2013-06-11 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-loop.c
blob3b10b1989b498516ed41bdad4b900efbc74a8a18
1 /* Loop Vectorization
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "cfgloop.h"
34 #include "expr.h"
35 #include "recog.h"
36 #include "optabs.h"
37 #include "params.h"
38 #include "diagnostic-core.h"
39 #include "tree-chrec.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-vectorizer.h"
42 #include "target.h"
44 /* Loop Vectorization Pass.
46 This pass tries to vectorize loops.
48 For example, the vectorizer transforms the following simple loop:
50 short a[N]; short b[N]; short c[N]; int i;
52 for (i=0; i<N; i++){
53 a[i] = b[i] + c[i];
56 as if it was manually vectorized by rewriting the source code into:
58 typedef int __attribute__((mode(V8HI))) v8hi;
59 short a[N]; short b[N]; short c[N]; int i;
60 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
61 v8hi va, vb, vc;
63 for (i=0; i<N/8; i++){
64 vb = pb[i];
65 vc = pc[i];
66 va = vb + vc;
67 pa[i] = va;
70 The main entry to this pass is vectorize_loops(), in which
71 the vectorizer applies a set of analyses on a given set of loops,
72 followed by the actual vectorization transformation for the loops that
73 had successfully passed the analysis phase.
74 Throughout this pass we make a distinction between two types of
75 data: scalars (which are represented by SSA_NAMES), and memory references
76 ("data-refs"). These two types of data require different handling both
77 during analysis and transformation. The types of data-refs that the
78 vectorizer currently supports are ARRAY_REFS which base is an array DECL
79 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
80 accesses are required to have a simple (consecutive) access pattern.
82 Analysis phase:
83 ===============
84 The driver for the analysis phase is vect_analyze_loop().
85 It applies a set of analyses, some of which rely on the scalar evolution
86 analyzer (scev) developed by Sebastian Pop.
88 During the analysis phase the vectorizer records some information
89 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
90 loop, as well as general information about the loop as a whole, which is
91 recorded in a "loop_vec_info" struct attached to each loop.
93 Transformation phase:
94 =====================
95 The loop transformation phase scans all the stmts in the loop, and
96 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
97 the loop that needs to be vectorized. It inserts the vector code sequence
98 just before the scalar stmt S, and records a pointer to the vector code
99 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
100 attached to S). This pointer will be used for the vectorization of following
101 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
102 otherwise, we rely on dead code elimination for removing it.
104 For example, say stmt S1 was vectorized into stmt VS1:
106 VS1: vb = px[i];
107 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
108 S2: a = b;
110 To vectorize stmt S2, the vectorizer first finds the stmt that defines
111 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
112 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
113 resulting sequence would be:
115 VS1: vb = px[i];
116 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
117 VS2: va = vb;
118 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
120 Operands that are not SSA_NAMEs, are data-refs that appear in
121 load/store operations (like 'x[i]' in S1), and are handled differently.
123 Target modeling:
124 =================
125 Currently the only target specific information that is used is the
126 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
127 Targets that can support different sizes of vectors, for now will need
128 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
129 flexibility will be added in the future.
131 Since we only vectorize operations which vector form can be
132 expressed using existing tree codes, to verify that an operation is
133 supported, the vectorizer checks the relevant optab at the relevant
134 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
135 the value found is CODE_FOR_nothing, then there's no target support, and
136 we can't vectorize the stmt.
138 For additional information on this project see:
139 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
142 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
184 gimple stmt, pattern_stmt = NULL;
185 gimple_seq pattern_def_seq = NULL;
186 gimple_stmt_iterator pattern_def_si = gsi_none ();
187 bool analyze_pattern_stmt = false;
189 if (dump_enabled_p ())
190 dump_printf_loc (MSG_NOTE, vect_location,
191 "=== vect_determine_vectorization_factor ===");
193 for (i = 0; i < nbbs; i++)
195 basic_block bb = bbs[i];
197 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
199 phi = gsi_stmt (si);
200 stmt_info = vinfo_for_stmt (phi);
201 if (dump_enabled_p ())
203 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
204 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
207 gcc_assert (stmt_info);
209 if (STMT_VINFO_RELEVANT_P (stmt_info))
211 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
212 scalar_type = TREE_TYPE (PHI_RESULT (phi));
214 if (dump_enabled_p ())
216 dump_printf_loc (MSG_NOTE, vect_location,
217 "get vectype for scalar type: ");
218 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
221 vectype = get_vectype_for_scalar_type (scalar_type);
222 if (!vectype)
224 if (dump_enabled_p ())
226 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
227 "not vectorized: unsupported "
228 "data-type ");
229 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
230 scalar_type);
232 return false;
234 STMT_VINFO_VECTYPE (stmt_info) = vectype;
236 if (dump_enabled_p ())
238 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
239 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
242 nunits = TYPE_VECTOR_SUBPARTS (vectype);
243 if (dump_enabled_p ())
244 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
246 if (!vectorization_factor
247 || (nunits > vectorization_factor))
248 vectorization_factor = nunits;
252 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
254 tree vf_vectype;
256 if (analyze_pattern_stmt)
257 stmt = pattern_stmt;
258 else
259 stmt = gsi_stmt (si);
261 stmt_info = vinfo_for_stmt (stmt);
263 if (dump_enabled_p ())
265 dump_printf_loc (MSG_NOTE, vect_location,
266 "==> examining statement: ");
267 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
270 gcc_assert (stmt_info);
272 /* Skip stmts which do not need to be vectorized. */
273 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
274 && !STMT_VINFO_LIVE_P (stmt_info))
275 || gimple_clobber_p (stmt))
277 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
278 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
279 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
280 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
282 stmt = pattern_stmt;
283 stmt_info = vinfo_for_stmt (pattern_stmt);
284 if (dump_enabled_p ())
286 dump_printf_loc (MSG_NOTE, vect_location,
287 "==> examining pattern statement: ");
288 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
291 else
293 if (dump_enabled_p ())
294 dump_printf_loc (MSG_NOTE, vect_location, "skip.");
295 gsi_next (&si);
296 continue;
299 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
300 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
301 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
302 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
303 analyze_pattern_stmt = true;
305 /* If a pattern statement has def stmts, analyze them too. */
306 if (is_pattern_stmt_p (stmt_info))
308 if (pattern_def_seq == NULL)
310 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
311 pattern_def_si = gsi_start (pattern_def_seq);
313 else if (!gsi_end_p (pattern_def_si))
314 gsi_next (&pattern_def_si);
315 if (pattern_def_seq != NULL)
317 gimple pattern_def_stmt = NULL;
318 stmt_vec_info pattern_def_stmt_info = NULL;
320 while (!gsi_end_p (pattern_def_si))
322 pattern_def_stmt = gsi_stmt (pattern_def_si);
323 pattern_def_stmt_info
324 = vinfo_for_stmt (pattern_def_stmt);
325 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
326 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
327 break;
328 gsi_next (&pattern_def_si);
331 if (!gsi_end_p (pattern_def_si))
333 if (dump_enabled_p ())
335 dump_printf_loc (MSG_NOTE, vect_location,
336 "==> examining pattern def stmt: ");
337 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
338 pattern_def_stmt, 0);
341 stmt = pattern_def_stmt;
342 stmt_info = pattern_def_stmt_info;
344 else
346 pattern_def_si = gsi_none ();
347 analyze_pattern_stmt = false;
350 else
351 analyze_pattern_stmt = false;
354 if (gimple_get_lhs (stmt) == NULL_TREE)
356 if (dump_enabled_p ())
358 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
359 "not vectorized: irregular stmt.");
360 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
363 return false;
366 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
368 if (dump_enabled_p ())
370 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
371 "not vectorized: vector stmt in loop:");
372 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
374 return false;
377 if (STMT_VINFO_VECTYPE (stmt_info))
379 /* The only case when a vectype had been already set is for stmts
380 that contain a dataref, or for "pattern-stmts" (stmts
381 generated by the vectorizer to represent/replace a certain
382 idiom). */
383 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
384 || is_pattern_stmt_p (stmt_info)
385 || !gsi_end_p (pattern_def_si));
386 vectype = STMT_VINFO_VECTYPE (stmt_info);
388 else
390 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
391 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
392 if (dump_enabled_p ())
394 dump_printf_loc (MSG_NOTE, vect_location,
395 "get vectype for scalar type: ");
396 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
398 vectype = get_vectype_for_scalar_type (scalar_type);
399 if (!vectype)
401 if (dump_enabled_p ())
403 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
404 "not vectorized: unsupported "
405 "data-type ");
406 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
407 scalar_type);
409 return false;
412 STMT_VINFO_VECTYPE (stmt_info) = vectype;
414 if (dump_enabled_p ())
416 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
417 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
421 /* The vectorization factor is according to the smallest
422 scalar type (or the largest vector size, but we only
423 support one vector size per loop). */
424 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
425 &dummy);
426 if (dump_enabled_p ())
428 dump_printf_loc (MSG_NOTE, vect_location,
429 "get vectype for scalar type: ");
430 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
432 vf_vectype = get_vectype_for_scalar_type (scalar_type);
433 if (!vf_vectype)
435 if (dump_enabled_p ())
437 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
438 "not vectorized: unsupported data-type ");
439 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
440 scalar_type);
442 return false;
445 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
446 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
448 if (dump_enabled_p ())
450 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
451 "not vectorized: different sized vector "
452 "types in statement, ");
453 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
454 vectype);
455 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
456 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
457 vf_vectype);
459 return false;
462 if (dump_enabled_p ())
464 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
468 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
469 if (dump_enabled_p ())
470 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
471 if (!vectorization_factor
472 || (nunits > vectorization_factor))
473 vectorization_factor = nunits;
475 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
477 pattern_def_seq = NULL;
478 gsi_next (&si);
483 /* TODO: Analyze cost. Decide if worth while to vectorize. */
484 if (dump_enabled_p ())
485 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d",
486 vectorization_factor);
487 if (vectorization_factor <= 1)
489 if (dump_enabled_p ())
490 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
491 "not vectorized: unsupported data-type");
492 return false;
494 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
496 return true;
500 /* Function vect_is_simple_iv_evolution.
502 FORNOW: A simple evolution of an induction variables in the loop is
503 considered a polynomial evolution with constant step. */
505 static bool
506 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
507 tree * step)
509 tree init_expr;
510 tree step_expr;
511 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
513 /* When there is no evolution in this loop, the evolution function
514 is not "simple". */
515 if (evolution_part == NULL_TREE)
516 return false;
518 /* When the evolution is a polynomial of degree >= 2
519 the evolution function is not "simple". */
520 if (tree_is_chrec (evolution_part))
521 return false;
523 step_expr = evolution_part;
524 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
526 if (dump_enabled_p ())
528 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
529 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
530 dump_printf (MSG_NOTE, ", init: ");
531 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
534 *init = init_expr;
535 *step = step_expr;
537 if (TREE_CODE (step_expr) != INTEGER_CST)
539 if (dump_enabled_p ())
540 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
541 "step unknown.");
542 return false;
545 return true;
548 /* Function vect_analyze_scalar_cycles_1.
550 Examine the cross iteration def-use cycles of scalar variables
551 in LOOP. LOOP_VINFO represents the loop that is now being
552 considered for vectorization (can be LOOP, or an outer-loop
553 enclosing LOOP). */
555 static void
556 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
558 basic_block bb = loop->header;
559 tree dumy;
560 vec<gimple> worklist;
561 worklist.create (64);
562 gimple_stmt_iterator gsi;
563 bool double_reduc;
565 if (dump_enabled_p ())
566 dump_printf_loc (MSG_NOTE, vect_location,
567 "=== vect_analyze_scalar_cycles ===");
569 /* First - identify all inductions. Reduction detection assumes that all the
570 inductions have been identified, therefore, this order must not be
571 changed. */
572 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
574 gimple phi = gsi_stmt (gsi);
575 tree access_fn = NULL;
576 tree def = PHI_RESULT (phi);
577 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
579 if (dump_enabled_p ())
581 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
582 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
585 /* Skip virtual phi's. The data dependences that are associated with
586 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
587 if (virtual_operand_p (def))
588 continue;
590 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
592 /* Analyze the evolution function. */
593 access_fn = analyze_scalar_evolution (loop, def);
594 if (access_fn)
596 STRIP_NOPS (access_fn);
597 if (dump_enabled_p ())
599 dump_printf_loc (MSG_NOTE, vect_location,
600 "Access function of PHI: ");
601 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
603 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
604 = evolution_part_in_loop_num (access_fn, loop->num);
607 if (!access_fn
608 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
610 worklist.safe_push (phi);
611 continue;
614 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
616 if (dump_enabled_p ())
617 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.");
618 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
622 /* Second - identify all reductions and nested cycles. */
623 while (worklist.length () > 0)
625 gimple phi = worklist.pop ();
626 tree def = PHI_RESULT (phi);
627 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
628 gimple reduc_stmt;
629 bool nested_cycle;
631 if (dump_enabled_p ())
633 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
634 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
637 gcc_assert (!virtual_operand_p (def)
638 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
640 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
641 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
642 &double_reduc);
643 if (reduc_stmt)
645 if (double_reduc)
647 if (dump_enabled_p ())
648 dump_printf_loc (MSG_NOTE, vect_location,
649 "Detected double reduction.");
651 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
652 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
653 vect_double_reduction_def;
655 else
657 if (nested_cycle)
659 if (dump_enabled_p ())
660 dump_printf_loc (MSG_NOTE, vect_location,
661 "Detected vectorizable nested cycle.");
663 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
664 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
665 vect_nested_cycle;
667 else
669 if (dump_enabled_p ())
670 dump_printf_loc (MSG_NOTE, vect_location,
671 "Detected reduction.");
673 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
674 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
675 vect_reduction_def;
676 /* Store the reduction cycles for possible vectorization in
677 loop-aware SLP. */
678 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
682 else
683 if (dump_enabled_p ())
684 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
685 "Unknown def-use cycle pattern.");
688 worklist.release ();
692 /* Function vect_analyze_scalar_cycles.
694 Examine the cross iteration def-use cycles of scalar variables, by
695 analyzing the loop-header PHIs of scalar variables. Classify each
696 cycle as one of the following: invariant, induction, reduction, unknown.
697 We do that for the loop represented by LOOP_VINFO, and also to its
698 inner-loop, if exists.
699 Examples for scalar cycles:
701 Example1: reduction:
703 loop1:
704 for (i=0; i<N; i++)
705 sum += a[i];
707 Example2: induction:
709 loop2:
710 for (i=0; i<N; i++)
711 a[i] = i; */
713 static void
714 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
716 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
718 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
720 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
721 Reductions in such inner-loop therefore have different properties than
722 the reductions in the nest that gets vectorized:
723 1. When vectorized, they are executed in the same order as in the original
724 scalar loop, so we can't change the order of computation when
725 vectorizing them.
726 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
727 current checks are too strict. */
729 if (loop->inner)
730 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
733 /* Function vect_get_loop_niters.
735 Determine how many iterations the loop is executed.
736 If an expression that represents the number of iterations
737 can be constructed, place it in NUMBER_OF_ITERATIONS.
738 Return the loop exit condition. */
740 static gimple
741 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
743 tree niters;
745 if (dump_enabled_p ())
746 dump_printf_loc (MSG_NOTE, vect_location,
747 "=== get_loop_niters ===");
748 niters = number_of_exit_cond_executions (loop);
750 if (niters != NULL_TREE
751 && niters != chrec_dont_know)
753 *number_of_iterations = niters;
755 if (dump_enabled_p ())
757 dump_printf_loc (MSG_NOTE, vect_location, "==> get_loop_niters:");
758 dump_generic_expr (MSG_NOTE, TDF_SLIM, *number_of_iterations);
762 return get_loop_exit_condition (loop);
766 /* Function bb_in_loop_p
768 Used as predicate for dfs order traversal of the loop bbs. */
770 static bool
771 bb_in_loop_p (const_basic_block bb, const void *data)
773 const struct loop *const loop = (const struct loop *)data;
774 if (flow_bb_inside_loop_p (loop, bb))
775 return true;
776 return false;
780 /* Function new_loop_vec_info.
782 Create and initialize a new loop_vec_info struct for LOOP, as well as
783 stmt_vec_info structs for all the stmts in LOOP. */
785 static loop_vec_info
786 new_loop_vec_info (struct loop *loop)
788 loop_vec_info res;
789 basic_block *bbs;
790 gimple_stmt_iterator si;
791 unsigned int i, nbbs;
793 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
794 LOOP_VINFO_LOOP (res) = loop;
796 bbs = get_loop_body (loop);
798 /* Create/Update stmt_info for all stmts in the loop. */
799 for (i = 0; i < loop->num_nodes; i++)
801 basic_block bb = bbs[i];
803 /* BBs in a nested inner-loop will have been already processed (because
804 we will have called vect_analyze_loop_form for any nested inner-loop).
805 Therefore, for stmts in an inner-loop we just want to update the
806 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
807 loop_info of the outer-loop we are currently considering to vectorize
808 (instead of the loop_info of the inner-loop).
809 For stmts in other BBs we need to create a stmt_info from scratch. */
810 if (bb->loop_father != loop)
812 /* Inner-loop bb. */
813 gcc_assert (loop->inner && bb->loop_father == loop->inner);
814 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
816 gimple phi = gsi_stmt (si);
817 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
818 loop_vec_info inner_loop_vinfo =
819 STMT_VINFO_LOOP_VINFO (stmt_info);
820 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
821 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
823 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
825 gimple stmt = gsi_stmt (si);
826 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
827 loop_vec_info inner_loop_vinfo =
828 STMT_VINFO_LOOP_VINFO (stmt_info);
829 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
830 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
833 else
835 /* bb in current nest. */
836 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
838 gimple phi = gsi_stmt (si);
839 gimple_set_uid (phi, 0);
840 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
843 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
845 gimple stmt = gsi_stmt (si);
846 gimple_set_uid (stmt, 0);
847 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
852 /* CHECKME: We want to visit all BBs before their successors (except for
853 latch blocks, for which this assertion wouldn't hold). In the simple
854 case of the loop forms we allow, a dfs order of the BBs would the same
855 as reversed postorder traversal, so we are safe. */
857 free (bbs);
858 bbs = XCNEWVEC (basic_block, loop->num_nodes);
859 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
860 bbs, loop->num_nodes, loop);
861 gcc_assert (nbbs == loop->num_nodes);
863 LOOP_VINFO_BBS (res) = bbs;
864 LOOP_VINFO_NITERS (res) = NULL;
865 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
866 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
867 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
868 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
869 LOOP_VINFO_VECT_FACTOR (res) = 0;
870 LOOP_VINFO_LOOP_NEST (res).create (3);
871 LOOP_VINFO_DATAREFS (res).create (10);
872 LOOP_VINFO_DDRS (res).create (10 * 10);
873 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
874 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
875 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
876 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
877 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
878 LOOP_VINFO_GROUPED_STORES (res).create (10);
879 LOOP_VINFO_REDUCTIONS (res).create (10);
880 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
881 LOOP_VINFO_SLP_INSTANCES (res).create (10);
882 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
883 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
884 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
885 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
887 return res;
891 /* Function destroy_loop_vec_info.
893 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
894 stmts in the loop. */
896 void
897 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
899 struct loop *loop;
900 basic_block *bbs;
901 int nbbs;
902 gimple_stmt_iterator si;
903 int j;
904 vec<slp_instance> slp_instances;
905 slp_instance instance;
906 bool swapped;
908 if (!loop_vinfo)
909 return;
911 loop = LOOP_VINFO_LOOP (loop_vinfo);
913 bbs = LOOP_VINFO_BBS (loop_vinfo);
914 nbbs = clean_stmts ? loop->num_nodes : 0;
915 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
917 for (j = 0; j < nbbs; j++)
919 basic_block bb = bbs[j];
920 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
921 free_stmt_vec_info (gsi_stmt (si));
923 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
925 gimple stmt = gsi_stmt (si);
927 /* We may have broken canonical form by moving a constant
928 into RHS1 of a commutative op. Fix such occurrences. */
929 if (swapped && is_gimple_assign (stmt))
931 enum tree_code code = gimple_assign_rhs_code (stmt);
933 if ((code == PLUS_EXPR
934 || code == POINTER_PLUS_EXPR
935 || code == MULT_EXPR)
936 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
937 swap_tree_operands (stmt,
938 gimple_assign_rhs1_ptr (stmt),
939 gimple_assign_rhs2_ptr (stmt));
942 /* Free stmt_vec_info. */
943 free_stmt_vec_info (stmt);
944 gsi_next (&si);
948 free (LOOP_VINFO_BBS (loop_vinfo));
949 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
950 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
951 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
952 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
953 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
954 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
955 FOR_EACH_VEC_ELT (slp_instances, j, instance)
956 vect_free_slp_instance (instance);
958 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
959 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
960 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
961 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
963 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
964 LOOP_VINFO_PEELING_HTAB (loop_vinfo).dispose ();
966 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
968 free (loop_vinfo);
969 loop->aux = NULL;
973 /* Function vect_analyze_loop_1.
975 Apply a set of analyses on LOOP, and create a loop_vec_info struct
976 for it. The different analyses will record information in the
977 loop_vec_info struct. This is a subset of the analyses applied in
978 vect_analyze_loop, to be applied on an inner-loop nested in the loop
979 that is now considered for (outer-loop) vectorization. */
981 static loop_vec_info
982 vect_analyze_loop_1 (struct loop *loop)
984 loop_vec_info loop_vinfo;
986 if (dump_enabled_p ())
987 dump_printf_loc (MSG_NOTE, vect_location,
988 "===== analyze_loop_nest_1 =====");
990 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
992 loop_vinfo = vect_analyze_loop_form (loop);
993 if (!loop_vinfo)
995 if (dump_enabled_p ())
996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
997 "bad inner-loop form.");
998 return NULL;
1001 return loop_vinfo;
1005 /* Function vect_analyze_loop_form.
1007 Verify that certain CFG restrictions hold, including:
1008 - the loop has a pre-header
1009 - the loop has a single entry and exit
1010 - the loop exit condition is simple enough, and the number of iterations
1011 can be analyzed (a countable loop). */
1013 loop_vec_info
1014 vect_analyze_loop_form (struct loop *loop)
1016 loop_vec_info loop_vinfo;
1017 gimple loop_cond;
1018 tree number_of_iterations = NULL;
1019 loop_vec_info inner_loop_vinfo = NULL;
1021 if (dump_enabled_p ())
1022 dump_printf_loc (MSG_NOTE, vect_location,
1023 "=== vect_analyze_loop_form ===");
1025 /* Different restrictions apply when we are considering an inner-most loop,
1026 vs. an outer (nested) loop.
1027 (FORNOW. May want to relax some of these restrictions in the future). */
1029 if (!loop->inner)
1031 /* Inner-most loop. We currently require that the number of BBs is
1032 exactly 2 (the header and latch). Vectorizable inner-most loops
1033 look like this:
1035 (pre-header)
1037 header <--------+
1038 | | |
1039 | +--> latch --+
1041 (exit-bb) */
1043 if (loop->num_nodes != 2)
1045 if (dump_enabled_p ())
1046 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1047 "not vectorized: control flow in loop.");
1048 return NULL;
1051 if (empty_block_p (loop->header))
1053 if (dump_enabled_p ())
1054 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1055 "not vectorized: empty loop.");
1056 return NULL;
1059 else
1061 struct loop *innerloop = loop->inner;
1062 edge entryedge;
1064 /* Nested loop. We currently require that the loop is doubly-nested,
1065 contains a single inner loop, and the number of BBs is exactly 5.
1066 Vectorizable outer-loops look like this:
1068 (pre-header)
1070 header <---+
1072 inner-loop |
1074 tail ------+
1076 (exit-bb)
1078 The inner-loop has the properties expected of inner-most loops
1079 as described above. */
1081 if ((loop->inner)->inner || (loop->inner)->next)
1083 if (dump_enabled_p ())
1084 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1085 "not vectorized: multiple nested loops.");
1086 return NULL;
1089 /* Analyze the inner-loop. */
1090 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1091 if (!inner_loop_vinfo)
1093 if (dump_enabled_p ())
1094 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1095 "not vectorized: Bad inner loop.");
1096 return NULL;
1099 if (!expr_invariant_in_loop_p (loop,
1100 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1102 if (dump_enabled_p ())
1103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1104 "not vectorized: inner-loop count not invariant.");
1105 destroy_loop_vec_info (inner_loop_vinfo, true);
1106 return NULL;
1109 if (loop->num_nodes != 5)
1111 if (dump_enabled_p ())
1112 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1113 "not vectorized: control flow in loop.");
1114 destroy_loop_vec_info (inner_loop_vinfo, true);
1115 return NULL;
1118 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1119 entryedge = EDGE_PRED (innerloop->header, 0);
1120 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1121 entryedge = EDGE_PRED (innerloop->header, 1);
1123 if (entryedge->src != loop->header
1124 || !single_exit (innerloop)
1125 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1127 if (dump_enabled_p ())
1128 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1129 "not vectorized: unsupported outerloop form.");
1130 destroy_loop_vec_info (inner_loop_vinfo, true);
1131 return NULL;
1134 if (dump_enabled_p ())
1135 dump_printf_loc (MSG_NOTE, vect_location,
1136 "Considering outer-loop vectorization.");
1139 if (!single_exit (loop)
1140 || EDGE_COUNT (loop->header->preds) != 2)
1142 if (dump_enabled_p ())
1144 if (!single_exit (loop))
1145 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1146 "not vectorized: multiple exits.");
1147 else if (EDGE_COUNT (loop->header->preds) != 2)
1148 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1149 "not vectorized: too many incoming edges.");
1151 if (inner_loop_vinfo)
1152 destroy_loop_vec_info (inner_loop_vinfo, true);
1153 return NULL;
1156 /* We assume that the loop exit condition is at the end of the loop. i.e,
1157 that the loop is represented as a do-while (with a proper if-guard
1158 before the loop if needed), where the loop header contains all the
1159 executable statements, and the latch is empty. */
1160 if (!empty_block_p (loop->latch)
1161 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1163 if (dump_enabled_p ())
1164 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1165 "not vectorized: latch block not empty.");
1166 if (inner_loop_vinfo)
1167 destroy_loop_vec_info (inner_loop_vinfo, true);
1168 return NULL;
1171 /* Make sure there exists a single-predecessor exit bb: */
1172 if (!single_pred_p (single_exit (loop)->dest))
1174 edge e = single_exit (loop);
1175 if (!(e->flags & EDGE_ABNORMAL))
1177 split_loop_exit_edge (e);
1178 if (dump_enabled_p ())
1179 dump_printf (MSG_NOTE, "split exit edge.");
1181 else
1183 if (dump_enabled_p ())
1184 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1185 "not vectorized: abnormal loop exit edge.");
1186 if (inner_loop_vinfo)
1187 destroy_loop_vec_info (inner_loop_vinfo, true);
1188 return NULL;
1192 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1193 if (!loop_cond)
1195 if (dump_enabled_p ())
1196 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1197 "not vectorized: complicated exit condition.");
1198 if (inner_loop_vinfo)
1199 destroy_loop_vec_info (inner_loop_vinfo, true);
1200 return NULL;
1203 if (!number_of_iterations)
1205 if (dump_enabled_p ())
1206 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1207 "not vectorized: number of iterations cannot be "
1208 "computed.");
1209 if (inner_loop_vinfo)
1210 destroy_loop_vec_info (inner_loop_vinfo, true);
1211 return NULL;
1214 if (chrec_contains_undetermined (number_of_iterations))
1216 if (dump_enabled_p ())
1217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1218 "Infinite number of iterations.");
1219 if (inner_loop_vinfo)
1220 destroy_loop_vec_info (inner_loop_vinfo, true);
1221 return NULL;
1224 if (!NITERS_KNOWN_P (number_of_iterations))
1226 if (dump_enabled_p ())
1228 dump_printf_loc (MSG_NOTE, vect_location,
1229 "Symbolic number of iterations is ");
1230 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1233 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1235 if (dump_enabled_p ())
1236 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1237 "not vectorized: number of iterations = 0.");
1238 if (inner_loop_vinfo)
1239 destroy_loop_vec_info (inner_loop_vinfo, true);
1240 return NULL;
1243 loop_vinfo = new_loop_vec_info (loop);
1244 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1245 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1247 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1249 /* CHECKME: May want to keep it around it in the future. */
1250 if (inner_loop_vinfo)
1251 destroy_loop_vec_info (inner_loop_vinfo, false);
1253 gcc_assert (!loop->aux);
1254 loop->aux = loop_vinfo;
1255 return loop_vinfo;
1259 /* Function vect_analyze_loop_operations.
1261 Scan the loop stmts and make sure they are all vectorizable. */
1263 static bool
1264 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1266 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1267 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1268 int nbbs = loop->num_nodes;
1269 gimple_stmt_iterator si;
1270 unsigned int vectorization_factor = 0;
1271 int i;
1272 gimple phi;
1273 stmt_vec_info stmt_info;
1274 bool need_to_vectorize = false;
1275 int min_profitable_iters;
1276 int min_scalar_loop_bound;
1277 unsigned int th;
1278 bool only_slp_in_loop = true, ok;
1279 HOST_WIDE_INT max_niter;
1280 HOST_WIDE_INT estimated_niter;
1281 int min_profitable_estimate;
1283 if (dump_enabled_p ())
1284 dump_printf_loc (MSG_NOTE, vect_location,
1285 "=== vect_analyze_loop_operations ===");
1287 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1288 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1289 if (slp)
1291 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1292 vectorization factor of the loop is the unrolling factor required by
1293 the SLP instances. If that unrolling factor is 1, we say, that we
1294 perform pure SLP on loop - cross iteration parallelism is not
1295 exploited. */
1296 for (i = 0; i < nbbs; i++)
1298 basic_block bb = bbs[i];
1299 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1301 gimple stmt = gsi_stmt (si);
1302 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1303 gcc_assert (stmt_info);
1304 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1305 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1306 && !PURE_SLP_STMT (stmt_info))
1307 /* STMT needs both SLP and loop-based vectorization. */
1308 only_slp_in_loop = false;
1312 if (only_slp_in_loop)
1313 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1314 else
1315 vectorization_factor = least_common_multiple (vectorization_factor,
1316 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1318 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1319 if (dump_enabled_p ())
1320 dump_printf_loc (MSG_NOTE, vect_location,
1321 "Updating vectorization factor to %d ",
1322 vectorization_factor);
1325 for (i = 0; i < nbbs; i++)
1327 basic_block bb = bbs[i];
1329 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1331 phi = gsi_stmt (si);
1332 ok = true;
1334 stmt_info = vinfo_for_stmt (phi);
1335 if (dump_enabled_p ())
1337 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1338 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1341 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1342 (i.e., a phi in the tail of the outer-loop). */
1343 if (! is_loop_header_bb_p (bb))
1345 /* FORNOW: we currently don't support the case that these phis
1346 are not used in the outerloop (unless it is double reduction,
1347 i.e., this phi is vect_reduction_def), cause this case
1348 requires to actually do something here. */
1349 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1350 || STMT_VINFO_LIVE_P (stmt_info))
1351 && STMT_VINFO_DEF_TYPE (stmt_info)
1352 != vect_double_reduction_def)
1354 if (dump_enabled_p ())
1355 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1356 "Unsupported loop-closed phi in "
1357 "outer-loop.");
1358 return false;
1361 /* If PHI is used in the outer loop, we check that its operand
1362 is defined in the inner loop. */
1363 if (STMT_VINFO_RELEVANT_P (stmt_info))
1365 tree phi_op;
1366 gimple op_def_stmt;
1368 if (gimple_phi_num_args (phi) != 1)
1369 return false;
1371 phi_op = PHI_ARG_DEF (phi, 0);
1372 if (TREE_CODE (phi_op) != SSA_NAME)
1373 return false;
1375 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1376 if (!op_def_stmt
1377 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1378 || !vinfo_for_stmt (op_def_stmt))
1379 return false;
1381 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1382 != vect_used_in_outer
1383 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1384 != vect_used_in_outer_by_reduction)
1385 return false;
1388 continue;
1391 gcc_assert (stmt_info);
1393 if (STMT_VINFO_LIVE_P (stmt_info))
1395 /* FORNOW: not yet supported. */
1396 if (dump_enabled_p ())
1397 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1398 "not vectorized: value used after loop.");
1399 return false;
1402 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1403 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1405 /* A scalar-dependence cycle that we don't support. */
1406 if (dump_enabled_p ())
1407 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1408 "not vectorized: scalar dependence cycle.");
1409 return false;
1412 if (STMT_VINFO_RELEVANT_P (stmt_info))
1414 need_to_vectorize = true;
1415 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1416 ok = vectorizable_induction (phi, NULL, NULL);
1419 if (!ok)
1421 if (dump_enabled_p ())
1423 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1424 "not vectorized: relevant phi not "
1425 "supported: ");
1426 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1428 return false;
1432 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1434 gimple stmt = gsi_stmt (si);
1435 if (!gimple_clobber_p (stmt)
1436 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1437 return false;
1439 } /* bbs */
1441 /* All operations in the loop are either irrelevant (deal with loop
1442 control, or dead), or only used outside the loop and can be moved
1443 out of the loop (e.g. invariants, inductions). The loop can be
1444 optimized away by scalar optimizations. We're better off not
1445 touching this loop. */
1446 if (!need_to_vectorize)
1448 if (dump_enabled_p ())
1449 dump_printf_loc (MSG_NOTE, vect_location,
1450 "All the computation can be taken out of the loop.");
1451 if (dump_enabled_p ())
1452 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1453 "not vectorized: redundant loop. no profit to "
1454 "vectorize.");
1455 return false;
1458 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1459 dump_printf_loc (MSG_NOTE, vect_location,
1460 "vectorization_factor = %d, niters = "
1461 HOST_WIDE_INT_PRINT_DEC, vectorization_factor,
1462 LOOP_VINFO_INT_NITERS (loop_vinfo));
1464 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1465 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1466 || ((max_niter = max_stmt_executions_int (loop)) != -1
1467 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1469 if (dump_enabled_p ())
1470 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1471 "not vectorized: iteration count too small.");
1472 if (dump_enabled_p ())
1473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1474 "not vectorized: iteration count smaller than "
1475 "vectorization factor.");
1476 return false;
1479 /* Analyze cost. Decide if worth while to vectorize. */
1481 /* Once VF is set, SLP costs should be updated since the number of created
1482 vector stmts depends on VF. */
1483 vect_update_slp_costs_according_to_vf (loop_vinfo);
1485 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1486 &min_profitable_estimate);
1487 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1489 if (min_profitable_iters < 0)
1491 if (dump_enabled_p ())
1492 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1493 "not vectorized: vectorization not profitable.");
1494 if (dump_enabled_p ())
1495 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1496 "not vectorized: vector version will never be "
1497 "profitable.");
1498 return false;
1501 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1502 * vectorization_factor) - 1);
1505 /* Use the cost model only if it is more conservative than user specified
1506 threshold. */
1508 th = (unsigned) min_scalar_loop_bound;
1509 if (min_profitable_iters
1510 && (!min_scalar_loop_bound
1511 || min_profitable_iters > min_scalar_loop_bound))
1512 th = (unsigned) min_profitable_iters;
1514 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1515 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1517 if (dump_enabled_p ())
1518 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1519 "not vectorized: vectorization not profitable.");
1520 if (dump_enabled_p ())
1521 dump_printf_loc (MSG_NOTE, vect_location,
1522 "not vectorized: iteration count smaller than user "
1523 "specified loop bound parameter or minimum profitable "
1524 "iterations (whichever is more conservative).");
1525 return false;
1528 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1529 && ((unsigned HOST_WIDE_INT) estimated_niter
1530 <= MAX (th, (unsigned)min_profitable_estimate)))
1532 if (dump_enabled_p ())
1533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1534 "not vectorized: estimated iteration count too "
1535 "small.");
1536 if (dump_enabled_p ())
1537 dump_printf_loc (MSG_NOTE, vect_location,
1538 "not vectorized: estimated iteration count smaller "
1539 "than specified loop bound parameter or minimum "
1540 "profitable iterations (whichever is more "
1541 "conservative).");
1542 return false;
1545 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1546 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1547 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1549 if (dump_enabled_p ())
1550 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required.");
1551 if (!vect_can_advance_ivs_p (loop_vinfo))
1553 if (dump_enabled_p ())
1554 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1555 "not vectorized: can't create epilog loop 1.");
1556 return false;
1558 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1560 if (dump_enabled_p ())
1561 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1562 "not vectorized: can't create epilog loop 2.");
1563 return false;
1567 return true;
1571 /* Function vect_analyze_loop_2.
1573 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1574 for it. The different analyses will record information in the
1575 loop_vec_info struct. */
1576 static bool
1577 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1579 bool ok, slp = false;
1580 int max_vf = MAX_VECTORIZATION_FACTOR;
1581 int min_vf = 2;
1583 /* Find all data references in the loop (which correspond to vdefs/vuses)
1584 and analyze their evolution in the loop. Also adjust the minimal
1585 vectorization factor according to the loads and stores.
1587 FORNOW: Handle only simple, array references, which
1588 alignment can be forced, and aligned pointer-references. */
1590 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1591 if (!ok)
1593 if (dump_enabled_p ())
1594 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1595 "bad data references.");
1596 return false;
1599 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1600 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1602 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1603 if (!ok)
1605 if (dump_enabled_p ())
1606 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1607 "bad data access.");
1608 return false;
1611 /* Classify all cross-iteration scalar data-flow cycles.
1612 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1614 vect_analyze_scalar_cycles (loop_vinfo);
1616 vect_pattern_recog (loop_vinfo, NULL);
1618 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1620 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1621 if (!ok)
1623 if (dump_enabled_p ())
1624 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1625 "unexpected pattern.");
1626 return false;
1629 /* Analyze data dependences between the data-refs in the loop
1630 and adjust the maximum vectorization factor according to
1631 the dependences.
1632 FORNOW: fail at the first data dependence that we encounter. */
1634 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1635 if (!ok
1636 || max_vf < min_vf)
1638 if (dump_enabled_p ())
1639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1640 "bad data dependence.");
1641 return false;
1644 ok = vect_determine_vectorization_factor (loop_vinfo);
1645 if (!ok)
1647 if (dump_enabled_p ())
1648 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1649 "can't determine vectorization factor.");
1650 return false;
1652 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1654 if (dump_enabled_p ())
1655 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1656 "bad data dependence.");
1657 return false;
1660 /* Analyze the alignment of the data-refs in the loop.
1661 Fail if a data reference is found that cannot be vectorized. */
1663 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1664 if (!ok)
1666 if (dump_enabled_p ())
1667 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1668 "bad data alignment.");
1669 return false;
1672 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1673 It is important to call pruning after vect_analyze_data_ref_accesses,
1674 since we use grouping information gathered by interleaving analysis. */
1675 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1676 if (!ok)
1678 if (dump_enabled_p ())
1679 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1680 "too long list of versioning for alias "
1681 "run-time tests.");
1682 return false;
1685 /* This pass will decide on using loop versioning and/or loop peeling in
1686 order to enhance the alignment of data references in the loop. */
1688 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1689 if (!ok)
1691 if (dump_enabled_p ())
1692 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1693 "bad data alignment.");
1694 return false;
1697 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1698 ok = vect_analyze_slp (loop_vinfo, NULL);
1699 if (ok)
1701 /* Decide which possible SLP instances to SLP. */
1702 slp = vect_make_slp_decision (loop_vinfo);
1704 /* Find stmts that need to be both vectorized and SLPed. */
1705 vect_detect_hybrid_slp (loop_vinfo);
1707 else
1708 return false;
1710 /* Scan all the operations in the loop and make sure they are
1711 vectorizable. */
1713 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1714 if (!ok)
1716 if (dump_enabled_p ())
1717 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1718 "bad operation or unsupported loop bound.");
1719 return false;
1722 return true;
1725 /* Function vect_analyze_loop.
1727 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1728 for it. The different analyses will record information in the
1729 loop_vec_info struct. */
1730 loop_vec_info
1731 vect_analyze_loop (struct loop *loop)
1733 loop_vec_info loop_vinfo;
1734 unsigned int vector_sizes;
1736 /* Autodetect first vector size we try. */
1737 current_vector_size = 0;
1738 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1740 if (dump_enabled_p ())
1741 dump_printf_loc (MSG_NOTE, vect_location,
1742 "===== analyze_loop_nest =====");
1744 if (loop_outer (loop)
1745 && loop_vec_info_for_loop (loop_outer (loop))
1746 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1748 if (dump_enabled_p ())
1749 dump_printf_loc (MSG_NOTE, vect_location,
1750 "outer-loop already vectorized.");
1751 return NULL;
1754 while (1)
1756 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1757 loop_vinfo = vect_analyze_loop_form (loop);
1758 if (!loop_vinfo)
1760 if (dump_enabled_p ())
1761 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1762 "bad loop form.");
1763 return NULL;
1766 if (vect_analyze_loop_2 (loop_vinfo))
1768 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1770 return loop_vinfo;
1773 destroy_loop_vec_info (loop_vinfo, true);
1775 vector_sizes &= ~current_vector_size;
1776 if (vector_sizes == 0
1777 || current_vector_size == 0)
1778 return NULL;
1780 /* Try the next biggest vector size. */
1781 current_vector_size = 1 << floor_log2 (vector_sizes);
1782 if (dump_enabled_p ())
1783 dump_printf_loc (MSG_NOTE, vect_location,
1784 "***** Re-trying analysis with "
1785 "vector size %d\n", current_vector_size);
1790 /* Function reduction_code_for_scalar_code
1792 Input:
1793 CODE - tree_code of a reduction operations.
1795 Output:
1796 REDUC_CODE - the corresponding tree-code to be used to reduce the
1797 vector of partial results into a single scalar result (which
1798 will also reside in a vector) or ERROR_MARK if the operation is
1799 a supported reduction operation, but does not have such tree-code.
1801 Return FALSE if CODE currently cannot be vectorized as reduction. */
1803 static bool
1804 reduction_code_for_scalar_code (enum tree_code code,
1805 enum tree_code *reduc_code)
1807 switch (code)
1809 case MAX_EXPR:
1810 *reduc_code = REDUC_MAX_EXPR;
1811 return true;
1813 case MIN_EXPR:
1814 *reduc_code = REDUC_MIN_EXPR;
1815 return true;
1817 case PLUS_EXPR:
1818 *reduc_code = REDUC_PLUS_EXPR;
1819 return true;
1821 case MULT_EXPR:
1822 case MINUS_EXPR:
1823 case BIT_IOR_EXPR:
1824 case BIT_XOR_EXPR:
1825 case BIT_AND_EXPR:
1826 *reduc_code = ERROR_MARK;
1827 return true;
1829 default:
1830 return false;
1835 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1836 STMT is printed with a message MSG. */
1838 static void
1839 report_vect_op (int msg_type, gimple stmt, const char *msg)
1841 dump_printf_loc (msg_type, vect_location, "%s", msg);
1842 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1846 /* Detect SLP reduction of the form:
1848 #a1 = phi <a5, a0>
1849 a2 = operation (a1)
1850 a3 = operation (a2)
1851 a4 = operation (a3)
1852 a5 = operation (a4)
1854 #a = phi <a5>
1856 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1857 FIRST_STMT is the first reduction stmt in the chain
1858 (a2 = operation (a1)).
1860 Return TRUE if a reduction chain was detected. */
1862 static bool
1863 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1865 struct loop *loop = (gimple_bb (phi))->loop_father;
1866 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1867 enum tree_code code;
1868 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1869 stmt_vec_info use_stmt_info, current_stmt_info;
1870 tree lhs;
1871 imm_use_iterator imm_iter;
1872 use_operand_p use_p;
1873 int nloop_uses, size = 0, n_out_of_loop_uses;
1874 bool found = false;
1876 if (loop != vect_loop)
1877 return false;
1879 lhs = PHI_RESULT (phi);
1880 code = gimple_assign_rhs_code (first_stmt);
1881 while (1)
1883 nloop_uses = 0;
1884 n_out_of_loop_uses = 0;
1885 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1887 gimple use_stmt = USE_STMT (use_p);
1888 if (is_gimple_debug (use_stmt))
1889 continue;
1891 use_stmt = USE_STMT (use_p);
1893 /* Check if we got back to the reduction phi. */
1894 if (use_stmt == phi)
1896 loop_use_stmt = use_stmt;
1897 found = true;
1898 break;
1901 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1903 if (vinfo_for_stmt (use_stmt)
1904 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1906 loop_use_stmt = use_stmt;
1907 nloop_uses++;
1910 else
1911 n_out_of_loop_uses++;
1913 /* There are can be either a single use in the loop or two uses in
1914 phi nodes. */
1915 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1916 return false;
1919 if (found)
1920 break;
1922 /* We reached a statement with no loop uses. */
1923 if (nloop_uses == 0)
1924 return false;
1926 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1927 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1928 return false;
1930 if (!is_gimple_assign (loop_use_stmt)
1931 || code != gimple_assign_rhs_code (loop_use_stmt)
1932 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1933 return false;
1935 /* Insert USE_STMT into reduction chain. */
1936 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
1937 if (current_stmt)
1939 current_stmt_info = vinfo_for_stmt (current_stmt);
1940 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
1941 GROUP_FIRST_ELEMENT (use_stmt_info)
1942 = GROUP_FIRST_ELEMENT (current_stmt_info);
1944 else
1945 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
1947 lhs = gimple_assign_lhs (loop_use_stmt);
1948 current_stmt = loop_use_stmt;
1949 size++;
1952 if (!found || loop_use_stmt != phi || size < 2)
1953 return false;
1955 /* Swap the operands, if needed, to make the reduction operand be the second
1956 operand. */
1957 lhs = PHI_RESULT (phi);
1958 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1959 while (next_stmt)
1961 if (gimple_assign_rhs2 (next_stmt) == lhs)
1963 tree op = gimple_assign_rhs1 (next_stmt);
1964 gimple def_stmt = NULL;
1966 if (TREE_CODE (op) == SSA_NAME)
1967 def_stmt = SSA_NAME_DEF_STMT (op);
1969 /* Check that the other def is either defined in the loop
1970 ("vect_internal_def"), or it's an induction (defined by a
1971 loop-header phi-node). */
1972 if (def_stmt
1973 && gimple_bb (def_stmt)
1974 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1975 && (is_gimple_assign (def_stmt)
1976 || is_gimple_call (def_stmt)
1977 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1978 == vect_induction_def
1979 || (gimple_code (def_stmt) == GIMPLE_PHI
1980 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1981 == vect_internal_def
1982 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1984 lhs = gimple_assign_lhs (next_stmt);
1985 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1986 continue;
1989 return false;
1991 else
1993 tree op = gimple_assign_rhs2 (next_stmt);
1994 gimple def_stmt = NULL;
1996 if (TREE_CODE (op) == SSA_NAME)
1997 def_stmt = SSA_NAME_DEF_STMT (op);
1999 /* Check that the other def is either defined in the loop
2000 ("vect_internal_def"), or it's an induction (defined by a
2001 loop-header phi-node). */
2002 if (def_stmt
2003 && gimple_bb (def_stmt)
2004 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2005 && (is_gimple_assign (def_stmt)
2006 || is_gimple_call (def_stmt)
2007 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2008 == vect_induction_def
2009 || (gimple_code (def_stmt) == GIMPLE_PHI
2010 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2011 == vect_internal_def
2012 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2014 if (dump_enabled_p ())
2016 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2017 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2020 swap_tree_operands (next_stmt,
2021 gimple_assign_rhs1_ptr (next_stmt),
2022 gimple_assign_rhs2_ptr (next_stmt));
2023 update_stmt (next_stmt);
2025 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2026 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2028 else
2029 return false;
2032 lhs = gimple_assign_lhs (next_stmt);
2033 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2036 /* Save the chain for further analysis in SLP detection. */
2037 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2038 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2039 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2041 return true;
2045 /* Function vect_is_simple_reduction_1
2047 (1) Detect a cross-iteration def-use cycle that represents a simple
2048 reduction computation. We look for the following pattern:
2050 loop_header:
2051 a1 = phi < a0, a2 >
2052 a3 = ...
2053 a2 = operation (a3, a1)
2055 such that:
2056 1. operation is commutative and associative and it is safe to
2057 change the order of the computation (if CHECK_REDUCTION is true)
2058 2. no uses for a2 in the loop (a2 is used out of the loop)
2059 3. no uses of a1 in the loop besides the reduction operation
2060 4. no uses of a1 outside the loop.
2062 Conditions 1,4 are tested here.
2063 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2065 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2066 nested cycles, if CHECK_REDUCTION is false.
2068 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2069 reductions:
2071 a1 = phi < a0, a2 >
2072 inner loop (def of a3)
2073 a2 = phi < a3 >
2075 If MODIFY is true it tries also to rework the code in-place to enable
2076 detection of more reduction patterns. For the time being we rewrite
2077 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2080 static gimple
2081 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2082 bool check_reduction, bool *double_reduc,
2083 bool modify)
2085 struct loop *loop = (gimple_bb (phi))->loop_father;
2086 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2087 edge latch_e = loop_latch_edge (loop);
2088 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2089 gimple def_stmt, def1 = NULL, def2 = NULL;
2090 enum tree_code orig_code, code;
2091 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2092 tree type;
2093 int nloop_uses;
2094 tree name;
2095 imm_use_iterator imm_iter;
2096 use_operand_p use_p;
2097 bool phi_def;
2099 *double_reduc = false;
2101 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2102 otherwise, we assume outer loop vectorization. */
2103 gcc_assert ((check_reduction && loop == vect_loop)
2104 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2106 name = PHI_RESULT (phi);
2107 nloop_uses = 0;
2108 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2110 gimple use_stmt = USE_STMT (use_p);
2111 if (is_gimple_debug (use_stmt))
2112 continue;
2114 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2116 if (dump_enabled_p ())
2117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2118 "intermediate value used outside loop.");
2120 return NULL;
2123 if (vinfo_for_stmt (use_stmt)
2124 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2125 nloop_uses++;
2126 if (nloop_uses > 1)
2128 if (dump_enabled_p ())
2129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2130 "reduction used in loop.");
2131 return NULL;
2135 if (TREE_CODE (loop_arg) != SSA_NAME)
2137 if (dump_enabled_p ())
2139 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2140 "reduction: not ssa_name: ");
2141 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2143 return NULL;
2146 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2147 if (!def_stmt)
2149 if (dump_enabled_p ())
2150 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2151 "reduction: no def_stmt.");
2152 return NULL;
2155 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2157 if (dump_enabled_p ())
2158 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2159 return NULL;
2162 if (is_gimple_assign (def_stmt))
2164 name = gimple_assign_lhs (def_stmt);
2165 phi_def = false;
2167 else
2169 name = PHI_RESULT (def_stmt);
2170 phi_def = true;
2173 nloop_uses = 0;
2174 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2176 gimple use_stmt = USE_STMT (use_p);
2177 if (is_gimple_debug (use_stmt))
2178 continue;
2179 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2180 && vinfo_for_stmt (use_stmt)
2181 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2182 nloop_uses++;
2183 if (nloop_uses > 1)
2185 if (dump_enabled_p ())
2186 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2187 "reduction used in loop.");
2188 return NULL;
2192 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2193 defined in the inner loop. */
2194 if (phi_def)
2196 op1 = PHI_ARG_DEF (def_stmt, 0);
2198 if (gimple_phi_num_args (def_stmt) != 1
2199 || TREE_CODE (op1) != SSA_NAME)
2201 if (dump_enabled_p ())
2202 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2203 "unsupported phi node definition.");
2205 return NULL;
2208 def1 = SSA_NAME_DEF_STMT (op1);
2209 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2210 && loop->inner
2211 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2212 && is_gimple_assign (def1))
2214 if (dump_enabled_p ())
2215 report_vect_op (MSG_NOTE, def_stmt,
2216 "detected double reduction: ");
2218 *double_reduc = true;
2219 return def_stmt;
2222 return NULL;
2225 code = orig_code = gimple_assign_rhs_code (def_stmt);
2227 /* We can handle "res -= x[i]", which is non-associative by
2228 simply rewriting this into "res += -x[i]". Avoid changing
2229 gimple instruction for the first simple tests and only do this
2230 if we're allowed to change code at all. */
2231 if (code == MINUS_EXPR
2232 && modify
2233 && (op1 = gimple_assign_rhs1 (def_stmt))
2234 && TREE_CODE (op1) == SSA_NAME
2235 && SSA_NAME_DEF_STMT (op1) == phi)
2236 code = PLUS_EXPR;
2238 if (check_reduction
2239 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2241 if (dump_enabled_p ())
2242 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2243 "reduction: not commutative/associative: ");
2244 return NULL;
2247 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2249 if (code != COND_EXPR)
2251 if (dump_enabled_p ())
2252 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2253 "reduction: not binary operation: ");
2255 return NULL;
2258 op3 = gimple_assign_rhs1 (def_stmt);
2259 if (COMPARISON_CLASS_P (op3))
2261 op4 = TREE_OPERAND (op3, 1);
2262 op3 = TREE_OPERAND (op3, 0);
2265 op1 = gimple_assign_rhs2 (def_stmt);
2266 op2 = gimple_assign_rhs3 (def_stmt);
2268 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2270 if (dump_enabled_p ())
2271 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2272 "reduction: uses not ssa_names: ");
2274 return NULL;
2277 else
2279 op1 = gimple_assign_rhs1 (def_stmt);
2280 op2 = gimple_assign_rhs2 (def_stmt);
2282 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2284 if (dump_enabled_p ())
2285 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2286 "reduction: uses not ssa_names: ");
2288 return NULL;
2292 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2293 if ((TREE_CODE (op1) == SSA_NAME
2294 && !types_compatible_p (type,TREE_TYPE (op1)))
2295 || (TREE_CODE (op2) == SSA_NAME
2296 && !types_compatible_p (type, TREE_TYPE (op2)))
2297 || (op3 && TREE_CODE (op3) == SSA_NAME
2298 && !types_compatible_p (type, TREE_TYPE (op3)))
2299 || (op4 && TREE_CODE (op4) == SSA_NAME
2300 && !types_compatible_p (type, TREE_TYPE (op4))))
2302 if (dump_enabled_p ())
2304 dump_printf_loc (MSG_NOTE, vect_location,
2305 "reduction: multiple types: operation type: ");
2306 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2307 dump_printf (MSG_NOTE, ", operands types: ");
2308 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2309 TREE_TYPE (op1));
2310 dump_printf (MSG_NOTE, ",");
2311 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2312 TREE_TYPE (op2));
2313 if (op3)
2315 dump_printf (MSG_NOTE, ",");
2316 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2317 TREE_TYPE (op3));
2320 if (op4)
2322 dump_printf (MSG_NOTE, ",");
2323 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2324 TREE_TYPE (op4));
2328 return NULL;
2331 /* Check that it's ok to change the order of the computation.
2332 Generally, when vectorizing a reduction we change the order of the
2333 computation. This may change the behavior of the program in some
2334 cases, so we need to check that this is ok. One exception is when
2335 vectorizing an outer-loop: the inner-loop is executed sequentially,
2336 and therefore vectorizing reductions in the inner-loop during
2337 outer-loop vectorization is safe. */
2339 /* CHECKME: check for !flag_finite_math_only too? */
2340 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2341 && check_reduction)
2343 /* Changing the order of operations changes the semantics. */
2344 if (dump_enabled_p ())
2345 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2346 "reduction: unsafe fp math optimization: ");
2347 return NULL;
2349 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2350 && check_reduction)
2352 /* Changing the order of operations changes the semantics. */
2353 if (dump_enabled_p ())
2354 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2355 "reduction: unsafe int math optimization: ");
2356 return NULL;
2358 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2360 /* Changing the order of operations changes the semantics. */
2361 if (dump_enabled_p ())
2362 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2363 "reduction: unsafe fixed-point math optimization: ");
2364 return NULL;
2367 /* If we detected "res -= x[i]" earlier, rewrite it into
2368 "res += -x[i]" now. If this turns out to be useless reassoc
2369 will clean it up again. */
2370 if (orig_code == MINUS_EXPR)
2372 tree rhs = gimple_assign_rhs2 (def_stmt);
2373 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2374 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2375 rhs, NULL);
2376 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2377 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2378 loop_info, NULL));
2379 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2380 gimple_assign_set_rhs2 (def_stmt, negrhs);
2381 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2382 update_stmt (def_stmt);
2385 /* Reduction is safe. We're dealing with one of the following:
2386 1) integer arithmetic and no trapv
2387 2) floating point arithmetic, and special flags permit this optimization
2388 3) nested cycle (i.e., outer loop vectorization). */
2389 if (TREE_CODE (op1) == SSA_NAME)
2390 def1 = SSA_NAME_DEF_STMT (op1);
2392 if (TREE_CODE (op2) == SSA_NAME)
2393 def2 = SSA_NAME_DEF_STMT (op2);
2395 if (code != COND_EXPR
2396 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2398 if (dump_enabled_p ())
2399 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2400 return NULL;
2403 /* Check that one def is the reduction def, defined by PHI,
2404 the other def is either defined in the loop ("vect_internal_def"),
2405 or it's an induction (defined by a loop-header phi-node). */
2407 if (def2 && def2 == phi
2408 && (code == COND_EXPR
2409 || !def1 || gimple_nop_p (def1)
2410 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2411 && (is_gimple_assign (def1)
2412 || is_gimple_call (def1)
2413 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2414 == vect_induction_def
2415 || (gimple_code (def1) == GIMPLE_PHI
2416 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2417 == vect_internal_def
2418 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2420 if (dump_enabled_p ())
2421 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2422 return def_stmt;
2425 if (def1 && def1 == phi
2426 && (code == COND_EXPR
2427 || !def2 || gimple_nop_p (def2)
2428 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2429 && (is_gimple_assign (def2)
2430 || is_gimple_call (def2)
2431 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2432 == vect_induction_def
2433 || (gimple_code (def2) == GIMPLE_PHI
2434 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2435 == vect_internal_def
2436 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2438 if (check_reduction)
2440 /* Swap operands (just for simplicity - so that the rest of the code
2441 can assume that the reduction variable is always the last (second)
2442 argument). */
2443 if (dump_enabled_p ())
2444 report_vect_op (MSG_NOTE, def_stmt,
2445 "detected reduction: need to swap operands: ");
2447 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2448 gimple_assign_rhs2_ptr (def_stmt));
2450 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2451 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2453 else
2455 if (dump_enabled_p ())
2456 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2459 return def_stmt;
2462 /* Try to find SLP reduction chain. */
2463 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2465 if (dump_enabled_p ())
2466 report_vect_op (MSG_NOTE, def_stmt,
2467 "reduction: detected reduction chain: ");
2469 return def_stmt;
2472 if (dump_enabled_p ())
2473 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2474 "reduction: unknown pattern: ");
2476 return NULL;
2479 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2480 in-place. Arguments as there. */
2482 static gimple
2483 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2484 bool check_reduction, bool *double_reduc)
2486 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2487 double_reduc, false);
2490 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2491 in-place if it enables detection of more reductions. Arguments
2492 as there. */
2494 gimple
2495 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2496 bool check_reduction, bool *double_reduc)
2498 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2499 double_reduc, true);
2502 /* Calculate the cost of one scalar iteration of the loop. */
2504 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2506 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2507 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2508 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2509 int innerloop_iters, i, stmt_cost;
2511 /* Count statements in scalar loop. Using this as scalar cost for a single
2512 iteration for now.
2514 TODO: Add outer loop support.
2516 TODO: Consider assigning different costs to different scalar
2517 statements. */
2519 /* FORNOW. */
2520 innerloop_iters = 1;
2521 if (loop->inner)
2522 innerloop_iters = 50; /* FIXME */
2524 for (i = 0; i < nbbs; i++)
2526 gimple_stmt_iterator si;
2527 basic_block bb = bbs[i];
2529 if (bb->loop_father == loop->inner)
2530 factor = innerloop_iters;
2531 else
2532 factor = 1;
2534 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2536 gimple stmt = gsi_stmt (si);
2537 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2539 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2540 continue;
2542 /* Skip stmts that are not vectorized inside the loop. */
2543 if (stmt_info
2544 && !STMT_VINFO_RELEVANT_P (stmt_info)
2545 && (!STMT_VINFO_LIVE_P (stmt_info)
2546 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2547 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2548 continue;
2550 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2552 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2553 stmt_cost = vect_get_stmt_cost (scalar_load);
2554 else
2555 stmt_cost = vect_get_stmt_cost (scalar_store);
2557 else
2558 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2560 scalar_single_iter_cost += stmt_cost * factor;
2563 return scalar_single_iter_cost;
2566 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2568 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2569 int *peel_iters_epilogue,
2570 int scalar_single_iter_cost,
2571 stmt_vector_for_cost *prologue_cost_vec,
2572 stmt_vector_for_cost *epilogue_cost_vec)
2574 int retval = 0;
2575 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2577 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2579 *peel_iters_epilogue = vf/2;
2580 if (dump_enabled_p ())
2581 dump_printf_loc (MSG_NOTE, vect_location,
2582 "cost model: epilogue peel iters set to vf/2 "
2583 "because loop iterations are unknown .");
2585 /* If peeled iterations are known but number of scalar loop
2586 iterations are unknown, count a taken branch per peeled loop. */
2587 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2588 NULL, 0, vect_prologue);
2590 else
2592 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2593 peel_iters_prologue = niters < peel_iters_prologue ?
2594 niters : peel_iters_prologue;
2595 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2596 /* If we need to peel for gaps, but no peeling is required, we have to
2597 peel VF iterations. */
2598 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2599 *peel_iters_epilogue = vf;
2602 if (peel_iters_prologue)
2603 retval += record_stmt_cost (prologue_cost_vec,
2604 peel_iters_prologue * scalar_single_iter_cost,
2605 scalar_stmt, NULL, 0, vect_prologue);
2606 if (*peel_iters_epilogue)
2607 retval += record_stmt_cost (epilogue_cost_vec,
2608 *peel_iters_epilogue * scalar_single_iter_cost,
2609 scalar_stmt, NULL, 0, vect_epilogue);
2610 return retval;
2613 /* Function vect_estimate_min_profitable_iters
2615 Return the number of iterations required for the vector version of the
2616 loop to be profitable relative to the cost of the scalar version of the
2617 loop. */
2619 static void
2620 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2621 int *ret_min_profitable_niters,
2622 int *ret_min_profitable_estimate)
2624 int min_profitable_iters;
2625 int min_profitable_estimate;
2626 int peel_iters_prologue;
2627 int peel_iters_epilogue;
2628 unsigned vec_inside_cost = 0;
2629 int vec_outside_cost = 0;
2630 unsigned vec_prologue_cost = 0;
2631 unsigned vec_epilogue_cost = 0;
2632 int scalar_single_iter_cost = 0;
2633 int scalar_outside_cost = 0;
2634 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2635 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2636 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2638 /* Cost model disabled. */
2639 if (!flag_vect_cost_model)
2641 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.");
2642 *ret_min_profitable_niters = 0;
2643 *ret_min_profitable_estimate = 0;
2644 return;
2647 /* Requires loop versioning tests to handle misalignment. */
2648 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2650 /* FIXME: Make cost depend on complexity of individual check. */
2651 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2652 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2653 vect_prologue);
2654 dump_printf (MSG_NOTE,
2655 "cost model: Adding cost of checks for loop "
2656 "versioning to treat misalignment.\n");
2659 /* Requires loop versioning with alias checks. */
2660 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2662 /* FIXME: Make cost depend on complexity of individual check. */
2663 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2664 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2665 vect_prologue);
2666 dump_printf (MSG_NOTE,
2667 "cost model: Adding cost of checks for loop "
2668 "versioning aliasing.\n");
2671 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2672 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2673 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2674 vect_prologue);
2676 /* Count statements in scalar loop. Using this as scalar cost for a single
2677 iteration for now.
2679 TODO: Add outer loop support.
2681 TODO: Consider assigning different costs to different scalar
2682 statements. */
2684 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2686 /* Add additional cost for the peeled instructions in prologue and epilogue
2687 loop.
2689 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2690 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2692 TODO: Build an expression that represents peel_iters for prologue and
2693 epilogue to be used in a run-time test. */
2695 if (npeel < 0)
2697 peel_iters_prologue = vf/2;
2698 dump_printf (MSG_NOTE, "cost model: "
2699 "prologue peel iters set to vf/2.");
2701 /* If peeling for alignment is unknown, loop bound of main loop becomes
2702 unknown. */
2703 peel_iters_epilogue = vf/2;
2704 dump_printf (MSG_NOTE, "cost model: "
2705 "epilogue peel iters set to vf/2 because "
2706 "peeling for alignment is unknown.");
2708 /* If peeled iterations are unknown, count a taken branch and a not taken
2709 branch per peeled loop. Even if scalar loop iterations are known,
2710 vector iterations are not known since peeled prologue iterations are
2711 not known. Hence guards remain the same. */
2712 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2713 NULL, 0, vect_prologue);
2714 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2715 NULL, 0, vect_prologue);
2716 /* FORNOW: Don't attempt to pass individual scalar instructions to
2717 the model; just assume linear cost for scalar iterations. */
2718 (void) add_stmt_cost (target_cost_data,
2719 peel_iters_prologue * scalar_single_iter_cost,
2720 scalar_stmt, NULL, 0, vect_prologue);
2721 (void) add_stmt_cost (target_cost_data,
2722 peel_iters_epilogue * scalar_single_iter_cost,
2723 scalar_stmt, NULL, 0, vect_epilogue);
2725 else
2727 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2728 stmt_info_for_cost *si;
2729 int j;
2730 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2732 prologue_cost_vec.create (2);
2733 epilogue_cost_vec.create (2);
2734 peel_iters_prologue = npeel;
2736 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2737 &peel_iters_epilogue,
2738 scalar_single_iter_cost,
2739 &prologue_cost_vec,
2740 &epilogue_cost_vec);
2742 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2744 struct _stmt_vec_info *stmt_info
2745 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2746 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2747 si->misalign, vect_prologue);
2750 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2752 struct _stmt_vec_info *stmt_info
2753 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2754 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2755 si->misalign, vect_epilogue);
2758 prologue_cost_vec.release ();
2759 epilogue_cost_vec.release ();
2762 /* FORNOW: The scalar outside cost is incremented in one of the
2763 following ways:
2765 1. The vectorizer checks for alignment and aliasing and generates
2766 a condition that allows dynamic vectorization. A cost model
2767 check is ANDED with the versioning condition. Hence scalar code
2768 path now has the added cost of the versioning check.
2770 if (cost > th & versioning_check)
2771 jmp to vector code
2773 Hence run-time scalar is incremented by not-taken branch cost.
2775 2. The vectorizer then checks if a prologue is required. If the
2776 cost model check was not done before during versioning, it has to
2777 be done before the prologue check.
2779 if (cost <= th)
2780 prologue = scalar_iters
2781 if (prologue == 0)
2782 jmp to vector code
2783 else
2784 execute prologue
2785 if (prologue == num_iters)
2786 go to exit
2788 Hence the run-time scalar cost is incremented by a taken branch,
2789 plus a not-taken branch, plus a taken branch cost.
2791 3. The vectorizer then checks if an epilogue is required. If the
2792 cost model check was not done before during prologue check, it
2793 has to be done with the epilogue check.
2795 if (prologue == 0)
2796 jmp to vector code
2797 else
2798 execute prologue
2799 if (prologue == num_iters)
2800 go to exit
2801 vector code:
2802 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2803 jmp to epilogue
2805 Hence the run-time scalar cost should be incremented by 2 taken
2806 branches.
2808 TODO: The back end may reorder the BBS's differently and reverse
2809 conditions/branch directions. Change the estimates below to
2810 something more reasonable. */
2812 /* If the number of iterations is known and we do not do versioning, we can
2813 decide whether to vectorize at compile time. Hence the scalar version
2814 do not carry cost model guard costs. */
2815 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2816 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2817 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2819 /* Cost model check occurs at versioning. */
2820 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2821 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2822 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2823 else
2825 /* Cost model check occurs at prologue generation. */
2826 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2827 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2828 + vect_get_stmt_cost (cond_branch_not_taken);
2829 /* Cost model check occurs at epilogue generation. */
2830 else
2831 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2835 /* Complete the target-specific cost calculations. */
2836 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2837 &vec_inside_cost, &vec_epilogue_cost);
2839 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2841 /* Calculate number of iterations required to make the vector version
2842 profitable, relative to the loop bodies only. The following condition
2843 must hold true:
2844 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2845 where
2846 SIC = scalar iteration cost, VIC = vector iteration cost,
2847 VOC = vector outside cost, VF = vectorization factor,
2848 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2849 SOC = scalar outside cost for run time cost model check. */
2851 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2853 if (vec_outside_cost <= 0)
2854 min_profitable_iters = 1;
2855 else
2857 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2858 - vec_inside_cost * peel_iters_prologue
2859 - vec_inside_cost * peel_iters_epilogue)
2860 / ((scalar_single_iter_cost * vf)
2861 - vec_inside_cost);
2863 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2864 <= (((int) vec_inside_cost * min_profitable_iters)
2865 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2866 min_profitable_iters++;
2869 /* vector version will never be profitable. */
2870 else
2872 if (dump_enabled_p ())
2873 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2874 "cost model: the vector iteration cost = %d "
2875 "divided by the scalar iteration cost = %d "
2876 "is greater or equal to the vectorization factor = %d.",
2877 vec_inside_cost, scalar_single_iter_cost, vf);
2878 *ret_min_profitable_niters = -1;
2879 *ret_min_profitable_estimate = -1;
2880 return;
2883 if (dump_enabled_p ())
2885 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2886 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2887 vec_inside_cost);
2888 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2889 vec_prologue_cost);
2890 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2891 vec_epilogue_cost);
2892 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
2893 scalar_single_iter_cost);
2894 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
2895 scalar_outside_cost);
2896 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
2897 vec_outside_cost);
2898 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
2899 peel_iters_prologue);
2900 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
2901 peel_iters_epilogue);
2902 dump_printf (MSG_NOTE,
2903 " Calculated minimum iters for profitability: %d\n",
2904 min_profitable_iters);
2907 min_profitable_iters =
2908 min_profitable_iters < vf ? vf : min_profitable_iters;
2910 /* Because the condition we create is:
2911 if (niters <= min_profitable_iters)
2912 then skip the vectorized loop. */
2913 min_profitable_iters--;
2915 if (dump_enabled_p ())
2916 dump_printf_loc (MSG_NOTE, vect_location,
2917 " Runtime profitability threshold = %d\n", min_profitable_iters);
2919 *ret_min_profitable_niters = min_profitable_iters;
2921 /* Calculate number of iterations required to make the vector version
2922 profitable, relative to the loop bodies only.
2924 Non-vectorized variant is SIC * niters and it must win over vector
2925 variant on the expected loop trip count. The following condition must hold true:
2926 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
2928 if (vec_outside_cost <= 0)
2929 min_profitable_estimate = 1;
2930 else
2932 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
2933 - vec_inside_cost * peel_iters_prologue
2934 - vec_inside_cost * peel_iters_epilogue)
2935 / ((scalar_single_iter_cost * vf)
2936 - vec_inside_cost);
2938 min_profitable_estimate --;
2939 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
2940 if (dump_enabled_p ())
2941 dump_printf_loc (MSG_NOTE, vect_location,
2942 " Static estimate profitability threshold = %d\n",
2943 min_profitable_iters);
2945 *ret_min_profitable_estimate = min_profitable_estimate;
2949 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2950 functions. Design better to avoid maintenance issues. */
2952 /* Function vect_model_reduction_cost.
2954 Models cost for a reduction operation, including the vector ops
2955 generated within the strip-mine loop, the initial definition before
2956 the loop, and the epilogue code that must be generated. */
2958 static bool
2959 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2960 int ncopies)
2962 int prologue_cost = 0, epilogue_cost = 0;
2963 enum tree_code code;
2964 optab optab;
2965 tree vectype;
2966 gimple stmt, orig_stmt;
2967 tree reduction_op;
2968 enum machine_mode mode;
2969 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2970 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2971 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2973 /* Cost of reduction op inside loop. */
2974 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
2975 stmt_info, 0, vect_body);
2976 stmt = STMT_VINFO_STMT (stmt_info);
2978 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2980 case GIMPLE_SINGLE_RHS:
2981 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2982 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2983 break;
2984 case GIMPLE_UNARY_RHS:
2985 reduction_op = gimple_assign_rhs1 (stmt);
2986 break;
2987 case GIMPLE_BINARY_RHS:
2988 reduction_op = gimple_assign_rhs2 (stmt);
2989 break;
2990 case GIMPLE_TERNARY_RHS:
2991 reduction_op = gimple_assign_rhs3 (stmt);
2992 break;
2993 default:
2994 gcc_unreachable ();
2997 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2998 if (!vectype)
3000 if (dump_enabled_p ())
3002 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3003 "unsupported data-type ");
3004 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3005 TREE_TYPE (reduction_op));
3007 return false;
3010 mode = TYPE_MODE (vectype);
3011 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3013 if (!orig_stmt)
3014 orig_stmt = STMT_VINFO_STMT (stmt_info);
3016 code = gimple_assign_rhs_code (orig_stmt);
3018 /* Add in cost for initial definition. */
3019 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3020 stmt_info, 0, vect_prologue);
3022 /* Determine cost of epilogue code.
3024 We have a reduction operator that will reduce the vector in one statement.
3025 Also requires scalar extract. */
3027 if (!nested_in_vect_loop_p (loop, orig_stmt))
3029 if (reduc_code != ERROR_MARK)
3031 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3032 stmt_info, 0, vect_epilogue);
3033 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3034 stmt_info, 0, vect_epilogue);
3036 else
3038 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3039 tree bitsize =
3040 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3041 int element_bitsize = tree_low_cst (bitsize, 1);
3042 int nelements = vec_size_in_bits / element_bitsize;
3044 optab = optab_for_tree_code (code, vectype, optab_default);
3046 /* We have a whole vector shift available. */
3047 if (VECTOR_MODE_P (mode)
3048 && optab_handler (optab, mode) != CODE_FOR_nothing
3049 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3051 /* Final reduction via vector shifts and the reduction operator.
3052 Also requires scalar extract. */
3053 epilogue_cost += add_stmt_cost (target_cost_data,
3054 exact_log2 (nelements) * 2,
3055 vector_stmt, stmt_info, 0,
3056 vect_epilogue);
3057 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3058 vec_to_scalar, stmt_info, 0,
3059 vect_epilogue);
3061 else
3062 /* Use extracts and reduction op for final reduction. For N
3063 elements, we have N extracts and N-1 reduction ops. */
3064 epilogue_cost += add_stmt_cost (target_cost_data,
3065 nelements + nelements - 1,
3066 vector_stmt, stmt_info, 0,
3067 vect_epilogue);
3071 if (dump_enabled_p ())
3072 dump_printf (MSG_NOTE,
3073 "vect_model_reduction_cost: inside_cost = %d, "
3074 "prologue_cost = %d, epilogue_cost = %d .", inside_cost,
3075 prologue_cost, epilogue_cost);
3077 return true;
3081 /* Function vect_model_induction_cost.
3083 Models cost for induction operations. */
3085 static void
3086 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3088 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3089 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3090 unsigned inside_cost, prologue_cost;
3092 /* loop cost for vec_loop. */
3093 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3094 stmt_info, 0, vect_body);
3096 /* prologue cost for vec_init and vec_step. */
3097 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3098 stmt_info, 0, vect_prologue);
3100 if (dump_enabled_p ())
3101 dump_printf_loc (MSG_NOTE, vect_location,
3102 "vect_model_induction_cost: inside_cost = %d, "
3103 "prologue_cost = %d .", inside_cost, prologue_cost);
3107 /* Function get_initial_def_for_induction
3109 Input:
3110 STMT - a stmt that performs an induction operation in the loop.
3111 IV_PHI - the initial value of the induction variable
3113 Output:
3114 Return a vector variable, initialized with the first VF values of
3115 the induction variable. E.g., for an iv with IV_PHI='X' and
3116 evolution S, for a vector of 4 units, we want to return:
3117 [X, X + S, X + 2*S, X + 3*S]. */
3119 static tree
3120 get_initial_def_for_induction (gimple iv_phi)
3122 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3123 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3124 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3125 tree scalar_type;
3126 tree vectype;
3127 int nunits;
3128 edge pe = loop_preheader_edge (loop);
3129 struct loop *iv_loop;
3130 basic_block new_bb;
3131 tree new_vec, vec_init, vec_step, t;
3132 tree access_fn;
3133 tree new_var;
3134 tree new_name;
3135 gimple init_stmt, induction_phi, new_stmt;
3136 tree induc_def, vec_def, vec_dest;
3137 tree init_expr, step_expr;
3138 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3139 int i;
3140 bool ok;
3141 int ncopies;
3142 tree expr;
3143 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3144 bool nested_in_vect_loop = false;
3145 gimple_seq stmts = NULL;
3146 imm_use_iterator imm_iter;
3147 use_operand_p use_p;
3148 gimple exit_phi;
3149 edge latch_e;
3150 tree loop_arg;
3151 gimple_stmt_iterator si;
3152 basic_block bb = gimple_bb (iv_phi);
3153 tree stepvectype;
3154 tree resvectype;
3156 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3157 if (nested_in_vect_loop_p (loop, iv_phi))
3159 nested_in_vect_loop = true;
3160 iv_loop = loop->inner;
3162 else
3163 iv_loop = loop;
3164 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3166 latch_e = loop_latch_edge (iv_loop);
3167 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3169 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
3170 gcc_assert (access_fn);
3171 STRIP_NOPS (access_fn);
3172 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
3173 &init_expr, &step_expr);
3174 gcc_assert (ok);
3175 pe = loop_preheader_edge (iv_loop);
3177 scalar_type = TREE_TYPE (init_expr);
3178 vectype = get_vectype_for_scalar_type (scalar_type);
3179 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3180 gcc_assert (vectype);
3181 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3182 ncopies = vf / nunits;
3184 gcc_assert (phi_info);
3185 gcc_assert (ncopies >= 1);
3187 /* Find the first insertion point in the BB. */
3188 si = gsi_after_labels (bb);
3190 /* Create the vector that holds the initial_value of the induction. */
3191 if (nested_in_vect_loop)
3193 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3194 been created during vectorization of previous stmts. We obtain it
3195 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3196 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3197 loop_preheader_edge (iv_loop));
3198 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
3199 /* If the initial value is not of proper type, convert it. */
3200 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3202 new_stmt = gimple_build_assign_with_ops
3203 (VIEW_CONVERT_EXPR,
3204 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3205 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3206 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3207 gimple_assign_set_lhs (new_stmt, vec_init);
3208 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3209 new_stmt);
3210 gcc_assert (!new_bb);
3211 set_vinfo_for_stmt (new_stmt,
3212 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3215 else
3217 vec<constructor_elt, va_gc> *v;
3219 /* iv_loop is the loop to be vectorized. Create:
3220 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3221 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
3222 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
3223 if (stmts)
3225 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3226 gcc_assert (!new_bb);
3229 vec_alloc (v, nunits);
3230 bool constant_p = is_gimple_min_invariant (new_name);
3231 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3232 for (i = 1; i < nunits; i++)
3234 /* Create: new_name_i = new_name + step_expr */
3235 enum tree_code code = POINTER_TYPE_P (scalar_type)
3236 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3237 new_name = fold_build2 (code, scalar_type, new_name, step_expr);
3238 if (!is_gimple_min_invariant (new_name))
3240 init_stmt = gimple_build_assign (new_var, new_name);
3241 new_name = make_ssa_name (new_var, init_stmt);
3242 gimple_assign_set_lhs (init_stmt, new_name);
3243 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3244 gcc_assert (!new_bb);
3245 if (dump_enabled_p ())
3247 dump_printf_loc (MSG_NOTE, vect_location,
3248 "created new init_stmt: ");
3249 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3251 constant_p = false;
3253 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3255 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3256 if (constant_p)
3257 new_vec = build_vector_from_ctor (vectype, v);
3258 else
3259 new_vec = build_constructor (vectype, v);
3260 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3264 /* Create the vector that holds the step of the induction. */
3265 if (nested_in_vect_loop)
3266 /* iv_loop is nested in the loop to be vectorized. Generate:
3267 vec_step = [S, S, S, S] */
3268 new_name = step_expr;
3269 else
3271 /* iv_loop is the loop to be vectorized. Generate:
3272 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3273 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3274 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3275 expr, step_expr);
3278 t = unshare_expr (new_name);
3279 gcc_assert (CONSTANT_CLASS_P (new_name));
3280 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3281 gcc_assert (stepvectype);
3282 new_vec = build_vector_from_val (stepvectype, t);
3283 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3286 /* Create the following def-use cycle:
3287 loop prolog:
3288 vec_init = ...
3289 vec_step = ...
3290 loop:
3291 vec_iv = PHI <vec_init, vec_loop>
3293 STMT
3295 vec_loop = vec_iv + vec_step; */
3297 /* Create the induction-phi that defines the induction-operand. */
3298 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3299 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3300 set_vinfo_for_stmt (induction_phi,
3301 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3302 induc_def = PHI_RESULT (induction_phi);
3304 /* Create the iv update inside the loop */
3305 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3306 induc_def, vec_step);
3307 vec_def = make_ssa_name (vec_dest, new_stmt);
3308 gimple_assign_set_lhs (new_stmt, vec_def);
3309 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3310 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3311 NULL));
3313 /* Set the arguments of the phi node: */
3314 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3315 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3316 UNKNOWN_LOCATION);
3319 /* In case that vectorization factor (VF) is bigger than the number
3320 of elements that we can fit in a vectype (nunits), we have to generate
3321 more than one vector stmt - i.e - we need to "unroll" the
3322 vector stmt by a factor VF/nunits. For more details see documentation
3323 in vectorizable_operation. */
3325 if (ncopies > 1)
3327 stmt_vec_info prev_stmt_vinfo;
3328 /* FORNOW. This restriction should be relaxed. */
3329 gcc_assert (!nested_in_vect_loop);
3331 /* Create the vector that holds the step of the induction. */
3332 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3333 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3334 expr, step_expr);
3335 t = unshare_expr (new_name);
3336 gcc_assert (CONSTANT_CLASS_P (new_name));
3337 new_vec = build_vector_from_val (stepvectype, t);
3338 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3340 vec_def = induc_def;
3341 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3342 for (i = 1; i < ncopies; i++)
3344 /* vec_i = vec_prev + vec_step */
3345 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3346 vec_def, vec_step);
3347 vec_def = make_ssa_name (vec_dest, new_stmt);
3348 gimple_assign_set_lhs (new_stmt, vec_def);
3350 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3351 if (!useless_type_conversion_p (resvectype, vectype))
3353 new_stmt = gimple_build_assign_with_ops
3354 (VIEW_CONVERT_EXPR,
3355 vect_get_new_vect_var (resvectype, vect_simple_var,
3356 "vec_iv_"),
3357 build1 (VIEW_CONVERT_EXPR, resvectype,
3358 gimple_assign_lhs (new_stmt)), NULL_TREE);
3359 gimple_assign_set_lhs (new_stmt,
3360 make_ssa_name
3361 (gimple_assign_lhs (new_stmt), new_stmt));
3362 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3364 set_vinfo_for_stmt (new_stmt,
3365 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3366 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3367 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3371 if (nested_in_vect_loop)
3373 /* Find the loop-closed exit-phi of the induction, and record
3374 the final vector of induction results: */
3375 exit_phi = NULL;
3376 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3378 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3380 exit_phi = USE_STMT (use_p);
3381 break;
3384 if (exit_phi)
3386 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3387 /* FORNOW. Currently not supporting the case that an inner-loop induction
3388 is not used in the outer-loop (i.e. only outside the outer-loop). */
3389 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3390 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3392 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3393 if (dump_enabled_p ())
3395 dump_printf_loc (MSG_NOTE, vect_location,
3396 "vector of inductions after inner-loop:");
3397 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3403 if (dump_enabled_p ())
3405 dump_printf_loc (MSG_NOTE, vect_location,
3406 "transform induction: created def-use cycle: ");
3407 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3408 dump_printf (MSG_NOTE, "\n");
3409 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3410 SSA_NAME_DEF_STMT (vec_def), 0);
3413 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3414 if (!useless_type_conversion_p (resvectype, vectype))
3416 new_stmt = gimple_build_assign_with_ops
3417 (VIEW_CONVERT_EXPR,
3418 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3419 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3420 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3421 gimple_assign_set_lhs (new_stmt, induc_def);
3422 si = gsi_after_labels (bb);
3423 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3424 set_vinfo_for_stmt (new_stmt,
3425 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3426 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3427 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3430 return induc_def;
3434 /* Function get_initial_def_for_reduction
3436 Input:
3437 STMT - a stmt that performs a reduction operation in the loop.
3438 INIT_VAL - the initial value of the reduction variable
3440 Output:
3441 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3442 of the reduction (used for adjusting the epilog - see below).
3443 Return a vector variable, initialized according to the operation that STMT
3444 performs. This vector will be used as the initial value of the
3445 vector of partial results.
3447 Option1 (adjust in epilog): Initialize the vector as follows:
3448 add/bit or/xor: [0,0,...,0,0]
3449 mult/bit and: [1,1,...,1,1]
3450 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3451 and when necessary (e.g. add/mult case) let the caller know
3452 that it needs to adjust the result by init_val.
3454 Option2: Initialize the vector as follows:
3455 add/bit or/xor: [init_val,0,0,...,0]
3456 mult/bit and: [init_val,1,1,...,1]
3457 min/max/cond_expr: [init_val,init_val,...,init_val]
3458 and no adjustments are needed.
3460 For example, for the following code:
3462 s = init_val;
3463 for (i=0;i<n;i++)
3464 s = s + a[i];
3466 STMT is 's = s + a[i]', and the reduction variable is 's'.
3467 For a vector of 4 units, we want to return either [0,0,0,init_val],
3468 or [0,0,0,0] and let the caller know that it needs to adjust
3469 the result at the end by 'init_val'.
3471 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3472 initialization vector is simpler (same element in all entries), if
3473 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3475 A cost model should help decide between these two schemes. */
3477 tree
3478 get_initial_def_for_reduction (gimple stmt, tree init_val,
3479 tree *adjustment_def)
3481 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3482 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3483 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3484 tree scalar_type = TREE_TYPE (init_val);
3485 tree vectype = get_vectype_for_scalar_type (scalar_type);
3486 int nunits;
3487 enum tree_code code = gimple_assign_rhs_code (stmt);
3488 tree def_for_init;
3489 tree init_def;
3490 tree *elts;
3491 int i;
3492 bool nested_in_vect_loop = false;
3493 tree init_value;
3494 REAL_VALUE_TYPE real_init_val = dconst0;
3495 int int_init_val = 0;
3496 gimple def_stmt = NULL;
3498 gcc_assert (vectype);
3499 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3501 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3502 || SCALAR_FLOAT_TYPE_P (scalar_type));
3504 if (nested_in_vect_loop_p (loop, stmt))
3505 nested_in_vect_loop = true;
3506 else
3507 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3509 /* In case of double reduction we only create a vector variable to be put
3510 in the reduction phi node. The actual statement creation is done in
3511 vect_create_epilog_for_reduction. */
3512 if (adjustment_def && nested_in_vect_loop
3513 && TREE_CODE (init_val) == SSA_NAME
3514 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3515 && gimple_code (def_stmt) == GIMPLE_PHI
3516 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3517 && vinfo_for_stmt (def_stmt)
3518 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3519 == vect_double_reduction_def)
3521 *adjustment_def = NULL;
3522 return vect_create_destination_var (init_val, vectype);
3525 if (TREE_CONSTANT (init_val))
3527 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3528 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3529 else
3530 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3532 else
3533 init_value = init_val;
3535 switch (code)
3537 case WIDEN_SUM_EXPR:
3538 case DOT_PROD_EXPR:
3539 case PLUS_EXPR:
3540 case MINUS_EXPR:
3541 case BIT_IOR_EXPR:
3542 case BIT_XOR_EXPR:
3543 case MULT_EXPR:
3544 case BIT_AND_EXPR:
3545 /* ADJUSMENT_DEF is NULL when called from
3546 vect_create_epilog_for_reduction to vectorize double reduction. */
3547 if (adjustment_def)
3549 if (nested_in_vect_loop)
3550 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3551 NULL);
3552 else
3553 *adjustment_def = init_val;
3556 if (code == MULT_EXPR)
3558 real_init_val = dconst1;
3559 int_init_val = 1;
3562 if (code == BIT_AND_EXPR)
3563 int_init_val = -1;
3565 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3566 def_for_init = build_real (scalar_type, real_init_val);
3567 else
3568 def_for_init = build_int_cst (scalar_type, int_init_val);
3570 /* Create a vector of '0' or '1' except the first element. */
3571 elts = XALLOCAVEC (tree, nunits);
3572 for (i = nunits - 2; i >= 0; --i)
3573 elts[i + 1] = def_for_init;
3575 /* Option1: the first element is '0' or '1' as well. */
3576 if (adjustment_def)
3578 elts[0] = def_for_init;
3579 init_def = build_vector (vectype, elts);
3580 break;
3583 /* Option2: the first element is INIT_VAL. */
3584 elts[0] = init_val;
3585 if (TREE_CONSTANT (init_val))
3586 init_def = build_vector (vectype, elts);
3587 else
3589 vec<constructor_elt, va_gc> *v;
3590 vec_alloc (v, nunits);
3591 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3592 for (i = 1; i < nunits; ++i)
3593 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3594 init_def = build_constructor (vectype, v);
3597 break;
3599 case MIN_EXPR:
3600 case MAX_EXPR:
3601 case COND_EXPR:
3602 if (adjustment_def)
3604 *adjustment_def = NULL_TREE;
3605 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3606 break;
3609 init_def = build_vector_from_val (vectype, init_value);
3610 break;
3612 default:
3613 gcc_unreachable ();
3616 return init_def;
3620 /* Function vect_create_epilog_for_reduction
3622 Create code at the loop-epilog to finalize the result of a reduction
3623 computation.
3625 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3626 reduction statements.
3627 STMT is the scalar reduction stmt that is being vectorized.
3628 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3629 number of elements that we can fit in a vectype (nunits). In this case
3630 we have to generate more than one vector stmt - i.e - we need to "unroll"
3631 the vector stmt by a factor VF/nunits. For more details see documentation
3632 in vectorizable_operation.
3633 REDUC_CODE is the tree-code for the epilog reduction.
3634 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3635 computation.
3636 REDUC_INDEX is the index of the operand in the right hand side of the
3637 statement that is defined by REDUCTION_PHI.
3638 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3639 SLP_NODE is an SLP node containing a group of reduction statements. The
3640 first one in this group is STMT.
3642 This function:
3643 1. Creates the reduction def-use cycles: sets the arguments for
3644 REDUCTION_PHIS:
3645 The loop-entry argument is the vectorized initial-value of the reduction.
3646 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3647 sums.
3648 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3649 by applying the operation specified by REDUC_CODE if available, or by
3650 other means (whole-vector shifts or a scalar loop).
3651 The function also creates a new phi node at the loop exit to preserve
3652 loop-closed form, as illustrated below.
3654 The flow at the entry to this function:
3656 loop:
3657 vec_def = phi <null, null> # REDUCTION_PHI
3658 VECT_DEF = vector_stmt # vectorized form of STMT
3659 s_loop = scalar_stmt # (scalar) STMT
3660 loop_exit:
3661 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3662 use <s_out0>
3663 use <s_out0>
3665 The above is transformed by this function into:
3667 loop:
3668 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3669 VECT_DEF = vector_stmt # vectorized form of STMT
3670 s_loop = scalar_stmt # (scalar) STMT
3671 loop_exit:
3672 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3673 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3674 v_out2 = reduce <v_out1>
3675 s_out3 = extract_field <v_out2, 0>
3676 s_out4 = adjust_result <s_out3>
3677 use <s_out4>
3678 use <s_out4>
3681 static void
3682 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3683 int ncopies, enum tree_code reduc_code,
3684 vec<gimple> reduction_phis,
3685 int reduc_index, bool double_reduc,
3686 slp_tree slp_node)
3688 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3689 stmt_vec_info prev_phi_info;
3690 tree vectype;
3691 enum machine_mode mode;
3692 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3693 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3694 basic_block exit_bb;
3695 tree scalar_dest;
3696 tree scalar_type;
3697 gimple new_phi = NULL, phi;
3698 gimple_stmt_iterator exit_gsi;
3699 tree vec_dest;
3700 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3701 gimple epilog_stmt = NULL;
3702 enum tree_code code = gimple_assign_rhs_code (stmt);
3703 gimple exit_phi;
3704 tree bitsize, bitpos;
3705 tree adjustment_def = NULL;
3706 tree vec_initial_def = NULL;
3707 tree reduction_op, expr, def;
3708 tree orig_name, scalar_result;
3709 imm_use_iterator imm_iter, phi_imm_iter;
3710 use_operand_p use_p, phi_use_p;
3711 bool extract_scalar_result = false;
3712 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3713 bool nested_in_vect_loop = false;
3714 vec<gimple> new_phis = vNULL;
3715 vec<gimple> inner_phis = vNULL;
3716 enum vect_def_type dt = vect_unknown_def_type;
3717 int j, i;
3718 vec<tree> scalar_results = vNULL;
3719 unsigned int group_size = 1, k, ratio;
3720 vec<tree> vec_initial_defs = vNULL;
3721 vec<gimple> phis;
3722 bool slp_reduc = false;
3723 tree new_phi_result;
3724 gimple inner_phi = NULL;
3726 if (slp_node)
3727 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3729 if (nested_in_vect_loop_p (loop, stmt))
3731 outer_loop = loop;
3732 loop = loop->inner;
3733 nested_in_vect_loop = true;
3734 gcc_assert (!slp_node);
3737 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3739 case GIMPLE_SINGLE_RHS:
3740 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3741 == ternary_op);
3742 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3743 break;
3744 case GIMPLE_UNARY_RHS:
3745 reduction_op = gimple_assign_rhs1 (stmt);
3746 break;
3747 case GIMPLE_BINARY_RHS:
3748 reduction_op = reduc_index ?
3749 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3750 break;
3751 case GIMPLE_TERNARY_RHS:
3752 reduction_op = gimple_op (stmt, reduc_index + 1);
3753 break;
3754 default:
3755 gcc_unreachable ();
3758 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3759 gcc_assert (vectype);
3760 mode = TYPE_MODE (vectype);
3762 /* 1. Create the reduction def-use cycle:
3763 Set the arguments of REDUCTION_PHIS, i.e., transform
3765 loop:
3766 vec_def = phi <null, null> # REDUCTION_PHI
3767 VECT_DEF = vector_stmt # vectorized form of STMT
3770 into:
3772 loop:
3773 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3774 VECT_DEF = vector_stmt # vectorized form of STMT
3777 (in case of SLP, do it for all the phis). */
3779 /* Get the loop-entry arguments. */
3780 if (slp_node)
3781 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3782 NULL, slp_node, reduc_index);
3783 else
3785 vec_initial_defs.create (1);
3786 /* For the case of reduction, vect_get_vec_def_for_operand returns
3787 the scalar def before the loop, that defines the initial value
3788 of the reduction variable. */
3789 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3790 &adjustment_def);
3791 vec_initial_defs.quick_push (vec_initial_def);
3794 /* Set phi nodes arguments. */
3795 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3797 tree vec_init_def = vec_initial_defs[i];
3798 tree def = vect_defs[i];
3799 for (j = 0; j < ncopies; j++)
3801 /* Set the loop-entry arg of the reduction-phi. */
3802 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3803 UNKNOWN_LOCATION);
3805 /* Set the loop-latch arg for the reduction-phi. */
3806 if (j > 0)
3807 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3809 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3811 if (dump_enabled_p ())
3813 dump_printf_loc (MSG_NOTE, vect_location,
3814 "transform reduction: created def-use cycle: ");
3815 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3816 dump_printf (MSG_NOTE, "\n");
3817 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3820 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3824 vec_initial_defs.release ();
3826 /* 2. Create epilog code.
3827 The reduction epilog code operates across the elements of the vector
3828 of partial results computed by the vectorized loop.
3829 The reduction epilog code consists of:
3831 step 1: compute the scalar result in a vector (v_out2)
3832 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3833 step 3: adjust the scalar result (s_out3) if needed.
3835 Step 1 can be accomplished using one the following three schemes:
3836 (scheme 1) using reduc_code, if available.
3837 (scheme 2) using whole-vector shifts, if available.
3838 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3839 combined.
3841 The overall epilog code looks like this:
3843 s_out0 = phi <s_loop> # original EXIT_PHI
3844 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3845 v_out2 = reduce <v_out1> # step 1
3846 s_out3 = extract_field <v_out2, 0> # step 2
3847 s_out4 = adjust_result <s_out3> # step 3
3849 (step 3 is optional, and steps 1 and 2 may be combined).
3850 Lastly, the uses of s_out0 are replaced by s_out4. */
3853 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3854 v_out1 = phi <VECT_DEF>
3855 Store them in NEW_PHIS. */
3857 exit_bb = single_exit (loop)->dest;
3858 prev_phi_info = NULL;
3859 new_phis.create (vect_defs.length ());
3860 FOR_EACH_VEC_ELT (vect_defs, i, def)
3862 for (j = 0; j < ncopies; j++)
3864 tree new_def = copy_ssa_name (def, NULL);
3865 phi = create_phi_node (new_def, exit_bb);
3866 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3867 if (j == 0)
3868 new_phis.quick_push (phi);
3869 else
3871 def = vect_get_vec_def_for_stmt_copy (dt, def);
3872 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3875 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3876 prev_phi_info = vinfo_for_stmt (phi);
3880 /* The epilogue is created for the outer-loop, i.e., for the loop being
3881 vectorized. Create exit phis for the outer loop. */
3882 if (double_reduc)
3884 loop = outer_loop;
3885 exit_bb = single_exit (loop)->dest;
3886 inner_phis.create (vect_defs.length ());
3887 FOR_EACH_VEC_ELT (new_phis, i, phi)
3889 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3890 gimple outer_phi = create_phi_node (new_result, exit_bb);
3891 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3892 PHI_RESULT (phi));
3893 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3894 loop_vinfo, NULL));
3895 inner_phis.quick_push (phi);
3896 new_phis[i] = outer_phi;
3897 prev_phi_info = vinfo_for_stmt (outer_phi);
3898 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
3900 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3901 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3902 outer_phi = create_phi_node (new_result, exit_bb);
3903 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3904 PHI_RESULT (phi));
3905 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3906 loop_vinfo, NULL));
3907 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
3908 prev_phi_info = vinfo_for_stmt (outer_phi);
3913 exit_gsi = gsi_after_labels (exit_bb);
3915 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3916 (i.e. when reduc_code is not available) and in the final adjustment
3917 code (if needed). Also get the original scalar reduction variable as
3918 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3919 represents a reduction pattern), the tree-code and scalar-def are
3920 taken from the original stmt that the pattern-stmt (STMT) replaces.
3921 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3922 are taken from STMT. */
3924 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3925 if (!orig_stmt)
3927 /* Regular reduction */
3928 orig_stmt = stmt;
3930 else
3932 /* Reduction pattern */
3933 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3934 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3935 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3938 code = gimple_assign_rhs_code (orig_stmt);
3939 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3940 partial results are added and not subtracted. */
3941 if (code == MINUS_EXPR)
3942 code = PLUS_EXPR;
3944 scalar_dest = gimple_assign_lhs (orig_stmt);
3945 scalar_type = TREE_TYPE (scalar_dest);
3946 scalar_results.create (group_size);
3947 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3948 bitsize = TYPE_SIZE (scalar_type);
3950 /* In case this is a reduction in an inner-loop while vectorizing an outer
3951 loop - we don't need to extract a single scalar result at the end of the
3952 inner-loop (unless it is double reduction, i.e., the use of reduction is
3953 outside the outer-loop). The final vector of partial results will be used
3954 in the vectorized outer-loop, or reduced to a scalar result at the end of
3955 the outer-loop. */
3956 if (nested_in_vect_loop && !double_reduc)
3957 goto vect_finalize_reduction;
3959 /* SLP reduction without reduction chain, e.g.,
3960 # a1 = phi <a2, a0>
3961 # b1 = phi <b2, b0>
3962 a2 = operation (a1)
3963 b2 = operation (b1) */
3964 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
3966 /* In case of reduction chain, e.g.,
3967 # a1 = phi <a3, a0>
3968 a2 = operation (a1)
3969 a3 = operation (a2),
3971 we may end up with more than one vector result. Here we reduce them to
3972 one vector. */
3973 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
3975 tree first_vect = PHI_RESULT (new_phis[0]);
3976 tree tmp;
3977 gimple new_vec_stmt = NULL;
3979 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3980 for (k = 1; k < new_phis.length (); k++)
3982 gimple next_phi = new_phis[k];
3983 tree second_vect = PHI_RESULT (next_phi);
3985 tmp = build2 (code, vectype, first_vect, second_vect);
3986 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
3987 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
3988 gimple_assign_set_lhs (new_vec_stmt, first_vect);
3989 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
3992 new_phi_result = first_vect;
3993 if (new_vec_stmt)
3995 new_phis.truncate (0);
3996 new_phis.safe_push (new_vec_stmt);
3999 else
4000 new_phi_result = PHI_RESULT (new_phis[0]);
4002 /* 2.3 Create the reduction code, using one of the three schemes described
4003 above. In SLP we simply need to extract all the elements from the
4004 vector (without reducing them), so we use scalar shifts. */
4005 if (reduc_code != ERROR_MARK && !slp_reduc)
4007 tree tmp;
4009 /*** Case 1: Create:
4010 v_out2 = reduc_expr <v_out1> */
4012 if (dump_enabled_p ())
4013 dump_printf_loc (MSG_NOTE, vect_location,
4014 "Reduce using direct vector reduction.");
4016 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4017 tmp = build1 (reduc_code, vectype, new_phi_result);
4018 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4019 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4020 gimple_assign_set_lhs (epilog_stmt, new_temp);
4021 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4023 extract_scalar_result = true;
4025 else
4027 enum tree_code shift_code = ERROR_MARK;
4028 bool have_whole_vector_shift = true;
4029 int bit_offset;
4030 int element_bitsize = tree_low_cst (bitsize, 1);
4031 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4032 tree vec_temp;
4034 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4035 shift_code = VEC_RSHIFT_EXPR;
4036 else
4037 have_whole_vector_shift = false;
4039 /* Regardless of whether we have a whole vector shift, if we're
4040 emulating the operation via tree-vect-generic, we don't want
4041 to use it. Only the first round of the reduction is likely
4042 to still be profitable via emulation. */
4043 /* ??? It might be better to emit a reduction tree code here, so that
4044 tree-vect-generic can expand the first round via bit tricks. */
4045 if (!VECTOR_MODE_P (mode))
4046 have_whole_vector_shift = false;
4047 else
4049 optab optab = optab_for_tree_code (code, vectype, optab_default);
4050 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4051 have_whole_vector_shift = false;
4054 if (have_whole_vector_shift && !slp_reduc)
4056 /*** Case 2: Create:
4057 for (offset = VS/2; offset >= element_size; offset/=2)
4059 Create: va' = vec_shift <va, offset>
4060 Create: va = vop <va, va'>
4061 } */
4063 if (dump_enabled_p ())
4064 dump_printf_loc (MSG_NOTE, vect_location,
4065 "Reduce using vector shifts");
4067 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4068 new_temp = new_phi_result;
4069 for (bit_offset = vec_size_in_bits/2;
4070 bit_offset >= element_bitsize;
4071 bit_offset /= 2)
4073 tree bitpos = size_int (bit_offset);
4075 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4076 vec_dest, new_temp, bitpos);
4077 new_name = make_ssa_name (vec_dest, epilog_stmt);
4078 gimple_assign_set_lhs (epilog_stmt, new_name);
4079 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4081 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4082 new_name, new_temp);
4083 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4084 gimple_assign_set_lhs (epilog_stmt, new_temp);
4085 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4088 extract_scalar_result = true;
4090 else
4092 tree rhs;
4094 /*** Case 3: Create:
4095 s = extract_field <v_out2, 0>
4096 for (offset = element_size;
4097 offset < vector_size;
4098 offset += element_size;)
4100 Create: s' = extract_field <v_out2, offset>
4101 Create: s = op <s, s'> // For non SLP cases
4102 } */
4104 if (dump_enabled_p ())
4105 dump_printf_loc (MSG_NOTE, vect_location,
4106 "Reduce using scalar code. ");
4108 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4109 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4111 if (gimple_code (new_phi) == GIMPLE_PHI)
4112 vec_temp = PHI_RESULT (new_phi);
4113 else
4114 vec_temp = gimple_assign_lhs (new_phi);
4115 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4116 bitsize_zero_node);
4117 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4118 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4119 gimple_assign_set_lhs (epilog_stmt, new_temp);
4120 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4122 /* In SLP we don't need to apply reduction operation, so we just
4123 collect s' values in SCALAR_RESULTS. */
4124 if (slp_reduc)
4125 scalar_results.safe_push (new_temp);
4127 for (bit_offset = element_bitsize;
4128 bit_offset < vec_size_in_bits;
4129 bit_offset += element_bitsize)
4131 tree bitpos = bitsize_int (bit_offset);
4132 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4133 bitsize, bitpos);
4135 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4136 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4137 gimple_assign_set_lhs (epilog_stmt, new_name);
4138 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4140 if (slp_reduc)
4142 /* In SLP we don't need to apply reduction operation, so
4143 we just collect s' values in SCALAR_RESULTS. */
4144 new_temp = new_name;
4145 scalar_results.safe_push (new_name);
4147 else
4149 epilog_stmt = gimple_build_assign_with_ops (code,
4150 new_scalar_dest, new_name, new_temp);
4151 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4152 gimple_assign_set_lhs (epilog_stmt, new_temp);
4153 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4158 /* The only case where we need to reduce scalar results in SLP, is
4159 unrolling. If the size of SCALAR_RESULTS is greater than
4160 GROUP_SIZE, we reduce them combining elements modulo
4161 GROUP_SIZE. */
4162 if (slp_reduc)
4164 tree res, first_res, new_res;
4165 gimple new_stmt;
4167 /* Reduce multiple scalar results in case of SLP unrolling. */
4168 for (j = group_size; scalar_results.iterate (j, &res);
4169 j++)
4171 first_res = scalar_results[j % group_size];
4172 new_stmt = gimple_build_assign_with_ops (code,
4173 new_scalar_dest, first_res, res);
4174 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4175 gimple_assign_set_lhs (new_stmt, new_res);
4176 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4177 scalar_results[j % group_size] = new_res;
4180 else
4181 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4182 scalar_results.safe_push (new_temp);
4184 extract_scalar_result = false;
4188 /* 2.4 Extract the final scalar result. Create:
4189 s_out3 = extract_field <v_out2, bitpos> */
4191 if (extract_scalar_result)
4193 tree rhs;
4195 if (dump_enabled_p ())
4196 dump_printf_loc (MSG_NOTE, vect_location,
4197 "extract scalar result");
4199 if (BYTES_BIG_ENDIAN)
4200 bitpos = size_binop (MULT_EXPR,
4201 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4202 TYPE_SIZE (scalar_type));
4203 else
4204 bitpos = bitsize_zero_node;
4206 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4207 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4208 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4209 gimple_assign_set_lhs (epilog_stmt, new_temp);
4210 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4211 scalar_results.safe_push (new_temp);
4214 vect_finalize_reduction:
4216 if (double_reduc)
4217 loop = loop->inner;
4219 /* 2.5 Adjust the final result by the initial value of the reduction
4220 variable. (When such adjustment is not needed, then
4221 'adjustment_def' is zero). For example, if code is PLUS we create:
4222 new_temp = loop_exit_def + adjustment_def */
4224 if (adjustment_def)
4226 gcc_assert (!slp_reduc);
4227 if (nested_in_vect_loop)
4229 new_phi = new_phis[0];
4230 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4231 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4232 new_dest = vect_create_destination_var (scalar_dest, vectype);
4234 else
4236 new_temp = scalar_results[0];
4237 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4238 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4239 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4242 epilog_stmt = gimple_build_assign (new_dest, expr);
4243 new_temp = make_ssa_name (new_dest, epilog_stmt);
4244 gimple_assign_set_lhs (epilog_stmt, new_temp);
4245 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
4246 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4247 if (nested_in_vect_loop)
4249 set_vinfo_for_stmt (epilog_stmt,
4250 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4251 NULL));
4252 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4253 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4255 if (!double_reduc)
4256 scalar_results.quick_push (new_temp);
4257 else
4258 scalar_results[0] = new_temp;
4260 else
4261 scalar_results[0] = new_temp;
4263 new_phis[0] = epilog_stmt;
4266 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4267 phis with new adjusted scalar results, i.e., replace use <s_out0>
4268 with use <s_out4>.
4270 Transform:
4271 loop_exit:
4272 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4273 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4274 v_out2 = reduce <v_out1>
4275 s_out3 = extract_field <v_out2, 0>
4276 s_out4 = adjust_result <s_out3>
4277 use <s_out0>
4278 use <s_out0>
4280 into:
4282 loop_exit:
4283 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4284 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4285 v_out2 = reduce <v_out1>
4286 s_out3 = extract_field <v_out2, 0>
4287 s_out4 = adjust_result <s_out3>
4288 use <s_out4>
4289 use <s_out4> */
4292 /* In SLP reduction chain we reduce vector results into one vector if
4293 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4294 the last stmt in the reduction chain, since we are looking for the loop
4295 exit phi node. */
4296 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4298 scalar_dest = gimple_assign_lhs (
4299 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4300 group_size = 1;
4303 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4304 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4305 need to match SCALAR_RESULTS with corresponding statements. The first
4306 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4307 the first vector stmt, etc.
4308 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4309 if (group_size > new_phis.length ())
4311 ratio = group_size / new_phis.length ();
4312 gcc_assert (!(group_size % new_phis.length ()));
4314 else
4315 ratio = 1;
4317 for (k = 0; k < group_size; k++)
4319 if (k % ratio == 0)
4321 epilog_stmt = new_phis[k / ratio];
4322 reduction_phi = reduction_phis[k / ratio];
4323 if (double_reduc)
4324 inner_phi = inner_phis[k / ratio];
4327 if (slp_reduc)
4329 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4331 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4332 /* SLP statements can't participate in patterns. */
4333 gcc_assert (!orig_stmt);
4334 scalar_dest = gimple_assign_lhs (current_stmt);
4337 phis.create (3);
4338 /* Find the loop-closed-use at the loop exit of the original scalar
4339 result. (The reduction result is expected to have two immediate uses -
4340 one at the latch block, and one at the loop exit). */
4341 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4342 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4343 phis.safe_push (USE_STMT (use_p));
4345 /* We expect to have found an exit_phi because of loop-closed-ssa
4346 form. */
4347 gcc_assert (!phis.is_empty ());
4349 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4351 if (outer_loop)
4353 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4354 gimple vect_phi;
4356 /* FORNOW. Currently not supporting the case that an inner-loop
4357 reduction is not used in the outer-loop (but only outside the
4358 outer-loop), unless it is double reduction. */
4359 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4360 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4361 || double_reduc);
4363 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4364 if (!double_reduc
4365 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4366 != vect_double_reduction_def)
4367 continue;
4369 /* Handle double reduction:
4371 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4372 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4373 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4374 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4376 At that point the regular reduction (stmt2 and stmt3) is
4377 already vectorized, as well as the exit phi node, stmt4.
4378 Here we vectorize the phi node of double reduction, stmt1, and
4379 update all relevant statements. */
4381 /* Go through all the uses of s2 to find double reduction phi
4382 node, i.e., stmt1 above. */
4383 orig_name = PHI_RESULT (exit_phi);
4384 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4386 stmt_vec_info use_stmt_vinfo;
4387 stmt_vec_info new_phi_vinfo;
4388 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4389 basic_block bb = gimple_bb (use_stmt);
4390 gimple use;
4392 /* Check that USE_STMT is really double reduction phi
4393 node. */
4394 if (gimple_code (use_stmt) != GIMPLE_PHI
4395 || gimple_phi_num_args (use_stmt) != 2
4396 || bb->loop_father != outer_loop)
4397 continue;
4398 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4399 if (!use_stmt_vinfo
4400 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4401 != vect_double_reduction_def)
4402 continue;
4404 /* Create vector phi node for double reduction:
4405 vs1 = phi <vs0, vs2>
4406 vs1 was created previously in this function by a call to
4407 vect_get_vec_def_for_operand and is stored in
4408 vec_initial_def;
4409 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4410 vs0 is created here. */
4412 /* Create vector phi node. */
4413 vect_phi = create_phi_node (vec_initial_def, bb);
4414 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4415 loop_vec_info_for_loop (outer_loop), NULL);
4416 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4418 /* Create vs0 - initial def of the double reduction phi. */
4419 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4420 loop_preheader_edge (outer_loop));
4421 init_def = get_initial_def_for_reduction (stmt,
4422 preheader_arg, NULL);
4423 vect_phi_init = vect_init_vector (use_stmt, init_def,
4424 vectype, NULL);
4426 /* Update phi node arguments with vs0 and vs2. */
4427 add_phi_arg (vect_phi, vect_phi_init,
4428 loop_preheader_edge (outer_loop),
4429 UNKNOWN_LOCATION);
4430 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4431 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4432 if (dump_enabled_p ())
4434 dump_printf_loc (MSG_NOTE, vect_location,
4435 "created double reduction phi node: ");
4436 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4439 vect_phi_res = PHI_RESULT (vect_phi);
4441 /* Replace the use, i.e., set the correct vs1 in the regular
4442 reduction phi node. FORNOW, NCOPIES is always 1, so the
4443 loop is redundant. */
4444 use = reduction_phi;
4445 for (j = 0; j < ncopies; j++)
4447 edge pr_edge = loop_preheader_edge (loop);
4448 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4449 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4455 phis.release ();
4456 if (nested_in_vect_loop)
4458 if (double_reduc)
4459 loop = outer_loop;
4460 else
4461 continue;
4464 phis.create (3);
4465 /* Find the loop-closed-use at the loop exit of the original scalar
4466 result. (The reduction result is expected to have two immediate uses,
4467 one at the latch block, and one at the loop exit). For double
4468 reductions we are looking for exit phis of the outer loop. */
4469 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4471 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4472 phis.safe_push (USE_STMT (use_p));
4473 else
4475 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4477 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4479 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4481 if (!flow_bb_inside_loop_p (loop,
4482 gimple_bb (USE_STMT (phi_use_p))))
4483 phis.safe_push (USE_STMT (phi_use_p));
4489 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4491 /* Replace the uses: */
4492 orig_name = PHI_RESULT (exit_phi);
4493 scalar_result = scalar_results[k];
4494 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4495 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4496 SET_USE (use_p, scalar_result);
4499 phis.release ();
4502 scalar_results.release ();
4503 inner_phis.release ();
4504 new_phis.release ();
4508 /* Function vectorizable_reduction.
4510 Check if STMT performs a reduction operation that can be vectorized.
4511 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4512 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4513 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4515 This function also handles reduction idioms (patterns) that have been
4516 recognized in advance during vect_pattern_recog. In this case, STMT may be
4517 of this form:
4518 X = pattern_expr (arg0, arg1, ..., X)
4519 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4520 sequence that had been detected and replaced by the pattern-stmt (STMT).
4522 In some cases of reduction patterns, the type of the reduction variable X is
4523 different than the type of the other arguments of STMT.
4524 In such cases, the vectype that is used when transforming STMT into a vector
4525 stmt is different than the vectype that is used to determine the
4526 vectorization factor, because it consists of a different number of elements
4527 than the actual number of elements that are being operated upon in parallel.
4529 For example, consider an accumulation of shorts into an int accumulator.
4530 On some targets it's possible to vectorize this pattern operating on 8
4531 shorts at a time (hence, the vectype for purposes of determining the
4532 vectorization factor should be V8HI); on the other hand, the vectype that
4533 is used to create the vector form is actually V4SI (the type of the result).
4535 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4536 indicates what is the actual level of parallelism (V8HI in the example), so
4537 that the right vectorization factor would be derived. This vectype
4538 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4539 be used to create the vectorized stmt. The right vectype for the vectorized
4540 stmt is obtained from the type of the result X:
4541 get_vectype_for_scalar_type (TREE_TYPE (X))
4543 This means that, contrary to "regular" reductions (or "regular" stmts in
4544 general), the following equation:
4545 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4546 does *NOT* necessarily hold for reduction patterns. */
4548 bool
4549 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4550 gimple *vec_stmt, slp_tree slp_node)
4552 tree vec_dest;
4553 tree scalar_dest;
4554 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4555 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4556 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4557 tree vectype_in = NULL_TREE;
4558 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4559 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4560 enum tree_code code, orig_code, epilog_reduc_code;
4561 enum machine_mode vec_mode;
4562 int op_type;
4563 optab optab, reduc_optab;
4564 tree new_temp = NULL_TREE;
4565 tree def;
4566 gimple def_stmt;
4567 enum vect_def_type dt;
4568 gimple new_phi = NULL;
4569 tree scalar_type;
4570 bool is_simple_use;
4571 gimple orig_stmt;
4572 stmt_vec_info orig_stmt_info;
4573 tree expr = NULL_TREE;
4574 int i;
4575 int ncopies;
4576 int epilog_copies;
4577 stmt_vec_info prev_stmt_info, prev_phi_info;
4578 bool single_defuse_cycle = false;
4579 tree reduc_def = NULL_TREE;
4580 gimple new_stmt = NULL;
4581 int j;
4582 tree ops[3];
4583 bool nested_cycle = false, found_nested_cycle_def = false;
4584 gimple reduc_def_stmt = NULL;
4585 /* The default is that the reduction variable is the last in statement. */
4586 int reduc_index = 2;
4587 bool double_reduc = false, dummy;
4588 basic_block def_bb;
4589 struct loop * def_stmt_loop, *outer_loop = NULL;
4590 tree def_arg;
4591 gimple def_arg_stmt;
4592 vec<tree> vec_oprnds0 = vNULL;
4593 vec<tree> vec_oprnds1 = vNULL;
4594 vec<tree> vect_defs = vNULL;
4595 vec<gimple> phis = vNULL;
4596 int vec_num;
4597 tree def0, def1, tem, op0, op1 = NULL_TREE;
4599 /* In case of reduction chain we switch to the first stmt in the chain, but
4600 we don't update STMT_INFO, since only the last stmt is marked as reduction
4601 and has reduction properties. */
4602 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4603 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4605 if (nested_in_vect_loop_p (loop, stmt))
4607 outer_loop = loop;
4608 loop = loop->inner;
4609 nested_cycle = true;
4612 /* 1. Is vectorizable reduction? */
4613 /* Not supportable if the reduction variable is used in the loop, unless
4614 it's a reduction chain. */
4615 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4616 && !GROUP_FIRST_ELEMENT (stmt_info))
4617 return false;
4619 /* Reductions that are not used even in an enclosing outer-loop,
4620 are expected to be "live" (used out of the loop). */
4621 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4622 && !STMT_VINFO_LIVE_P (stmt_info))
4623 return false;
4625 /* Make sure it was already recognized as a reduction computation. */
4626 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4627 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4628 return false;
4630 /* 2. Has this been recognized as a reduction pattern?
4632 Check if STMT represents a pattern that has been recognized
4633 in earlier analysis stages. For stmts that represent a pattern,
4634 the STMT_VINFO_RELATED_STMT field records the last stmt in
4635 the original sequence that constitutes the pattern. */
4637 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4638 if (orig_stmt)
4640 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4641 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4642 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4645 /* 3. Check the operands of the operation. The first operands are defined
4646 inside the loop body. The last operand is the reduction variable,
4647 which is defined by the loop-header-phi. */
4649 gcc_assert (is_gimple_assign (stmt));
4651 /* Flatten RHS. */
4652 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4654 case GIMPLE_SINGLE_RHS:
4655 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4656 if (op_type == ternary_op)
4658 tree rhs = gimple_assign_rhs1 (stmt);
4659 ops[0] = TREE_OPERAND (rhs, 0);
4660 ops[1] = TREE_OPERAND (rhs, 1);
4661 ops[2] = TREE_OPERAND (rhs, 2);
4662 code = TREE_CODE (rhs);
4664 else
4665 return false;
4666 break;
4668 case GIMPLE_BINARY_RHS:
4669 code = gimple_assign_rhs_code (stmt);
4670 op_type = TREE_CODE_LENGTH (code);
4671 gcc_assert (op_type == binary_op);
4672 ops[0] = gimple_assign_rhs1 (stmt);
4673 ops[1] = gimple_assign_rhs2 (stmt);
4674 break;
4676 case GIMPLE_TERNARY_RHS:
4677 code = gimple_assign_rhs_code (stmt);
4678 op_type = TREE_CODE_LENGTH (code);
4679 gcc_assert (op_type == ternary_op);
4680 ops[0] = gimple_assign_rhs1 (stmt);
4681 ops[1] = gimple_assign_rhs2 (stmt);
4682 ops[2] = gimple_assign_rhs3 (stmt);
4683 break;
4685 case GIMPLE_UNARY_RHS:
4686 return false;
4688 default:
4689 gcc_unreachable ();
4692 if (code == COND_EXPR && slp_node)
4693 return false;
4695 scalar_dest = gimple_assign_lhs (stmt);
4696 scalar_type = TREE_TYPE (scalar_dest);
4697 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4698 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4699 return false;
4701 /* Do not try to vectorize bit-precision reductions. */
4702 if ((TYPE_PRECISION (scalar_type)
4703 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4704 return false;
4706 /* All uses but the last are expected to be defined in the loop.
4707 The last use is the reduction variable. In case of nested cycle this
4708 assumption is not true: we use reduc_index to record the index of the
4709 reduction variable. */
4710 for (i = 0; i < op_type - 1; i++)
4712 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4713 if (i == 0 && code == COND_EXPR)
4714 continue;
4716 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4717 &def_stmt, &def, &dt, &tem);
4718 if (!vectype_in)
4719 vectype_in = tem;
4720 gcc_assert (is_simple_use);
4722 if (dt != vect_internal_def
4723 && dt != vect_external_def
4724 && dt != vect_constant_def
4725 && dt != vect_induction_def
4726 && !(dt == vect_nested_cycle && nested_cycle))
4727 return false;
4729 if (dt == vect_nested_cycle)
4731 found_nested_cycle_def = true;
4732 reduc_def_stmt = def_stmt;
4733 reduc_index = i;
4737 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4738 &def_stmt, &def, &dt, &tem);
4739 if (!vectype_in)
4740 vectype_in = tem;
4741 gcc_assert (is_simple_use);
4742 if (!(dt == vect_reduction_def
4743 || dt == vect_nested_cycle
4744 || ((dt == vect_internal_def || dt == vect_external_def
4745 || dt == vect_constant_def || dt == vect_induction_def)
4746 && nested_cycle && found_nested_cycle_def)))
4748 /* For pattern recognized stmts, orig_stmt might be a reduction,
4749 but some helper statements for the pattern might not, or
4750 might be COND_EXPRs with reduction uses in the condition. */
4751 gcc_assert (orig_stmt);
4752 return false;
4754 if (!found_nested_cycle_def)
4755 reduc_def_stmt = def_stmt;
4757 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4758 if (orig_stmt)
4759 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4760 reduc_def_stmt,
4761 !nested_cycle,
4762 &dummy));
4763 else
4765 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4766 !nested_cycle, &dummy);
4767 /* We changed STMT to be the first stmt in reduction chain, hence we
4768 check that in this case the first element in the chain is STMT. */
4769 gcc_assert (stmt == tmp
4770 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4773 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4774 return false;
4776 if (slp_node || PURE_SLP_STMT (stmt_info))
4777 ncopies = 1;
4778 else
4779 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4780 / TYPE_VECTOR_SUBPARTS (vectype_in));
4782 gcc_assert (ncopies >= 1);
4784 vec_mode = TYPE_MODE (vectype_in);
4786 if (code == COND_EXPR)
4788 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4790 if (dump_enabled_p ())
4791 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4792 "unsupported condition in reduction");
4794 return false;
4797 else
4799 /* 4. Supportable by target? */
4801 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4802 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4804 /* Shifts and rotates are only supported by vectorizable_shifts,
4805 not vectorizable_reduction. */
4806 if (dump_enabled_p ())
4807 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4808 "unsupported shift or rotation.");
4809 return false;
4812 /* 4.1. check support for the operation in the loop */
4813 optab = optab_for_tree_code (code, vectype_in, optab_default);
4814 if (!optab)
4816 if (dump_enabled_p ())
4817 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4818 "no optab.");
4820 return false;
4823 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4825 if (dump_enabled_p ())
4826 dump_printf (MSG_NOTE, "op not supported by target.");
4828 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4829 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4830 < vect_min_worthwhile_factor (code))
4831 return false;
4833 if (dump_enabled_p ())
4834 dump_printf (MSG_NOTE, "proceeding using word mode.");
4837 /* Worthwhile without SIMD support? */
4838 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4839 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4840 < vect_min_worthwhile_factor (code))
4842 if (dump_enabled_p ())
4843 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4844 "not worthwhile without SIMD support.");
4846 return false;
4850 /* 4.2. Check support for the epilog operation.
4852 If STMT represents a reduction pattern, then the type of the
4853 reduction variable may be different than the type of the rest
4854 of the arguments. For example, consider the case of accumulation
4855 of shorts into an int accumulator; The original code:
4856 S1: int_a = (int) short_a;
4857 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4859 was replaced with:
4860 STMT: int_acc = widen_sum <short_a, int_acc>
4862 This means that:
4863 1. The tree-code that is used to create the vector operation in the
4864 epilog code (that reduces the partial results) is not the
4865 tree-code of STMT, but is rather the tree-code of the original
4866 stmt from the pattern that STMT is replacing. I.e, in the example
4867 above we want to use 'widen_sum' in the loop, but 'plus' in the
4868 epilog.
4869 2. The type (mode) we use to check available target support
4870 for the vector operation to be created in the *epilog*, is
4871 determined by the type of the reduction variable (in the example
4872 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4873 However the type (mode) we use to check available target support
4874 for the vector operation to be created *inside the loop*, is
4875 determined by the type of the other arguments to STMT (in the
4876 example we'd check this: optab_handler (widen_sum_optab,
4877 vect_short_mode)).
4879 This is contrary to "regular" reductions, in which the types of all
4880 the arguments are the same as the type of the reduction variable.
4881 For "regular" reductions we can therefore use the same vector type
4882 (and also the same tree-code) when generating the epilog code and
4883 when generating the code inside the loop. */
4885 if (orig_stmt)
4887 /* This is a reduction pattern: get the vectype from the type of the
4888 reduction variable, and get the tree-code from orig_stmt. */
4889 orig_code = gimple_assign_rhs_code (orig_stmt);
4890 gcc_assert (vectype_out);
4891 vec_mode = TYPE_MODE (vectype_out);
4893 else
4895 /* Regular reduction: use the same vectype and tree-code as used for
4896 the vector code inside the loop can be used for the epilog code. */
4897 orig_code = code;
4900 if (nested_cycle)
4902 def_bb = gimple_bb (reduc_def_stmt);
4903 def_stmt_loop = def_bb->loop_father;
4904 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4905 loop_preheader_edge (def_stmt_loop));
4906 if (TREE_CODE (def_arg) == SSA_NAME
4907 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4908 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4909 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4910 && vinfo_for_stmt (def_arg_stmt)
4911 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4912 == vect_double_reduction_def)
4913 double_reduc = true;
4916 epilog_reduc_code = ERROR_MARK;
4917 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4919 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4920 optab_default);
4921 if (!reduc_optab)
4923 if (dump_enabled_p ())
4924 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4925 "no optab for reduction.");
4927 epilog_reduc_code = ERROR_MARK;
4930 if (reduc_optab
4931 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4933 if (dump_enabled_p ())
4934 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4935 "reduc op not supported by target.");
4937 epilog_reduc_code = ERROR_MARK;
4940 else
4942 if (!nested_cycle || double_reduc)
4944 if (dump_enabled_p ())
4945 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4946 "no reduc code for scalar code.");
4948 return false;
4952 if (double_reduc && ncopies > 1)
4954 if (dump_enabled_p ())
4955 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4956 "multiple types in double reduction");
4958 return false;
4961 /* In case of widenning multiplication by a constant, we update the type
4962 of the constant to be the type of the other operand. We check that the
4963 constant fits the type in the pattern recognition pass. */
4964 if (code == DOT_PROD_EXPR
4965 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
4967 if (TREE_CODE (ops[0]) == INTEGER_CST)
4968 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
4969 else if (TREE_CODE (ops[1]) == INTEGER_CST)
4970 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
4971 else
4973 if (dump_enabled_p ())
4974 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4975 "invalid types in dot-prod");
4977 return false;
4981 if (!vec_stmt) /* transformation not required. */
4983 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4984 return false;
4985 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4986 return true;
4989 /** Transform. **/
4991 if (dump_enabled_p ())
4992 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.");
4994 /* FORNOW: Multiple types are not supported for condition. */
4995 if (code == COND_EXPR)
4996 gcc_assert (ncopies == 1);
4998 /* Create the destination vector */
4999 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5001 /* In case the vectorization factor (VF) is bigger than the number
5002 of elements that we can fit in a vectype (nunits), we have to generate
5003 more than one vector stmt - i.e - we need to "unroll" the
5004 vector stmt by a factor VF/nunits. For more details see documentation
5005 in vectorizable_operation. */
5007 /* If the reduction is used in an outer loop we need to generate
5008 VF intermediate results, like so (e.g. for ncopies=2):
5009 r0 = phi (init, r0)
5010 r1 = phi (init, r1)
5011 r0 = x0 + r0;
5012 r1 = x1 + r1;
5013 (i.e. we generate VF results in 2 registers).
5014 In this case we have a separate def-use cycle for each copy, and therefore
5015 for each copy we get the vector def for the reduction variable from the
5016 respective phi node created for this copy.
5018 Otherwise (the reduction is unused in the loop nest), we can combine
5019 together intermediate results, like so (e.g. for ncopies=2):
5020 r = phi (init, r)
5021 r = x0 + r;
5022 r = x1 + r;
5023 (i.e. we generate VF/2 results in a single register).
5024 In this case for each copy we get the vector def for the reduction variable
5025 from the vectorized reduction operation generated in the previous iteration.
5028 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5030 single_defuse_cycle = true;
5031 epilog_copies = 1;
5033 else
5034 epilog_copies = ncopies;
5036 prev_stmt_info = NULL;
5037 prev_phi_info = NULL;
5038 if (slp_node)
5040 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5041 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5042 == TYPE_VECTOR_SUBPARTS (vectype_in));
5044 else
5046 vec_num = 1;
5047 vec_oprnds0.create (1);
5048 if (op_type == ternary_op)
5049 vec_oprnds1.create (1);
5052 phis.create (vec_num);
5053 vect_defs.create (vec_num);
5054 if (!slp_node)
5055 vect_defs.quick_push (NULL_TREE);
5057 for (j = 0; j < ncopies; j++)
5059 if (j == 0 || !single_defuse_cycle)
5061 for (i = 0; i < vec_num; i++)
5063 /* Create the reduction-phi that defines the reduction
5064 operand. */
5065 new_phi = create_phi_node (vec_dest, loop->header);
5066 set_vinfo_for_stmt (new_phi,
5067 new_stmt_vec_info (new_phi, loop_vinfo,
5068 NULL));
5069 if (j == 0 || slp_node)
5070 phis.quick_push (new_phi);
5074 if (code == COND_EXPR)
5076 gcc_assert (!slp_node);
5077 vectorizable_condition (stmt, gsi, vec_stmt,
5078 PHI_RESULT (phis[0]),
5079 reduc_index, NULL);
5080 /* Multiple types are not supported for condition. */
5081 break;
5084 /* Handle uses. */
5085 if (j == 0)
5087 op0 = ops[!reduc_index];
5088 if (op_type == ternary_op)
5090 if (reduc_index == 0)
5091 op1 = ops[2];
5092 else
5093 op1 = ops[1];
5096 if (slp_node)
5097 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5098 slp_node, -1);
5099 else
5101 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5102 stmt, NULL);
5103 vec_oprnds0.quick_push (loop_vec_def0);
5104 if (op_type == ternary_op)
5106 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5107 NULL);
5108 vec_oprnds1.quick_push (loop_vec_def1);
5112 else
5114 if (!slp_node)
5116 enum vect_def_type dt;
5117 gimple dummy_stmt;
5118 tree dummy;
5120 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5121 &dummy_stmt, &dummy, &dt);
5122 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5123 loop_vec_def0);
5124 vec_oprnds0[0] = loop_vec_def0;
5125 if (op_type == ternary_op)
5127 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5128 &dummy, &dt);
5129 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5130 loop_vec_def1);
5131 vec_oprnds1[0] = loop_vec_def1;
5135 if (single_defuse_cycle)
5136 reduc_def = gimple_assign_lhs (new_stmt);
5138 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5141 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5143 if (slp_node)
5144 reduc_def = PHI_RESULT (phis[i]);
5145 else
5147 if (!single_defuse_cycle || j == 0)
5148 reduc_def = PHI_RESULT (new_phi);
5151 def1 = ((op_type == ternary_op)
5152 ? vec_oprnds1[i] : NULL);
5153 if (op_type == binary_op)
5155 if (reduc_index == 0)
5156 expr = build2 (code, vectype_out, reduc_def, def0);
5157 else
5158 expr = build2 (code, vectype_out, def0, reduc_def);
5160 else
5162 if (reduc_index == 0)
5163 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5164 else
5166 if (reduc_index == 1)
5167 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5168 else
5169 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5173 new_stmt = gimple_build_assign (vec_dest, expr);
5174 new_temp = make_ssa_name (vec_dest, new_stmt);
5175 gimple_assign_set_lhs (new_stmt, new_temp);
5176 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5178 if (slp_node)
5180 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5181 vect_defs.quick_push (new_temp);
5183 else
5184 vect_defs[0] = new_temp;
5187 if (slp_node)
5188 continue;
5190 if (j == 0)
5191 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5192 else
5193 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5195 prev_stmt_info = vinfo_for_stmt (new_stmt);
5196 prev_phi_info = vinfo_for_stmt (new_phi);
5199 /* Finalize the reduction-phi (set its arguments) and create the
5200 epilog reduction code. */
5201 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5203 new_temp = gimple_assign_lhs (*vec_stmt);
5204 vect_defs[0] = new_temp;
5207 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5208 epilog_reduc_code, phis, reduc_index,
5209 double_reduc, slp_node);
5211 phis.release ();
5212 vect_defs.release ();
5213 vec_oprnds0.release ();
5214 vec_oprnds1.release ();
5216 return true;
5219 /* Function vect_min_worthwhile_factor.
5221 For a loop where we could vectorize the operation indicated by CODE,
5222 return the minimum vectorization factor that makes it worthwhile
5223 to use generic vectors. */
5225 vect_min_worthwhile_factor (enum tree_code code)
5227 switch (code)
5229 case PLUS_EXPR:
5230 case MINUS_EXPR:
5231 case NEGATE_EXPR:
5232 return 4;
5234 case BIT_AND_EXPR:
5235 case BIT_IOR_EXPR:
5236 case BIT_XOR_EXPR:
5237 case BIT_NOT_EXPR:
5238 return 2;
5240 default:
5241 return INT_MAX;
5246 /* Function vectorizable_induction
5248 Check if PHI performs an induction computation that can be vectorized.
5249 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5250 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5251 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5253 bool
5254 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5255 gimple *vec_stmt)
5257 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5258 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5259 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5260 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5261 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5262 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5263 tree vec_def;
5265 gcc_assert (ncopies >= 1);
5266 /* FORNOW. These restrictions should be relaxed. */
5267 if (nested_in_vect_loop_p (loop, phi))
5269 imm_use_iterator imm_iter;
5270 use_operand_p use_p;
5271 gimple exit_phi;
5272 edge latch_e;
5273 tree loop_arg;
5275 if (ncopies > 1)
5277 if (dump_enabled_p ())
5278 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5279 "multiple types in nested loop.");
5280 return false;
5283 exit_phi = NULL;
5284 latch_e = loop_latch_edge (loop->inner);
5285 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5286 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5288 if (!flow_bb_inside_loop_p (loop->inner,
5289 gimple_bb (USE_STMT (use_p))))
5291 exit_phi = USE_STMT (use_p);
5292 break;
5295 if (exit_phi)
5297 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5298 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5299 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5301 if (dump_enabled_p ())
5302 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5303 "inner-loop induction only used outside "
5304 "of the outer vectorized loop.");
5305 return false;
5310 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5311 return false;
5313 /* FORNOW: SLP not supported. */
5314 if (STMT_SLP_TYPE (stmt_info))
5315 return false;
5317 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5319 if (gimple_code (phi) != GIMPLE_PHI)
5320 return false;
5322 if (!vec_stmt) /* transformation not required. */
5324 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5325 if (dump_enabled_p ())
5326 dump_printf_loc (MSG_NOTE, vect_location,
5327 "=== vectorizable_induction ===");
5328 vect_model_induction_cost (stmt_info, ncopies);
5329 return true;
5332 /** Transform. **/
5334 if (dump_enabled_p ())
5335 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.");
5337 vec_def = get_initial_def_for_induction (phi);
5338 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5339 return true;
5342 /* Function vectorizable_live_operation.
5344 STMT computes a value that is used outside the loop. Check if
5345 it can be supported. */
5347 bool
5348 vectorizable_live_operation (gimple stmt,
5349 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5350 gimple *vec_stmt ATTRIBUTE_UNUSED)
5352 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5353 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5354 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5355 int i;
5356 int op_type;
5357 tree op;
5358 tree def;
5359 gimple def_stmt;
5360 enum vect_def_type dt;
5361 enum tree_code code;
5362 enum gimple_rhs_class rhs_class;
5364 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5366 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5367 return false;
5369 if (!is_gimple_assign (stmt))
5370 return false;
5372 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5373 return false;
5375 /* FORNOW. CHECKME. */
5376 if (nested_in_vect_loop_p (loop, stmt))
5377 return false;
5379 code = gimple_assign_rhs_code (stmt);
5380 op_type = TREE_CODE_LENGTH (code);
5381 rhs_class = get_gimple_rhs_class (code);
5382 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5383 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5385 /* FORNOW: support only if all uses are invariant. This means
5386 that the scalar operations can remain in place, unvectorized.
5387 The original last scalar value that they compute will be used. */
5389 for (i = 0; i < op_type; i++)
5391 if (rhs_class == GIMPLE_SINGLE_RHS)
5392 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5393 else
5394 op = gimple_op (stmt, i + 1);
5395 if (op
5396 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5397 &dt))
5399 if (dump_enabled_p ())
5400 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5401 "use not simple.");
5402 return false;
5405 if (dt != vect_external_def && dt != vect_constant_def)
5406 return false;
5409 /* No transformation is required for the cases we currently support. */
5410 return true;
5413 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5415 static void
5416 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5418 ssa_op_iter op_iter;
5419 imm_use_iterator imm_iter;
5420 def_operand_p def_p;
5421 gimple ustmt;
5423 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5425 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5427 basic_block bb;
5429 if (!is_gimple_debug (ustmt))
5430 continue;
5432 bb = gimple_bb (ustmt);
5434 if (!flow_bb_inside_loop_p (loop, bb))
5436 if (gimple_debug_bind_p (ustmt))
5438 if (dump_enabled_p ())
5439 dump_printf_loc (MSG_NOTE, vect_location,
5440 "killing debug use");
5442 gimple_debug_bind_reset_value (ustmt);
5443 update_stmt (ustmt);
5445 else
5446 gcc_unreachable ();
5452 /* Function vect_transform_loop.
5454 The analysis phase has determined that the loop is vectorizable.
5455 Vectorize the loop - created vectorized stmts to replace the scalar
5456 stmts in the loop, and update the loop exit condition. */
5458 void
5459 vect_transform_loop (loop_vec_info loop_vinfo)
5461 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5462 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5463 int nbbs = loop->num_nodes;
5464 gimple_stmt_iterator si;
5465 int i;
5466 tree ratio = NULL;
5467 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5468 bool grouped_store;
5469 bool slp_scheduled = false;
5470 unsigned int nunits;
5471 gimple stmt, pattern_stmt;
5472 gimple_seq pattern_def_seq = NULL;
5473 gimple_stmt_iterator pattern_def_si = gsi_none ();
5474 bool transform_pattern_stmt = false;
5475 bool check_profitability = false;
5476 int th;
5477 /* Record number of iterations before we started tampering with the profile. */
5478 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5480 if (dump_enabled_p ())
5481 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===");
5483 /* If profile is inprecise, we have chance to fix it up. */
5484 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5485 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5487 /* Use the more conservative vectorization threshold. If the number
5488 of iterations is constant assume the cost check has been performed
5489 by our caller. If the threshold makes all loops profitable that
5490 run at least the vectorization factor number of times checking
5491 is pointless, too. */
5492 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5493 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5494 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5495 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5496 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5498 if (dump_enabled_p ())
5499 dump_printf_loc (MSG_NOTE, vect_location,
5500 "Profitability threshold is %d loop iterations.", th);
5501 check_profitability = true;
5504 /* Version the loop first, if required, so the profitability check
5505 comes first. */
5507 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5508 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5510 vect_loop_versioning (loop_vinfo, th, check_profitability);
5511 check_profitability = false;
5514 /* Peel the loop if there are data refs with unknown alignment.
5515 Only one data ref with unknown store is allowed. */
5517 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
5519 vect_do_peeling_for_alignment (loop_vinfo, th, check_profitability);
5520 check_profitability = false;
5523 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5524 compile time constant), or it is a constant that doesn't divide by the
5525 vectorization factor, then an epilog loop needs to be created.
5526 We therefore duplicate the loop: the original loop will be vectorized,
5527 and will compute the first (n/VF) iterations. The second copy of the loop
5528 will remain scalar and will compute the remaining (n%VF) iterations.
5529 (VF is the vectorization factor). */
5531 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5532 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5533 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
5534 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5535 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
5536 th, check_profitability);
5537 else
5538 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5539 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5541 /* 1) Make sure the loop header has exactly two entries
5542 2) Make sure we have a preheader basic block. */
5544 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5546 split_edge (loop_preheader_edge (loop));
5548 /* FORNOW: the vectorizer supports only loops which body consist
5549 of one basic block (header + empty latch). When the vectorizer will
5550 support more involved loop forms, the order by which the BBs are
5551 traversed need to be reconsidered. */
5553 for (i = 0; i < nbbs; i++)
5555 basic_block bb = bbs[i];
5556 stmt_vec_info stmt_info;
5557 gimple phi;
5559 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5561 phi = gsi_stmt (si);
5562 if (dump_enabled_p ())
5564 dump_printf_loc (MSG_NOTE, vect_location,
5565 "------>vectorizing phi: ");
5566 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5568 stmt_info = vinfo_for_stmt (phi);
5569 if (!stmt_info)
5570 continue;
5572 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5573 vect_loop_kill_debug_uses (loop, phi);
5575 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5576 && !STMT_VINFO_LIVE_P (stmt_info))
5577 continue;
5579 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5580 != (unsigned HOST_WIDE_INT) vectorization_factor)
5581 && dump_enabled_p ())
5582 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.");
5584 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5586 if (dump_enabled_p ())
5587 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.");
5588 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5592 pattern_stmt = NULL;
5593 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5595 bool is_store;
5597 if (transform_pattern_stmt)
5598 stmt = pattern_stmt;
5599 else
5601 stmt = gsi_stmt (si);
5602 /* During vectorization remove existing clobber stmts. */
5603 if (gimple_clobber_p (stmt))
5605 unlink_stmt_vdef (stmt);
5606 gsi_remove (&si, true);
5607 release_defs (stmt);
5608 continue;
5612 if (dump_enabled_p ())
5614 dump_printf_loc (MSG_NOTE, vect_location,
5615 "------>vectorizing statement: ");
5616 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5619 stmt_info = vinfo_for_stmt (stmt);
5621 /* vector stmts created in the outer-loop during vectorization of
5622 stmts in an inner-loop may not have a stmt_info, and do not
5623 need to be vectorized. */
5624 if (!stmt_info)
5626 gsi_next (&si);
5627 continue;
5630 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5631 vect_loop_kill_debug_uses (loop, stmt);
5633 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5634 && !STMT_VINFO_LIVE_P (stmt_info))
5636 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5637 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5638 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5639 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5641 stmt = pattern_stmt;
5642 stmt_info = vinfo_for_stmt (stmt);
5644 else
5646 gsi_next (&si);
5647 continue;
5650 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5651 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5652 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5653 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5654 transform_pattern_stmt = true;
5656 /* If pattern statement has def stmts, vectorize them too. */
5657 if (is_pattern_stmt_p (stmt_info))
5659 if (pattern_def_seq == NULL)
5661 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5662 pattern_def_si = gsi_start (pattern_def_seq);
5664 else if (!gsi_end_p (pattern_def_si))
5665 gsi_next (&pattern_def_si);
5666 if (pattern_def_seq != NULL)
5668 gimple pattern_def_stmt = NULL;
5669 stmt_vec_info pattern_def_stmt_info = NULL;
5671 while (!gsi_end_p (pattern_def_si))
5673 pattern_def_stmt = gsi_stmt (pattern_def_si);
5674 pattern_def_stmt_info
5675 = vinfo_for_stmt (pattern_def_stmt);
5676 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5677 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5678 break;
5679 gsi_next (&pattern_def_si);
5682 if (!gsi_end_p (pattern_def_si))
5684 if (dump_enabled_p ())
5686 dump_printf_loc (MSG_NOTE, vect_location,
5687 "==> vectorizing pattern def "
5688 "stmt: ");
5689 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5690 pattern_def_stmt, 0);
5693 stmt = pattern_def_stmt;
5694 stmt_info = pattern_def_stmt_info;
5696 else
5698 pattern_def_si = gsi_none ();
5699 transform_pattern_stmt = false;
5702 else
5703 transform_pattern_stmt = false;
5706 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5707 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
5708 STMT_VINFO_VECTYPE (stmt_info));
5709 if (!STMT_SLP_TYPE (stmt_info)
5710 && nunits != (unsigned int) vectorization_factor
5711 && dump_enabled_p ())
5712 /* For SLP VF is set according to unrolling factor, and not to
5713 vector size, hence for SLP this print is not valid. */
5714 dump_printf_loc (MSG_NOTE, vect_location,
5715 "multiple-types.");
5717 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5718 reached. */
5719 if (STMT_SLP_TYPE (stmt_info))
5721 if (!slp_scheduled)
5723 slp_scheduled = true;
5725 if (dump_enabled_p ())
5726 dump_printf_loc (MSG_NOTE, vect_location,
5727 "=== scheduling SLP instances ===");
5729 vect_schedule_slp (loop_vinfo, NULL);
5732 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
5733 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
5735 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5737 pattern_def_seq = NULL;
5738 gsi_next (&si);
5740 continue;
5744 /* -------- vectorize statement ------------ */
5745 if (dump_enabled_p ())
5746 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.");
5748 grouped_store = false;
5749 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
5750 if (is_store)
5752 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5754 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
5755 interleaving chain was completed - free all the stores in
5756 the chain. */
5757 gsi_next (&si);
5758 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
5759 continue;
5761 else
5763 /* Free the attached stmt_vec_info and remove the stmt. */
5764 gimple store = gsi_stmt (si);
5765 free_stmt_vec_info (store);
5766 unlink_stmt_vdef (store);
5767 gsi_remove (&si, true);
5768 release_defs (store);
5769 continue;
5773 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5775 pattern_def_seq = NULL;
5776 gsi_next (&si);
5778 } /* stmts in BB */
5779 } /* BBs in loop */
5781 slpeel_make_loop_iterate_ntimes (loop, ratio);
5783 /* Reduce loop iterations by the vectorization factor. */
5784 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
5785 expected_iterations / vectorization_factor);
5786 loop->nb_iterations_upper_bound
5787 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
5788 FLOOR_DIV_EXPR);
5789 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5790 && loop->nb_iterations_upper_bound != double_int_zero)
5791 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
5792 if (loop->any_estimate)
5794 loop->nb_iterations_estimate
5795 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
5796 FLOOR_DIV_EXPR);
5797 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5798 && loop->nb_iterations_estimate != double_int_zero)
5799 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
5802 if (dump_enabled_p ())
5804 dump_printf_loc (MSG_NOTE, vect_location,
5805 "LOOP VECTORIZED\n");
5806 if (loop->inner)
5807 dump_printf_loc (MSG_NOTE, vect_location,
5808 "OUTER LOOP VECTORIZED\n");