2011-08-31 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / expr.c
blobe29f3f6f4f9fece7820c8a46658ea3cc25940c4f
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "common/common-target.h"
53 #include "timevar.h"
54 #include "df.h"
55 #include "diagnostic.h"
56 #include "ssaexpand.h"
57 #include "target-globals.h"
58 #include "params.h"
60 /* Decide whether a function's arguments should be processed
61 from first to last or from last to first.
63 They should if the stack and args grow in opposite directions, but
64 only if we have push insns. */
66 #ifdef PUSH_ROUNDING
68 #ifndef PUSH_ARGS_REVERSED
69 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
70 #define PUSH_ARGS_REVERSED /* If it's last to first. */
71 #endif
72 #endif
74 #endif
76 #ifndef STACK_PUSH_CODE
77 #ifdef STACK_GROWS_DOWNWARD
78 #define STACK_PUSH_CODE PRE_DEC
79 #else
80 #define STACK_PUSH_CODE PRE_INC
81 #endif
82 #endif
85 /* If this is nonzero, we do not bother generating VOLATILE
86 around volatile memory references, and we are willing to
87 output indirect addresses. If cse is to follow, we reject
88 indirect addresses so a useful potential cse is generated;
89 if it is used only once, instruction combination will produce
90 the same indirect address eventually. */
91 int cse_not_expected;
93 /* This structure is used by move_by_pieces to describe the move to
94 be performed. */
95 struct move_by_pieces_d
97 rtx to;
98 rtx to_addr;
99 int autinc_to;
100 int explicit_inc_to;
101 rtx from;
102 rtx from_addr;
103 int autinc_from;
104 int explicit_inc_from;
105 unsigned HOST_WIDE_INT len;
106 HOST_WIDE_INT offset;
107 int reverse;
110 /* This structure is used by store_by_pieces to describe the clear to
111 be performed. */
113 struct store_by_pieces_d
115 rtx to;
116 rtx to_addr;
117 int autinc_to;
118 int explicit_inc_to;
119 unsigned HOST_WIDE_INT len;
120 HOST_WIDE_INT offset;
121 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
122 void *constfundata;
123 int reverse;
126 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
127 unsigned int,
128 unsigned int);
129 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
130 struct move_by_pieces_d *);
131 static bool block_move_libcall_safe_for_call_parm (void);
132 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
133 static tree emit_block_move_libcall_fn (int);
134 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
135 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
136 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
137 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
138 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
139 struct store_by_pieces_d *);
140 static tree clear_storage_libcall_fn (int);
141 static rtx compress_float_constant (rtx, rtx);
142 static rtx get_subtarget (rtx);
143 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
144 HOST_WIDE_INT, enum machine_mode,
145 tree, tree, int, alias_set_type);
146 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
147 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
148 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
149 enum machine_mode,
150 tree, tree, alias_set_type, bool);
152 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
154 static int is_aligning_offset (const_tree, const_tree);
155 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
156 enum expand_modifier);
157 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
158 static rtx do_store_flag (sepops, rtx, enum machine_mode);
159 #ifdef PUSH_ROUNDING
160 static void emit_single_push_insn (enum machine_mode, rtx, tree);
161 #endif
162 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
163 static rtx const_vector_from_tree (tree);
164 static void write_complex_part (rtx, rtx, bool);
166 /* This macro is used to determine whether move_by_pieces should be called
167 to perform a structure copy. */
168 #ifndef MOVE_BY_PIECES_P
169 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
170 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
171 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
172 #endif
174 /* This macro is used to determine whether clear_by_pieces should be
175 called to clear storage. */
176 #ifndef CLEAR_BY_PIECES_P
177 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
179 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
180 #endif
182 /* This macro is used to determine whether store_by_pieces should be
183 called to "memset" storage with byte values other than zero. */
184 #ifndef SET_BY_PIECES_P
185 #define SET_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memcpy" storage when the source is a constant string. */
192 #ifndef STORE_BY_PIECES_P
193 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
196 #endif
198 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
200 #ifndef SLOW_UNALIGNED_ACCESS
201 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
202 #endif
204 /* This is run to set up which modes can be used
205 directly in memory and to initialize the block move optab. It is run
206 at the beginning of compilation and when the target is reinitialized. */
208 void
209 init_expr_target (void)
211 rtx insn, pat;
212 enum machine_mode mode;
213 int num_clobbers;
214 rtx mem, mem1;
215 rtx reg;
217 /* Try indexing by frame ptr and try by stack ptr.
218 It is known that on the Convex the stack ptr isn't a valid index.
219 With luck, one or the other is valid on any machine. */
220 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
221 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
223 /* A scratch register we can modify in-place below to avoid
224 useless RTL allocations. */
225 reg = gen_rtx_REG (VOIDmode, -1);
227 insn = rtx_alloc (INSN);
228 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
229 PATTERN (insn) = pat;
231 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
232 mode = (enum machine_mode) ((int) mode + 1))
234 int regno;
236 direct_load[(int) mode] = direct_store[(int) mode] = 0;
237 PUT_MODE (mem, mode);
238 PUT_MODE (mem1, mode);
239 PUT_MODE (reg, mode);
241 /* See if there is some register that can be used in this mode and
242 directly loaded or stored from memory. */
244 if (mode != VOIDmode && mode != BLKmode)
245 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
246 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
247 regno++)
249 if (! HARD_REGNO_MODE_OK (regno, mode))
250 continue;
252 SET_REGNO (reg, regno);
254 SET_SRC (pat) = mem;
255 SET_DEST (pat) = reg;
256 if (recog (pat, insn, &num_clobbers) >= 0)
257 direct_load[(int) mode] = 1;
259 SET_SRC (pat) = mem1;
260 SET_DEST (pat) = reg;
261 if (recog (pat, insn, &num_clobbers) >= 0)
262 direct_load[(int) mode] = 1;
264 SET_SRC (pat) = reg;
265 SET_DEST (pat) = mem;
266 if (recog (pat, insn, &num_clobbers) >= 0)
267 direct_store[(int) mode] = 1;
269 SET_SRC (pat) = reg;
270 SET_DEST (pat) = mem1;
271 if (recog (pat, insn, &num_clobbers) >= 0)
272 direct_store[(int) mode] = 1;
276 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
278 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
279 mode = GET_MODE_WIDER_MODE (mode))
281 enum machine_mode srcmode;
282 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
283 srcmode = GET_MODE_WIDER_MODE (srcmode))
285 enum insn_code ic;
287 ic = can_extend_p (mode, srcmode, 0);
288 if (ic == CODE_FOR_nothing)
289 continue;
291 PUT_MODE (mem, srcmode);
293 if (insn_operand_matches (ic, 1, mem))
294 float_extend_from_mem[mode][srcmode] = true;
299 /* This is run at the start of compiling a function. */
301 void
302 init_expr (void)
304 memset (&crtl->expr, 0, sizeof (crtl->expr));
307 /* Copy data from FROM to TO, where the machine modes are not the same.
308 Both modes may be integer, or both may be floating, or both may be
309 fixed-point.
310 UNSIGNEDP should be nonzero if FROM is an unsigned type.
311 This causes zero-extension instead of sign-extension. */
313 void
314 convert_move (rtx to, rtx from, int unsignedp)
316 enum machine_mode to_mode = GET_MODE (to);
317 enum machine_mode from_mode = GET_MODE (from);
318 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
319 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
320 enum insn_code code;
321 rtx libcall;
323 /* rtx code for making an equivalent value. */
324 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
325 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
328 gcc_assert (to_real == from_real);
329 gcc_assert (to_mode != BLKmode);
330 gcc_assert (from_mode != BLKmode);
332 /* If the source and destination are already the same, then there's
333 nothing to do. */
334 if (to == from)
335 return;
337 /* If FROM is a SUBREG that indicates that we have already done at least
338 the required extension, strip it. We don't handle such SUBREGs as
339 TO here. */
341 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
342 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
343 >= GET_MODE_PRECISION (to_mode))
344 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
345 from = gen_lowpart (to_mode, from), from_mode = to_mode;
347 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
349 if (to_mode == from_mode
350 || (from_mode == VOIDmode && CONSTANT_P (from)))
352 emit_move_insn (to, from);
353 return;
356 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
358 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
360 if (VECTOR_MODE_P (to_mode))
361 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
362 else
363 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
365 emit_move_insn (to, from);
366 return;
369 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
371 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
372 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
373 return;
376 if (to_real)
378 rtx value, insns;
379 convert_optab tab;
381 gcc_assert ((GET_MODE_PRECISION (from_mode)
382 != GET_MODE_PRECISION (to_mode))
383 || (DECIMAL_FLOAT_MODE_P (from_mode)
384 != DECIMAL_FLOAT_MODE_P (to_mode)));
386 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
387 /* Conversion between decimal float and binary float, same size. */
388 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
389 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
390 tab = sext_optab;
391 else
392 tab = trunc_optab;
394 /* Try converting directly if the insn is supported. */
396 code = convert_optab_handler (tab, to_mode, from_mode);
397 if (code != CODE_FOR_nothing)
399 emit_unop_insn (code, to, from,
400 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
401 return;
404 /* Otherwise use a libcall. */
405 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
407 /* Is this conversion implemented yet? */
408 gcc_assert (libcall);
410 start_sequence ();
411 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
412 1, from, from_mode);
413 insns = get_insns ();
414 end_sequence ();
415 emit_libcall_block (insns, to, value,
416 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
417 from)
418 : gen_rtx_FLOAT_EXTEND (to_mode, from));
419 return;
422 /* Handle pointer conversion. */ /* SPEE 900220. */
423 /* Targets are expected to provide conversion insns between PxImode and
424 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
425 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
427 enum machine_mode full_mode
428 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
430 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
431 != CODE_FOR_nothing);
433 if (full_mode != from_mode)
434 from = convert_to_mode (full_mode, from, unsignedp);
435 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
436 to, from, UNKNOWN);
437 return;
439 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
441 rtx new_from;
442 enum machine_mode full_mode
443 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
445 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
446 != CODE_FOR_nothing);
448 if (to_mode == full_mode)
450 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
451 from_mode),
452 to, from, UNKNOWN);
453 return;
456 new_from = gen_reg_rtx (full_mode);
457 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
458 new_from, from, UNKNOWN);
460 /* else proceed to integer conversions below. */
461 from_mode = full_mode;
462 from = new_from;
465 /* Make sure both are fixed-point modes or both are not. */
466 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
467 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
468 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
470 /* If we widen from_mode to to_mode and they are in the same class,
471 we won't saturate the result.
472 Otherwise, always saturate the result to play safe. */
473 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
474 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
475 expand_fixed_convert (to, from, 0, 0);
476 else
477 expand_fixed_convert (to, from, 0, 1);
478 return;
481 /* Now both modes are integers. */
483 /* Handle expanding beyond a word. */
484 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
485 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
487 rtx insns;
488 rtx lowpart;
489 rtx fill_value;
490 rtx lowfrom;
491 int i;
492 enum machine_mode lowpart_mode;
493 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
495 /* Try converting directly if the insn is supported. */
496 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
497 != CODE_FOR_nothing)
499 /* If FROM is a SUBREG, put it into a register. Do this
500 so that we always generate the same set of insns for
501 better cse'ing; if an intermediate assignment occurred,
502 we won't be doing the operation directly on the SUBREG. */
503 if (optimize > 0 && GET_CODE (from) == SUBREG)
504 from = force_reg (from_mode, from);
505 emit_unop_insn (code, to, from, equiv_code);
506 return;
508 /* Next, try converting via full word. */
509 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
510 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
511 != CODE_FOR_nothing))
513 rtx word_to = gen_reg_rtx (word_mode);
514 if (REG_P (to))
516 if (reg_overlap_mentioned_p (to, from))
517 from = force_reg (from_mode, from);
518 emit_clobber (to);
520 convert_move (word_to, from, unsignedp);
521 emit_unop_insn (code, to, word_to, equiv_code);
522 return;
525 /* No special multiword conversion insn; do it by hand. */
526 start_sequence ();
528 /* Since we will turn this into a no conflict block, we must ensure
529 that the source does not overlap the target. */
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
534 /* Get a copy of FROM widened to a word, if necessary. */
535 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
536 lowpart_mode = word_mode;
537 else
538 lowpart_mode = from_mode;
540 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
542 lowpart = gen_lowpart (lowpart_mode, to);
543 emit_move_insn (lowpart, lowfrom);
545 /* Compute the value to put in each remaining word. */
546 if (unsignedp)
547 fill_value = const0_rtx;
548 else
549 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
550 LT, lowfrom, const0_rtx,
551 VOIDmode, 0, -1);
553 /* Fill the remaining words. */
554 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
556 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
557 rtx subword = operand_subword (to, index, 1, to_mode);
559 gcc_assert (subword);
561 if (fill_value != subword)
562 emit_move_insn (subword, fill_value);
565 insns = get_insns ();
566 end_sequence ();
568 emit_insn (insns);
569 return;
572 /* Truncating multi-word to a word or less. */
573 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
574 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
576 if (!((MEM_P (from)
577 && ! MEM_VOLATILE_P (from)
578 && direct_load[(int) to_mode]
579 && ! mode_dependent_address_p (XEXP (from, 0)))
580 || REG_P (from)
581 || GET_CODE (from) == SUBREG))
582 from = force_reg (from_mode, from);
583 convert_move (to, gen_lowpart (word_mode, from), 0);
584 return;
587 /* Now follow all the conversions between integers
588 no more than a word long. */
590 /* For truncation, usually we can just refer to FROM in a narrower mode. */
591 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
592 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
594 if (!((MEM_P (from)
595 && ! MEM_VOLATILE_P (from)
596 && direct_load[(int) to_mode]
597 && ! mode_dependent_address_p (XEXP (from, 0)))
598 || REG_P (from)
599 || GET_CODE (from) == SUBREG))
600 from = force_reg (from_mode, from);
601 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
602 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
603 from = copy_to_reg (from);
604 emit_move_insn (to, gen_lowpart (to_mode, from));
605 return;
608 /* Handle extension. */
609 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
611 /* Convert directly if that works. */
612 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
613 != CODE_FOR_nothing)
615 emit_unop_insn (code, to, from, equiv_code);
616 return;
618 else
620 enum machine_mode intermediate;
621 rtx tmp;
622 int shift_amount;
624 /* Search for a mode to convert via. */
625 for (intermediate = from_mode; intermediate != VOIDmode;
626 intermediate = GET_MODE_WIDER_MODE (intermediate))
627 if (((can_extend_p (to_mode, intermediate, unsignedp)
628 != CODE_FOR_nothing)
629 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
630 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
631 && (can_extend_p (intermediate, from_mode, unsignedp)
632 != CODE_FOR_nothing))
634 convert_move (to, convert_to_mode (intermediate, from,
635 unsignedp), unsignedp);
636 return;
639 /* No suitable intermediate mode.
640 Generate what we need with shifts. */
641 shift_amount = (GET_MODE_PRECISION (to_mode)
642 - GET_MODE_PRECISION (from_mode));
643 from = gen_lowpart (to_mode, force_reg (from_mode, from));
644 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
645 to, unsignedp);
646 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
647 to, unsignedp);
648 if (tmp != to)
649 emit_move_insn (to, tmp);
650 return;
654 /* Support special truncate insns for certain modes. */
655 if (convert_optab_handler (trunc_optab, to_mode,
656 from_mode) != CODE_FOR_nothing)
658 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
659 to, from, UNKNOWN);
660 return;
663 /* Handle truncation of volatile memrefs, and so on;
664 the things that couldn't be truncated directly,
665 and for which there was no special instruction.
667 ??? Code above formerly short-circuited this, for most integer
668 mode pairs, with a force_reg in from_mode followed by a recursive
669 call to this routine. Appears always to have been wrong. */
670 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
672 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
673 emit_move_insn (to, temp);
674 return;
677 /* Mode combination is not recognized. */
678 gcc_unreachable ();
681 /* Return an rtx for a value that would result
682 from converting X to mode MODE.
683 Both X and MODE may be floating, or both integer.
684 UNSIGNEDP is nonzero if X is an unsigned value.
685 This can be done by referring to a part of X in place
686 or by copying to a new temporary with conversion. */
689 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
691 return convert_modes (mode, VOIDmode, x, unsignedp);
694 /* Return an rtx for a value that would result
695 from converting X from mode OLDMODE to mode MODE.
696 Both modes may be floating, or both integer.
697 UNSIGNEDP is nonzero if X is an unsigned value.
699 This can be done by referring to a part of X in place
700 or by copying to a new temporary with conversion.
702 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
705 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
707 rtx temp;
709 /* If FROM is a SUBREG that indicates that we have already done at least
710 the required extension, strip it. */
712 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
713 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
714 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
715 x = gen_lowpart (mode, x);
717 if (GET_MODE (x) != VOIDmode)
718 oldmode = GET_MODE (x);
720 if (mode == oldmode)
721 return x;
723 /* There is one case that we must handle specially: If we are converting
724 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
725 we are to interpret the constant as unsigned, gen_lowpart will do
726 the wrong if the constant appears negative. What we want to do is
727 make the high-order word of the constant zero, not all ones. */
729 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
730 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
731 && CONST_INT_P (x) && INTVAL (x) < 0)
733 double_int val = uhwi_to_double_int (INTVAL (x));
735 /* We need to zero extend VAL. */
736 if (oldmode != VOIDmode)
737 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
739 return immed_double_int_const (val, mode);
742 /* We can do this with a gen_lowpart if both desired and current modes
743 are integer, and this is either a constant integer, a register, or a
744 non-volatile MEM. Except for the constant case where MODE is no
745 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
747 if ((CONST_INT_P (x)
748 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
749 || (GET_MODE_CLASS (mode) == MODE_INT
750 && GET_MODE_CLASS (oldmode) == MODE_INT
751 && (GET_CODE (x) == CONST_DOUBLE
752 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
753 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
754 && direct_load[(int) mode])
755 || (REG_P (x)
756 && (! HARD_REGISTER_P (x)
757 || HARD_REGNO_MODE_OK (REGNO (x), mode))
758 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
759 GET_MODE (x))))))))
761 /* ?? If we don't know OLDMODE, we have to assume here that
762 X does not need sign- or zero-extension. This may not be
763 the case, but it's the best we can do. */
764 if (CONST_INT_P (x) && oldmode != VOIDmode
765 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
767 HOST_WIDE_INT val = INTVAL (x);
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= GET_MODE_MASK (oldmode);
772 if (! unsignedp
773 && val_signbit_known_set_p (oldmode, val))
774 val |= ~GET_MODE_MASK (oldmode);
776 return gen_int_mode (val, mode);
779 return gen_lowpart (mode, x);
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
795 /* Return the largest alignment we can use for doing a move (or store)
796 of MAX_PIECES. ALIGN is the largest alignment we could use. */
798 static unsigned int
799 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
801 enum machine_mode tmode;
803 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
804 if (align >= GET_MODE_ALIGNMENT (tmode))
805 align = GET_MODE_ALIGNMENT (tmode);
806 else
808 enum machine_mode tmode, xmode;
810 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
811 tmode != VOIDmode;
812 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
813 if (GET_MODE_SIZE (tmode) > max_pieces
814 || SLOW_UNALIGNED_ACCESS (tmode, align))
815 break;
817 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
820 return align;
823 /* Return the widest integer mode no wider than SIZE. If no such mode
824 can be found, return VOIDmode. */
826 static enum machine_mode
827 widest_int_mode_for_size (unsigned int size)
829 enum machine_mode tmode, mode = VOIDmode;
831 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
832 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
833 if (GET_MODE_SIZE (tmode) < size)
834 mode = tmode;
836 return mode;
839 /* STORE_MAX_PIECES is the number of bytes at a time that we can
840 store efficiently. Due to internal GCC limitations, this is
841 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
842 for an immediate constant. */
844 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
846 /* Determine whether the LEN bytes can be moved by using several move
847 instructions. Return nonzero if a call to move_by_pieces should
848 succeed. */
851 can_move_by_pieces (unsigned HOST_WIDE_INT len,
852 unsigned int align ATTRIBUTE_UNUSED)
854 return MOVE_BY_PIECES_P (len, align);
857 /* Generate several move instructions to copy LEN bytes from block FROM to
858 block TO. (These are MEM rtx's with BLKmode).
860 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
861 used to push FROM to the stack.
863 ALIGN is maximum stack alignment we can assume.
865 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
866 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 stpcpy. */
870 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
871 unsigned int align, int endp)
873 struct move_by_pieces_d data;
874 enum machine_mode to_addr_mode, from_addr_mode
875 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
876 rtx to_addr, from_addr = XEXP (from, 0);
877 unsigned int max_size = MOVE_MAX_PIECES + 1;
878 enum insn_code icode;
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
895 else
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
925 /* Find the mode of the largest move...
926 MODE might not be used depending on the definitions of the
927 USE_* macros below. */
928 enum machine_mode mode ATTRIBUTE_UNUSED
929 = widest_int_mode_for_size (max_size);
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
968 while (max_size > 1)
970 enum machine_mode mode = widest_int_mode_for_size (max_size);
972 if (mode == VOIDmode)
973 break;
975 icode = optab_handler (mov_optab, mode);
976 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
977 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
979 max_size = GET_MODE_SIZE (mode);
982 /* The code above should have handled everything. */
983 gcc_assert (!data.len);
985 if (endp)
987 rtx to1;
989 gcc_assert (!data.reverse);
990 if (data.autinc_to)
992 if (endp == 2)
994 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
995 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
996 else
997 data.to_addr = copy_to_mode_reg (to_addr_mode,
998 plus_constant (data.to_addr,
999 -1));
1001 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1002 data.offset);
1004 else
1006 if (endp == 2)
1007 --data.offset;
1008 to1 = adjust_address (data.to, QImode, data.offset);
1010 return to1;
1012 else
1013 return data.to;
1016 /* Return number of insns required to move L bytes by pieces.
1017 ALIGN (in bits) is maximum alignment we can assume. */
1019 static unsigned HOST_WIDE_INT
1020 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1021 unsigned int max_size)
1023 unsigned HOST_WIDE_INT n_insns = 0;
1025 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1027 while (max_size > 1)
1029 enum machine_mode mode;
1030 enum insn_code icode;
1032 mode = widest_int_mode_for_size (max_size);
1034 if (mode == VOIDmode)
1035 break;
1037 icode = optab_handler (mov_optab, mode);
1038 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1039 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1041 max_size = GET_MODE_SIZE (mode);
1044 gcc_assert (!l);
1045 return n_insns;
1048 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1049 with move instructions for mode MODE. GENFUN is the gen_... function
1050 to make a move insn for that mode. DATA has all the other info. */
1052 static void
1053 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1054 struct move_by_pieces_d *data)
1056 unsigned int size = GET_MODE_SIZE (mode);
1057 rtx to1 = NULL_RTX, from1;
1059 while (data->len >= size)
1061 if (data->reverse)
1062 data->offset -= size;
1064 if (data->to)
1066 if (data->autinc_to)
1067 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1068 data->offset);
1069 else
1070 to1 = adjust_address (data->to, mode, data->offset);
1073 if (data->autinc_from)
1074 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1075 data->offset);
1076 else
1077 from1 = adjust_address (data->from, mode, data->offset);
1079 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1080 emit_insn (gen_add2_insn (data->to_addr,
1081 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1083 emit_insn (gen_add2_insn (data->from_addr,
1084 GEN_INT (-(HOST_WIDE_INT)size)));
1086 if (data->to)
1087 emit_insn ((*genfun) (to1, from1));
1088 else
1090 #ifdef PUSH_ROUNDING
1091 emit_single_push_insn (mode, from1, NULL);
1092 #else
1093 gcc_unreachable ();
1094 #endif
1097 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1098 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1099 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1100 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1102 if (! data->reverse)
1103 data->offset += size;
1105 data->len -= size;
1109 /* Emit code to move a block Y to a block X. This may be done with
1110 string-move instructions, with multiple scalar move instructions,
1111 or with a library call.
1113 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1114 SIZE is an rtx that says how long they are.
1115 ALIGN is the maximum alignment we can assume they have.
1116 METHOD describes what kind of copy this is, and what mechanisms may be used.
1118 Return the address of the new block, if memcpy is called and returns it,
1119 0 otherwise. */
1122 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1123 unsigned int expected_align, HOST_WIDE_INT expected_size)
1125 bool may_use_call;
1126 rtx retval = 0;
1127 unsigned int align;
1129 gcc_assert (size);
1130 if (CONST_INT_P (size)
1131 && INTVAL (size) == 0)
1132 return 0;
1134 switch (method)
1136 case BLOCK_OP_NORMAL:
1137 case BLOCK_OP_TAILCALL:
1138 may_use_call = true;
1139 break;
1141 case BLOCK_OP_CALL_PARM:
1142 may_use_call = block_move_libcall_safe_for_call_parm ();
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1146 NO_DEFER_POP;
1147 break;
1149 case BLOCK_OP_NO_LIBCALL:
1150 may_use_call = false;
1151 break;
1153 default:
1154 gcc_unreachable ();
1157 gcc_assert (MEM_P (x) && MEM_P (y));
1158 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1159 gcc_assert (align >= BITS_PER_UNIT);
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x = adjust_address (x, BLKmode, 0);
1164 y = adjust_address (y, BLKmode, 0);
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size))
1170 x = shallow_copy_rtx (x);
1171 y = shallow_copy_rtx (y);
1172 set_mem_size (x, INTVAL (size));
1173 set_mem_size (y, INTVAL (size));
1176 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1177 move_by_pieces (x, y, INTVAL (size), align, 0);
1178 else if (emit_block_move_via_movmem (x, y, size, align,
1179 expected_align, expected_size))
1181 else if (may_use_call
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1185 /* Since x and y are passed to a libcall, mark the corresponding
1186 tree EXPR as addressable. */
1187 tree y_expr = MEM_EXPR (y);
1188 tree x_expr = MEM_EXPR (x);
1189 if (y_expr)
1190 mark_addressable (y_expr);
1191 if (x_expr)
1192 mark_addressable (x_expr);
1193 retval = emit_block_move_via_libcall (x, y, size,
1194 method == BLOCK_OP_TAILCALL);
1197 else
1198 emit_block_move_via_loop (x, y, size, align);
1200 if (method == BLOCK_OP_CALL_PARM)
1201 OK_DEFER_POP;
1203 return retval;
1207 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1209 return emit_block_move_hints (x, y, size, method, 0, -1);
1212 /* A subroutine of emit_block_move. Returns true if calling the
1213 block move libcall will not clobber any parameters which may have
1214 already been placed on the stack. */
1216 static bool
1217 block_move_libcall_safe_for_call_parm (void)
1219 #if defined (REG_PARM_STACK_SPACE)
1220 tree fn;
1221 #endif
1223 /* If arguments are pushed on the stack, then they're safe. */
1224 if (PUSH_ARGS)
1225 return true;
1227 /* If registers go on the stack anyway, any argument is sure to clobber
1228 an outgoing argument. */
1229 #if defined (REG_PARM_STACK_SPACE)
1230 fn = emit_block_move_libcall_fn (false);
1231 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1232 depend on its argument. */
1233 (void) fn;
1234 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1235 && REG_PARM_STACK_SPACE (fn) != 0)
1236 return false;
1237 #endif
1239 /* If any argument goes in memory, then it might clobber an outgoing
1240 argument. */
1242 CUMULATIVE_ARGS args_so_far_v;
1243 cumulative_args_t args_so_far;
1244 tree fn, arg;
1246 fn = emit_block_move_libcall_fn (false);
1247 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1248 args_so_far = pack_cumulative_args (&args_so_far_v);
1250 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1251 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1253 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1254 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1255 NULL_TREE, true);
1256 if (!tmp || !REG_P (tmp))
1257 return false;
1258 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1259 return false;
1260 targetm.calls.function_arg_advance (args_so_far, mode,
1261 NULL_TREE, true);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1272 unsigned int expected_align, HOST_WIDE_INT expected_size)
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 if (expected_align < align)
1278 expected_align = align;
1280 /* Since this is a move insn, we don't care about volatility. */
1281 volatile_ok = 1;
1283 /* Try the most limited insn first, because there's no point
1284 including more than one in the machine description unless
1285 the more limited one has some advantage. */
1287 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1288 mode = GET_MODE_WIDER_MODE (mode))
1290 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1292 if (code != CODE_FOR_nothing
1293 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1294 here because if SIZE is less than the mode mask, as it is
1295 returned by the macro, it will definitely be less than the
1296 actual mode mask. */
1297 && ((CONST_INT_P (size)
1298 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1299 <= (GET_MODE_MASK (mode) >> 1)))
1300 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
1302 struct expand_operand ops[6];
1303 unsigned int nops;
1305 /* ??? When called via emit_block_move_for_call, it'd be
1306 nice if there were some way to inform the backend, so
1307 that it doesn't fail the expansion because it thinks
1308 emitting the libcall would be more efficient. */
1309 nops = insn_data[(int) code].n_generator_args;
1310 gcc_assert (nops == 4 || nops == 6);
1312 create_fixed_operand (&ops[0], x);
1313 create_fixed_operand (&ops[1], y);
1314 /* The check above guarantees that this size conversion is valid. */
1315 create_convert_operand_to (&ops[2], size, mode, true);
1316 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1317 if (nops == 6)
1319 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1320 create_integer_operand (&ops[5], expected_size);
1322 if (maybe_expand_insn (code, nops, ops))
1324 volatile_ok = save_volatile_ok;
1325 return true;
1330 volatile_ok = save_volatile_ok;
1331 return false;
1334 /* A subroutine of emit_block_move. Expand a call to memcpy.
1335 Return the return value from memcpy, 0 otherwise. */
1338 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1340 rtx dst_addr, src_addr;
1341 tree call_expr, fn, src_tree, dst_tree, size_tree;
1342 enum machine_mode size_mode;
1343 rtx retval;
1345 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1346 pseudos. We can then place those new pseudos into a VAR_DECL and
1347 use them later. */
1349 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1350 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1352 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1353 src_addr = convert_memory_address (ptr_mode, src_addr);
1355 dst_tree = make_tree (ptr_type_node, dst_addr);
1356 src_tree = make_tree (ptr_type_node, src_addr);
1358 size_mode = TYPE_MODE (sizetype);
1360 size = convert_to_mode (size_mode, size, 1);
1361 size = copy_to_mode_reg (size_mode, size);
1363 /* It is incorrect to use the libcall calling conventions to call
1364 memcpy in this context. This could be a user call to memcpy and
1365 the user may wish to examine the return value from memcpy. For
1366 targets where libcalls and normal calls have different conventions
1367 for returning pointers, we could end up generating incorrect code. */
1369 size_tree = make_tree (sizetype, size);
1371 fn = emit_block_move_libcall_fn (true);
1372 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1373 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1375 retval = expand_normal (call_expr);
1377 return retval;
1380 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1381 for the function we use for block copies. The first time FOR_CALL
1382 is true, we call assemble_external. */
1384 static GTY(()) tree block_move_fn;
1386 void
1387 init_block_move_fn (const char *asmspec)
1389 if (!block_move_fn)
1391 tree args, fn;
1393 fn = get_identifier ("memcpy");
1394 args = build_function_type_list (ptr_type_node, ptr_type_node,
1395 const_ptr_type_node, sizetype,
1396 NULL_TREE);
1398 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1399 DECL_EXTERNAL (fn) = 1;
1400 TREE_PUBLIC (fn) = 1;
1401 DECL_ARTIFICIAL (fn) = 1;
1402 TREE_NOTHROW (fn) = 1;
1403 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1404 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1406 block_move_fn = fn;
1409 if (asmspec)
1410 set_user_assembler_name (block_move_fn, asmspec);
1413 static tree
1414 emit_block_move_libcall_fn (int for_call)
1416 static bool emitted_extern;
1418 if (!block_move_fn)
1419 init_block_move_fn (NULL);
1421 if (for_call && !emitted_extern)
1423 emitted_extern = true;
1424 make_decl_rtl (block_move_fn);
1425 assemble_external (block_move_fn);
1428 return block_move_fn;
1431 /* A subroutine of emit_block_move. Copy the data via an explicit
1432 loop. This is used only when libcalls are forbidden. */
1433 /* ??? It'd be nice to copy in hunks larger than QImode. */
1435 static void
1436 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1437 unsigned int align ATTRIBUTE_UNUSED)
1439 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1440 enum machine_mode x_addr_mode
1441 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1442 enum machine_mode y_addr_mode
1443 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1444 enum machine_mode iter_mode;
1446 iter_mode = GET_MODE (size);
1447 if (iter_mode == VOIDmode)
1448 iter_mode = word_mode;
1450 top_label = gen_label_rtx ();
1451 cmp_label = gen_label_rtx ();
1452 iter = gen_reg_rtx (iter_mode);
1454 emit_move_insn (iter, const0_rtx);
1456 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1457 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1458 do_pending_stack_adjust ();
1460 emit_jump (cmp_label);
1461 emit_label (top_label);
1463 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1464 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1466 if (x_addr_mode != y_addr_mode)
1467 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1468 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1470 x = change_address (x, QImode, x_addr);
1471 y = change_address (y, QImode, y_addr);
1473 emit_move_insn (x, y);
1475 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1476 true, OPTAB_LIB_WIDEN);
1477 if (tmp != iter)
1478 emit_move_insn (iter, tmp);
1480 emit_label (cmp_label);
1482 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1483 true, top_label);
1486 /* Copy all or part of a value X into registers starting at REGNO.
1487 The number of registers to be filled is NREGS. */
1489 void
1490 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1492 int i;
1493 #ifdef HAVE_load_multiple
1494 rtx pat;
1495 rtx last;
1496 #endif
1498 if (nregs == 0)
1499 return;
1501 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1502 x = validize_mem (force_const_mem (mode, x));
1504 /* See if the machine can do this with a load multiple insn. */
1505 #ifdef HAVE_load_multiple
1506 if (HAVE_load_multiple)
1508 last = get_last_insn ();
1509 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1510 GEN_INT (nregs));
1511 if (pat)
1513 emit_insn (pat);
1514 return;
1516 else
1517 delete_insns_since (last);
1519 #endif
1521 for (i = 0; i < nregs; i++)
1522 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1523 operand_subword_force (x, i, mode));
1526 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1527 The number of registers to be filled is NREGS. */
1529 void
1530 move_block_from_reg (int regno, rtx x, int nregs)
1532 int i;
1534 if (nregs == 0)
1535 return;
1537 /* See if the machine can do this with a store multiple insn. */
1538 #ifdef HAVE_store_multiple
1539 if (HAVE_store_multiple)
1541 rtx last = get_last_insn ();
1542 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1543 GEN_INT (nregs));
1544 if (pat)
1546 emit_insn (pat);
1547 return;
1549 else
1550 delete_insns_since (last);
1552 #endif
1554 for (i = 0; i < nregs; i++)
1556 rtx tem = operand_subword (x, i, 1, BLKmode);
1558 gcc_assert (tem);
1560 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1564 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1565 ORIG, where ORIG is a non-consecutive group of registers represented by
1566 a PARALLEL. The clone is identical to the original except in that the
1567 original set of registers is replaced by a new set of pseudo registers.
1568 The new set has the same modes as the original set. */
1571 gen_group_rtx (rtx orig)
1573 int i, length;
1574 rtx *tmps;
1576 gcc_assert (GET_CODE (orig) == PARALLEL);
1578 length = XVECLEN (orig, 0);
1579 tmps = XALLOCAVEC (rtx, length);
1581 /* Skip a NULL entry in first slot. */
1582 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1584 if (i)
1585 tmps[0] = 0;
1587 for (; i < length; i++)
1589 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1590 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1592 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1595 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1598 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1599 except that values are placed in TMPS[i], and must later be moved
1600 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1602 static void
1603 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1605 rtx src;
1606 int start, i;
1607 enum machine_mode m = GET_MODE (orig_src);
1609 gcc_assert (GET_CODE (dst) == PARALLEL);
1611 if (m != VOIDmode
1612 && !SCALAR_INT_MODE_P (m)
1613 && !MEM_P (orig_src)
1614 && GET_CODE (orig_src) != CONCAT)
1616 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1617 if (imode == BLKmode)
1618 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1619 else
1620 src = gen_reg_rtx (imode);
1621 if (imode != BLKmode)
1622 src = gen_lowpart (GET_MODE (orig_src), src);
1623 emit_move_insn (src, orig_src);
1624 /* ...and back again. */
1625 if (imode != BLKmode)
1626 src = gen_lowpart (imode, src);
1627 emit_group_load_1 (tmps, dst, src, type, ssize);
1628 return;
1631 /* Check for a NULL entry, used to indicate that the parameter goes
1632 both on the stack and in registers. */
1633 if (XEXP (XVECEXP (dst, 0, 0), 0))
1634 start = 0;
1635 else
1636 start = 1;
1638 /* Process the pieces. */
1639 for (i = start; i < XVECLEN (dst, 0); i++)
1641 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1642 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1643 unsigned int bytelen = GET_MODE_SIZE (mode);
1644 int shift = 0;
1646 /* Handle trailing fragments that run over the size of the struct. */
1647 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1649 /* Arrange to shift the fragment to where it belongs.
1650 extract_bit_field loads to the lsb of the reg. */
1651 if (
1652 #ifdef BLOCK_REG_PADDING
1653 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1654 == (BYTES_BIG_ENDIAN ? upward : downward)
1655 #else
1656 BYTES_BIG_ENDIAN
1657 #endif
1659 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1660 bytelen = ssize - bytepos;
1661 gcc_assert (bytelen > 0);
1664 /* If we won't be loading directly from memory, protect the real source
1665 from strange tricks we might play; but make sure that the source can
1666 be loaded directly into the destination. */
1667 src = orig_src;
1668 if (!MEM_P (orig_src)
1669 && (!CONSTANT_P (orig_src)
1670 || (GET_MODE (orig_src) != mode
1671 && GET_MODE (orig_src) != VOIDmode)))
1673 if (GET_MODE (orig_src) == VOIDmode)
1674 src = gen_reg_rtx (mode);
1675 else
1676 src = gen_reg_rtx (GET_MODE (orig_src));
1678 emit_move_insn (src, orig_src);
1681 /* Optimize the access just a bit. */
1682 if (MEM_P (src)
1683 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1684 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1685 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1686 && bytelen == GET_MODE_SIZE (mode))
1688 tmps[i] = gen_reg_rtx (mode);
1689 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1691 else if (COMPLEX_MODE_P (mode)
1692 && GET_MODE (src) == mode
1693 && bytelen == GET_MODE_SIZE (mode))
1694 /* Let emit_move_complex do the bulk of the work. */
1695 tmps[i] = src;
1696 else if (GET_CODE (src) == CONCAT)
1698 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1699 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1701 if ((bytepos == 0 && bytelen == slen0)
1702 || (bytepos != 0 && bytepos + bytelen <= slen))
1704 /* The following assumes that the concatenated objects all
1705 have the same size. In this case, a simple calculation
1706 can be used to determine the object and the bit field
1707 to be extracted. */
1708 tmps[i] = XEXP (src, bytepos / slen0);
1709 if (! CONSTANT_P (tmps[i])
1710 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1711 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1712 (bytepos % slen0) * BITS_PER_UNIT,
1713 1, false, NULL_RTX, mode, mode);
1715 else
1717 rtx mem;
1719 gcc_assert (!bytepos);
1720 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1721 emit_move_insn (mem, src);
1722 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1723 0, 1, false, NULL_RTX, mode, mode);
1726 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1727 SIMD register, which is currently broken. While we get GCC
1728 to emit proper RTL for these cases, let's dump to memory. */
1729 else if (VECTOR_MODE_P (GET_MODE (dst))
1730 && REG_P (src))
1732 int slen = GET_MODE_SIZE (GET_MODE (src));
1733 rtx mem;
1735 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1736 emit_move_insn (mem, src);
1737 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1739 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1740 && XVECLEN (dst, 0) > 1)
1741 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1742 else if (CONSTANT_P (src))
1744 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1746 if (len == ssize)
1747 tmps[i] = src;
1748 else
1750 rtx first, second;
1752 gcc_assert (2 * len == ssize);
1753 split_double (src, &first, &second);
1754 if (i)
1755 tmps[i] = second;
1756 else
1757 tmps[i] = first;
1760 else if (REG_P (src) && GET_MODE (src) == mode)
1761 tmps[i] = src;
1762 else
1763 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1764 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1765 mode, mode);
1767 if (shift)
1768 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1769 shift, tmps[i], 0);
1773 /* Emit code to move a block SRC of type TYPE to a block DST,
1774 where DST is non-consecutive registers represented by a PARALLEL.
1775 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1776 if not known. */
1778 void
1779 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1781 rtx *tmps;
1782 int i;
1784 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1785 emit_group_load_1 (tmps, dst, src, type, ssize);
1787 /* Copy the extracted pieces into the proper (probable) hard regs. */
1788 for (i = 0; i < XVECLEN (dst, 0); i++)
1790 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1791 if (d == NULL)
1792 continue;
1793 emit_move_insn (d, tmps[i]);
1797 /* Similar, but load SRC into new pseudos in a format that looks like
1798 PARALLEL. This can later be fed to emit_group_move to get things
1799 in the right place. */
1802 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1804 rtvec vec;
1805 int i;
1807 vec = rtvec_alloc (XVECLEN (parallel, 0));
1808 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1810 /* Convert the vector to look just like the original PARALLEL, except
1811 with the computed values. */
1812 for (i = 0; i < XVECLEN (parallel, 0); i++)
1814 rtx e = XVECEXP (parallel, 0, i);
1815 rtx d = XEXP (e, 0);
1817 if (d)
1819 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1820 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1822 RTVEC_ELT (vec, i) = e;
1825 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1828 /* Emit code to move a block SRC to block DST, where SRC and DST are
1829 non-consecutive groups of registers, each represented by a PARALLEL. */
1831 void
1832 emit_group_move (rtx dst, rtx src)
1834 int i;
1836 gcc_assert (GET_CODE (src) == PARALLEL
1837 && GET_CODE (dst) == PARALLEL
1838 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1840 /* Skip first entry if NULL. */
1841 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1842 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1843 XEXP (XVECEXP (src, 0, i), 0));
1846 /* Move a group of registers represented by a PARALLEL into pseudos. */
1849 emit_group_move_into_temps (rtx src)
1851 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1852 int i;
1854 for (i = 0; i < XVECLEN (src, 0); i++)
1856 rtx e = XVECEXP (src, 0, i);
1857 rtx d = XEXP (e, 0);
1859 if (d)
1860 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1861 RTVEC_ELT (vec, i) = e;
1864 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1867 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1868 where SRC is non-consecutive registers represented by a PARALLEL.
1869 SSIZE represents the total size of block ORIG_DST, or -1 if not
1870 known. */
1872 void
1873 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1875 rtx *tmps, dst;
1876 int start, finish, i;
1877 enum machine_mode m = GET_MODE (orig_dst);
1879 gcc_assert (GET_CODE (src) == PARALLEL);
1881 if (!SCALAR_INT_MODE_P (m)
1882 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1884 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1885 if (imode == BLKmode)
1886 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1887 else
1888 dst = gen_reg_rtx (imode);
1889 emit_group_store (dst, src, type, ssize);
1890 if (imode != BLKmode)
1891 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1892 emit_move_insn (orig_dst, dst);
1893 return;
1896 /* Check for a NULL entry, used to indicate that the parameter goes
1897 both on the stack and in registers. */
1898 if (XEXP (XVECEXP (src, 0, 0), 0))
1899 start = 0;
1900 else
1901 start = 1;
1902 finish = XVECLEN (src, 0);
1904 tmps = XALLOCAVEC (rtx, finish);
1906 /* Copy the (probable) hard regs into pseudos. */
1907 for (i = start; i < finish; i++)
1909 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1910 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1912 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1913 emit_move_insn (tmps[i], reg);
1915 else
1916 tmps[i] = reg;
1919 /* If we won't be storing directly into memory, protect the real destination
1920 from strange tricks we might play. */
1921 dst = orig_dst;
1922 if (GET_CODE (dst) == PARALLEL)
1924 rtx temp;
1926 /* We can get a PARALLEL dst if there is a conditional expression in
1927 a return statement. In that case, the dst and src are the same,
1928 so no action is necessary. */
1929 if (rtx_equal_p (dst, src))
1930 return;
1932 /* It is unclear if we can ever reach here, but we may as well handle
1933 it. Allocate a temporary, and split this into a store/load to/from
1934 the temporary. */
1936 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1937 emit_group_store (temp, src, type, ssize);
1938 emit_group_load (dst, temp, type, ssize);
1939 return;
1941 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1943 enum machine_mode outer = GET_MODE (dst);
1944 enum machine_mode inner;
1945 HOST_WIDE_INT bytepos;
1946 bool done = false;
1947 rtx temp;
1949 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1950 dst = gen_reg_rtx (outer);
1952 /* Make life a bit easier for combine. */
1953 /* If the first element of the vector is the low part
1954 of the destination mode, use a paradoxical subreg to
1955 initialize the destination. */
1956 if (start < finish)
1958 inner = GET_MODE (tmps[start]);
1959 bytepos = subreg_lowpart_offset (inner, outer);
1960 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1962 temp = simplify_gen_subreg (outer, tmps[start],
1963 inner, 0);
1964 if (temp)
1966 emit_move_insn (dst, temp);
1967 done = true;
1968 start++;
1973 /* If the first element wasn't the low part, try the last. */
1974 if (!done
1975 && start < finish - 1)
1977 inner = GET_MODE (tmps[finish - 1]);
1978 bytepos = subreg_lowpart_offset (inner, outer);
1979 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1981 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1982 inner, 0);
1983 if (temp)
1985 emit_move_insn (dst, temp);
1986 done = true;
1987 finish--;
1992 /* Otherwise, simply initialize the result to zero. */
1993 if (!done)
1994 emit_move_insn (dst, CONST0_RTX (outer));
1997 /* Process the pieces. */
1998 for (i = start; i < finish; i++)
2000 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2001 enum machine_mode mode = GET_MODE (tmps[i]);
2002 unsigned int bytelen = GET_MODE_SIZE (mode);
2003 unsigned int adj_bytelen = bytelen;
2004 rtx dest = dst;
2006 /* Handle trailing fragments that run over the size of the struct. */
2007 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2008 adj_bytelen = ssize - bytepos;
2010 if (GET_CODE (dst) == CONCAT)
2012 if (bytepos + adj_bytelen
2013 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2014 dest = XEXP (dst, 0);
2015 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2017 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2018 dest = XEXP (dst, 1);
2020 else
2022 enum machine_mode dest_mode = GET_MODE (dest);
2023 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2025 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2027 if (GET_MODE_ALIGNMENT (dest_mode)
2028 >= GET_MODE_ALIGNMENT (tmp_mode))
2030 dest = assign_stack_temp (dest_mode,
2031 GET_MODE_SIZE (dest_mode),
2033 emit_move_insn (adjust_address (dest,
2034 tmp_mode,
2035 bytepos),
2036 tmps[i]);
2037 dst = dest;
2039 else
2041 dest = assign_stack_temp (tmp_mode,
2042 GET_MODE_SIZE (tmp_mode),
2044 emit_move_insn (dest, tmps[i]);
2045 dst = adjust_address (dest, dest_mode, bytepos);
2047 break;
2051 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2053 /* store_bit_field always takes its value from the lsb.
2054 Move the fragment to the lsb if it's not already there. */
2055 if (
2056 #ifdef BLOCK_REG_PADDING
2057 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2058 == (BYTES_BIG_ENDIAN ? upward : downward)
2059 #else
2060 BYTES_BIG_ENDIAN
2061 #endif
2064 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2065 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2066 shift, tmps[i], 0);
2068 bytelen = adj_bytelen;
2071 /* Optimize the access just a bit. */
2072 if (MEM_P (dest)
2073 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2074 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2075 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2076 && bytelen == GET_MODE_SIZE (mode))
2077 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2078 else
2079 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2080 0, 0, mode, tmps[i]);
2083 /* Copy from the pseudo into the (probable) hard reg. */
2084 if (orig_dst != dst)
2085 emit_move_insn (orig_dst, dst);
2088 /* Generate code to copy a BLKmode object of TYPE out of a
2089 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2090 is null, a stack temporary is created. TGTBLK is returned.
2092 The purpose of this routine is to handle functions that return
2093 BLKmode structures in registers. Some machines (the PA for example)
2094 want to return all small structures in registers regardless of the
2095 structure's alignment. */
2098 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2100 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2101 rtx src = NULL, dst = NULL;
2102 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2103 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2104 enum machine_mode copy_mode;
2106 if (tgtblk == 0)
2108 tgtblk = assign_temp (build_qualified_type (type,
2109 (TYPE_QUALS (type)
2110 | TYPE_QUAL_CONST)),
2111 0, 1, 1);
2112 preserve_temp_slots (tgtblk);
2115 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2116 into a new pseudo which is a full word. */
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2122 /* If the structure doesn't take up a whole number of words, see whether
2123 SRCREG is padded on the left or on the right. If it's on the left,
2124 set PADDING_CORRECTION to the number of bits to skip.
2126 In most ABIs, the structure will be returned at the least end of
2127 the register, which translates to right padding on little-endian
2128 targets and left padding on big-endian targets. The opposite
2129 holds if the structure is returned at the most significant
2130 end of the register. */
2131 if (bytes % UNITS_PER_WORD != 0
2132 && (targetm.calls.return_in_msb (type)
2133 ? !BYTES_BIG_ENDIAN
2134 : BYTES_BIG_ENDIAN))
2135 padding_correction
2136 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2138 /* Copy the structure BITSIZE bits at a time. If the target lives in
2139 memory, take care of not reading/writing past its end by selecting
2140 a copy mode suited to BITSIZE. This should always be possible given
2141 how it is computed.
2143 We could probably emit more efficient code for machines which do not use
2144 strict alignment, but it doesn't seem worth the effort at the current
2145 time. */
2147 copy_mode = word_mode;
2148 if (MEM_P (tgtblk))
2150 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2151 if (mem_mode != BLKmode)
2152 copy_mode = mem_mode;
2155 for (bitpos = 0, xbitpos = padding_correction;
2156 bitpos < bytes * BITS_PER_UNIT;
2157 bitpos += bitsize, xbitpos += bitsize)
2159 /* We need a new source operand each time xbitpos is on a
2160 word boundary and when xbitpos == padding_correction
2161 (the first time through). */
2162 if (xbitpos % BITS_PER_WORD == 0
2163 || xbitpos == padding_correction)
2164 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2165 GET_MODE (srcreg));
2167 /* We need a new destination operand each time bitpos is on
2168 a word boundary. */
2169 if (bitpos % BITS_PER_WORD == 0)
2170 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2172 /* Use xbitpos for the source extraction (right justified) and
2173 bitpos for the destination store (left justified). */
2174 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2175 extract_bit_field (src, bitsize,
2176 xbitpos % BITS_PER_WORD, 1, false,
2177 NULL_RTX, copy_mode, copy_mode));
2180 return tgtblk;
2183 /* Add a USE expression for REG to the (possibly empty) list pointed
2184 to by CALL_FUSAGE. REG must denote a hard register. */
2186 void
2187 use_reg (rtx *call_fusage, rtx reg)
2189 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2191 *call_fusage
2192 = gen_rtx_EXPR_LIST (VOIDmode,
2193 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2196 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2197 starting at REGNO. All of these registers must be hard registers. */
2199 void
2200 use_regs (rtx *call_fusage, int regno, int nregs)
2202 int i;
2204 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2206 for (i = 0; i < nregs; i++)
2207 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2210 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2211 PARALLEL REGS. This is for calls that pass values in multiple
2212 non-contiguous locations. The Irix 6 ABI has examples of this. */
2214 void
2215 use_group_regs (rtx *call_fusage, rtx regs)
2217 int i;
2219 for (i = 0; i < XVECLEN (regs, 0); i++)
2221 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2223 /* A NULL entry means the parameter goes both on the stack and in
2224 registers. This can also be a MEM for targets that pass values
2225 partially on the stack and partially in registers. */
2226 if (reg != 0 && REG_P (reg))
2227 use_reg (call_fusage, reg);
2231 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2232 assigment and the code of the expresion on the RHS is CODE. Return
2233 NULL otherwise. */
2235 static gimple
2236 get_def_for_expr (tree name, enum tree_code code)
2238 gimple def_stmt;
2240 if (TREE_CODE (name) != SSA_NAME)
2241 return NULL;
2243 def_stmt = get_gimple_for_ssa_name (name);
2244 if (!def_stmt
2245 || gimple_assign_rhs_code (def_stmt) != code)
2246 return NULL;
2248 return def_stmt;
2252 /* Determine whether the LEN bytes generated by CONSTFUN can be
2253 stored to memory using several move instructions. CONSTFUNDATA is
2254 a pointer which will be passed as argument in every CONSTFUN call.
2255 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2256 a memset operation and false if it's a copy of a constant string.
2257 Return nonzero if a call to store_by_pieces should succeed. */
2260 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2261 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2262 void *constfundata, unsigned int align, bool memsetp)
2264 unsigned HOST_WIDE_INT l;
2265 unsigned int max_size;
2266 HOST_WIDE_INT offset = 0;
2267 enum machine_mode mode;
2268 enum insn_code icode;
2269 int reverse;
2270 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2271 rtx cst ATTRIBUTE_UNUSED;
2273 if (len == 0)
2274 return 1;
2276 if (! (memsetp
2277 ? SET_BY_PIECES_P (len, align)
2278 : STORE_BY_PIECES_P (len, align)))
2279 return 0;
2281 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2283 /* We would first store what we can in the largest integer mode, then go to
2284 successively smaller modes. */
2286 for (reverse = 0;
2287 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2288 reverse++)
2290 l = len;
2291 max_size = STORE_MAX_PIECES + 1;
2292 while (max_size > 1)
2294 mode = widest_int_mode_for_size (max_size);
2296 if (mode == VOIDmode)
2297 break;
2299 icode = optab_handler (mov_optab, mode);
2300 if (icode != CODE_FOR_nothing
2301 && align >= GET_MODE_ALIGNMENT (mode))
2303 unsigned int size = GET_MODE_SIZE (mode);
2305 while (l >= size)
2307 if (reverse)
2308 offset -= size;
2310 cst = (*constfun) (constfundata, offset, mode);
2311 if (!targetm.legitimate_constant_p (mode, cst))
2312 return 0;
2314 if (!reverse)
2315 offset += size;
2317 l -= size;
2321 max_size = GET_MODE_SIZE (mode);
2324 /* The code above should have handled everything. */
2325 gcc_assert (!l);
2328 return 1;
2331 /* Generate several move instructions to store LEN bytes generated by
2332 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2333 pointer which will be passed as argument in every CONSTFUN call.
2334 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2335 a memset operation and false if it's a copy of a constant string.
2336 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2337 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2338 stpcpy. */
2341 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2342 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2343 void *constfundata, unsigned int align, bool memsetp, int endp)
2345 enum machine_mode to_addr_mode
2346 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2347 struct store_by_pieces_d data;
2349 if (len == 0)
2351 gcc_assert (endp != 2);
2352 return to;
2355 gcc_assert (memsetp
2356 ? SET_BY_PIECES_P (len, align)
2357 : STORE_BY_PIECES_P (len, align));
2358 data.constfun = constfun;
2359 data.constfundata = constfundata;
2360 data.len = len;
2361 data.to = to;
2362 store_by_pieces_1 (&data, align);
2363 if (endp)
2365 rtx to1;
2367 gcc_assert (!data.reverse);
2368 if (data.autinc_to)
2370 if (endp == 2)
2372 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2373 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2374 else
2375 data.to_addr = copy_to_mode_reg (to_addr_mode,
2376 plus_constant (data.to_addr,
2377 -1));
2379 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2380 data.offset);
2382 else
2384 if (endp == 2)
2385 --data.offset;
2386 to1 = adjust_address (data.to, QImode, data.offset);
2388 return to1;
2390 else
2391 return data.to;
2394 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2395 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2397 static void
2398 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2400 struct store_by_pieces_d data;
2402 if (len == 0)
2403 return;
2405 data.constfun = clear_by_pieces_1;
2406 data.constfundata = NULL;
2407 data.len = len;
2408 data.to = to;
2409 store_by_pieces_1 (&data, align);
2412 /* Callback routine for clear_by_pieces.
2413 Return const0_rtx unconditionally. */
2415 static rtx
2416 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2417 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2418 enum machine_mode mode ATTRIBUTE_UNUSED)
2420 return const0_rtx;
2423 /* Subroutine of clear_by_pieces and store_by_pieces.
2424 Generate several move instructions to store LEN bytes of block TO. (A MEM
2425 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2427 static void
2428 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2429 unsigned int align ATTRIBUTE_UNUSED)
2431 enum machine_mode to_addr_mode
2432 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2433 rtx to_addr = XEXP (data->to, 0);
2434 unsigned int max_size = STORE_MAX_PIECES + 1;
2435 enum insn_code icode;
2437 data->offset = 0;
2438 data->to_addr = to_addr;
2439 data->autinc_to
2440 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2441 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2443 data->explicit_inc_to = 0;
2444 data->reverse
2445 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2446 if (data->reverse)
2447 data->offset = data->len;
2449 /* If storing requires more than two move insns,
2450 copy addresses to registers (to make displacements shorter)
2451 and use post-increment if available. */
2452 if (!data->autinc_to
2453 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2455 /* Determine the main mode we'll be using.
2456 MODE might not be used depending on the definitions of the
2457 USE_* macros below. */
2458 enum machine_mode mode ATTRIBUTE_UNUSED
2459 = widest_int_mode_for_size (max_size);
2461 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2463 data->to_addr = copy_to_mode_reg (to_addr_mode,
2464 plus_constant (to_addr, data->len));
2465 data->autinc_to = 1;
2466 data->explicit_inc_to = -1;
2469 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2470 && ! data->autinc_to)
2472 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2473 data->autinc_to = 1;
2474 data->explicit_inc_to = 1;
2477 if ( !data->autinc_to && CONSTANT_P (to_addr))
2478 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2481 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2483 /* First store what we can in the largest integer mode, then go to
2484 successively smaller modes. */
2486 while (max_size > 1)
2488 enum machine_mode mode = widest_int_mode_for_size (max_size);
2490 if (mode == VOIDmode)
2491 break;
2493 icode = optab_handler (mov_optab, mode);
2494 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2495 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2497 max_size = GET_MODE_SIZE (mode);
2500 /* The code above should have handled everything. */
2501 gcc_assert (!data->len);
2504 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2505 with move instructions for mode MODE. GENFUN is the gen_... function
2506 to make a move insn for that mode. DATA has all the other info. */
2508 static void
2509 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2510 struct store_by_pieces_d *data)
2512 unsigned int size = GET_MODE_SIZE (mode);
2513 rtx to1, cst;
2515 while (data->len >= size)
2517 if (data->reverse)
2518 data->offset -= size;
2520 if (data->autinc_to)
2521 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2522 data->offset);
2523 else
2524 to1 = adjust_address (data->to, mode, data->offset);
2526 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2527 emit_insn (gen_add2_insn (data->to_addr,
2528 GEN_INT (-(HOST_WIDE_INT) size)));
2530 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2531 emit_insn ((*genfun) (to1, cst));
2533 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2534 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2536 if (! data->reverse)
2537 data->offset += size;
2539 data->len -= size;
2543 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2544 its length in bytes. */
2547 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2548 unsigned int expected_align, HOST_WIDE_INT expected_size)
2550 enum machine_mode mode = GET_MODE (object);
2551 unsigned int align;
2553 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2555 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2556 just move a zero. Otherwise, do this a piece at a time. */
2557 if (mode != BLKmode
2558 && CONST_INT_P (size)
2559 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2561 rtx zero = CONST0_RTX (mode);
2562 if (zero != NULL)
2564 emit_move_insn (object, zero);
2565 return NULL;
2568 if (COMPLEX_MODE_P (mode))
2570 zero = CONST0_RTX (GET_MODE_INNER (mode));
2571 if (zero != NULL)
2573 write_complex_part (object, zero, 0);
2574 write_complex_part (object, zero, 1);
2575 return NULL;
2580 if (size == const0_rtx)
2581 return NULL;
2583 align = MEM_ALIGN (object);
2585 if (CONST_INT_P (size)
2586 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2587 clear_by_pieces (object, INTVAL (size), align);
2588 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2589 expected_align, expected_size))
2591 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2592 return set_storage_via_libcall (object, size, const0_rtx,
2593 method == BLOCK_OP_TAILCALL);
2594 else
2595 gcc_unreachable ();
2597 return NULL;
2601 clear_storage (rtx object, rtx size, enum block_op_methods method)
2603 return clear_storage_hints (object, size, method, 0, -1);
2607 /* A subroutine of clear_storage. Expand a call to memset.
2608 Return the return value of memset, 0 otherwise. */
2611 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2613 tree call_expr, fn, object_tree, size_tree, val_tree;
2614 enum machine_mode size_mode;
2615 rtx retval;
2617 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2618 place those into new pseudos into a VAR_DECL and use them later. */
2620 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2622 size_mode = TYPE_MODE (sizetype);
2623 size = convert_to_mode (size_mode, size, 1);
2624 size = copy_to_mode_reg (size_mode, size);
2626 /* It is incorrect to use the libcall calling conventions to call
2627 memset in this context. This could be a user call to memset and
2628 the user may wish to examine the return value from memset. For
2629 targets where libcalls and normal calls have different conventions
2630 for returning pointers, we could end up generating incorrect code. */
2632 object_tree = make_tree (ptr_type_node, object);
2633 if (!CONST_INT_P (val))
2634 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2635 size_tree = make_tree (sizetype, size);
2636 val_tree = make_tree (integer_type_node, val);
2638 fn = clear_storage_libcall_fn (true);
2639 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2640 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2642 retval = expand_normal (call_expr);
2644 return retval;
2647 /* A subroutine of set_storage_via_libcall. Create the tree node
2648 for the function we use for block clears. The first time FOR_CALL
2649 is true, we call assemble_external. */
2651 tree block_clear_fn;
2653 void
2654 init_block_clear_fn (const char *asmspec)
2656 if (!block_clear_fn)
2658 tree fn, args;
2660 fn = get_identifier ("memset");
2661 args = build_function_type_list (ptr_type_node, ptr_type_node,
2662 integer_type_node, sizetype,
2663 NULL_TREE);
2665 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2666 DECL_EXTERNAL (fn) = 1;
2667 TREE_PUBLIC (fn) = 1;
2668 DECL_ARTIFICIAL (fn) = 1;
2669 TREE_NOTHROW (fn) = 1;
2670 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2671 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2673 block_clear_fn = fn;
2676 if (asmspec)
2677 set_user_assembler_name (block_clear_fn, asmspec);
2680 static tree
2681 clear_storage_libcall_fn (int for_call)
2683 static bool emitted_extern;
2685 if (!block_clear_fn)
2686 init_block_clear_fn (NULL);
2688 if (for_call && !emitted_extern)
2690 emitted_extern = true;
2691 make_decl_rtl (block_clear_fn);
2692 assemble_external (block_clear_fn);
2695 return block_clear_fn;
2698 /* Expand a setmem pattern; return true if successful. */
2700 bool
2701 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2702 unsigned int expected_align, HOST_WIDE_INT expected_size)
2704 /* Try the most limited insn first, because there's no point
2705 including more than one in the machine description unless
2706 the more limited one has some advantage. */
2708 enum machine_mode mode;
2710 if (expected_align < align)
2711 expected_align = align;
2713 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2714 mode = GET_MODE_WIDER_MODE (mode))
2716 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2718 if (code != CODE_FOR_nothing
2719 /* We don't need MODE to be narrower than
2720 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2721 the mode mask, as it is returned by the macro, it will
2722 definitely be less than the actual mode mask. */
2723 && ((CONST_INT_P (size)
2724 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2725 <= (GET_MODE_MASK (mode) >> 1)))
2726 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
2728 struct expand_operand ops[6];
2729 unsigned int nops;
2731 nops = insn_data[(int) code].n_generator_args;
2732 gcc_assert (nops == 4 || nops == 6);
2734 create_fixed_operand (&ops[0], object);
2735 /* The check above guarantees that this size conversion is valid. */
2736 create_convert_operand_to (&ops[1], size, mode, true);
2737 create_convert_operand_from (&ops[2], val, byte_mode, true);
2738 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2739 if (nops == 6)
2741 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2742 create_integer_operand (&ops[5], expected_size);
2744 if (maybe_expand_insn (code, nops, ops))
2745 return true;
2749 return false;
2753 /* Write to one of the components of the complex value CPLX. Write VAL to
2754 the real part if IMAG_P is false, and the imaginary part if its true. */
2756 static void
2757 write_complex_part (rtx cplx, rtx val, bool imag_p)
2759 enum machine_mode cmode;
2760 enum machine_mode imode;
2761 unsigned ibitsize;
2763 if (GET_CODE (cplx) == CONCAT)
2765 emit_move_insn (XEXP (cplx, imag_p), val);
2766 return;
2769 cmode = GET_MODE (cplx);
2770 imode = GET_MODE_INNER (cmode);
2771 ibitsize = GET_MODE_BITSIZE (imode);
2773 /* For MEMs simplify_gen_subreg may generate an invalid new address
2774 because, e.g., the original address is considered mode-dependent
2775 by the target, which restricts simplify_subreg from invoking
2776 adjust_address_nv. Instead of preparing fallback support for an
2777 invalid address, we call adjust_address_nv directly. */
2778 if (MEM_P (cplx))
2780 emit_move_insn (adjust_address_nv (cplx, imode,
2781 imag_p ? GET_MODE_SIZE (imode) : 0),
2782 val);
2783 return;
2786 /* If the sub-object is at least word sized, then we know that subregging
2787 will work. This special case is important, since store_bit_field
2788 wants to operate on integer modes, and there's rarely an OImode to
2789 correspond to TCmode. */
2790 if (ibitsize >= BITS_PER_WORD
2791 /* For hard regs we have exact predicates. Assume we can split
2792 the original object if it spans an even number of hard regs.
2793 This special case is important for SCmode on 64-bit platforms
2794 where the natural size of floating-point regs is 32-bit. */
2795 || (REG_P (cplx)
2796 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2797 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2799 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2800 imag_p ? GET_MODE_SIZE (imode) : 0);
2801 if (part)
2803 emit_move_insn (part, val);
2804 return;
2806 else
2807 /* simplify_gen_subreg may fail for sub-word MEMs. */
2808 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2811 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
2814 /* Extract one of the components of the complex value CPLX. Extract the
2815 real part if IMAG_P is false, and the imaginary part if it's true. */
2817 static rtx
2818 read_complex_part (rtx cplx, bool imag_p)
2820 enum machine_mode cmode, imode;
2821 unsigned ibitsize;
2823 if (GET_CODE (cplx) == CONCAT)
2824 return XEXP (cplx, imag_p);
2826 cmode = GET_MODE (cplx);
2827 imode = GET_MODE_INNER (cmode);
2828 ibitsize = GET_MODE_BITSIZE (imode);
2830 /* Special case reads from complex constants that got spilled to memory. */
2831 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2833 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2834 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2836 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2837 if (CONSTANT_CLASS_P (part))
2838 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2842 /* For MEMs simplify_gen_subreg may generate an invalid new address
2843 because, e.g., the original address is considered mode-dependent
2844 by the target, which restricts simplify_subreg from invoking
2845 adjust_address_nv. Instead of preparing fallback support for an
2846 invalid address, we call adjust_address_nv directly. */
2847 if (MEM_P (cplx))
2848 return adjust_address_nv (cplx, imode,
2849 imag_p ? GET_MODE_SIZE (imode) : 0);
2851 /* If the sub-object is at least word sized, then we know that subregging
2852 will work. This special case is important, since extract_bit_field
2853 wants to operate on integer modes, and there's rarely an OImode to
2854 correspond to TCmode. */
2855 if (ibitsize >= BITS_PER_WORD
2856 /* For hard regs we have exact predicates. Assume we can split
2857 the original object if it spans an even number of hard regs.
2858 This special case is important for SCmode on 64-bit platforms
2859 where the natural size of floating-point regs is 32-bit. */
2860 || (REG_P (cplx)
2861 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2862 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2864 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2865 imag_p ? GET_MODE_SIZE (imode) : 0);
2866 if (ret)
2867 return ret;
2868 else
2869 /* simplify_gen_subreg may fail for sub-word MEMs. */
2870 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2873 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2874 true, false, NULL_RTX, imode, imode);
2877 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2878 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2879 represented in NEW_MODE. If FORCE is true, this will never happen, as
2880 we'll force-create a SUBREG if needed. */
2882 static rtx
2883 emit_move_change_mode (enum machine_mode new_mode,
2884 enum machine_mode old_mode, rtx x, bool force)
2886 rtx ret;
2888 if (push_operand (x, GET_MODE (x)))
2890 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2891 MEM_COPY_ATTRIBUTES (ret, x);
2893 else if (MEM_P (x))
2895 /* We don't have to worry about changing the address since the
2896 size in bytes is supposed to be the same. */
2897 if (reload_in_progress)
2899 /* Copy the MEM to change the mode and move any
2900 substitutions from the old MEM to the new one. */
2901 ret = adjust_address_nv (x, new_mode, 0);
2902 copy_replacements (x, ret);
2904 else
2905 ret = adjust_address (x, new_mode, 0);
2907 else
2909 /* Note that we do want simplify_subreg's behavior of validating
2910 that the new mode is ok for a hard register. If we were to use
2911 simplify_gen_subreg, we would create the subreg, but would
2912 probably run into the target not being able to implement it. */
2913 /* Except, of course, when FORCE is true, when this is exactly what
2914 we want. Which is needed for CCmodes on some targets. */
2915 if (force)
2916 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2917 else
2918 ret = simplify_subreg (new_mode, x, old_mode, 0);
2921 return ret;
2924 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2925 an integer mode of the same size as MODE. Returns the instruction
2926 emitted, or NULL if such a move could not be generated. */
2928 static rtx
2929 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2931 enum machine_mode imode;
2932 enum insn_code code;
2934 /* There must exist a mode of the exact size we require. */
2935 imode = int_mode_for_mode (mode);
2936 if (imode == BLKmode)
2937 return NULL_RTX;
2939 /* The target must support moves in this mode. */
2940 code = optab_handler (mov_optab, imode);
2941 if (code == CODE_FOR_nothing)
2942 return NULL_RTX;
2944 x = emit_move_change_mode (imode, mode, x, force);
2945 if (x == NULL_RTX)
2946 return NULL_RTX;
2947 y = emit_move_change_mode (imode, mode, y, force);
2948 if (y == NULL_RTX)
2949 return NULL_RTX;
2950 return emit_insn (GEN_FCN (code) (x, y));
2953 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2954 Return an equivalent MEM that does not use an auto-increment. */
2956 static rtx
2957 emit_move_resolve_push (enum machine_mode mode, rtx x)
2959 enum rtx_code code = GET_CODE (XEXP (x, 0));
2960 HOST_WIDE_INT adjust;
2961 rtx temp;
2963 adjust = GET_MODE_SIZE (mode);
2964 #ifdef PUSH_ROUNDING
2965 adjust = PUSH_ROUNDING (adjust);
2966 #endif
2967 if (code == PRE_DEC || code == POST_DEC)
2968 adjust = -adjust;
2969 else if (code == PRE_MODIFY || code == POST_MODIFY)
2971 rtx expr = XEXP (XEXP (x, 0), 1);
2972 HOST_WIDE_INT val;
2974 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2975 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
2976 val = INTVAL (XEXP (expr, 1));
2977 if (GET_CODE (expr) == MINUS)
2978 val = -val;
2979 gcc_assert (adjust == val || adjust == -val);
2980 adjust = val;
2983 /* Do not use anti_adjust_stack, since we don't want to update
2984 stack_pointer_delta. */
2985 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2986 GEN_INT (adjust), stack_pointer_rtx,
2987 0, OPTAB_LIB_WIDEN);
2988 if (temp != stack_pointer_rtx)
2989 emit_move_insn (stack_pointer_rtx, temp);
2991 switch (code)
2993 case PRE_INC:
2994 case PRE_DEC:
2995 case PRE_MODIFY:
2996 temp = stack_pointer_rtx;
2997 break;
2998 case POST_INC:
2999 case POST_DEC:
3000 case POST_MODIFY:
3001 temp = plus_constant (stack_pointer_rtx, -adjust);
3002 break;
3003 default:
3004 gcc_unreachable ();
3007 return replace_equiv_address (x, temp);
3010 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3011 X is known to satisfy push_operand, and MODE is known to be complex.
3012 Returns the last instruction emitted. */
3015 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3017 enum machine_mode submode = GET_MODE_INNER (mode);
3018 bool imag_first;
3020 #ifdef PUSH_ROUNDING
3021 unsigned int submodesize = GET_MODE_SIZE (submode);
3023 /* In case we output to the stack, but the size is smaller than the
3024 machine can push exactly, we need to use move instructions. */
3025 if (PUSH_ROUNDING (submodesize) != submodesize)
3027 x = emit_move_resolve_push (mode, x);
3028 return emit_move_insn (x, y);
3030 #endif
3032 /* Note that the real part always precedes the imag part in memory
3033 regardless of machine's endianness. */
3034 switch (GET_CODE (XEXP (x, 0)))
3036 case PRE_DEC:
3037 case POST_DEC:
3038 imag_first = true;
3039 break;
3040 case PRE_INC:
3041 case POST_INC:
3042 imag_first = false;
3043 break;
3044 default:
3045 gcc_unreachable ();
3048 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3049 read_complex_part (y, imag_first));
3050 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3051 read_complex_part (y, !imag_first));
3054 /* A subroutine of emit_move_complex. Perform the move from Y to X
3055 via two moves of the parts. Returns the last instruction emitted. */
3058 emit_move_complex_parts (rtx x, rtx y)
3060 /* Show the output dies here. This is necessary for SUBREGs
3061 of pseudos since we cannot track their lifetimes correctly;
3062 hard regs shouldn't appear here except as return values. */
3063 if (!reload_completed && !reload_in_progress
3064 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3065 emit_clobber (x);
3067 write_complex_part (x, read_complex_part (y, false), false);
3068 write_complex_part (x, read_complex_part (y, true), true);
3070 return get_last_insn ();
3073 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3074 MODE is known to be complex. Returns the last instruction emitted. */
3076 static rtx
3077 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3079 bool try_int;
3081 /* Need to take special care for pushes, to maintain proper ordering
3082 of the data, and possibly extra padding. */
3083 if (push_operand (x, mode))
3084 return emit_move_complex_push (mode, x, y);
3086 /* See if we can coerce the target into moving both values at once. */
3088 /* Move floating point as parts. */
3089 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3090 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3091 try_int = false;
3092 /* Not possible if the values are inherently not adjacent. */
3093 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3094 try_int = false;
3095 /* Is possible if both are registers (or subregs of registers). */
3096 else if (register_operand (x, mode) && register_operand (y, mode))
3097 try_int = true;
3098 /* If one of the operands is a memory, and alignment constraints
3099 are friendly enough, we may be able to do combined memory operations.
3100 We do not attempt this if Y is a constant because that combination is
3101 usually better with the by-parts thing below. */
3102 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3103 && (!STRICT_ALIGNMENT
3104 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3105 try_int = true;
3106 else
3107 try_int = false;
3109 if (try_int)
3111 rtx ret;
3113 /* For memory to memory moves, optimal behavior can be had with the
3114 existing block move logic. */
3115 if (MEM_P (x) && MEM_P (y))
3117 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3118 BLOCK_OP_NO_LIBCALL);
3119 return get_last_insn ();
3122 ret = emit_move_via_integer (mode, x, y, true);
3123 if (ret)
3124 return ret;
3127 return emit_move_complex_parts (x, y);
3130 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3131 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3133 static rtx
3134 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3136 rtx ret;
3138 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3139 if (mode != CCmode)
3141 enum insn_code code = optab_handler (mov_optab, CCmode);
3142 if (code != CODE_FOR_nothing)
3144 x = emit_move_change_mode (CCmode, mode, x, true);
3145 y = emit_move_change_mode (CCmode, mode, y, true);
3146 return emit_insn (GEN_FCN (code) (x, y));
3150 /* Otherwise, find the MODE_INT mode of the same width. */
3151 ret = emit_move_via_integer (mode, x, y, false);
3152 gcc_assert (ret != NULL);
3153 return ret;
3156 /* Return true if word I of OP lies entirely in the
3157 undefined bits of a paradoxical subreg. */
3159 static bool
3160 undefined_operand_subword_p (const_rtx op, int i)
3162 enum machine_mode innermode, innermostmode;
3163 int offset;
3164 if (GET_CODE (op) != SUBREG)
3165 return false;
3166 innermode = GET_MODE (op);
3167 innermostmode = GET_MODE (SUBREG_REG (op));
3168 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3169 /* The SUBREG_BYTE represents offset, as if the value were stored in
3170 memory, except for a paradoxical subreg where we define
3171 SUBREG_BYTE to be 0; undo this exception as in
3172 simplify_subreg. */
3173 if (SUBREG_BYTE (op) == 0
3174 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3176 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3177 if (WORDS_BIG_ENDIAN)
3178 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3179 if (BYTES_BIG_ENDIAN)
3180 offset += difference % UNITS_PER_WORD;
3182 if (offset >= GET_MODE_SIZE (innermostmode)
3183 || offset <= -GET_MODE_SIZE (word_mode))
3184 return true;
3185 return false;
3188 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3189 MODE is any multi-word or full-word mode that lacks a move_insn
3190 pattern. Note that you will get better code if you define such
3191 patterns, even if they must turn into multiple assembler instructions. */
3193 static rtx
3194 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3196 rtx last_insn = 0;
3197 rtx seq, inner;
3198 bool need_clobber;
3199 int i;
3201 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3203 /* If X is a push on the stack, do the push now and replace
3204 X with a reference to the stack pointer. */
3205 if (push_operand (x, mode))
3206 x = emit_move_resolve_push (mode, x);
3208 /* If we are in reload, see if either operand is a MEM whose address
3209 is scheduled for replacement. */
3210 if (reload_in_progress && MEM_P (x)
3211 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3212 x = replace_equiv_address_nv (x, inner);
3213 if (reload_in_progress && MEM_P (y)
3214 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3215 y = replace_equiv_address_nv (y, inner);
3217 start_sequence ();
3219 need_clobber = false;
3220 for (i = 0;
3221 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3222 i++)
3224 rtx xpart = operand_subword (x, i, 1, mode);
3225 rtx ypart;
3227 /* Do not generate code for a move if it would come entirely
3228 from the undefined bits of a paradoxical subreg. */
3229 if (undefined_operand_subword_p (y, i))
3230 continue;
3232 ypart = operand_subword (y, i, 1, mode);
3234 /* If we can't get a part of Y, put Y into memory if it is a
3235 constant. Otherwise, force it into a register. Then we must
3236 be able to get a part of Y. */
3237 if (ypart == 0 && CONSTANT_P (y))
3239 y = use_anchored_address (force_const_mem (mode, y));
3240 ypart = operand_subword (y, i, 1, mode);
3242 else if (ypart == 0)
3243 ypart = operand_subword_force (y, i, mode);
3245 gcc_assert (xpart && ypart);
3247 need_clobber |= (GET_CODE (xpart) == SUBREG);
3249 last_insn = emit_move_insn (xpart, ypart);
3252 seq = get_insns ();
3253 end_sequence ();
3255 /* Show the output dies here. This is necessary for SUBREGs
3256 of pseudos since we cannot track their lifetimes correctly;
3257 hard regs shouldn't appear here except as return values.
3258 We never want to emit such a clobber after reload. */
3259 if (x != y
3260 && ! (reload_in_progress || reload_completed)
3261 && need_clobber != 0)
3262 emit_clobber (x);
3264 emit_insn (seq);
3266 return last_insn;
3269 /* Low level part of emit_move_insn.
3270 Called just like emit_move_insn, but assumes X and Y
3271 are basically valid. */
3274 emit_move_insn_1 (rtx x, rtx y)
3276 enum machine_mode mode = GET_MODE (x);
3277 enum insn_code code;
3279 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3281 code = optab_handler (mov_optab, mode);
3282 if (code != CODE_FOR_nothing)
3283 return emit_insn (GEN_FCN (code) (x, y));
3285 /* Expand complex moves by moving real part and imag part. */
3286 if (COMPLEX_MODE_P (mode))
3287 return emit_move_complex (mode, x, y);
3289 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3290 || ALL_FIXED_POINT_MODE_P (mode))
3292 rtx result = emit_move_via_integer (mode, x, y, true);
3294 /* If we can't find an integer mode, use multi words. */
3295 if (result)
3296 return result;
3297 else
3298 return emit_move_multi_word (mode, x, y);
3301 if (GET_MODE_CLASS (mode) == MODE_CC)
3302 return emit_move_ccmode (mode, x, y);
3304 /* Try using a move pattern for the corresponding integer mode. This is
3305 only safe when simplify_subreg can convert MODE constants into integer
3306 constants. At present, it can only do this reliably if the value
3307 fits within a HOST_WIDE_INT. */
3308 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3310 rtx ret = emit_move_via_integer (mode, x, y, false);
3311 if (ret)
3312 return ret;
3315 return emit_move_multi_word (mode, x, y);
3318 /* Generate code to copy Y into X.
3319 Both Y and X must have the same mode, except that
3320 Y can be a constant with VOIDmode.
3321 This mode cannot be BLKmode; use emit_block_move for that.
3323 Return the last instruction emitted. */
3326 emit_move_insn (rtx x, rtx y)
3328 enum machine_mode mode = GET_MODE (x);
3329 rtx y_cst = NULL_RTX;
3330 rtx last_insn, set;
3332 gcc_assert (mode != BLKmode
3333 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3335 if (CONSTANT_P (y))
3337 if (optimize
3338 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3339 && (last_insn = compress_float_constant (x, y)))
3340 return last_insn;
3342 y_cst = y;
3344 if (!targetm.legitimate_constant_p (mode, y))
3346 y = force_const_mem (mode, y);
3348 /* If the target's cannot_force_const_mem prevented the spill,
3349 assume that the target's move expanders will also take care
3350 of the non-legitimate constant. */
3351 if (!y)
3352 y = y_cst;
3353 else
3354 y = use_anchored_address (y);
3358 /* If X or Y are memory references, verify that their addresses are valid
3359 for the machine. */
3360 if (MEM_P (x)
3361 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3362 MEM_ADDR_SPACE (x))
3363 && ! push_operand (x, GET_MODE (x))))
3364 x = validize_mem (x);
3366 if (MEM_P (y)
3367 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3368 MEM_ADDR_SPACE (y)))
3369 y = validize_mem (y);
3371 gcc_assert (mode != BLKmode);
3373 last_insn = emit_move_insn_1 (x, y);
3375 if (y_cst && REG_P (x)
3376 && (set = single_set (last_insn)) != NULL_RTX
3377 && SET_DEST (set) == x
3378 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3379 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3381 return last_insn;
3384 /* If Y is representable exactly in a narrower mode, and the target can
3385 perform the extension directly from constant or memory, then emit the
3386 move as an extension. */
3388 static rtx
3389 compress_float_constant (rtx x, rtx y)
3391 enum machine_mode dstmode = GET_MODE (x);
3392 enum machine_mode orig_srcmode = GET_MODE (y);
3393 enum machine_mode srcmode;
3394 REAL_VALUE_TYPE r;
3395 int oldcost, newcost;
3396 bool speed = optimize_insn_for_speed_p ();
3398 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3400 if (targetm.legitimate_constant_p (dstmode, y))
3401 oldcost = set_src_cost (y, speed);
3402 else
3403 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3405 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3406 srcmode != orig_srcmode;
3407 srcmode = GET_MODE_WIDER_MODE (srcmode))
3409 enum insn_code ic;
3410 rtx trunc_y, last_insn;
3412 /* Skip if the target can't extend this way. */
3413 ic = can_extend_p (dstmode, srcmode, 0);
3414 if (ic == CODE_FOR_nothing)
3415 continue;
3417 /* Skip if the narrowed value isn't exact. */
3418 if (! exact_real_truncate (srcmode, &r))
3419 continue;
3421 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3423 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3425 /* Skip if the target needs extra instructions to perform
3426 the extension. */
3427 if (!insn_operand_matches (ic, 1, trunc_y))
3428 continue;
3429 /* This is valid, but may not be cheaper than the original. */
3430 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3431 speed);
3432 if (oldcost < newcost)
3433 continue;
3435 else if (float_extend_from_mem[dstmode][srcmode])
3437 trunc_y = force_const_mem (srcmode, trunc_y);
3438 /* This is valid, but may not be cheaper than the original. */
3439 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3440 speed);
3441 if (oldcost < newcost)
3442 continue;
3443 trunc_y = validize_mem (trunc_y);
3445 else
3446 continue;
3448 /* For CSE's benefit, force the compressed constant pool entry
3449 into a new pseudo. This constant may be used in different modes,
3450 and if not, combine will put things back together for us. */
3451 trunc_y = force_reg (srcmode, trunc_y);
3452 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3453 last_insn = get_last_insn ();
3455 if (REG_P (x))
3456 set_unique_reg_note (last_insn, REG_EQUAL, y);
3458 return last_insn;
3461 return NULL_RTX;
3464 /* Pushing data onto the stack. */
3466 /* Push a block of length SIZE (perhaps variable)
3467 and return an rtx to address the beginning of the block.
3468 The value may be virtual_outgoing_args_rtx.
3470 EXTRA is the number of bytes of padding to push in addition to SIZE.
3471 BELOW nonzero means this padding comes at low addresses;
3472 otherwise, the padding comes at high addresses. */
3475 push_block (rtx size, int extra, int below)
3477 rtx temp;
3479 size = convert_modes (Pmode, ptr_mode, size, 1);
3480 if (CONSTANT_P (size))
3481 anti_adjust_stack (plus_constant (size, extra));
3482 else if (REG_P (size) && extra == 0)
3483 anti_adjust_stack (size);
3484 else
3486 temp = copy_to_mode_reg (Pmode, size);
3487 if (extra != 0)
3488 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3489 temp, 0, OPTAB_LIB_WIDEN);
3490 anti_adjust_stack (temp);
3493 #ifndef STACK_GROWS_DOWNWARD
3494 if (0)
3495 #else
3496 if (1)
3497 #endif
3499 temp = virtual_outgoing_args_rtx;
3500 if (extra != 0 && below)
3501 temp = plus_constant (temp, extra);
3503 else
3505 if (CONST_INT_P (size))
3506 temp = plus_constant (virtual_outgoing_args_rtx,
3507 -INTVAL (size) - (below ? 0 : extra));
3508 else if (extra != 0 && !below)
3509 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3510 negate_rtx (Pmode, plus_constant (size, extra)));
3511 else
3512 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3513 negate_rtx (Pmode, size));
3516 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3519 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3521 static rtx
3522 mem_autoinc_base (rtx mem)
3524 if (MEM_P (mem))
3526 rtx addr = XEXP (mem, 0);
3527 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3528 return XEXP (addr, 0);
3530 return NULL;
3533 /* A utility routine used here, in reload, and in try_split. The insns
3534 after PREV up to and including LAST are known to adjust the stack,
3535 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3536 placing notes as appropriate. PREV may be NULL, indicating the
3537 entire insn sequence prior to LAST should be scanned.
3539 The set of allowed stack pointer modifications is small:
3540 (1) One or more auto-inc style memory references (aka pushes),
3541 (2) One or more addition/subtraction with the SP as destination,
3542 (3) A single move insn with the SP as destination,
3543 (4) A call_pop insn.
3545 Insns in the sequence that do not modify the SP are ignored.
3547 The return value is the amount of adjustment that can be trivially
3548 verified, via immediate operand or auto-inc. If the adjustment
3549 cannot be trivially extracted, the return value is INT_MIN. */
3551 HOST_WIDE_INT
3552 find_args_size_adjust (rtx insn)
3554 rtx dest, set, pat;
3555 int i;
3557 pat = PATTERN (insn);
3558 set = NULL;
3560 /* Look for a call_pop pattern. */
3561 if (CALL_P (insn))
3563 /* We have to allow non-call_pop patterns for the case
3564 of emit_single_push_insn of a TLS address. */
3565 if (GET_CODE (pat) != PARALLEL)
3566 return 0;
3568 /* All call_pop have a stack pointer adjust in the parallel.
3569 The call itself is always first, and the stack adjust is
3570 usually last, so search from the end. */
3571 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3573 set = XVECEXP (pat, 0, i);
3574 if (GET_CODE (set) != SET)
3575 continue;
3576 dest = SET_DEST (set);
3577 if (dest == stack_pointer_rtx)
3578 break;
3580 /* We'd better have found the stack pointer adjust. */
3581 if (i == 0)
3582 return 0;
3583 /* Fall through to process the extracted SET and DEST
3584 as if it was a standalone insn. */
3586 else if (GET_CODE (pat) == SET)
3587 set = pat;
3588 else if ((set = single_set (insn)) != NULL)
3590 else if (GET_CODE (pat) == PARALLEL)
3592 /* ??? Some older ports use a parallel with a stack adjust
3593 and a store for a PUSH_ROUNDING pattern, rather than a
3594 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3595 /* ??? See h8300 and m68k, pushqi1. */
3596 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3598 set = XVECEXP (pat, 0, i);
3599 if (GET_CODE (set) != SET)
3600 continue;
3601 dest = SET_DEST (set);
3602 if (dest == stack_pointer_rtx)
3603 break;
3605 /* We do not expect an auto-inc of the sp in the parallel. */
3606 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3607 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3608 != stack_pointer_rtx);
3610 if (i < 0)
3611 return 0;
3613 else
3614 return 0;
3616 dest = SET_DEST (set);
3618 /* Look for direct modifications of the stack pointer. */
3619 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3621 /* Look for a trivial adjustment, otherwise assume nothing. */
3622 /* Note that the SPU restore_stack_block pattern refers to
3623 the stack pointer in V4SImode. Consider that non-trivial. */
3624 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3625 && GET_CODE (SET_SRC (set)) == PLUS
3626 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3627 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3628 return INTVAL (XEXP (SET_SRC (set), 1));
3629 /* ??? Reload can generate no-op moves, which will be cleaned
3630 up later. Recognize it and continue searching. */
3631 else if (rtx_equal_p (dest, SET_SRC (set)))
3632 return 0;
3633 else
3634 return HOST_WIDE_INT_MIN;
3636 else
3638 rtx mem, addr;
3640 /* Otherwise only think about autoinc patterns. */
3641 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3643 mem = dest;
3644 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3645 != stack_pointer_rtx);
3647 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3648 mem = SET_SRC (set);
3649 else
3650 return 0;
3652 addr = XEXP (mem, 0);
3653 switch (GET_CODE (addr))
3655 case PRE_INC:
3656 case POST_INC:
3657 return GET_MODE_SIZE (GET_MODE (mem));
3658 case PRE_DEC:
3659 case POST_DEC:
3660 return -GET_MODE_SIZE (GET_MODE (mem));
3661 case PRE_MODIFY:
3662 case POST_MODIFY:
3663 addr = XEXP (addr, 1);
3664 gcc_assert (GET_CODE (addr) == PLUS);
3665 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3666 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3667 return INTVAL (XEXP (addr, 1));
3668 default:
3669 gcc_unreachable ();
3675 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3677 int args_size = end_args_size;
3678 bool saw_unknown = false;
3679 rtx insn;
3681 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3683 HOST_WIDE_INT this_delta;
3685 if (!NONDEBUG_INSN_P (insn))
3686 continue;
3688 this_delta = find_args_size_adjust (insn);
3689 if (this_delta == 0)
3690 continue;
3692 gcc_assert (!saw_unknown);
3693 if (this_delta == HOST_WIDE_INT_MIN)
3694 saw_unknown = true;
3696 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3697 #ifdef STACK_GROWS_DOWNWARD
3698 this_delta = -this_delta;
3699 #endif
3700 args_size -= this_delta;
3703 return saw_unknown ? INT_MIN : args_size;
3706 #ifdef PUSH_ROUNDING
3707 /* Emit single push insn. */
3709 static void
3710 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
3712 rtx dest_addr;
3713 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3714 rtx dest;
3715 enum insn_code icode;
3717 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3718 /* If there is push pattern, use it. Otherwise try old way of throwing
3719 MEM representing push operation to move expander. */
3720 icode = optab_handler (push_optab, mode);
3721 if (icode != CODE_FOR_nothing)
3723 struct expand_operand ops[1];
3725 create_input_operand (&ops[0], x, mode);
3726 if (maybe_expand_insn (icode, 1, ops))
3727 return;
3729 if (GET_MODE_SIZE (mode) == rounded_size)
3730 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3731 /* If we are to pad downward, adjust the stack pointer first and
3732 then store X into the stack location using an offset. This is
3733 because emit_move_insn does not know how to pad; it does not have
3734 access to type. */
3735 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3737 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3738 HOST_WIDE_INT offset;
3740 emit_move_insn (stack_pointer_rtx,
3741 expand_binop (Pmode,
3742 #ifdef STACK_GROWS_DOWNWARD
3743 sub_optab,
3744 #else
3745 add_optab,
3746 #endif
3747 stack_pointer_rtx,
3748 GEN_INT (rounded_size),
3749 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3751 offset = (HOST_WIDE_INT) padding_size;
3752 #ifdef STACK_GROWS_DOWNWARD
3753 if (STACK_PUSH_CODE == POST_DEC)
3754 /* We have already decremented the stack pointer, so get the
3755 previous value. */
3756 offset += (HOST_WIDE_INT) rounded_size;
3757 #else
3758 if (STACK_PUSH_CODE == POST_INC)
3759 /* We have already incremented the stack pointer, so get the
3760 previous value. */
3761 offset -= (HOST_WIDE_INT) rounded_size;
3762 #endif
3763 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3765 else
3767 #ifdef STACK_GROWS_DOWNWARD
3768 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3769 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3770 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3771 #else
3772 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3773 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3774 GEN_INT (rounded_size));
3775 #endif
3776 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3779 dest = gen_rtx_MEM (mode, dest_addr);
3781 if (type != 0)
3783 set_mem_attributes (dest, type, 1);
3785 if (flag_optimize_sibling_calls)
3786 /* Function incoming arguments may overlap with sibling call
3787 outgoing arguments and we cannot allow reordering of reads
3788 from function arguments with stores to outgoing arguments
3789 of sibling calls. */
3790 set_mem_alias_set (dest, 0);
3792 emit_move_insn (dest, x);
3795 /* Emit and annotate a single push insn. */
3797 static void
3798 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3800 int delta, old_delta = stack_pointer_delta;
3801 rtx prev = get_last_insn ();
3802 rtx last;
3804 emit_single_push_insn_1 (mode, x, type);
3806 last = get_last_insn ();
3808 /* Notice the common case where we emitted exactly one insn. */
3809 if (PREV_INSN (last) == prev)
3811 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
3812 return;
3815 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
3816 gcc_assert (delta == INT_MIN || delta == old_delta);
3818 #endif
3820 /* Generate code to push X onto the stack, assuming it has mode MODE and
3821 type TYPE.
3822 MODE is redundant except when X is a CONST_INT (since they don't
3823 carry mode info).
3824 SIZE is an rtx for the size of data to be copied (in bytes),
3825 needed only if X is BLKmode.
3827 ALIGN (in bits) is maximum alignment we can assume.
3829 If PARTIAL and REG are both nonzero, then copy that many of the first
3830 bytes of X into registers starting with REG, and push the rest of X.
3831 The amount of space pushed is decreased by PARTIAL bytes.
3832 REG must be a hard register in this case.
3833 If REG is zero but PARTIAL is not, take any all others actions for an
3834 argument partially in registers, but do not actually load any
3835 registers.
3837 EXTRA is the amount in bytes of extra space to leave next to this arg.
3838 This is ignored if an argument block has already been allocated.
3840 On a machine that lacks real push insns, ARGS_ADDR is the address of
3841 the bottom of the argument block for this call. We use indexing off there
3842 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3843 argument block has not been preallocated.
3845 ARGS_SO_FAR is the size of args previously pushed for this call.
3847 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3848 for arguments passed in registers. If nonzero, it will be the number
3849 of bytes required. */
3851 void
3852 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3853 unsigned int align, int partial, rtx reg, int extra,
3854 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3855 rtx alignment_pad)
3857 rtx xinner;
3858 enum direction stack_direction
3859 #ifdef STACK_GROWS_DOWNWARD
3860 = downward;
3861 #else
3862 = upward;
3863 #endif
3865 /* Decide where to pad the argument: `downward' for below,
3866 `upward' for above, or `none' for don't pad it.
3867 Default is below for small data on big-endian machines; else above. */
3868 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3870 /* Invert direction if stack is post-decrement.
3871 FIXME: why? */
3872 if (STACK_PUSH_CODE == POST_DEC)
3873 if (where_pad != none)
3874 where_pad = (where_pad == downward ? upward : downward);
3876 xinner = x;
3878 if (mode == BLKmode
3879 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3881 /* Copy a block into the stack, entirely or partially. */
3883 rtx temp;
3884 int used;
3885 int offset;
3886 int skip;
3888 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3889 used = partial - offset;
3891 if (mode != BLKmode)
3893 /* A value is to be stored in an insufficiently aligned
3894 stack slot; copy via a suitably aligned slot if
3895 necessary. */
3896 size = GEN_INT (GET_MODE_SIZE (mode));
3897 if (!MEM_P (xinner))
3899 temp = assign_temp (type, 0, 1, 1);
3900 emit_move_insn (temp, xinner);
3901 xinner = temp;
3905 gcc_assert (size);
3907 /* USED is now the # of bytes we need not copy to the stack
3908 because registers will take care of them. */
3910 if (partial != 0)
3911 xinner = adjust_address (xinner, BLKmode, used);
3913 /* If the partial register-part of the arg counts in its stack size,
3914 skip the part of stack space corresponding to the registers.
3915 Otherwise, start copying to the beginning of the stack space,
3916 by setting SKIP to 0. */
3917 skip = (reg_parm_stack_space == 0) ? 0 : used;
3919 #ifdef PUSH_ROUNDING
3920 /* Do it with several push insns if that doesn't take lots of insns
3921 and if there is no difficulty with push insns that skip bytes
3922 on the stack for alignment purposes. */
3923 if (args_addr == 0
3924 && PUSH_ARGS
3925 && CONST_INT_P (size)
3926 && skip == 0
3927 && MEM_ALIGN (xinner) >= align
3928 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3929 /* Here we avoid the case of a structure whose weak alignment
3930 forces many pushes of a small amount of data,
3931 and such small pushes do rounding that causes trouble. */
3932 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3933 || align >= BIGGEST_ALIGNMENT
3934 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3935 == (align / BITS_PER_UNIT)))
3936 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3938 /* Push padding now if padding above and stack grows down,
3939 or if padding below and stack grows up.
3940 But if space already allocated, this has already been done. */
3941 if (extra && args_addr == 0
3942 && where_pad != none && where_pad != stack_direction)
3943 anti_adjust_stack (GEN_INT (extra));
3945 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3947 else
3948 #endif /* PUSH_ROUNDING */
3950 rtx target;
3952 /* Otherwise make space on the stack and copy the data
3953 to the address of that space. */
3955 /* Deduct words put into registers from the size we must copy. */
3956 if (partial != 0)
3958 if (CONST_INT_P (size))
3959 size = GEN_INT (INTVAL (size) - used);
3960 else
3961 size = expand_binop (GET_MODE (size), sub_optab, size,
3962 GEN_INT (used), NULL_RTX, 0,
3963 OPTAB_LIB_WIDEN);
3966 /* Get the address of the stack space.
3967 In this case, we do not deal with EXTRA separately.
3968 A single stack adjust will do. */
3969 if (! args_addr)
3971 temp = push_block (size, extra, where_pad == downward);
3972 extra = 0;
3974 else if (CONST_INT_P (args_so_far))
3975 temp = memory_address (BLKmode,
3976 plus_constant (args_addr,
3977 skip + INTVAL (args_so_far)));
3978 else
3979 temp = memory_address (BLKmode,
3980 plus_constant (gen_rtx_PLUS (Pmode,
3981 args_addr,
3982 args_so_far),
3983 skip));
3985 if (!ACCUMULATE_OUTGOING_ARGS)
3987 /* If the source is referenced relative to the stack pointer,
3988 copy it to another register to stabilize it. We do not need
3989 to do this if we know that we won't be changing sp. */
3991 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3992 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3993 temp = copy_to_reg (temp);
3996 target = gen_rtx_MEM (BLKmode, temp);
3998 /* We do *not* set_mem_attributes here, because incoming arguments
3999 may overlap with sibling call outgoing arguments and we cannot
4000 allow reordering of reads from function arguments with stores
4001 to outgoing arguments of sibling calls. We do, however, want
4002 to record the alignment of the stack slot. */
4003 /* ALIGN may well be better aligned than TYPE, e.g. due to
4004 PARM_BOUNDARY. Assume the caller isn't lying. */
4005 set_mem_align (target, align);
4007 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4010 else if (partial > 0)
4012 /* Scalar partly in registers. */
4014 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4015 int i;
4016 int not_stack;
4017 /* # bytes of start of argument
4018 that we must make space for but need not store. */
4019 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4020 int args_offset = INTVAL (args_so_far);
4021 int skip;
4023 /* Push padding now if padding above and stack grows down,
4024 or if padding below and stack grows up.
4025 But if space already allocated, this has already been done. */
4026 if (extra && args_addr == 0
4027 && where_pad != none && where_pad != stack_direction)
4028 anti_adjust_stack (GEN_INT (extra));
4030 /* If we make space by pushing it, we might as well push
4031 the real data. Otherwise, we can leave OFFSET nonzero
4032 and leave the space uninitialized. */
4033 if (args_addr == 0)
4034 offset = 0;
4036 /* Now NOT_STACK gets the number of words that we don't need to
4037 allocate on the stack. Convert OFFSET to words too. */
4038 not_stack = (partial - offset) / UNITS_PER_WORD;
4039 offset /= UNITS_PER_WORD;
4041 /* If the partial register-part of the arg counts in its stack size,
4042 skip the part of stack space corresponding to the registers.
4043 Otherwise, start copying to the beginning of the stack space,
4044 by setting SKIP to 0. */
4045 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4047 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4048 x = validize_mem (force_const_mem (mode, x));
4050 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4051 SUBREGs of such registers are not allowed. */
4052 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4053 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4054 x = copy_to_reg (x);
4056 /* Loop over all the words allocated on the stack for this arg. */
4057 /* We can do it by words, because any scalar bigger than a word
4058 has a size a multiple of a word. */
4059 #ifndef PUSH_ARGS_REVERSED
4060 for (i = not_stack; i < size; i++)
4061 #else
4062 for (i = size - 1; i >= not_stack; i--)
4063 #endif
4064 if (i >= not_stack + offset)
4065 emit_push_insn (operand_subword_force (x, i, mode),
4066 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4067 0, args_addr,
4068 GEN_INT (args_offset + ((i - not_stack + skip)
4069 * UNITS_PER_WORD)),
4070 reg_parm_stack_space, alignment_pad);
4072 else
4074 rtx addr;
4075 rtx dest;
4077 /* Push padding now if padding above and stack grows down,
4078 or if padding below and stack grows up.
4079 But if space already allocated, this has already been done. */
4080 if (extra && args_addr == 0
4081 && where_pad != none && where_pad != stack_direction)
4082 anti_adjust_stack (GEN_INT (extra));
4084 #ifdef PUSH_ROUNDING
4085 if (args_addr == 0 && PUSH_ARGS)
4086 emit_single_push_insn (mode, x, type);
4087 else
4088 #endif
4090 if (CONST_INT_P (args_so_far))
4091 addr
4092 = memory_address (mode,
4093 plus_constant (args_addr,
4094 INTVAL (args_so_far)));
4095 else
4096 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4097 args_so_far));
4098 dest = gen_rtx_MEM (mode, addr);
4100 /* We do *not* set_mem_attributes here, because incoming arguments
4101 may overlap with sibling call outgoing arguments and we cannot
4102 allow reordering of reads from function arguments with stores
4103 to outgoing arguments of sibling calls. We do, however, want
4104 to record the alignment of the stack slot. */
4105 /* ALIGN may well be better aligned than TYPE, e.g. due to
4106 PARM_BOUNDARY. Assume the caller isn't lying. */
4107 set_mem_align (dest, align);
4109 emit_move_insn (dest, x);
4113 /* If part should go in registers, copy that part
4114 into the appropriate registers. Do this now, at the end,
4115 since mem-to-mem copies above may do function calls. */
4116 if (partial > 0 && reg != 0)
4118 /* Handle calls that pass values in multiple non-contiguous locations.
4119 The Irix 6 ABI has examples of this. */
4120 if (GET_CODE (reg) == PARALLEL)
4121 emit_group_load (reg, x, type, -1);
4122 else
4124 gcc_assert (partial % UNITS_PER_WORD == 0);
4125 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4129 if (extra && args_addr == 0 && where_pad == stack_direction)
4130 anti_adjust_stack (GEN_INT (extra));
4132 if (alignment_pad && args_addr == 0)
4133 anti_adjust_stack (alignment_pad);
4136 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4137 operations. */
4139 static rtx
4140 get_subtarget (rtx x)
4142 return (optimize
4143 || x == 0
4144 /* Only registers can be subtargets. */
4145 || !REG_P (x)
4146 /* Don't use hard regs to avoid extending their life. */
4147 || REGNO (x) < FIRST_PSEUDO_REGISTER
4148 ? 0 : x);
4151 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4152 FIELD is a bitfield. Returns true if the optimization was successful,
4153 and there's nothing else to do. */
4155 static bool
4156 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4157 unsigned HOST_WIDE_INT bitpos,
4158 unsigned HOST_WIDE_INT bitregion_start,
4159 unsigned HOST_WIDE_INT bitregion_end,
4160 enum machine_mode mode1, rtx str_rtx,
4161 tree to, tree src)
4163 enum machine_mode str_mode = GET_MODE (str_rtx);
4164 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4165 tree op0, op1;
4166 rtx value, result;
4167 optab binop;
4168 gimple srcstmt;
4169 enum tree_code code;
4171 if (mode1 != VOIDmode
4172 || bitsize >= BITS_PER_WORD
4173 || str_bitsize > BITS_PER_WORD
4174 || TREE_SIDE_EFFECTS (to)
4175 || TREE_THIS_VOLATILE (to))
4176 return false;
4178 STRIP_NOPS (src);
4179 if (TREE_CODE (src) != SSA_NAME)
4180 return false;
4181 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4182 return false;
4184 srcstmt = get_gimple_for_ssa_name (src);
4185 if (!srcstmt
4186 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4187 return false;
4189 code = gimple_assign_rhs_code (srcstmt);
4191 op0 = gimple_assign_rhs1 (srcstmt);
4193 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4194 to find its initialization. Hopefully the initialization will
4195 be from a bitfield load. */
4196 if (TREE_CODE (op0) == SSA_NAME)
4198 gimple op0stmt = get_gimple_for_ssa_name (op0);
4200 /* We want to eventually have OP0 be the same as TO, which
4201 should be a bitfield. */
4202 if (!op0stmt
4203 || !is_gimple_assign (op0stmt)
4204 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4205 return false;
4206 op0 = gimple_assign_rhs1 (op0stmt);
4209 op1 = gimple_assign_rhs2 (srcstmt);
4211 if (!operand_equal_p (to, op0, 0))
4212 return false;
4214 if (MEM_P (str_rtx))
4216 unsigned HOST_WIDE_INT offset1;
4218 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4219 str_mode = word_mode;
4220 str_mode = get_best_mode (bitsize, bitpos,
4221 bitregion_start, bitregion_end,
4222 MEM_ALIGN (str_rtx), str_mode, 0);
4223 if (str_mode == VOIDmode)
4224 return false;
4225 str_bitsize = GET_MODE_BITSIZE (str_mode);
4227 offset1 = bitpos;
4228 bitpos %= str_bitsize;
4229 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4230 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4232 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4233 return false;
4235 /* If the bit field covers the whole REG/MEM, store_field
4236 will likely generate better code. */
4237 if (bitsize >= str_bitsize)
4238 return false;
4240 /* We can't handle fields split across multiple entities. */
4241 if (bitpos + bitsize > str_bitsize)
4242 return false;
4244 if (BYTES_BIG_ENDIAN)
4245 bitpos = str_bitsize - bitpos - bitsize;
4247 switch (code)
4249 case PLUS_EXPR:
4250 case MINUS_EXPR:
4251 /* For now, just optimize the case of the topmost bitfield
4252 where we don't need to do any masking and also
4253 1 bit bitfields where xor can be used.
4254 We might win by one instruction for the other bitfields
4255 too if insv/extv instructions aren't used, so that
4256 can be added later. */
4257 if (bitpos + bitsize != str_bitsize
4258 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4259 break;
4261 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4262 value = convert_modes (str_mode,
4263 TYPE_MODE (TREE_TYPE (op1)), value,
4264 TYPE_UNSIGNED (TREE_TYPE (op1)));
4266 /* We may be accessing data outside the field, which means
4267 we can alias adjacent data. */
4268 if (MEM_P (str_rtx))
4270 str_rtx = shallow_copy_rtx (str_rtx);
4271 set_mem_alias_set (str_rtx, 0);
4272 set_mem_expr (str_rtx, 0);
4275 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4276 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4278 value = expand_and (str_mode, value, const1_rtx, NULL);
4279 binop = xor_optab;
4281 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4282 bitpos, NULL_RTX, 1);
4283 result = expand_binop (str_mode, binop, str_rtx,
4284 value, str_rtx, 1, OPTAB_WIDEN);
4285 if (result != str_rtx)
4286 emit_move_insn (str_rtx, result);
4287 return true;
4289 case BIT_IOR_EXPR:
4290 case BIT_XOR_EXPR:
4291 if (TREE_CODE (op1) != INTEGER_CST)
4292 break;
4293 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4294 value = convert_modes (GET_MODE (str_rtx),
4295 TYPE_MODE (TREE_TYPE (op1)), value,
4296 TYPE_UNSIGNED (TREE_TYPE (op1)));
4298 /* We may be accessing data outside the field, which means
4299 we can alias adjacent data. */
4300 if (MEM_P (str_rtx))
4302 str_rtx = shallow_copy_rtx (str_rtx);
4303 set_mem_alias_set (str_rtx, 0);
4304 set_mem_expr (str_rtx, 0);
4307 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4308 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4310 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4311 - 1);
4312 value = expand_and (GET_MODE (str_rtx), value, mask,
4313 NULL_RTX);
4315 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4316 bitpos, NULL_RTX, 1);
4317 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4318 value, str_rtx, 1, OPTAB_WIDEN);
4319 if (result != str_rtx)
4320 emit_move_insn (str_rtx, result);
4321 return true;
4323 default:
4324 break;
4327 return false;
4330 /* In the C++ memory model, consecutive bit fields in a structure are
4331 considered one memory location.
4333 Given a COMPONENT_REF, this function returns the bit range of
4334 consecutive bits in which this COMPONENT_REF belongs in. The
4335 values are returned in *BITSTART and *BITEND. If either the C++
4336 memory model is not activated, or this memory access is not thread
4337 visible, 0 is returned in *BITSTART and *BITEND.
4339 EXP is the COMPONENT_REF.
4340 INNERDECL is the actual object being referenced.
4341 BITPOS is the position in bits where the bit starts within the structure.
4342 BITSIZE is size in bits of the field being referenced in EXP.
4344 For example, while storing into FOO.A here...
4346 struct {
4347 BIT 0:
4348 unsigned int a : 4;
4349 unsigned int b : 1;
4350 BIT 8:
4351 unsigned char c;
4352 unsigned int d : 6;
4353 } foo;
4355 ...we are not allowed to store past <b>, so for the layout above, a
4356 range of 0..7 (because no one cares if we store into the
4357 padding). */
4359 static void
4360 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4361 unsigned HOST_WIDE_INT *bitend,
4362 tree exp, tree innerdecl,
4363 HOST_WIDE_INT bitpos, HOST_WIDE_INT bitsize)
4365 tree field, record_type, fld;
4366 bool found_field = false;
4367 bool prev_field_is_bitfield;
4369 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4371 /* If other threads can't see this value, no need to restrict stores. */
4372 if (ALLOW_STORE_DATA_RACES
4373 || ((TREE_CODE (innerdecl) == MEM_REF
4374 || TREE_CODE (innerdecl) == TARGET_MEM_REF)
4375 && !ptr_deref_may_alias_global_p (TREE_OPERAND (innerdecl, 0)))
4376 || (DECL_P (innerdecl)
4377 && ((TREE_CODE (innerdecl) == VAR_DECL
4378 && DECL_THREAD_LOCAL_P (innerdecl))
4379 || !TREE_STATIC (innerdecl))))
4381 *bitstart = *bitend = 0;
4382 return;
4385 /* Bit field we're storing into. */
4386 field = TREE_OPERAND (exp, 1);
4387 record_type = DECL_FIELD_CONTEXT (field);
4389 /* Count the contiguous bitfields for the memory location that
4390 contains FIELD. */
4391 *bitstart = 0;
4392 prev_field_is_bitfield = true;
4393 for (fld = TYPE_FIELDS (record_type); fld; fld = DECL_CHAIN (fld))
4395 tree t, offset;
4396 enum machine_mode mode;
4397 int unsignedp, volatilep;
4399 if (TREE_CODE (fld) != FIELD_DECL)
4400 continue;
4402 t = build3 (COMPONENT_REF, TREE_TYPE (exp),
4403 unshare_expr (TREE_OPERAND (exp, 0)),
4404 fld, NULL_TREE);
4405 get_inner_reference (t, &bitsize, &bitpos, &offset,
4406 &mode, &unsignedp, &volatilep, true);
4408 if (field == fld)
4409 found_field = true;
4411 if (DECL_BIT_FIELD_TYPE (fld) && bitsize > 0)
4413 if (prev_field_is_bitfield == false)
4415 *bitstart = bitpos;
4416 prev_field_is_bitfield = true;
4419 else
4421 prev_field_is_bitfield = false;
4422 if (found_field)
4423 break;
4426 gcc_assert (found_field);
4428 if (fld)
4430 /* We found the end of the bit field sequence. Include the
4431 padding up to the next field and be done. */
4432 *bitend = bitpos - 1;
4434 else
4436 /* If this is the last element in the structure, include the padding
4437 at the end of structure. */
4438 *bitend = TREE_INT_CST_LOW (TYPE_SIZE (record_type)) - 1;
4442 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4443 is true, try generating a nontemporal store. */
4445 void
4446 expand_assignment (tree to, tree from, bool nontemporal)
4448 rtx to_rtx = 0;
4449 rtx result;
4450 enum machine_mode mode;
4451 int align;
4452 enum insn_code icode;
4454 /* Don't crash if the lhs of the assignment was erroneous. */
4455 if (TREE_CODE (to) == ERROR_MARK)
4457 expand_normal (from);
4458 return;
4461 /* Optimize away no-op moves without side-effects. */
4462 if (operand_equal_p (to, from, 0))
4463 return;
4465 mode = TYPE_MODE (TREE_TYPE (to));
4466 if ((TREE_CODE (to) == MEM_REF
4467 || TREE_CODE (to) == TARGET_MEM_REF)
4468 && mode != BLKmode
4469 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)), get_object_alignment (to)))
4470 < (signed) GET_MODE_ALIGNMENT (mode))
4471 && ((icode = optab_handler (movmisalign_optab, mode))
4472 != CODE_FOR_nothing))
4474 struct expand_operand ops[2];
4475 enum machine_mode address_mode;
4476 rtx reg, op0, mem;
4478 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4479 reg = force_not_mem (reg);
4481 if (TREE_CODE (to) == MEM_REF)
4483 addr_space_t as
4484 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4485 tree base = TREE_OPERAND (to, 0);
4486 address_mode = targetm.addr_space.address_mode (as);
4487 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4488 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4489 if (!integer_zerop (TREE_OPERAND (to, 1)))
4491 rtx off
4492 = immed_double_int_const (mem_ref_offset (to), address_mode);
4493 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4495 op0 = memory_address_addr_space (mode, op0, as);
4496 mem = gen_rtx_MEM (mode, op0);
4497 set_mem_attributes (mem, to, 0);
4498 set_mem_addr_space (mem, as);
4500 else if (TREE_CODE (to) == TARGET_MEM_REF)
4502 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4503 struct mem_address addr;
4505 get_address_description (to, &addr);
4506 op0 = addr_for_mem_ref (&addr, as, true);
4507 op0 = memory_address_addr_space (mode, op0, as);
4508 mem = gen_rtx_MEM (mode, op0);
4509 set_mem_attributes (mem, to, 0);
4510 set_mem_addr_space (mem, as);
4512 else
4513 gcc_unreachable ();
4514 if (TREE_THIS_VOLATILE (to))
4515 MEM_VOLATILE_P (mem) = 1;
4517 create_fixed_operand (&ops[0], mem);
4518 create_input_operand (&ops[1], reg, mode);
4519 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4520 silently be omitted. */
4521 expand_insn (icode, 2, ops);
4522 return;
4525 /* Assignment of a structure component needs special treatment
4526 if the structure component's rtx is not simply a MEM.
4527 Assignment of an array element at a constant index, and assignment of
4528 an array element in an unaligned packed structure field, has the same
4529 problem. */
4530 if (handled_component_p (to)
4531 /* ??? We only need to handle MEM_REF here if the access is not
4532 a full access of the base object. */
4533 || (TREE_CODE (to) == MEM_REF
4534 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4535 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4537 enum machine_mode mode1;
4538 HOST_WIDE_INT bitsize, bitpos;
4539 unsigned HOST_WIDE_INT bitregion_start = 0;
4540 unsigned HOST_WIDE_INT bitregion_end = 0;
4541 tree offset;
4542 int unsignedp;
4543 int volatilep = 0;
4544 tree tem;
4546 push_temp_slots ();
4547 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4548 &unsignedp, &volatilep, true);
4550 if (TREE_CODE (to) == COMPONENT_REF
4551 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4552 get_bit_range (&bitregion_start, &bitregion_end,
4553 to, tem, bitpos, bitsize);
4555 /* If we are going to use store_bit_field and extract_bit_field,
4556 make sure to_rtx will be safe for multiple use. */
4558 to_rtx = expand_normal (tem);
4560 /* If the bitfield is volatile, we want to access it in the
4561 field's mode, not the computed mode.
4562 If a MEM has VOIDmode (external with incomplete type),
4563 use BLKmode for it instead. */
4564 if (MEM_P (to_rtx))
4566 if (volatilep && flag_strict_volatile_bitfields > 0)
4567 to_rtx = adjust_address (to_rtx, mode1, 0);
4568 else if (GET_MODE (to_rtx) == VOIDmode)
4569 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4572 if (offset != 0)
4574 enum machine_mode address_mode;
4575 rtx offset_rtx;
4577 if (!MEM_P (to_rtx))
4579 /* We can get constant negative offsets into arrays with broken
4580 user code. Translate this to a trap instead of ICEing. */
4581 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4582 expand_builtin_trap ();
4583 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4586 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4587 address_mode
4588 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4589 if (GET_MODE (offset_rtx) != address_mode)
4590 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4592 /* A constant address in TO_RTX can have VOIDmode, we must not try
4593 to call force_reg for that case. Avoid that case. */
4594 if (MEM_P (to_rtx)
4595 && GET_MODE (to_rtx) == BLKmode
4596 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4597 && bitsize > 0
4598 && (bitpos % bitsize) == 0
4599 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4600 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4602 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4603 bitpos = 0;
4606 to_rtx = offset_address (to_rtx, offset_rtx,
4607 highest_pow2_factor_for_target (to,
4608 offset));
4611 /* No action is needed if the target is not a memory and the field
4612 lies completely outside that target. This can occur if the source
4613 code contains an out-of-bounds access to a small array. */
4614 if (!MEM_P (to_rtx)
4615 && GET_MODE (to_rtx) != BLKmode
4616 && (unsigned HOST_WIDE_INT) bitpos
4617 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4619 expand_normal (from);
4620 result = NULL;
4622 /* Handle expand_expr of a complex value returning a CONCAT. */
4623 else if (GET_CODE (to_rtx) == CONCAT)
4625 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4626 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4627 && bitpos == 0
4628 && bitsize == mode_bitsize)
4629 result = store_expr (from, to_rtx, false, nontemporal);
4630 else if (bitsize == mode_bitsize / 2
4631 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4632 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4633 nontemporal);
4634 else if (bitpos + bitsize <= mode_bitsize / 2)
4635 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4636 bitregion_start, bitregion_end,
4637 mode1, from, TREE_TYPE (tem),
4638 get_alias_set (to), nontemporal);
4639 else if (bitpos >= mode_bitsize / 2)
4640 result = store_field (XEXP (to_rtx, 1), bitsize,
4641 bitpos - mode_bitsize / 2,
4642 bitregion_start, bitregion_end,
4643 mode1, from,
4644 TREE_TYPE (tem), get_alias_set (to),
4645 nontemporal);
4646 else if (bitpos == 0 && bitsize == mode_bitsize)
4648 rtx from_rtx;
4649 result = expand_normal (from);
4650 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4651 TYPE_MODE (TREE_TYPE (from)), 0);
4652 emit_move_insn (XEXP (to_rtx, 0),
4653 read_complex_part (from_rtx, false));
4654 emit_move_insn (XEXP (to_rtx, 1),
4655 read_complex_part (from_rtx, true));
4657 else
4659 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4660 GET_MODE_SIZE (GET_MODE (to_rtx)),
4662 write_complex_part (temp, XEXP (to_rtx, 0), false);
4663 write_complex_part (temp, XEXP (to_rtx, 1), true);
4664 result = store_field (temp, bitsize, bitpos,
4665 bitregion_start, bitregion_end,
4666 mode1, from,
4667 TREE_TYPE (tem), get_alias_set (to),
4668 nontemporal);
4669 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4670 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4673 else
4675 if (MEM_P (to_rtx))
4677 /* If the field is at offset zero, we could have been given the
4678 DECL_RTX of the parent struct. Don't munge it. */
4679 to_rtx = shallow_copy_rtx (to_rtx);
4681 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4683 /* Deal with volatile and readonly fields. The former is only
4684 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4685 if (volatilep)
4686 MEM_VOLATILE_P (to_rtx) = 1;
4687 if (component_uses_parent_alias_set (to))
4688 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4691 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4692 bitregion_start, bitregion_end,
4693 mode1,
4694 to_rtx, to, from))
4695 result = NULL;
4696 else
4697 result = store_field (to_rtx, bitsize, bitpos,
4698 bitregion_start, bitregion_end,
4699 mode1, from,
4700 TREE_TYPE (tem), get_alias_set (to),
4701 nontemporal);
4704 if (result)
4705 preserve_temp_slots (result);
4706 free_temp_slots ();
4707 pop_temp_slots ();
4708 return;
4711 /* If the rhs is a function call and its value is not an aggregate,
4712 call the function before we start to compute the lhs.
4713 This is needed for correct code for cases such as
4714 val = setjmp (buf) on machines where reference to val
4715 requires loading up part of an address in a separate insn.
4717 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4718 since it might be a promoted variable where the zero- or sign- extension
4719 needs to be done. Handling this in the normal way is safe because no
4720 computation is done before the call. The same is true for SSA names. */
4721 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4722 && COMPLETE_TYPE_P (TREE_TYPE (from))
4723 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4724 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4725 && REG_P (DECL_RTL (to)))
4726 || TREE_CODE (to) == SSA_NAME))
4728 rtx value;
4730 push_temp_slots ();
4731 value = expand_normal (from);
4732 if (to_rtx == 0)
4733 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4735 /* Handle calls that return values in multiple non-contiguous locations.
4736 The Irix 6 ABI has examples of this. */
4737 if (GET_CODE (to_rtx) == PARALLEL)
4738 emit_group_load (to_rtx, value, TREE_TYPE (from),
4739 int_size_in_bytes (TREE_TYPE (from)));
4740 else if (GET_MODE (to_rtx) == BLKmode)
4741 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4742 else
4744 if (POINTER_TYPE_P (TREE_TYPE (to)))
4745 value = convert_memory_address_addr_space
4746 (GET_MODE (to_rtx), value,
4747 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4749 emit_move_insn (to_rtx, value);
4751 preserve_temp_slots (to_rtx);
4752 free_temp_slots ();
4753 pop_temp_slots ();
4754 return;
4757 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4758 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4760 if (to_rtx == 0)
4761 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4763 /* Don't move directly into a return register. */
4764 if (TREE_CODE (to) == RESULT_DECL
4765 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4767 rtx temp;
4769 push_temp_slots ();
4770 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4772 if (GET_CODE (to_rtx) == PARALLEL)
4773 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4774 int_size_in_bytes (TREE_TYPE (from)));
4775 else
4776 emit_move_insn (to_rtx, temp);
4778 preserve_temp_slots (to_rtx);
4779 free_temp_slots ();
4780 pop_temp_slots ();
4781 return;
4784 /* In case we are returning the contents of an object which overlaps
4785 the place the value is being stored, use a safe function when copying
4786 a value through a pointer into a structure value return block. */
4787 if (TREE_CODE (to) == RESULT_DECL
4788 && TREE_CODE (from) == INDIRECT_REF
4789 && ADDR_SPACE_GENERIC_P
4790 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4791 && refs_may_alias_p (to, from)
4792 && cfun->returns_struct
4793 && !cfun->returns_pcc_struct)
4795 rtx from_rtx, size;
4797 push_temp_slots ();
4798 size = expr_size (from);
4799 from_rtx = expand_normal (from);
4801 emit_library_call (memmove_libfunc, LCT_NORMAL,
4802 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4803 XEXP (from_rtx, 0), Pmode,
4804 convert_to_mode (TYPE_MODE (sizetype),
4805 size, TYPE_UNSIGNED (sizetype)),
4806 TYPE_MODE (sizetype));
4808 preserve_temp_slots (to_rtx);
4809 free_temp_slots ();
4810 pop_temp_slots ();
4811 return;
4814 /* Compute FROM and store the value in the rtx we got. */
4816 push_temp_slots ();
4817 result = store_expr (from, to_rtx, 0, nontemporal);
4818 preserve_temp_slots (result);
4819 free_temp_slots ();
4820 pop_temp_slots ();
4821 return;
4824 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4825 succeeded, false otherwise. */
4827 bool
4828 emit_storent_insn (rtx to, rtx from)
4830 struct expand_operand ops[2];
4831 enum machine_mode mode = GET_MODE (to);
4832 enum insn_code code = optab_handler (storent_optab, mode);
4834 if (code == CODE_FOR_nothing)
4835 return false;
4837 create_fixed_operand (&ops[0], to);
4838 create_input_operand (&ops[1], from, mode);
4839 return maybe_expand_insn (code, 2, ops);
4842 /* Generate code for computing expression EXP,
4843 and storing the value into TARGET.
4845 If the mode is BLKmode then we may return TARGET itself.
4846 It turns out that in BLKmode it doesn't cause a problem.
4847 because C has no operators that could combine two different
4848 assignments into the same BLKmode object with different values
4849 with no sequence point. Will other languages need this to
4850 be more thorough?
4852 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4853 stack, and block moves may need to be treated specially.
4855 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4858 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4860 rtx temp;
4861 rtx alt_rtl = NULL_RTX;
4862 location_t loc = EXPR_LOCATION (exp);
4864 if (VOID_TYPE_P (TREE_TYPE (exp)))
4866 /* C++ can generate ?: expressions with a throw expression in one
4867 branch and an rvalue in the other. Here, we resolve attempts to
4868 store the throw expression's nonexistent result. */
4869 gcc_assert (!call_param_p);
4870 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4871 return NULL_RTX;
4873 if (TREE_CODE (exp) == COMPOUND_EXPR)
4875 /* Perform first part of compound expression, then assign from second
4876 part. */
4877 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4878 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4879 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4880 nontemporal);
4882 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4884 /* For conditional expression, get safe form of the target. Then
4885 test the condition, doing the appropriate assignment on either
4886 side. This avoids the creation of unnecessary temporaries.
4887 For non-BLKmode, it is more efficient not to do this. */
4889 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4891 do_pending_stack_adjust ();
4892 NO_DEFER_POP;
4893 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4894 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4895 nontemporal);
4896 emit_jump_insn (gen_jump (lab2));
4897 emit_barrier ();
4898 emit_label (lab1);
4899 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4900 nontemporal);
4901 emit_label (lab2);
4902 OK_DEFER_POP;
4904 return NULL_RTX;
4906 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4907 /* If this is a scalar in a register that is stored in a wider mode
4908 than the declared mode, compute the result into its declared mode
4909 and then convert to the wider mode. Our value is the computed
4910 expression. */
4912 rtx inner_target = 0;
4914 /* We can do the conversion inside EXP, which will often result
4915 in some optimizations. Do the conversion in two steps: first
4916 change the signedness, if needed, then the extend. But don't
4917 do this if the type of EXP is a subtype of something else
4918 since then the conversion might involve more than just
4919 converting modes. */
4920 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4921 && TREE_TYPE (TREE_TYPE (exp)) == 0
4922 && GET_MODE_PRECISION (GET_MODE (target))
4923 == TYPE_PRECISION (TREE_TYPE (exp)))
4925 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4926 != SUBREG_PROMOTED_UNSIGNED_P (target))
4928 /* Some types, e.g. Fortran's logical*4, won't have a signed
4929 version, so use the mode instead. */
4930 tree ntype
4931 = (signed_or_unsigned_type_for
4932 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4933 if (ntype == NULL)
4934 ntype = lang_hooks.types.type_for_mode
4935 (TYPE_MODE (TREE_TYPE (exp)),
4936 SUBREG_PROMOTED_UNSIGNED_P (target));
4938 exp = fold_convert_loc (loc, ntype, exp);
4941 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4942 (GET_MODE (SUBREG_REG (target)),
4943 SUBREG_PROMOTED_UNSIGNED_P (target)),
4944 exp);
4946 inner_target = SUBREG_REG (target);
4949 temp = expand_expr (exp, inner_target, VOIDmode,
4950 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4952 /* If TEMP is a VOIDmode constant, use convert_modes to make
4953 sure that we properly convert it. */
4954 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4956 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4957 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4958 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4959 GET_MODE (target), temp,
4960 SUBREG_PROMOTED_UNSIGNED_P (target));
4963 convert_move (SUBREG_REG (target), temp,
4964 SUBREG_PROMOTED_UNSIGNED_P (target));
4966 return NULL_RTX;
4968 else if ((TREE_CODE (exp) == STRING_CST
4969 || (TREE_CODE (exp) == MEM_REF
4970 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4971 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4972 == STRING_CST
4973 && integer_zerop (TREE_OPERAND (exp, 1))))
4974 && !nontemporal && !call_param_p
4975 && MEM_P (target))
4977 /* Optimize initialization of an array with a STRING_CST. */
4978 HOST_WIDE_INT exp_len, str_copy_len;
4979 rtx dest_mem;
4980 tree str = TREE_CODE (exp) == STRING_CST
4981 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4983 exp_len = int_expr_size (exp);
4984 if (exp_len <= 0)
4985 goto normal_expr;
4987 if (TREE_STRING_LENGTH (str) <= 0)
4988 goto normal_expr;
4990 str_copy_len = strlen (TREE_STRING_POINTER (str));
4991 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4992 goto normal_expr;
4994 str_copy_len = TREE_STRING_LENGTH (str);
4995 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4996 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4998 str_copy_len += STORE_MAX_PIECES - 1;
4999 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5001 str_copy_len = MIN (str_copy_len, exp_len);
5002 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5003 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5004 MEM_ALIGN (target), false))
5005 goto normal_expr;
5007 dest_mem = target;
5009 dest_mem = store_by_pieces (dest_mem,
5010 str_copy_len, builtin_strncpy_read_str,
5011 CONST_CAST (char *,
5012 TREE_STRING_POINTER (str)),
5013 MEM_ALIGN (target), false,
5014 exp_len > str_copy_len ? 1 : 0);
5015 if (exp_len > str_copy_len)
5016 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5017 GEN_INT (exp_len - str_copy_len),
5018 BLOCK_OP_NORMAL);
5019 return NULL_RTX;
5021 else
5023 rtx tmp_target;
5025 normal_expr:
5026 /* If we want to use a nontemporal store, force the value to
5027 register first. */
5028 tmp_target = nontemporal ? NULL_RTX : target;
5029 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5030 (call_param_p
5031 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5032 &alt_rtl);
5035 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5036 the same as that of TARGET, adjust the constant. This is needed, for
5037 example, in case it is a CONST_DOUBLE and we want only a word-sized
5038 value. */
5039 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5040 && TREE_CODE (exp) != ERROR_MARK
5041 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5042 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5043 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5045 /* If value was not generated in the target, store it there.
5046 Convert the value to TARGET's type first if necessary and emit the
5047 pending incrementations that have been queued when expanding EXP.
5048 Note that we cannot emit the whole queue blindly because this will
5049 effectively disable the POST_INC optimization later.
5051 If TEMP and TARGET compare equal according to rtx_equal_p, but
5052 one or both of them are volatile memory refs, we have to distinguish
5053 two cases:
5054 - expand_expr has used TARGET. In this case, we must not generate
5055 another copy. This can be detected by TARGET being equal according
5056 to == .
5057 - expand_expr has not used TARGET - that means that the source just
5058 happens to have the same RTX form. Since temp will have been created
5059 by expand_expr, it will compare unequal according to == .
5060 We must generate a copy in this case, to reach the correct number
5061 of volatile memory references. */
5063 if ((! rtx_equal_p (temp, target)
5064 || (temp != target && (side_effects_p (temp)
5065 || side_effects_p (target))))
5066 && TREE_CODE (exp) != ERROR_MARK
5067 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5068 but TARGET is not valid memory reference, TEMP will differ
5069 from TARGET although it is really the same location. */
5070 && !(alt_rtl
5071 && rtx_equal_p (alt_rtl, target)
5072 && !side_effects_p (alt_rtl)
5073 && !side_effects_p (target))
5074 /* If there's nothing to copy, don't bother. Don't call
5075 expr_size unless necessary, because some front-ends (C++)
5076 expr_size-hook must not be given objects that are not
5077 supposed to be bit-copied or bit-initialized. */
5078 && expr_size (exp) != const0_rtx)
5080 if (GET_MODE (temp) != GET_MODE (target)
5081 && GET_MODE (temp) != VOIDmode)
5083 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5084 if (GET_MODE (target) == BLKmode
5085 && GET_MODE (temp) == BLKmode)
5086 emit_block_move (target, temp, expr_size (exp),
5087 (call_param_p
5088 ? BLOCK_OP_CALL_PARM
5089 : BLOCK_OP_NORMAL));
5090 else if (GET_MODE (target) == BLKmode)
5091 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5092 0, 0, 0, GET_MODE (temp), temp);
5093 else
5094 convert_move (target, temp, unsignedp);
5097 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5099 /* Handle copying a string constant into an array. The string
5100 constant may be shorter than the array. So copy just the string's
5101 actual length, and clear the rest. First get the size of the data
5102 type of the string, which is actually the size of the target. */
5103 rtx size = expr_size (exp);
5105 if (CONST_INT_P (size)
5106 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5107 emit_block_move (target, temp, size,
5108 (call_param_p
5109 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5110 else
5112 enum machine_mode pointer_mode
5113 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5114 enum machine_mode address_mode
5115 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
5117 /* Compute the size of the data to copy from the string. */
5118 tree copy_size
5119 = size_binop_loc (loc, MIN_EXPR,
5120 make_tree (sizetype, size),
5121 size_int (TREE_STRING_LENGTH (exp)));
5122 rtx copy_size_rtx
5123 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5124 (call_param_p
5125 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5126 rtx label = 0;
5128 /* Copy that much. */
5129 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5130 TYPE_UNSIGNED (sizetype));
5131 emit_block_move (target, temp, copy_size_rtx,
5132 (call_param_p
5133 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5135 /* Figure out how much is left in TARGET that we have to clear.
5136 Do all calculations in pointer_mode. */
5137 if (CONST_INT_P (copy_size_rtx))
5139 size = plus_constant (size, -INTVAL (copy_size_rtx));
5140 target = adjust_address (target, BLKmode,
5141 INTVAL (copy_size_rtx));
5143 else
5145 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5146 copy_size_rtx, NULL_RTX, 0,
5147 OPTAB_LIB_WIDEN);
5149 if (GET_MODE (copy_size_rtx) != address_mode)
5150 copy_size_rtx = convert_to_mode (address_mode,
5151 copy_size_rtx,
5152 TYPE_UNSIGNED (sizetype));
5154 target = offset_address (target, copy_size_rtx,
5155 highest_pow2_factor (copy_size));
5156 label = gen_label_rtx ();
5157 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5158 GET_MODE (size), 0, label);
5161 if (size != const0_rtx)
5162 clear_storage (target, size, BLOCK_OP_NORMAL);
5164 if (label)
5165 emit_label (label);
5168 /* Handle calls that return values in multiple non-contiguous locations.
5169 The Irix 6 ABI has examples of this. */
5170 else if (GET_CODE (target) == PARALLEL)
5171 emit_group_load (target, temp, TREE_TYPE (exp),
5172 int_size_in_bytes (TREE_TYPE (exp)));
5173 else if (GET_MODE (temp) == BLKmode)
5174 emit_block_move (target, temp, expr_size (exp),
5175 (call_param_p
5176 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5177 else if (nontemporal
5178 && emit_storent_insn (target, temp))
5179 /* If we managed to emit a nontemporal store, there is nothing else to
5180 do. */
5182 else
5184 temp = force_operand (temp, target);
5185 if (temp != target)
5186 emit_move_insn (target, temp);
5190 return NULL_RTX;
5193 /* Return true if field F of structure TYPE is a flexible array. */
5195 static bool
5196 flexible_array_member_p (const_tree f, const_tree type)
5198 const_tree tf;
5200 tf = TREE_TYPE (f);
5201 return (DECL_CHAIN (f) == NULL
5202 && TREE_CODE (tf) == ARRAY_TYPE
5203 && TYPE_DOMAIN (tf)
5204 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5205 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5206 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5207 && int_size_in_bytes (type) >= 0);
5210 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5211 must have in order for it to completely initialize a value of type TYPE.
5212 Return -1 if the number isn't known.
5214 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5216 static HOST_WIDE_INT
5217 count_type_elements (const_tree type, bool for_ctor_p)
5219 switch (TREE_CODE (type))
5221 case ARRAY_TYPE:
5223 tree nelts;
5225 nelts = array_type_nelts (type);
5226 if (nelts && host_integerp (nelts, 1))
5228 unsigned HOST_WIDE_INT n;
5230 n = tree_low_cst (nelts, 1) + 1;
5231 if (n == 0 || for_ctor_p)
5232 return n;
5233 else
5234 return n * count_type_elements (TREE_TYPE (type), false);
5236 return for_ctor_p ? -1 : 1;
5239 case RECORD_TYPE:
5241 unsigned HOST_WIDE_INT n;
5242 tree f;
5244 n = 0;
5245 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5246 if (TREE_CODE (f) == FIELD_DECL)
5248 if (!for_ctor_p)
5249 n += count_type_elements (TREE_TYPE (f), false);
5250 else if (!flexible_array_member_p (f, type))
5251 /* Don't count flexible arrays, which are not supposed
5252 to be initialized. */
5253 n += 1;
5256 return n;
5259 case UNION_TYPE:
5260 case QUAL_UNION_TYPE:
5262 tree f;
5263 HOST_WIDE_INT n, m;
5265 gcc_assert (!for_ctor_p);
5266 /* Estimate the number of scalars in each field and pick the
5267 maximum. Other estimates would do instead; the idea is simply
5268 to make sure that the estimate is not sensitive to the ordering
5269 of the fields. */
5270 n = 1;
5271 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5272 if (TREE_CODE (f) == FIELD_DECL)
5274 m = count_type_elements (TREE_TYPE (f), false);
5275 /* If the field doesn't span the whole union, add an extra
5276 scalar for the rest. */
5277 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5278 TYPE_SIZE (type)) != 1)
5279 m++;
5280 if (n < m)
5281 n = m;
5283 return n;
5286 case COMPLEX_TYPE:
5287 return 2;
5289 case VECTOR_TYPE:
5290 return TYPE_VECTOR_SUBPARTS (type);
5292 case INTEGER_TYPE:
5293 case REAL_TYPE:
5294 case FIXED_POINT_TYPE:
5295 case ENUMERAL_TYPE:
5296 case BOOLEAN_TYPE:
5297 case POINTER_TYPE:
5298 case OFFSET_TYPE:
5299 case REFERENCE_TYPE:
5300 return 1;
5302 case ERROR_MARK:
5303 return 0;
5305 case VOID_TYPE:
5306 case METHOD_TYPE:
5307 case FUNCTION_TYPE:
5308 case LANG_TYPE:
5309 default:
5310 gcc_unreachable ();
5314 /* Helper for categorize_ctor_elements. Identical interface. */
5316 static bool
5317 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5318 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5320 unsigned HOST_WIDE_INT idx;
5321 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5322 tree value, purpose, elt_type;
5324 /* Whether CTOR is a valid constant initializer, in accordance with what
5325 initializer_constant_valid_p does. If inferred from the constructor
5326 elements, true until proven otherwise. */
5327 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5328 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5330 nz_elts = 0;
5331 init_elts = 0;
5332 num_fields = 0;
5333 elt_type = NULL_TREE;
5335 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5337 HOST_WIDE_INT mult = 1;
5339 if (TREE_CODE (purpose) == RANGE_EXPR)
5341 tree lo_index = TREE_OPERAND (purpose, 0);
5342 tree hi_index = TREE_OPERAND (purpose, 1);
5344 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
5345 mult = (tree_low_cst (hi_index, 1)
5346 - tree_low_cst (lo_index, 1) + 1);
5348 num_fields += mult;
5349 elt_type = TREE_TYPE (value);
5351 switch (TREE_CODE (value))
5353 case CONSTRUCTOR:
5355 HOST_WIDE_INT nz = 0, ic = 0;
5357 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5358 p_complete);
5360 nz_elts += mult * nz;
5361 init_elts += mult * ic;
5363 if (const_from_elts_p && const_p)
5364 const_p = const_elt_p;
5366 break;
5368 case INTEGER_CST:
5369 case REAL_CST:
5370 case FIXED_CST:
5371 if (!initializer_zerop (value))
5372 nz_elts += mult;
5373 init_elts += mult;
5374 break;
5376 case STRING_CST:
5377 nz_elts += mult * TREE_STRING_LENGTH (value);
5378 init_elts += mult * TREE_STRING_LENGTH (value);
5379 break;
5381 case COMPLEX_CST:
5382 if (!initializer_zerop (TREE_REALPART (value)))
5383 nz_elts += mult;
5384 if (!initializer_zerop (TREE_IMAGPART (value)))
5385 nz_elts += mult;
5386 init_elts += mult;
5387 break;
5389 case VECTOR_CST:
5391 tree v;
5392 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
5394 if (!initializer_zerop (TREE_VALUE (v)))
5395 nz_elts += mult;
5396 init_elts += mult;
5399 break;
5401 default:
5403 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5404 nz_elts += mult * tc;
5405 init_elts += mult * tc;
5407 if (const_from_elts_p && const_p)
5408 const_p = initializer_constant_valid_p (value, elt_type)
5409 != NULL_TREE;
5411 break;
5415 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5416 num_fields, elt_type))
5417 *p_complete = false;
5419 *p_nz_elts += nz_elts;
5420 *p_init_elts += init_elts;
5422 return const_p;
5425 /* Examine CTOR to discover:
5426 * how many scalar fields are set to nonzero values,
5427 and place it in *P_NZ_ELTS;
5428 * how many scalar fields in total are in CTOR,
5429 and place it in *P_ELT_COUNT.
5430 * whether the constructor is complete -- in the sense that every
5431 meaningful byte is explicitly given a value --
5432 and place it in *P_COMPLETE.
5434 Return whether or not CTOR is a valid static constant initializer, the same
5435 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5437 bool
5438 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5439 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5441 *p_nz_elts = 0;
5442 *p_init_elts = 0;
5443 *p_complete = true;
5445 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5448 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5449 of which had type LAST_TYPE. Each element was itself a complete
5450 initializer, in the sense that every meaningful byte was explicitly
5451 given a value. Return true if the same is true for the constructor
5452 as a whole. */
5454 bool
5455 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5456 const_tree last_type)
5458 if (TREE_CODE (type) == UNION_TYPE
5459 || TREE_CODE (type) == QUAL_UNION_TYPE)
5461 if (num_elts == 0)
5462 return false;
5464 gcc_assert (num_elts == 1 && last_type);
5466 /* ??? We could look at each element of the union, and find the
5467 largest element. Which would avoid comparing the size of the
5468 initialized element against any tail padding in the union.
5469 Doesn't seem worth the effort... */
5470 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5473 return count_type_elements (type, true) == num_elts;
5476 /* Return 1 if EXP contains mostly (3/4) zeros. */
5478 static int
5479 mostly_zeros_p (const_tree exp)
5481 if (TREE_CODE (exp) == CONSTRUCTOR)
5483 HOST_WIDE_INT nz_elts, init_elts;
5484 bool complete_p;
5486 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5487 return !complete_p || nz_elts < init_elts / 4;
5490 return initializer_zerop (exp);
5493 /* Return 1 if EXP contains all zeros. */
5495 static int
5496 all_zeros_p (const_tree exp)
5498 if (TREE_CODE (exp) == CONSTRUCTOR)
5500 HOST_WIDE_INT nz_elts, init_elts;
5501 bool complete_p;
5503 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5504 return nz_elts == 0;
5507 return initializer_zerop (exp);
5510 /* Helper function for store_constructor.
5511 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5512 TYPE is the type of the CONSTRUCTOR, not the element type.
5513 CLEARED is as for store_constructor.
5514 ALIAS_SET is the alias set to use for any stores.
5516 This provides a recursive shortcut back to store_constructor when it isn't
5517 necessary to go through store_field. This is so that we can pass through
5518 the cleared field to let store_constructor know that we may not have to
5519 clear a substructure if the outer structure has already been cleared. */
5521 static void
5522 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5523 HOST_WIDE_INT bitpos, enum machine_mode mode,
5524 tree exp, tree type, int cleared,
5525 alias_set_type alias_set)
5527 if (TREE_CODE (exp) == CONSTRUCTOR
5528 /* We can only call store_constructor recursively if the size and
5529 bit position are on a byte boundary. */
5530 && bitpos % BITS_PER_UNIT == 0
5531 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5532 /* If we have a nonzero bitpos for a register target, then we just
5533 let store_field do the bitfield handling. This is unlikely to
5534 generate unnecessary clear instructions anyways. */
5535 && (bitpos == 0 || MEM_P (target)))
5537 if (MEM_P (target))
5538 target
5539 = adjust_address (target,
5540 GET_MODE (target) == BLKmode
5541 || 0 != (bitpos
5542 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5543 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5546 /* Update the alias set, if required. */
5547 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5548 && MEM_ALIAS_SET (target) != 0)
5550 target = copy_rtx (target);
5551 set_mem_alias_set (target, alias_set);
5554 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5556 else
5557 store_field (target, bitsize, bitpos, 0, 0, mode, exp, type, alias_set,
5558 false);
5561 /* Store the value of constructor EXP into the rtx TARGET.
5562 TARGET is either a REG or a MEM; we know it cannot conflict, since
5563 safe_from_p has been called.
5564 CLEARED is true if TARGET is known to have been zero'd.
5565 SIZE is the number of bytes of TARGET we are allowed to modify: this
5566 may not be the same as the size of EXP if we are assigning to a field
5567 which has been packed to exclude padding bits. */
5569 static void
5570 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5572 tree type = TREE_TYPE (exp);
5573 #ifdef WORD_REGISTER_OPERATIONS
5574 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5575 #endif
5577 switch (TREE_CODE (type))
5579 case RECORD_TYPE:
5580 case UNION_TYPE:
5581 case QUAL_UNION_TYPE:
5583 unsigned HOST_WIDE_INT idx;
5584 tree field, value;
5586 /* If size is zero or the target is already cleared, do nothing. */
5587 if (size == 0 || cleared)
5588 cleared = 1;
5589 /* We either clear the aggregate or indicate the value is dead. */
5590 else if ((TREE_CODE (type) == UNION_TYPE
5591 || TREE_CODE (type) == QUAL_UNION_TYPE)
5592 && ! CONSTRUCTOR_ELTS (exp))
5593 /* If the constructor is empty, clear the union. */
5595 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5596 cleared = 1;
5599 /* If we are building a static constructor into a register,
5600 set the initial value as zero so we can fold the value into
5601 a constant. But if more than one register is involved,
5602 this probably loses. */
5603 else if (REG_P (target) && TREE_STATIC (exp)
5604 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5606 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5607 cleared = 1;
5610 /* If the constructor has fewer fields than the structure or
5611 if we are initializing the structure to mostly zeros, clear
5612 the whole structure first. Don't do this if TARGET is a
5613 register whose mode size isn't equal to SIZE since
5614 clear_storage can't handle this case. */
5615 else if (size > 0
5616 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5617 != fields_length (type))
5618 || mostly_zeros_p (exp))
5619 && (!REG_P (target)
5620 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5621 == size)))
5623 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5624 cleared = 1;
5627 if (REG_P (target) && !cleared)
5628 emit_clobber (target);
5630 /* Store each element of the constructor into the
5631 corresponding field of TARGET. */
5632 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5634 enum machine_mode mode;
5635 HOST_WIDE_INT bitsize;
5636 HOST_WIDE_INT bitpos = 0;
5637 tree offset;
5638 rtx to_rtx = target;
5640 /* Just ignore missing fields. We cleared the whole
5641 structure, above, if any fields are missing. */
5642 if (field == 0)
5643 continue;
5645 if (cleared && initializer_zerop (value))
5646 continue;
5648 if (host_integerp (DECL_SIZE (field), 1))
5649 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5650 else
5651 bitsize = -1;
5653 mode = DECL_MODE (field);
5654 if (DECL_BIT_FIELD (field))
5655 mode = VOIDmode;
5657 offset = DECL_FIELD_OFFSET (field);
5658 if (host_integerp (offset, 0)
5659 && host_integerp (bit_position (field), 0))
5661 bitpos = int_bit_position (field);
5662 offset = 0;
5664 else
5665 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5667 if (offset)
5669 enum machine_mode address_mode;
5670 rtx offset_rtx;
5672 offset
5673 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5674 make_tree (TREE_TYPE (exp),
5675 target));
5677 offset_rtx = expand_normal (offset);
5678 gcc_assert (MEM_P (to_rtx));
5680 address_mode
5681 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5682 if (GET_MODE (offset_rtx) != address_mode)
5683 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5685 to_rtx = offset_address (to_rtx, offset_rtx,
5686 highest_pow2_factor (offset));
5689 #ifdef WORD_REGISTER_OPERATIONS
5690 /* If this initializes a field that is smaller than a
5691 word, at the start of a word, try to widen it to a full
5692 word. This special case allows us to output C++ member
5693 function initializations in a form that the optimizers
5694 can understand. */
5695 if (REG_P (target)
5696 && bitsize < BITS_PER_WORD
5697 && bitpos % BITS_PER_WORD == 0
5698 && GET_MODE_CLASS (mode) == MODE_INT
5699 && TREE_CODE (value) == INTEGER_CST
5700 && exp_size >= 0
5701 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5703 tree type = TREE_TYPE (value);
5705 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5707 type = lang_hooks.types.type_for_size
5708 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5709 value = fold_convert (type, value);
5712 if (BYTES_BIG_ENDIAN)
5713 value
5714 = fold_build2 (LSHIFT_EXPR, type, value,
5715 build_int_cst (type,
5716 BITS_PER_WORD - bitsize));
5717 bitsize = BITS_PER_WORD;
5718 mode = word_mode;
5720 #endif
5722 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5723 && DECL_NONADDRESSABLE_P (field))
5725 to_rtx = copy_rtx (to_rtx);
5726 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5729 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5730 value, type, cleared,
5731 get_alias_set (TREE_TYPE (field)));
5733 break;
5735 case ARRAY_TYPE:
5737 tree value, index;
5738 unsigned HOST_WIDE_INT i;
5739 int need_to_clear;
5740 tree domain;
5741 tree elttype = TREE_TYPE (type);
5742 int const_bounds_p;
5743 HOST_WIDE_INT minelt = 0;
5744 HOST_WIDE_INT maxelt = 0;
5746 domain = TYPE_DOMAIN (type);
5747 const_bounds_p = (TYPE_MIN_VALUE (domain)
5748 && TYPE_MAX_VALUE (domain)
5749 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5750 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5752 /* If we have constant bounds for the range of the type, get them. */
5753 if (const_bounds_p)
5755 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5756 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5759 /* If the constructor has fewer elements than the array, clear
5760 the whole array first. Similarly if this is static
5761 constructor of a non-BLKmode object. */
5762 if (cleared)
5763 need_to_clear = 0;
5764 else if (REG_P (target) && TREE_STATIC (exp))
5765 need_to_clear = 1;
5766 else
5768 unsigned HOST_WIDE_INT idx;
5769 tree index, value;
5770 HOST_WIDE_INT count = 0, zero_count = 0;
5771 need_to_clear = ! const_bounds_p;
5773 /* This loop is a more accurate version of the loop in
5774 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5775 is also needed to check for missing elements. */
5776 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5778 HOST_WIDE_INT this_node_count;
5780 if (need_to_clear)
5781 break;
5783 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5785 tree lo_index = TREE_OPERAND (index, 0);
5786 tree hi_index = TREE_OPERAND (index, 1);
5788 if (! host_integerp (lo_index, 1)
5789 || ! host_integerp (hi_index, 1))
5791 need_to_clear = 1;
5792 break;
5795 this_node_count = (tree_low_cst (hi_index, 1)
5796 - tree_low_cst (lo_index, 1) + 1);
5798 else
5799 this_node_count = 1;
5801 count += this_node_count;
5802 if (mostly_zeros_p (value))
5803 zero_count += this_node_count;
5806 /* Clear the entire array first if there are any missing
5807 elements, or if the incidence of zero elements is >=
5808 75%. */
5809 if (! need_to_clear
5810 && (count < maxelt - minelt + 1
5811 || 4 * zero_count >= 3 * count))
5812 need_to_clear = 1;
5815 if (need_to_clear && size > 0)
5817 if (REG_P (target))
5818 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5819 else
5820 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5821 cleared = 1;
5824 if (!cleared && REG_P (target))
5825 /* Inform later passes that the old value is dead. */
5826 emit_clobber (target);
5828 /* Store each element of the constructor into the
5829 corresponding element of TARGET, determined by counting the
5830 elements. */
5831 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5833 enum machine_mode mode;
5834 HOST_WIDE_INT bitsize;
5835 HOST_WIDE_INT bitpos;
5836 rtx xtarget = target;
5838 if (cleared && initializer_zerop (value))
5839 continue;
5841 mode = TYPE_MODE (elttype);
5842 if (mode == BLKmode)
5843 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5844 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5845 : -1);
5846 else
5847 bitsize = GET_MODE_BITSIZE (mode);
5849 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5851 tree lo_index = TREE_OPERAND (index, 0);
5852 tree hi_index = TREE_OPERAND (index, 1);
5853 rtx index_r, pos_rtx;
5854 HOST_WIDE_INT lo, hi, count;
5855 tree position;
5857 /* If the range is constant and "small", unroll the loop. */
5858 if (const_bounds_p
5859 && host_integerp (lo_index, 0)
5860 && host_integerp (hi_index, 0)
5861 && (lo = tree_low_cst (lo_index, 0),
5862 hi = tree_low_cst (hi_index, 0),
5863 count = hi - lo + 1,
5864 (!MEM_P (target)
5865 || count <= 2
5866 || (host_integerp (TYPE_SIZE (elttype), 1)
5867 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5868 <= 40 * 8)))))
5870 lo -= minelt; hi -= minelt;
5871 for (; lo <= hi; lo++)
5873 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5875 if (MEM_P (target)
5876 && !MEM_KEEP_ALIAS_SET_P (target)
5877 && TREE_CODE (type) == ARRAY_TYPE
5878 && TYPE_NONALIASED_COMPONENT (type))
5880 target = copy_rtx (target);
5881 MEM_KEEP_ALIAS_SET_P (target) = 1;
5884 store_constructor_field
5885 (target, bitsize, bitpos, mode, value, type, cleared,
5886 get_alias_set (elttype));
5889 else
5891 rtx loop_start = gen_label_rtx ();
5892 rtx loop_end = gen_label_rtx ();
5893 tree exit_cond;
5895 expand_normal (hi_index);
5897 index = build_decl (EXPR_LOCATION (exp),
5898 VAR_DECL, NULL_TREE, domain);
5899 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5900 SET_DECL_RTL (index, index_r);
5901 store_expr (lo_index, index_r, 0, false);
5903 /* Build the head of the loop. */
5904 do_pending_stack_adjust ();
5905 emit_label (loop_start);
5907 /* Assign value to element index. */
5908 position =
5909 fold_convert (ssizetype,
5910 fold_build2 (MINUS_EXPR,
5911 TREE_TYPE (index),
5912 index,
5913 TYPE_MIN_VALUE (domain)));
5915 position =
5916 size_binop (MULT_EXPR, position,
5917 fold_convert (ssizetype,
5918 TYPE_SIZE_UNIT (elttype)));
5920 pos_rtx = expand_normal (position);
5921 xtarget = offset_address (target, pos_rtx,
5922 highest_pow2_factor (position));
5923 xtarget = adjust_address (xtarget, mode, 0);
5924 if (TREE_CODE (value) == CONSTRUCTOR)
5925 store_constructor (value, xtarget, cleared,
5926 bitsize / BITS_PER_UNIT);
5927 else
5928 store_expr (value, xtarget, 0, false);
5930 /* Generate a conditional jump to exit the loop. */
5931 exit_cond = build2 (LT_EXPR, integer_type_node,
5932 index, hi_index);
5933 jumpif (exit_cond, loop_end, -1);
5935 /* Update the loop counter, and jump to the head of
5936 the loop. */
5937 expand_assignment (index,
5938 build2 (PLUS_EXPR, TREE_TYPE (index),
5939 index, integer_one_node),
5940 false);
5942 emit_jump (loop_start);
5944 /* Build the end of the loop. */
5945 emit_label (loop_end);
5948 else if ((index != 0 && ! host_integerp (index, 0))
5949 || ! host_integerp (TYPE_SIZE (elttype), 1))
5951 tree position;
5953 if (index == 0)
5954 index = ssize_int (1);
5956 if (minelt)
5957 index = fold_convert (ssizetype,
5958 fold_build2 (MINUS_EXPR,
5959 TREE_TYPE (index),
5960 index,
5961 TYPE_MIN_VALUE (domain)));
5963 position =
5964 size_binop (MULT_EXPR, index,
5965 fold_convert (ssizetype,
5966 TYPE_SIZE_UNIT (elttype)));
5967 xtarget = offset_address (target,
5968 expand_normal (position),
5969 highest_pow2_factor (position));
5970 xtarget = adjust_address (xtarget, mode, 0);
5971 store_expr (value, xtarget, 0, false);
5973 else
5975 if (index != 0)
5976 bitpos = ((tree_low_cst (index, 0) - minelt)
5977 * tree_low_cst (TYPE_SIZE (elttype), 1));
5978 else
5979 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5981 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5982 && TREE_CODE (type) == ARRAY_TYPE
5983 && TYPE_NONALIASED_COMPONENT (type))
5985 target = copy_rtx (target);
5986 MEM_KEEP_ALIAS_SET_P (target) = 1;
5988 store_constructor_field (target, bitsize, bitpos, mode, value,
5989 type, cleared, get_alias_set (elttype));
5992 break;
5995 case VECTOR_TYPE:
5997 unsigned HOST_WIDE_INT idx;
5998 constructor_elt *ce;
5999 int i;
6000 int need_to_clear;
6001 int icode = 0;
6002 tree elttype = TREE_TYPE (type);
6003 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
6004 enum machine_mode eltmode = TYPE_MODE (elttype);
6005 HOST_WIDE_INT bitsize;
6006 HOST_WIDE_INT bitpos;
6007 rtvec vector = NULL;
6008 unsigned n_elts;
6009 alias_set_type alias;
6011 gcc_assert (eltmode != BLKmode);
6013 n_elts = TYPE_VECTOR_SUBPARTS (type);
6014 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6016 enum machine_mode mode = GET_MODE (target);
6018 icode = (int) optab_handler (vec_init_optab, mode);
6019 if (icode != CODE_FOR_nothing)
6021 unsigned int i;
6023 vector = rtvec_alloc (n_elts);
6024 for (i = 0; i < n_elts; i++)
6025 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6029 /* If the constructor has fewer elements than the vector,
6030 clear the whole array first. Similarly if this is static
6031 constructor of a non-BLKmode object. */
6032 if (cleared)
6033 need_to_clear = 0;
6034 else if (REG_P (target) && TREE_STATIC (exp))
6035 need_to_clear = 1;
6036 else
6038 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6039 tree value;
6041 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6043 int n_elts_here = tree_low_cst
6044 (int_const_binop (TRUNC_DIV_EXPR,
6045 TYPE_SIZE (TREE_TYPE (value)),
6046 TYPE_SIZE (elttype)), 1);
6048 count += n_elts_here;
6049 if (mostly_zeros_p (value))
6050 zero_count += n_elts_here;
6053 /* Clear the entire vector first if there are any missing elements,
6054 or if the incidence of zero elements is >= 75%. */
6055 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6058 if (need_to_clear && size > 0 && !vector)
6060 if (REG_P (target))
6061 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6062 else
6063 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6064 cleared = 1;
6067 /* Inform later passes that the old value is dead. */
6068 if (!cleared && !vector && REG_P (target))
6069 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6071 if (MEM_P (target))
6072 alias = MEM_ALIAS_SET (target);
6073 else
6074 alias = get_alias_set (elttype);
6076 /* Store each element of the constructor into the corresponding
6077 element of TARGET, determined by counting the elements. */
6078 for (idx = 0, i = 0;
6079 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6080 idx++, i += bitsize / elt_size)
6082 HOST_WIDE_INT eltpos;
6083 tree value = ce->value;
6085 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
6086 if (cleared && initializer_zerop (value))
6087 continue;
6089 if (ce->index)
6090 eltpos = tree_low_cst (ce->index, 1);
6091 else
6092 eltpos = i;
6094 if (vector)
6096 /* Vector CONSTRUCTORs should only be built from smaller
6097 vectors in the case of BLKmode vectors. */
6098 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6099 RTVEC_ELT (vector, eltpos)
6100 = expand_normal (value);
6102 else
6104 enum machine_mode value_mode =
6105 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6106 ? TYPE_MODE (TREE_TYPE (value))
6107 : eltmode;
6108 bitpos = eltpos * elt_size;
6109 store_constructor_field (target, bitsize, bitpos,
6110 value_mode, value, type,
6111 cleared, alias);
6115 if (vector)
6116 emit_insn (GEN_FCN (icode)
6117 (target,
6118 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6119 break;
6122 default:
6123 gcc_unreachable ();
6127 /* Store the value of EXP (an expression tree)
6128 into a subfield of TARGET which has mode MODE and occupies
6129 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6130 If MODE is VOIDmode, it means that we are storing into a bit-field.
6132 BITREGION_START is bitpos of the first bitfield in this region.
6133 BITREGION_END is the bitpos of the ending bitfield in this region.
6134 These two fields are 0, if the C++ memory model does not apply,
6135 or we are not interested in keeping track of bitfield regions.
6137 Always return const0_rtx unless we have something particular to
6138 return.
6140 TYPE is the type of the underlying object,
6142 ALIAS_SET is the alias set for the destination. This value will
6143 (in general) be different from that for TARGET, since TARGET is a
6144 reference to the containing structure.
6146 If NONTEMPORAL is true, try generating a nontemporal store. */
6148 static rtx
6149 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6150 unsigned HOST_WIDE_INT bitregion_start,
6151 unsigned HOST_WIDE_INT bitregion_end,
6152 enum machine_mode mode, tree exp, tree type,
6153 alias_set_type alias_set, bool nontemporal)
6155 if (TREE_CODE (exp) == ERROR_MARK)
6156 return const0_rtx;
6158 /* If we have nothing to store, do nothing unless the expression has
6159 side-effects. */
6160 if (bitsize == 0)
6161 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6163 /* If we are storing into an unaligned field of an aligned union that is
6164 in a register, we may have the mode of TARGET being an integer mode but
6165 MODE == BLKmode. In that case, get an aligned object whose size and
6166 alignment are the same as TARGET and store TARGET into it (we can avoid
6167 the store if the field being stored is the entire width of TARGET). Then
6168 call ourselves recursively to store the field into a BLKmode version of
6169 that object. Finally, load from the object into TARGET. This is not
6170 very efficient in general, but should only be slightly more expensive
6171 than the otherwise-required unaligned accesses. Perhaps this can be
6172 cleaned up later. It's tempting to make OBJECT readonly, but it's set
6173 twice, once with emit_move_insn and once via store_field. */
6175 if (mode == BLKmode
6176 && (REG_P (target) || GET_CODE (target) == SUBREG))
6178 rtx object = assign_temp (type, 0, 1, 1);
6179 rtx blk_object = adjust_address (object, BLKmode, 0);
6181 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
6182 emit_move_insn (object, target);
6184 store_field (blk_object, bitsize, bitpos,
6185 bitregion_start, bitregion_end,
6186 mode, exp, type, alias_set, nontemporal);
6188 emit_move_insn (target, object);
6190 /* We want to return the BLKmode version of the data. */
6191 return blk_object;
6194 if (GET_CODE (target) == CONCAT)
6196 /* We're storing into a struct containing a single __complex. */
6198 gcc_assert (!bitpos);
6199 return store_expr (exp, target, 0, nontemporal);
6202 /* If the structure is in a register or if the component
6203 is a bit field, we cannot use addressing to access it.
6204 Use bit-field techniques or SUBREG to store in it. */
6206 if (mode == VOIDmode
6207 || (mode != BLKmode && ! direct_store[(int) mode]
6208 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6209 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6210 || REG_P (target)
6211 || GET_CODE (target) == SUBREG
6212 /* If the field isn't aligned enough to store as an ordinary memref,
6213 store it as a bit field. */
6214 || (mode != BLKmode
6215 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6216 || bitpos % GET_MODE_ALIGNMENT (mode))
6217 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6218 || (bitpos % BITS_PER_UNIT != 0)))
6219 /* If the RHS and field are a constant size and the size of the
6220 RHS isn't the same size as the bitfield, we must use bitfield
6221 operations. */
6222 || (bitsize >= 0
6223 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6224 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6225 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6226 decl we must use bitfield operations. */
6227 || (bitsize >= 0
6228 && TREE_CODE (exp) == MEM_REF
6229 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6230 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6231 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6232 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6234 rtx temp;
6235 gimple nop_def;
6237 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6238 implies a mask operation. If the precision is the same size as
6239 the field we're storing into, that mask is redundant. This is
6240 particularly common with bit field assignments generated by the
6241 C front end. */
6242 nop_def = get_def_for_expr (exp, NOP_EXPR);
6243 if (nop_def)
6245 tree type = TREE_TYPE (exp);
6246 if (INTEGRAL_TYPE_P (type)
6247 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6248 && bitsize == TYPE_PRECISION (type))
6250 tree op = gimple_assign_rhs1 (nop_def);
6251 type = TREE_TYPE (op);
6252 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6253 exp = op;
6257 temp = expand_normal (exp);
6259 /* If BITSIZE is narrower than the size of the type of EXP
6260 we will be narrowing TEMP. Normally, what's wanted are the
6261 low-order bits. However, if EXP's type is a record and this is
6262 big-endian machine, we want the upper BITSIZE bits. */
6263 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6264 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6265 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6266 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6267 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6268 NULL_RTX, 1);
6270 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
6271 MODE. */
6272 if (mode != VOIDmode && mode != BLKmode
6273 && mode != TYPE_MODE (TREE_TYPE (exp)))
6274 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6276 /* If the modes of TEMP and TARGET are both BLKmode, both
6277 must be in memory and BITPOS must be aligned on a byte
6278 boundary. If so, we simply do a block copy. Likewise
6279 for a BLKmode-like TARGET. */
6280 if (GET_MODE (temp) == BLKmode
6281 && (GET_MODE (target) == BLKmode
6282 || (MEM_P (target)
6283 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6284 && (bitpos % BITS_PER_UNIT) == 0
6285 && (bitsize % BITS_PER_UNIT) == 0)))
6287 gcc_assert (MEM_P (target) && MEM_P (temp)
6288 && (bitpos % BITS_PER_UNIT) == 0);
6290 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6291 emit_block_move (target, temp,
6292 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6293 / BITS_PER_UNIT),
6294 BLOCK_OP_NORMAL);
6296 return const0_rtx;
6299 /* Store the value in the bitfield. */
6300 store_bit_field (target, bitsize, bitpos,
6301 bitregion_start, bitregion_end,
6302 mode, temp);
6304 return const0_rtx;
6306 else
6308 /* Now build a reference to just the desired component. */
6309 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6311 if (to_rtx == target)
6312 to_rtx = copy_rtx (to_rtx);
6314 if (!MEM_SCALAR_P (to_rtx))
6315 MEM_IN_STRUCT_P (to_rtx) = 1;
6316 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6317 set_mem_alias_set (to_rtx, alias_set);
6319 return store_expr (exp, to_rtx, 0, nontemporal);
6323 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6324 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6325 codes and find the ultimate containing object, which we return.
6327 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6328 bit position, and *PUNSIGNEDP to the signedness of the field.
6329 If the position of the field is variable, we store a tree
6330 giving the variable offset (in units) in *POFFSET.
6331 This offset is in addition to the bit position.
6332 If the position is not variable, we store 0 in *POFFSET.
6334 If any of the extraction expressions is volatile,
6335 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6337 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6338 Otherwise, it is a mode that can be used to access the field.
6340 If the field describes a variable-sized object, *PMODE is set to
6341 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6342 this case, but the address of the object can be found.
6344 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6345 look through nodes that serve as markers of a greater alignment than
6346 the one that can be deduced from the expression. These nodes make it
6347 possible for front-ends to prevent temporaries from being created by
6348 the middle-end on alignment considerations. For that purpose, the
6349 normal operating mode at high-level is to always pass FALSE so that
6350 the ultimate containing object is really returned; moreover, the
6351 associated predicate handled_component_p will always return TRUE
6352 on these nodes, thus indicating that they are essentially handled
6353 by get_inner_reference. TRUE should only be passed when the caller
6354 is scanning the expression in order to build another representation
6355 and specifically knows how to handle these nodes; as such, this is
6356 the normal operating mode in the RTL expanders. */
6358 tree
6359 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6360 HOST_WIDE_INT *pbitpos, tree *poffset,
6361 enum machine_mode *pmode, int *punsignedp,
6362 int *pvolatilep, bool keep_aligning)
6364 tree size_tree = 0;
6365 enum machine_mode mode = VOIDmode;
6366 bool blkmode_bitfield = false;
6367 tree offset = size_zero_node;
6368 double_int bit_offset = double_int_zero;
6370 /* First get the mode, signedness, and size. We do this from just the
6371 outermost expression. */
6372 *pbitsize = -1;
6373 if (TREE_CODE (exp) == COMPONENT_REF)
6375 tree field = TREE_OPERAND (exp, 1);
6376 size_tree = DECL_SIZE (field);
6377 if (!DECL_BIT_FIELD (field))
6378 mode = DECL_MODE (field);
6379 else if (DECL_MODE (field) == BLKmode)
6380 blkmode_bitfield = true;
6381 else if (TREE_THIS_VOLATILE (exp)
6382 && flag_strict_volatile_bitfields > 0)
6383 /* Volatile bitfields should be accessed in the mode of the
6384 field's type, not the mode computed based on the bit
6385 size. */
6386 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6388 *punsignedp = DECL_UNSIGNED (field);
6390 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6392 size_tree = TREE_OPERAND (exp, 1);
6393 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6394 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6396 /* For vector types, with the correct size of access, use the mode of
6397 inner type. */
6398 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6399 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6400 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6401 mode = TYPE_MODE (TREE_TYPE (exp));
6403 else
6405 mode = TYPE_MODE (TREE_TYPE (exp));
6406 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6408 if (mode == BLKmode)
6409 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6410 else
6411 *pbitsize = GET_MODE_BITSIZE (mode);
6414 if (size_tree != 0)
6416 if (! host_integerp (size_tree, 1))
6417 mode = BLKmode, *pbitsize = -1;
6418 else
6419 *pbitsize = tree_low_cst (size_tree, 1);
6422 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6423 and find the ultimate containing object. */
6424 while (1)
6426 switch (TREE_CODE (exp))
6428 case BIT_FIELD_REF:
6429 bit_offset
6430 = double_int_add (bit_offset,
6431 tree_to_double_int (TREE_OPERAND (exp, 2)));
6432 break;
6434 case COMPONENT_REF:
6436 tree field = TREE_OPERAND (exp, 1);
6437 tree this_offset = component_ref_field_offset (exp);
6439 /* If this field hasn't been filled in yet, don't go past it.
6440 This should only happen when folding expressions made during
6441 type construction. */
6442 if (this_offset == 0)
6443 break;
6445 offset = size_binop (PLUS_EXPR, offset, this_offset);
6446 bit_offset = double_int_add (bit_offset,
6447 tree_to_double_int
6448 (DECL_FIELD_BIT_OFFSET (field)));
6450 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6452 break;
6454 case ARRAY_REF:
6455 case ARRAY_RANGE_REF:
6457 tree index = TREE_OPERAND (exp, 1);
6458 tree low_bound = array_ref_low_bound (exp);
6459 tree unit_size = array_ref_element_size (exp);
6461 /* We assume all arrays have sizes that are a multiple of a byte.
6462 First subtract the lower bound, if any, in the type of the
6463 index, then convert to sizetype and multiply by the size of
6464 the array element. */
6465 if (! integer_zerop (low_bound))
6466 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6467 index, low_bound);
6469 offset = size_binop (PLUS_EXPR, offset,
6470 size_binop (MULT_EXPR,
6471 fold_convert (sizetype, index),
6472 unit_size));
6474 break;
6476 case REALPART_EXPR:
6477 break;
6479 case IMAGPART_EXPR:
6480 bit_offset = double_int_add (bit_offset,
6481 uhwi_to_double_int (*pbitsize));
6482 break;
6484 case VIEW_CONVERT_EXPR:
6485 if (keep_aligning && STRICT_ALIGNMENT
6486 && (TYPE_ALIGN (TREE_TYPE (exp))
6487 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6488 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6489 < BIGGEST_ALIGNMENT)
6490 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6491 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6492 goto done;
6493 break;
6495 case MEM_REF:
6496 /* Hand back the decl for MEM[&decl, off]. */
6497 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6499 tree off = TREE_OPERAND (exp, 1);
6500 if (!integer_zerop (off))
6502 double_int boff, coff = mem_ref_offset (exp);
6503 boff = double_int_lshift (coff,
6504 BITS_PER_UNIT == 8
6505 ? 3 : exact_log2 (BITS_PER_UNIT),
6506 HOST_BITS_PER_DOUBLE_INT, true);
6507 bit_offset = double_int_add (bit_offset, boff);
6509 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6511 goto done;
6513 default:
6514 goto done;
6517 /* If any reference in the chain is volatile, the effect is volatile. */
6518 if (TREE_THIS_VOLATILE (exp))
6519 *pvolatilep = 1;
6521 exp = TREE_OPERAND (exp, 0);
6523 done:
6525 /* If OFFSET is constant, see if we can return the whole thing as a
6526 constant bit position. Make sure to handle overflow during
6527 this conversion. */
6528 if (TREE_CODE (offset) == INTEGER_CST)
6530 double_int tem = tree_to_double_int (offset);
6531 tem = double_int_sext (tem, TYPE_PRECISION (sizetype));
6532 tem = double_int_lshift (tem,
6533 BITS_PER_UNIT == 8
6534 ? 3 : exact_log2 (BITS_PER_UNIT),
6535 HOST_BITS_PER_DOUBLE_INT, true);
6536 tem = double_int_add (tem, bit_offset);
6537 if (double_int_fits_in_shwi_p (tem))
6539 *pbitpos = double_int_to_shwi (tem);
6540 *poffset = offset = NULL_TREE;
6544 /* Otherwise, split it up. */
6545 if (offset)
6547 *pbitpos = double_int_to_shwi (bit_offset);
6548 *poffset = offset;
6551 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6552 if (mode == VOIDmode
6553 && blkmode_bitfield
6554 && (*pbitpos % BITS_PER_UNIT) == 0
6555 && (*pbitsize % BITS_PER_UNIT) == 0)
6556 *pmode = BLKmode;
6557 else
6558 *pmode = mode;
6560 return exp;
6563 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6564 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6565 EXP is marked as PACKED. */
6567 bool
6568 contains_packed_reference (const_tree exp)
6570 bool packed_p = false;
6572 while (1)
6574 switch (TREE_CODE (exp))
6576 case COMPONENT_REF:
6578 tree field = TREE_OPERAND (exp, 1);
6579 packed_p = DECL_PACKED (field)
6580 || TYPE_PACKED (TREE_TYPE (field))
6581 || TYPE_PACKED (TREE_TYPE (exp));
6582 if (packed_p)
6583 goto done;
6585 break;
6587 case BIT_FIELD_REF:
6588 case ARRAY_REF:
6589 case ARRAY_RANGE_REF:
6590 case REALPART_EXPR:
6591 case IMAGPART_EXPR:
6592 case VIEW_CONVERT_EXPR:
6593 break;
6595 default:
6596 goto done;
6598 exp = TREE_OPERAND (exp, 0);
6600 done:
6601 return packed_p;
6604 /* Return a tree of sizetype representing the size, in bytes, of the element
6605 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6607 tree
6608 array_ref_element_size (tree exp)
6610 tree aligned_size = TREE_OPERAND (exp, 3);
6611 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6612 location_t loc = EXPR_LOCATION (exp);
6614 /* If a size was specified in the ARRAY_REF, it's the size measured
6615 in alignment units of the element type. So multiply by that value. */
6616 if (aligned_size)
6618 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6619 sizetype from another type of the same width and signedness. */
6620 if (TREE_TYPE (aligned_size) != sizetype)
6621 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6622 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6623 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6626 /* Otherwise, take the size from that of the element type. Substitute
6627 any PLACEHOLDER_EXPR that we have. */
6628 else
6629 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6632 /* Return a tree representing the lower bound of the array mentioned in
6633 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6635 tree
6636 array_ref_low_bound (tree exp)
6638 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6640 /* If a lower bound is specified in EXP, use it. */
6641 if (TREE_OPERAND (exp, 2))
6642 return TREE_OPERAND (exp, 2);
6644 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6645 substituting for a PLACEHOLDER_EXPR as needed. */
6646 if (domain_type && TYPE_MIN_VALUE (domain_type))
6647 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6649 /* Otherwise, return a zero of the appropriate type. */
6650 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6653 /* Return a tree representing the upper bound of the array mentioned in
6654 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6656 tree
6657 array_ref_up_bound (tree exp)
6659 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6661 /* If there is a domain type and it has an upper bound, use it, substituting
6662 for a PLACEHOLDER_EXPR as needed. */
6663 if (domain_type && TYPE_MAX_VALUE (domain_type))
6664 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6666 /* Otherwise fail. */
6667 return NULL_TREE;
6670 /* Return a tree representing the offset, in bytes, of the field referenced
6671 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6673 tree
6674 component_ref_field_offset (tree exp)
6676 tree aligned_offset = TREE_OPERAND (exp, 2);
6677 tree field = TREE_OPERAND (exp, 1);
6678 location_t loc = EXPR_LOCATION (exp);
6680 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6681 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6682 value. */
6683 if (aligned_offset)
6685 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6686 sizetype from another type of the same width and signedness. */
6687 if (TREE_TYPE (aligned_offset) != sizetype)
6688 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6689 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6690 size_int (DECL_OFFSET_ALIGN (field)
6691 / BITS_PER_UNIT));
6694 /* Otherwise, take the offset from that of the field. Substitute
6695 any PLACEHOLDER_EXPR that we have. */
6696 else
6697 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6700 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6702 static unsigned HOST_WIDE_INT
6703 target_align (const_tree target)
6705 /* We might have a chain of nested references with intermediate misaligning
6706 bitfields components, so need to recurse to find out. */
6708 unsigned HOST_WIDE_INT this_align, outer_align;
6710 switch (TREE_CODE (target))
6712 case BIT_FIELD_REF:
6713 return 1;
6715 case COMPONENT_REF:
6716 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6717 outer_align = target_align (TREE_OPERAND (target, 0));
6718 return MIN (this_align, outer_align);
6720 case ARRAY_REF:
6721 case ARRAY_RANGE_REF:
6722 this_align = TYPE_ALIGN (TREE_TYPE (target));
6723 outer_align = target_align (TREE_OPERAND (target, 0));
6724 return MIN (this_align, outer_align);
6726 CASE_CONVERT:
6727 case NON_LVALUE_EXPR:
6728 case VIEW_CONVERT_EXPR:
6729 this_align = TYPE_ALIGN (TREE_TYPE (target));
6730 outer_align = target_align (TREE_OPERAND (target, 0));
6731 return MAX (this_align, outer_align);
6733 default:
6734 return TYPE_ALIGN (TREE_TYPE (target));
6739 /* Given an rtx VALUE that may contain additions and multiplications, return
6740 an equivalent value that just refers to a register, memory, or constant.
6741 This is done by generating instructions to perform the arithmetic and
6742 returning a pseudo-register containing the value.
6744 The returned value may be a REG, SUBREG, MEM or constant. */
6747 force_operand (rtx value, rtx target)
6749 rtx op1, op2;
6750 /* Use subtarget as the target for operand 0 of a binary operation. */
6751 rtx subtarget = get_subtarget (target);
6752 enum rtx_code code = GET_CODE (value);
6754 /* Check for subreg applied to an expression produced by loop optimizer. */
6755 if (code == SUBREG
6756 && !REG_P (SUBREG_REG (value))
6757 && !MEM_P (SUBREG_REG (value)))
6759 value
6760 = simplify_gen_subreg (GET_MODE (value),
6761 force_reg (GET_MODE (SUBREG_REG (value)),
6762 force_operand (SUBREG_REG (value),
6763 NULL_RTX)),
6764 GET_MODE (SUBREG_REG (value)),
6765 SUBREG_BYTE (value));
6766 code = GET_CODE (value);
6769 /* Check for a PIC address load. */
6770 if ((code == PLUS || code == MINUS)
6771 && XEXP (value, 0) == pic_offset_table_rtx
6772 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6773 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6774 || GET_CODE (XEXP (value, 1)) == CONST))
6776 if (!subtarget)
6777 subtarget = gen_reg_rtx (GET_MODE (value));
6778 emit_move_insn (subtarget, value);
6779 return subtarget;
6782 if (ARITHMETIC_P (value))
6784 op2 = XEXP (value, 1);
6785 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6786 subtarget = 0;
6787 if (code == MINUS && CONST_INT_P (op2))
6789 code = PLUS;
6790 op2 = negate_rtx (GET_MODE (value), op2);
6793 /* Check for an addition with OP2 a constant integer and our first
6794 operand a PLUS of a virtual register and something else. In that
6795 case, we want to emit the sum of the virtual register and the
6796 constant first and then add the other value. This allows virtual
6797 register instantiation to simply modify the constant rather than
6798 creating another one around this addition. */
6799 if (code == PLUS && CONST_INT_P (op2)
6800 && GET_CODE (XEXP (value, 0)) == PLUS
6801 && REG_P (XEXP (XEXP (value, 0), 0))
6802 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6803 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6805 rtx temp = expand_simple_binop (GET_MODE (value), code,
6806 XEXP (XEXP (value, 0), 0), op2,
6807 subtarget, 0, OPTAB_LIB_WIDEN);
6808 return expand_simple_binop (GET_MODE (value), code, temp,
6809 force_operand (XEXP (XEXP (value,
6810 0), 1), 0),
6811 target, 0, OPTAB_LIB_WIDEN);
6814 op1 = force_operand (XEXP (value, 0), subtarget);
6815 op2 = force_operand (op2, NULL_RTX);
6816 switch (code)
6818 case MULT:
6819 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6820 case DIV:
6821 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6822 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6823 target, 1, OPTAB_LIB_WIDEN);
6824 else
6825 return expand_divmod (0,
6826 FLOAT_MODE_P (GET_MODE (value))
6827 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6828 GET_MODE (value), op1, op2, target, 0);
6829 case MOD:
6830 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6831 target, 0);
6832 case UDIV:
6833 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6834 target, 1);
6835 case UMOD:
6836 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6837 target, 1);
6838 case ASHIFTRT:
6839 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6840 target, 0, OPTAB_LIB_WIDEN);
6841 default:
6842 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6843 target, 1, OPTAB_LIB_WIDEN);
6846 if (UNARY_P (value))
6848 if (!target)
6849 target = gen_reg_rtx (GET_MODE (value));
6850 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6851 switch (code)
6853 case ZERO_EXTEND:
6854 case SIGN_EXTEND:
6855 case TRUNCATE:
6856 case FLOAT_EXTEND:
6857 case FLOAT_TRUNCATE:
6858 convert_move (target, op1, code == ZERO_EXTEND);
6859 return target;
6861 case FIX:
6862 case UNSIGNED_FIX:
6863 expand_fix (target, op1, code == UNSIGNED_FIX);
6864 return target;
6866 case FLOAT:
6867 case UNSIGNED_FLOAT:
6868 expand_float (target, op1, code == UNSIGNED_FLOAT);
6869 return target;
6871 default:
6872 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6876 #ifdef INSN_SCHEDULING
6877 /* On machines that have insn scheduling, we want all memory reference to be
6878 explicit, so we need to deal with such paradoxical SUBREGs. */
6879 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
6880 value
6881 = simplify_gen_subreg (GET_MODE (value),
6882 force_reg (GET_MODE (SUBREG_REG (value)),
6883 force_operand (SUBREG_REG (value),
6884 NULL_RTX)),
6885 GET_MODE (SUBREG_REG (value)),
6886 SUBREG_BYTE (value));
6887 #endif
6889 return value;
6892 /* Subroutine of expand_expr: return nonzero iff there is no way that
6893 EXP can reference X, which is being modified. TOP_P is nonzero if this
6894 call is going to be used to determine whether we need a temporary
6895 for EXP, as opposed to a recursive call to this function.
6897 It is always safe for this routine to return zero since it merely
6898 searches for optimization opportunities. */
6901 safe_from_p (const_rtx x, tree exp, int top_p)
6903 rtx exp_rtl = 0;
6904 int i, nops;
6906 if (x == 0
6907 /* If EXP has varying size, we MUST use a target since we currently
6908 have no way of allocating temporaries of variable size
6909 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6910 So we assume here that something at a higher level has prevented a
6911 clash. This is somewhat bogus, but the best we can do. Only
6912 do this when X is BLKmode and when we are at the top level. */
6913 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6914 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6915 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6916 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6917 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6918 != INTEGER_CST)
6919 && GET_MODE (x) == BLKmode)
6920 /* If X is in the outgoing argument area, it is always safe. */
6921 || (MEM_P (x)
6922 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6923 || (GET_CODE (XEXP (x, 0)) == PLUS
6924 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6925 return 1;
6927 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6928 find the underlying pseudo. */
6929 if (GET_CODE (x) == SUBREG)
6931 x = SUBREG_REG (x);
6932 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6933 return 0;
6936 /* Now look at our tree code and possibly recurse. */
6937 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6939 case tcc_declaration:
6940 exp_rtl = DECL_RTL_IF_SET (exp);
6941 break;
6943 case tcc_constant:
6944 return 1;
6946 case tcc_exceptional:
6947 if (TREE_CODE (exp) == TREE_LIST)
6949 while (1)
6951 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6952 return 0;
6953 exp = TREE_CHAIN (exp);
6954 if (!exp)
6955 return 1;
6956 if (TREE_CODE (exp) != TREE_LIST)
6957 return safe_from_p (x, exp, 0);
6960 else if (TREE_CODE (exp) == CONSTRUCTOR)
6962 constructor_elt *ce;
6963 unsigned HOST_WIDE_INT idx;
6965 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6966 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6967 || !safe_from_p (x, ce->value, 0))
6968 return 0;
6969 return 1;
6971 else if (TREE_CODE (exp) == ERROR_MARK)
6972 return 1; /* An already-visited SAVE_EXPR? */
6973 else
6974 return 0;
6976 case tcc_statement:
6977 /* The only case we look at here is the DECL_INITIAL inside a
6978 DECL_EXPR. */
6979 return (TREE_CODE (exp) != DECL_EXPR
6980 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6981 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6982 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6984 case tcc_binary:
6985 case tcc_comparison:
6986 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6987 return 0;
6988 /* Fall through. */
6990 case tcc_unary:
6991 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6993 case tcc_expression:
6994 case tcc_reference:
6995 case tcc_vl_exp:
6996 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6997 the expression. If it is set, we conflict iff we are that rtx or
6998 both are in memory. Otherwise, we check all operands of the
6999 expression recursively. */
7001 switch (TREE_CODE (exp))
7003 case ADDR_EXPR:
7004 /* If the operand is static or we are static, we can't conflict.
7005 Likewise if we don't conflict with the operand at all. */
7006 if (staticp (TREE_OPERAND (exp, 0))
7007 || TREE_STATIC (exp)
7008 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7009 return 1;
7011 /* Otherwise, the only way this can conflict is if we are taking
7012 the address of a DECL a that address if part of X, which is
7013 very rare. */
7014 exp = TREE_OPERAND (exp, 0);
7015 if (DECL_P (exp))
7017 if (!DECL_RTL_SET_P (exp)
7018 || !MEM_P (DECL_RTL (exp)))
7019 return 0;
7020 else
7021 exp_rtl = XEXP (DECL_RTL (exp), 0);
7023 break;
7025 case MEM_REF:
7026 if (MEM_P (x)
7027 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7028 get_alias_set (exp)))
7029 return 0;
7030 break;
7032 case CALL_EXPR:
7033 /* Assume that the call will clobber all hard registers and
7034 all of memory. */
7035 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7036 || MEM_P (x))
7037 return 0;
7038 break;
7040 case WITH_CLEANUP_EXPR:
7041 case CLEANUP_POINT_EXPR:
7042 /* Lowered by gimplify.c. */
7043 gcc_unreachable ();
7045 case SAVE_EXPR:
7046 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7048 default:
7049 break;
7052 /* If we have an rtx, we do not need to scan our operands. */
7053 if (exp_rtl)
7054 break;
7056 nops = TREE_OPERAND_LENGTH (exp);
7057 for (i = 0; i < nops; i++)
7058 if (TREE_OPERAND (exp, i) != 0
7059 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7060 return 0;
7062 break;
7064 case tcc_type:
7065 /* Should never get a type here. */
7066 gcc_unreachable ();
7069 /* If we have an rtl, find any enclosed object. Then see if we conflict
7070 with it. */
7071 if (exp_rtl)
7073 if (GET_CODE (exp_rtl) == SUBREG)
7075 exp_rtl = SUBREG_REG (exp_rtl);
7076 if (REG_P (exp_rtl)
7077 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7078 return 0;
7081 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7082 are memory and they conflict. */
7083 return ! (rtx_equal_p (x, exp_rtl)
7084 || (MEM_P (x) && MEM_P (exp_rtl)
7085 && true_dependence (exp_rtl, VOIDmode, x,
7086 rtx_addr_varies_p)));
7089 /* If we reach here, it is safe. */
7090 return 1;
7094 /* Return the highest power of two that EXP is known to be a multiple of.
7095 This is used in updating alignment of MEMs in array references. */
7097 unsigned HOST_WIDE_INT
7098 highest_pow2_factor (const_tree exp)
7100 unsigned HOST_WIDE_INT c0, c1;
7102 switch (TREE_CODE (exp))
7104 case INTEGER_CST:
7105 /* We can find the lowest bit that's a one. If the low
7106 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7107 We need to handle this case since we can find it in a COND_EXPR,
7108 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7109 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7110 later ICE. */
7111 if (TREE_OVERFLOW (exp))
7112 return BIGGEST_ALIGNMENT;
7113 else
7115 /* Note: tree_low_cst is intentionally not used here,
7116 we don't care about the upper bits. */
7117 c0 = TREE_INT_CST_LOW (exp);
7118 c0 &= -c0;
7119 return c0 ? c0 : BIGGEST_ALIGNMENT;
7121 break;
7123 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
7124 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7125 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7126 return MIN (c0, c1);
7128 case MULT_EXPR:
7129 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7130 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7131 return c0 * c1;
7133 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
7134 case CEIL_DIV_EXPR:
7135 if (integer_pow2p (TREE_OPERAND (exp, 1))
7136 && host_integerp (TREE_OPERAND (exp, 1), 1))
7138 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
7139 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
7140 return MAX (1, c0 / c1);
7142 break;
7144 case BIT_AND_EXPR:
7145 /* The highest power of two of a bit-and expression is the maximum of
7146 that of its operands. We typically get here for a complex LHS and
7147 a constant negative power of two on the RHS to force an explicit
7148 alignment, so don't bother looking at the LHS. */
7149 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7151 CASE_CONVERT:
7152 case SAVE_EXPR:
7153 return highest_pow2_factor (TREE_OPERAND (exp, 0));
7155 case COMPOUND_EXPR:
7156 return highest_pow2_factor (TREE_OPERAND (exp, 1));
7158 case COND_EXPR:
7159 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
7160 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
7161 return MIN (c0, c1);
7163 default:
7164 break;
7167 return 1;
7170 /* Similar, except that the alignment requirements of TARGET are
7171 taken into account. Assume it is at least as aligned as its
7172 type, unless it is a COMPONENT_REF in which case the layout of
7173 the structure gives the alignment. */
7175 static unsigned HOST_WIDE_INT
7176 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7178 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7179 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7181 return MAX (factor, talign);
7184 /* Subroutine of expand_expr. Expand the two operands of a binary
7185 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7186 The value may be stored in TARGET if TARGET is nonzero. The
7187 MODIFIER argument is as documented by expand_expr. */
7189 static void
7190 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7191 enum expand_modifier modifier)
7193 if (! safe_from_p (target, exp1, 1))
7194 target = 0;
7195 if (operand_equal_p (exp0, exp1, 0))
7197 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7198 *op1 = copy_rtx (*op0);
7200 else
7202 /* If we need to preserve evaluation order, copy exp0 into its own
7203 temporary variable so that it can't be clobbered by exp1. */
7204 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7205 exp0 = save_expr (exp0);
7206 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7207 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7212 /* Return a MEM that contains constant EXP. DEFER is as for
7213 output_constant_def and MODIFIER is as for expand_expr. */
7215 static rtx
7216 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7218 rtx mem;
7220 mem = output_constant_def (exp, defer);
7221 if (modifier != EXPAND_INITIALIZER)
7222 mem = use_anchored_address (mem);
7223 return mem;
7226 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7227 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7229 static rtx
7230 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7231 enum expand_modifier modifier, addr_space_t as)
7233 rtx result, subtarget;
7234 tree inner, offset;
7235 HOST_WIDE_INT bitsize, bitpos;
7236 int volatilep, unsignedp;
7237 enum machine_mode mode1;
7239 /* If we are taking the address of a constant and are at the top level,
7240 we have to use output_constant_def since we can't call force_const_mem
7241 at top level. */
7242 /* ??? This should be considered a front-end bug. We should not be
7243 generating ADDR_EXPR of something that isn't an LVALUE. The only
7244 exception here is STRING_CST. */
7245 if (CONSTANT_CLASS_P (exp))
7246 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
7248 /* Everything must be something allowed by is_gimple_addressable. */
7249 switch (TREE_CODE (exp))
7251 case INDIRECT_REF:
7252 /* This case will happen via recursion for &a->b. */
7253 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7255 case MEM_REF:
7257 tree tem = TREE_OPERAND (exp, 0);
7258 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7259 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7260 return expand_expr (tem, target, tmode, modifier);
7263 case CONST_DECL:
7264 /* Expand the initializer like constants above. */
7265 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
7267 case REALPART_EXPR:
7268 /* The real part of the complex number is always first, therefore
7269 the address is the same as the address of the parent object. */
7270 offset = 0;
7271 bitpos = 0;
7272 inner = TREE_OPERAND (exp, 0);
7273 break;
7275 case IMAGPART_EXPR:
7276 /* The imaginary part of the complex number is always second.
7277 The expression is therefore always offset by the size of the
7278 scalar type. */
7279 offset = 0;
7280 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7281 inner = TREE_OPERAND (exp, 0);
7282 break;
7284 default:
7285 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7286 expand_expr, as that can have various side effects; LABEL_DECLs for
7287 example, may not have their DECL_RTL set yet. Expand the rtl of
7288 CONSTRUCTORs too, which should yield a memory reference for the
7289 constructor's contents. Assume language specific tree nodes can
7290 be expanded in some interesting way. */
7291 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7292 if (DECL_P (exp)
7293 || TREE_CODE (exp) == CONSTRUCTOR
7294 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7296 result = expand_expr (exp, target, tmode,
7297 modifier == EXPAND_INITIALIZER
7298 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7300 /* If the DECL isn't in memory, then the DECL wasn't properly
7301 marked TREE_ADDRESSABLE, which will be either a front-end
7302 or a tree optimizer bug. */
7304 if (TREE_ADDRESSABLE (exp)
7305 && ! MEM_P (result)
7306 && ! targetm.calls.allocate_stack_slots_for_args())
7308 error ("local frame unavailable (naked function?)");
7309 return result;
7311 else
7312 gcc_assert (MEM_P (result));
7313 result = XEXP (result, 0);
7315 /* ??? Is this needed anymore? */
7316 if (DECL_P (exp) && !TREE_USED (exp) == 0)
7318 assemble_external (exp);
7319 TREE_USED (exp) = 1;
7322 if (modifier != EXPAND_INITIALIZER
7323 && modifier != EXPAND_CONST_ADDRESS)
7324 result = force_operand (result, target);
7325 return result;
7328 /* Pass FALSE as the last argument to get_inner_reference although
7329 we are expanding to RTL. The rationale is that we know how to
7330 handle "aligning nodes" here: we can just bypass them because
7331 they won't change the final object whose address will be returned
7332 (they actually exist only for that purpose). */
7333 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7334 &mode1, &unsignedp, &volatilep, false);
7335 break;
7338 /* We must have made progress. */
7339 gcc_assert (inner != exp);
7341 subtarget = offset || bitpos ? NULL_RTX : target;
7342 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7343 inner alignment, force the inner to be sufficiently aligned. */
7344 if (CONSTANT_CLASS_P (inner)
7345 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7347 inner = copy_node (inner);
7348 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7349 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7350 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7352 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7354 if (offset)
7356 rtx tmp;
7358 if (modifier != EXPAND_NORMAL)
7359 result = force_operand (result, NULL);
7360 tmp = expand_expr (offset, NULL_RTX, tmode,
7361 modifier == EXPAND_INITIALIZER
7362 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7364 result = convert_memory_address_addr_space (tmode, result, as);
7365 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7367 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7368 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7369 else
7371 subtarget = bitpos ? NULL_RTX : target;
7372 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7373 1, OPTAB_LIB_WIDEN);
7377 if (bitpos)
7379 /* Someone beforehand should have rejected taking the address
7380 of such an object. */
7381 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7383 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7384 if (modifier < EXPAND_SUM)
7385 result = force_operand (result, target);
7388 return result;
7391 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7392 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7394 static rtx
7395 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7396 enum expand_modifier modifier)
7398 addr_space_t as = ADDR_SPACE_GENERIC;
7399 enum machine_mode address_mode = Pmode;
7400 enum machine_mode pointer_mode = ptr_mode;
7401 enum machine_mode rmode;
7402 rtx result;
7404 /* Target mode of VOIDmode says "whatever's natural". */
7405 if (tmode == VOIDmode)
7406 tmode = TYPE_MODE (TREE_TYPE (exp));
7408 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7410 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7411 address_mode = targetm.addr_space.address_mode (as);
7412 pointer_mode = targetm.addr_space.pointer_mode (as);
7415 /* We can get called with some Weird Things if the user does silliness
7416 like "(short) &a". In that case, convert_memory_address won't do
7417 the right thing, so ignore the given target mode. */
7418 if (tmode != address_mode && tmode != pointer_mode)
7419 tmode = address_mode;
7421 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7422 tmode, modifier, as);
7424 /* Despite expand_expr claims concerning ignoring TMODE when not
7425 strictly convenient, stuff breaks if we don't honor it. Note
7426 that combined with the above, we only do this for pointer modes. */
7427 rmode = GET_MODE (result);
7428 if (rmode == VOIDmode)
7429 rmode = tmode;
7430 if (rmode != tmode)
7431 result = convert_memory_address_addr_space (tmode, result, as);
7433 return result;
7436 /* Generate code for computing CONSTRUCTOR EXP.
7437 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7438 is TRUE, instead of creating a temporary variable in memory
7439 NULL is returned and the caller needs to handle it differently. */
7441 static rtx
7442 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7443 bool avoid_temp_mem)
7445 tree type = TREE_TYPE (exp);
7446 enum machine_mode mode = TYPE_MODE (type);
7448 /* Try to avoid creating a temporary at all. This is possible
7449 if all of the initializer is zero.
7450 FIXME: try to handle all [0..255] initializers we can handle
7451 with memset. */
7452 if (TREE_STATIC (exp)
7453 && !TREE_ADDRESSABLE (exp)
7454 && target != 0 && mode == BLKmode
7455 && all_zeros_p (exp))
7457 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7458 return target;
7461 /* All elts simple constants => refer to a constant in memory. But
7462 if this is a non-BLKmode mode, let it store a field at a time
7463 since that should make a CONST_INT or CONST_DOUBLE when we
7464 fold. Likewise, if we have a target we can use, it is best to
7465 store directly into the target unless the type is large enough
7466 that memcpy will be used. If we are making an initializer and
7467 all operands are constant, put it in memory as well.
7469 FIXME: Avoid trying to fill vector constructors piece-meal.
7470 Output them with output_constant_def below unless we're sure
7471 they're zeros. This should go away when vector initializers
7472 are treated like VECTOR_CST instead of arrays. */
7473 if ((TREE_STATIC (exp)
7474 && ((mode == BLKmode
7475 && ! (target != 0 && safe_from_p (target, exp, 1)))
7476 || TREE_ADDRESSABLE (exp)
7477 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7478 && (! MOVE_BY_PIECES_P
7479 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7480 TYPE_ALIGN (type)))
7481 && ! mostly_zeros_p (exp))))
7482 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7483 && TREE_CONSTANT (exp)))
7485 rtx constructor;
7487 if (avoid_temp_mem)
7488 return NULL_RTX;
7490 constructor = expand_expr_constant (exp, 1, modifier);
7492 if (modifier != EXPAND_CONST_ADDRESS
7493 && modifier != EXPAND_INITIALIZER
7494 && modifier != EXPAND_SUM)
7495 constructor = validize_mem (constructor);
7497 return constructor;
7500 /* Handle calls that pass values in multiple non-contiguous
7501 locations. The Irix 6 ABI has examples of this. */
7502 if (target == 0 || ! safe_from_p (target, exp, 1)
7503 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7505 if (avoid_temp_mem)
7506 return NULL_RTX;
7508 target
7509 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7510 | (TREE_READONLY (exp)
7511 * TYPE_QUAL_CONST))),
7512 0, TREE_ADDRESSABLE (exp), 1);
7515 store_constructor (exp, target, 0, int_expr_size (exp));
7516 return target;
7520 /* expand_expr: generate code for computing expression EXP.
7521 An rtx for the computed value is returned. The value is never null.
7522 In the case of a void EXP, const0_rtx is returned.
7524 The value may be stored in TARGET if TARGET is nonzero.
7525 TARGET is just a suggestion; callers must assume that
7526 the rtx returned may not be the same as TARGET.
7528 If TARGET is CONST0_RTX, it means that the value will be ignored.
7530 If TMODE is not VOIDmode, it suggests generating the
7531 result in mode TMODE. But this is done only when convenient.
7532 Otherwise, TMODE is ignored and the value generated in its natural mode.
7533 TMODE is just a suggestion; callers must assume that
7534 the rtx returned may not have mode TMODE.
7536 Note that TARGET may have neither TMODE nor MODE. In that case, it
7537 probably will not be used.
7539 If MODIFIER is EXPAND_SUM then when EXP is an addition
7540 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7541 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7542 products as above, or REG or MEM, or constant.
7543 Ordinarily in such cases we would output mul or add instructions
7544 and then return a pseudo reg containing the sum.
7546 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7547 it also marks a label as absolutely required (it can't be dead).
7548 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7549 This is used for outputting expressions used in initializers.
7551 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7552 with a constant address even if that address is not normally legitimate.
7553 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7555 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7556 a call parameter. Such targets require special care as we haven't yet
7557 marked TARGET so that it's safe from being trashed by libcalls. We
7558 don't want to use TARGET for anything but the final result;
7559 Intermediate values must go elsewhere. Additionally, calls to
7560 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7562 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7563 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7564 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7565 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7566 recursively. */
7569 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7570 enum expand_modifier modifier, rtx *alt_rtl)
7572 rtx ret;
7574 /* Handle ERROR_MARK before anybody tries to access its type. */
7575 if (TREE_CODE (exp) == ERROR_MARK
7576 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7578 ret = CONST0_RTX (tmode);
7579 return ret ? ret : const0_rtx;
7582 /* If this is an expression of some kind and it has an associated line
7583 number, then emit the line number before expanding the expression.
7585 We need to save and restore the file and line information so that
7586 errors discovered during expansion are emitted with the right
7587 information. It would be better of the diagnostic routines
7588 used the file/line information embedded in the tree nodes rather
7589 than globals. */
7590 if (cfun && EXPR_HAS_LOCATION (exp))
7592 location_t saved_location = input_location;
7593 location_t saved_curr_loc = get_curr_insn_source_location ();
7594 tree saved_block = get_curr_insn_block ();
7595 input_location = EXPR_LOCATION (exp);
7596 set_curr_insn_source_location (input_location);
7598 /* Record where the insns produced belong. */
7599 set_curr_insn_block (TREE_BLOCK (exp));
7601 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7603 input_location = saved_location;
7604 set_curr_insn_block (saved_block);
7605 set_curr_insn_source_location (saved_curr_loc);
7607 else
7609 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7612 return ret;
7616 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7617 enum expand_modifier modifier)
7619 rtx op0, op1, op2, temp;
7620 tree type;
7621 int unsignedp;
7622 enum machine_mode mode;
7623 enum tree_code code = ops->code;
7624 optab this_optab;
7625 rtx subtarget, original_target;
7626 int ignore;
7627 bool reduce_bit_field;
7628 location_t loc = ops->location;
7629 tree treeop0, treeop1, treeop2;
7630 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7631 ? reduce_to_bit_field_precision ((expr), \
7632 target, \
7633 type) \
7634 : (expr))
7636 type = ops->type;
7637 mode = TYPE_MODE (type);
7638 unsignedp = TYPE_UNSIGNED (type);
7640 treeop0 = ops->op0;
7641 treeop1 = ops->op1;
7642 treeop2 = ops->op2;
7644 /* We should be called only on simple (binary or unary) expressions,
7645 exactly those that are valid in gimple expressions that aren't
7646 GIMPLE_SINGLE_RHS (or invalid). */
7647 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7648 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7649 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7651 ignore = (target == const0_rtx
7652 || ((CONVERT_EXPR_CODE_P (code)
7653 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7654 && TREE_CODE (type) == VOID_TYPE));
7656 /* We should be called only if we need the result. */
7657 gcc_assert (!ignore);
7659 /* An operation in what may be a bit-field type needs the
7660 result to be reduced to the precision of the bit-field type,
7661 which is narrower than that of the type's mode. */
7662 reduce_bit_field = (INTEGRAL_TYPE_P (type)
7663 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7665 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7666 target = 0;
7668 /* Use subtarget as the target for operand 0 of a binary operation. */
7669 subtarget = get_subtarget (target);
7670 original_target = target;
7672 switch (code)
7674 case NON_LVALUE_EXPR:
7675 case PAREN_EXPR:
7676 CASE_CONVERT:
7677 if (treeop0 == error_mark_node)
7678 return const0_rtx;
7680 if (TREE_CODE (type) == UNION_TYPE)
7682 tree valtype = TREE_TYPE (treeop0);
7684 /* If both input and output are BLKmode, this conversion isn't doing
7685 anything except possibly changing memory attribute. */
7686 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7688 rtx result = expand_expr (treeop0, target, tmode,
7689 modifier);
7691 result = copy_rtx (result);
7692 set_mem_attributes (result, type, 0);
7693 return result;
7696 if (target == 0)
7698 if (TYPE_MODE (type) != BLKmode)
7699 target = gen_reg_rtx (TYPE_MODE (type));
7700 else
7701 target = assign_temp (type, 0, 1, 1);
7704 if (MEM_P (target))
7705 /* Store data into beginning of memory target. */
7706 store_expr (treeop0,
7707 adjust_address (target, TYPE_MODE (valtype), 0),
7708 modifier == EXPAND_STACK_PARM,
7709 false);
7711 else
7713 gcc_assert (REG_P (target));
7715 /* Store this field into a union of the proper type. */
7716 store_field (target,
7717 MIN ((int_size_in_bytes (TREE_TYPE
7718 (treeop0))
7719 * BITS_PER_UNIT),
7720 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7721 0, 0, 0, TYPE_MODE (valtype), treeop0,
7722 type, 0, false);
7725 /* Return the entire union. */
7726 return target;
7729 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7731 op0 = expand_expr (treeop0, target, VOIDmode,
7732 modifier);
7734 /* If the signedness of the conversion differs and OP0 is
7735 a promoted SUBREG, clear that indication since we now
7736 have to do the proper extension. */
7737 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7738 && GET_CODE (op0) == SUBREG)
7739 SUBREG_PROMOTED_VAR_P (op0) = 0;
7741 return REDUCE_BIT_FIELD (op0);
7744 op0 = expand_expr (treeop0, NULL_RTX, mode,
7745 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7746 if (GET_MODE (op0) == mode)
7749 /* If OP0 is a constant, just convert it into the proper mode. */
7750 else if (CONSTANT_P (op0))
7752 tree inner_type = TREE_TYPE (treeop0);
7753 enum machine_mode inner_mode = GET_MODE (op0);
7755 if (inner_mode == VOIDmode)
7756 inner_mode = TYPE_MODE (inner_type);
7758 if (modifier == EXPAND_INITIALIZER)
7759 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7760 subreg_lowpart_offset (mode,
7761 inner_mode));
7762 else
7763 op0= convert_modes (mode, inner_mode, op0,
7764 TYPE_UNSIGNED (inner_type));
7767 else if (modifier == EXPAND_INITIALIZER)
7768 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7770 else if (target == 0)
7771 op0 = convert_to_mode (mode, op0,
7772 TYPE_UNSIGNED (TREE_TYPE
7773 (treeop0)));
7774 else
7776 convert_move (target, op0,
7777 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7778 op0 = target;
7781 return REDUCE_BIT_FIELD (op0);
7783 case ADDR_SPACE_CONVERT_EXPR:
7785 tree treeop0_type = TREE_TYPE (treeop0);
7786 addr_space_t as_to;
7787 addr_space_t as_from;
7789 gcc_assert (POINTER_TYPE_P (type));
7790 gcc_assert (POINTER_TYPE_P (treeop0_type));
7792 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7793 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7795 /* Conversions between pointers to the same address space should
7796 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7797 gcc_assert (as_to != as_from);
7799 /* Ask target code to handle conversion between pointers
7800 to overlapping address spaces. */
7801 if (targetm.addr_space.subset_p (as_to, as_from)
7802 || targetm.addr_space.subset_p (as_from, as_to))
7804 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7805 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7806 gcc_assert (op0);
7807 return op0;
7810 /* For disjoint address spaces, converting anything but
7811 a null pointer invokes undefined behaviour. We simply
7812 always return a null pointer here. */
7813 return CONST0_RTX (mode);
7816 case POINTER_PLUS_EXPR:
7817 /* Even though the sizetype mode and the pointer's mode can be different
7818 expand is able to handle this correctly and get the correct result out
7819 of the PLUS_EXPR code. */
7820 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7821 if sizetype precision is smaller than pointer precision. */
7822 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7823 treeop1 = fold_convert_loc (loc, type,
7824 fold_convert_loc (loc, ssizetype,
7825 treeop1));
7826 case PLUS_EXPR:
7827 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7828 something else, make sure we add the register to the constant and
7829 then to the other thing. This case can occur during strength
7830 reduction and doing it this way will produce better code if the
7831 frame pointer or argument pointer is eliminated.
7833 fold-const.c will ensure that the constant is always in the inner
7834 PLUS_EXPR, so the only case we need to do anything about is if
7835 sp, ap, or fp is our second argument, in which case we must swap
7836 the innermost first argument and our second argument. */
7838 if (TREE_CODE (treeop0) == PLUS_EXPR
7839 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7840 && TREE_CODE (treeop1) == VAR_DECL
7841 && (DECL_RTL (treeop1) == frame_pointer_rtx
7842 || DECL_RTL (treeop1) == stack_pointer_rtx
7843 || DECL_RTL (treeop1) == arg_pointer_rtx))
7845 tree t = treeop1;
7847 treeop1 = TREE_OPERAND (treeop0, 0);
7848 TREE_OPERAND (treeop0, 0) = t;
7851 /* If the result is to be ptr_mode and we are adding an integer to
7852 something, we might be forming a constant. So try to use
7853 plus_constant. If it produces a sum and we can't accept it,
7854 use force_operand. This allows P = &ARR[const] to generate
7855 efficient code on machines where a SYMBOL_REF is not a valid
7856 address.
7858 If this is an EXPAND_SUM call, always return the sum. */
7859 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7860 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7862 if (modifier == EXPAND_STACK_PARM)
7863 target = 0;
7864 if (TREE_CODE (treeop0) == INTEGER_CST
7865 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
7866 && TREE_CONSTANT (treeop1))
7868 rtx constant_part;
7870 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7871 EXPAND_SUM);
7872 /* Use immed_double_const to ensure that the constant is
7873 truncated according to the mode of OP1, then sign extended
7874 to a HOST_WIDE_INT. Using the constant directly can result
7875 in non-canonical RTL in a 64x32 cross compile. */
7876 constant_part
7877 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7878 (HOST_WIDE_INT) 0,
7879 TYPE_MODE (TREE_TYPE (treeop1)));
7880 op1 = plus_constant (op1, INTVAL (constant_part));
7881 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7882 op1 = force_operand (op1, target);
7883 return REDUCE_BIT_FIELD (op1);
7886 else if (TREE_CODE (treeop1) == INTEGER_CST
7887 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
7888 && TREE_CONSTANT (treeop0))
7890 rtx constant_part;
7892 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7893 (modifier == EXPAND_INITIALIZER
7894 ? EXPAND_INITIALIZER : EXPAND_SUM));
7895 if (! CONSTANT_P (op0))
7897 op1 = expand_expr (treeop1, NULL_RTX,
7898 VOIDmode, modifier);
7899 /* Return a PLUS if modifier says it's OK. */
7900 if (modifier == EXPAND_SUM
7901 || modifier == EXPAND_INITIALIZER)
7902 return simplify_gen_binary (PLUS, mode, op0, op1);
7903 goto binop2;
7905 /* Use immed_double_const to ensure that the constant is
7906 truncated according to the mode of OP1, then sign extended
7907 to a HOST_WIDE_INT. Using the constant directly can result
7908 in non-canonical RTL in a 64x32 cross compile. */
7909 constant_part
7910 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7911 (HOST_WIDE_INT) 0,
7912 TYPE_MODE (TREE_TYPE (treeop0)));
7913 op0 = plus_constant (op0, INTVAL (constant_part));
7914 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7915 op0 = force_operand (op0, target);
7916 return REDUCE_BIT_FIELD (op0);
7920 /* Use TER to expand pointer addition of a negated value
7921 as pointer subtraction. */
7922 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7923 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7924 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7925 && TREE_CODE (treeop1) == SSA_NAME
7926 && TYPE_MODE (TREE_TYPE (treeop0))
7927 == TYPE_MODE (TREE_TYPE (treeop1)))
7929 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7930 if (def)
7932 treeop1 = gimple_assign_rhs1 (def);
7933 code = MINUS_EXPR;
7934 goto do_minus;
7938 /* No sense saving up arithmetic to be done
7939 if it's all in the wrong mode to form part of an address.
7940 And force_operand won't know whether to sign-extend or
7941 zero-extend. */
7942 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7943 || mode != ptr_mode)
7945 expand_operands (treeop0, treeop1,
7946 subtarget, &op0, &op1, EXPAND_NORMAL);
7947 if (op0 == const0_rtx)
7948 return op1;
7949 if (op1 == const0_rtx)
7950 return op0;
7951 goto binop2;
7954 expand_operands (treeop0, treeop1,
7955 subtarget, &op0, &op1, modifier);
7956 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7958 case MINUS_EXPR:
7959 do_minus:
7960 /* For initializers, we are allowed to return a MINUS of two
7961 symbolic constants. Here we handle all cases when both operands
7962 are constant. */
7963 /* Handle difference of two symbolic constants,
7964 for the sake of an initializer. */
7965 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7966 && really_constant_p (treeop0)
7967 && really_constant_p (treeop1))
7969 expand_operands (treeop0, treeop1,
7970 NULL_RTX, &op0, &op1, modifier);
7972 /* If the last operand is a CONST_INT, use plus_constant of
7973 the negated constant. Else make the MINUS. */
7974 if (CONST_INT_P (op1))
7975 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7976 else
7977 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7980 /* No sense saving up arithmetic to be done
7981 if it's all in the wrong mode to form part of an address.
7982 And force_operand won't know whether to sign-extend or
7983 zero-extend. */
7984 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7985 || mode != ptr_mode)
7986 goto binop;
7988 expand_operands (treeop0, treeop1,
7989 subtarget, &op0, &op1, modifier);
7991 /* Convert A - const to A + (-const). */
7992 if (CONST_INT_P (op1))
7994 op1 = negate_rtx (mode, op1);
7995 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7998 goto binop2;
8000 case WIDEN_MULT_PLUS_EXPR:
8001 case WIDEN_MULT_MINUS_EXPR:
8002 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8003 op2 = expand_normal (treeop2);
8004 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8005 target, unsignedp);
8006 return target;
8008 case WIDEN_MULT_EXPR:
8009 /* If first operand is constant, swap them.
8010 Thus the following special case checks need only
8011 check the second operand. */
8012 if (TREE_CODE (treeop0) == INTEGER_CST)
8014 tree t1 = treeop0;
8015 treeop0 = treeop1;
8016 treeop1 = t1;
8019 /* First, check if we have a multiplication of one signed and one
8020 unsigned operand. */
8021 if (TREE_CODE (treeop1) != INTEGER_CST
8022 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8023 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8025 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8026 this_optab = usmul_widen_optab;
8027 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8028 != CODE_FOR_nothing)
8030 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8031 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8032 EXPAND_NORMAL);
8033 else
8034 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8035 EXPAND_NORMAL);
8036 goto binop3;
8039 /* Check for a multiplication with matching signedness. */
8040 else if ((TREE_CODE (treeop1) == INTEGER_CST
8041 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8042 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8043 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8045 tree op0type = TREE_TYPE (treeop0);
8046 enum machine_mode innermode = TYPE_MODE (op0type);
8047 bool zextend_p = TYPE_UNSIGNED (op0type);
8048 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8049 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8051 if (TREE_CODE (treeop0) != INTEGER_CST)
8053 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8054 != CODE_FOR_nothing)
8056 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8057 EXPAND_NORMAL);
8058 temp = expand_widening_mult (mode, op0, op1, target,
8059 unsignedp, this_optab);
8060 return REDUCE_BIT_FIELD (temp);
8062 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8063 != CODE_FOR_nothing
8064 && innermode == word_mode)
8066 rtx htem, hipart;
8067 op0 = expand_normal (treeop0);
8068 if (TREE_CODE (treeop1) == INTEGER_CST)
8069 op1 = convert_modes (innermode, mode,
8070 expand_normal (treeop1), unsignedp);
8071 else
8072 op1 = expand_normal (treeop1);
8073 temp = expand_binop (mode, other_optab, op0, op1, target,
8074 unsignedp, OPTAB_LIB_WIDEN);
8075 hipart = gen_highpart (innermode, temp);
8076 htem = expand_mult_highpart_adjust (innermode, hipart,
8077 op0, op1, hipart,
8078 zextend_p);
8079 if (htem != hipart)
8080 emit_move_insn (hipart, htem);
8081 return REDUCE_BIT_FIELD (temp);
8085 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8086 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8087 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8088 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8090 case FMA_EXPR:
8092 optab opt = fma_optab;
8093 gimple def0, def2;
8095 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8096 call. */
8097 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8099 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8100 tree call_expr;
8102 gcc_assert (fn != NULL_TREE);
8103 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8104 return expand_builtin (call_expr, target, subtarget, mode, false);
8107 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8108 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8110 op0 = op2 = NULL;
8112 if (def0 && def2
8113 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8115 opt = fnms_optab;
8116 op0 = expand_normal (gimple_assign_rhs1 (def0));
8117 op2 = expand_normal (gimple_assign_rhs1 (def2));
8119 else if (def0
8120 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8122 opt = fnma_optab;
8123 op0 = expand_normal (gimple_assign_rhs1 (def0));
8125 else if (def2
8126 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8128 opt = fms_optab;
8129 op2 = expand_normal (gimple_assign_rhs1 (def2));
8132 if (op0 == NULL)
8133 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8134 if (op2 == NULL)
8135 op2 = expand_normal (treeop2);
8136 op1 = expand_normal (treeop1);
8138 return expand_ternary_op (TYPE_MODE (type), opt,
8139 op0, op1, op2, target, 0);
8142 case MULT_EXPR:
8143 /* If this is a fixed-point operation, then we cannot use the code
8144 below because "expand_mult" doesn't support sat/no-sat fixed-point
8145 multiplications. */
8146 if (ALL_FIXED_POINT_MODE_P (mode))
8147 goto binop;
8149 /* If first operand is constant, swap them.
8150 Thus the following special case checks need only
8151 check the second operand. */
8152 if (TREE_CODE (treeop0) == INTEGER_CST)
8154 tree t1 = treeop0;
8155 treeop0 = treeop1;
8156 treeop1 = t1;
8159 /* Attempt to return something suitable for generating an
8160 indexed address, for machines that support that. */
8162 if (modifier == EXPAND_SUM && mode == ptr_mode
8163 && host_integerp (treeop1, 0))
8165 tree exp1 = treeop1;
8167 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8168 EXPAND_SUM);
8170 if (!REG_P (op0))
8171 op0 = force_operand (op0, NULL_RTX);
8172 if (!REG_P (op0))
8173 op0 = copy_to_mode_reg (mode, op0);
8175 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8176 gen_int_mode (tree_low_cst (exp1, 0),
8177 TYPE_MODE (TREE_TYPE (exp1)))));
8180 if (modifier == EXPAND_STACK_PARM)
8181 target = 0;
8183 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8184 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8186 case TRUNC_DIV_EXPR:
8187 case FLOOR_DIV_EXPR:
8188 case CEIL_DIV_EXPR:
8189 case ROUND_DIV_EXPR:
8190 case EXACT_DIV_EXPR:
8191 /* If this is a fixed-point operation, then we cannot use the code
8192 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8193 divisions. */
8194 if (ALL_FIXED_POINT_MODE_P (mode))
8195 goto binop;
8197 if (modifier == EXPAND_STACK_PARM)
8198 target = 0;
8199 /* Possible optimization: compute the dividend with EXPAND_SUM
8200 then if the divisor is constant can optimize the case
8201 where some terms of the dividend have coeffs divisible by it. */
8202 expand_operands (treeop0, treeop1,
8203 subtarget, &op0, &op1, EXPAND_NORMAL);
8204 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8206 case RDIV_EXPR:
8207 goto binop;
8209 case TRUNC_MOD_EXPR:
8210 case FLOOR_MOD_EXPR:
8211 case CEIL_MOD_EXPR:
8212 case ROUND_MOD_EXPR:
8213 if (modifier == EXPAND_STACK_PARM)
8214 target = 0;
8215 expand_operands (treeop0, treeop1,
8216 subtarget, &op0, &op1, EXPAND_NORMAL);
8217 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8219 case FIXED_CONVERT_EXPR:
8220 op0 = expand_normal (treeop0);
8221 if (target == 0 || modifier == EXPAND_STACK_PARM)
8222 target = gen_reg_rtx (mode);
8224 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8225 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8226 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8227 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8228 else
8229 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8230 return target;
8232 case FIX_TRUNC_EXPR:
8233 op0 = expand_normal (treeop0);
8234 if (target == 0 || modifier == EXPAND_STACK_PARM)
8235 target = gen_reg_rtx (mode);
8236 expand_fix (target, op0, unsignedp);
8237 return target;
8239 case FLOAT_EXPR:
8240 op0 = expand_normal (treeop0);
8241 if (target == 0 || modifier == EXPAND_STACK_PARM)
8242 target = gen_reg_rtx (mode);
8243 /* expand_float can't figure out what to do if FROM has VOIDmode.
8244 So give it the correct mode. With -O, cse will optimize this. */
8245 if (GET_MODE (op0) == VOIDmode)
8246 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8247 op0);
8248 expand_float (target, op0,
8249 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8250 return target;
8252 case NEGATE_EXPR:
8253 op0 = expand_expr (treeop0, subtarget,
8254 VOIDmode, EXPAND_NORMAL);
8255 if (modifier == EXPAND_STACK_PARM)
8256 target = 0;
8257 temp = expand_unop (mode,
8258 optab_for_tree_code (NEGATE_EXPR, type,
8259 optab_default),
8260 op0, target, 0);
8261 gcc_assert (temp);
8262 return REDUCE_BIT_FIELD (temp);
8264 case ABS_EXPR:
8265 op0 = expand_expr (treeop0, subtarget,
8266 VOIDmode, EXPAND_NORMAL);
8267 if (modifier == EXPAND_STACK_PARM)
8268 target = 0;
8270 /* ABS_EXPR is not valid for complex arguments. */
8271 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8272 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8274 /* Unsigned abs is simply the operand. Testing here means we don't
8275 risk generating incorrect code below. */
8276 if (TYPE_UNSIGNED (type))
8277 return op0;
8279 return expand_abs (mode, op0, target, unsignedp,
8280 safe_from_p (target, treeop0, 1));
8282 case MAX_EXPR:
8283 case MIN_EXPR:
8284 target = original_target;
8285 if (target == 0
8286 || modifier == EXPAND_STACK_PARM
8287 || (MEM_P (target) && MEM_VOLATILE_P (target))
8288 || GET_MODE (target) != mode
8289 || (REG_P (target)
8290 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8291 target = gen_reg_rtx (mode);
8292 expand_operands (treeop0, treeop1,
8293 target, &op0, &op1, EXPAND_NORMAL);
8295 /* First try to do it with a special MIN or MAX instruction.
8296 If that does not win, use a conditional jump to select the proper
8297 value. */
8298 this_optab = optab_for_tree_code (code, type, optab_default);
8299 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8300 OPTAB_WIDEN);
8301 if (temp != 0)
8302 return temp;
8304 /* At this point, a MEM target is no longer useful; we will get better
8305 code without it. */
8307 if (! REG_P (target))
8308 target = gen_reg_rtx (mode);
8310 /* If op1 was placed in target, swap op0 and op1. */
8311 if (target != op0 && target == op1)
8313 temp = op0;
8314 op0 = op1;
8315 op1 = temp;
8318 /* We generate better code and avoid problems with op1 mentioning
8319 target by forcing op1 into a pseudo if it isn't a constant. */
8320 if (! CONSTANT_P (op1))
8321 op1 = force_reg (mode, op1);
8324 enum rtx_code comparison_code;
8325 rtx cmpop1 = op1;
8327 if (code == MAX_EXPR)
8328 comparison_code = unsignedp ? GEU : GE;
8329 else
8330 comparison_code = unsignedp ? LEU : LE;
8332 /* Canonicalize to comparisons against 0. */
8333 if (op1 == const1_rtx)
8335 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8336 or (a != 0 ? a : 1) for unsigned.
8337 For MIN we are safe converting (a <= 1 ? a : 1)
8338 into (a <= 0 ? a : 1) */
8339 cmpop1 = const0_rtx;
8340 if (code == MAX_EXPR)
8341 comparison_code = unsignedp ? NE : GT;
8343 if (op1 == constm1_rtx && !unsignedp)
8345 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8346 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8347 cmpop1 = const0_rtx;
8348 if (code == MIN_EXPR)
8349 comparison_code = LT;
8351 #ifdef HAVE_conditional_move
8352 /* Use a conditional move if possible. */
8353 if (can_conditionally_move_p (mode))
8355 rtx insn;
8357 /* ??? Same problem as in expmed.c: emit_conditional_move
8358 forces a stack adjustment via compare_from_rtx, and we
8359 lose the stack adjustment if the sequence we are about
8360 to create is discarded. */
8361 do_pending_stack_adjust ();
8363 start_sequence ();
8365 /* Try to emit the conditional move. */
8366 insn = emit_conditional_move (target, comparison_code,
8367 op0, cmpop1, mode,
8368 op0, op1, mode,
8369 unsignedp);
8371 /* If we could do the conditional move, emit the sequence,
8372 and return. */
8373 if (insn)
8375 rtx seq = get_insns ();
8376 end_sequence ();
8377 emit_insn (seq);
8378 return target;
8381 /* Otherwise discard the sequence and fall back to code with
8382 branches. */
8383 end_sequence ();
8385 #endif
8386 if (target != op0)
8387 emit_move_insn (target, op0);
8389 temp = gen_label_rtx ();
8390 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8391 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8392 -1);
8394 emit_move_insn (target, op1);
8395 emit_label (temp);
8396 return target;
8398 case BIT_NOT_EXPR:
8399 op0 = expand_expr (treeop0, subtarget,
8400 VOIDmode, EXPAND_NORMAL);
8401 if (modifier == EXPAND_STACK_PARM)
8402 target = 0;
8403 /* In case we have to reduce the result to bitfield precision
8404 expand this as XOR with a proper constant instead. */
8405 if (reduce_bit_field)
8406 temp = expand_binop (mode, xor_optab, op0,
8407 immed_double_int_const
8408 (double_int_mask (TYPE_PRECISION (type)), mode),
8409 target, 1, OPTAB_LIB_WIDEN);
8410 else
8411 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8412 gcc_assert (temp);
8413 return temp;
8415 /* ??? Can optimize bitwise operations with one arg constant.
8416 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8417 and (a bitwise1 b) bitwise2 b (etc)
8418 but that is probably not worth while. */
8420 case BIT_AND_EXPR:
8421 case BIT_IOR_EXPR:
8422 case BIT_XOR_EXPR:
8423 goto binop;
8425 case LROTATE_EXPR:
8426 case RROTATE_EXPR:
8427 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8428 || (GET_MODE_PRECISION (TYPE_MODE (type))
8429 == TYPE_PRECISION (type)));
8430 /* fall through */
8432 case LSHIFT_EXPR:
8433 case RSHIFT_EXPR:
8434 /* If this is a fixed-point operation, then we cannot use the code
8435 below because "expand_shift" doesn't support sat/no-sat fixed-point
8436 shifts. */
8437 if (ALL_FIXED_POINT_MODE_P (mode))
8438 goto binop;
8440 if (! safe_from_p (subtarget, treeop1, 1))
8441 subtarget = 0;
8442 if (modifier == EXPAND_STACK_PARM)
8443 target = 0;
8444 op0 = expand_expr (treeop0, subtarget,
8445 VOIDmode, EXPAND_NORMAL);
8446 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8447 unsignedp);
8448 if (code == LSHIFT_EXPR)
8449 temp = REDUCE_BIT_FIELD (temp);
8450 return temp;
8452 /* Could determine the answer when only additive constants differ. Also,
8453 the addition of one can be handled by changing the condition. */
8454 case LT_EXPR:
8455 case LE_EXPR:
8456 case GT_EXPR:
8457 case GE_EXPR:
8458 case EQ_EXPR:
8459 case NE_EXPR:
8460 case UNORDERED_EXPR:
8461 case ORDERED_EXPR:
8462 case UNLT_EXPR:
8463 case UNLE_EXPR:
8464 case UNGT_EXPR:
8465 case UNGE_EXPR:
8466 case UNEQ_EXPR:
8467 case LTGT_EXPR:
8468 temp = do_store_flag (ops,
8469 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8470 tmode != VOIDmode ? tmode : mode);
8471 if (temp)
8472 return temp;
8474 /* Use a compare and a jump for BLKmode comparisons, or for function
8475 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8477 if ((target == 0
8478 || modifier == EXPAND_STACK_PARM
8479 || ! safe_from_p (target, treeop0, 1)
8480 || ! safe_from_p (target, treeop1, 1)
8481 /* Make sure we don't have a hard reg (such as function's return
8482 value) live across basic blocks, if not optimizing. */
8483 || (!optimize && REG_P (target)
8484 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8485 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8487 emit_move_insn (target, const0_rtx);
8489 op1 = gen_label_rtx ();
8490 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8492 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8493 emit_move_insn (target, constm1_rtx);
8494 else
8495 emit_move_insn (target, const1_rtx);
8497 emit_label (op1);
8498 return target;
8500 case COMPLEX_EXPR:
8501 /* Get the rtx code of the operands. */
8502 op0 = expand_normal (treeop0);
8503 op1 = expand_normal (treeop1);
8505 if (!target)
8506 target = gen_reg_rtx (TYPE_MODE (type));
8508 /* Move the real (op0) and imaginary (op1) parts to their location. */
8509 write_complex_part (target, op0, false);
8510 write_complex_part (target, op1, true);
8512 return target;
8514 case WIDEN_SUM_EXPR:
8516 tree oprnd0 = treeop0;
8517 tree oprnd1 = treeop1;
8519 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8520 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8521 target, unsignedp);
8522 return target;
8525 case REDUC_MAX_EXPR:
8526 case REDUC_MIN_EXPR:
8527 case REDUC_PLUS_EXPR:
8529 op0 = expand_normal (treeop0);
8530 this_optab = optab_for_tree_code (code, type, optab_default);
8531 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8532 gcc_assert (temp);
8533 return temp;
8536 case VEC_EXTRACT_EVEN_EXPR:
8537 case VEC_EXTRACT_ODD_EXPR:
8539 expand_operands (treeop0, treeop1,
8540 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8541 this_optab = optab_for_tree_code (code, type, optab_default);
8542 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8543 OPTAB_WIDEN);
8544 gcc_assert (temp);
8545 return temp;
8548 case VEC_INTERLEAVE_HIGH_EXPR:
8549 case VEC_INTERLEAVE_LOW_EXPR:
8551 expand_operands (treeop0, treeop1,
8552 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8553 this_optab = optab_for_tree_code (code, type, optab_default);
8554 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8555 OPTAB_WIDEN);
8556 gcc_assert (temp);
8557 return temp;
8560 case VEC_LSHIFT_EXPR:
8561 case VEC_RSHIFT_EXPR:
8563 target = expand_vec_shift_expr (ops, target);
8564 return target;
8567 case VEC_UNPACK_HI_EXPR:
8568 case VEC_UNPACK_LO_EXPR:
8570 op0 = expand_normal (treeop0);
8571 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8572 target, unsignedp);
8573 gcc_assert (temp);
8574 return temp;
8577 case VEC_UNPACK_FLOAT_HI_EXPR:
8578 case VEC_UNPACK_FLOAT_LO_EXPR:
8580 op0 = expand_normal (treeop0);
8581 /* The signedness is determined from input operand. */
8582 temp = expand_widen_pattern_expr
8583 (ops, op0, NULL_RTX, NULL_RTX,
8584 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8586 gcc_assert (temp);
8587 return temp;
8590 case VEC_WIDEN_MULT_HI_EXPR:
8591 case VEC_WIDEN_MULT_LO_EXPR:
8593 tree oprnd0 = treeop0;
8594 tree oprnd1 = treeop1;
8596 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8597 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8598 target, unsignedp);
8599 gcc_assert (target);
8600 return target;
8603 case VEC_PACK_TRUNC_EXPR:
8604 case VEC_PACK_SAT_EXPR:
8605 case VEC_PACK_FIX_TRUNC_EXPR:
8606 mode = TYPE_MODE (TREE_TYPE (treeop0));
8607 goto binop;
8609 case DOT_PROD_EXPR:
8611 tree oprnd0 = treeop0;
8612 tree oprnd1 = treeop1;
8613 tree oprnd2 = treeop2;
8614 rtx op2;
8616 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8617 op2 = expand_normal (oprnd2);
8618 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8619 target, unsignedp);
8620 return target;
8623 case REALIGN_LOAD_EXPR:
8625 tree oprnd0 = treeop0;
8626 tree oprnd1 = treeop1;
8627 tree oprnd2 = treeop2;
8628 rtx op2;
8630 this_optab = optab_for_tree_code (code, type, optab_default);
8631 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8632 op2 = expand_normal (oprnd2);
8633 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8634 target, unsignedp);
8635 gcc_assert (temp);
8636 return temp;
8639 default:
8640 gcc_unreachable ();
8643 /* Here to do an ordinary binary operator. */
8644 binop:
8645 expand_operands (treeop0, treeop1,
8646 subtarget, &op0, &op1, EXPAND_NORMAL);
8647 binop2:
8648 this_optab = optab_for_tree_code (code, type, optab_default);
8649 binop3:
8650 if (modifier == EXPAND_STACK_PARM)
8651 target = 0;
8652 temp = expand_binop (mode, this_optab, op0, op1, target,
8653 unsignedp, OPTAB_LIB_WIDEN);
8654 gcc_assert (temp);
8655 /* Bitwise operations do not need bitfield reduction as we expect their
8656 operands being properly truncated. */
8657 if (code == BIT_XOR_EXPR
8658 || code == BIT_AND_EXPR
8659 || code == BIT_IOR_EXPR)
8660 return temp;
8661 return REDUCE_BIT_FIELD (temp);
8663 #undef REDUCE_BIT_FIELD
8666 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8667 enum expand_modifier modifier, rtx *alt_rtl)
8669 rtx op0, op1, temp, decl_rtl;
8670 tree type;
8671 int unsignedp;
8672 enum machine_mode mode;
8673 enum tree_code code = TREE_CODE (exp);
8674 rtx subtarget, original_target;
8675 int ignore;
8676 tree context;
8677 bool reduce_bit_field;
8678 location_t loc = EXPR_LOCATION (exp);
8679 struct separate_ops ops;
8680 tree treeop0, treeop1, treeop2;
8681 tree ssa_name = NULL_TREE;
8682 gimple g;
8684 type = TREE_TYPE (exp);
8685 mode = TYPE_MODE (type);
8686 unsignedp = TYPE_UNSIGNED (type);
8688 treeop0 = treeop1 = treeop2 = NULL_TREE;
8689 if (!VL_EXP_CLASS_P (exp))
8690 switch (TREE_CODE_LENGTH (code))
8692 default:
8693 case 3: treeop2 = TREE_OPERAND (exp, 2);
8694 case 2: treeop1 = TREE_OPERAND (exp, 1);
8695 case 1: treeop0 = TREE_OPERAND (exp, 0);
8696 case 0: break;
8698 ops.code = code;
8699 ops.type = type;
8700 ops.op0 = treeop0;
8701 ops.op1 = treeop1;
8702 ops.op2 = treeop2;
8703 ops.location = loc;
8705 ignore = (target == const0_rtx
8706 || ((CONVERT_EXPR_CODE_P (code)
8707 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8708 && TREE_CODE (type) == VOID_TYPE));
8710 /* An operation in what may be a bit-field type needs the
8711 result to be reduced to the precision of the bit-field type,
8712 which is narrower than that of the type's mode. */
8713 reduce_bit_field = (!ignore
8714 && INTEGRAL_TYPE_P (type)
8715 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8717 /* If we are going to ignore this result, we need only do something
8718 if there is a side-effect somewhere in the expression. If there
8719 is, short-circuit the most common cases here. Note that we must
8720 not call expand_expr with anything but const0_rtx in case this
8721 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8723 if (ignore)
8725 if (! TREE_SIDE_EFFECTS (exp))
8726 return const0_rtx;
8728 /* Ensure we reference a volatile object even if value is ignored, but
8729 don't do this if all we are doing is taking its address. */
8730 if (TREE_THIS_VOLATILE (exp)
8731 && TREE_CODE (exp) != FUNCTION_DECL
8732 && mode != VOIDmode && mode != BLKmode
8733 && modifier != EXPAND_CONST_ADDRESS)
8735 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8736 if (MEM_P (temp))
8737 copy_to_reg (temp);
8738 return const0_rtx;
8741 if (TREE_CODE_CLASS (code) == tcc_unary
8742 || code == COMPONENT_REF || code == INDIRECT_REF)
8743 return expand_expr (treeop0, const0_rtx, VOIDmode,
8744 modifier);
8746 else if (TREE_CODE_CLASS (code) == tcc_binary
8747 || TREE_CODE_CLASS (code) == tcc_comparison
8748 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8750 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8751 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8752 return const0_rtx;
8754 else if (code == BIT_FIELD_REF)
8756 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8757 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8758 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8759 return const0_rtx;
8762 target = 0;
8765 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8766 target = 0;
8768 /* Use subtarget as the target for operand 0 of a binary operation. */
8769 subtarget = get_subtarget (target);
8770 original_target = target;
8772 switch (code)
8774 case LABEL_DECL:
8776 tree function = decl_function_context (exp);
8778 temp = label_rtx (exp);
8779 temp = gen_rtx_LABEL_REF (Pmode, temp);
8781 if (function != current_function_decl
8782 && function != 0)
8783 LABEL_REF_NONLOCAL_P (temp) = 1;
8785 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8786 return temp;
8789 case SSA_NAME:
8790 /* ??? ivopts calls expander, without any preparation from
8791 out-of-ssa. So fake instructions as if this was an access to the
8792 base variable. This unnecessarily allocates a pseudo, see how we can
8793 reuse it, if partition base vars have it set already. */
8794 if (!currently_expanding_to_rtl)
8795 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8796 NULL);
8798 g = get_gimple_for_ssa_name (exp);
8799 /* For EXPAND_INITIALIZER try harder to get something simpler. */
8800 if (g == NULL
8801 && modifier == EXPAND_INITIALIZER
8802 && !SSA_NAME_IS_DEFAULT_DEF (exp)
8803 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
8804 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
8805 g = SSA_NAME_DEF_STMT (exp);
8806 if (g)
8807 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8808 modifier, NULL);
8810 ssa_name = exp;
8811 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8812 exp = SSA_NAME_VAR (ssa_name);
8813 goto expand_decl_rtl;
8815 case PARM_DECL:
8816 case VAR_DECL:
8817 /* If a static var's type was incomplete when the decl was written,
8818 but the type is complete now, lay out the decl now. */
8819 if (DECL_SIZE (exp) == 0
8820 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8821 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8822 layout_decl (exp, 0);
8824 /* ... fall through ... */
8826 case FUNCTION_DECL:
8827 case RESULT_DECL:
8828 decl_rtl = DECL_RTL (exp);
8829 expand_decl_rtl:
8830 gcc_assert (decl_rtl);
8831 decl_rtl = copy_rtx (decl_rtl);
8832 /* Record writes to register variables. */
8833 if (modifier == EXPAND_WRITE
8834 && REG_P (decl_rtl)
8835 && HARD_REGISTER_P (decl_rtl))
8836 add_to_hard_reg_set (&crtl->asm_clobbers,
8837 GET_MODE (decl_rtl), REGNO (decl_rtl));
8839 /* Ensure variable marked as used even if it doesn't go through
8840 a parser. If it hasn't be used yet, write out an external
8841 definition. */
8842 if (! TREE_USED (exp))
8844 assemble_external (exp);
8845 TREE_USED (exp) = 1;
8848 /* Show we haven't gotten RTL for this yet. */
8849 temp = 0;
8851 /* Variables inherited from containing functions should have
8852 been lowered by this point. */
8853 context = decl_function_context (exp);
8854 gcc_assert (!context
8855 || context == current_function_decl
8856 || TREE_STATIC (exp)
8857 || DECL_EXTERNAL (exp)
8858 /* ??? C++ creates functions that are not TREE_STATIC. */
8859 || TREE_CODE (exp) == FUNCTION_DECL);
8861 /* This is the case of an array whose size is to be determined
8862 from its initializer, while the initializer is still being parsed.
8863 See expand_decl. */
8865 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8866 temp = validize_mem (decl_rtl);
8868 /* If DECL_RTL is memory, we are in the normal case and the
8869 address is not valid, get the address into a register. */
8871 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8873 if (alt_rtl)
8874 *alt_rtl = decl_rtl;
8875 decl_rtl = use_anchored_address (decl_rtl);
8876 if (modifier != EXPAND_CONST_ADDRESS
8877 && modifier != EXPAND_SUM
8878 && !memory_address_addr_space_p (DECL_MODE (exp),
8879 XEXP (decl_rtl, 0),
8880 MEM_ADDR_SPACE (decl_rtl)))
8881 temp = replace_equiv_address (decl_rtl,
8882 copy_rtx (XEXP (decl_rtl, 0)));
8885 /* If we got something, return it. But first, set the alignment
8886 if the address is a register. */
8887 if (temp != 0)
8889 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8890 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8892 return temp;
8895 /* If the mode of DECL_RTL does not match that of the decl, it
8896 must be a promoted value. We return a SUBREG of the wanted mode,
8897 but mark it so that we know that it was already extended. */
8898 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8900 enum machine_mode pmode;
8902 /* Get the signedness to be used for this variable. Ensure we get
8903 the same mode we got when the variable was declared. */
8904 if (code == SSA_NAME
8905 && (g = SSA_NAME_DEF_STMT (ssa_name))
8906 && gimple_code (g) == GIMPLE_CALL)
8908 gcc_assert (!gimple_call_internal_p (g));
8909 pmode = promote_function_mode (type, mode, &unsignedp,
8910 gimple_call_fntype (g),
8913 else
8914 pmode = promote_decl_mode (exp, &unsignedp);
8915 gcc_assert (GET_MODE (decl_rtl) == pmode);
8917 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8918 SUBREG_PROMOTED_VAR_P (temp) = 1;
8919 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8920 return temp;
8923 return decl_rtl;
8925 case INTEGER_CST:
8926 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8927 TREE_INT_CST_HIGH (exp), mode);
8929 return temp;
8931 case VECTOR_CST:
8933 tree tmp = NULL_TREE;
8934 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8935 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8936 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8937 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8938 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8939 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8940 return const_vector_from_tree (exp);
8941 if (GET_MODE_CLASS (mode) == MODE_INT)
8943 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8944 if (type_for_mode)
8945 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8947 if (!tmp)
8948 tmp = build_constructor_from_list (type,
8949 TREE_VECTOR_CST_ELTS (exp));
8950 return expand_expr (tmp, ignore ? const0_rtx : target,
8951 tmode, modifier);
8954 case CONST_DECL:
8955 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8957 case REAL_CST:
8958 /* If optimized, generate immediate CONST_DOUBLE
8959 which will be turned into memory by reload if necessary.
8961 We used to force a register so that loop.c could see it. But
8962 this does not allow gen_* patterns to perform optimizations with
8963 the constants. It also produces two insns in cases like "x = 1.0;".
8964 On most machines, floating-point constants are not permitted in
8965 many insns, so we'd end up copying it to a register in any case.
8967 Now, we do the copying in expand_binop, if appropriate. */
8968 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8969 TYPE_MODE (TREE_TYPE (exp)));
8971 case FIXED_CST:
8972 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8973 TYPE_MODE (TREE_TYPE (exp)));
8975 case COMPLEX_CST:
8976 /* Handle evaluating a complex constant in a CONCAT target. */
8977 if (original_target && GET_CODE (original_target) == CONCAT)
8979 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8980 rtx rtarg, itarg;
8982 rtarg = XEXP (original_target, 0);
8983 itarg = XEXP (original_target, 1);
8985 /* Move the real and imaginary parts separately. */
8986 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8987 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8989 if (op0 != rtarg)
8990 emit_move_insn (rtarg, op0);
8991 if (op1 != itarg)
8992 emit_move_insn (itarg, op1);
8994 return original_target;
8997 /* ... fall through ... */
8999 case STRING_CST:
9000 temp = expand_expr_constant (exp, 1, modifier);
9002 /* temp contains a constant address.
9003 On RISC machines where a constant address isn't valid,
9004 make some insns to get that address into a register. */
9005 if (modifier != EXPAND_CONST_ADDRESS
9006 && modifier != EXPAND_INITIALIZER
9007 && modifier != EXPAND_SUM
9008 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9009 MEM_ADDR_SPACE (temp)))
9010 return replace_equiv_address (temp,
9011 copy_rtx (XEXP (temp, 0)));
9012 return temp;
9014 case SAVE_EXPR:
9016 tree val = treeop0;
9017 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
9019 if (!SAVE_EXPR_RESOLVED_P (exp))
9021 /* We can indeed still hit this case, typically via builtin
9022 expanders calling save_expr immediately before expanding
9023 something. Assume this means that we only have to deal
9024 with non-BLKmode values. */
9025 gcc_assert (GET_MODE (ret) != BLKmode);
9027 val = build_decl (EXPR_LOCATION (exp),
9028 VAR_DECL, NULL, TREE_TYPE (exp));
9029 DECL_ARTIFICIAL (val) = 1;
9030 DECL_IGNORED_P (val) = 1;
9031 treeop0 = val;
9032 TREE_OPERAND (exp, 0) = treeop0;
9033 SAVE_EXPR_RESOLVED_P (exp) = 1;
9035 if (!CONSTANT_P (ret))
9036 ret = copy_to_reg (ret);
9037 SET_DECL_RTL (val, ret);
9040 return ret;
9044 case CONSTRUCTOR:
9045 /* If we don't need the result, just ensure we evaluate any
9046 subexpressions. */
9047 if (ignore)
9049 unsigned HOST_WIDE_INT idx;
9050 tree value;
9052 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9053 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9055 return const0_rtx;
9058 return expand_constructor (exp, target, modifier, false);
9060 case TARGET_MEM_REF:
9062 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
9063 struct mem_address addr;
9064 enum insn_code icode;
9065 int align;
9067 get_address_description (exp, &addr);
9068 op0 = addr_for_mem_ref (&addr, as, true);
9069 op0 = memory_address_addr_space (mode, op0, as);
9070 temp = gen_rtx_MEM (mode, op0);
9071 set_mem_attributes (temp, exp, 0);
9072 set_mem_addr_space (temp, as);
9073 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)), get_object_alignment (exp));
9074 if (mode != BLKmode
9075 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
9076 /* If the target does not have special handling for unaligned
9077 loads of mode then it can use regular moves for them. */
9078 && ((icode = optab_handler (movmisalign_optab, mode))
9079 != CODE_FOR_nothing))
9081 struct expand_operand ops[2];
9083 /* We've already validated the memory, and we're creating a
9084 new pseudo destination. The predicates really can't fail,
9085 nor can the generator. */
9086 create_output_operand (&ops[0], NULL_RTX, mode);
9087 create_fixed_operand (&ops[1], temp);
9088 expand_insn (icode, 2, ops);
9089 return ops[0].value;
9091 return temp;
9094 case MEM_REF:
9096 addr_space_t as
9097 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
9098 enum machine_mode address_mode;
9099 tree base = TREE_OPERAND (exp, 0);
9100 gimple def_stmt;
9101 enum insn_code icode;
9102 int align;
9103 /* Handle expansion of non-aliased memory with non-BLKmode. That
9104 might end up in a register. */
9105 if (TREE_CODE (base) == ADDR_EXPR)
9107 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9108 tree bit_offset;
9109 base = TREE_OPERAND (base, 0);
9110 if (!DECL_P (base))
9112 HOST_WIDE_INT off;
9113 base = get_addr_base_and_unit_offset (base, &off);
9114 gcc_assert (base);
9115 offset += off;
9117 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
9118 decl we must use bitfield operations. */
9119 if (DECL_P (base)
9120 && !TREE_ADDRESSABLE (base)
9121 && DECL_MODE (base) != BLKmode
9122 && DECL_RTL_SET_P (base)
9123 && !MEM_P (DECL_RTL (base)))
9125 tree bftype;
9126 if (offset == 0
9127 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
9128 && (GET_MODE_BITSIZE (DECL_MODE (base))
9129 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
9130 return expand_expr (build1 (VIEW_CONVERT_EXPR,
9131 TREE_TYPE (exp), base),
9132 target, tmode, modifier);
9133 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
9134 bftype = TREE_TYPE (base);
9135 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
9136 bftype = TREE_TYPE (exp);
9137 return expand_expr (build3 (BIT_FIELD_REF, bftype,
9138 base,
9139 TYPE_SIZE (TREE_TYPE (exp)),
9140 bit_offset),
9141 target, tmode, modifier);
9144 address_mode = targetm.addr_space.address_mode (as);
9145 base = TREE_OPERAND (exp, 0);
9146 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9148 tree mask = gimple_assign_rhs2 (def_stmt);
9149 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9150 gimple_assign_rhs1 (def_stmt), mask);
9151 TREE_OPERAND (exp, 0) = base;
9153 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)), get_object_alignment (exp));
9154 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9155 op0 = memory_address_addr_space (address_mode, op0, as);
9156 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9158 rtx off
9159 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9160 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9162 op0 = memory_address_addr_space (mode, op0, as);
9163 temp = gen_rtx_MEM (mode, op0);
9164 set_mem_attributes (temp, exp, 0);
9165 set_mem_addr_space (temp, as);
9166 if (TREE_THIS_VOLATILE (exp))
9167 MEM_VOLATILE_P (temp) = 1;
9168 if (mode != BLKmode
9169 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
9170 /* If the target does not have special handling for unaligned
9171 loads of mode then it can use regular moves for them. */
9172 && ((icode = optab_handler (movmisalign_optab, mode))
9173 != CODE_FOR_nothing))
9175 struct expand_operand ops[2];
9177 /* We've already validated the memory, and we're creating a
9178 new pseudo destination. The predicates really can't fail,
9179 nor can the generator. */
9180 create_output_operand (&ops[0], NULL_RTX, mode);
9181 create_fixed_operand (&ops[1], temp);
9182 expand_insn (icode, 2, ops);
9183 return ops[0].value;
9185 return temp;
9188 case ARRAY_REF:
9191 tree array = treeop0;
9192 tree index = treeop1;
9194 /* Fold an expression like: "foo"[2].
9195 This is not done in fold so it won't happen inside &.
9196 Don't fold if this is for wide characters since it's too
9197 difficult to do correctly and this is a very rare case. */
9199 if (modifier != EXPAND_CONST_ADDRESS
9200 && modifier != EXPAND_INITIALIZER
9201 && modifier != EXPAND_MEMORY)
9203 tree t = fold_read_from_constant_string (exp);
9205 if (t)
9206 return expand_expr (t, target, tmode, modifier);
9209 /* If this is a constant index into a constant array,
9210 just get the value from the array. Handle both the cases when
9211 we have an explicit constructor and when our operand is a variable
9212 that was declared const. */
9214 if (modifier != EXPAND_CONST_ADDRESS
9215 && modifier != EXPAND_INITIALIZER
9216 && modifier != EXPAND_MEMORY
9217 && TREE_CODE (array) == CONSTRUCTOR
9218 && ! TREE_SIDE_EFFECTS (array)
9219 && TREE_CODE (index) == INTEGER_CST)
9221 unsigned HOST_WIDE_INT ix;
9222 tree field, value;
9224 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9225 field, value)
9226 if (tree_int_cst_equal (field, index))
9228 if (!TREE_SIDE_EFFECTS (value))
9229 return expand_expr (fold (value), target, tmode, modifier);
9230 break;
9234 else if (optimize >= 1
9235 && modifier != EXPAND_CONST_ADDRESS
9236 && modifier != EXPAND_INITIALIZER
9237 && modifier != EXPAND_MEMORY
9238 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9239 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
9240 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
9241 && const_value_known_p (array))
9243 if (TREE_CODE (index) == INTEGER_CST)
9245 tree init = DECL_INITIAL (array);
9247 if (TREE_CODE (init) == CONSTRUCTOR)
9249 unsigned HOST_WIDE_INT ix;
9250 tree field, value;
9252 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9253 field, value)
9254 if (tree_int_cst_equal (field, index))
9256 if (TREE_SIDE_EFFECTS (value))
9257 break;
9259 if (TREE_CODE (value) == CONSTRUCTOR)
9261 /* If VALUE is a CONSTRUCTOR, this
9262 optimization is only useful if
9263 this doesn't store the CONSTRUCTOR
9264 into memory. If it does, it is more
9265 efficient to just load the data from
9266 the array directly. */
9267 rtx ret = expand_constructor (value, target,
9268 modifier, true);
9269 if (ret == NULL_RTX)
9270 break;
9273 return expand_expr (fold (value), target, tmode,
9274 modifier);
9277 else if(TREE_CODE (init) == STRING_CST)
9279 tree index1 = index;
9280 tree low_bound = array_ref_low_bound (exp);
9281 index1 = fold_convert_loc (loc, sizetype,
9282 treeop1);
9284 /* Optimize the special-case of a zero lower bound.
9286 We convert the low_bound to sizetype to avoid some problems
9287 with constant folding. (E.g. suppose the lower bound is 1,
9288 and its mode is QI. Without the conversion,l (ARRAY
9289 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
9290 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
9292 if (! integer_zerop (low_bound))
9293 index1 = size_diffop_loc (loc, index1,
9294 fold_convert_loc (loc, sizetype,
9295 low_bound));
9297 if (0 > compare_tree_int (index1,
9298 TREE_STRING_LENGTH (init)))
9300 tree type = TREE_TYPE (TREE_TYPE (init));
9301 enum machine_mode mode = TYPE_MODE (type);
9303 if (GET_MODE_CLASS (mode) == MODE_INT
9304 && GET_MODE_SIZE (mode) == 1)
9305 return gen_int_mode (TREE_STRING_POINTER (init)
9306 [TREE_INT_CST_LOW (index1)],
9307 mode);
9313 goto normal_inner_ref;
9315 case COMPONENT_REF:
9316 /* If the operand is a CONSTRUCTOR, we can just extract the
9317 appropriate field if it is present. */
9318 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9320 unsigned HOST_WIDE_INT idx;
9321 tree field, value;
9323 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9324 idx, field, value)
9325 if (field == treeop1
9326 /* We can normally use the value of the field in the
9327 CONSTRUCTOR. However, if this is a bitfield in
9328 an integral mode that we can fit in a HOST_WIDE_INT,
9329 we must mask only the number of bits in the bitfield,
9330 since this is done implicitly by the constructor. If
9331 the bitfield does not meet either of those conditions,
9332 we can't do this optimization. */
9333 && (! DECL_BIT_FIELD (field)
9334 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9335 && (GET_MODE_PRECISION (DECL_MODE (field))
9336 <= HOST_BITS_PER_WIDE_INT))))
9338 if (DECL_BIT_FIELD (field)
9339 && modifier == EXPAND_STACK_PARM)
9340 target = 0;
9341 op0 = expand_expr (value, target, tmode, modifier);
9342 if (DECL_BIT_FIELD (field))
9344 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9345 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9347 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9349 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
9350 op0 = expand_and (imode, op0, op1, target);
9352 else
9354 int count = GET_MODE_PRECISION (imode) - bitsize;
9356 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9357 target, 0);
9358 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9359 target, 0);
9363 return op0;
9366 goto normal_inner_ref;
9368 case BIT_FIELD_REF:
9369 case ARRAY_RANGE_REF:
9370 normal_inner_ref:
9372 enum machine_mode mode1, mode2;
9373 HOST_WIDE_INT bitsize, bitpos;
9374 tree offset;
9375 int volatilep = 0, must_force_mem;
9376 bool packedp = false;
9377 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9378 &mode1, &unsignedp, &volatilep, true);
9379 rtx orig_op0, memloc;
9381 /* If we got back the original object, something is wrong. Perhaps
9382 we are evaluating an expression too early. In any event, don't
9383 infinitely recurse. */
9384 gcc_assert (tem != exp);
9386 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
9387 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
9388 && DECL_PACKED (TREE_OPERAND (exp, 1))))
9389 packedp = true;
9391 /* If TEM's type is a union of variable size, pass TARGET to the inner
9392 computation, since it will need a temporary and TARGET is known
9393 to have to do. This occurs in unchecked conversion in Ada. */
9394 orig_op0 = op0
9395 = expand_expr (tem,
9396 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9397 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9398 != INTEGER_CST)
9399 && modifier != EXPAND_STACK_PARM
9400 ? target : NULL_RTX),
9401 VOIDmode,
9402 (modifier == EXPAND_INITIALIZER
9403 || modifier == EXPAND_CONST_ADDRESS
9404 || modifier == EXPAND_STACK_PARM)
9405 ? modifier : EXPAND_NORMAL);
9408 /* If the bitfield is volatile, we want to access it in the
9409 field's mode, not the computed mode.
9410 If a MEM has VOIDmode (external with incomplete type),
9411 use BLKmode for it instead. */
9412 if (MEM_P (op0))
9414 if (volatilep && flag_strict_volatile_bitfields > 0)
9415 op0 = adjust_address (op0, mode1, 0);
9416 else if (GET_MODE (op0) == VOIDmode)
9417 op0 = adjust_address (op0, BLKmode, 0);
9420 mode2
9421 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9423 /* If we have either an offset, a BLKmode result, or a reference
9424 outside the underlying object, we must force it to memory.
9425 Such a case can occur in Ada if we have unchecked conversion
9426 of an expression from a scalar type to an aggregate type or
9427 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9428 passed a partially uninitialized object or a view-conversion
9429 to a larger size. */
9430 must_force_mem = (offset
9431 || mode1 == BLKmode
9432 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9434 /* Handle CONCAT first. */
9435 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9437 if (bitpos == 0
9438 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9439 return op0;
9440 if (bitpos == 0
9441 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9442 && bitsize)
9444 op0 = XEXP (op0, 0);
9445 mode2 = GET_MODE (op0);
9447 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9448 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9449 && bitpos
9450 && bitsize)
9452 op0 = XEXP (op0, 1);
9453 bitpos = 0;
9454 mode2 = GET_MODE (op0);
9456 else
9457 /* Otherwise force into memory. */
9458 must_force_mem = 1;
9461 /* If this is a constant, put it in a register if it is a legitimate
9462 constant and we don't need a memory reference. */
9463 if (CONSTANT_P (op0)
9464 && mode2 != BLKmode
9465 && targetm.legitimate_constant_p (mode2, op0)
9466 && !must_force_mem)
9467 op0 = force_reg (mode2, op0);
9469 /* Otherwise, if this is a constant, try to force it to the constant
9470 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9471 is a legitimate constant. */
9472 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9473 op0 = validize_mem (memloc);
9475 /* Otherwise, if this is a constant or the object is not in memory
9476 and need be, put it there. */
9477 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9479 tree nt = build_qualified_type (TREE_TYPE (tem),
9480 (TYPE_QUALS (TREE_TYPE (tem))
9481 | TYPE_QUAL_CONST));
9482 memloc = assign_temp (nt, 1, 1, 1);
9483 emit_move_insn (memloc, op0);
9484 op0 = memloc;
9487 if (offset)
9489 enum machine_mode address_mode;
9490 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9491 EXPAND_SUM);
9493 gcc_assert (MEM_P (op0));
9495 address_mode
9496 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9497 if (GET_MODE (offset_rtx) != address_mode)
9498 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9500 if (GET_MODE (op0) == BLKmode
9501 /* A constant address in OP0 can have VOIDmode, we must
9502 not try to call force_reg in that case. */
9503 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9504 && bitsize != 0
9505 && (bitpos % bitsize) == 0
9506 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9507 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9509 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9510 bitpos = 0;
9513 op0 = offset_address (op0, offset_rtx,
9514 highest_pow2_factor (offset));
9517 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9518 record its alignment as BIGGEST_ALIGNMENT. */
9519 if (MEM_P (op0) && bitpos == 0 && offset != 0
9520 && is_aligning_offset (offset, tem))
9521 set_mem_align (op0, BIGGEST_ALIGNMENT);
9523 /* Don't forget about volatility even if this is a bitfield. */
9524 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9526 if (op0 == orig_op0)
9527 op0 = copy_rtx (op0);
9529 MEM_VOLATILE_P (op0) = 1;
9532 /* In cases where an aligned union has an unaligned object
9533 as a field, we might be extracting a BLKmode value from
9534 an integer-mode (e.g., SImode) object. Handle this case
9535 by doing the extract into an object as wide as the field
9536 (which we know to be the width of a basic mode), then
9537 storing into memory, and changing the mode to BLKmode. */
9538 if (mode1 == VOIDmode
9539 || REG_P (op0) || GET_CODE (op0) == SUBREG
9540 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9541 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9542 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9543 && modifier != EXPAND_CONST_ADDRESS
9544 && modifier != EXPAND_INITIALIZER)
9545 /* If the field is volatile, we always want an aligned
9546 access. Only do this if the access is not already naturally
9547 aligned, otherwise "normal" (non-bitfield) volatile fields
9548 become non-addressable. */
9549 || (volatilep && flag_strict_volatile_bitfields > 0
9550 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
9551 /* If the field isn't aligned enough to fetch as a memref,
9552 fetch it as a bit field. */
9553 || (mode1 != BLKmode
9554 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9555 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9556 || (MEM_P (op0)
9557 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9558 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9559 && ((modifier == EXPAND_CONST_ADDRESS
9560 || modifier == EXPAND_INITIALIZER)
9561 ? STRICT_ALIGNMENT
9562 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9563 || (bitpos % BITS_PER_UNIT != 0)))
9564 /* If the type and the field are a constant size and the
9565 size of the type isn't the same size as the bitfield,
9566 we must use bitfield operations. */
9567 || (bitsize >= 0
9568 && TYPE_SIZE (TREE_TYPE (exp))
9569 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9570 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9571 bitsize)))
9573 enum machine_mode ext_mode = mode;
9575 if (ext_mode == BLKmode
9576 && ! (target != 0 && MEM_P (op0)
9577 && MEM_P (target)
9578 && bitpos % BITS_PER_UNIT == 0))
9579 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9581 if (ext_mode == BLKmode)
9583 if (target == 0)
9584 target = assign_temp (type, 0, 1, 1);
9586 if (bitsize == 0)
9587 return target;
9589 /* In this case, BITPOS must start at a byte boundary and
9590 TARGET, if specified, must be a MEM. */
9591 gcc_assert (MEM_P (op0)
9592 && (!target || MEM_P (target))
9593 && !(bitpos % BITS_PER_UNIT));
9595 emit_block_move (target,
9596 adjust_address (op0, VOIDmode,
9597 bitpos / BITS_PER_UNIT),
9598 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9599 / BITS_PER_UNIT),
9600 (modifier == EXPAND_STACK_PARM
9601 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9603 return target;
9606 op0 = validize_mem (op0);
9608 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9609 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9611 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9612 (modifier == EXPAND_STACK_PARM
9613 ? NULL_RTX : target),
9614 ext_mode, ext_mode);
9616 /* If the result is a record type and BITSIZE is narrower than
9617 the mode of OP0, an integral mode, and this is a big endian
9618 machine, we must put the field into the high-order bits. */
9619 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9620 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9621 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9622 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9623 GET_MODE_BITSIZE (GET_MODE (op0))
9624 - bitsize, op0, 1);
9626 /* If the result type is BLKmode, store the data into a temporary
9627 of the appropriate type, but with the mode corresponding to the
9628 mode for the data we have (op0's mode). It's tempting to make
9629 this a constant type, since we know it's only being stored once,
9630 but that can cause problems if we are taking the address of this
9631 COMPONENT_REF because the MEM of any reference via that address
9632 will have flags corresponding to the type, which will not
9633 necessarily be constant. */
9634 if (mode == BLKmode)
9636 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9637 rtx new_rtx;
9639 /* If the reference doesn't use the alias set of its type,
9640 we cannot create the temporary using that type. */
9641 if (component_uses_parent_alias_set (exp))
9643 new_rtx = assign_stack_local (ext_mode, size, 0);
9644 set_mem_alias_set (new_rtx, get_alias_set (exp));
9646 else
9647 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9649 emit_move_insn (new_rtx, op0);
9650 op0 = copy_rtx (new_rtx);
9651 PUT_MODE (op0, BLKmode);
9652 set_mem_attributes (op0, exp, 1);
9655 return op0;
9658 /* If the result is BLKmode, use that to access the object
9659 now as well. */
9660 if (mode == BLKmode)
9661 mode1 = BLKmode;
9663 /* Get a reference to just this component. */
9664 if (modifier == EXPAND_CONST_ADDRESS
9665 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9666 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9667 else
9668 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9670 if (op0 == orig_op0)
9671 op0 = copy_rtx (op0);
9673 set_mem_attributes (op0, exp, 0);
9674 if (REG_P (XEXP (op0, 0)))
9675 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9677 MEM_VOLATILE_P (op0) |= volatilep;
9678 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9679 || modifier == EXPAND_CONST_ADDRESS
9680 || modifier == EXPAND_INITIALIZER)
9681 return op0;
9682 else if (target == 0)
9683 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9685 convert_move (target, op0, unsignedp);
9686 return target;
9689 case OBJ_TYPE_REF:
9690 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9692 case CALL_EXPR:
9693 /* All valid uses of __builtin_va_arg_pack () are removed during
9694 inlining. */
9695 if (CALL_EXPR_VA_ARG_PACK (exp))
9696 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9698 tree fndecl = get_callee_fndecl (exp), attr;
9700 if (fndecl
9701 && (attr = lookup_attribute ("error",
9702 DECL_ATTRIBUTES (fndecl))) != NULL)
9703 error ("%Kcall to %qs declared with attribute error: %s",
9704 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9705 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9706 if (fndecl
9707 && (attr = lookup_attribute ("warning",
9708 DECL_ATTRIBUTES (fndecl))) != NULL)
9709 warning_at (tree_nonartificial_location (exp),
9710 0, "%Kcall to %qs declared with attribute warning: %s",
9711 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9712 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9714 /* Check for a built-in function. */
9715 if (fndecl && DECL_BUILT_IN (fndecl))
9717 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9718 return expand_builtin (exp, target, subtarget, tmode, ignore);
9721 return expand_call (exp, target, ignore);
9723 case VIEW_CONVERT_EXPR:
9724 op0 = NULL_RTX;
9726 /* If we are converting to BLKmode, try to avoid an intermediate
9727 temporary by fetching an inner memory reference. */
9728 if (mode == BLKmode
9729 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9730 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9731 && handled_component_p (treeop0))
9733 enum machine_mode mode1;
9734 HOST_WIDE_INT bitsize, bitpos;
9735 tree offset;
9736 int unsignedp;
9737 int volatilep = 0;
9738 tree tem
9739 = get_inner_reference (treeop0, &bitsize, &bitpos,
9740 &offset, &mode1, &unsignedp, &volatilep,
9741 true);
9742 rtx orig_op0;
9744 /* ??? We should work harder and deal with non-zero offsets. */
9745 if (!offset
9746 && (bitpos % BITS_PER_UNIT) == 0
9747 && bitsize >= 0
9748 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9750 /* See the normal_inner_ref case for the rationale. */
9751 orig_op0
9752 = expand_expr (tem,
9753 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9754 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9755 != INTEGER_CST)
9756 && modifier != EXPAND_STACK_PARM
9757 ? target : NULL_RTX),
9758 VOIDmode,
9759 (modifier == EXPAND_INITIALIZER
9760 || modifier == EXPAND_CONST_ADDRESS
9761 || modifier == EXPAND_STACK_PARM)
9762 ? modifier : EXPAND_NORMAL);
9764 if (MEM_P (orig_op0))
9766 op0 = orig_op0;
9768 /* Get a reference to just this component. */
9769 if (modifier == EXPAND_CONST_ADDRESS
9770 || modifier == EXPAND_SUM
9771 || modifier == EXPAND_INITIALIZER)
9772 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9773 else
9774 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9776 if (op0 == orig_op0)
9777 op0 = copy_rtx (op0);
9779 set_mem_attributes (op0, treeop0, 0);
9780 if (REG_P (XEXP (op0, 0)))
9781 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9783 MEM_VOLATILE_P (op0) |= volatilep;
9788 if (!op0)
9789 op0 = expand_expr (treeop0,
9790 NULL_RTX, VOIDmode, modifier);
9792 /* If the input and output modes are both the same, we are done. */
9793 if (mode == GET_MODE (op0))
9795 /* If neither mode is BLKmode, and both modes are the same size
9796 then we can use gen_lowpart. */
9797 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9798 && (GET_MODE_PRECISION (mode)
9799 == GET_MODE_PRECISION (GET_MODE (op0)))
9800 && !COMPLEX_MODE_P (GET_MODE (op0)))
9802 if (GET_CODE (op0) == SUBREG)
9803 op0 = force_reg (GET_MODE (op0), op0);
9804 temp = gen_lowpart_common (mode, op0);
9805 if (temp)
9806 op0 = temp;
9807 else
9809 if (!REG_P (op0) && !MEM_P (op0))
9810 op0 = force_reg (GET_MODE (op0), op0);
9811 op0 = gen_lowpart (mode, op0);
9814 /* If both types are integral, convert from one mode to the other. */
9815 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9816 op0 = convert_modes (mode, GET_MODE (op0), op0,
9817 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9818 /* As a last resort, spill op0 to memory, and reload it in a
9819 different mode. */
9820 else if (!MEM_P (op0))
9822 /* If the operand is not a MEM, force it into memory. Since we
9823 are going to be changing the mode of the MEM, don't call
9824 force_const_mem for constants because we don't allow pool
9825 constants to change mode. */
9826 tree inner_type = TREE_TYPE (treeop0);
9828 gcc_assert (!TREE_ADDRESSABLE (exp));
9830 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9831 target
9832 = assign_stack_temp_for_type
9833 (TYPE_MODE (inner_type),
9834 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9836 emit_move_insn (target, op0);
9837 op0 = target;
9840 /* At this point, OP0 is in the correct mode. If the output type is
9841 such that the operand is known to be aligned, indicate that it is.
9842 Otherwise, we need only be concerned about alignment for non-BLKmode
9843 results. */
9844 if (MEM_P (op0))
9846 op0 = copy_rtx (op0);
9848 if (TYPE_ALIGN_OK (type))
9849 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9850 else if (STRICT_ALIGNMENT
9851 && mode != BLKmode
9852 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9854 tree inner_type = TREE_TYPE (treeop0);
9855 HOST_WIDE_INT temp_size
9856 = MAX (int_size_in_bytes (inner_type),
9857 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9858 rtx new_rtx
9859 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9860 rtx new_with_op0_mode
9861 = adjust_address (new_rtx, GET_MODE (op0), 0);
9863 gcc_assert (!TREE_ADDRESSABLE (exp));
9865 if (GET_MODE (op0) == BLKmode)
9866 emit_block_move (new_with_op0_mode, op0,
9867 GEN_INT (GET_MODE_SIZE (mode)),
9868 (modifier == EXPAND_STACK_PARM
9869 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9870 else
9871 emit_move_insn (new_with_op0_mode, op0);
9873 op0 = new_rtx;
9876 op0 = adjust_address (op0, mode, 0);
9879 return op0;
9881 case COND_EXPR:
9882 /* A COND_EXPR with its type being VOID_TYPE represents a
9883 conditional jump and is handled in
9884 expand_gimple_cond_expr. */
9885 gcc_assert (!VOID_TYPE_P (type));
9887 /* Note that COND_EXPRs whose type is a structure or union
9888 are required to be constructed to contain assignments of
9889 a temporary variable, so that we can evaluate them here
9890 for side effect only. If type is void, we must do likewise. */
9892 gcc_assert (!TREE_ADDRESSABLE (type)
9893 && !ignore
9894 && TREE_TYPE (treeop1) != void_type_node
9895 && TREE_TYPE (treeop2) != void_type_node);
9897 /* If we are not to produce a result, we have no target. Otherwise,
9898 if a target was specified use it; it will not be used as an
9899 intermediate target unless it is safe. If no target, use a
9900 temporary. */
9902 if (modifier != EXPAND_STACK_PARM
9903 && original_target
9904 && safe_from_p (original_target, treeop0, 1)
9905 && GET_MODE (original_target) == mode
9906 #ifdef HAVE_conditional_move
9907 && (! can_conditionally_move_p (mode)
9908 || REG_P (original_target))
9909 #endif
9910 && !MEM_P (original_target))
9911 temp = original_target;
9912 else
9913 temp = assign_temp (type, 0, 0, 1);
9915 do_pending_stack_adjust ();
9916 NO_DEFER_POP;
9917 op0 = gen_label_rtx ();
9918 op1 = gen_label_rtx ();
9919 jumpifnot (treeop0, op0, -1);
9920 store_expr (treeop1, temp,
9921 modifier == EXPAND_STACK_PARM,
9922 false);
9924 emit_jump_insn (gen_jump (op1));
9925 emit_barrier ();
9926 emit_label (op0);
9927 store_expr (treeop2, temp,
9928 modifier == EXPAND_STACK_PARM,
9929 false);
9931 emit_label (op1);
9932 OK_DEFER_POP;
9933 return temp;
9935 case VEC_COND_EXPR:
9936 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9937 return target;
9939 case MODIFY_EXPR:
9941 tree lhs = treeop0;
9942 tree rhs = treeop1;
9943 gcc_assert (ignore);
9945 /* Check for |= or &= of a bitfield of size one into another bitfield
9946 of size 1. In this case, (unless we need the result of the
9947 assignment) we can do this more efficiently with a
9948 test followed by an assignment, if necessary.
9950 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9951 things change so we do, this code should be enhanced to
9952 support it. */
9953 if (TREE_CODE (lhs) == COMPONENT_REF
9954 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9955 || TREE_CODE (rhs) == BIT_AND_EXPR)
9956 && TREE_OPERAND (rhs, 0) == lhs
9957 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9958 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9959 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9961 rtx label = gen_label_rtx ();
9962 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9963 do_jump (TREE_OPERAND (rhs, 1),
9964 value ? label : 0,
9965 value ? 0 : label, -1);
9966 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9967 MOVE_NONTEMPORAL (exp));
9968 do_pending_stack_adjust ();
9969 emit_label (label);
9970 return const0_rtx;
9973 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9974 return const0_rtx;
9977 case ADDR_EXPR:
9978 return expand_expr_addr_expr (exp, target, tmode, modifier);
9980 case REALPART_EXPR:
9981 op0 = expand_normal (treeop0);
9982 return read_complex_part (op0, false);
9984 case IMAGPART_EXPR:
9985 op0 = expand_normal (treeop0);
9986 return read_complex_part (op0, true);
9988 case RETURN_EXPR:
9989 case LABEL_EXPR:
9990 case GOTO_EXPR:
9991 case SWITCH_EXPR:
9992 case ASM_EXPR:
9993 /* Expanded in cfgexpand.c. */
9994 gcc_unreachable ();
9996 case TRY_CATCH_EXPR:
9997 case CATCH_EXPR:
9998 case EH_FILTER_EXPR:
9999 case TRY_FINALLY_EXPR:
10000 /* Lowered by tree-eh.c. */
10001 gcc_unreachable ();
10003 case WITH_CLEANUP_EXPR:
10004 case CLEANUP_POINT_EXPR:
10005 case TARGET_EXPR:
10006 case CASE_LABEL_EXPR:
10007 case VA_ARG_EXPR:
10008 case BIND_EXPR:
10009 case INIT_EXPR:
10010 case CONJ_EXPR:
10011 case COMPOUND_EXPR:
10012 case PREINCREMENT_EXPR:
10013 case PREDECREMENT_EXPR:
10014 case POSTINCREMENT_EXPR:
10015 case POSTDECREMENT_EXPR:
10016 case LOOP_EXPR:
10017 case EXIT_EXPR:
10018 /* Lowered by gimplify.c. */
10019 gcc_unreachable ();
10021 case FDESC_EXPR:
10022 /* Function descriptors are not valid except for as
10023 initialization constants, and should not be expanded. */
10024 gcc_unreachable ();
10026 case WITH_SIZE_EXPR:
10027 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10028 have pulled out the size to use in whatever context it needed. */
10029 return expand_expr_real (treeop0, original_target, tmode,
10030 modifier, alt_rtl);
10032 case COMPOUND_LITERAL_EXPR:
10034 /* Initialize the anonymous variable declared in the compound
10035 literal, then return the variable. */
10036 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
10038 /* Create RTL for this variable. */
10039 if (!DECL_RTL_SET_P (decl))
10041 if (DECL_HARD_REGISTER (decl))
10042 /* The user specified an assembler name for this variable.
10043 Set that up now. */
10044 rest_of_decl_compilation (decl, 0, 0);
10045 else
10046 expand_decl (decl);
10049 return expand_expr_real (decl, original_target, tmode,
10050 modifier, alt_rtl);
10053 default:
10054 return expand_expr_real_2 (&ops, target, tmode, modifier);
10058 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10059 signedness of TYPE), possibly returning the result in TARGET. */
10060 static rtx
10061 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10063 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10064 if (target && GET_MODE (target) != GET_MODE (exp))
10065 target = 0;
10066 /* For constant values, reduce using build_int_cst_type. */
10067 if (CONST_INT_P (exp))
10069 HOST_WIDE_INT value = INTVAL (exp);
10070 tree t = build_int_cst_type (type, value);
10071 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10073 else if (TYPE_UNSIGNED (type))
10075 rtx mask = immed_double_int_const (double_int_mask (prec),
10076 GET_MODE (exp));
10077 return expand_and (GET_MODE (exp), exp, mask, target);
10079 else
10081 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10082 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10083 exp, count, target, 0);
10084 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10085 exp, count, target, 0);
10089 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10090 when applied to the address of EXP produces an address known to be
10091 aligned more than BIGGEST_ALIGNMENT. */
10093 static int
10094 is_aligning_offset (const_tree offset, const_tree exp)
10096 /* Strip off any conversions. */
10097 while (CONVERT_EXPR_P (offset))
10098 offset = TREE_OPERAND (offset, 0);
10100 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10101 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10102 if (TREE_CODE (offset) != BIT_AND_EXPR
10103 || !host_integerp (TREE_OPERAND (offset, 1), 1)
10104 || compare_tree_int (TREE_OPERAND (offset, 1),
10105 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10106 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
10107 return 0;
10109 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10110 It must be NEGATE_EXPR. Then strip any more conversions. */
10111 offset = TREE_OPERAND (offset, 0);
10112 while (CONVERT_EXPR_P (offset))
10113 offset = TREE_OPERAND (offset, 0);
10115 if (TREE_CODE (offset) != NEGATE_EXPR)
10116 return 0;
10118 offset = TREE_OPERAND (offset, 0);
10119 while (CONVERT_EXPR_P (offset))
10120 offset = TREE_OPERAND (offset, 0);
10122 /* This must now be the address of EXP. */
10123 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10126 /* Return the tree node if an ARG corresponds to a string constant or zero
10127 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10128 in bytes within the string that ARG is accessing. The type of the
10129 offset will be `sizetype'. */
10131 tree
10132 string_constant (tree arg, tree *ptr_offset)
10134 tree array, offset, lower_bound;
10135 STRIP_NOPS (arg);
10137 if (TREE_CODE (arg) == ADDR_EXPR)
10139 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10141 *ptr_offset = size_zero_node;
10142 return TREE_OPERAND (arg, 0);
10144 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10146 array = TREE_OPERAND (arg, 0);
10147 offset = size_zero_node;
10149 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10151 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10152 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10153 if (TREE_CODE (array) != STRING_CST
10154 && TREE_CODE (array) != VAR_DECL)
10155 return 0;
10157 /* Check if the array has a nonzero lower bound. */
10158 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10159 if (!integer_zerop (lower_bound))
10161 /* If the offset and base aren't both constants, return 0. */
10162 if (TREE_CODE (lower_bound) != INTEGER_CST)
10163 return 0;
10164 if (TREE_CODE (offset) != INTEGER_CST)
10165 return 0;
10166 /* Adjust offset by the lower bound. */
10167 offset = size_diffop (fold_convert (sizetype, offset),
10168 fold_convert (sizetype, lower_bound));
10171 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10173 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10174 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10175 if (TREE_CODE (array) != ADDR_EXPR)
10176 return 0;
10177 array = TREE_OPERAND (array, 0);
10178 if (TREE_CODE (array) != STRING_CST
10179 && TREE_CODE (array) != VAR_DECL)
10180 return 0;
10182 else
10183 return 0;
10185 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10187 tree arg0 = TREE_OPERAND (arg, 0);
10188 tree arg1 = TREE_OPERAND (arg, 1);
10190 STRIP_NOPS (arg0);
10191 STRIP_NOPS (arg1);
10193 if (TREE_CODE (arg0) == ADDR_EXPR
10194 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10195 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10197 array = TREE_OPERAND (arg0, 0);
10198 offset = arg1;
10200 else if (TREE_CODE (arg1) == ADDR_EXPR
10201 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10202 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10204 array = TREE_OPERAND (arg1, 0);
10205 offset = arg0;
10207 else
10208 return 0;
10210 else
10211 return 0;
10213 if (TREE_CODE (array) == STRING_CST)
10215 *ptr_offset = fold_convert (sizetype, offset);
10216 return array;
10218 else if (TREE_CODE (array) == VAR_DECL
10219 || TREE_CODE (array) == CONST_DECL)
10221 int length;
10223 /* Variables initialized to string literals can be handled too. */
10224 if (!const_value_known_p (array)
10225 || !DECL_INITIAL (array)
10226 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
10227 return 0;
10229 /* Avoid const char foo[4] = "abcde"; */
10230 if (DECL_SIZE_UNIT (array) == NULL_TREE
10231 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10232 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
10233 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10234 return 0;
10236 /* If variable is bigger than the string literal, OFFSET must be constant
10237 and inside of the bounds of the string literal. */
10238 offset = fold_convert (sizetype, offset);
10239 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10240 && (! host_integerp (offset, 1)
10241 || compare_tree_int (offset, length) >= 0))
10242 return 0;
10244 *ptr_offset = offset;
10245 return DECL_INITIAL (array);
10248 return 0;
10251 /* Generate code to calculate OPS, and exploded expression
10252 using a store-flag instruction and return an rtx for the result.
10253 OPS reflects a comparison.
10255 If TARGET is nonzero, store the result there if convenient.
10257 Return zero if there is no suitable set-flag instruction
10258 available on this machine.
10260 Once expand_expr has been called on the arguments of the comparison,
10261 we are committed to doing the store flag, since it is not safe to
10262 re-evaluate the expression. We emit the store-flag insn by calling
10263 emit_store_flag, but only expand the arguments if we have a reason
10264 to believe that emit_store_flag will be successful. If we think that
10265 it will, but it isn't, we have to simulate the store-flag with a
10266 set/jump/set sequence. */
10268 static rtx
10269 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10271 enum rtx_code code;
10272 tree arg0, arg1, type;
10273 tree tem;
10274 enum machine_mode operand_mode;
10275 int unsignedp;
10276 rtx op0, op1;
10277 rtx subtarget = target;
10278 location_t loc = ops->location;
10280 arg0 = ops->op0;
10281 arg1 = ops->op1;
10283 /* Don't crash if the comparison was erroneous. */
10284 if (arg0 == error_mark_node || arg1 == error_mark_node)
10285 return const0_rtx;
10287 type = TREE_TYPE (arg0);
10288 operand_mode = TYPE_MODE (type);
10289 unsignedp = TYPE_UNSIGNED (type);
10291 /* We won't bother with BLKmode store-flag operations because it would mean
10292 passing a lot of information to emit_store_flag. */
10293 if (operand_mode == BLKmode)
10294 return 0;
10296 /* We won't bother with store-flag operations involving function pointers
10297 when function pointers must be canonicalized before comparisons. */
10298 #ifdef HAVE_canonicalize_funcptr_for_compare
10299 if (HAVE_canonicalize_funcptr_for_compare
10300 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10301 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10302 == FUNCTION_TYPE))
10303 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10304 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10305 == FUNCTION_TYPE))))
10306 return 0;
10307 #endif
10309 STRIP_NOPS (arg0);
10310 STRIP_NOPS (arg1);
10312 /* Get the rtx comparison code to use. We know that EXP is a comparison
10313 operation of some type. Some comparisons against 1 and -1 can be
10314 converted to comparisons with zero. Do so here so that the tests
10315 below will be aware that we have a comparison with zero. These
10316 tests will not catch constants in the first operand, but constants
10317 are rarely passed as the first operand. */
10319 switch (ops->code)
10321 case EQ_EXPR:
10322 code = EQ;
10323 break;
10324 case NE_EXPR:
10325 code = NE;
10326 break;
10327 case LT_EXPR:
10328 if (integer_onep (arg1))
10329 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10330 else
10331 code = unsignedp ? LTU : LT;
10332 break;
10333 case LE_EXPR:
10334 if (! unsignedp && integer_all_onesp (arg1))
10335 arg1 = integer_zero_node, code = LT;
10336 else
10337 code = unsignedp ? LEU : LE;
10338 break;
10339 case GT_EXPR:
10340 if (! unsignedp && integer_all_onesp (arg1))
10341 arg1 = integer_zero_node, code = GE;
10342 else
10343 code = unsignedp ? GTU : GT;
10344 break;
10345 case GE_EXPR:
10346 if (integer_onep (arg1))
10347 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10348 else
10349 code = unsignedp ? GEU : GE;
10350 break;
10352 case UNORDERED_EXPR:
10353 code = UNORDERED;
10354 break;
10355 case ORDERED_EXPR:
10356 code = ORDERED;
10357 break;
10358 case UNLT_EXPR:
10359 code = UNLT;
10360 break;
10361 case UNLE_EXPR:
10362 code = UNLE;
10363 break;
10364 case UNGT_EXPR:
10365 code = UNGT;
10366 break;
10367 case UNGE_EXPR:
10368 code = UNGE;
10369 break;
10370 case UNEQ_EXPR:
10371 code = UNEQ;
10372 break;
10373 case LTGT_EXPR:
10374 code = LTGT;
10375 break;
10377 default:
10378 gcc_unreachable ();
10381 /* Put a constant second. */
10382 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10383 || TREE_CODE (arg0) == FIXED_CST)
10385 tem = arg0; arg0 = arg1; arg1 = tem;
10386 code = swap_condition (code);
10389 /* If this is an equality or inequality test of a single bit, we can
10390 do this by shifting the bit being tested to the low-order bit and
10391 masking the result with the constant 1. If the condition was EQ,
10392 we xor it with 1. This does not require an scc insn and is faster
10393 than an scc insn even if we have it.
10395 The code to make this transformation was moved into fold_single_bit_test,
10396 so we just call into the folder and expand its result. */
10398 if ((code == NE || code == EQ)
10399 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10400 && integer_pow2p (TREE_OPERAND (arg0, 1))
10401 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10403 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10404 return expand_expr (fold_single_bit_test (loc,
10405 code == NE ? NE_EXPR : EQ_EXPR,
10406 arg0, arg1, type),
10407 target, VOIDmode, EXPAND_NORMAL);
10410 if (! get_subtarget (target)
10411 || GET_MODE (subtarget) != operand_mode)
10412 subtarget = 0;
10414 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10416 if (target == 0)
10417 target = gen_reg_rtx (mode);
10419 /* Try a cstore if possible. */
10420 return emit_store_flag_force (target, code, op0, op1,
10421 operand_mode, unsignedp,
10422 (TYPE_PRECISION (ops->type) == 1
10423 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
10427 /* Stubs in case we haven't got a casesi insn. */
10428 #ifndef HAVE_casesi
10429 # define HAVE_casesi 0
10430 # define gen_casesi(a, b, c, d, e) (0)
10431 # define CODE_FOR_casesi CODE_FOR_nothing
10432 #endif
10434 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10435 0 otherwise (i.e. if there is no casesi instruction). */
10437 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10438 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10439 rtx fallback_label ATTRIBUTE_UNUSED)
10441 struct expand_operand ops[5];
10442 enum machine_mode index_mode = SImode;
10443 int index_bits = GET_MODE_BITSIZE (index_mode);
10444 rtx op1, op2, index;
10446 if (! HAVE_casesi)
10447 return 0;
10449 /* Convert the index to SImode. */
10450 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10452 enum machine_mode omode = TYPE_MODE (index_type);
10453 rtx rangertx = expand_normal (range);
10455 /* We must handle the endpoints in the original mode. */
10456 index_expr = build2 (MINUS_EXPR, index_type,
10457 index_expr, minval);
10458 minval = integer_zero_node;
10459 index = expand_normal (index_expr);
10460 if (default_label)
10461 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10462 omode, 1, default_label);
10463 /* Now we can safely truncate. */
10464 index = convert_to_mode (index_mode, index, 0);
10466 else
10468 if (TYPE_MODE (index_type) != index_mode)
10470 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10471 index_expr = fold_convert (index_type, index_expr);
10474 index = expand_normal (index_expr);
10477 do_pending_stack_adjust ();
10479 op1 = expand_normal (minval);
10480 op2 = expand_normal (range);
10482 create_input_operand (&ops[0], index, index_mode);
10483 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
10484 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
10485 create_fixed_operand (&ops[3], table_label);
10486 create_fixed_operand (&ops[4], (default_label
10487 ? default_label
10488 : fallback_label));
10489 expand_jump_insn (CODE_FOR_casesi, 5, ops);
10490 return 1;
10493 /* Attempt to generate a tablejump instruction; same concept. */
10494 #ifndef HAVE_tablejump
10495 #define HAVE_tablejump 0
10496 #define gen_tablejump(x, y) (0)
10497 #endif
10499 /* Subroutine of the next function.
10501 INDEX is the value being switched on, with the lowest value
10502 in the table already subtracted.
10503 MODE is its expected mode (needed if INDEX is constant).
10504 RANGE is the length of the jump table.
10505 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10507 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10508 index value is out of range. */
10510 static void
10511 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10512 rtx default_label)
10514 rtx temp, vector;
10516 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10517 cfun->cfg->max_jumptable_ents = INTVAL (range);
10519 /* Do an unsigned comparison (in the proper mode) between the index
10520 expression and the value which represents the length of the range.
10521 Since we just finished subtracting the lower bound of the range
10522 from the index expression, this comparison allows us to simultaneously
10523 check that the original index expression value is both greater than
10524 or equal to the minimum value of the range and less than or equal to
10525 the maximum value of the range. */
10527 if (default_label)
10528 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10529 default_label);
10531 /* If index is in range, it must fit in Pmode.
10532 Convert to Pmode so we can index with it. */
10533 if (mode != Pmode)
10534 index = convert_to_mode (Pmode, index, 1);
10536 /* Don't let a MEM slip through, because then INDEX that comes
10537 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10538 and break_out_memory_refs will go to work on it and mess it up. */
10539 #ifdef PIC_CASE_VECTOR_ADDRESS
10540 if (flag_pic && !REG_P (index))
10541 index = copy_to_mode_reg (Pmode, index);
10542 #endif
10544 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10545 GET_MODE_SIZE, because this indicates how large insns are. The other
10546 uses should all be Pmode, because they are addresses. This code
10547 could fail if addresses and insns are not the same size. */
10548 index = gen_rtx_PLUS (Pmode,
10549 gen_rtx_MULT (Pmode, index,
10550 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10551 gen_rtx_LABEL_REF (Pmode, table_label));
10552 #ifdef PIC_CASE_VECTOR_ADDRESS
10553 if (flag_pic)
10554 index = PIC_CASE_VECTOR_ADDRESS (index);
10555 else
10556 #endif
10557 index = memory_address (CASE_VECTOR_MODE, index);
10558 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10559 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10560 convert_move (temp, vector, 0);
10562 emit_jump_insn (gen_tablejump (temp, table_label));
10564 /* If we are generating PIC code or if the table is PC-relative, the
10565 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10566 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10567 emit_barrier ();
10571 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10572 rtx table_label, rtx default_label)
10574 rtx index;
10576 if (! HAVE_tablejump)
10577 return 0;
10579 index_expr = fold_build2 (MINUS_EXPR, index_type,
10580 fold_convert (index_type, index_expr),
10581 fold_convert (index_type, minval));
10582 index = expand_normal (index_expr);
10583 do_pending_stack_adjust ();
10585 do_tablejump (index, TYPE_MODE (index_type),
10586 convert_modes (TYPE_MODE (index_type),
10587 TYPE_MODE (TREE_TYPE (range)),
10588 expand_normal (range),
10589 TYPE_UNSIGNED (TREE_TYPE (range))),
10590 table_label, default_label);
10591 return 1;
10594 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10595 static rtx
10596 const_vector_from_tree (tree exp)
10598 rtvec v;
10599 int units, i;
10600 tree link, elt;
10601 enum machine_mode inner, mode;
10603 mode = TYPE_MODE (TREE_TYPE (exp));
10605 if (initializer_zerop (exp))
10606 return CONST0_RTX (mode);
10608 units = GET_MODE_NUNITS (mode);
10609 inner = GET_MODE_INNER (mode);
10611 v = rtvec_alloc (units);
10613 link = TREE_VECTOR_CST_ELTS (exp);
10614 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10616 elt = TREE_VALUE (link);
10618 if (TREE_CODE (elt) == REAL_CST)
10619 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10620 inner);
10621 else if (TREE_CODE (elt) == FIXED_CST)
10622 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10623 inner);
10624 else
10625 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10626 inner);
10629 /* Initialize remaining elements to 0. */
10630 for (; i < units; ++i)
10631 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10633 return gen_rtx_CONST_VECTOR (mode, v);
10636 /* Build a decl for a personality function given a language prefix. */
10638 tree
10639 build_personality_function (const char *lang)
10641 const char *unwind_and_version;
10642 tree decl, type;
10643 char *name;
10645 switch (targetm_common.except_unwind_info (&global_options))
10647 case UI_NONE:
10648 return NULL;
10649 case UI_SJLJ:
10650 unwind_and_version = "_sj0";
10651 break;
10652 case UI_DWARF2:
10653 case UI_TARGET:
10654 unwind_and_version = "_v0";
10655 break;
10656 default:
10657 gcc_unreachable ();
10660 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10662 type = build_function_type_list (integer_type_node, integer_type_node,
10663 long_long_unsigned_type_node,
10664 ptr_type_node, ptr_type_node, NULL_TREE);
10665 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10666 get_identifier (name), type);
10667 DECL_ARTIFICIAL (decl) = 1;
10668 DECL_EXTERNAL (decl) = 1;
10669 TREE_PUBLIC (decl) = 1;
10671 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10672 are the flags assigned by targetm.encode_section_info. */
10673 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10675 return decl;
10678 /* Extracts the personality function of DECL and returns the corresponding
10679 libfunc. */
10682 get_personality_function (tree decl)
10684 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10685 enum eh_personality_kind pk;
10687 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10688 if (pk == eh_personality_none)
10689 return NULL;
10691 if (!personality
10692 && pk == eh_personality_any)
10693 personality = lang_hooks.eh_personality ();
10695 if (pk == eh_personality_lang)
10696 gcc_assert (personality != NULL_TREE);
10698 return XEXP (DECL_RTL (personality), 0);
10701 #include "gt-expr.h"