1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
5 -- S Y S T E M . A D D R E S S _ O P E R A T I O N S --
9 -- Copyright (C) 2004-2006, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 ------------------------------------------------------------------------------
34 -- This package provides arithmetic and logical operations on type Address.
35 -- It is intended for use by other packages in the System hierarchy. For
36 -- applications requiring this capability, see System.Storage_Elements or
37 -- the operations introduced in System.Aux_DEC;
39 -- The reason we need this package is that arithmetic operations may not
40 -- be available in the case where type Address is non-private and the
41 -- operations have been made abstract in the spec of System (to avoid
42 -- inappropriate use by applications programs). In addition, the logical
43 -- operations may not be available if type Address is a signed integer.
45 package System
.Address_Operations
is
48 -- The semantics of the arithmetic operations are those that apply to
49 -- a modular type with the same length as Address, i.e. they provide
50 -- twos complement wrap around arithmetic treating the address value
51 -- as an unsigned value, with no overflow checking.
53 -- Note that we do not use the infix names for these operations to
54 -- avoid problems with ambiguities coming from declarations in package
55 -- Standard (which may or may not be visible depending on the exact
56 -- form of the declaration of type System.Address).
58 -- For addition, subtraction, and multiplication, the effect of overflow
59 -- is 2's complement wrapping (as though the type Address were unsigned).
61 -- For division and modulus operations, the caller is responsible for
62 -- ensuring that the Right argument is non-zero, and the effect of the
63 -- call is not specified if a zero argument is passed.
65 function AddA
(Left
, Right
: Address
) return Address
;
66 function SubA
(Left
, Right
: Address
) return Address
;
67 function MulA
(Left
, Right
: Address
) return Address
;
68 function DivA
(Left
, Right
: Address
) return Address
;
69 function ModA
(Left
, Right
: Address
) return Address
;
71 -- The semantics of the logical operations are those that apply to
72 -- a modular type with the same length as Address, i.e. they provide
73 -- bit-wise operations on all bits of the value (including the sign
74 -- bit if Address is a signed integer type).
76 function AndA
(Left
, Right
: Address
) return Address
;
77 function OrA
(Left
, Right
: Address
) return Address
;
79 pragma Inline_Always
(AddA
);
80 pragma Inline_Always
(SubA
);
81 pragma Inline_Always
(MulA
);
82 pragma Inline_Always
(DivA
);
83 pragma Inline_Always
(ModA
);
84 pragma Inline_Always
(AndA
);
85 pragma Inline_Always
(OrA
);
87 end System
.Address_Operations
;