2013-05-03 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / a-rbtgbo.adb
blobddf3fe2262a184baf8522c493675003bfb7b1c7a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 -- The references below to "CLR" refer to the following book, from which
31 -- several of the algorithms here were adapted:
32 -- Introduction to Algorithms
33 -- by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
34 -- Publisher: The MIT Press (June 18, 1990)
35 -- ISBN: 0262031418
37 with System; use type System.Address;
39 package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations is
41 -----------------------
42 -- Local Subprograms --
43 -----------------------
45 procedure Delete_Fixup (Tree : in out Tree_Type'Class; Node : Count_Type);
46 procedure Delete_Swap (Tree : in out Tree_Type'Class; Z, Y : Count_Type);
48 procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type);
49 procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type);
51 ----------------
52 -- Clear_Tree --
53 ----------------
55 procedure Clear_Tree (Tree : in out Tree_Type'Class) is
56 begin
57 if Tree.Busy > 0 then
58 raise Program_Error with
59 "attempt to tamper with cursors (container is busy)";
60 end if;
62 -- The lock status (which monitors "element tampering") always implies
63 -- that the busy status (which monitors "cursor tampering") is set too;
64 -- this is a representation invariant. Thus if the busy bit is not set,
65 -- then the lock bit must not be set either.
67 pragma Assert (Tree.Lock = 0);
69 Tree.First := 0;
70 Tree.Last := 0;
71 Tree.Root := 0;
72 Tree.Length := 0;
73 Tree.Free := -1;
74 end Clear_Tree;
76 ------------------
77 -- Delete_Fixup --
78 ------------------
80 procedure Delete_Fixup
81 (Tree : in out Tree_Type'Class;
82 Node : Count_Type)
84 -- CLR p. 274
86 X : Count_Type;
87 W : Count_Type;
88 N : Nodes_Type renames Tree.Nodes;
90 begin
91 X := Node;
92 while X /= Tree.Root
93 and then Color (N (X)) = Black
94 loop
95 if X = Left (N (Parent (N (X)))) then
96 W := Right (N (Parent (N (X))));
98 if Color (N (W)) = Red then
99 Set_Color (N (W), Black);
100 Set_Color (N (Parent (N (X))), Red);
101 Left_Rotate (Tree, Parent (N (X)));
102 W := Right (N (Parent (N (X))));
103 end if;
105 if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
106 and then
107 (Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
108 then
109 Set_Color (N (W), Red);
110 X := Parent (N (X));
112 else
113 if Right (N (W)) = 0
114 or else Color (N (Right (N (W)))) = Black
115 then
116 -- As a condition for setting the color of the left child to
117 -- black, the left child access value must be non-null. A
118 -- truth table analysis shows that if we arrive here, that
119 -- condition holds, so there's no need for an explicit test.
120 -- The assertion is here to document what we know is true.
122 pragma Assert (Left (N (W)) /= 0);
123 Set_Color (N (Left (N (W))), Black);
125 Set_Color (N (W), Red);
126 Right_Rotate (Tree, W);
127 W := Right (N (Parent (N (X))));
128 end if;
130 Set_Color (N (W), Color (N (Parent (N (X)))));
131 Set_Color (N (Parent (N (X))), Black);
132 Set_Color (N (Right (N (W))), Black);
133 Left_Rotate (Tree, Parent (N (X)));
134 X := Tree.Root;
135 end if;
137 else
138 pragma Assert (X = Right (N (Parent (N (X)))));
140 W := Left (N (Parent (N (X))));
142 if Color (N (W)) = Red then
143 Set_Color (N (W), Black);
144 Set_Color (N (Parent (N (X))), Red);
145 Right_Rotate (Tree, Parent (N (X)));
146 W := Left (N (Parent (N (X))));
147 end if;
149 if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
150 and then
151 (Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
152 then
153 Set_Color (N (W), Red);
154 X := Parent (N (X));
156 else
157 if Left (N (W)) = 0
158 or else Color (N (Left (N (W)))) = Black
159 then
160 -- As a condition for setting the color of the right child
161 -- to black, the right child access value must be non-null.
162 -- A truth table analysis shows that if we arrive here, that
163 -- condition holds, so there's no need for an explicit test.
164 -- The assertion is here to document what we know is true.
166 pragma Assert (Right (N (W)) /= 0);
167 Set_Color (N (Right (N (W))), Black);
169 Set_Color (N (W), Red);
170 Left_Rotate (Tree, W);
171 W := Left (N (Parent (N (X))));
172 end if;
174 Set_Color (N (W), Color (N (Parent (N (X)))));
175 Set_Color (N (Parent (N (X))), Black);
176 Set_Color (N (Left (N (W))), Black);
177 Right_Rotate (Tree, Parent (N (X)));
178 X := Tree.Root;
179 end if;
180 end if;
181 end loop;
183 Set_Color (N (X), Black);
184 end Delete_Fixup;
186 ---------------------------
187 -- Delete_Node_Sans_Free --
188 ---------------------------
190 procedure Delete_Node_Sans_Free
191 (Tree : in out Tree_Type'Class;
192 Node : Count_Type)
194 -- CLR p. 273
196 X, Y : Count_Type;
198 Z : constant Count_Type := Node;
199 pragma Assert (Z /= 0);
201 N : Nodes_Type renames Tree.Nodes;
203 begin
204 if Tree.Busy > 0 then
205 raise Program_Error with
206 "attempt to tamper with cursors (container is busy)";
207 end if;
209 pragma Assert (Tree.Length > 0);
210 pragma Assert (Tree.Root /= 0);
211 pragma Assert (Tree.First /= 0);
212 pragma Assert (Tree.Last /= 0);
213 pragma Assert (Parent (N (Tree.Root)) = 0);
215 pragma Assert ((Tree.Length > 1)
216 or else (Tree.First = Tree.Last
217 and then Tree.First = Tree.Root));
219 pragma Assert ((Left (N (Node)) = 0)
220 or else (Parent (N (Left (N (Node)))) = Node));
222 pragma Assert ((Right (N (Node)) = 0)
223 or else (Parent (N (Right (N (Node)))) = Node));
225 pragma Assert (((Parent (N (Node)) = 0) and then (Tree.Root = Node))
226 or else ((Parent (N (Node)) /= 0) and then
227 ((Left (N (Parent (N (Node)))) = Node)
228 or else
229 (Right (N (Parent (N (Node)))) = Node))));
231 if Left (N (Z)) = 0 then
232 if Right (N (Z)) = 0 then
233 if Z = Tree.First then
234 Tree.First := Parent (N (Z));
235 end if;
237 if Z = Tree.Last then
238 Tree.Last := Parent (N (Z));
239 end if;
241 if Color (N (Z)) = Black then
242 Delete_Fixup (Tree, Z);
243 end if;
245 pragma Assert (Left (N (Z)) = 0);
246 pragma Assert (Right (N (Z)) = 0);
248 if Z = Tree.Root then
249 pragma Assert (Tree.Length = 1);
250 pragma Assert (Parent (N (Z)) = 0);
251 Tree.Root := 0;
252 elsif Z = Left (N (Parent (N (Z)))) then
253 Set_Left (N (Parent (N (Z))), 0);
254 else
255 pragma Assert (Z = Right (N (Parent (N (Z)))));
256 Set_Right (N (Parent (N (Z))), 0);
257 end if;
259 else
260 pragma Assert (Z /= Tree.Last);
262 X := Right (N (Z));
264 if Z = Tree.First then
265 Tree.First := Min (Tree, X);
266 end if;
268 if Z = Tree.Root then
269 Tree.Root := X;
270 elsif Z = Left (N (Parent (N (Z)))) then
271 Set_Left (N (Parent (N (Z))), X);
272 else
273 pragma Assert (Z = Right (N (Parent (N (Z)))));
274 Set_Right (N (Parent (N (Z))), X);
275 end if;
277 Set_Parent (N (X), Parent (N (Z)));
279 if Color (N (Z)) = Black then
280 Delete_Fixup (Tree, X);
281 end if;
282 end if;
284 elsif Right (N (Z)) = 0 then
285 pragma Assert (Z /= Tree.First);
287 X := Left (N (Z));
289 if Z = Tree.Last then
290 Tree.Last := Max (Tree, X);
291 end if;
293 if Z = Tree.Root then
294 Tree.Root := X;
295 elsif Z = Left (N (Parent (N (Z)))) then
296 Set_Left (N (Parent (N (Z))), X);
297 else
298 pragma Assert (Z = Right (N (Parent (N (Z)))));
299 Set_Right (N (Parent (N (Z))), X);
300 end if;
302 Set_Parent (N (X), Parent (N (Z)));
304 if Color (N (Z)) = Black then
305 Delete_Fixup (Tree, X);
306 end if;
308 else
309 pragma Assert (Z /= Tree.First);
310 pragma Assert (Z /= Tree.Last);
312 Y := Next (Tree, Z);
313 pragma Assert (Left (N (Y)) = 0);
315 X := Right (N (Y));
317 if X = 0 then
318 if Y = Left (N (Parent (N (Y)))) then
319 pragma Assert (Parent (N (Y)) /= Z);
320 Delete_Swap (Tree, Z, Y);
321 Set_Left (N (Parent (N (Z))), Z);
323 else
324 pragma Assert (Y = Right (N (Parent (N (Y)))));
325 pragma Assert (Parent (N (Y)) = Z);
326 Set_Parent (N (Y), Parent (N (Z)));
328 if Z = Tree.Root then
329 Tree.Root := Y;
330 elsif Z = Left (N (Parent (N (Z)))) then
331 Set_Left (N (Parent (N (Z))), Y);
332 else
333 pragma Assert (Z = Right (N (Parent (N (Z)))));
334 Set_Right (N (Parent (N (Z))), Y);
335 end if;
337 Set_Left (N (Y), Left (N (Z)));
338 Set_Parent (N (Left (N (Y))), Y);
339 Set_Right (N (Y), Z);
341 Set_Parent (N (Z), Y);
342 Set_Left (N (Z), 0);
343 Set_Right (N (Z), 0);
345 declare
346 Y_Color : constant Color_Type := Color (N (Y));
347 begin
348 Set_Color (N (Y), Color (N (Z)));
349 Set_Color (N (Z), Y_Color);
350 end;
351 end if;
353 if Color (N (Z)) = Black then
354 Delete_Fixup (Tree, Z);
355 end if;
357 pragma Assert (Left (N (Z)) = 0);
358 pragma Assert (Right (N (Z)) = 0);
360 if Z = Right (N (Parent (N (Z)))) then
361 Set_Right (N (Parent (N (Z))), 0);
362 else
363 pragma Assert (Z = Left (N (Parent (N (Z)))));
364 Set_Left (N (Parent (N (Z))), 0);
365 end if;
367 else
368 if Y = Left (N (Parent (N (Y)))) then
369 pragma Assert (Parent (N (Y)) /= Z);
371 Delete_Swap (Tree, Z, Y);
373 Set_Left (N (Parent (N (Z))), X);
374 Set_Parent (N (X), Parent (N (Z)));
376 else
377 pragma Assert (Y = Right (N (Parent (N (Y)))));
378 pragma Assert (Parent (N (Y)) = Z);
380 Set_Parent (N (Y), Parent (N (Z)));
382 if Z = Tree.Root then
383 Tree.Root := Y;
384 elsif Z = Left (N (Parent (N (Z)))) then
385 Set_Left (N (Parent (N (Z))), Y);
386 else
387 pragma Assert (Z = Right (N (Parent (N (Z)))));
388 Set_Right (N (Parent (N (Z))), Y);
389 end if;
391 Set_Left (N (Y), Left (N (Z)));
392 Set_Parent (N (Left (N (Y))), Y);
394 declare
395 Y_Color : constant Color_Type := Color (N (Y));
396 begin
397 Set_Color (N (Y), Color (N (Z)));
398 Set_Color (N (Z), Y_Color);
399 end;
400 end if;
402 if Color (N (Z)) = Black then
403 Delete_Fixup (Tree, X);
404 end if;
405 end if;
406 end if;
408 Tree.Length := Tree.Length - 1;
409 end Delete_Node_Sans_Free;
411 -----------------
412 -- Delete_Swap --
413 -----------------
415 procedure Delete_Swap
416 (Tree : in out Tree_Type'Class;
417 Z, Y : Count_Type)
419 N : Nodes_Type renames Tree.Nodes;
421 pragma Assert (Z /= Y);
422 pragma Assert (Parent (N (Y)) /= Z);
424 Y_Parent : constant Count_Type := Parent (N (Y));
425 Y_Color : constant Color_Type := Color (N (Y));
427 begin
428 Set_Parent (N (Y), Parent (N (Z)));
429 Set_Left (N (Y), Left (N (Z)));
430 Set_Right (N (Y), Right (N (Z)));
431 Set_Color (N (Y), Color (N (Z)));
433 if Tree.Root = Z then
434 Tree.Root := Y;
435 elsif Right (N (Parent (N (Y)))) = Z then
436 Set_Right (N (Parent (N (Y))), Y);
437 else
438 pragma Assert (Left (N (Parent (N (Y)))) = Z);
439 Set_Left (N (Parent (N (Y))), Y);
440 end if;
442 if Right (N (Y)) /= 0 then
443 Set_Parent (N (Right (N (Y))), Y);
444 end if;
446 if Left (N (Y)) /= 0 then
447 Set_Parent (N (Left (N (Y))), Y);
448 end if;
450 Set_Parent (N (Z), Y_Parent);
451 Set_Color (N (Z), Y_Color);
452 Set_Left (N (Z), 0);
453 Set_Right (N (Z), 0);
454 end Delete_Swap;
456 ----------
457 -- Free --
458 ----------
460 procedure Free (Tree : in out Tree_Type'Class; X : Count_Type) is
461 pragma Assert (X > 0);
462 pragma Assert (X <= Tree.Capacity);
464 N : Nodes_Type renames Tree.Nodes;
465 -- pragma Assert (N (X).Prev >= 0); -- node is active
466 -- Find a way to mark a node as active vs. inactive; we could
467 -- use a special value in Color_Type for this. ???
469 begin
470 -- The set container actually contains two data structures: a list for
471 -- the "active" nodes that contain elements that have been inserted
472 -- onto the tree, and another for the "inactive" nodes of the free
473 -- store.
475 -- We desire that merely declaring an object should have only minimal
476 -- cost; specially, we want to avoid having to initialize the free
477 -- store (to fill in the links), especially if the capacity is large.
479 -- The head of the free list is indicated by Container.Free. If its
480 -- value is non-negative, then the free store has been initialized
481 -- in the "normal" way: Container.Free points to the head of the list
482 -- of free (inactive) nodes, and the value 0 means the free list is
483 -- empty. Each node on the free list has been initialized to point
484 -- to the next free node (via its Parent component), and the value 0
485 -- means that this is the last free node.
487 -- If Container.Free is negative, then the links on the free store
488 -- have not been initialized. In this case the link values are
489 -- implied: the free store comprises the components of the node array
490 -- started with the absolute value of Container.Free, and continuing
491 -- until the end of the array (Nodes'Last).
493 -- ???
494 -- It might be possible to perform an optimization here. Suppose that
495 -- the free store can be represented as having two parts: one
496 -- comprising the non-contiguous inactive nodes linked together
497 -- in the normal way, and the other comprising the contiguous
498 -- inactive nodes (that are not linked together, at the end of the
499 -- nodes array). This would allow us to never have to initialize
500 -- the free store, except in a lazy way as nodes become inactive.
502 -- When an element is deleted from the list container, its node
503 -- becomes inactive, and so we set its Prev component to a negative
504 -- value, to indicate that it is now inactive. This provides a useful
505 -- way to detect a dangling cursor reference.
507 -- The comment above is incorrect; we need some other way to
508 -- indicate a node is inactive, for example by using a special
509 -- Color_Type value. ???
510 -- N (X).Prev := -1; -- Node is deallocated (not on active list)
512 if Tree.Free >= 0 then
513 -- The free store has previously been initialized. All we need to
514 -- do here is link the newly-free'd node onto the free list.
516 Set_Parent (N (X), Tree.Free);
517 Tree.Free := X;
519 elsif X + 1 = abs Tree.Free then
520 -- The free store has not been initialized, and the node becoming
521 -- inactive immediately precedes the start of the free store. All
522 -- we need to do is move the start of the free store back by one.
524 Tree.Free := Tree.Free + 1;
526 else
527 -- The free store has not been initialized, and the node becoming
528 -- inactive does not immediately precede the free store. Here we
529 -- first initialize the free store (meaning the links are given
530 -- values in the traditional way), and then link the newly-free'd
531 -- node onto the head of the free store.
533 -- ???
534 -- See the comments above for an optimization opportunity. If the
535 -- next link for a node on the free store is negative, then this
536 -- means the remaining nodes on the free store are physically
537 -- contiguous, starting as the absolute value of that index value.
539 Tree.Free := abs Tree.Free;
541 if Tree.Free > Tree.Capacity then
542 Tree.Free := 0;
544 else
545 for I in Tree.Free .. Tree.Capacity - 1 loop
546 Set_Parent (N (I), I + 1);
547 end loop;
549 Set_Parent (N (Tree.Capacity), 0);
550 end if;
552 Set_Parent (N (X), Tree.Free);
553 Tree.Free := X;
554 end if;
555 end Free;
557 -----------------------
558 -- Generic_Allocate --
559 -----------------------
561 procedure Generic_Allocate
562 (Tree : in out Tree_Type'Class;
563 Node : out Count_Type)
565 N : Nodes_Type renames Tree.Nodes;
567 begin
568 if Tree.Free >= 0 then
569 Node := Tree.Free;
571 -- We always perform the assignment first, before we
572 -- change container state, in order to defend against
573 -- exceptions duration assignment.
575 Set_Element (N (Node));
576 Tree.Free := Parent (N (Node));
578 else
579 -- A negative free store value means that the links of the nodes
580 -- in the free store have not been initialized. In this case, the
581 -- nodes are physically contiguous in the array, starting at the
582 -- index that is the absolute value of the Container.Free, and
583 -- continuing until the end of the array (Nodes'Last).
585 Node := abs Tree.Free;
587 -- As above, we perform this assignment first, before modifying
588 -- any container state.
590 Set_Element (N (Node));
591 Tree.Free := Tree.Free - 1;
592 end if;
594 -- When a node is allocated from the free store, its pointer components
595 -- (the links to other nodes in the tree) must also be initialized (to
596 -- 0, the equivalent of null). This simplifies the post-allocation
597 -- handling of nodes inserted into terminal positions.
599 Set_Parent (N (Node), Parent => 0);
600 Set_Left (N (Node), Left => 0);
601 Set_Right (N (Node), Right => 0);
602 end Generic_Allocate;
604 -------------------
605 -- Generic_Equal --
606 -------------------
608 function Generic_Equal (Left, Right : Tree_Type'Class) return Boolean is
609 BL : Natural renames Left'Unrestricted_Access.Busy;
610 LL : Natural renames Left'Unrestricted_Access.Lock;
612 BR : Natural renames Right'Unrestricted_Access.Busy;
613 LR : Natural renames Right'Unrestricted_Access.Lock;
615 L_Node : Count_Type;
616 R_Node : Count_Type;
618 Result : Boolean;
620 begin
621 if Left'Address = Right'Address then
622 return True;
623 end if;
625 if Left.Length /= Right.Length then
626 return False;
627 end if;
629 -- If the containers are empty, return a result immediately, so as to
630 -- not manipulate the tamper bits unnecessarily.
632 if Left.Length = 0 then
633 return True;
634 end if;
636 -- Per AI05-0022, the container implementation is required to detect
637 -- element tampering by a generic actual subprogram.
639 BL := BL + 1;
640 LL := LL + 1;
642 BR := BR + 1;
643 LR := LR + 1;
645 L_Node := Left.First;
646 R_Node := Right.First;
647 Result := True;
648 while L_Node /= 0 loop
649 if not Is_Equal (Left.Nodes (L_Node), Right.Nodes (R_Node)) then
650 Result := False;
651 exit;
652 end if;
654 L_Node := Next (Left, L_Node);
655 R_Node := Next (Right, R_Node);
656 end loop;
658 BL := BL - 1;
659 LL := LL - 1;
661 BR := BR - 1;
662 LR := LR - 1;
664 return Result;
666 exception
667 when others =>
668 BL := BL - 1;
669 LL := LL - 1;
671 BR := BR - 1;
672 LR := LR - 1;
674 raise;
675 end Generic_Equal;
677 -----------------------
678 -- Generic_Iteration --
679 -----------------------
681 procedure Generic_Iteration (Tree : Tree_Type'Class) is
682 procedure Iterate (P : Count_Type);
684 -------------
685 -- Iterate --
686 -------------
688 procedure Iterate (P : Count_Type) is
689 X : Count_Type := P;
690 begin
691 while X /= 0 loop
692 Iterate (Left (Tree.Nodes (X)));
693 Process (X);
694 X := Right (Tree.Nodes (X));
695 end loop;
696 end Iterate;
698 -- Start of processing for Generic_Iteration
700 begin
701 Iterate (Tree.Root);
702 end Generic_Iteration;
704 ------------------
705 -- Generic_Read --
706 ------------------
708 procedure Generic_Read
709 (Stream : not null access Root_Stream_Type'Class;
710 Tree : in out Tree_Type'Class)
712 Len : Count_Type'Base;
714 Node, Last_Node : Count_Type;
716 N : Nodes_Type renames Tree.Nodes;
718 begin
719 Clear_Tree (Tree);
720 Count_Type'Base'Read (Stream, Len);
722 if Len < 0 then
723 raise Program_Error with "bad container length (corrupt stream)";
724 end if;
726 if Len = 0 then
727 return;
728 end if;
730 if Len > Tree.Capacity then
731 raise Constraint_Error with "length exceeds capacity";
732 end if;
734 -- Use Unconditional_Insert_With_Hint here instead ???
736 Allocate (Tree, Node);
737 pragma Assert (Node /= 0);
739 Set_Color (N (Node), Black);
741 Tree.Root := Node;
742 Tree.First := Node;
743 Tree.Last := Node;
744 Tree.Length := 1;
746 for J in Count_Type range 2 .. Len loop
747 Last_Node := Node;
748 pragma Assert (Last_Node = Tree.Last);
750 Allocate (Tree, Node);
751 pragma Assert (Node /= 0);
753 Set_Color (N (Node), Red);
754 Set_Right (N (Last_Node), Right => Node);
755 Tree.Last := Node;
756 Set_Parent (N (Node), Parent => Last_Node);
758 Rebalance_For_Insert (Tree, Node);
759 Tree.Length := Tree.Length + 1;
760 end loop;
761 end Generic_Read;
763 -------------------------------
764 -- Generic_Reverse_Iteration --
765 -------------------------------
767 procedure Generic_Reverse_Iteration (Tree : Tree_Type'Class) is
768 procedure Iterate (P : Count_Type);
770 -------------
771 -- Iterate --
772 -------------
774 procedure Iterate (P : Count_Type) is
775 X : Count_Type := P;
776 begin
777 while X /= 0 loop
778 Iterate (Right (Tree.Nodes (X)));
779 Process (X);
780 X := Left (Tree.Nodes (X));
781 end loop;
782 end Iterate;
784 -- Start of processing for Generic_Reverse_Iteration
786 begin
787 Iterate (Tree.Root);
788 end Generic_Reverse_Iteration;
790 -------------------
791 -- Generic_Write --
792 -------------------
794 procedure Generic_Write
795 (Stream : not null access Root_Stream_Type'Class;
796 Tree : Tree_Type'Class)
798 procedure Process (Node : Count_Type);
799 pragma Inline (Process);
801 procedure Iterate is new Generic_Iteration (Process);
803 -------------
804 -- Process --
805 -------------
807 procedure Process (Node : Count_Type) is
808 begin
809 Write_Node (Stream, Tree.Nodes (Node));
810 end Process;
812 -- Start of processing for Generic_Write
814 begin
815 Count_Type'Base'Write (Stream, Tree.Length);
816 Iterate (Tree);
817 end Generic_Write;
819 -----------------
820 -- Left_Rotate --
821 -----------------
823 procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type) is
824 -- CLR p. 266
826 N : Nodes_Type renames Tree.Nodes;
828 Y : constant Count_Type := Right (N (X));
829 pragma Assert (Y /= 0);
831 begin
832 Set_Right (N (X), Left (N (Y)));
834 if Left (N (Y)) /= 0 then
835 Set_Parent (N (Left (N (Y))), X);
836 end if;
838 Set_Parent (N (Y), Parent (N (X)));
840 if X = Tree.Root then
841 Tree.Root := Y;
842 elsif X = Left (N (Parent (N (X)))) then
843 Set_Left (N (Parent (N (X))), Y);
844 else
845 pragma Assert (X = Right (N (Parent (N (X)))));
846 Set_Right (N (Parent (N (X))), Y);
847 end if;
849 Set_Left (N (Y), X);
850 Set_Parent (N (X), Y);
851 end Left_Rotate;
853 ---------
854 -- Max --
855 ---------
857 function Max
858 (Tree : Tree_Type'Class;
859 Node : Count_Type) return Count_Type
861 -- CLR p. 248
863 X : Count_Type := Node;
864 Y : Count_Type;
866 begin
867 loop
868 Y := Right (Tree.Nodes (X));
870 if Y = 0 then
871 return X;
872 end if;
874 X := Y;
875 end loop;
876 end Max;
878 ---------
879 -- Min --
880 ---------
882 function Min
883 (Tree : Tree_Type'Class;
884 Node : Count_Type) return Count_Type
886 -- CLR p. 248
888 X : Count_Type := Node;
889 Y : Count_Type;
891 begin
892 loop
893 Y := Left (Tree.Nodes (X));
895 if Y = 0 then
896 return X;
897 end if;
899 X := Y;
900 end loop;
901 end Min;
903 ----------
904 -- Next --
905 ----------
907 function Next
908 (Tree : Tree_Type'Class;
909 Node : Count_Type) return Count_Type
911 begin
912 -- CLR p. 249
914 if Node = 0 then
915 return 0;
916 end if;
918 if Right (Tree.Nodes (Node)) /= 0 then
919 return Min (Tree, Right (Tree.Nodes (Node)));
920 end if;
922 declare
923 X : Count_Type := Node;
924 Y : Count_Type := Parent (Tree.Nodes (Node));
926 begin
927 while Y /= 0
928 and then X = Right (Tree.Nodes (Y))
929 loop
930 X := Y;
931 Y := Parent (Tree.Nodes (Y));
932 end loop;
934 return Y;
935 end;
936 end Next;
938 --------------
939 -- Previous --
940 --------------
942 function Previous
943 (Tree : Tree_Type'Class;
944 Node : Count_Type) return Count_Type
946 begin
947 if Node = 0 then
948 return 0;
949 end if;
951 if Left (Tree.Nodes (Node)) /= 0 then
952 return Max (Tree, Left (Tree.Nodes (Node)));
953 end if;
955 declare
956 X : Count_Type := Node;
957 Y : Count_Type := Parent (Tree.Nodes (Node));
959 begin
960 while Y /= 0
961 and then X = Left (Tree.Nodes (Y))
962 loop
963 X := Y;
964 Y := Parent (Tree.Nodes (Y));
965 end loop;
967 return Y;
968 end;
969 end Previous;
971 --------------------------
972 -- Rebalance_For_Insert --
973 --------------------------
975 procedure Rebalance_For_Insert
976 (Tree : in out Tree_Type'Class;
977 Node : Count_Type)
979 -- CLR p. 268
981 N : Nodes_Type renames Tree.Nodes;
983 X : Count_Type := Node;
984 pragma Assert (X /= 0);
985 pragma Assert (Color (N (X)) = Red);
987 Y : Count_Type;
989 begin
990 while X /= Tree.Root and then Color (N (Parent (N (X)))) = Red loop
991 if Parent (N (X)) = Left (N (Parent (N (Parent (N (X)))))) then
992 Y := Right (N (Parent (N (Parent (N (X))))));
994 if Y /= 0 and then Color (N (Y)) = Red then
995 Set_Color (N (Parent (N (X))), Black);
996 Set_Color (N (Y), Black);
997 Set_Color (N (Parent (N (Parent (N (X))))), Red);
998 X := Parent (N (Parent (N (X))));
1000 else
1001 if X = Right (N (Parent (N (X)))) then
1002 X := Parent (N (X));
1003 Left_Rotate (Tree, X);
1004 end if;
1006 Set_Color (N (Parent (N (X))), Black);
1007 Set_Color (N (Parent (N (Parent (N (X))))), Red);
1008 Right_Rotate (Tree, Parent (N (Parent (N (X)))));
1009 end if;
1011 else
1012 pragma Assert (Parent (N (X)) =
1013 Right (N (Parent (N (Parent (N (X)))))));
1015 Y := Left (N (Parent (N (Parent (N (X))))));
1017 if Y /= 0 and then Color (N (Y)) = Red then
1018 Set_Color (N (Parent (N (X))), Black);
1019 Set_Color (N (Y), Black);
1020 Set_Color (N (Parent (N (Parent (N (X))))), Red);
1021 X := Parent (N (Parent (N (X))));
1023 else
1024 if X = Left (N (Parent (N (X)))) then
1025 X := Parent (N (X));
1026 Right_Rotate (Tree, X);
1027 end if;
1029 Set_Color (N (Parent (N (X))), Black);
1030 Set_Color (N (Parent (N (Parent (N (X))))), Red);
1031 Left_Rotate (Tree, Parent (N (Parent (N (X)))));
1032 end if;
1033 end if;
1034 end loop;
1036 Set_Color (N (Tree.Root), Black);
1037 end Rebalance_For_Insert;
1039 ------------------
1040 -- Right_Rotate --
1041 ------------------
1043 procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type) is
1044 N : Nodes_Type renames Tree.Nodes;
1046 X : constant Count_Type := Left (N (Y));
1047 pragma Assert (X /= 0);
1049 begin
1050 Set_Left (N (Y), Right (N (X)));
1052 if Right (N (X)) /= 0 then
1053 Set_Parent (N (Right (N (X))), Y);
1054 end if;
1056 Set_Parent (N (X), Parent (N (Y)));
1058 if Y = Tree.Root then
1059 Tree.Root := X;
1060 elsif Y = Left (N (Parent (N (Y)))) then
1061 Set_Left (N (Parent (N (Y))), X);
1062 else
1063 pragma Assert (Y = Right (N (Parent (N (Y)))));
1064 Set_Right (N (Parent (N (Y))), X);
1065 end if;
1067 Set_Right (N (X), Y);
1068 Set_Parent (N (Y), X);
1069 end Right_Rotate;
1071 ---------
1072 -- Vet --
1073 ---------
1075 function Vet (Tree : Tree_Type'Class; Index : Count_Type) return Boolean is
1076 Nodes : Nodes_Type renames Tree.Nodes;
1077 Node : Node_Type renames Nodes (Index);
1079 begin
1080 if Parent (Node) = Index
1081 or else Left (Node) = Index
1082 or else Right (Node) = Index
1083 then
1084 return False;
1085 end if;
1087 if Tree.Length = 0
1088 or else Tree.Root = 0
1089 or else Tree.First = 0
1090 or else Tree.Last = 0
1091 then
1092 return False;
1093 end if;
1095 if Parent (Nodes (Tree.Root)) /= 0 then
1096 return False;
1097 end if;
1099 if Left (Nodes (Tree.First)) /= 0 then
1100 return False;
1101 end if;
1103 if Right (Nodes (Tree.Last)) /= 0 then
1104 return False;
1105 end if;
1107 if Tree.Length = 1 then
1108 if Tree.First /= Tree.Last
1109 or else Tree.First /= Tree.Root
1110 then
1111 return False;
1112 end if;
1114 if Index /= Tree.First then
1115 return False;
1116 end if;
1118 if Parent (Node) /= 0
1119 or else Left (Node) /= 0
1120 or else Right (Node) /= 0
1121 then
1122 return False;
1123 end if;
1125 return True;
1126 end if;
1128 if Tree.First = Tree.Last then
1129 return False;
1130 end if;
1132 if Tree.Length = 2 then
1133 if Tree.First /= Tree.Root
1134 and then Tree.Last /= Tree.Root
1135 then
1136 return False;
1137 end if;
1139 if Tree.First /= Index
1140 and then Tree.Last /= Index
1141 then
1142 return False;
1143 end if;
1144 end if;
1146 if Left (Node) /= 0
1147 and then Parent (Nodes (Left (Node))) /= Index
1148 then
1149 return False;
1150 end if;
1152 if Right (Node) /= 0
1153 and then Parent (Nodes (Right (Node))) /= Index
1154 then
1155 return False;
1156 end if;
1158 if Parent (Node) = 0 then
1159 if Tree.Root /= Index then
1160 return False;
1161 end if;
1163 elsif Left (Nodes (Parent (Node))) /= Index
1164 and then Right (Nodes (Parent (Node))) /= Index
1165 then
1166 return False;
1167 end if;
1169 return True;
1170 end Vet;
1172 end Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;