parent component are unconditionally in
12441 if Is_Tagged_Type
(Typ
)
12442 or else Has_Controlled_Component
(Typ
)
12444 Old_C
:= First_Component
(Typ
);
12445 while Present
(Old_C
) loop
12446 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
12447 Append_Elmt
(Old_C
, Comp_List
);
12450 Next_Component
(Old_C
);
12453 end Collect_Fixed_Components
;
12455 ---------------------------
12456 -- Create_All_Components --
12457 ---------------------------
12459 procedure Create_All_Components
is
12463 Comp
:= First_Elmt
(Comp_List
);
12464 while Present
(Comp
) loop
12465 Old_C
:= Node
(Comp
);
12466 New_C
:= Create_Component
(Old_C
);
12470 Constrain_Component_Type
12471 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12472 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12476 end Create_All_Components
;
12478 ----------------------
12479 -- Create_Component --
12480 ----------------------
12482 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
12483 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
12486 if Ekind
(Old_Compon
) = E_Discriminant
12487 and then Is_Completely_Hidden
(Old_Compon
)
12489 -- This is a shadow discriminant created for a discriminant of
12490 -- the parent type, which needs to be present in the subtype.
12491 -- Give the shadow discriminant an internal name that cannot
12492 -- conflict with that of visible components.
12494 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
12497 -- Set the parent so we have a proper link for freezing etc. This is
12498 -- not a real parent pointer, since of course our parent does not own
12499 -- up to us and reference us, we are an illegitimate child of the
12500 -- original parent!
12502 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
12504 -- If the old component's Esize was already determined and is a
12505 -- static value, then the new component simply inherits it. Otherwise
12506 -- the old component's size may require run-time determination, but
12507 -- the new component's size still might be statically determinable
12508 -- (if, for example it has a static constraint). In that case we want
12509 -- Layout_Type to recompute the component's size, so we reset its
12510 -- size and positional fields.
12512 if Frontend_Layout_On_Target
12513 and then not Known_Static_Esize
(Old_Compon
)
12515 Set_Esize
(New_Compon
, Uint_0
);
12516 Init_Normalized_First_Bit
(New_Compon
);
12517 Init_Normalized_Position
(New_Compon
);
12518 Init_Normalized_Position_Max
(New_Compon
);
12521 -- We do not want this node marked as Comes_From_Source, since
12522 -- otherwise it would get first class status and a separate cross-
12523 -- reference line would be generated. Illegitimate children do not
12524 -- rate such recognition.
12526 Set_Comes_From_Source
(New_Compon
, False);
12528 -- But it is a real entity, and a birth certificate must be properly
12529 -- registered by entering it into the entity list.
12531 Enter_Name
(New_Compon
);
12534 end Create_Component
;
12536 -----------------------
12537 -- Is_Variant_Record --
12538 -----------------------
12540 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
12542 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
12543 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
12544 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
12547 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
12548 end Is_Variant_Record
;
12550 -- Start of processing for Create_Constrained_Components
12553 pragma Assert
(Subt
/= Base_Type
(Subt
));
12554 pragma Assert
(Typ
= Base_Type
(Typ
));
12556 Set_First_Entity
(Subt
, Empty
);
12557 Set_Last_Entity
(Subt
, Empty
);
12559 -- Check whether constraint is fully static, in which case we can
12560 -- optimize the list of components.
12562 Discr_Val
:= First_Elmt
(Constraints
);
12563 while Present
(Discr_Val
) loop
12564 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
12565 Is_Static
:= False;
12569 Next_Elmt
(Discr_Val
);
12572 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
12576 -- Inherit the discriminants of the parent type
12578 Add_Discriminants
: declare
12584 Old_C
:= First_Discriminant
(Typ
);
12586 while Present
(Old_C
) loop
12587 Num_Disc
:= Num_Disc
+ 1;
12588 New_C
:= Create_Component
(Old_C
);
12589 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12590 Next_Discriminant
(Old_C
);
12593 -- For an untagged derived subtype, the number of discriminants may
12594 -- be smaller than the number of inherited discriminants, because
12595 -- several of them may be renamed by a single new discriminant or
12596 -- constrained. In this case, add the hidden discriminants back into
12597 -- the subtype, because they need to be present if the optimizer of
12598 -- the GCC 4.x back-end decides to break apart assignments between
12599 -- objects using the parent view into member-wise assignments.
12603 if Is_Derived_Type
(Typ
)
12604 and then not Is_Tagged_Type
(Typ
)
12606 Old_C
:= First_Stored_Discriminant
(Typ
);
12608 while Present
(Old_C
) loop
12609 Num_Gird
:= Num_Gird
+ 1;
12610 Next_Stored_Discriminant
(Old_C
);
12614 if Num_Gird
> Num_Disc
then
12616 -- Find out multiple uses of new discriminants, and add hidden
12617 -- components for the extra renamed discriminants. We recognize
12618 -- multiple uses through the Corresponding_Discriminant of a
12619 -- new discriminant: if it constrains several old discriminants,
12620 -- this field points to the last one in the parent type. The
12621 -- stored discriminants of the derived type have the same name
12622 -- as those of the parent.
12626 New_Discr
: Entity_Id
;
12627 Old_Discr
: Entity_Id
;
12630 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
12631 Old_Discr
:= First_Stored_Discriminant
(Typ
);
12632 while Present
(Constr
) loop
12633 if Is_Entity_Name
(Node
(Constr
))
12634 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
12636 New_Discr
:= Entity
(Node
(Constr
));
12638 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
12641 -- The new discriminant has been used to rename a
12642 -- subsequent old discriminant. Introduce a shadow
12643 -- component for the current old discriminant.
12645 New_C
:= Create_Component
(Old_Discr
);
12646 Set_Original_Record_Component
(New_C
, Old_Discr
);
12650 -- The constraint has eliminated the old discriminant.
12651 -- Introduce a shadow component.
12653 New_C
:= Create_Component
(Old_Discr
);
12654 Set_Original_Record_Component
(New_C
, Old_Discr
);
12657 Next_Elmt
(Constr
);
12658 Next_Stored_Discriminant
(Old_Discr
);
12662 end Add_Discriminants
;
12665 and then Is_Variant_Record
(Typ
)
12667 Collect_Fixed_Components
(Typ
);
12669 Gather_Components
(
12671 Component_List
(Type_Definition
(Parent
(Typ
))),
12672 Governed_By
=> Assoc_List
,
12674 Report_Errors
=> Errors
);
12675 pragma Assert
(not Errors
);
12677 Create_All_Components
;
12679 -- If the subtype declaration is created for a tagged type derivation
12680 -- with constraints, we retrieve the record definition of the parent
12681 -- type to select the components of the proper variant.
12684 and then Is_Tagged_Type
(Typ
)
12685 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
12687 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
12688 and then Is_Variant_Record
(Parent_Type
)
12690 Collect_Fixed_Components
(Typ
);
12692 Gather_Components
(
12694 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
12695 Governed_By
=> Assoc_List
,
12697 Report_Errors
=> Errors
);
12698 pragma Assert
(not Errors
);
12700 -- If the tagged derivation has a type extension, collect all the
12701 -- new components therein.
12704 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
12706 Old_C
:= First_Component
(Typ
);
12707 while Present
(Old_C
) loop
12708 if Original_Record_Component
(Old_C
) = Old_C
12709 and then Chars
(Old_C
) /= Name_uTag
12710 and then Chars
(Old_C
) /= Name_uParent
12712 Append_Elmt
(Old_C
, Comp_List
);
12715 Next_Component
(Old_C
);
12719 Create_All_Components
;
12722 -- If discriminants are not static, or if this is a multi-level type
12723 -- extension, we have to include all components of the parent type.
12725 Old_C
:= First_Component
(Typ
);
12726 while Present
(Old_C
) loop
12727 New_C
:= Create_Component
(Old_C
);
12731 Constrain_Component_Type
12732 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
12733 Set_Is_Public
(New_C
, Is_Public
(Subt
));
12735 Next_Component
(Old_C
);
12740 end Create_Constrained_Components
;
12742 ------------------------------------------
12743 -- Decimal_Fixed_Point_Type_Declaration --
12744 ------------------------------------------
12746 procedure Decimal_Fixed_Point_Type_Declaration
12750 Loc
: constant Source_Ptr
:= Sloc
(Def
);
12751 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
12752 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
12753 Implicit_Base
: Entity_Id
;
12760 Check_SPARK_Restriction
12761 ("decimal fixed point type is not allowed", Def
);
12762 Check_Restriction
(No_Fixed_Point
, Def
);
12764 -- Create implicit base type
12767 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
12768 Set_Etype
(Implicit_Base
, Implicit_Base
);
12770 -- Analyze and process delta expression
12772 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
12774 Check_Delta_Expression
(Delta_Expr
);
12775 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
12777 -- Check delta is power of 10, and determine scale value from it
12783 Scale_Val
:= Uint_0
;
12786 if Val
< Ureal_1
then
12787 while Val
< Ureal_1
loop
12788 Val
:= Val
* Ureal_10
;
12789 Scale_Val
:= Scale_Val
+ 1;
12792 if Scale_Val
> 18 then
12793 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
12794 Scale_Val
:= UI_From_Int
(+18);
12798 while Val
> Ureal_1
loop
12799 Val
:= Val
/ Ureal_10
;
12800 Scale_Val
:= Scale_Val
- 1;
12803 if Scale_Val
< -18 then
12804 Error_Msg_N
("scale is less than minimum value of -18", Def
);
12805 Scale_Val
:= UI_From_Int
(-18);
12809 if Val
/= Ureal_1
then
12810 Error_Msg_N
("delta expression must be a power of 10", Def
);
12811 Delta_Val
:= Ureal_10
** (-Scale_Val
);
12815 -- Set delta, scale and small (small = delta for decimal type)
12817 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
12818 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
12819 Set_Small_Value
(Implicit_Base
, Delta_Val
);
12821 -- Analyze and process digits expression
12823 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
12824 Check_Digits_Expression
(Digs_Expr
);
12825 Digs_Val
:= Expr_Value
(Digs_Expr
);
12827 if Digs_Val
> 18 then
12828 Digs_Val
:= UI_From_Int
(+18);
12829 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
12832 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
12833 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
12835 -- Set range of base type from digits value for now. This will be
12836 -- expanded to represent the true underlying base range by Freeze.
12838 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
12840 -- Note: We leave size as zero for now, size will be set at freeze
12841 -- time. We have to do this for ordinary fixed-point, because the size
12842 -- depends on the specified small, and we might as well do the same for
12843 -- decimal fixed-point.
12845 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
12847 -- If there are bounds given in the declaration use them as the
12848 -- bounds of the first named subtype.
12850 if Present
(Real_Range_Specification
(Def
)) then
12852 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
12853 Low
: constant Node_Id
:= Low_Bound
(RRS
);
12854 High
: constant Node_Id
:= High_Bound
(RRS
);
12859 Analyze_And_Resolve
(Low
, Any_Real
);
12860 Analyze_And_Resolve
(High
, Any_Real
);
12861 Check_Real_Bound
(Low
);
12862 Check_Real_Bound
(High
);
12863 Low_Val
:= Expr_Value_R
(Low
);
12864 High_Val
:= Expr_Value_R
(High
);
12866 if Low_Val
< (-Bound_Val
) then
12868 ("range low bound too small for digits value", Low
);
12869 Low_Val
:= -Bound_Val
;
12872 if High_Val
> Bound_Val
then
12874 ("range high bound too large for digits value", High
);
12875 High_Val
:= Bound_Val
;
12878 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
12881 -- If no explicit range, use range that corresponds to given
12882 -- digits value. This will end up as the final range for the
12886 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
12889 -- Complete entity for first subtype
12891 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
12892 Set_Etype
(T
, Implicit_Base
);
12893 Set_Size_Info
(T
, Implicit_Base
);
12894 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
12895 Set_Digits_Value
(T
, Digs_Val
);
12896 Set_Delta_Value
(T
, Delta_Val
);
12897 Set_Small_Value
(T
, Delta_Val
);
12898 Set_Scale_Value
(T
, Scale_Val
);
12899 Set_Is_Constrained
(T
);
12900 end Decimal_Fixed_Point_Type_Declaration
;
12902 -----------------------------------
12903 -- Derive_Progenitor_Subprograms --
12904 -----------------------------------
12906 procedure Derive_Progenitor_Subprograms
12907 (Parent_Type
: Entity_Id
;
12908 Tagged_Type
: Entity_Id
)
12913 Iface_Elmt
: Elmt_Id
;
12914 Iface_Subp
: Entity_Id
;
12915 New_Subp
: Entity_Id
:= Empty
;
12916 Prim_Elmt
: Elmt_Id
;
12921 pragma Assert
(Ada_Version
>= Ada_2005
12922 and then Is_Record_Type
(Tagged_Type
)
12923 and then Is_Tagged_Type
(Tagged_Type
)
12924 and then Has_Interfaces
(Tagged_Type
));
12926 -- Step 1: Transfer to the full-view primitives associated with the
12927 -- partial-view that cover interface primitives. Conceptually this
12928 -- work should be done later by Process_Full_View; done here to
12929 -- simplify its implementation at later stages. It can be safely
12930 -- done here because interfaces must be visible in the partial and
12931 -- private view (RM 7.3(7.3/2)).
12933 -- Small optimization: This work is only required if the parent may
12934 -- have entities whose Alias attribute reference an interface primitive.
12935 -- Such a situation may occur if the parent is an abstract type and the
12936 -- primitive has not been yet overridden or if the parent is a generic
12937 -- formal type covering interfaces.
12939 -- If the tagged type is not abstract, it cannot have abstract
12940 -- primitives (the only entities in the list of primitives of
12941 -- non-abstract tagged types that can reference abstract primitives
12942 -- through its Alias attribute are the internal entities that have
12943 -- attribute Interface_Alias, and these entities are generated later
12944 -- by Add_Internal_Interface_Entities).
12946 if In_Private_Part
(Current_Scope
)
12947 and then (Is_Abstract_Type
(Parent_Type
)
12949 Is_Generic_Type
(Parent_Type
))
12951 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
12952 while Present
(Elmt
) loop
12953 Subp
:= Node
(Elmt
);
12955 -- At this stage it is not possible to have entities in the list
12956 -- of primitives that have attribute Interface_Alias.
12958 pragma Assert
(No
(Interface_Alias
(Subp
)));
12960 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
12962 if Is_Interface
(Typ
) then
12963 E
:= Find_Primitive_Covering_Interface
12964 (Tagged_Type
=> Tagged_Type
,
12965 Iface_Prim
=> Subp
);
12968 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
12970 Replace_Elmt
(Elmt
, E
);
12971 Remove_Homonym
(Subp
);
12979 -- Step 2: Add primitives of progenitors that are not implemented by
12980 -- parents of Tagged_Type.
12982 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
12983 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
12984 while Present
(Iface_Elmt
) loop
12985 Iface
:= Node
(Iface_Elmt
);
12987 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
12988 while Present
(Prim_Elmt
) loop
12989 Iface_Subp
:= Node
(Prim_Elmt
);
12991 -- Exclude derivation of predefined primitives except those
12992 -- that come from source, or are inherited from one that comes
12993 -- from source. Required to catch declarations of equality
12994 -- operators of interfaces. For example:
12996 -- type Iface is interface;
12997 -- function "=" (Left, Right : Iface) return Boolean;
12999 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
13000 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
13002 E
:= Find_Primitive_Covering_Interface
13003 (Tagged_Type
=> Tagged_Type
,
13004 Iface_Prim
=> Iface_Subp
);
13006 -- If not found we derive a new primitive leaving its alias
13007 -- attribute referencing the interface primitive.
13011 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
13013 -- Ada 2012 (AI05-0197): If the covering primitive's name
13014 -- differs from the name of the interface primitive then it
13015 -- is a private primitive inherited from a parent type. In
13016 -- such case, given that Tagged_Type covers the interface,
13017 -- the inherited private primitive becomes visible. For such
13018 -- purpose we add a new entity that renames the inherited
13019 -- private primitive.
13021 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
13022 pragma Assert
(Has_Suffix
(E
, 'P'));
13024 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
13025 Set_Alias
(New_Subp
, E
);
13026 Set_Is_Abstract_Subprogram
(New_Subp
,
13027 Is_Abstract_Subprogram
(E
));
13029 -- Propagate to the full view interface entities associated
13030 -- with the partial view.
13032 elsif In_Private_Part
(Current_Scope
)
13033 and then Present
(Alias
(E
))
13034 and then Alias
(E
) = Iface_Subp
13036 List_Containing
(Parent
(E
)) /=
13037 Private_Declarations
13039 (Unit_Declaration_Node
(Current_Scope
)))
13041 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
13045 Next_Elmt
(Prim_Elmt
);
13048 Next_Elmt
(Iface_Elmt
);
13051 end Derive_Progenitor_Subprograms
;
13053 -----------------------
13054 -- Derive_Subprogram --
13055 -----------------------
13057 procedure Derive_Subprogram
13058 (New_Subp
: in out Entity_Id
;
13059 Parent_Subp
: Entity_Id
;
13060 Derived_Type
: Entity_Id
;
13061 Parent_Type
: Entity_Id
;
13062 Actual_Subp
: Entity_Id
:= Empty
)
13064 Formal
: Entity_Id
;
13065 -- Formal parameter of parent primitive operation
13067 Formal_Of_Actual
: Entity_Id
;
13068 -- Formal parameter of actual operation, when the derivation is to
13069 -- create a renaming for a primitive operation of an actual in an
13072 New_Formal
: Entity_Id
;
13073 -- Formal of inherited operation
13075 Visible_Subp
: Entity_Id
:= Parent_Subp
;
13077 function Is_Private_Overriding
return Boolean;
13078 -- If Subp is a private overriding of a visible operation, the inherited
13079 -- operation derives from the overridden op (even though its body is the
13080 -- overriding one) and the inherited operation is visible now. See
13081 -- sem_disp to see the full details of the handling of the overridden
13082 -- subprogram, which is removed from the list of primitive operations of
13083 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13084 -- and used to diagnose abstract operations that need overriding in the
13087 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
13088 -- When the type is an anonymous access type, create a new access type
13089 -- designating the derived type.
13091 procedure Set_Derived_Name
;
13092 -- This procedure sets the appropriate Chars name for New_Subp. This
13093 -- is normally just a copy of the parent name. An exception arises for
13094 -- type support subprograms, where the name is changed to reflect the
13095 -- name of the derived type, e.g. if type foo is derived from type bar,
13096 -- then a procedure barDA is derived with a name fooDA.
13098 ---------------------------
13099 -- Is_Private_Overriding --
13100 ---------------------------
13102 function Is_Private_Overriding
return Boolean is
13106 -- If the parent is not a dispatching operation there is no
13107 -- need to investigate overridings
13109 if not Is_Dispatching_Operation
(Parent_Subp
) then
13113 -- The visible operation that is overridden is a homonym of the
13114 -- parent subprogram. We scan the homonym chain to find the one
13115 -- whose alias is the subprogram we are deriving.
13117 Prev
:= Current_Entity
(Parent_Subp
);
13118 while Present
(Prev
) loop
13119 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
13120 and then Alias
(Prev
) = Parent_Subp
13121 and then Scope
(Parent_Subp
) = Scope
(Prev
)
13122 and then not Is_Hidden
(Prev
)
13124 Visible_Subp
:= Prev
;
13128 Prev
:= Homonym
(Prev
);
13132 end Is_Private_Overriding
;
13138 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
13139 Acc_Type
: Entity_Id
;
13140 Par
: constant Node_Id
:= Parent
(Derived_Type
);
13143 -- When the type is an anonymous access type, create a new access
13144 -- type designating the derived type. This itype must be elaborated
13145 -- at the point of the derivation, not on subsequent calls that may
13146 -- be out of the proper scope for Gigi, so we insert a reference to
13147 -- it after the derivation.
13149 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
13151 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
13154 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
13155 and then Present
(Full_View
(Desig_Typ
))
13156 and then not Is_Private_Type
(Parent_Type
)
13158 Desig_Typ
:= Full_View
(Desig_Typ
);
13161 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
13163 -- Ada 2005 (AI-251): Handle also derivations of abstract
13164 -- interface primitives.
13166 or else (Is_Interface
(Desig_Typ
)
13167 and then not Is_Class_Wide_Type
(Desig_Typ
))
13169 Acc_Type
:= New_Copy
(Etype
(Id
));
13170 Set_Etype
(Acc_Type
, Acc_Type
);
13171 Set_Scope
(Acc_Type
, New_Subp
);
13173 -- Compute size of anonymous access type
13175 if Is_Array_Type
(Desig_Typ
)
13176 and then not Is_Constrained
(Desig_Typ
)
13178 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
13180 Init_Size
(Acc_Type
, System_Address_Size
);
13183 Init_Alignment
(Acc_Type
);
13184 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
13186 Set_Etype
(New_Id
, Acc_Type
);
13187 Set_Scope
(New_Id
, New_Subp
);
13189 -- Create a reference to it
13190 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
13193 Set_Etype
(New_Id
, Etype
(Id
));
13197 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
13199 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
13200 and then Present
(Full_View
(Etype
(Id
)))
13202 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
13204 -- Constraint checks on formals are generated during expansion,
13205 -- based on the signature of the original subprogram. The bounds
13206 -- of the derived type are not relevant, and thus we can use
13207 -- the base type for the formals. However, the return type may be
13208 -- used in a context that requires that the proper static bounds
13209 -- be used (a case statement, for example) and for those cases
13210 -- we must use the derived type (first subtype), not its base.
13212 -- If the derived_type_definition has no constraints, we know that
13213 -- the derived type has the same constraints as the first subtype
13214 -- of the parent, and we can also use it rather than its base,
13215 -- which can lead to more efficient code.
13217 if Etype
(Id
) = Parent_Type
then
13218 if Is_Scalar_Type
(Parent_Type
)
13220 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
13222 Set_Etype
(New_Id
, Derived_Type
);
13224 elsif Nkind
(Par
) = N_Full_Type_Declaration
13226 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
13229 (Subtype_Indication
(Type_Definition
(Par
)))
13231 Set_Etype
(New_Id
, Derived_Type
);
13234 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13238 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
13242 Set_Etype
(New_Id
, Etype
(Id
));
13246 ----------------------
13247 -- Set_Derived_Name --
13248 ----------------------
13250 procedure Set_Derived_Name
is
13251 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
13253 if Nm
= TSS_Null
then
13254 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
13256 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
13258 end Set_Derived_Name
;
13260 -- Start of processing for Derive_Subprogram
13264 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
13265 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
13266 Set_Contract
(New_Subp
, Make_Contract
(Sloc
(New_Subp
)));
13268 -- Check whether the inherited subprogram is a private operation that
13269 -- should be inherited but not yet made visible. Such subprograms can
13270 -- become visible at a later point (e.g., the private part of a public
13271 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13272 -- following predicate is true, then this is not such a private
13273 -- operation and the subprogram simply inherits the name of the parent
13274 -- subprogram. Note the special check for the names of controlled
13275 -- operations, which are currently exempted from being inherited with
13276 -- a hidden name because they must be findable for generation of
13277 -- implicit run-time calls.
13279 if not Is_Hidden
(Parent_Subp
)
13280 or else Is_Internal
(Parent_Subp
)
13281 or else Is_Private_Overriding
13282 or else Is_Internal_Name
(Chars
(Parent_Subp
))
13283 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
13289 -- An inherited dispatching equality will be overridden by an internally
13290 -- generated one, or by an explicit one, so preserve its name and thus
13291 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13292 -- private operation it may become invisible if the full view has
13293 -- progenitors, and the dispatch table will be malformed.
13294 -- We check that the type is limited to handle the anomalous declaration
13295 -- of Limited_Controlled, which is derived from a non-limited type, and
13296 -- which is handled specially elsewhere as well.
13298 elsif Chars
(Parent_Subp
) = Name_Op_Eq
13299 and then Is_Dispatching_Operation
(Parent_Subp
)
13300 and then Etype
(Parent_Subp
) = Standard_Boolean
13301 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
13303 Etype
(First_Formal
(Parent_Subp
)) =
13304 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
13308 -- If parent is hidden, this can be a regular derivation if the
13309 -- parent is immediately visible in a non-instantiating context,
13310 -- or if we are in the private part of an instance. This test
13311 -- should still be refined ???
13313 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13314 -- operation as a non-visible operation in cases where the parent
13315 -- subprogram might not be visible now, but was visible within the
13316 -- original generic, so it would be wrong to make the inherited
13317 -- subprogram non-visible now. (Not clear if this test is fully
13318 -- correct; are there any cases where we should declare the inherited
13319 -- operation as not visible to avoid it being overridden, e.g., when
13320 -- the parent type is a generic actual with private primitives ???)
13322 -- (they should be treated the same as other private inherited
13323 -- subprograms, but it's not clear how to do this cleanly). ???
13325 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
13326 and then Is_Immediately_Visible
(Parent_Subp
)
13327 and then not In_Instance
)
13328 or else In_Instance_Not_Visible
13332 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13333 -- overrides an interface primitive because interface primitives
13334 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13336 elsif Ada_Version
>= Ada_2005
13337 and then Is_Dispatching_Operation
(Parent_Subp
)
13338 and then Covers_Some_Interface
(Parent_Subp
)
13342 -- Otherwise, the type is inheriting a private operation, so enter
13343 -- it with a special name so it can't be overridden.
13346 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
13349 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
13351 if Present
(Actual_Subp
) then
13352 Replace_Type
(Actual_Subp
, New_Subp
);
13354 Replace_Type
(Parent_Subp
, New_Subp
);
13357 Conditional_Delay
(New_Subp
, Parent_Subp
);
13359 -- If we are creating a renaming for a primitive operation of an
13360 -- actual of a generic derived type, we must examine the signature
13361 -- of the actual primitive, not that of the generic formal, which for
13362 -- example may be an interface. However the name and initial value
13363 -- of the inherited operation are those of the formal primitive.
13365 Formal
:= First_Formal
(Parent_Subp
);
13367 if Present
(Actual_Subp
) then
13368 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
13370 Formal_Of_Actual
:= Empty
;
13373 while Present
(Formal
) loop
13374 New_Formal
:= New_Copy
(Formal
);
13376 -- Normally we do not go copying parents, but in the case of
13377 -- formals, we need to link up to the declaration (which is the
13378 -- parameter specification), and it is fine to link up to the
13379 -- original formal's parameter specification in this case.
13381 Set_Parent
(New_Formal
, Parent
(Formal
));
13382 Append_Entity
(New_Formal
, New_Subp
);
13384 if Present
(Formal_Of_Actual
) then
13385 Replace_Type
(Formal_Of_Actual
, New_Formal
);
13386 Next_Formal
(Formal_Of_Actual
);
13388 Replace_Type
(Formal
, New_Formal
);
13391 Next_Formal
(Formal
);
13394 -- If this derivation corresponds to a tagged generic actual, then
13395 -- primitive operations rename those of the actual. Otherwise the
13396 -- primitive operations rename those of the parent type, If the parent
13397 -- renames an intrinsic operator, so does the new subprogram. We except
13398 -- concatenation, which is always properly typed, and does not get
13399 -- expanded as other intrinsic operations.
13401 if No
(Actual_Subp
) then
13402 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
13403 Set_Is_Intrinsic_Subprogram
(New_Subp
);
13405 if Present
(Alias
(Parent_Subp
))
13406 and then Chars
(Parent_Subp
) /= Name_Op_Concat
13408 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
13410 Set_Alias
(New_Subp
, Parent_Subp
);
13414 Set_Alias
(New_Subp
, Parent_Subp
);
13418 Set_Alias
(New_Subp
, Actual_Subp
);
13421 -- Derived subprograms of a tagged type must inherit the convention
13422 -- of the parent subprogram (a requirement of AI-117). Derived
13423 -- subprograms of untagged types simply get convention Ada by default.
13425 -- If the derived type is a tagged generic formal type with unknown
13426 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13428 -- However, if the type is derived from a generic formal, the further
13429 -- inherited subprogram has the convention of the non-generic ancestor.
13430 -- Otherwise there would be no way to override the operation.
13431 -- (This is subject to forthcoming ARG discussions).
13433 if Is_Tagged_Type
(Derived_Type
) then
13434 if Is_Generic_Type
(Derived_Type
)
13435 and then Has_Unknown_Discriminants
(Derived_Type
)
13437 Set_Convention
(New_Subp
, Convention_Intrinsic
);
13440 if Is_Generic_Type
(Parent_Type
)
13441 and then Has_Unknown_Discriminants
(Parent_Type
)
13443 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
13445 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
13450 -- Predefined controlled operations retain their name even if the parent
13451 -- is hidden (see above), but they are not primitive operations if the
13452 -- ancestor is not visible, for example if the parent is a private
13453 -- extension completed with a controlled extension. Note that a full
13454 -- type that is controlled can break privacy: the flag Is_Controlled is
13455 -- set on both views of the type.
13457 if Is_Controlled
(Parent_Type
)
13458 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
13461 and then Is_Hidden
(Parent_Subp
)
13462 and then not Is_Visibly_Controlled
(Parent_Type
)
13464 Set_Is_Hidden
(New_Subp
);
13467 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
13468 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
13470 if Ekind
(Parent_Subp
) = E_Procedure
then
13471 Set_Is_Valued_Procedure
13472 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
13474 Set_Has_Controlling_Result
13475 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
13478 -- No_Return must be inherited properly. If this is overridden in the
13479 -- case of a dispatching operation, then a check is made in Sem_Disp
13480 -- that the overriding operation is also No_Return (no such check is
13481 -- required for the case of non-dispatching operation.
13483 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
13485 -- A derived function with a controlling result is abstract. If the
13486 -- Derived_Type is a nonabstract formal generic derived type, then
13487 -- inherited operations are not abstract: the required check is done at
13488 -- instantiation time. If the derivation is for a generic actual, the
13489 -- function is not abstract unless the actual is.
13491 if Is_Generic_Type
(Derived_Type
)
13492 and then not Is_Abstract_Type
(Derived_Type
)
13496 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13497 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13499 elsif Ada_Version
>= Ada_2005
13500 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13501 or else (Is_Tagged_Type
(Derived_Type
)
13502 and then Etype
(New_Subp
) = Derived_Type
13503 and then not Is_Null_Extension
(Derived_Type
))
13504 or else (Is_Tagged_Type
(Derived_Type
)
13505 and then Ekind
(Etype
(New_Subp
)) =
13506 E_Anonymous_Access_Type
13507 and then Designated_Type
(Etype
(New_Subp
)) =
13509 and then not Is_Null_Extension
(Derived_Type
)))
13510 and then No
(Actual_Subp
)
13512 if not Is_Tagged_Type
(Derived_Type
)
13513 or else Is_Abstract_Type
(Derived_Type
)
13514 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
13516 Set_Is_Abstract_Subprogram
(New_Subp
);
13518 Set_Requires_Overriding
(New_Subp
);
13521 elsif Ada_Version
< Ada_2005
13522 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
13523 or else (Is_Tagged_Type
(Derived_Type
)
13524 and then Etype
(New_Subp
) = Derived_Type
13525 and then No
(Actual_Subp
)))
13527 Set_Is_Abstract_Subprogram
(New_Subp
);
13529 -- AI05-0097 : an inherited operation that dispatches on result is
13530 -- abstract if the derived type is abstract, even if the parent type
13531 -- is concrete and the derived type is a null extension.
13533 elsif Has_Controlling_Result
(Alias
(New_Subp
))
13534 and then Is_Abstract_Type
(Etype
(New_Subp
))
13536 Set_Is_Abstract_Subprogram
(New_Subp
);
13538 -- Finally, if the parent type is abstract we must verify that all
13539 -- inherited operations are either non-abstract or overridden, or that
13540 -- the derived type itself is abstract (this check is performed at the
13541 -- end of a package declaration, in Check_Abstract_Overriding). A
13542 -- private overriding in the parent type will not be visible in the
13543 -- derivation if we are not in an inner package or in a child unit of
13544 -- the parent type, in which case the abstractness of the inherited
13545 -- operation is carried to the new subprogram.
13547 elsif Is_Abstract_Type
(Parent_Type
)
13548 and then not In_Open_Scopes
(Scope
(Parent_Type
))
13549 and then Is_Private_Overriding
13550 and then Is_Abstract_Subprogram
(Visible_Subp
)
13552 if No
(Actual_Subp
) then
13553 Set_Alias
(New_Subp
, Visible_Subp
);
13554 Set_Is_Abstract_Subprogram
(New_Subp
, True);
13557 -- If this is a derivation for an instance of a formal derived
13558 -- type, abstractness comes from the primitive operation of the
13559 -- actual, not from the operation inherited from the ancestor.
13561 Set_Is_Abstract_Subprogram
13562 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
13566 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
13568 -- Check for case of a derived subprogram for the instantiation of a
13569 -- formal derived tagged type, if so mark the subprogram as dispatching
13570 -- and inherit the dispatching attributes of the actual subprogram. The
13571 -- derived subprogram is effectively renaming of the actual subprogram,
13572 -- so it needs to have the same attributes as the actual.
13574 if Present
(Actual_Subp
)
13575 and then Is_Dispatching_Operation
(Actual_Subp
)
13577 Set_Is_Dispatching_Operation
(New_Subp
);
13579 if Present
(DTC_Entity
(Actual_Subp
)) then
13580 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
13581 Set_DT_Position
(New_Subp
, DT_Position
(Actual_Subp
));
13585 -- Indicate that a derived subprogram does not require a body and that
13586 -- it does not require processing of default expressions.
13588 Set_Has_Completion
(New_Subp
);
13589 Set_Default_Expressions_Processed
(New_Subp
);
13591 if Ekind
(New_Subp
) = E_Function
then
13592 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
13594 end Derive_Subprogram
;
13596 ------------------------
13597 -- Derive_Subprograms --
13598 ------------------------
13600 procedure Derive_Subprograms
13601 (Parent_Type
: Entity_Id
;
13602 Derived_Type
: Entity_Id
;
13603 Generic_Actual
: Entity_Id
:= Empty
)
13605 Op_List
: constant Elist_Id
:=
13606 Collect_Primitive_Operations
(Parent_Type
);
13608 function Check_Derived_Type
return Boolean;
13609 -- Check that all the entities derived from Parent_Type are found in
13610 -- the list of primitives of Derived_Type exactly in the same order.
13612 procedure Derive_Interface_Subprogram
13613 (New_Subp
: in out Entity_Id
;
13615 Actual_Subp
: Entity_Id
);
13616 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
13617 -- (which is an interface primitive). If Generic_Actual is present then
13618 -- Actual_Subp is the actual subprogram corresponding with the generic
13619 -- subprogram Subp.
13621 function Check_Derived_Type
return Boolean is
13625 New_Subp
: Entity_Id
;
13630 -- Traverse list of entities in the current scope searching for
13631 -- an incomplete type whose full-view is derived type
13633 E
:= First_Entity
(Scope
(Derived_Type
));
13634 while Present
(E
) and then E
/= Derived_Type
loop
13635 if Ekind
(E
) = E_Incomplete_Type
13636 and then Present
(Full_View
(E
))
13637 and then Full_View
(E
) = Derived_Type
13639 -- Disable this test if Derived_Type completes an incomplete
13640 -- type because in such case more primitives can be added
13641 -- later to the list of primitives of Derived_Type by routine
13642 -- Process_Incomplete_Dependents
13647 E
:= Next_Entity
(E
);
13650 List
:= Collect_Primitive_Operations
(Derived_Type
);
13651 Elmt
:= First_Elmt
(List
);
13653 Op_Elmt
:= First_Elmt
(Op_List
);
13654 while Present
(Op_Elmt
) loop
13655 Subp
:= Node
(Op_Elmt
);
13656 New_Subp
:= Node
(Elmt
);
13658 -- At this early stage Derived_Type has no entities with attribute
13659 -- Interface_Alias. In addition, such primitives are always
13660 -- located at the end of the list of primitives of Parent_Type.
13661 -- Therefore, if found we can safely stop processing pending
13664 exit when Present
(Interface_Alias
(Subp
));
13666 -- Handle hidden entities
13668 if not Is_Predefined_Dispatching_Operation
(Subp
)
13669 and then Is_Hidden
(Subp
)
13671 if Present
(New_Subp
)
13672 and then Primitive_Names_Match
(Subp
, New_Subp
)
13678 if not Present
(New_Subp
)
13679 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
13680 or else not Primitive_Names_Match
(Subp
, New_Subp
)
13688 Next_Elmt
(Op_Elmt
);
13692 end Check_Derived_Type
;
13694 ---------------------------------
13695 -- Derive_Interface_Subprogram --
13696 ---------------------------------
13698 procedure Derive_Interface_Subprogram
13699 (New_Subp
: in out Entity_Id
;
13701 Actual_Subp
: Entity_Id
)
13703 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
13704 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
13707 pragma Assert
(Is_Interface
(Iface_Type
));
13710 (New_Subp
=> New_Subp
,
13711 Parent_Subp
=> Iface_Subp
,
13712 Derived_Type
=> Derived_Type
,
13713 Parent_Type
=> Iface_Type
,
13714 Actual_Subp
=> Actual_Subp
);
13716 -- Given that this new interface entity corresponds with a primitive
13717 -- of the parent that was not overridden we must leave it associated
13718 -- with its parent primitive to ensure that it will share the same
13719 -- dispatch table slot when overridden.
13721 if No
(Actual_Subp
) then
13722 Set_Alias
(New_Subp
, Subp
);
13724 -- For instantiations this is not needed since the previous call to
13725 -- Derive_Subprogram leaves the entity well decorated.
13728 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
13731 end Derive_Interface_Subprogram
;
13735 Alias_Subp
: Entity_Id
;
13736 Act_List
: Elist_Id
;
13737 Act_Elmt
: Elmt_Id
;
13738 Act_Subp
: Entity_Id
:= Empty
;
13740 Need_Search
: Boolean := False;
13741 New_Subp
: Entity_Id
:= Empty
;
13742 Parent_Base
: Entity_Id
;
13745 -- Start of processing for Derive_Subprograms
13748 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
13749 and then Has_Discriminants
(Parent_Type
)
13750 and then Present
(Full_View
(Parent_Type
))
13752 Parent_Base
:= Full_View
(Parent_Type
);
13754 Parent_Base
:= Parent_Type
;
13757 if Present
(Generic_Actual
) then
13758 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
13759 Act_Elmt
:= First_Elmt
(Act_List
);
13761 Act_List
:= No_Elist
;
13762 Act_Elmt
:= No_Elmt
;
13765 -- Derive primitives inherited from the parent. Note that if the generic
13766 -- actual is present, this is not really a type derivation, it is a
13767 -- completion within an instance.
13769 -- Case 1: Derived_Type does not implement interfaces
13771 if not Is_Tagged_Type
(Derived_Type
)
13772 or else (not Has_Interfaces
(Derived_Type
)
13773 and then not (Present
(Generic_Actual
)
13774 and then Has_Interfaces
(Generic_Actual
)))
13776 Elmt
:= First_Elmt
(Op_List
);
13777 while Present
(Elmt
) loop
13778 Subp
:= Node
(Elmt
);
13780 -- Literals are derived earlier in the process of building the
13781 -- derived type, and are skipped here.
13783 if Ekind
(Subp
) = E_Enumeration_Literal
then
13786 -- The actual is a direct descendant and the common primitive
13787 -- operations appear in the same order.
13789 -- If the generic parent type is present, the derived type is an
13790 -- instance of a formal derived type, and within the instance its
13791 -- operations are those of the actual. We derive from the formal
13792 -- type but make the inherited operations aliases of the
13793 -- corresponding operations of the actual.
13796 pragma Assert
(No
(Node
(Act_Elmt
))
13797 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
13800 (Subp
, Node
(Act_Elmt
),
13801 Skip_Controlling_Formals
=> True)));
13804 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
13806 if Present
(Act_Elmt
) then
13807 Next_Elmt
(Act_Elmt
);
13814 -- Case 2: Derived_Type implements interfaces
13817 -- If the parent type has no predefined primitives we remove
13818 -- predefined primitives from the list of primitives of generic
13819 -- actual to simplify the complexity of this algorithm.
13821 if Present
(Generic_Actual
) then
13823 Has_Predefined_Primitives
: Boolean := False;
13826 -- Check if the parent type has predefined primitives
13828 Elmt
:= First_Elmt
(Op_List
);
13829 while Present
(Elmt
) loop
13830 Subp
:= Node
(Elmt
);
13832 if Is_Predefined_Dispatching_Operation
(Subp
)
13833 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
13835 Has_Predefined_Primitives
:= True;
13842 -- Remove predefined primitives of Generic_Actual. We must use
13843 -- an auxiliary list because in case of tagged types the value
13844 -- returned by Collect_Primitive_Operations is the value stored
13845 -- in its Primitive_Operations attribute (and we don't want to
13846 -- modify its current contents).
13848 if not Has_Predefined_Primitives
then
13850 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
13853 Elmt
:= First_Elmt
(Act_List
);
13854 while Present
(Elmt
) loop
13855 Subp
:= Node
(Elmt
);
13857 if not Is_Predefined_Dispatching_Operation
(Subp
)
13858 or else Comes_From_Source
(Subp
)
13860 Append_Elmt
(Subp
, Aux_List
);
13866 Act_List
:= Aux_List
;
13870 Act_Elmt
:= First_Elmt
(Act_List
);
13871 Act_Subp
:= Node
(Act_Elmt
);
13875 -- Stage 1: If the generic actual is not present we derive the
13876 -- primitives inherited from the parent type. If the generic parent
13877 -- type is present, the derived type is an instance of a formal
13878 -- derived type, and within the instance its operations are those of
13879 -- the actual. We derive from the formal type but make the inherited
13880 -- operations aliases of the corresponding operations of the actual.
13882 Elmt
:= First_Elmt
(Op_List
);
13883 while Present
(Elmt
) loop
13884 Subp
:= Node
(Elmt
);
13885 Alias_Subp
:= Ultimate_Alias
(Subp
);
13887 -- Do not derive internal entities of the parent that link
13888 -- interface primitives with their covering primitive. These
13889 -- entities will be added to this type when frozen.
13891 if Present
(Interface_Alias
(Subp
)) then
13895 -- If the generic actual is present find the corresponding
13896 -- operation in the generic actual. If the parent type is a
13897 -- direct ancestor of the derived type then, even if it is an
13898 -- interface, the operations are inherited from the primary
13899 -- dispatch table and are in the proper order. If we detect here
13900 -- that primitives are not in the same order we traverse the list
13901 -- of primitive operations of the actual to find the one that
13902 -- implements the interface primitive.
13906 (Present
(Generic_Actual
)
13907 and then Present
(Act_Subp
)
13909 (Primitive_Names_Match
(Subp
, Act_Subp
)
13911 Type_Conformant
(Subp
, Act_Subp
,
13912 Skip_Controlling_Formals
=> True)))
13914 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
13915 Use_Full_View
=> True));
13917 -- Remember that we need searching for all pending primitives
13919 Need_Search
:= True;
13921 -- Handle entities associated with interface primitives
13923 if Present
(Alias_Subp
)
13924 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
13925 and then not Is_Predefined_Dispatching_Operation
(Subp
)
13927 -- Search for the primitive in the homonym chain
13930 Find_Primitive_Covering_Interface
13931 (Tagged_Type
=> Generic_Actual
,
13932 Iface_Prim
=> Alias_Subp
);
13934 -- Previous search may not locate primitives covering
13935 -- interfaces defined in generics units or instantiations.
13936 -- (it fails if the covering primitive has formals whose
13937 -- type is also defined in generics or instantiations).
13938 -- In such case we search in the list of primitives of the
13939 -- generic actual for the internal entity that links the
13940 -- interface primitive and the covering primitive.
13943 and then Is_Generic_Type
(Parent_Type
)
13945 -- This code has been designed to handle only generic
13946 -- formals that implement interfaces that are defined
13947 -- in a generic unit or instantiation. If this code is
13948 -- needed for other cases we must review it because
13949 -- (given that it relies on Original_Location to locate
13950 -- the primitive of Generic_Actual that covers the
13951 -- interface) it could leave linked through attribute
13952 -- Alias entities of unrelated instantiations).
13956 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
13958 Instantiation_Depth
13959 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
13962 Iface_Prim_Loc
: constant Source_Ptr
:=
13963 Original_Location
(Sloc
(Alias_Subp
));
13970 First_Elmt
(Primitive_Operations
(Generic_Actual
));
13972 Search
: while Present
(Elmt
) loop
13973 Prim
:= Node
(Elmt
);
13975 if Present
(Interface_Alias
(Prim
))
13976 and then Original_Location
13977 (Sloc
(Interface_Alias
(Prim
))) =
13980 Act_Subp
:= Alias
(Prim
);
13989 pragma Assert
(Present
(Act_Subp
)
13990 or else Is_Abstract_Type
(Generic_Actual
)
13991 or else Serious_Errors_Detected
> 0);
13993 -- Handle predefined primitives plus the rest of user-defined
13997 Act_Elmt
:= First_Elmt
(Act_List
);
13998 while Present
(Act_Elmt
) loop
13999 Act_Subp
:= Node
(Act_Elmt
);
14001 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
14002 and then Type_Conformant
14004 Skip_Controlling_Formals
=> True)
14005 and then No
(Interface_Alias
(Act_Subp
));
14007 Next_Elmt
(Act_Elmt
);
14010 if No
(Act_Elmt
) then
14016 -- Case 1: If the parent is a limited interface then it has the
14017 -- predefined primitives of synchronized interfaces. However, the
14018 -- actual type may be a non-limited type and hence it does not
14019 -- have such primitives.
14021 if Present
(Generic_Actual
)
14022 and then not Present
(Act_Subp
)
14023 and then Is_Limited_Interface
(Parent_Base
)
14024 and then Is_Predefined_Interface_Primitive
(Subp
)
14028 -- Case 2: Inherit entities associated with interfaces that were
14029 -- not covered by the parent type. We exclude here null interface
14030 -- primitives because they do not need special management.
14032 -- We also exclude interface operations that are renamings. If the
14033 -- subprogram is an explicit renaming of an interface primitive,
14034 -- it is a regular primitive operation, and the presence of its
14035 -- alias is not relevant: it has to be derived like any other
14038 elsif Present
(Alias
(Subp
))
14039 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
14040 N_Subprogram_Renaming_Declaration
14041 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
14043 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
14044 and then Null_Present
(Parent
(Alias_Subp
)))
14046 -- If this is an abstract private type then we transfer the
14047 -- derivation of the interface primitive from the partial view
14048 -- to the full view. This is safe because all the interfaces
14049 -- must be visible in the partial view. Done to avoid adding
14050 -- a new interface derivation to the private part of the
14051 -- enclosing package; otherwise this new derivation would be
14052 -- decorated as hidden when the analysis of the enclosing
14053 -- package completes.
14055 if Is_Abstract_Type
(Derived_Type
)
14056 and then In_Private_Part
(Current_Scope
)
14057 and then Has_Private_Declaration
(Derived_Type
)
14060 Partial_View
: Entity_Id
;
14065 Partial_View
:= First_Entity
(Current_Scope
);
14067 exit when No
(Partial_View
)
14068 or else (Has_Private_Declaration
(Partial_View
)
14070 Full_View
(Partial_View
) = Derived_Type
);
14072 Next_Entity
(Partial_View
);
14075 -- If the partial view was not found then the source code
14076 -- has errors and the derivation is not needed.
14078 if Present
(Partial_View
) then
14080 First_Elmt
(Primitive_Operations
(Partial_View
));
14081 while Present
(Elmt
) loop
14082 Ent
:= Node
(Elmt
);
14084 if Present
(Alias
(Ent
))
14085 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
14088 (Ent
, Primitive_Operations
(Derived_Type
));
14095 -- If the interface primitive was not found in the
14096 -- partial view then this interface primitive was
14097 -- overridden. We add a derivation to activate in
14098 -- Derive_Progenitor_Subprograms the machinery to
14102 Derive_Interface_Subprogram
14103 (New_Subp
=> New_Subp
,
14105 Actual_Subp
=> Act_Subp
);
14110 Derive_Interface_Subprogram
14111 (New_Subp
=> New_Subp
,
14113 Actual_Subp
=> Act_Subp
);
14116 -- Case 3: Common derivation
14120 (New_Subp
=> New_Subp
,
14121 Parent_Subp
=> Subp
,
14122 Derived_Type
=> Derived_Type
,
14123 Parent_Type
=> Parent_Base
,
14124 Actual_Subp
=> Act_Subp
);
14127 -- No need to update Act_Elm if we must search for the
14128 -- corresponding operation in the generic actual
14131 and then Present
(Act_Elmt
)
14133 Next_Elmt
(Act_Elmt
);
14134 Act_Subp
:= Node
(Act_Elmt
);
14141 -- Inherit additional operations from progenitors. If the derived
14142 -- type is a generic actual, there are not new primitive operations
14143 -- for the type because it has those of the actual, and therefore
14144 -- nothing needs to be done. The renamings generated above are not
14145 -- primitive operations, and their purpose is simply to make the
14146 -- proper operations visible within an instantiation.
14148 if No
(Generic_Actual
) then
14149 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
14153 -- Final check: Direct descendants must have their primitives in the
14154 -- same order. We exclude from this test untagged types and instances
14155 -- of formal derived types. We skip this test if we have already
14156 -- reported serious errors in the sources.
14158 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
14159 or else Present
(Generic_Actual
)
14160 or else Serious_Errors_Detected
> 0
14161 or else Check_Derived_Type
);
14162 end Derive_Subprograms
;
14164 --------------------------------
14165 -- Derived_Standard_Character --
14166 --------------------------------
14168 procedure Derived_Standard_Character
14170 Parent_Type
: Entity_Id
;
14171 Derived_Type
: Entity_Id
)
14173 Loc
: constant Source_Ptr
:= Sloc
(N
);
14174 Def
: constant Node_Id
:= Type_Definition
(N
);
14175 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14176 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
14177 Implicit_Base
: constant Entity_Id
:=
14179 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
14185 Discard_Node
(Process_Subtype
(Indic
, N
));
14187 Set_Etype
(Implicit_Base
, Parent_Base
);
14188 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
14189 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
14191 Set_Is_Character_Type
(Implicit_Base
, True);
14192 Set_Has_Delayed_Freeze
(Implicit_Base
);
14194 -- The bounds of the implicit base are the bounds of the parent base.
14195 -- Note that their type is the parent base.
14197 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
14198 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
14200 Set_Scalar_Range
(Implicit_Base
,
14203 High_Bound
=> Hi
));
14205 Conditional_Delay
(Derived_Type
, Parent_Type
);
14207 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
14208 Set_Etype
(Derived_Type
, Implicit_Base
);
14209 Set_Size_Info
(Derived_Type
, Parent_Type
);
14211 if Unknown_RM_Size
(Derived_Type
) then
14212 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
14215 Set_Is_Character_Type
(Derived_Type
, True);
14217 if Nkind
(Indic
) /= N_Subtype_Indication
then
14219 -- If no explicit constraint, the bounds are those
14220 -- of the parent type.
14222 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
14223 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
14224 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
14227 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
14229 -- Because the implicit base is used in the conversion of the bounds, we
14230 -- have to freeze it now. This is similar to what is done for numeric
14231 -- types, and it equally suspicious, but otherwise a non-static bound
14232 -- will have a reference to an unfrozen type, which is rejected by Gigi
14233 -- (???). This requires specific care for definition of stream
14234 -- attributes. For details, see comments at the end of
14235 -- Build_Derived_Numeric_Type.
14237 Freeze_Before
(N
, Implicit_Base
);
14238 end Derived_Standard_Character
;
14240 ------------------------------
14241 -- Derived_Type_Declaration --
14242 ------------------------------
14244 procedure Derived_Type_Declaration
14247 Is_Completion
: Boolean)
14249 Parent_Type
: Entity_Id
;
14251 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
14252 -- Check whether the parent type is a generic formal, or derives
14253 -- directly or indirectly from one.
14255 ------------------------
14256 -- Comes_From_Generic --
14257 ------------------------
14259 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
14261 if Is_Generic_Type
(Typ
) then
14264 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
14267 elsif Is_Private_Type
(Typ
)
14268 and then Present
(Full_View
(Typ
))
14269 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
14273 elsif Is_Generic_Actual_Type
(Typ
) then
14279 end Comes_From_Generic
;
14283 Def
: constant Node_Id
:= Type_Definition
(N
);
14284 Iface_Def
: Node_Id
;
14285 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
14286 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
14287 Parent_Node
: Node_Id
;
14290 -- Start of processing for Derived_Type_Declaration
14293 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
14295 -- Ada 2005 (AI-251): In case of interface derivation check that the
14296 -- parent is also an interface.
14298 if Interface_Present
(Def
) then
14299 Check_SPARK_Restriction
("interface is not allowed", Def
);
14301 if not Is_Interface
(Parent_Type
) then
14302 Diagnose_Interface
(Indic
, Parent_Type
);
14305 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
14306 Iface_Def
:= Type_Definition
(Parent_Node
);
14308 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14309 -- other limited interfaces.
14311 if Limited_Present
(Def
) then
14312 if Limited_Present
(Iface_Def
) then
14315 elsif Protected_Present
(Iface_Def
) then
14317 ("descendant of& must be declared"
14318 & " as a protected interface",
14321 elsif Synchronized_Present
(Iface_Def
) then
14323 ("descendant of& must be declared"
14324 & " as a synchronized interface",
14327 elsif Task_Present
(Iface_Def
) then
14329 ("descendant of& must be declared as a task interface",
14334 ("(Ada 2005) limited interface cannot "
14335 & "inherit from non-limited interface", Indic
);
14338 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14339 -- from non-limited or limited interfaces.
14341 elsif not Protected_Present
(Def
)
14342 and then not Synchronized_Present
(Def
)
14343 and then not Task_Present
(Def
)
14345 if Limited_Present
(Iface_Def
) then
14348 elsif Protected_Present
(Iface_Def
) then
14350 ("descendant of& must be declared"
14351 & " as a protected interface",
14354 elsif Synchronized_Present
(Iface_Def
) then
14356 ("descendant of& must be declared"
14357 & " as a synchronized interface",
14360 elsif Task_Present
(Iface_Def
) then
14362 ("descendant of& must be declared as a task interface",
14371 if Is_Tagged_Type
(Parent_Type
)
14372 and then Is_Concurrent_Type
(Parent_Type
)
14373 and then not Is_Interface
(Parent_Type
)
14376 ("parent type of a record extension cannot be "
14377 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
14378 Set_Etype
(T
, Any_Type
);
14382 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14385 if Is_Tagged_Type
(Parent_Type
)
14386 and then Is_Non_Empty_List
(Interface_List
(Def
))
14393 Intf
:= First
(Interface_List
(Def
));
14394 while Present
(Intf
) loop
14395 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
14397 if not Is_Interface
(T
) then
14398 Diagnose_Interface
(Intf
, T
);
14400 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14401 -- a limited type from having a nonlimited progenitor.
14403 elsif (Limited_Present
(Def
)
14404 or else (not Is_Interface
(Parent_Type
)
14405 and then Is_Limited_Type
(Parent_Type
)))
14406 and then not Is_Limited_Interface
(T
)
14409 ("progenitor interface& of limited type must be limited",
14418 if Parent_Type
= Any_Type
14419 or else Etype
(Parent_Type
) = Any_Type
14420 or else (Is_Class_Wide_Type
(Parent_Type
)
14421 and then Etype
(Parent_Type
) = T
)
14423 -- If Parent_Type is undefined or illegal, make new type into a
14424 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14425 -- errors. If this is a self-definition, emit error now.
14428 or else T
= Etype
(Parent_Type
)
14430 Error_Msg_N
("type cannot be used in its own definition", Indic
);
14433 Set_Ekind
(T
, Ekind
(Parent_Type
));
14434 Set_Etype
(T
, Any_Type
);
14435 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
14437 if Is_Tagged_Type
(T
)
14438 and then Is_Record_Type
(T
)
14440 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
14446 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14447 -- an interface is special because the list of interfaces in the full
14448 -- view can be given in any order. For example:
14450 -- type A is interface;
14451 -- type B is interface and A;
14452 -- type D is new B with private;
14454 -- type D is new A and B with null record; -- 1 --
14456 -- In this case we perform the following transformation of -1-:
14458 -- type D is new B and A with null record;
14460 -- If the parent of the full-view covers the parent of the partial-view
14461 -- we have two possible cases:
14463 -- 1) They have the same parent
14464 -- 2) The parent of the full-view implements some further interfaces
14466 -- In both cases we do not need to perform the transformation. In the
14467 -- first case the source program is correct and the transformation is
14468 -- not needed; in the second case the source program does not fulfill
14469 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14472 -- This transformation not only simplifies the rest of the analysis of
14473 -- this type declaration but also simplifies the correct generation of
14474 -- the object layout to the expander.
14476 if In_Private_Part
(Current_Scope
)
14477 and then Is_Interface
(Parent_Type
)
14481 Partial_View
: Entity_Id
;
14482 Partial_View_Parent
: Entity_Id
;
14483 New_Iface
: Node_Id
;
14486 -- Look for the associated private type declaration
14488 Partial_View
:= First_Entity
(Current_Scope
);
14490 exit when No
(Partial_View
)
14491 or else (Has_Private_Declaration
(Partial_View
)
14492 and then Full_View
(Partial_View
) = T
);
14494 Next_Entity
(Partial_View
);
14497 -- If the partial view was not found then the source code has
14498 -- errors and the transformation is not needed.
14500 if Present
(Partial_View
) then
14501 Partial_View_Parent
:= Etype
(Partial_View
);
14503 -- If the parent of the full-view covers the parent of the
14504 -- partial-view we have nothing else to do.
14506 if Interface_Present_In_Ancestor
14507 (Parent_Type
, Partial_View_Parent
)
14511 -- Traverse the list of interfaces of the full-view to look
14512 -- for the parent of the partial-view and perform the tree
14516 Iface
:= First
(Interface_List
(Def
));
14517 while Present
(Iface
) loop
14518 if Etype
(Iface
) = Etype
(Partial_View
) then
14519 Rewrite
(Subtype_Indication
(Def
),
14520 New_Copy
(Subtype_Indication
14521 (Parent
(Partial_View
))));
14524 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
14525 Append
(New_Iface
, Interface_List
(Def
));
14527 -- Analyze the transformed code
14529 Derived_Type_Declaration
(T
, N
, Is_Completion
);
14540 -- Only composite types other than array types are allowed to have
14541 -- discriminants. In SPARK, no types are allowed to have discriminants.
14543 if Present
(Discriminant_Specifications
(N
)) then
14544 if (Is_Elementary_Type
(Parent_Type
)
14545 or else Is_Array_Type
(Parent_Type
))
14546 and then not Error_Posted
(N
)
14549 ("elementary or array type cannot have discriminants",
14550 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
14551 Set_Has_Discriminants
(T
, False);
14553 Check_SPARK_Restriction
("discriminant type is not allowed", N
);
14557 -- In Ada 83, a derived type defined in a package specification cannot
14558 -- be used for further derivation until the end of its visible part.
14559 -- Note that derivation in the private part of the package is allowed.
14561 if Ada_Version
= Ada_83
14562 and then Is_Derived_Type
(Parent_Type
)
14563 and then In_Visible_Part
(Scope
(Parent_Type
))
14565 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
14567 ("(Ada 83): premature use of type for derivation", Indic
);
14571 -- Check for early use of incomplete or private type
14573 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
14574 Error_Msg_N
("premature derivation of incomplete type", Indic
);
14577 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
14578 and then not Comes_From_Generic
(Parent_Type
))
14579 or else Has_Private_Component
(Parent_Type
)
14581 -- The ancestor type of a formal type can be incomplete, in which
14582 -- case only the operations of the partial view are available in the
14583 -- generic. Subsequent checks may be required when the full view is
14584 -- analyzed to verify that a derivation from a tagged type has an
14587 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
14590 elsif No
(Underlying_Type
(Parent_Type
))
14591 or else Has_Private_Component
(Parent_Type
)
14594 ("premature derivation of derived or private type", Indic
);
14596 -- Flag the type itself as being in error, this prevents some
14597 -- nasty problems with subsequent uses of the malformed type.
14599 Set_Error_Posted
(T
);
14601 -- Check that within the immediate scope of an untagged partial
14602 -- view it's illegal to derive from the partial view if the
14603 -- full view is tagged. (7.3(7))
14605 -- We verify that the Parent_Type is a partial view by checking
14606 -- that it is not a Full_Type_Declaration (i.e. a private type or
14607 -- private extension declaration), to distinguish a partial view
14608 -- from a derivation from a private type which also appears as
14609 -- E_Private_Type. If the parent base type is not declared in an
14610 -- enclosing scope there is no need to check.
14612 elsif Present
(Full_View
(Parent_Type
))
14613 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
14614 and then not Is_Tagged_Type
(Parent_Type
)
14615 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
14616 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14619 ("premature derivation from type with tagged full view",
14624 -- Check that form of derivation is appropriate
14626 Taggd
:= Is_Tagged_Type
(Parent_Type
);
14628 -- Perhaps the parent type should be changed to the class-wide type's
14629 -- specific type in this case to prevent cascading errors ???
14631 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
14632 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
14636 if Present
(Extension
) and then not Taggd
then
14638 ("type derived from untagged type cannot have extension", Indic
);
14640 elsif No
(Extension
) and then Taggd
then
14642 -- If this declaration is within a private part (or body) of a
14643 -- generic instantiation then the derivation is allowed (the parent
14644 -- type can only appear tagged in this case if it's a generic actual
14645 -- type, since it would otherwise have been rejected in the analysis
14646 -- of the generic template).
14648 if not Is_Generic_Actual_Type
(Parent_Type
)
14649 or else In_Visible_Part
(Scope
(Parent_Type
))
14651 if Is_Class_Wide_Type
(Parent_Type
) then
14653 ("parent type must not be a class-wide type", Indic
);
14655 -- Use specific type to prevent cascaded errors.
14657 Parent_Type
:= Etype
(Parent_Type
);
14661 ("type derived from tagged type must have extension", Indic
);
14666 -- AI-443: Synchronized formal derived types require a private
14667 -- extension. There is no point in checking the ancestor type or
14668 -- the progenitors since the construct is wrong to begin with.
14670 if Ada_Version
>= Ada_2005
14671 and then Is_Generic_Type
(T
)
14672 and then Present
(Original_Node
(N
))
14675 Decl
: constant Node_Id
:= Original_Node
(N
);
14678 if Nkind
(Decl
) = N_Formal_Type_Declaration
14679 and then Nkind
(Formal_Type_Definition
(Decl
)) =
14680 N_Formal_Derived_Type_Definition
14681 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
14682 and then No
(Extension
)
14684 -- Avoid emitting a duplicate error message
14686 and then not Error_Posted
(Indic
)
14689 ("synchronized derived type must have extension", N
);
14694 if Null_Exclusion_Present
(Def
)
14695 and then not Is_Access_Type
(Parent_Type
)
14697 Error_Msg_N
("null exclusion can only apply to an access type", N
);
14700 -- Avoid deriving parent primitives of underlying record views
14702 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
14703 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
14705 -- AI-419: The parent type of an explicitly limited derived type must
14706 -- be a limited type or a limited interface.
14708 if Limited_Present
(Def
) then
14709 Set_Is_Limited_Record
(T
);
14711 if Is_Interface
(T
) then
14712 Set_Is_Limited_Interface
(T
);
14715 if not Is_Limited_Type
(Parent_Type
)
14717 (not Is_Interface
(Parent_Type
)
14718 or else not Is_Limited_Interface
(Parent_Type
))
14720 -- AI05-0096: a derivation in the private part of an instance is
14721 -- legal if the generic formal is untagged limited, and the actual
14724 if Is_Generic_Actual_Type
(Parent_Type
)
14725 and then In_Private_Part
(Current_Scope
)
14728 (Generic_Parent_Type
(Parent
(Parent_Type
)))
14734 ("parent type& of limited type must be limited",
14740 -- In SPARK, there are no derived type definitions other than type
14741 -- extensions of tagged record types.
14743 if No
(Extension
) then
14744 Check_SPARK_Restriction
("derived type is not allowed", N
);
14746 end Derived_Type_Declaration
;
14748 ------------------------
14749 -- Diagnose_Interface --
14750 ------------------------
14752 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
14754 if not Is_Interface
(E
)
14755 and then E
/= Any_Type
14757 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
14759 end Diagnose_Interface
;
14761 ----------------------------------
14762 -- Enumeration_Type_Declaration --
14763 ----------------------------------
14765 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
14772 -- Create identifier node representing lower bound
14774 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14775 L
:= First
(Literals
(Def
));
14776 Set_Chars
(B_Node
, Chars
(L
));
14777 Set_Entity
(B_Node
, L
);
14778 Set_Etype
(B_Node
, T
);
14779 Set_Is_Static_Expression
(B_Node
, True);
14781 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
14782 Set_Low_Bound
(R_Node
, B_Node
);
14784 Set_Ekind
(T
, E_Enumeration_Type
);
14785 Set_First_Literal
(T
, L
);
14787 Set_Is_Constrained
(T
);
14791 -- Loop through literals of enumeration type setting pos and rep values
14792 -- except that if the Ekind is already set, then it means the literal
14793 -- was already constructed (case of a derived type declaration and we
14794 -- should not disturb the Pos and Rep values.
14796 while Present
(L
) loop
14797 if Ekind
(L
) /= E_Enumeration_Literal
then
14798 Set_Ekind
(L
, E_Enumeration_Literal
);
14799 Set_Enumeration_Pos
(L
, Ev
);
14800 Set_Enumeration_Rep
(L
, Ev
);
14801 Set_Is_Known_Valid
(L
, True);
14805 New_Overloaded_Entity
(L
);
14806 Generate_Definition
(L
);
14807 Set_Convention
(L
, Convention_Intrinsic
);
14809 -- Case of character literal
14811 if Nkind
(L
) = N_Defining_Character_Literal
then
14812 Set_Is_Character_Type
(T
, True);
14814 -- Check violation of No_Wide_Characters
14816 if Restriction_Check_Required
(No_Wide_Characters
) then
14817 Get_Name_String
(Chars
(L
));
14819 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
14820 Check_Restriction
(No_Wide_Characters
, L
);
14829 -- Now create a node representing upper bound
14831 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
14832 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
14833 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
14834 Set_Etype
(B_Node
, T
);
14835 Set_Is_Static_Expression
(B_Node
, True);
14837 Set_High_Bound
(R_Node
, B_Node
);
14839 -- Initialize various fields of the type. Some of this information
14840 -- may be overwritten later through rep.clauses.
14842 Set_Scalar_Range
(T
, R_Node
);
14843 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
14844 Set_Enum_Esize
(T
);
14845 Set_Enum_Pos_To_Rep
(T
, Empty
);
14847 -- Set Discard_Names if configuration pragma set, or if there is
14848 -- a parameterless pragma in the current declarative region
14850 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
14851 Set_Discard_Names
(T
);
14854 -- Process end label if there is one
14856 if Present
(Def
) then
14857 Process_End_Label
(Def
, 'e', T
);
14859 end Enumeration_Type_Declaration
;
14861 ---------------------------------
14862 -- Expand_To_Stored_Constraint --
14863 ---------------------------------
14865 function Expand_To_Stored_Constraint
14867 Constraint
: Elist_Id
) return Elist_Id
14869 Explicitly_Discriminated_Type
: Entity_Id
;
14870 Expansion
: Elist_Id
;
14871 Discriminant
: Entity_Id
;
14873 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
14874 -- Find the nearest type that actually specifies discriminants
14876 ---------------------------------
14877 -- Type_With_Explicit_Discrims --
14878 ---------------------------------
14880 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
14881 Typ
: constant E
:= Base_Type
(Id
);
14884 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
14885 if Present
(Full_View
(Typ
)) then
14886 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
14890 if Has_Discriminants
(Typ
) then
14895 if Etype
(Typ
) = Typ
then
14897 elsif Has_Discriminants
(Typ
) then
14900 return Type_With_Explicit_Discrims
(Etype
(Typ
));
14903 end Type_With_Explicit_Discrims
;
14905 -- Start of processing for Expand_To_Stored_Constraint
14909 or else Is_Empty_Elmt_List
(Constraint
)
14914 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
14916 if No
(Explicitly_Discriminated_Type
) then
14920 Expansion
:= New_Elmt_List
;
14923 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
14924 while Present
(Discriminant
) loop
14926 Get_Discriminant_Value
(
14927 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
14929 Next_Stored_Discriminant
(Discriminant
);
14933 end Expand_To_Stored_Constraint
;
14935 ---------------------------
14936 -- Find_Hidden_Interface --
14937 ---------------------------
14939 function Find_Hidden_Interface
14941 Dest
: Elist_Id
) return Entity_Id
14944 Iface_Elmt
: Elmt_Id
;
14947 if Present
(Src
) and then Present
(Dest
) then
14948 Iface_Elmt
:= First_Elmt
(Src
);
14949 while Present
(Iface_Elmt
) loop
14950 Iface
:= Node
(Iface_Elmt
);
14952 if Is_Interface
(Iface
)
14953 and then not Contain_Interface
(Iface
, Dest
)
14958 Next_Elmt
(Iface_Elmt
);
14963 end Find_Hidden_Interface
;
14965 --------------------
14966 -- Find_Type_Name --
14967 --------------------
14969 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
14970 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
14972 New_Id
: Entity_Id
;
14973 Prev_Par
: Node_Id
;
14975 procedure Check_Duplicate_Aspects
;
14976 -- Check that aspects specified in a completion have not been specified
14977 -- already in the partial view. Type_Invariant and others can be
14978 -- specified on either view but never on both.
14980 procedure Tag_Mismatch
;
14981 -- Diagnose a tagged partial view whose full view is untagged.
14982 -- We post the message on the full view, with a reference to
14983 -- the previous partial view. The partial view can be private
14984 -- or incomplete, and these are handled in a different manner,
14985 -- so we determine the position of the error message from the
14986 -- respective slocs of both.
14988 -----------------------------
14989 -- Check_Duplicate_Aspects --
14990 -----------------------------
14991 procedure Check_Duplicate_Aspects
is
14992 Prev_Aspects
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
14993 Full_Aspects
: constant List_Id
:= Aspect_Specifications
(N
);
14994 F_Spec
, P_Spec
: Node_Id
;
14997 if Present
(Prev_Aspects
) and then Present
(Full_Aspects
) then
14998 F_Spec
:= First
(Full_Aspects
);
14999 while Present
(F_Spec
) loop
15000 P_Spec
:= First
(Prev_Aspects
);
15001 while Present
(P_Spec
) loop
15003 Chars
(Identifier
(P_Spec
)) = Chars
(Identifier
(F_Spec
))
15006 ("aspect already specified in private declaration",
15018 end Check_Duplicate_Aspects
;
15024 procedure Tag_Mismatch
is
15026 if Sloc
(Prev
) < Sloc
(Id
) then
15027 if Ada_Version
>= Ada_2012
15028 and then Nkind
(N
) = N_Private_Type_Declaration
15031 ("declaration of private } must be a tagged type ", Id
, Prev
);
15034 ("full declaration of } must be a tagged type ", Id
, Prev
);
15037 if Ada_Version
>= Ada_2012
15038 and then Nkind
(N
) = N_Private_Type_Declaration
15041 ("declaration of private } must be a tagged type ", Prev
, Id
);
15044 ("full declaration of } must be a tagged type ", Prev
, Id
);
15049 -- Start of processing for Find_Type_Name
15052 -- Find incomplete declaration, if one was given
15054 Prev
:= Current_Entity_In_Scope
(Id
);
15056 -- New type declaration
15062 -- Previous declaration exists
15065 Prev_Par
:= Parent
(Prev
);
15067 -- Error if not incomplete/private case except if previous
15068 -- declaration is implicit, etc. Enter_Name will emit error if
15071 if not Is_Incomplete_Or_Private_Type
(Prev
) then
15075 -- Check invalid completion of private or incomplete type
15077 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
15078 N_Task_Type_Declaration
,
15079 N_Protected_Type_Declaration
)
15081 (Ada_Version
< Ada_2012
15082 or else not Is_Incomplete_Type
(Prev
)
15083 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
15084 N_Private_Extension_Declaration
))
15086 -- Completion must be a full type declarations (RM 7.3(4))
15088 Error_Msg_Sloc
:= Sloc
(Prev
);
15089 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
15091 -- Set scope of Id to avoid cascaded errors. Entity is never
15092 -- examined again, except when saving globals in generics.
15094 Set_Scope
(Id
, Current_Scope
);
15097 -- If this is a repeated incomplete declaration, no further
15098 -- checks are possible.
15100 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
15104 -- Case of full declaration of incomplete type
15106 elsif Ekind
(Prev
) = E_Incomplete_Type
15107 and then (Ada_Version
< Ada_2012
15108 or else No
(Full_View
(Prev
))
15109 or else not Is_Private_Type
(Full_View
(Prev
)))
15112 -- Indicate that the incomplete declaration has a matching full
15113 -- declaration. The defining occurrence of the incomplete
15114 -- declaration remains the visible one, and the procedure
15115 -- Get_Full_View dereferences it whenever the type is used.
15117 if Present
(Full_View
(Prev
)) then
15118 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
15121 Set_Full_View
(Prev
, Id
);
15122 Append_Entity
(Id
, Current_Scope
);
15123 Set_Is_Public
(Id
, Is_Public
(Prev
));
15124 Set_Is_Internal
(Id
);
15127 -- If the incomplete view is tagged, a class_wide type has been
15128 -- created already. Use it for the private type as well, in order
15129 -- to prevent multiple incompatible class-wide types that may be
15130 -- created for self-referential anonymous access components.
15132 if Is_Tagged_Type
(Prev
)
15133 and then Present
(Class_Wide_Type
(Prev
))
15135 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
15136 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
15138 -- If the incomplete type is completed by a private declaration
15139 -- the class-wide type remains associated with the incomplete
15140 -- type, to prevent order-of-elaboration issues in gigi, else
15141 -- we associate the class-wide type with the known full view.
15143 if Nkind
(N
) /= N_Private_Type_Declaration
then
15144 Set_Etype
(Class_Wide_Type
(Id
), Id
);
15148 -- Case of full declaration of private type
15151 -- If the private type was a completion of an incomplete type then
15152 -- update Prev to reference the private type
15154 if Ada_Version
>= Ada_2012
15155 and then Ekind
(Prev
) = E_Incomplete_Type
15156 and then Present
(Full_View
(Prev
))
15157 and then Is_Private_Type
(Full_View
(Prev
))
15159 Prev
:= Full_View
(Prev
);
15160 Prev_Par
:= Parent
(Prev
);
15163 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
15164 if Etype
(Prev
) /= Prev
then
15166 -- Prev is a private subtype or a derived type, and needs
15169 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
15172 elsif Ekind
(Prev
) = E_Private_Type
15173 and then Nkind_In
(N
, N_Task_Type_Declaration
,
15174 N_Protected_Type_Declaration
)
15177 ("completion of nonlimited type cannot be limited", N
);
15179 elsif Ekind
(Prev
) = E_Record_Type_With_Private
15180 and then Nkind_In
(N
, N_Task_Type_Declaration
,
15181 N_Protected_Type_Declaration
)
15183 if not Is_Limited_Record
(Prev
) then
15185 ("completion of nonlimited type cannot be limited", N
);
15187 elsif No
(Interface_List
(N
)) then
15189 ("completion of tagged private type must be tagged",
15193 elsif Nkind
(N
) = N_Full_Type_Declaration
15195 Nkind
(Type_Definition
(N
)) = N_Record_Definition
15196 and then Interface_Present
(Type_Definition
(N
))
15199 ("completion of private type cannot be an interface", N
);
15202 -- Ada 2005 (AI-251): Private extension declaration of a task
15203 -- type or a protected type. This case arises when covering
15204 -- interface types.
15206 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15207 N_Protected_Type_Declaration
)
15211 elsif Nkind
(N
) /= N_Full_Type_Declaration
15212 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
15215 ("full view of private extension must be an extension", N
);
15217 elsif not (Abstract_Present
(Parent
(Prev
)))
15218 and then Abstract_Present
(Type_Definition
(N
))
15221 ("full view of non-abstract extension cannot be abstract", N
);
15224 if not In_Private_Part
(Current_Scope
) then
15226 ("declaration of full view must appear in private part", N
);
15229 if Ada_Version
>= Ada_2012
then
15230 Check_Duplicate_Aspects
;
15233 Copy_And_Swap
(Prev
, Id
);
15234 Set_Has_Private_Declaration
(Prev
);
15235 Set_Has_Private_Declaration
(Id
);
15237 -- Preserve aspect and iterator flags that may have been set on
15238 -- the partial view.
15240 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
15241 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
15243 -- If no error, propagate freeze_node from private to full view.
15244 -- It may have been generated for an early operational item.
15246 if Present
(Freeze_Node
(Id
))
15247 and then Serious_Errors_Detected
= 0
15248 and then No
(Full_View
(Id
))
15250 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
15251 Set_Freeze_Node
(Id
, Empty
);
15252 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
15255 Set_Full_View
(Id
, Prev
);
15259 -- Verify that full declaration conforms to partial one
15261 if Is_Incomplete_Or_Private_Type
(Prev
)
15262 and then Present
(Discriminant_Specifications
(Prev_Par
))
15264 if Present
(Discriminant_Specifications
(N
)) then
15265 if Ekind
(Prev
) = E_Incomplete_Type
then
15266 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
15268 Check_Discriminant_Conformance
(N
, Prev
, Id
);
15273 ("missing discriminants in full type declaration", N
);
15275 -- To avoid cascaded errors on subsequent use, share the
15276 -- discriminants of the partial view.
15278 Set_Discriminant_Specifications
(N
,
15279 Discriminant_Specifications
(Prev_Par
));
15283 -- A prior untagged partial view can have an associated class-wide
15284 -- type due to use of the class attribute, and in this case the full
15285 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15286 -- of incomplete tagged declarations, but we check for it.
15289 and then (Is_Tagged_Type
(Prev
)
15290 or else Present
(Class_Wide_Type
(Prev
)))
15292 -- Ada 2012 (AI05-0162): A private type may be the completion of
15293 -- an incomplete type
15295 if Ada_Version
>= Ada_2012
15296 and then Is_Incomplete_Type
(Prev
)
15297 and then Nkind_In
(N
, N_Private_Type_Declaration
,
15298 N_Private_Extension_Declaration
)
15300 -- No need to check private extensions since they are tagged
15302 if Nkind
(N
) = N_Private_Type_Declaration
15303 and then not Tagged_Present
(N
)
15308 -- The full declaration is either a tagged type (including
15309 -- a synchronized type that implements interfaces) or a
15310 -- type extension, otherwise this is an error.
15312 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
15313 N_Protected_Type_Declaration
)
15315 if No
(Interface_List
(N
))
15316 and then not Error_Posted
(N
)
15321 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
15323 -- Indicate that the previous declaration (tagged incomplete
15324 -- or private declaration) requires the same on the full one.
15326 if not Tagged_Present
(Type_Definition
(N
)) then
15328 Set_Is_Tagged_Type
(Id
);
15331 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
15332 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
15334 ("full declaration of } must be a record extension",
15337 -- Set some attributes to produce a usable full view
15339 Set_Is_Tagged_Type
(Id
);
15348 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
15349 and then Present
(Premature_Use
(Parent
(Prev
)))
15351 Error_Msg_Sloc
:= Sloc
(N
);
15353 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
15358 end Find_Type_Name
;
15360 -------------------------
15361 -- Find_Type_Of_Object --
15362 -------------------------
15364 function Find_Type_Of_Object
15365 (Obj_Def
: Node_Id
;
15366 Related_Nod
: Node_Id
) return Entity_Id
15368 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
15369 P
: Node_Id
:= Parent
(Obj_Def
);
15374 -- If the parent is a component_definition node we climb to the
15375 -- component_declaration node
15377 if Nkind
(P
) = N_Component_Definition
then
15381 -- Case of an anonymous array subtype
15383 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
15384 N_Unconstrained_Array_Definition
)
15387 Array_Type_Declaration
(T
, Obj_Def
);
15389 -- Create an explicit subtype whenever possible
15391 elsif Nkind
(P
) /= N_Component_Declaration
15392 and then Def_Kind
= N_Subtype_Indication
15394 -- Base name of subtype on object name, which will be unique in
15395 -- the current scope.
15397 -- If this is a duplicate declaration, return base type, to avoid
15398 -- generating duplicate anonymous types.
15400 if Error_Posted
(P
) then
15401 Analyze
(Subtype_Mark
(Obj_Def
));
15402 return Entity
(Subtype_Mark
(Obj_Def
));
15407 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
15409 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
15411 Insert_Action
(Obj_Def
,
15412 Make_Subtype_Declaration
(Sloc
(P
),
15413 Defining_Identifier
=> T
,
15414 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
15416 -- This subtype may need freezing, and this will not be done
15417 -- automatically if the object declaration is not in declarative
15418 -- part. Since this is an object declaration, the type cannot always
15419 -- be frozen here. Deferred constants do not freeze their type
15420 -- (which often enough will be private).
15422 if Nkind
(P
) = N_Object_Declaration
15423 and then Constant_Present
(P
)
15424 and then No
(Expression
(P
))
15428 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, P
));
15431 -- Ada 2005 AI-406: the object definition in an object declaration
15432 -- can be an access definition.
15434 elsif Def_Kind
= N_Access_Definition
then
15435 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
15437 Set_Is_Local_Anonymous_Access
15439 V
=> (Ada_Version
< Ada_2012
)
15440 or else (Nkind
(P
) /= N_Object_Declaration
)
15441 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
15443 -- Otherwise, the object definition is just a subtype_mark
15446 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
15448 -- If expansion is disabled an object definition that is an aggregate
15449 -- will not get expanded and may lead to scoping problems in the back
15450 -- end, if the object is referenced in an inner scope. In that case
15451 -- create an itype reference for the object definition now. This
15452 -- may be redundant in some cases, but harmless.
15455 and then Nkind
(Related_Nod
) = N_Object_Declaration
15458 Build_Itype_Reference
(T
, Related_Nod
);
15463 end Find_Type_Of_Object
;
15465 --------------------------------
15466 -- Find_Type_Of_Subtype_Indic --
15467 --------------------------------
15469 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
15473 -- Case of subtype mark with a constraint
15475 if Nkind
(S
) = N_Subtype_Indication
then
15476 Find_Type
(Subtype_Mark
(S
));
15477 Typ
:= Entity
(Subtype_Mark
(S
));
15480 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
15483 ("incorrect constraint for this kind of type", Constraint
(S
));
15484 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
15487 -- Otherwise we have a subtype mark without a constraint
15489 elsif Error_Posted
(S
) then
15490 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
15498 -- Check No_Wide_Characters restriction
15500 Check_Wide_Character_Restriction
(Typ
, S
);
15503 end Find_Type_Of_Subtype_Indic
;
15505 -------------------------------------
15506 -- Floating_Point_Type_Declaration --
15507 -------------------------------------
15509 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15510 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
15511 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
15513 Base_Typ
: Entity_Id
;
15514 Implicit_Base
: Entity_Id
;
15517 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
15518 -- Find if given digits value, and possibly a specified range, allows
15519 -- derivation from specified type
15521 function Find_Base_Type
return Entity_Id
;
15522 -- Find a predefined base type that Def can derive from, or generate
15523 -- an error and substitute Long_Long_Float if none exists.
15525 ---------------------
15526 -- Can_Derive_From --
15527 ---------------------
15529 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
15530 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
15533 -- Check specified "digits" constraint
15535 if Digs_Val
> Digits_Value
(E
) then
15539 -- Avoid types not matching pragma Float_Representation, if present
15541 if (Opt
.Float_Format
= 'I' and then Float_Rep
(E
) /= IEEE_Binary
)
15543 (Opt
.Float_Format
= 'V' and then Float_Rep
(E
) /= VAX_Native
)
15548 -- Check for matching range, if specified
15550 if Present
(Spec
) then
15551 if Expr_Value_R
(Type_Low_Bound
(E
)) >
15552 Expr_Value_R
(Low_Bound
(Spec
))
15557 if Expr_Value_R
(Type_High_Bound
(E
)) <
15558 Expr_Value_R
(High_Bound
(Spec
))
15565 end Can_Derive_From
;
15567 --------------------
15568 -- Find_Base_Type --
15569 --------------------
15571 function Find_Base_Type
return Entity_Id
is
15572 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
15575 -- Iterate over the predefined types in order, returning the first
15576 -- one that Def can derive from.
15578 while Present
(Choice
) loop
15579 if Can_Derive_From
(Node
(Choice
)) then
15580 return Node
(Choice
);
15583 Next_Elmt
(Choice
);
15586 -- If we can't derive from any existing type, use Long_Long_Float
15587 -- and give appropriate message explaining the problem.
15589 if Digs_Val
> Max_Digs_Val
then
15590 -- It might be the case that there is a type with the requested
15591 -- range, just not the combination of digits and range.
15594 ("no predefined type has requested range and precision",
15595 Real_Range_Specification
(Def
));
15599 ("range too large for any predefined type",
15600 Real_Range_Specification
(Def
));
15603 return Standard_Long_Long_Float
;
15604 end Find_Base_Type
;
15606 -- Start of processing for Floating_Point_Type_Declaration
15609 Check_Restriction
(No_Floating_Point
, Def
);
15611 -- Create an implicit base type
15614 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
15616 -- Analyze and verify digits value
15618 Analyze_And_Resolve
(Digs
, Any_Integer
);
15619 Check_Digits_Expression
(Digs
);
15620 Digs_Val
:= Expr_Value
(Digs
);
15622 -- Process possible range spec and find correct type to derive from
15624 Process_Real_Range_Specification
(Def
);
15626 -- Check that requested number of digits is not too high.
15628 if Digs_Val
> Max_Digs_Val
then
15629 -- The check for Max_Base_Digits may be somewhat expensive, as it
15630 -- requires reading System, so only do it when necessary.
15633 Max_Base_Digits
: constant Uint
:=
15636 (Parent
(RTE
(RE_Max_Base_Digits
))));
15639 if Digs_Val
> Max_Base_Digits
then
15640 Error_Msg_Uint_1
:= Max_Base_Digits
;
15641 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
15643 elsif No
(Real_Range_Specification
(Def
)) then
15644 Error_Msg_Uint_1
:= Max_Digs_Val
;
15645 Error_Msg_N
("types with more than ^ digits need range spec "
15646 & "(RM 3.5.7(6))", Digs
);
15651 -- Find a suitable type to derive from or complain and use a substitute
15653 Base_Typ
:= Find_Base_Type
;
15655 -- If there are bounds given in the declaration use them as the bounds
15656 -- of the type, otherwise use the bounds of the predefined base type
15657 -- that was chosen based on the Digits value.
15659 if Present
(Real_Range_Specification
(Def
)) then
15660 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
15661 Set_Is_Constrained
(T
);
15663 -- The bounds of this range must be converted to machine numbers
15664 -- in accordance with RM 4.9(38).
15666 Bound
:= Type_Low_Bound
(T
);
15668 if Nkind
(Bound
) = N_Real_Literal
then
15670 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15671 Set_Is_Machine_Number
(Bound
);
15674 Bound
:= Type_High_Bound
(T
);
15676 if Nkind
(Bound
) = N_Real_Literal
then
15678 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
15679 Set_Is_Machine_Number
(Bound
);
15683 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
15686 -- Complete definition of implicit base and declared first subtype
15688 Set_Etype
(Implicit_Base
, Base_Typ
);
15690 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
15691 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
15692 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
15693 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
15694 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
15695 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
15697 Set_Ekind
(T
, E_Floating_Point_Subtype
);
15698 Set_Etype
(T
, Implicit_Base
);
15700 Set_Size_Info
(T
, (Implicit_Base
));
15701 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
15702 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
15703 Set_Digits_Value
(T
, Digs_Val
);
15704 end Floating_Point_Type_Declaration
;
15706 ----------------------------
15707 -- Get_Discriminant_Value --
15708 ----------------------------
15710 -- This is the situation:
15712 -- There is a non-derived type
15714 -- type T0 (Dx, Dy, Dz...)
15716 -- There are zero or more levels of derivation, with each derivation
15717 -- either purely inheriting the discriminants, or defining its own.
15719 -- type Ti is new Ti-1
15721 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
15723 -- subtype Ti is ...
15725 -- The subtype issue is avoided by the use of Original_Record_Component,
15726 -- and the fact that derived subtypes also derive the constraints.
15728 -- This chain leads back from
15730 -- Typ_For_Constraint
15732 -- Typ_For_Constraint has discriminants, and the value for each
15733 -- discriminant is given by its corresponding Elmt of Constraints.
15735 -- Discriminant is some discriminant in this hierarchy
15737 -- We need to return its value
15739 -- We do this by recursively searching each level, and looking for
15740 -- Discriminant. Once we get to the bottom, we start backing up
15741 -- returning the value for it which may in turn be a discriminant
15742 -- further up, so on the backup we continue the substitution.
15744 function Get_Discriminant_Value
15745 (Discriminant
: Entity_Id
;
15746 Typ_For_Constraint
: Entity_Id
;
15747 Constraint
: Elist_Id
) return Node_Id
15749 function Root_Corresponding_Discriminant
15750 (Discr
: Entity_Id
) return Entity_Id
;
15751 -- Given a discriminant, traverse the chain of inherited discriminants
15752 -- and return the topmost discriminant.
15754 function Search_Derivation_Levels
15756 Discrim_Values
: Elist_Id
;
15757 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
15758 -- This is the routine that performs the recursive search of levels
15759 -- as described above.
15761 -------------------------------------
15762 -- Root_Corresponding_Discriminant --
15763 -------------------------------------
15765 function Root_Corresponding_Discriminant
15766 (Discr
: Entity_Id
) return Entity_Id
15772 while Present
(Corresponding_Discriminant
(D
)) loop
15773 D
:= Corresponding_Discriminant
(D
);
15777 end Root_Corresponding_Discriminant
;
15779 ------------------------------
15780 -- Search_Derivation_Levels --
15781 ------------------------------
15783 function Search_Derivation_Levels
15785 Discrim_Values
: Elist_Id
;
15786 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
15790 Result
: Node_Or_Entity_Id
;
15791 Result_Entity
: Node_Id
;
15794 -- If inappropriate type, return Error, this happens only in
15795 -- cascaded error situations, and we want to avoid a blow up.
15797 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
15801 -- Look deeper if possible. Use Stored_Constraints only for
15802 -- untagged types. For tagged types use the given constraint.
15803 -- This asymmetry needs explanation???
15805 if not Stored_Discrim_Values
15806 and then Present
(Stored_Constraint
(Ti
))
15807 and then not Is_Tagged_Type
(Ti
)
15810 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
15813 Td
: constant Entity_Id
:= Etype
(Ti
);
15817 Result
:= Discriminant
;
15820 if Present
(Stored_Constraint
(Ti
)) then
15822 Search_Derivation_Levels
15823 (Td
, Stored_Constraint
(Ti
), True);
15826 Search_Derivation_Levels
15827 (Td
, Discrim_Values
, Stored_Discrim_Values
);
15833 -- Extra underlying places to search, if not found above. For
15834 -- concurrent types, the relevant discriminant appears in the
15835 -- corresponding record. For a type derived from a private type
15836 -- without discriminant, the full view inherits the discriminants
15837 -- of the full view of the parent.
15839 if Result
= Discriminant
then
15840 if Is_Concurrent_Type
(Ti
)
15841 and then Present
(Corresponding_Record_Type
(Ti
))
15844 Search_Derivation_Levels
(
15845 Corresponding_Record_Type
(Ti
),
15847 Stored_Discrim_Values
);
15849 elsif Is_Private_Type
(Ti
)
15850 and then not Has_Discriminants
(Ti
)
15851 and then Present
(Full_View
(Ti
))
15852 and then Etype
(Full_View
(Ti
)) /= Ti
15855 Search_Derivation_Levels
(
15858 Stored_Discrim_Values
);
15862 -- If Result is not a (reference to a) discriminant, return it,
15863 -- otherwise set Result_Entity to the discriminant.
15865 if Nkind
(Result
) = N_Defining_Identifier
then
15866 pragma Assert
(Result
= Discriminant
);
15867 Result_Entity
:= Result
;
15870 if not Denotes_Discriminant
(Result
) then
15874 Result_Entity
:= Entity
(Result
);
15877 -- See if this level of derivation actually has discriminants
15878 -- because tagged derivations can add them, hence the lower
15879 -- levels need not have any.
15881 if not Has_Discriminants
(Ti
) then
15885 -- Scan Ti's discriminants for Result_Entity,
15886 -- and return its corresponding value, if any.
15888 Result_Entity
:= Original_Record_Component
(Result_Entity
);
15890 Assoc
:= First_Elmt
(Discrim_Values
);
15892 if Stored_Discrim_Values
then
15893 Disc
:= First_Stored_Discriminant
(Ti
);
15895 Disc
:= First_Discriminant
(Ti
);
15898 while Present
(Disc
) loop
15899 pragma Assert
(Present
(Assoc
));
15901 if Original_Record_Component
(Disc
) = Result_Entity
then
15902 return Node
(Assoc
);
15907 if Stored_Discrim_Values
then
15908 Next_Stored_Discriminant
(Disc
);
15910 Next_Discriminant
(Disc
);
15914 -- Could not find it
15917 end Search_Derivation_Levels
;
15921 Result
: Node_Or_Entity_Id
;
15923 -- Start of processing for Get_Discriminant_Value
15926 -- ??? This routine is a gigantic mess and will be deleted. For the
15927 -- time being just test for the trivial case before calling recurse.
15929 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
15935 D
:= First_Discriminant
(Typ_For_Constraint
);
15936 E
:= First_Elmt
(Constraint
);
15937 while Present
(D
) loop
15938 if Chars
(D
) = Chars
(Discriminant
) then
15942 Next_Discriminant
(D
);
15948 Result
:= Search_Derivation_Levels
15949 (Typ_For_Constraint
, Constraint
, False);
15951 -- ??? hack to disappear when this routine is gone
15953 if Nkind
(Result
) = N_Defining_Identifier
then
15959 D
:= First_Discriminant
(Typ_For_Constraint
);
15960 E
:= First_Elmt
(Constraint
);
15961 while Present
(D
) loop
15962 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
15966 Next_Discriminant
(D
);
15972 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
15974 end Get_Discriminant_Value
;
15976 --------------------------
15977 -- Has_Range_Constraint --
15978 --------------------------
15980 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
15981 C
: constant Node_Id
:= Constraint
(N
);
15984 if Nkind
(C
) = N_Range_Constraint
then
15987 elsif Nkind
(C
) = N_Digits_Constraint
then
15989 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
15991 Present
(Range_Constraint
(C
));
15993 elsif Nkind
(C
) = N_Delta_Constraint
then
15994 return Present
(Range_Constraint
(C
));
15999 end Has_Range_Constraint
;
16001 ------------------------
16002 -- Inherit_Components --
16003 ------------------------
16005 function Inherit_Components
16007 Parent_Base
: Entity_Id
;
16008 Derived_Base
: Entity_Id
;
16009 Is_Tagged
: Boolean;
16010 Inherit_Discr
: Boolean;
16011 Discs
: Elist_Id
) return Elist_Id
16013 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
16015 procedure Inherit_Component
16016 (Old_C
: Entity_Id
;
16017 Plain_Discrim
: Boolean := False;
16018 Stored_Discrim
: Boolean := False);
16019 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16020 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16021 -- True, Old_C is a stored discriminant. If they are both false then
16022 -- Old_C is a regular component.
16024 -----------------------
16025 -- Inherit_Component --
16026 -----------------------
16028 procedure Inherit_Component
16029 (Old_C
: Entity_Id
;
16030 Plain_Discrim
: Boolean := False;
16031 Stored_Discrim
: Boolean := False)
16033 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
16034 -- Id denotes the entity of an access discriminant or anonymous
16035 -- access component. Set the type of Id to either the same type of
16036 -- Old_C or create a new one depending on whether the parent and
16037 -- the child types are in the same scope.
16039 ------------------------
16040 -- Set_Anonymous_Type --
16041 ------------------------
16043 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
16044 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
16047 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
16048 Set_Etype
(Id
, Old_Typ
);
16050 -- The parent and the derived type are in two different scopes.
16051 -- Reuse the type of the original discriminant / component by
16052 -- copying it in order to preserve all attributes.
16056 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
16059 Set_Etype
(Id
, Typ
);
16061 -- Since we do not generate component declarations for
16062 -- inherited components, associate the itype with the
16065 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
16066 Set_Scope
(Typ
, Derived_Base
);
16069 end Set_Anonymous_Type
;
16071 -- Local variables and constants
16073 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
16075 Corr_Discrim
: Entity_Id
;
16076 Discrim
: Entity_Id
;
16078 -- Start of processing for Inherit_Component
16081 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
16083 Set_Parent
(New_C
, Parent
(Old_C
));
16085 -- Regular discriminants and components must be inserted in the scope
16086 -- of the Derived_Base. Do it here.
16088 if not Stored_Discrim
then
16089 Enter_Name
(New_C
);
16092 -- For tagged types the Original_Record_Component must point to
16093 -- whatever this field was pointing to in the parent type. This has
16094 -- already been achieved by the call to New_Copy above.
16096 if not Is_Tagged
then
16097 Set_Original_Record_Component
(New_C
, New_C
);
16100 -- Set the proper type of an access discriminant
16102 if Ekind
(New_C
) = E_Discriminant
16103 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
16105 Set_Anonymous_Type
(New_C
);
16108 -- If we have inherited a component then see if its Etype contains
16109 -- references to Parent_Base discriminants. In this case, replace
16110 -- these references with the constraints given in Discs. We do not
16111 -- do this for the partial view of private types because this is
16112 -- not needed (only the components of the full view will be used
16113 -- for code generation) and cause problem. We also avoid this
16114 -- transformation in some error situations.
16116 if Ekind
(New_C
) = E_Component
then
16118 -- Set the proper type of an anonymous access component
16120 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
16121 Set_Anonymous_Type
(New_C
);
16123 elsif (Is_Private_Type
(Derived_Base
)
16124 and then not Is_Generic_Type
(Derived_Base
))
16125 or else (Is_Empty_Elmt_List
(Discs
)
16126 and then not Expander_Active
)
16128 Set_Etype
(New_C
, Etype
(Old_C
));
16131 -- The current component introduces a circularity of the
16134 -- limited with Pack_2;
16135 -- package Pack_1 is
16136 -- type T_1 is tagged record
16137 -- Comp : access Pack_2.T_2;
16143 -- package Pack_2 is
16144 -- type T_2 is new Pack_1.T_1 with ...;
16149 Constrain_Component_Type
16150 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
16154 -- In derived tagged types it is illegal to reference a non
16155 -- discriminant component in the parent type. To catch this, mark
16156 -- these components with an Ekind of E_Void. This will be reset in
16157 -- Record_Type_Definition after processing the record extension of
16158 -- the derived type.
16160 -- If the declaration is a private extension, there is no further
16161 -- record extension to process, and the components retain their
16162 -- current kind, because they are visible at this point.
16164 if Is_Tagged
and then Ekind
(New_C
) = E_Component
16165 and then Nkind
(N
) /= N_Private_Extension_Declaration
16167 Set_Ekind
(New_C
, E_Void
);
16170 if Plain_Discrim
then
16171 Set_Corresponding_Discriminant
(New_C
, Old_C
);
16172 Build_Discriminal
(New_C
);
16174 -- If we are explicitly inheriting a stored discriminant it will be
16175 -- completely hidden.
16177 elsif Stored_Discrim
then
16178 Set_Corresponding_Discriminant
(New_C
, Empty
);
16179 Set_Discriminal
(New_C
, Empty
);
16180 Set_Is_Completely_Hidden
(New_C
);
16182 -- Set the Original_Record_Component of each discriminant in the
16183 -- derived base to point to the corresponding stored that we just
16186 Discrim
:= First_Discriminant
(Derived_Base
);
16187 while Present
(Discrim
) loop
16188 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
16190 -- Corr_Discrim could be missing in an error situation
16192 if Present
(Corr_Discrim
)
16193 and then Original_Record_Component
(Corr_Discrim
) = Old_C
16195 Set_Original_Record_Component
(Discrim
, New_C
);
16198 Next_Discriminant
(Discrim
);
16201 Append_Entity
(New_C
, Derived_Base
);
16204 if not Is_Tagged
then
16205 Append_Elmt
(Old_C
, Assoc_List
);
16206 Append_Elmt
(New_C
, Assoc_List
);
16208 end Inherit_Component
;
16210 -- Variables local to Inherit_Component
16212 Loc
: constant Source_Ptr
:= Sloc
(N
);
16214 Parent_Discrim
: Entity_Id
;
16215 Stored_Discrim
: Entity_Id
;
16217 Component
: Entity_Id
;
16219 -- Start of processing for Inherit_Components
16222 if not Is_Tagged
then
16223 Append_Elmt
(Parent_Base
, Assoc_List
);
16224 Append_Elmt
(Derived_Base
, Assoc_List
);
16227 -- Inherit parent discriminants if needed
16229 if Inherit_Discr
then
16230 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
16231 while Present
(Parent_Discrim
) loop
16232 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
16233 Next_Discriminant
(Parent_Discrim
);
16237 -- Create explicit stored discrims for untagged types when necessary
16239 if not Has_Unknown_Discriminants
(Derived_Base
)
16240 and then Has_Discriminants
(Parent_Base
)
16241 and then not Is_Tagged
16244 or else First_Discriminant
(Parent_Base
) /=
16245 First_Stored_Discriminant
(Parent_Base
))
16247 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
16248 while Present
(Stored_Discrim
) loop
16249 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
16250 Next_Stored_Discriminant
(Stored_Discrim
);
16254 -- See if we can apply the second transformation for derived types, as
16255 -- explained in point 6. in the comments above Build_Derived_Record_Type
16256 -- This is achieved by appending Derived_Base discriminants into Discs,
16257 -- which has the side effect of returning a non empty Discs list to the
16258 -- caller of Inherit_Components, which is what we want. This must be
16259 -- done for private derived types if there are explicit stored
16260 -- discriminants, to ensure that we can retrieve the values of the
16261 -- constraints provided in the ancestors.
16264 and then Is_Empty_Elmt_List
(Discs
)
16265 and then Present
(First_Discriminant
(Derived_Base
))
16267 (not Is_Private_Type
(Derived_Base
)
16268 or else Is_Completely_Hidden
16269 (First_Stored_Discriminant
(Derived_Base
))
16270 or else Is_Generic_Type
(Derived_Base
))
16272 D
:= First_Discriminant
(Derived_Base
);
16273 while Present
(D
) loop
16274 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
16275 Next_Discriminant
(D
);
16279 -- Finally, inherit non-discriminant components unless they are not
16280 -- visible because defined or inherited from the full view of the
16281 -- parent. Don't inherit the _parent field of the parent type.
16283 Component
:= First_Entity
(Parent_Base
);
16284 while Present
(Component
) loop
16286 -- Ada 2005 (AI-251): Do not inherit components associated with
16287 -- secondary tags of the parent.
16289 if Ekind
(Component
) = E_Component
16290 and then Present
(Related_Type
(Component
))
16294 elsif Ekind
(Component
) /= E_Component
16295 or else Chars
(Component
) = Name_uParent
16299 -- If the derived type is within the parent type's declarative
16300 -- region, then the components can still be inherited even though
16301 -- they aren't visible at this point. This can occur for cases
16302 -- such as within public child units where the components must
16303 -- become visible upon entering the child unit's private part.
16305 elsif not Is_Visible_Component
(Component
)
16306 and then not In_Open_Scopes
(Scope
(Parent_Base
))
16310 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
16311 E_Limited_Private_Type
)
16316 Inherit_Component
(Component
);
16319 Next_Entity
(Component
);
16322 -- For tagged derived types, inherited discriminants cannot be used in
16323 -- component declarations of the record extension part. To achieve this
16324 -- we mark the inherited discriminants as not visible.
16326 if Is_Tagged
and then Inherit_Discr
then
16327 D
:= First_Discriminant
(Derived_Base
);
16328 while Present
(D
) loop
16329 Set_Is_Immediately_Visible
(D
, False);
16330 Next_Discriminant
(D
);
16335 end Inherit_Components
;
16337 -----------------------
16338 -- Is_Null_Extension --
16339 -----------------------
16341 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
16342 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
16343 Comp_List
: Node_Id
;
16347 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
16348 or else not Is_Tagged_Type
(T
)
16349 or else Nkind
(Type_Definition
(Type_Decl
)) /=
16350 N_Derived_Type_Definition
16351 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
16357 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
16359 if Present
(Discriminant_Specifications
(Type_Decl
)) then
16362 elsif Present
(Comp_List
)
16363 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
16365 Comp
:= First
(Component_Items
(Comp_List
));
16367 -- Only user-defined components are relevant. The component list
16368 -- may also contain a parent component and internal components
16369 -- corresponding to secondary tags, but these do not determine
16370 -- whether this is a null extension.
16372 while Present
(Comp
) loop
16373 if Comes_From_Source
(Comp
) then
16384 end Is_Null_Extension
;
16386 ------------------------------
16387 -- Is_Valid_Constraint_Kind --
16388 ------------------------------
16390 function Is_Valid_Constraint_Kind
16391 (T_Kind
: Type_Kind
;
16392 Constraint_Kind
: Node_Kind
) return Boolean
16396 when Enumeration_Kind |
16398 return Constraint_Kind
= N_Range_Constraint
;
16400 when Decimal_Fixed_Point_Kind
=>
16401 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16402 N_Range_Constraint
);
16404 when Ordinary_Fixed_Point_Kind
=>
16405 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
16406 N_Range_Constraint
);
16409 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
16410 N_Range_Constraint
);
16417 E_Incomplete_Type |
16420 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
16423 return True; -- Error will be detected later
16425 end Is_Valid_Constraint_Kind
;
16427 --------------------------
16428 -- Is_Visible_Component --
16429 --------------------------
16431 function Is_Visible_Component
16433 N
: Node_Id
:= Empty
) return Boolean
16435 Original_Comp
: Entity_Id
:= Empty
;
16436 Original_Scope
: Entity_Id
;
16437 Type_Scope
: Entity_Id
;
16439 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
16440 -- Check whether parent type of inherited component is declared locally,
16441 -- possibly within a nested package or instance. The current scope is
16442 -- the derived record itself.
16444 -------------------
16445 -- Is_Local_Type --
16446 -------------------
16448 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
16452 Scop
:= Scope
(Typ
);
16453 while Present
(Scop
)
16454 and then Scop
/= Standard_Standard
16456 if Scop
= Scope
(Current_Scope
) then
16460 Scop
:= Scope
(Scop
);
16466 -- Start of processing for Is_Visible_Component
16469 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
16470 Original_Comp
:= Original_Record_Component
(C
);
16473 if No
(Original_Comp
) then
16475 -- Premature usage, or previous error
16480 Original_Scope
:= Scope
(Original_Comp
);
16481 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
16484 -- For an untagged type derived from a private type, the only visible
16485 -- components are new discriminants. In an instance all components are
16486 -- visible (see Analyze_Selected_Component).
16488 if not Is_Tagged_Type
(Original_Scope
) then
16489 return not Has_Private_Ancestor
(Original_Scope
)
16490 or else In_Open_Scopes
(Scope
(Original_Scope
))
16491 or else In_Instance
16492 or else (Ekind
(Original_Comp
) = E_Discriminant
16493 and then Original_Scope
= Type_Scope
);
16495 -- If it is _Parent or _Tag, there is no visibility issue
16497 elsif not Comes_From_Source
(Original_Comp
) then
16500 -- Discriminants are visible unless the (private) type has unknown
16501 -- discriminants. If the discriminant reference is inserted for a
16502 -- discriminant check on a full view it is also visible.
16504 elsif Ekind
(Original_Comp
) = E_Discriminant
16506 (not Has_Unknown_Discriminants
(Original_Scope
)
16507 or else (Present
(N
)
16508 and then Nkind
(N
) = N_Selected_Component
16509 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
16510 and then not Comes_From_Source
(Prefix
(N
))))
16514 -- In the body of an instantiation, no need to check for the visibility
16517 elsif In_Instance_Body
then
16520 -- If the component has been declared in an ancestor which is currently
16521 -- a private type, then it is not visible. The same applies if the
16522 -- component's containing type is not in an open scope and the original
16523 -- component's enclosing type is a visible full view of a private type
16524 -- (which can occur in cases where an attempt is being made to reference
16525 -- a component in a sibling package that is inherited from a visible
16526 -- component of a type in an ancestor package; the component in the
16527 -- sibling package should not be visible even though the component it
16528 -- inherited from is visible). This does not apply however in the case
16529 -- where the scope of the type is a private child unit, or when the
16530 -- parent comes from a local package in which the ancestor is currently
16531 -- visible. The latter suppression of visibility is needed for cases
16532 -- that are tested in B730006.
16534 elsif Is_Private_Type
(Original_Scope
)
16536 (not Is_Private_Descendant
(Type_Scope
)
16537 and then not In_Open_Scopes
(Type_Scope
)
16538 and then Has_Private_Declaration
(Original_Scope
))
16540 -- If the type derives from an entity in a formal package, there
16541 -- are no additional visible components.
16543 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
16544 N_Formal_Package_Declaration
16548 -- if we are not in the private part of the current package, there
16549 -- are no additional visible components.
16551 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
16552 and then not In_Private_Part
(Scope
(Current_Scope
))
16557 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
16558 and then In_Open_Scopes
(Scope
(Original_Scope
))
16559 and then Is_Local_Type
(Type_Scope
);
16562 -- There is another weird way in which a component may be invisible when
16563 -- the private and the full view are not derived from the same ancestor.
16564 -- Here is an example :
16566 -- type A1 is tagged record F1 : integer; end record;
16567 -- type A2 is new A1 with record F2 : integer; end record;
16568 -- type T is new A1 with private;
16570 -- type T is new A2 with null record;
16572 -- In this case, the full view of T inherits F1 and F2 but the private
16573 -- view inherits only F1
16577 Ancestor
: Entity_Id
:= Scope
(C
);
16581 if Ancestor
= Original_Scope
then
16583 elsif Ancestor
= Etype
(Ancestor
) then
16587 Ancestor
:= Etype
(Ancestor
);
16591 end Is_Visible_Component
;
16593 --------------------------
16594 -- Make_Class_Wide_Type --
16595 --------------------------
16597 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
16598 CW_Type
: Entity_Id
;
16600 Next_E
: Entity_Id
;
16603 if Present
(Class_Wide_Type
(T
)) then
16605 -- The class-wide type is a partially decorated entity created for a
16606 -- unanalyzed tagged type referenced through a limited with clause.
16607 -- When the tagged type is analyzed, its class-wide type needs to be
16608 -- redecorated. Note that we reuse the entity created by Decorate_
16609 -- Tagged_Type in order to preserve all links.
16611 if Materialize_Entity
(Class_Wide_Type
(T
)) then
16612 CW_Type
:= Class_Wide_Type
(T
);
16613 Set_Materialize_Entity
(CW_Type
, False);
16615 -- The class wide type can have been defined by the partial view, in
16616 -- which case everything is already done.
16622 -- Default case, we need to create a new class-wide type
16626 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
16629 -- Inherit root type characteristics
16631 CW_Name
:= Chars
(CW_Type
);
16632 Next_E
:= Next_Entity
(CW_Type
);
16633 Copy_Node
(T
, CW_Type
);
16634 Set_Comes_From_Source
(CW_Type
, False);
16635 Set_Chars
(CW_Type
, CW_Name
);
16636 Set_Parent
(CW_Type
, Parent
(T
));
16637 Set_Next_Entity
(CW_Type
, Next_E
);
16639 -- Ensure we have a new freeze node for the class-wide type. The partial
16640 -- view may have freeze action of its own, requiring a proper freeze
16641 -- node, and the same freeze node cannot be shared between the two
16644 Set_Has_Delayed_Freeze
(CW_Type
);
16645 Set_Freeze_Node
(CW_Type
, Empty
);
16647 -- Customize the class-wide type: It has no prim. op., it cannot be
16648 -- abstract and its Etype points back to the specific root type.
16650 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
16651 Set_Is_Tagged_Type
(CW_Type
, True);
16652 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
16653 Set_Is_Abstract_Type
(CW_Type
, False);
16654 Set_Is_Constrained
(CW_Type
, False);
16655 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
16657 if Ekind
(T
) = E_Class_Wide_Subtype
then
16658 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
16660 Set_Etype
(CW_Type
, T
);
16663 -- If this is the class_wide type of a constrained subtype, it does
16664 -- not have discriminants.
16666 Set_Has_Discriminants
(CW_Type
,
16667 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
16669 Set_Has_Unknown_Discriminants
(CW_Type
, True);
16670 Set_Class_Wide_Type
(T
, CW_Type
);
16671 Set_Equivalent_Type
(CW_Type
, Empty
);
16673 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
16675 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
16676 end Make_Class_Wide_Type
;
16682 procedure Make_Index
16684 Related_Nod
: Node_Id
;
16685 Related_Id
: Entity_Id
:= Empty
;
16686 Suffix_Index
: Nat
:= 1;
16687 In_Iter_Schm
: Boolean := False)
16691 Def_Id
: Entity_Id
:= Empty
;
16692 Found
: Boolean := False;
16695 -- For a discrete range used in a constrained array definition and
16696 -- defined by a range, an implicit conversion to the predefined type
16697 -- INTEGER is assumed if each bound is either a numeric literal, a named
16698 -- number, or an attribute, and the type of both bounds (prior to the
16699 -- implicit conversion) is the type universal_integer. Otherwise, both
16700 -- bounds must be of the same discrete type, other than universal
16701 -- integer; this type must be determinable independently of the
16702 -- context, but using the fact that the type must be discrete and that
16703 -- both bounds must have the same type.
16705 -- Character literals also have a universal type in the absence of
16706 -- of additional context, and are resolved to Standard_Character.
16708 if Nkind
(I
) = N_Range
then
16710 -- The index is given by a range constraint. The bounds are known
16711 -- to be of a consistent type.
16713 if not Is_Overloaded
(I
) then
16716 -- For universal bounds, choose the specific predefined type
16718 if T
= Universal_Integer
then
16719 T
:= Standard_Integer
;
16721 elsif T
= Any_Character
then
16722 Ambiguous_Character
(Low_Bound
(I
));
16724 T
:= Standard_Character
;
16727 -- The node may be overloaded because some user-defined operators
16728 -- are available, but if a universal interpretation exists it is
16729 -- also the selected one.
16731 elsif Universal_Interpretation
(I
) = Universal_Integer
then
16732 T
:= Standard_Integer
;
16738 Ind
: Interp_Index
;
16742 Get_First_Interp
(I
, Ind
, It
);
16743 while Present
(It
.Typ
) loop
16744 if Is_Discrete_Type
(It
.Typ
) then
16747 and then not Covers
(It
.Typ
, T
)
16748 and then not Covers
(T
, It
.Typ
)
16750 Error_Msg_N
("ambiguous bounds in discrete range", I
);
16758 Get_Next_Interp
(Ind
, It
);
16761 if T
= Any_Type
then
16762 Error_Msg_N
("discrete type required for range", I
);
16763 Set_Etype
(I
, Any_Type
);
16766 elsif T
= Universal_Integer
then
16767 T
:= Standard_Integer
;
16772 if not Is_Discrete_Type
(T
) then
16773 Error_Msg_N
("discrete type required for range", I
);
16774 Set_Etype
(I
, Any_Type
);
16778 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
16779 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
16780 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
16781 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16782 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
16784 -- The type of the index will be the type of the prefix, as long
16785 -- as the upper bound is 'Last of the same type.
16787 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
16789 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
16790 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
16791 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
16792 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
16799 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
16801 elsif Nkind
(I
) = N_Subtype_Indication
then
16803 -- The index is given by a subtype with a range constraint
16805 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
16807 if not Is_Discrete_Type
(T
) then
16808 Error_Msg_N
("discrete type required for range", I
);
16809 Set_Etype
(I
, Any_Type
);
16813 R
:= Range_Expression
(Constraint
(I
));
16816 Process_Range_Expr_In_Decl
16817 (R
, Entity
(Subtype_Mark
(I
)), In_Iter_Schm
=> In_Iter_Schm
);
16819 elsif Nkind
(I
) = N_Attribute_Reference
then
16821 -- The parser guarantees that the attribute is a RANGE attribute
16823 -- If the node denotes the range of a type mark, that is also the
16824 -- resulting type, and we do no need to create an Itype for it.
16826 if Is_Entity_Name
(Prefix
(I
))
16827 and then Comes_From_Source
(I
)
16828 and then Is_Type
(Entity
(Prefix
(I
)))
16829 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
16831 Def_Id
:= Entity
(Prefix
(I
));
16834 Analyze_And_Resolve
(I
);
16838 -- If none of the above, must be a subtype. We convert this to a
16839 -- range attribute reference because in the case of declared first
16840 -- named subtypes, the types in the range reference can be different
16841 -- from the type of the entity. A range attribute normalizes the
16842 -- reference and obtains the correct types for the bounds.
16844 -- This transformation is in the nature of an expansion, is only
16845 -- done if expansion is active. In particular, it is not done on
16846 -- formal generic types, because we need to retain the name of the
16847 -- original index for instantiation purposes.
16850 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
16851 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
16852 Set_Etype
(I
, Any_Integer
);
16856 -- The type mark may be that of an incomplete type. It is only
16857 -- now that we can get the full view, previous analysis does
16858 -- not look specifically for a type mark.
16860 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
16861 Set_Etype
(I
, Entity
(I
));
16862 Def_Id
:= Entity
(I
);
16864 if not Is_Discrete_Type
(Def_Id
) then
16865 Error_Msg_N
("discrete type required for index", I
);
16866 Set_Etype
(I
, Any_Type
);
16871 if Expander_Active
then
16873 Make_Attribute_Reference
(Sloc
(I
),
16874 Attribute_Name
=> Name_Range
,
16875 Prefix
=> Relocate_Node
(I
)));
16877 -- The original was a subtype mark that does not freeze. This
16878 -- means that the rewritten version must not freeze either.
16880 Set_Must_Not_Freeze
(I
);
16881 Set_Must_Not_Freeze
(Prefix
(I
));
16882 Analyze_And_Resolve
(I
);
16886 -- If expander is inactive, type is legal, nothing else to construct
16893 if not Is_Discrete_Type
(T
) then
16894 Error_Msg_N
("discrete type required for range", I
);
16895 Set_Etype
(I
, Any_Type
);
16898 elsif T
= Any_Type
then
16899 Set_Etype
(I
, Any_Type
);
16903 -- We will now create the appropriate Itype to describe the range, but
16904 -- first a check. If we originally had a subtype, then we just label
16905 -- the range with this subtype. Not only is there no need to construct
16906 -- a new subtype, but it is wrong to do so for two reasons:
16908 -- 1. A legality concern, if we have a subtype, it must not freeze,
16909 -- and the Itype would cause freezing incorrectly
16911 -- 2. An efficiency concern, if we created an Itype, it would not be
16912 -- recognized as the same type for the purposes of eliminating
16913 -- checks in some circumstances.
16915 -- We signal this case by setting the subtype entity in Def_Id
16917 if No
(Def_Id
) then
16919 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
16920 Set_Etype
(Def_Id
, Base_Type
(T
));
16922 if Is_Signed_Integer_Type
(T
) then
16923 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
16925 elsif Is_Modular_Integer_Type
(T
) then
16926 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
16929 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
16930 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
16931 Set_First_Literal
(Def_Id
, First_Literal
(T
));
16934 Set_Size_Info
(Def_Id
, (T
));
16935 Set_RM_Size
(Def_Id
, RM_Size
(T
));
16936 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
16938 Set_Scalar_Range
(Def_Id
, R
);
16939 Conditional_Delay
(Def_Id
, T
);
16941 -- In the subtype indication case, if the immediate parent of the
16942 -- new subtype is non-static, then the subtype we create is non-
16943 -- static, even if its bounds are static.
16945 if Nkind
(I
) = N_Subtype_Indication
16946 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
16948 Set_Is_Non_Static_Subtype
(Def_Id
);
16952 -- Final step is to label the index with this constructed type
16954 Set_Etype
(I
, Def_Id
);
16957 ------------------------------
16958 -- Modular_Type_Declaration --
16959 ------------------------------
16961 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16962 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
16965 procedure Set_Modular_Size
(Bits
: Int
);
16966 -- Sets RM_Size to Bits, and Esize to normal word size above this
16968 ----------------------
16969 -- Set_Modular_Size --
16970 ----------------------
16972 procedure Set_Modular_Size
(Bits
: Int
) is
16974 Set_RM_Size
(T
, UI_From_Int
(Bits
));
16979 elsif Bits
<= 16 then
16980 Init_Esize
(T
, 16);
16982 elsif Bits
<= 32 then
16983 Init_Esize
(T
, 32);
16986 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
16989 if not Non_Binary_Modulus
(T
)
16990 and then Esize
(T
) = RM_Size
(T
)
16992 Set_Is_Known_Valid
(T
);
16994 end Set_Modular_Size
;
16996 -- Start of processing for Modular_Type_Declaration
16999 -- If the mod expression is (exactly) 2 * literal, where literal is
17000 -- 64 or less,then almost certainly the * was meant to be **. Warn!
17002 if Warn_On_Suspicious_Modulus_Value
17003 and then Nkind
(Mod_Expr
) = N_Op_Multiply
17004 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
17005 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
17006 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
17007 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
17010 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
17013 -- Proceed with analysis of mod expression
17015 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
17017 Set_Ekind
(T
, E_Modular_Integer_Type
);
17018 Init_Alignment
(T
);
17019 Set_Is_Constrained
(T
);
17021 if not Is_OK_Static_Expression
(Mod_Expr
) then
17022 Flag_Non_Static_Expr
17023 ("non-static expression used for modular type bound!", Mod_Expr
);
17024 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
17026 M_Val
:= Expr_Value
(Mod_Expr
);
17030 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
17031 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
17034 Set_Modulus
(T
, M_Val
);
17036 -- Create bounds for the modular type based on the modulus given in
17037 -- the type declaration and then analyze and resolve those bounds.
17039 Set_Scalar_Range
(T
,
17040 Make_Range
(Sloc
(Mod_Expr
),
17041 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
17042 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
17044 -- Properly analyze the literals for the range. We do this manually
17045 -- because we can't go calling Resolve, since we are resolving these
17046 -- bounds with the type, and this type is certainly not complete yet!
17048 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
17049 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
17050 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
17051 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
17053 -- Loop through powers of two to find number of bits required
17055 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
17059 if M_Val
= 2 ** Bits
then
17060 Set_Modular_Size
(Bits
);
17065 elsif M_Val
< 2 ** Bits
then
17066 Check_SPARK_Restriction
("modulus should be a power of 2", T
);
17067 Set_Non_Binary_Modulus
(T
);
17069 if Bits
> System_Max_Nonbinary_Modulus_Power
then
17070 Error_Msg_Uint_1
:=
17071 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
17073 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
17074 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
17078 -- In the non-binary case, set size as per RM 13.3(55)
17080 Set_Modular_Size
(Bits
);
17087 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17088 -- so we just signal an error and set the maximum size.
17090 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
17091 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
17093 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
17094 Init_Alignment
(T
);
17096 end Modular_Type_Declaration
;
17098 --------------------------
17099 -- New_Concatenation_Op --
17100 --------------------------
17102 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
17103 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
17106 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
17107 -- Create abbreviated declaration for the formal of a predefined
17108 -- Operator 'Op' of type 'Typ'
17110 --------------------
17111 -- Make_Op_Formal --
17112 --------------------
17114 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
17115 Formal
: Entity_Id
;
17117 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
17118 Set_Etype
(Formal
, Typ
);
17119 Set_Mechanism
(Formal
, Default_Mechanism
);
17121 end Make_Op_Formal
;
17123 -- Start of processing for New_Concatenation_Op
17126 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
17128 Set_Ekind
(Op
, E_Operator
);
17129 Set_Scope
(Op
, Current_Scope
);
17130 Set_Etype
(Op
, Typ
);
17131 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
17132 Set_Is_Immediately_Visible
(Op
);
17133 Set_Is_Intrinsic_Subprogram
(Op
);
17134 Set_Has_Completion
(Op
);
17135 Append_Entity
(Op
, Current_Scope
);
17137 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
17139 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
17140 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
17141 end New_Concatenation_Op
;
17143 -------------------------
17144 -- OK_For_Limited_Init --
17145 -------------------------
17147 -- ???Check all calls of this, and compare the conditions under which it's
17150 function OK_For_Limited_Init
17152 Exp
: Node_Id
) return Boolean
17155 return Is_CPP_Constructor_Call
(Exp
)
17156 or else (Ada_Version
>= Ada_2005
17157 and then not Debug_Flag_Dot_L
17158 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
17159 end OK_For_Limited_Init
;
17161 -------------------------------
17162 -- OK_For_Limited_Init_In_05 --
17163 -------------------------------
17165 function OK_For_Limited_Init_In_05
17167 Exp
: Node_Id
) return Boolean
17170 -- An object of a limited interface type can be initialized with any
17171 -- expression of a nonlimited descendant type.
17173 if Is_Class_Wide_Type
(Typ
)
17174 and then Is_Limited_Interface
(Typ
)
17175 and then not Is_Limited_Type
(Etype
(Exp
))
17180 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17181 -- case of limited aggregates (including extension aggregates), and
17182 -- function calls. The function call may have been given in prefixed
17183 -- notation, in which case the original node is an indexed component.
17184 -- If the function is parameterless, the original node was an explicit
17185 -- dereference. The function may also be parameterless, in which case
17186 -- the source node is just an identifier.
17188 case Nkind
(Original_Node
(Exp
)) is
17189 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
17192 when N_Identifier
=>
17193 return Present
(Entity
(Original_Node
(Exp
)))
17194 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
17196 when N_Qualified_Expression
=>
17198 OK_For_Limited_Init_In_05
17199 (Typ
, Expression
(Original_Node
(Exp
)));
17201 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17202 -- with a function call, the expander has rewritten the call into an
17203 -- N_Type_Conversion node to force displacement of the pointer to
17204 -- reference the component containing the secondary dispatch table.
17205 -- Otherwise a type conversion is not a legal context.
17206 -- A return statement for a build-in-place function returning a
17207 -- synchronized type also introduces an unchecked conversion.
17209 when N_Type_Conversion |
17210 N_Unchecked_Type_Conversion
=>
17211 return not Comes_From_Source
(Exp
)
17213 OK_For_Limited_Init_In_05
17214 (Typ
, Expression
(Original_Node
(Exp
)));
17216 when N_Indexed_Component |
17217 N_Selected_Component |
17218 N_Explicit_Dereference
=>
17219 return Nkind
(Exp
) = N_Function_Call
;
17221 -- A use of 'Input is a function call, hence allowed. Normally the
17222 -- attribute will be changed to a call, but the attribute by itself
17223 -- can occur with -gnatc.
17225 when N_Attribute_Reference
=>
17226 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
17228 -- For a case expression, all dependent expressions must be legal
17230 when N_Case_Expression
=>
17235 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
17236 while Present
(Alt
) loop
17237 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
17247 -- For an if expression, all dependent expressions must be legal
17249 when N_If_Expression
=>
17251 Then_Expr
: constant Node_Id
:=
17252 Next
(First
(Expressions
(Original_Node
(Exp
))));
17253 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
17255 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
17257 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
17263 end OK_For_Limited_Init_In_05
;
17265 -------------------------------------------
17266 -- Ordinary_Fixed_Point_Type_Declaration --
17267 -------------------------------------------
17269 procedure Ordinary_Fixed_Point_Type_Declaration
17273 Loc
: constant Source_Ptr
:= Sloc
(Def
);
17274 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
17275 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
17276 Implicit_Base
: Entity_Id
;
17283 Check_Restriction
(No_Fixed_Point
, Def
);
17285 -- Create implicit base type
17288 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
17289 Set_Etype
(Implicit_Base
, Implicit_Base
);
17291 -- Analyze and process delta expression
17293 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
17295 Check_Delta_Expression
(Delta_Expr
);
17296 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
17298 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
17300 -- Compute default small from given delta, which is the largest power
17301 -- of two that does not exceed the given delta value.
17311 if Delta_Val
< Ureal_1
then
17312 while Delta_Val
< Tmp
loop
17313 Tmp
:= Tmp
/ Ureal_2
;
17314 Scale
:= Scale
+ 1;
17319 Tmp
:= Tmp
* Ureal_2
;
17320 exit when Tmp
> Delta_Val
;
17321 Scale
:= Scale
- 1;
17325 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
17328 Set_Small_Value
(Implicit_Base
, Small_Val
);
17330 -- If no range was given, set a dummy range
17332 if RRS
<= Empty_Or_Error
then
17333 Low_Val
:= -Small_Val
;
17334 High_Val
:= Small_Val
;
17336 -- Otherwise analyze and process given range
17340 Low
: constant Node_Id
:= Low_Bound
(RRS
);
17341 High
: constant Node_Id
:= High_Bound
(RRS
);
17344 Analyze_And_Resolve
(Low
, Any_Real
);
17345 Analyze_And_Resolve
(High
, Any_Real
);
17346 Check_Real_Bound
(Low
);
17347 Check_Real_Bound
(High
);
17349 -- Obtain and set the range
17351 Low_Val
:= Expr_Value_R
(Low
);
17352 High_Val
:= Expr_Value_R
(High
);
17354 if Low_Val
> High_Val
then
17355 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
17360 -- The range for both the implicit base and the declared first subtype
17361 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17362 -- set a temporary range in place. Note that the bounds of the base
17363 -- type will be widened to be symmetrical and to fill the available
17364 -- bits when the type is frozen.
17366 -- We could do this with all discrete types, and probably should, but
17367 -- we absolutely have to do it for fixed-point, since the end-points
17368 -- of the range and the size are determined by the small value, which
17369 -- could be reset before the freeze point.
17371 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
17372 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
17374 -- Complete definition of first subtype
17376 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
17377 Set_Etype
(T
, Implicit_Base
);
17378 Init_Size_Align
(T
);
17379 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
17380 Set_Small_Value
(T
, Small_Val
);
17381 Set_Delta_Value
(T
, Delta_Val
);
17382 Set_Is_Constrained
(T
);
17384 end Ordinary_Fixed_Point_Type_Declaration
;
17386 ----------------------------------------
17387 -- Prepare_Private_Subtype_Completion --
17388 ----------------------------------------
17390 procedure Prepare_Private_Subtype_Completion
17392 Related_Nod
: Node_Id
)
17394 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
17395 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
17399 if Present
(Full_B
) then
17401 -- The Base_Type is already completed, we can complete the subtype
17402 -- now. We have to create a new entity with the same name, Thus we
17403 -- can't use Create_Itype.
17405 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
17406 Set_Is_Itype
(Full
);
17407 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
17408 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
17411 -- The parent subtype may be private, but the base might not, in some
17412 -- nested instances. In that case, the subtype does not need to be
17413 -- exchanged. It would still be nice to make private subtypes and their
17414 -- bases consistent at all times ???
17416 if Is_Private_Type
(Id_B
) then
17417 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
17419 end Prepare_Private_Subtype_Completion
;
17421 ---------------------------
17422 -- Process_Discriminants --
17423 ---------------------------
17425 procedure Process_Discriminants
17427 Prev
: Entity_Id
:= Empty
)
17429 Elist
: constant Elist_Id
:= New_Elmt_List
;
17432 Discr_Number
: Uint
;
17433 Discr_Type
: Entity_Id
;
17434 Default_Present
: Boolean := False;
17435 Default_Not_Present
: Boolean := False;
17438 -- A composite type other than an array type can have discriminants.
17439 -- On entry, the current scope is the composite type.
17441 -- The discriminants are initially entered into the scope of the type
17442 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17443 -- use, as explained at the end of this procedure.
17445 Discr
:= First
(Discriminant_Specifications
(N
));
17446 while Present
(Discr
) loop
17447 Enter_Name
(Defining_Identifier
(Discr
));
17449 -- For navigation purposes we add a reference to the discriminant
17450 -- in the entity for the type. If the current declaration is a
17451 -- completion, place references on the partial view. Otherwise the
17452 -- type is the current scope.
17454 if Present
(Prev
) then
17456 -- The references go on the partial view, if present. If the
17457 -- partial view has discriminants, the references have been
17458 -- generated already.
17460 if not Has_Discriminants
(Prev
) then
17461 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
17465 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
17468 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
17469 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
17471 -- Ada 2005 (AI-254)
17473 if Present
(Access_To_Subprogram_Definition
17474 (Discriminant_Type
(Discr
)))
17475 and then Protected_Present
(Access_To_Subprogram_Definition
17476 (Discriminant_Type
(Discr
)))
17479 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
17483 Find_Type
(Discriminant_Type
(Discr
));
17484 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
17486 if Error_Posted
(Discriminant_Type
(Discr
)) then
17487 Discr_Type
:= Any_Type
;
17491 if Is_Access_Type
(Discr_Type
) then
17493 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
17496 if Ada_Version
< Ada_2005
then
17497 Check_Access_Discriminant_Requires_Limited
17498 (Discr
, Discriminant_Type
(Discr
));
17501 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
17503 ("(Ada 83) access discriminant not allowed", Discr
);
17506 elsif not Is_Discrete_Type
(Discr_Type
) then
17507 Error_Msg_N
("discriminants must have a discrete or access type",
17508 Discriminant_Type
(Discr
));
17511 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
17513 -- If a discriminant specification includes the assignment compound
17514 -- delimiter followed by an expression, the expression is the default
17515 -- expression of the discriminant; the default expression must be of
17516 -- the type of the discriminant. (RM 3.7.1) Since this expression is
17517 -- a default expression, we do the special preanalysis, since this
17518 -- expression does not freeze (see "Handling of Default and Per-
17519 -- Object Expressions" in spec of package Sem).
17521 if Present
(Expression
(Discr
)) then
17522 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
17524 if Nkind
(N
) = N_Formal_Type_Declaration
then
17526 ("discriminant defaults not allowed for formal type",
17527 Expression
(Discr
));
17529 -- Flag an error for a tagged type with defaulted discriminants,
17530 -- excluding limited tagged types when compiling for Ada 2012
17531 -- (see AI05-0214).
17533 elsif Is_Tagged_Type
(Current_Scope
)
17534 and then (not Is_Limited_Type
(Current_Scope
)
17535 or else Ada_Version
< Ada_2012
)
17536 and then Comes_From_Source
(N
)
17538 -- Note: see similar test in Check_Or_Process_Discriminants, to
17539 -- handle the (illegal) case of the completion of an untagged
17540 -- view with discriminants with defaults by a tagged full view.
17541 -- We skip the check if Discr does not come from source, to
17542 -- account for the case of an untagged derived type providing
17543 -- defaults for a renamed discriminant from a private untagged
17544 -- ancestor with a tagged full view (ACATS B460006).
17546 if Ada_Version
>= Ada_2012
then
17548 ("discriminants of nonlimited tagged type cannot have"
17550 Expression
(Discr
));
17553 ("discriminants of tagged type cannot have defaults",
17554 Expression
(Discr
));
17558 Default_Present
:= True;
17559 Append_Elmt
(Expression
(Discr
), Elist
);
17561 -- Tag the defining identifiers for the discriminants with
17562 -- their corresponding default expressions from the tree.
17564 Set_Discriminant_Default_Value
17565 (Defining_Identifier
(Discr
), Expression
(Discr
));
17569 Default_Not_Present
:= True;
17572 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
17573 -- Discr_Type but with the null-exclusion attribute
17575 if Ada_Version
>= Ada_2005
then
17577 -- Ada 2005 (AI-231): Static checks
17579 if Can_Never_Be_Null
(Discr_Type
) then
17580 Null_Exclusion_Static_Checks
(Discr
);
17582 elsif Is_Access_Type
(Discr_Type
)
17583 and then Null_Exclusion_Present
(Discr
)
17585 -- No need to check itypes because in their case this check
17586 -- was done at their point of creation
17588 and then not Is_Itype
(Discr_Type
)
17590 if Can_Never_Be_Null
(Discr_Type
) then
17592 ("`NOT NULL` not allowed (& already excludes null)",
17597 Set_Etype
(Defining_Identifier
(Discr
),
17598 Create_Null_Excluding_Itype
17600 Related_Nod
=> Discr
));
17602 -- Check for improper null exclusion if the type is otherwise
17603 -- legal for a discriminant.
17605 elsif Null_Exclusion_Present
(Discr
)
17606 and then Is_Discrete_Type
(Discr_Type
)
17609 ("null exclusion can only apply to an access type", Discr
);
17612 -- Ada 2005 (AI-402): access discriminants of nonlimited types
17613 -- can't have defaults. Synchronized types, or types that are
17614 -- explicitly limited are fine, but special tests apply to derived
17615 -- types in generics: in a generic body we have to assume the
17616 -- worst, and therefore defaults are not allowed if the parent is
17617 -- a generic formal private type (see ACATS B370001).
17619 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
17620 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
17621 or else Is_Limited_Record
(Current_Scope
)
17622 or else Is_Concurrent_Type
(Current_Scope
)
17623 or else Is_Concurrent_Record_Type
(Current_Scope
)
17624 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
17626 if not Is_Derived_Type
(Current_Scope
)
17627 or else not Is_Generic_Type
(Etype
(Current_Scope
))
17628 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
17629 or else Limited_Present
17630 (Type_Definition
(Parent
(Current_Scope
)))
17635 Error_Msg_N
("access discriminants of nonlimited types",
17636 Expression
(Discr
));
17637 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17640 elsif Present
(Expression
(Discr
)) then
17642 ("(Ada 2005) access discriminants of nonlimited types",
17643 Expression
(Discr
));
17644 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
17652 -- An element list consisting of the default expressions of the
17653 -- discriminants is constructed in the above loop and used to set
17654 -- the Discriminant_Constraint attribute for the type. If an object
17655 -- is declared of this (record or task) type without any explicit
17656 -- discriminant constraint given, this element list will form the
17657 -- actual parameters for the corresponding initialization procedure
17660 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
17661 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
17663 -- Default expressions must be provided either for all or for none
17664 -- of the discriminants of a discriminant part. (RM 3.7.1)
17666 if Default_Present
and then Default_Not_Present
then
17668 ("incomplete specification of defaults for discriminants", N
);
17671 -- The use of the name of a discriminant is not allowed in default
17672 -- expressions of a discriminant part if the specification of the
17673 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
17675 -- To detect this, the discriminant names are entered initially with an
17676 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
17677 -- attempt to use a void entity (for example in an expression that is
17678 -- type-checked) produces the error message: premature usage. Now after
17679 -- completing the semantic analysis of the discriminant part, we can set
17680 -- the Ekind of all the discriminants appropriately.
17682 Discr
:= First
(Discriminant_Specifications
(N
));
17683 Discr_Number
:= Uint_1
;
17684 while Present
(Discr
) loop
17685 Id
:= Defining_Identifier
(Discr
);
17686 Set_Ekind
(Id
, E_Discriminant
);
17687 Init_Component_Location
(Id
);
17689 Set_Discriminant_Number
(Id
, Discr_Number
);
17691 -- Make sure this is always set, even in illegal programs
17693 Set_Corresponding_Discriminant
(Id
, Empty
);
17695 -- Initialize the Original_Record_Component to the entity itself.
17696 -- Inherit_Components will propagate the right value to
17697 -- discriminants in derived record types.
17699 Set_Original_Record_Component
(Id
, Id
);
17701 -- Create the discriminal for the discriminant
17703 Build_Discriminal
(Id
);
17706 Discr_Number
:= Discr_Number
+ 1;
17709 Set_Has_Discriminants
(Current_Scope
);
17710 end Process_Discriminants
;
17712 -----------------------
17713 -- Process_Full_View --
17714 -----------------------
17716 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
17717 Priv_Parent
: Entity_Id
;
17718 Full_Parent
: Entity_Id
;
17719 Full_Indic
: Node_Id
;
17721 procedure Collect_Implemented_Interfaces
17723 Ifaces
: Elist_Id
);
17724 -- Ada 2005: Gather all the interfaces that Typ directly or
17725 -- inherently implements. Duplicate entries are not added to
17726 -- the list Ifaces.
17728 ------------------------------------
17729 -- Collect_Implemented_Interfaces --
17730 ------------------------------------
17732 procedure Collect_Implemented_Interfaces
17737 Iface_Elmt
: Elmt_Id
;
17740 -- Abstract interfaces are only associated with tagged record types
17742 if not Is_Tagged_Type
(Typ
)
17743 or else not Is_Record_Type
(Typ
)
17748 -- Recursively climb to the ancestors
17750 if Etype
(Typ
) /= Typ
17752 -- Protect the frontend against wrong cyclic declarations like:
17754 -- type B is new A with private;
17755 -- type C is new A with private;
17757 -- type B is new C with null record;
17758 -- type C is new B with null record;
17760 and then Etype
(Typ
) /= Priv_T
17761 and then Etype
(Typ
) /= Full_T
17763 -- Keep separate the management of private type declarations
17765 if Ekind
(Typ
) = E_Record_Type_With_Private
then
17767 -- Handle the following erroneous case:
17768 -- type Private_Type is tagged private;
17770 -- type Private_Type is new Type_Implementing_Iface;
17772 if Present
(Full_View
(Typ
))
17773 and then Etype
(Typ
) /= Full_View
(Typ
)
17775 if Is_Interface
(Etype
(Typ
)) then
17776 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17779 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17782 -- Non-private types
17785 if Is_Interface
(Etype
(Typ
)) then
17786 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
17789 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
17793 -- Handle entities in the list of abstract interfaces
17795 if Present
(Interfaces
(Typ
)) then
17796 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
17797 while Present
(Iface_Elmt
) loop
17798 Iface
:= Node
(Iface_Elmt
);
17800 pragma Assert
(Is_Interface
(Iface
));
17802 if not Contain_Interface
(Iface
, Ifaces
) then
17803 Append_Elmt
(Iface
, Ifaces
);
17804 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
17807 Next_Elmt
(Iface_Elmt
);
17810 end Collect_Implemented_Interfaces
;
17812 -- Start of processing for Process_Full_View
17815 -- First some sanity checks that must be done after semantic
17816 -- decoration of the full view and thus cannot be placed with other
17817 -- similar checks in Find_Type_Name
17819 if not Is_Limited_Type
(Priv_T
)
17820 and then (Is_Limited_Type
(Full_T
)
17821 or else Is_Limited_Composite
(Full_T
))
17823 if In_Instance
then
17827 ("completion of nonlimited type cannot be limited", Full_T
);
17828 Explain_Limited_Type
(Full_T
, Full_T
);
17831 elsif Is_Abstract_Type
(Full_T
)
17832 and then not Is_Abstract_Type
(Priv_T
)
17835 ("completion of nonabstract type cannot be abstract", Full_T
);
17837 elsif Is_Tagged_Type
(Priv_T
)
17838 and then Is_Limited_Type
(Priv_T
)
17839 and then not Is_Limited_Type
(Full_T
)
17841 -- If pragma CPP_Class was applied to the private declaration
17842 -- propagate the limitedness to the full-view
17844 if Is_CPP_Class
(Priv_T
) then
17845 Set_Is_Limited_Record
(Full_T
);
17847 -- GNAT allow its own definition of Limited_Controlled to disobey
17848 -- this rule in order in ease the implementation. This test is safe
17849 -- because Root_Controlled is defined in a child of System that
17850 -- normal programs are not supposed to use.
17852 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
17853 Set_Is_Limited_Composite
(Full_T
);
17856 ("completion of limited tagged type must be limited", Full_T
);
17859 elsif Is_Generic_Type
(Priv_T
) then
17860 Error_Msg_N
("generic type cannot have a completion", Full_T
);
17863 -- Check that ancestor interfaces of private and full views are
17864 -- consistent. We omit this check for synchronized types because
17865 -- they are performed on the corresponding record type when frozen.
17867 if Ada_Version
>= Ada_2005
17868 and then Is_Tagged_Type
(Priv_T
)
17869 and then Is_Tagged_Type
(Full_T
)
17870 and then not Is_Concurrent_Type
(Full_T
)
17874 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17875 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
17878 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
17879 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
17881 -- Ada 2005 (AI-251): The partial view shall be a descendant of
17882 -- an interface type if and only if the full type is descendant
17883 -- of the interface type (AARM 7.3 (7.3/2)).
17885 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
17887 if Present
(Iface
) then
17889 ("interface & not implemented by full type " &
17890 "(RM-2005 7.3 (7.3/2))", Priv_T
, Iface
);
17893 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
17895 if Present
(Iface
) then
17897 ("interface & not implemented by partial view " &
17898 "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
17903 if Is_Tagged_Type
(Priv_T
)
17904 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
17905 and then Is_Derived_Type
(Full_T
)
17907 Priv_Parent
:= Etype
(Priv_T
);
17909 -- The full view of a private extension may have been transformed
17910 -- into an unconstrained derived type declaration and a subtype
17911 -- declaration (see build_derived_record_type for details).
17913 if Nkind
(N
) = N_Subtype_Declaration
then
17914 Full_Indic
:= Subtype_Indication
(N
);
17915 Full_Parent
:= Etype
(Base_Type
(Full_T
));
17917 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
17918 Full_Parent
:= Etype
(Full_T
);
17921 -- Check that the parent type of the full type is a descendant of
17922 -- the ancestor subtype given in the private extension. If either
17923 -- entity has an Etype equal to Any_Type then we had some previous
17924 -- error situation [7.3(8)].
17926 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
17929 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
17930 -- any order. Therefore we don't have to check that its parent must
17931 -- be a descendant of the parent of the private type declaration.
17933 elsif Is_Interface
(Priv_Parent
)
17934 and then Is_Interface
(Full_Parent
)
17938 -- Ada 2005 (AI-251): If the parent of the private type declaration
17939 -- is an interface there is no need to check that it is an ancestor
17940 -- of the associated full type declaration. The required tests for
17941 -- this case are performed by Build_Derived_Record_Type.
17943 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
17944 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
17947 ("parent of full type must descend from parent"
17948 & " of private extension", Full_Indic
);
17950 -- First check a formal restriction, and then proceed with checking
17951 -- Ada rules. Since the formal restriction is not a serious error, we
17952 -- don't prevent further error detection for this check, hence the
17957 -- In formal mode, when completing a private extension the type
17958 -- named in the private part must be exactly the same as that
17959 -- named in the visible part.
17961 if Priv_Parent
/= Full_Parent
then
17962 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
17963 Check_SPARK_Restriction
("% expected", Full_Indic
);
17966 -- Check the rules of 7.3(10): if the private extension inherits
17967 -- known discriminants, then the full type must also inherit those
17968 -- discriminants from the same (ancestor) type, and the parent
17969 -- subtype of the full type must be constrained if and only if
17970 -- the ancestor subtype of the private extension is constrained.
17972 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
17973 and then not Has_Unknown_Discriminants
(Priv_T
)
17974 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
17977 Priv_Indic
: constant Node_Id
:=
17978 Subtype_Indication
(Parent
(Priv_T
));
17980 Priv_Constr
: constant Boolean :=
17981 Is_Constrained
(Priv_Parent
)
17983 Nkind
(Priv_Indic
) = N_Subtype_Indication
17985 Is_Constrained
(Entity
(Priv_Indic
));
17987 Full_Constr
: constant Boolean :=
17988 Is_Constrained
(Full_Parent
)
17990 Nkind
(Full_Indic
) = N_Subtype_Indication
17992 Is_Constrained
(Entity
(Full_Indic
));
17994 Priv_Discr
: Entity_Id
;
17995 Full_Discr
: Entity_Id
;
17998 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
17999 Full_Discr
:= First_Discriminant
(Full_Parent
);
18000 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
18001 if Original_Record_Component
(Priv_Discr
) =
18002 Original_Record_Component
(Full_Discr
)
18004 Corresponding_Discriminant
(Priv_Discr
) =
18005 Corresponding_Discriminant
(Full_Discr
)
18012 Next_Discriminant
(Priv_Discr
);
18013 Next_Discriminant
(Full_Discr
);
18016 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
18018 ("full view must inherit discriminants of the parent"
18019 & " type used in the private extension", Full_Indic
);
18021 elsif Priv_Constr
and then not Full_Constr
then
18023 ("parent subtype of full type must be constrained",
18026 elsif Full_Constr
and then not Priv_Constr
then
18028 ("parent subtype of full type must be unconstrained",
18033 -- Check the rules of 7.3(12): if a partial view has neither
18034 -- known or unknown discriminants, then the full type
18035 -- declaration shall define a definite subtype.
18037 elsif not Has_Unknown_Discriminants
(Priv_T
)
18038 and then not Has_Discriminants
(Priv_T
)
18039 and then not Is_Constrained
(Full_T
)
18042 ("full view must define a constrained type if partial view"
18043 & " has no discriminants", Full_T
);
18046 -- ??????? Do we implement the following properly ?????
18047 -- If the ancestor subtype of a private extension has constrained
18048 -- discriminants, then the parent subtype of the full view shall
18049 -- impose a statically matching constraint on those discriminants
18054 -- For untagged types, verify that a type without discriminants
18055 -- is not completed with an unconstrained type.
18057 if not Is_Indefinite_Subtype
(Priv_T
)
18058 and then Is_Indefinite_Subtype
(Full_T
)
18060 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
18064 -- AI-419: verify that the use of "limited" is consistent
18067 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
18070 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
18071 and then not Limited_Present
(Parent
(Priv_T
))
18072 and then not Synchronized_Present
(Parent
(Priv_T
))
18073 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
18075 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
18076 and then Limited_Present
(Type_Definition
(Orig_Decl
))
18079 ("full view of non-limited extension cannot be limited", N
);
18083 -- Ada 2005 (AI-443): A synchronized private extension must be
18084 -- completed by a task or protected type.
18086 if Ada_Version
>= Ada_2005
18087 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
18088 and then Synchronized_Present
(Parent
(Priv_T
))
18089 and then not Is_Concurrent_Type
(Full_T
)
18091 Error_Msg_N
("full view of synchronized extension must " &
18092 "be synchronized type", N
);
18095 -- Ada 2005 AI-363: if the full view has discriminants with
18096 -- defaults, it is illegal to declare constrained access subtypes
18097 -- whose designated type is the current type. This allows objects
18098 -- of the type that are declared in the heap to be unconstrained.
18100 if not Has_Unknown_Discriminants
(Priv_T
)
18101 and then not Has_Discriminants
(Priv_T
)
18102 and then Has_Discriminants
(Full_T
)
18104 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
18106 Set_Has_Constrained_Partial_View
(Full_T
);
18107 Set_Has_Constrained_Partial_View
(Priv_T
);
18110 -- Create a full declaration for all its subtypes recorded in
18111 -- Private_Dependents and swap them similarly to the base type. These
18112 -- are subtypes that have been define before the full declaration of
18113 -- the private type. We also swap the entry in Private_Dependents list
18114 -- so we can properly restore the private view on exit from the scope.
18117 Priv_Elmt
: Elmt_Id
;
18122 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
18123 while Present
(Priv_Elmt
) loop
18124 Priv
:= Node
(Priv_Elmt
);
18126 if Ekind_In
(Priv
, E_Private_Subtype
,
18127 E_Limited_Private_Subtype
,
18128 E_Record_Subtype_With_Private
)
18130 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
18131 Set_Is_Itype
(Full
);
18132 Set_Parent
(Full
, Parent
(Priv
));
18133 Set_Associated_Node_For_Itype
(Full
, N
);
18135 -- Now we need to complete the private subtype, but since the
18136 -- base type has already been swapped, we must also swap the
18137 -- subtypes (and thus, reverse the arguments in the call to
18138 -- Complete_Private_Subtype).
18140 Copy_And_Swap
(Priv
, Full
);
18141 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
18142 Replace_Elmt
(Priv_Elmt
, Full
);
18145 Next_Elmt
(Priv_Elmt
);
18149 -- If the private view was tagged, copy the new primitive operations
18150 -- from the private view to the full view.
18152 if Is_Tagged_Type
(Full_T
) then
18154 Disp_Typ
: Entity_Id
;
18155 Full_List
: Elist_Id
;
18157 Prim_Elmt
: Elmt_Id
;
18158 Priv_List
: Elist_Id
;
18162 L
: Elist_Id
) return Boolean;
18163 -- Determine whether list L contains element E
18171 L
: Elist_Id
) return Boolean
18173 List_Elmt
: Elmt_Id
;
18176 List_Elmt
:= First_Elmt
(L
);
18177 while Present
(List_Elmt
) loop
18178 if Node
(List_Elmt
) = E
then
18182 Next_Elmt
(List_Elmt
);
18188 -- Start of processing
18191 if Is_Tagged_Type
(Priv_T
) then
18192 Priv_List
:= Primitive_Operations
(Priv_T
);
18193 Prim_Elmt
:= First_Elmt
(Priv_List
);
18195 -- In the case of a concurrent type completing a private tagged
18196 -- type, primitives may have been declared in between the two
18197 -- views. These subprograms need to be wrapped the same way
18198 -- entries and protected procedures are handled because they
18199 -- cannot be directly shared by the two views.
18201 if Is_Concurrent_Type
(Full_T
) then
18203 Conc_Typ
: constant Entity_Id
:=
18204 Corresponding_Record_Type
(Full_T
);
18205 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
18206 Wrap_Spec
: Node_Id
;
18209 while Present
(Prim_Elmt
) loop
18210 Prim
:= Node
(Prim_Elmt
);
18212 if Comes_From_Source
(Prim
)
18213 and then not Is_Abstract_Subprogram
(Prim
)
18216 Make_Subprogram_Declaration
(Sloc
(Prim
),
18220 Obj_Typ
=> Conc_Typ
,
18222 Parameter_Specifications
(
18225 Insert_After
(Curr_Nod
, Wrap_Spec
);
18226 Curr_Nod
:= Wrap_Spec
;
18228 Analyze
(Wrap_Spec
);
18231 Next_Elmt
(Prim_Elmt
);
18237 -- For non-concurrent types, transfer explicit primitives, but
18238 -- omit those inherited from the parent of the private view
18239 -- since they will be re-inherited later on.
18242 Full_List
:= Primitive_Operations
(Full_T
);
18244 while Present
(Prim_Elmt
) loop
18245 Prim
:= Node
(Prim_Elmt
);
18247 if Comes_From_Source
(Prim
)
18248 and then not Contains
(Prim
, Full_List
)
18250 Append_Elmt
(Prim
, Full_List
);
18253 Next_Elmt
(Prim_Elmt
);
18257 -- Untagged private view
18260 Full_List
:= Primitive_Operations
(Full_T
);
18262 -- In this case the partial view is untagged, so here we locate
18263 -- all of the earlier primitives that need to be treated as
18264 -- dispatching (those that appear between the two views). Note
18265 -- that these additional operations must all be new operations
18266 -- (any earlier operations that override inherited operations
18267 -- of the full view will already have been inserted in the
18268 -- primitives list, marked by Check_Operation_From_Private_View
18269 -- as dispatching. Note that implicit "/=" operators are
18270 -- excluded from being added to the primitives list since they
18271 -- shouldn't be treated as dispatching (tagged "/=" is handled
18274 Prim
:= Next_Entity
(Full_T
);
18275 while Present
(Prim
) and then Prim
/= Priv_T
loop
18276 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
18277 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
18279 if Disp_Typ
= Full_T
18280 and then (Chars
(Prim
) /= Name_Op_Ne
18281 or else Comes_From_Source
(Prim
))
18283 Check_Controlling_Formals
(Full_T
, Prim
);
18285 if not Is_Dispatching_Operation
(Prim
) then
18286 Append_Elmt
(Prim
, Full_List
);
18287 Set_Is_Dispatching_Operation
(Prim
, True);
18288 Set_DT_Position
(Prim
, No_Uint
);
18291 elsif Is_Dispatching_Operation
(Prim
)
18292 and then Disp_Typ
/= Full_T
18295 -- Verify that it is not otherwise controlled by a
18296 -- formal or a return value of type T.
18298 Check_Controlling_Formals
(Disp_Typ
, Prim
);
18302 Next_Entity
(Prim
);
18306 -- For the tagged case, the two views can share the same primitive
18307 -- operations list and the same class-wide type. Update attributes
18308 -- of the class-wide type which depend on the full declaration.
18310 if Is_Tagged_Type
(Priv_T
) then
18311 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
18312 Set_Class_Wide_Type
18313 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
18315 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
18320 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
18322 if Known_To_Have_Preelab_Init
(Priv_T
) then
18324 -- Case where there is a pragma Preelaborable_Initialization. We
18325 -- always allow this in predefined units, which is a bit of a kludge,
18326 -- but it means we don't have to struggle to meet the requirements in
18327 -- the RM for having Preelaborable Initialization. Otherwise we
18328 -- require that the type meets the RM rules. But we can't check that
18329 -- yet, because of the rule about overriding Initialize, so we simply
18330 -- set a flag that will be checked at freeze time.
18332 if not In_Predefined_Unit
(Full_T
) then
18333 Set_Must_Have_Preelab_Init
(Full_T
);
18337 -- If pragma CPP_Class was applied to the private type declaration,
18338 -- propagate it now to the full type declaration.
18340 if Is_CPP_Class
(Priv_T
) then
18341 Set_Is_CPP_Class
(Full_T
);
18342 Set_Convention
(Full_T
, Convention_CPP
);
18344 -- Check that components of imported CPP types do not have default
18347 Check_CPP_Type_Has_No_Defaults
(Full_T
);
18350 -- If the private view has user specified stream attributes, then so has
18353 -- Why the test, how could these flags be already set in Full_T ???
18355 if Has_Specified_Stream_Read
(Priv_T
) then
18356 Set_Has_Specified_Stream_Read
(Full_T
);
18359 if Has_Specified_Stream_Write
(Priv_T
) then
18360 Set_Has_Specified_Stream_Write
(Full_T
);
18363 if Has_Specified_Stream_Input
(Priv_T
) then
18364 Set_Has_Specified_Stream_Input
(Full_T
);
18367 if Has_Specified_Stream_Output
(Priv_T
) then
18368 Set_Has_Specified_Stream_Output
(Full_T
);
18371 -- Propagate invariants to full type
18373 if Has_Invariants
(Priv_T
) then
18374 Set_Has_Invariants
(Full_T
);
18375 Set_Invariant_Procedure
(Full_T
, Invariant_Procedure
(Priv_T
));
18378 if Has_Inheritable_Invariants
(Priv_T
) then
18379 Set_Has_Inheritable_Invariants
(Full_T
);
18382 -- Propagate predicates to full type
18384 if Has_Predicates
(Priv_T
) then
18385 Set_Predicate_Function
(Priv_T
, Predicate_Function
(Full_T
));
18386 Set_Has_Predicates
(Full_T
);
18388 end Process_Full_View
;
18390 -----------------------------------
18391 -- Process_Incomplete_Dependents --
18392 -----------------------------------
18394 procedure Process_Incomplete_Dependents
18396 Full_T
: Entity_Id
;
18399 Inc_Elmt
: Elmt_Id
;
18400 Priv_Dep
: Entity_Id
;
18401 New_Subt
: Entity_Id
;
18403 Disc_Constraint
: Elist_Id
;
18406 if No
(Private_Dependents
(Inc_T
)) then
18410 -- Itypes that may be generated by the completion of an incomplete
18411 -- subtype are not used by the back-end and not attached to the tree.
18412 -- They are created only for constraint-checking purposes.
18414 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
18415 while Present
(Inc_Elmt
) loop
18416 Priv_Dep
:= Node
(Inc_Elmt
);
18418 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
18420 -- An Access_To_Subprogram type may have a return type or a
18421 -- parameter type that is incomplete. Replace with the full view.
18423 if Etype
(Priv_Dep
) = Inc_T
then
18424 Set_Etype
(Priv_Dep
, Full_T
);
18428 Formal
: Entity_Id
;
18431 Formal
:= First_Formal
(Priv_Dep
);
18432 while Present
(Formal
) loop
18433 if Etype
(Formal
) = Inc_T
then
18434 Set_Etype
(Formal
, Full_T
);
18437 Next_Formal
(Formal
);
18441 elsif Is_Overloadable
(Priv_Dep
) then
18443 -- If a subprogram in the incomplete dependents list is primitive
18444 -- for a tagged full type then mark it as a dispatching operation,
18445 -- check whether it overrides an inherited subprogram, and check
18446 -- restrictions on its controlling formals. Note that a protected
18447 -- operation is never dispatching: only its wrapper operation
18448 -- (which has convention Ada) is.
18450 if Is_Tagged_Type
(Full_T
)
18451 and then Is_Primitive
(Priv_Dep
)
18452 and then Convention
(Priv_Dep
) /= Convention_Protected
18454 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
18455 Set_Is_Dispatching_Operation
(Priv_Dep
);
18456 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
18459 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
18461 -- Can happen during processing of a body before the completion
18462 -- of a TA type. Ignore, because spec is also on dependent list.
18466 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
18467 -- corresponding subtype of the full view.
18469 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
18470 Set_Subtype_Indication
18471 (Parent
(Priv_Dep
), New_Reference_To
(Full_T
, Sloc
(Priv_Dep
)));
18472 Set_Etype
(Priv_Dep
, Full_T
);
18473 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
18474 Set_Analyzed
(Parent
(Priv_Dep
), False);
18476 -- Reanalyze the declaration, suppressing the call to
18477 -- Enter_Name to avoid duplicate names.
18479 Analyze_Subtype_Declaration
18480 (N
=> Parent
(Priv_Dep
),
18483 -- Dependent is a subtype
18486 -- We build a new subtype indication using the full view of the
18487 -- incomplete parent. The discriminant constraints have been
18488 -- elaborated already at the point of the subtype declaration.
18490 New_Subt
:= Create_Itype
(E_Void
, N
);
18492 if Has_Discriminants
(Full_T
) then
18493 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
18495 Disc_Constraint
:= No_Elist
;
18498 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
18499 Set_Full_View
(Priv_Dep
, New_Subt
);
18502 Next_Elmt
(Inc_Elmt
);
18504 end Process_Incomplete_Dependents
;
18506 --------------------------------
18507 -- Process_Range_Expr_In_Decl --
18508 --------------------------------
18510 procedure Process_Range_Expr_In_Decl
18513 Check_List
: List_Id
:= Empty_List
;
18514 R_Check_Off
: Boolean := False;
18515 In_Iter_Schm
: Boolean := False)
18518 R_Checks
: Check_Result
;
18519 Insert_Node
: Node_Id
;
18520 Def_Id
: Entity_Id
;
18523 Analyze_And_Resolve
(R
, Base_Type
(T
));
18525 if Nkind
(R
) = N_Range
then
18527 -- In SPARK, all ranges should be static, with the exception of the
18528 -- discrete type definition of a loop parameter specification.
18530 if not In_Iter_Schm
18531 and then not Is_Static_Range
(R
)
18533 Check_SPARK_Restriction
("range should be static", R
);
18536 Lo
:= Low_Bound
(R
);
18537 Hi
:= High_Bound
(R
);
18539 -- We need to ensure validity of the bounds here, because if we
18540 -- go ahead and do the expansion, then the expanded code will get
18541 -- analyzed with range checks suppressed and we miss the check.
18543 Validity_Check_Range
(R
);
18545 -- If there were errors in the declaration, try and patch up some
18546 -- common mistakes in the bounds. The cases handled are literals
18547 -- which are Integer where the expected type is Real and vice versa.
18548 -- These corrections allow the compilation process to proceed further
18549 -- along since some basic assumptions of the format of the bounds
18552 if Etype
(R
) = Any_Type
then
18554 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18556 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
18558 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
18560 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
18562 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18564 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
18566 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
18568 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
18575 -- If the bounds of the range have been mistakenly given as string
18576 -- literals (perhaps in place of character literals), then an error
18577 -- has already been reported, but we rewrite the string literal as a
18578 -- bound of the range's type to avoid blowups in later processing
18579 -- that looks at static values.
18581 if Nkind
(Lo
) = N_String_Literal
then
18583 Make_Attribute_Reference
(Sloc
(Lo
),
18584 Attribute_Name
=> Name_First
,
18585 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
18586 Analyze_And_Resolve
(Lo
);
18589 if Nkind
(Hi
) = N_String_Literal
then
18591 Make_Attribute_Reference
(Sloc
(Hi
),
18592 Attribute_Name
=> Name_First
,
18593 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
18594 Analyze_And_Resolve
(Hi
);
18597 -- If bounds aren't scalar at this point then exit, avoiding
18598 -- problems with further processing of the range in this procedure.
18600 if not Is_Scalar_Type
(Etype
(Lo
)) then
18604 -- Resolve (actually Sem_Eval) has checked that the bounds are in
18605 -- then range of the base type. Here we check whether the bounds
18606 -- are in the range of the subtype itself. Note that if the bounds
18607 -- represent the null range the Constraint_Error exception should
18610 -- ??? The following code should be cleaned up as follows
18612 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
18613 -- is done in the call to Range_Check (R, T); below
18615 -- 2. The use of R_Check_Off should be investigated and possibly
18616 -- removed, this would clean up things a bit.
18618 if Is_Null_Range
(Lo
, Hi
) then
18622 -- Capture values of bounds and generate temporaries for them
18623 -- if needed, before applying checks, since checks may cause
18624 -- duplication of the expression without forcing evaluation.
18626 -- The forced evaluation removes side effects from expressions,
18627 -- which should occur also in SPARK mode. Otherwise, we end up
18628 -- with unexpected insertions of actions at places where this is
18629 -- not supposed to occur, e.g. on default parameters of a call.
18631 if Expander_Active
then
18632 Force_Evaluation
(Lo
);
18633 Force_Evaluation
(Hi
);
18636 -- We use a flag here instead of suppressing checks on the
18637 -- type because the type we check against isn't necessarily
18638 -- the place where we put the check.
18640 if not R_Check_Off
then
18641 R_Checks
:= Get_Range_Checks
(R
, T
);
18643 -- Look up tree to find an appropriate insertion point. We
18644 -- can't just use insert_actions because later processing
18645 -- depends on the insertion node. Prior to Ada 2012 the
18646 -- insertion point could only be a declaration or a loop, but
18647 -- quantified expressions can appear within any context in an
18648 -- expression, and the insertion point can be any statement,
18649 -- pragma, or declaration.
18651 Insert_Node
:= Parent
(R
);
18652 while Present
(Insert_Node
) loop
18654 Nkind
(Insert_Node
) in N_Declaration
18657 (Insert_Node
, N_Component_Declaration
,
18658 N_Loop_Parameter_Specification
,
18659 N_Function_Specification
,
18660 N_Procedure_Specification
);
18662 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
18663 or else Nkind
(Insert_Node
) in
18664 N_Statement_Other_Than_Procedure_Call
18665 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
18668 Insert_Node
:= Parent
(Insert_Node
);
18671 -- Why would Type_Decl not be present??? Without this test,
18672 -- short regression tests fail.
18674 if Present
(Insert_Node
) then
18676 -- Case of loop statement. Verify that the range is part
18677 -- of the subtype indication of the iteration scheme.
18679 if Nkind
(Insert_Node
) = N_Loop_Statement
then
18684 Indic
:= Parent
(R
);
18685 while Present
(Indic
)
18686 and then Nkind
(Indic
) /= N_Subtype_Indication
18688 Indic
:= Parent
(Indic
);
18691 if Present
(Indic
) then
18692 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
18694 Insert_Range_Checks
18698 Sloc
(Insert_Node
),
18700 Do_Before
=> True);
18704 -- Insertion before a declaration. If the declaration
18705 -- includes discriminants, the list of applicable checks
18706 -- is given by the caller.
18708 elsif Nkind
(Insert_Node
) in N_Declaration
then
18709 Def_Id
:= Defining_Identifier
(Insert_Node
);
18711 if (Ekind
(Def_Id
) = E_Record_Type
18712 and then Depends_On_Discriminant
(R
))
18714 (Ekind
(Def_Id
) = E_Protected_Type
18715 and then Has_Discriminants
(Def_Id
))
18717 Append_Range_Checks
18719 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
18722 Insert_Range_Checks
18724 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
18728 -- Insertion before a statement. Range appears in the
18729 -- context of a quantified expression. Insertion will
18730 -- take place when expression is expanded.
18739 -- Case of other than an explicit N_Range node
18741 -- The forced evaluation removes side effects from expressions, which
18742 -- should occur also in SPARK mode. Otherwise, we end up with unexpected
18743 -- insertions of actions at places where this is not supposed to occur,
18744 -- e.g. on default parameters of a call.
18746 elsif Expander_Active
then
18747 Get_Index_Bounds
(R
, Lo
, Hi
);
18748 Force_Evaluation
(Lo
);
18749 Force_Evaluation
(Hi
);
18751 end Process_Range_Expr_In_Decl
;
18753 --------------------------------------
18754 -- Process_Real_Range_Specification --
18755 --------------------------------------
18757 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
18758 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
18761 Err
: Boolean := False;
18763 procedure Analyze_Bound
(N
: Node_Id
);
18764 -- Analyze and check one bound
18766 -------------------
18767 -- Analyze_Bound --
18768 -------------------
18770 procedure Analyze_Bound
(N
: Node_Id
) is
18772 Analyze_And_Resolve
(N
, Any_Real
);
18774 if not Is_OK_Static_Expression
(N
) then
18775 Flag_Non_Static_Expr
18776 ("bound in real type definition is not static!", N
);
18781 -- Start of processing for Process_Real_Range_Specification
18784 if Present
(Spec
) then
18785 Lo
:= Low_Bound
(Spec
);
18786 Hi
:= High_Bound
(Spec
);
18787 Analyze_Bound
(Lo
);
18788 Analyze_Bound
(Hi
);
18790 -- If error, clear away junk range specification
18793 Set_Real_Range_Specification
(Def
, Empty
);
18796 end Process_Real_Range_Specification
;
18798 ---------------------
18799 -- Process_Subtype --
18800 ---------------------
18802 function Process_Subtype
18804 Related_Nod
: Node_Id
;
18805 Related_Id
: Entity_Id
:= Empty
;
18806 Suffix
: Character := ' ') return Entity_Id
18809 Def_Id
: Entity_Id
;
18810 Error_Node
: Node_Id
;
18811 Full_View_Id
: Entity_Id
;
18812 Subtype_Mark_Id
: Entity_Id
;
18814 May_Have_Null_Exclusion
: Boolean;
18816 procedure Check_Incomplete
(T
: Entity_Id
);
18817 -- Called to verify that an incomplete type is not used prematurely
18819 ----------------------
18820 -- Check_Incomplete --
18821 ----------------------
18823 procedure Check_Incomplete
(T
: Entity_Id
) is
18825 -- Ada 2005 (AI-412): Incomplete subtypes are legal
18827 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
18829 not (Ada_Version
>= Ada_2005
18831 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
18833 (Nkind
(Parent
(T
)) = N_Subtype_Indication
18834 and then Nkind
(Parent
(Parent
(T
))) =
18835 N_Subtype_Declaration
)))
18837 Error_Msg_N
("invalid use of type before its full declaration", T
);
18839 end Check_Incomplete
;
18841 -- Start of processing for Process_Subtype
18844 -- Case of no constraints present
18846 if Nkind
(S
) /= N_Subtype_Indication
then
18848 Check_Incomplete
(S
);
18851 -- Ada 2005 (AI-231): Static check
18853 if Ada_Version
>= Ada_2005
18854 and then Present
(P
)
18855 and then Null_Exclusion_Present
(P
)
18856 and then Nkind
(P
) /= N_Access_To_Object_Definition
18857 and then not Is_Access_Type
(Entity
(S
))
18859 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
18862 -- The following is ugly, can't we have a range or even a flag???
18864 May_Have_Null_Exclusion
:=
18865 Nkind_In
(P
, N_Access_Definition
,
18866 N_Access_Function_Definition
,
18867 N_Access_Procedure_Definition
,
18868 N_Access_To_Object_Definition
,
18870 N_Component_Definition
)
18872 Nkind_In
(P
, N_Derived_Type_Definition
,
18873 N_Discriminant_Specification
,
18874 N_Formal_Object_Declaration
,
18875 N_Object_Declaration
,
18876 N_Object_Renaming_Declaration
,
18877 N_Parameter_Specification
,
18878 N_Subtype_Declaration
);
18880 -- Create an Itype that is a duplicate of Entity (S) but with the
18881 -- null-exclusion attribute.
18883 if May_Have_Null_Exclusion
18884 and then Is_Access_Type
(Entity
(S
))
18885 and then Null_Exclusion_Present
(P
)
18887 -- No need to check the case of an access to object definition.
18888 -- It is correct to define double not-null pointers.
18891 -- type Not_Null_Int_Ptr is not null access Integer;
18892 -- type Acc is not null access Not_Null_Int_Ptr;
18894 and then Nkind
(P
) /= N_Access_To_Object_Definition
18896 if Can_Never_Be_Null
(Entity
(S
)) then
18897 case Nkind
(Related_Nod
) is
18898 when N_Full_Type_Declaration
=>
18899 if Nkind
(Type_Definition
(Related_Nod
))
18900 in N_Array_Type_Definition
18904 (Component_Definition
18905 (Type_Definition
(Related_Nod
)));
18908 Subtype_Indication
(Type_Definition
(Related_Nod
));
18911 when N_Subtype_Declaration
=>
18912 Error_Node
:= Subtype_Indication
(Related_Nod
);
18914 when N_Object_Declaration
=>
18915 Error_Node
:= Object_Definition
(Related_Nod
);
18917 when N_Component_Declaration
=>
18919 Subtype_Indication
(Component_Definition
(Related_Nod
));
18921 when N_Allocator
=>
18922 Error_Node
:= Expression
(Related_Nod
);
18925 pragma Assert
(False);
18926 Error_Node
:= Related_Nod
;
18930 ("`NOT NULL` not allowed (& already excludes null)",
18936 Create_Null_Excluding_Itype
18938 Related_Nod
=> P
));
18939 Set_Entity
(S
, Etype
(S
));
18944 -- Case of constraint present, so that we have an N_Subtype_Indication
18945 -- node (this node is created only if constraints are present).
18948 Find_Type
(Subtype_Mark
(S
));
18950 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
18952 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
18953 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
18955 Check_Incomplete
(Subtype_Mark
(S
));
18959 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
18961 -- Explicit subtype declaration case
18963 if Nkind
(P
) = N_Subtype_Declaration
then
18964 Def_Id
:= Defining_Identifier
(P
);
18966 -- Explicit derived type definition case
18968 elsif Nkind
(P
) = N_Derived_Type_Definition
then
18969 Def_Id
:= Defining_Identifier
(Parent
(P
));
18971 -- Implicit case, the Def_Id must be created as an implicit type.
18972 -- The one exception arises in the case of concurrent types, array
18973 -- and access types, where other subsidiary implicit types may be
18974 -- created and must appear before the main implicit type. In these
18975 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
18976 -- has not yet been called to create Def_Id.
18979 if Is_Array_Type
(Subtype_Mark_Id
)
18980 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
18981 or else Is_Access_Type
(Subtype_Mark_Id
)
18985 -- For the other cases, we create a new unattached Itype,
18986 -- and set the indication to ensure it gets attached later.
18990 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
18994 -- If the kind of constraint is invalid for this kind of type,
18995 -- then give an error, and then pretend no constraint was given.
18997 if not Is_Valid_Constraint_Kind
18998 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
19001 ("incorrect constraint for this kind of type", Constraint
(S
));
19003 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
19005 -- Set Ekind of orphan itype, to prevent cascaded errors
19007 if Present
(Def_Id
) then
19008 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
19011 -- Make recursive call, having got rid of the bogus constraint
19013 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
19016 -- Remaining processing depends on type. Select on Base_Type kind to
19017 -- ensure getting to the concrete type kind in the case of a private
19018 -- subtype (needed when only doing semantic analysis).
19020 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
19021 when Access_Kind
=>
19022 Constrain_Access
(Def_Id
, S
, Related_Nod
);
19025 and then Is_Itype
(Designated_Type
(Def_Id
))
19026 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
19027 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
19029 Build_Itype_Reference
19030 (Designated_Type
(Def_Id
), Related_Nod
);
19034 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
19036 when Decimal_Fixed_Point_Kind
=>
19037 Constrain_Decimal
(Def_Id
, S
);
19039 when Enumeration_Kind
=>
19040 Constrain_Enumeration
(Def_Id
, S
);
19042 when Ordinary_Fixed_Point_Kind
=>
19043 Constrain_Ordinary_Fixed
(Def_Id
, S
);
19046 Constrain_Float
(Def_Id
, S
);
19048 when Integer_Kind
=>
19049 Constrain_Integer
(Def_Id
, S
);
19051 when E_Record_Type |
19054 E_Incomplete_Type
=>
19055 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
19057 if Ekind
(Def_Id
) = E_Incomplete_Type
then
19058 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
19061 when Private_Kind
=>
19062 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
19063 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
19065 -- In case of an invalid constraint prevent further processing
19066 -- since the type constructed is missing expected fields.
19068 if Etype
(Def_Id
) = Any_Type
then
19072 -- If the full view is that of a task with discriminants,
19073 -- we must constrain both the concurrent type and its
19074 -- corresponding record type. Otherwise we will just propagate
19075 -- the constraint to the full view, if available.
19077 if Present
(Full_View
(Subtype_Mark_Id
))
19078 and then Has_Discriminants
(Subtype_Mark_Id
)
19079 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
19082 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
19084 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
19085 Constrain_Concurrent
(Full_View_Id
, S
,
19086 Related_Nod
, Related_Id
, Suffix
);
19087 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
19088 Set_Full_View
(Def_Id
, Full_View_Id
);
19090 -- Introduce an explicit reference to the private subtype,
19091 -- to prevent scope anomalies in gigi if first use appears
19092 -- in a nested context, e.g. a later function body.
19093 -- Should this be generated in other contexts than a full
19094 -- type declaration?
19096 if Is_Itype
(Def_Id
)
19098 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
19100 Build_Itype_Reference
(Def_Id
, Parent
(P
));
19104 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
19107 when Concurrent_Kind
=>
19108 Constrain_Concurrent
(Def_Id
, S
,
19109 Related_Nod
, Related_Id
, Suffix
);
19112 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
19115 -- Size and Convention are always inherited from the base type
19117 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
19118 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
19122 end Process_Subtype
;
19124 ---------------------------------------
19125 -- Check_Anonymous_Access_Components --
19126 ---------------------------------------
19128 procedure Check_Anonymous_Access_Components
19129 (Typ_Decl
: Node_Id
;
19132 Comp_List
: Node_Id
)
19134 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
19135 Anon_Access
: Entity_Id
;
19138 Comp_Def
: Node_Id
;
19140 Type_Def
: Node_Id
;
19142 procedure Build_Incomplete_Type_Declaration
;
19143 -- If the record type contains components that include an access to the
19144 -- current record, then create an incomplete type declaration for the
19145 -- record, to be used as the designated type of the anonymous access.
19146 -- This is done only once, and only if there is no previous partial
19147 -- view of the type.
19149 function Designates_T
(Subt
: Node_Id
) return Boolean;
19150 -- Check whether a node designates the enclosing record type, or 'Class
19153 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
19154 -- Check whether an access definition includes a reference to
19155 -- the enclosing record type. The reference can be a subtype mark
19156 -- in the access definition itself, a 'Class attribute reference, or
19157 -- recursively a reference appearing in a parameter specification
19158 -- or result definition of an access_to_subprogram definition.
19160 --------------------------------------
19161 -- Build_Incomplete_Type_Declaration --
19162 --------------------------------------
19164 procedure Build_Incomplete_Type_Declaration
is
19169 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19170 -- it's "is new ... with record" or else "is tagged record ...".
19172 Is_Tagged
: constant Boolean :=
19173 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
19176 (Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
19178 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
19179 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
19182 -- If there is a previous partial view, no need to create a new one
19183 -- If the partial view, given by Prev, is incomplete, If Prev is
19184 -- a private declaration, full declaration is flagged accordingly.
19186 if Prev
/= Typ
then
19188 Make_Class_Wide_Type
(Prev
);
19189 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
19190 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19195 elsif Has_Private_Declaration
(Typ
) then
19197 -- If we refer to T'Class inside T, and T is the completion of a
19198 -- private type, then we need to make sure the class-wide type
19202 Make_Class_Wide_Type
(Typ
);
19207 -- If there was a previous anonymous access type, the incomplete
19208 -- type declaration will have been created already.
19210 elsif Present
(Current_Entity
(Typ
))
19211 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
19212 and then Full_View
(Current_Entity
(Typ
)) = Typ
19215 and then Comes_From_Source
(Current_Entity
(Typ
))
19216 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
19218 Make_Class_Wide_Type
(Typ
);
19220 ("incomplete view of tagged type should be declared tagged??",
19221 Parent
(Current_Entity
(Typ
)));
19226 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
19227 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
19229 -- Type has already been inserted into the current scope. Remove
19230 -- it, and add incomplete declaration for type, so that subsequent
19231 -- anonymous access types can use it. The entity is unchained from
19232 -- the homonym list and from immediate visibility. After analysis,
19233 -- the entity in the incomplete declaration becomes immediately
19234 -- visible in the record declaration that follows.
19236 H
:= Current_Entity
(Typ
);
19239 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
19242 and then Homonym
(H
) /= Typ
19244 H
:= Homonym
(Typ
);
19247 Set_Homonym
(H
, Homonym
(Typ
));
19250 Insert_Before
(Typ_Decl
, Decl
);
19252 Set_Full_View
(Inc_T
, Typ
);
19256 -- Create a common class-wide type for both views, and set the
19257 -- Etype of the class-wide type to the full view.
19259 Make_Class_Wide_Type
(Inc_T
);
19260 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
19261 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
19264 end Build_Incomplete_Type_Declaration
;
19270 function Designates_T
(Subt
: Node_Id
) return Boolean is
19271 Type_Id
: constant Name_Id
:= Chars
(Typ
);
19273 function Names_T
(Nam
: Node_Id
) return Boolean;
19274 -- The record type has not been introduced in the current scope
19275 -- yet, so we must examine the name of the type itself, either
19276 -- an identifier T, or an expanded name of the form P.T, where
19277 -- P denotes the current scope.
19283 function Names_T
(Nam
: Node_Id
) return Boolean is
19285 if Nkind
(Nam
) = N_Identifier
then
19286 return Chars
(Nam
) = Type_Id
;
19288 elsif Nkind
(Nam
) = N_Selected_Component
then
19289 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
19290 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
19291 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
19293 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
19294 return Chars
(Selector_Name
(Prefix
(Nam
))) =
19295 Chars
(Current_Scope
);
19309 -- Start of processing for Designates_T
19312 if Nkind
(Subt
) = N_Identifier
then
19313 return Chars
(Subt
) = Type_Id
;
19315 -- Reference can be through an expanded name which has not been
19316 -- analyzed yet, and which designates enclosing scopes.
19318 elsif Nkind
(Subt
) = N_Selected_Component
then
19319 if Names_T
(Subt
) then
19322 -- Otherwise it must denote an entity that is already visible.
19323 -- The access definition may name a subtype of the enclosing
19324 -- type, if there is a previous incomplete declaration for it.
19327 Find_Selected_Component
(Subt
);
19329 Is_Entity_Name
(Subt
)
19330 and then Scope
(Entity
(Subt
)) = Current_Scope
19332 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
19334 (Is_Class_Wide_Type
(Entity
(Subt
))
19336 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
19340 -- A reference to the current type may appear as the prefix of
19341 -- a 'Class attribute.
19343 elsif Nkind
(Subt
) = N_Attribute_Reference
19344 and then Attribute_Name
(Subt
) = Name_Class
19346 return Names_T
(Prefix
(Subt
));
19357 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
19358 Param_Spec
: Node_Id
;
19360 Acc_Subprg
: constant Node_Id
:=
19361 Access_To_Subprogram_Definition
(Acc_Def
);
19364 if No
(Acc_Subprg
) then
19365 return Designates_T
(Subtype_Mark
(Acc_Def
));
19368 -- Component is an access_to_subprogram: examine its formals,
19369 -- and result definition in the case of an access_to_function.
19371 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
19372 while Present
(Param_Spec
) loop
19373 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
19374 and then Mentions_T
(Parameter_Type
(Param_Spec
))
19378 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
19385 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
19386 if Nkind
(Result_Definition
(Acc_Subprg
)) =
19387 N_Access_Definition
19389 return Mentions_T
(Result_Definition
(Acc_Subprg
));
19391 return Designates_T
(Result_Definition
(Acc_Subprg
));
19398 -- Start of processing for Check_Anonymous_Access_Components
19401 if No
(Comp_List
) then
19405 Comp
:= First
(Component_Items
(Comp_List
));
19406 while Present
(Comp
) loop
19407 if Nkind
(Comp
) = N_Component_Declaration
19409 (Access_Definition
(Component_Definition
(Comp
)))
19411 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
19413 Comp_Def
:= Component_Definition
(Comp
);
19415 Access_To_Subprogram_Definition
19416 (Access_Definition
(Comp_Def
));
19418 Build_Incomplete_Type_Declaration
;
19419 Anon_Access
:= Make_Temporary
(Loc
, 'S');
19421 -- Create a declaration for the anonymous access type: either
19422 -- an access_to_object or an access_to_subprogram.
19424 if Present
(Acc_Def
) then
19425 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
19427 Make_Access_Function_Definition
(Loc
,
19428 Parameter_Specifications
=>
19429 Parameter_Specifications
(Acc_Def
),
19430 Result_Definition
=> Result_Definition
(Acc_Def
));
19433 Make_Access_Procedure_Definition
(Loc
,
19434 Parameter_Specifications
=>
19435 Parameter_Specifications
(Acc_Def
));
19440 Make_Access_To_Object_Definition
(Loc
,
19441 Subtype_Indication
=>
19444 (Access_Definition
(Comp_Def
))));
19446 Set_Constant_Present
19447 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
19449 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
19452 Set_Null_Exclusion_Present
19454 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
19457 Make_Full_Type_Declaration
(Loc
,
19458 Defining_Identifier
=> Anon_Access
,
19459 Type_Definition
=> Type_Def
);
19461 Insert_Before
(Typ_Decl
, Decl
);
19464 -- If an access to subprogram, create the extra formals
19466 if Present
(Acc_Def
) then
19467 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
19469 -- If an access to object, preserve entity of designated type,
19470 -- for ASIS use, before rewriting the component definition.
19477 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
19479 -- If the access definition is to the current record,
19480 -- the visible entity at this point is an incomplete
19481 -- type. Retrieve the full view to simplify ASIS queries
19483 if Ekind
(Desig
) = E_Incomplete_Type
then
19484 Desig
:= Full_View
(Desig
);
19488 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
19493 Make_Component_Definition
(Loc
,
19494 Subtype_Indication
=>
19495 New_Occurrence_Of
(Anon_Access
, Loc
)));
19497 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
19498 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
19500 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
19503 Set_Is_Local_Anonymous_Access
(Anon_Access
);
19509 if Present
(Variant_Part
(Comp_List
)) then
19513 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
19514 while Present
(V
) loop
19515 Check_Anonymous_Access_Components
19516 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
19517 Next_Non_Pragma
(V
);
19521 end Check_Anonymous_Access_Components
;
19523 ----------------------------------
19524 -- Preanalyze_Assert_Expression --
19525 ----------------------------------
19527 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19529 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
19530 Preanalyze_Spec_Expression
(N
, T
);
19531 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
19532 end Preanalyze_Assert_Expression
;
19534 --------------------------------
19535 -- Preanalyze_Spec_Expression --
19536 --------------------------------
19538 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19539 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19541 In_Spec_Expression
:= True;
19542 Preanalyze_And_Resolve
(N
, T
);
19543 In_Spec_Expression
:= Save_In_Spec_Expression
;
19544 end Preanalyze_Spec_Expression
;
19546 -----------------------------
19547 -- Record_Type_Declaration --
19548 -----------------------------
19550 procedure Record_Type_Declaration
19555 Def
: constant Node_Id
:= Type_Definition
(N
);
19556 Is_Tagged
: Boolean;
19557 Tag_Comp
: Entity_Id
;
19560 -- These flags must be initialized before calling Process_Discriminants
19561 -- because this routine makes use of them.
19563 Set_Ekind
(T
, E_Record_Type
);
19565 Init_Size_Align
(T
);
19566 Set_Interfaces
(T
, No_Elist
);
19567 Set_Stored_Constraint
(T
, No_Elist
);
19571 if Ada_Version
< Ada_2005
19572 or else not Interface_Present
(Def
)
19574 if Limited_Present
(Def
) then
19575 Check_SPARK_Restriction
("limited is not allowed", N
);
19578 if Abstract_Present
(Def
) then
19579 Check_SPARK_Restriction
("abstract is not allowed", N
);
19582 -- The flag Is_Tagged_Type might have already been set by
19583 -- Find_Type_Name if it detected an error for declaration T. This
19584 -- arises in the case of private tagged types where the full view
19585 -- omits the word tagged.
19588 Tagged_Present
(Def
)
19589 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
19591 Set_Is_Tagged_Type
(T
, Is_Tagged
);
19592 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
19594 -- Type is abstract if full declaration carries keyword, or if
19595 -- previous partial view did.
19597 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
19598 or else Abstract_Present
(Def
));
19601 Check_SPARK_Restriction
("interface is not allowed", N
);
19604 Analyze_Interface_Declaration
(T
, Def
);
19606 if Present
(Discriminant_Specifications
(N
)) then
19608 ("interface types cannot have discriminants",
19609 Defining_Identifier
19610 (First
(Discriminant_Specifications
(N
))));
19614 -- First pass: if there are self-referential access components,
19615 -- create the required anonymous access type declarations, and if
19616 -- need be an incomplete type declaration for T itself.
19618 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
19620 if Ada_Version
>= Ada_2005
19621 and then Present
(Interface_List
(Def
))
19623 Check_Interfaces
(N
, Def
);
19626 Ifaces_List
: Elist_Id
;
19629 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
19630 -- already in the parents.
19634 Ifaces_List
=> Ifaces_List
,
19635 Exclude_Parents
=> True);
19637 Set_Interfaces
(T
, Ifaces_List
);
19641 -- Records constitute a scope for the component declarations within.
19642 -- The scope is created prior to the processing of these declarations.
19643 -- Discriminants are processed first, so that they are visible when
19644 -- processing the other components. The Ekind of the record type itself
19645 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
19647 -- Enter record scope
19651 -- If an incomplete or private type declaration was already given for
19652 -- the type, then this scope already exists, and the discriminants have
19653 -- been declared within. We must verify that the full declaration
19654 -- matches the incomplete one.
19656 Check_Or_Process_Discriminants
(N
, T
, Prev
);
19658 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
19659 Set_Has_Delayed_Freeze
(T
, True);
19661 -- For tagged types add a manually analyzed component corresponding
19662 -- to the component _tag, the corresponding piece of tree will be
19663 -- expanded as part of the freezing actions if it is not a CPP_Class.
19667 -- Do not add the tag unless we are in expansion mode
19669 if Expander_Active
then
19670 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
19671 Enter_Name
(Tag_Comp
);
19673 Set_Ekind
(Tag_Comp
, E_Component
);
19674 Set_Is_Tag
(Tag_Comp
);
19675 Set_Is_Aliased
(Tag_Comp
);
19676 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
19677 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
19678 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
19679 Init_Component_Location
(Tag_Comp
);
19681 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
19682 -- implemented interfaces.
19684 if Has_Interfaces
(T
) then
19685 Add_Interface_Tag_Components
(N
, T
);
19689 Make_Class_Wide_Type
(T
);
19690 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
19693 -- We must suppress range checks when processing record components in
19694 -- the presence of discriminants, since we don't want spurious checks to
19695 -- be generated during their analysis, but Suppress_Range_Checks flags
19696 -- must be reset the after processing the record definition.
19698 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
19699 -- couldn't we just use the normal range check suppression method here.
19700 -- That would seem cleaner ???
19702 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
19703 Set_Kill_Range_Checks
(T
, True);
19704 Record_Type_Definition
(Def
, Prev
);
19705 Set_Kill_Range_Checks
(T
, False);
19707 Record_Type_Definition
(Def
, Prev
);
19710 -- Exit from record scope
19714 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
19715 -- the implemented interfaces and associate them an aliased entity.
19718 and then not Is_Empty_List
(Interface_List
(Def
))
19720 Derive_Progenitor_Subprograms
(T
, T
);
19723 Check_Function_Writable_Actuals
(N
);
19724 end Record_Type_Declaration
;
19726 ----------------------------
19727 -- Record_Type_Definition --
19728 ----------------------------
19730 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
19731 Component
: Entity_Id
;
19732 Ctrl_Components
: Boolean := False;
19733 Final_Storage_Only
: Boolean;
19737 if Ekind
(Prev_T
) = E_Incomplete_Type
then
19738 T
:= Full_View
(Prev_T
);
19743 -- In SPARK, tagged types and type extensions may only be declared in
19744 -- the specification of library unit packages.
19746 if Present
(Def
) and then Is_Tagged_Type
(T
) then
19752 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
19753 Typ
:= Parent
(Def
);
19756 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
19757 Typ
:= Parent
(Parent
(Def
));
19760 Ctxt
:= Parent
(Typ
);
19762 if Nkind
(Ctxt
) = N_Package_Body
19763 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
19765 Check_SPARK_Restriction
19766 ("type should be defined in package specification", Typ
);
19768 elsif Nkind
(Ctxt
) /= N_Package_Specification
19769 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
19771 Check_SPARK_Restriction
19772 ("type should be defined in library unit package", Typ
);
19777 Final_Storage_Only
:= not Is_Controlled
(T
);
19779 -- Ada 2005: check whether an explicit Limited is present in a derived
19780 -- type declaration.
19782 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
19783 and then Limited_Present
(Parent
(Def
))
19785 Set_Is_Limited_Record
(T
);
19788 -- If the component list of a record type is defined by the reserved
19789 -- word null and there is no discriminant part, then the record type has
19790 -- no components and all records of the type are null records (RM 3.7)
19791 -- This procedure is also called to process the extension part of a
19792 -- record extension, in which case the current scope may have inherited
19796 or else No
(Component_List
(Def
))
19797 or else Null_Present
(Component_List
(Def
))
19799 if not Is_Tagged_Type
(T
) then
19800 Check_SPARK_Restriction
("non-tagged record cannot be null", Def
);
19804 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
19806 if Present
(Variant_Part
(Component_List
(Def
))) then
19807 Check_SPARK_Restriction
("variant part is not allowed", Def
);
19808 Analyze
(Variant_Part
(Component_List
(Def
)));
19812 -- After completing the semantic analysis of the record definition,
19813 -- record components, both new and inherited, are accessible. Set their
19814 -- kind accordingly. Exclude malformed itypes from illegal declarations,
19815 -- whose Ekind may be void.
19817 Component
:= First_Entity
(Current_Scope
);
19818 while Present
(Component
) loop
19819 if Ekind
(Component
) = E_Void
19820 and then not Is_Itype
(Component
)
19822 Set_Ekind
(Component
, E_Component
);
19823 Init_Component_Location
(Component
);
19826 if Has_Task
(Etype
(Component
)) then
19830 if Ekind
(Component
) /= E_Component
then
19833 -- Do not set Has_Controlled_Component on a class-wide equivalent
19834 -- type. See Make_CW_Equivalent_Type.
19836 elsif not Is_Class_Wide_Equivalent_Type
(T
)
19837 and then (Has_Controlled_Component
(Etype
(Component
))
19838 or else (Chars
(Component
) /= Name_uParent
19839 and then Is_Controlled
(Etype
(Component
))))
19841 Set_Has_Controlled_Component
(T
, True);
19842 Final_Storage_Only
:=
19844 and then Finalize_Storage_Only
(Etype
(Component
));
19845 Ctrl_Components
:= True;
19848 Next_Entity
(Component
);
19851 -- A Type is Finalize_Storage_Only only if all its controlled components
19854 if Ctrl_Components
then
19855 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
19858 -- Place reference to end record on the proper entity, which may
19859 -- be a partial view.
19861 if Present
(Def
) then
19862 Process_End_Label
(Def
, 'e', Prev_T
);
19864 end Record_Type_Definition
;
19866 ------------------------
19867 -- Replace_Components --
19868 ------------------------
19870 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
19871 function Process
(N
: Node_Id
) return Traverse_Result
;
19877 function Process
(N
: Node_Id
) return Traverse_Result
is
19881 if Nkind
(N
) = N_Discriminant_Specification
then
19882 Comp
:= First_Discriminant
(Typ
);
19883 while Present
(Comp
) loop
19884 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19885 Set_Defining_Identifier
(N
, Comp
);
19889 Next_Discriminant
(Comp
);
19892 elsif Nkind
(N
) = N_Component_Declaration
then
19893 Comp
:= First_Component
(Typ
);
19894 while Present
(Comp
) loop
19895 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
19896 Set_Defining_Identifier
(N
, Comp
);
19900 Next_Component
(Comp
);
19907 procedure Replace
is new Traverse_Proc
(Process
);
19909 -- Start of processing for Replace_Components
19913 end Replace_Components
;
19915 -------------------------------
19916 -- Set_Completion_Referenced --
19917 -------------------------------
19919 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
19921 -- If in main unit, mark entity that is a completion as referenced,
19922 -- warnings go on the partial view when needed.
19924 if In_Extended_Main_Source_Unit
(E
) then
19925 Set_Referenced
(E
);
19927 end Set_Completion_Referenced
;
19929 ---------------------
19930 -- Set_Fixed_Range --
19931 ---------------------
19933 -- The range for fixed-point types is complicated by the fact that we
19934 -- do not know the exact end points at the time of the declaration. This
19935 -- is true for three reasons:
19937 -- A size clause may affect the fudging of the end-points.
19938 -- A small clause may affect the values of the end-points.
19939 -- We try to include the end-points if it does not affect the size.
19941 -- This means that the actual end-points must be established at the
19942 -- point when the type is frozen. Meanwhile, we first narrow the range
19943 -- as permitted (so that it will fit if necessary in a small specified
19944 -- size), and then build a range subtree with these narrowed bounds.
19945 -- Set_Fixed_Range constructs the range from real literal values, and
19946 -- sets the range as the Scalar_Range of the given fixed-point type entity.
19948 -- The parent of this range is set to point to the entity so that it is
19949 -- properly hooked into the tree (unlike normal Scalar_Range entries for
19950 -- other scalar types, which are just pointers to the range in the
19951 -- original tree, this would otherwise be an orphan).
19953 -- The tree is left unanalyzed. When the type is frozen, the processing
19954 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
19955 -- analyzed, and uses this as an indication that it should complete
19956 -- work on the range (it will know the final small and size values).
19958 procedure Set_Fixed_Range
19964 S
: constant Node_Id
:=
19966 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
19967 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
19969 Set_Scalar_Range
(E
, S
);
19972 -- Before the freeze point, the bounds of a fixed point are universal
19973 -- and carry the corresponding type.
19975 Set_Etype
(Low_Bound
(S
), Universal_Real
);
19976 Set_Etype
(High_Bound
(S
), Universal_Real
);
19977 end Set_Fixed_Range
;
19979 ----------------------------------
19980 -- Set_Scalar_Range_For_Subtype --
19981 ----------------------------------
19983 procedure Set_Scalar_Range_For_Subtype
19984 (Def_Id
: Entity_Id
;
19988 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
19991 -- Defend against previous error
19993 if Nkind
(R
) = N_Error
then
19997 Set_Scalar_Range
(Def_Id
, R
);
19999 -- We need to link the range into the tree before resolving it so
20000 -- that types that are referenced, including importantly the subtype
20001 -- itself, are properly frozen (Freeze_Expression requires that the
20002 -- expression be properly linked into the tree). Of course if it is
20003 -- already linked in, then we do not disturb the current link.
20005 if No
(Parent
(R
)) then
20006 Set_Parent
(R
, Def_Id
);
20009 -- Reset the kind of the subtype during analysis of the range, to
20010 -- catch possible premature use in the bounds themselves.
20012 Set_Ekind
(Def_Id
, E_Void
);
20013 Process_Range_Expr_In_Decl
(R
, Subt
);
20014 Set_Ekind
(Def_Id
, Kind
);
20015 end Set_Scalar_Range_For_Subtype
;
20017 --------------------------------------------------------
20018 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20019 --------------------------------------------------------
20021 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20025 -- Make sure set if encountered during Expand_To_Stored_Constraint
20027 Set_Stored_Constraint
(E
, No_Elist
);
20029 -- Give it the right value
20031 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
20032 Set_Stored_Constraint
(E
,
20033 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
20035 end Set_Stored_Constraint_From_Discriminant_Constraint
;
20037 -------------------------------------
20038 -- Signed_Integer_Type_Declaration --
20039 -------------------------------------
20041 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
20042 Implicit_Base
: Entity_Id
;
20043 Base_Typ
: Entity_Id
;
20046 Errs
: Boolean := False;
20050 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
20051 -- Determine whether given bounds allow derivation from specified type
20053 procedure Check_Bound
(Expr
: Node_Id
);
20054 -- Check bound to make sure it is integral and static. If not, post
20055 -- appropriate error message and set Errs flag
20057 ---------------------
20058 -- Can_Derive_From --
20059 ---------------------
20061 -- Note we check both bounds against both end values, to deal with
20062 -- strange types like ones with a range of 0 .. -12341234.
20064 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
20065 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
20066 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
20068 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
20070 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
20071 end Can_Derive_From
;
20077 procedure Check_Bound
(Expr
: Node_Id
) is
20079 -- If a range constraint is used as an integer type definition, each
20080 -- bound of the range must be defined by a static expression of some
20081 -- integer type, but the two bounds need not have the same integer
20082 -- type (Negative bounds are allowed.) (RM 3.5.4)
20084 if not Is_Integer_Type
(Etype
(Expr
)) then
20086 ("integer type definition bounds must be of integer type", Expr
);
20089 elsif not Is_OK_Static_Expression
(Expr
) then
20090 Flag_Non_Static_Expr
20091 ("non-static expression used for integer type bound!", Expr
);
20094 -- The bounds are folded into literals, and we set their type to be
20095 -- universal, to avoid typing difficulties: we cannot set the type
20096 -- of the literal to the new type, because this would be a forward
20097 -- reference for the back end, and if the original type is user-
20098 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20101 if Is_Entity_Name
(Expr
) then
20102 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
20105 Set_Etype
(Expr
, Universal_Integer
);
20109 -- Start of processing for Signed_Integer_Type_Declaration
20112 -- Create an anonymous base type
20115 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
20117 -- Analyze and check the bounds, they can be of any integer type
20119 Lo
:= Low_Bound
(Def
);
20120 Hi
:= High_Bound
(Def
);
20122 -- Arbitrarily use Integer as the type if either bound had an error
20124 if Hi
= Error
or else Lo
= Error
then
20125 Base_Typ
:= Any_Integer
;
20126 Set_Error_Posted
(T
, True);
20128 -- Here both bounds are OK expressions
20131 Analyze_And_Resolve
(Lo
, Any_Integer
);
20132 Analyze_And_Resolve
(Hi
, Any_Integer
);
20138 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
20139 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
20142 -- Find type to derive from
20144 Lo_Val
:= Expr_Value
(Lo
);
20145 Hi_Val
:= Expr_Value
(Hi
);
20147 if Can_Derive_From
(Standard_Short_Short_Integer
) then
20148 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
20150 elsif Can_Derive_From
(Standard_Short_Integer
) then
20151 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
20153 elsif Can_Derive_From
(Standard_Integer
) then
20154 Base_Typ
:= Base_Type
(Standard_Integer
);
20156 elsif Can_Derive_From
(Standard_Long_Integer
) then
20157 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
20159 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
20160 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
20163 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
20164 Error_Msg_N
("integer type definition bounds out of range", Def
);
20165 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
20166 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
20170 -- Complete both implicit base and declared first subtype entities
20172 Set_Etype
(Implicit_Base
, Base_Typ
);
20173 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
20174 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
20175 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
20177 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
20178 Set_Etype
(T
, Implicit_Base
);
20180 -- In formal verification mode, restrict the base type's range to the
20181 -- minimum allowed by RM 3.5.4, namely the smallest symmetric range
20182 -- around zero with a possible extra negative value that contains the
20183 -- subtype range. Keep Size, RM_Size and First_Rep_Item info, which
20184 -- should not be relied upon in formal verification.
20186 if SPARK_Strict_Mode
then
20190 Dloc
: constant Source_Ptr
:= Sloc
(Def
);
20196 -- If the subtype range is empty, the smallest base type range
20197 -- is the symmetric range around zero containing Lo_Val and
20200 if UI_Gt
(Lo_Val
, Hi_Val
) then
20201 Sym_Hi_Val
:= UI_Max
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
));
20202 Sym_Lo_Val
:= UI_Negate
(Sym_Hi_Val
);
20204 -- Otherwise, if the subtype range is not empty and Hi_Val has
20205 -- the largest absolute value, Hi_Val is non negative and the
20206 -- smallest base type range is the symmetric range around zero
20207 -- containing Hi_Val.
20209 elsif UI_Le
(UI_Abs
(Lo_Val
), UI_Abs
(Hi_Val
)) then
20210 Sym_Hi_Val
:= Hi_Val
;
20211 Sym_Lo_Val
:= UI_Negate
(Hi_Val
);
20213 -- Otherwise, the subtype range is not empty, Lo_Val has the
20214 -- strictly largest absolute value, Lo_Val is negative and the
20215 -- smallest base type range is the symmetric range around zero
20216 -- with an extra negative value Lo_Val.
20219 Sym_Lo_Val
:= Lo_Val
;
20220 Sym_Hi_Val
:= UI_Sub
(UI_Negate
(Lo_Val
), Uint_1
);
20223 Lbound
:= Make_Integer_Literal
(Dloc
, Sym_Lo_Val
);
20224 Ubound
:= Make_Integer_Literal
(Dloc
, Sym_Hi_Val
);
20225 Set_Is_Static_Expression
(Lbound
);
20226 Set_Is_Static_Expression
(Ubound
);
20227 Analyze_And_Resolve
(Lbound
, Any_Integer
);
20228 Analyze_And_Resolve
(Ubound
, Any_Integer
);
20230 Bounds
:= Make_Range
(Dloc
, Lbound
, Ubound
);
20231 Set_Etype
(Bounds
, Base_Typ
);
20233 Set_Scalar_Range
(Implicit_Base
, Bounds
);
20237 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
20240 Set_Size_Info
(T
, (Implicit_Base
));
20241 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
20242 Set_Scalar_Range
(T
, Def
);
20243 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
20244 Set_Is_Constrained
(T
);
20245 end Signed_Integer_Type_Declaration
;