1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
29 #include "tree-flow.h"
33 #include "tree-chrec.h"
34 #include "tree-scalar-evolution.h"
35 #include "tree-data-ref.h"
38 #include "diagnostic-core.h"
39 #include "tree-inline.h"
40 #include "tree-pass.h"
42 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
44 /* The maximum number of dominator BBs we search for conditions
45 of loop header copies we use for simplifying a conditional
47 #define MAX_DOMINATORS_TO_WALK 8
51 Analysis of number of iterations of an affine exit test.
55 /* Bounds on some value, BELOW <= X <= UP. */
63 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
66 split_to_var_and_offset (tree expr
, tree
*var
, mpz_t offset
)
68 tree type
= TREE_TYPE (expr
);
74 mpz_set_ui (offset
, 0);
76 switch (TREE_CODE (expr
))
83 case POINTER_PLUS_EXPR
:
84 op0
= TREE_OPERAND (expr
, 0);
85 op1
= TREE_OPERAND (expr
, 1);
87 if (TREE_CODE (op1
) != INTEGER_CST
)
91 /* Always sign extend the offset. */
92 off
= tree_to_double_int (op1
);
93 off
= off
.sext (TYPE_PRECISION (type
));
94 mpz_set_double_int (offset
, off
, false);
96 mpz_neg (offset
, offset
);
100 *var
= build_int_cst_type (type
, 0);
101 off
= tree_to_double_int (expr
);
102 mpz_set_double_int (offset
, off
, TYPE_UNSIGNED (type
));
110 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
111 in TYPE to MIN and MAX. */
114 determine_value_range (tree type
, tree var
, mpz_t off
,
115 mpz_t min
, mpz_t max
)
117 /* If the expression is a constant, we know its value exactly. */
118 if (integer_zerop (var
))
125 /* If the computation may wrap, we know nothing about the value, except for
126 the range of the type. */
127 get_type_static_bounds (type
, min
, max
);
128 if (!nowrap_type_p (type
))
131 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
132 add it to MIN, otherwise to MAX. */
133 if (mpz_sgn (off
) < 0)
134 mpz_add (max
, max
, off
);
136 mpz_add (min
, min
, off
);
139 /* Stores the bounds on the difference of the values of the expressions
140 (var + X) and (var + Y), computed in TYPE, to BNDS. */
143 bound_difference_of_offsetted_base (tree type
, mpz_t x
, mpz_t y
,
146 int rel
= mpz_cmp (x
, y
);
147 bool may_wrap
= !nowrap_type_p (type
);
150 /* If X == Y, then the expressions are always equal.
151 If X > Y, there are the following possibilities:
152 a) neither of var + X and var + Y overflow or underflow, or both of
153 them do. Then their difference is X - Y.
154 b) var + X overflows, and var + Y does not. Then the values of the
155 expressions are var + X - M and var + Y, where M is the range of
156 the type, and their difference is X - Y - M.
157 c) var + Y underflows and var + X does not. Their difference again
159 Therefore, if the arithmetics in type does not overflow, then the
160 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
161 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
162 (X - Y, X - Y + M). */
166 mpz_set_ui (bnds
->below
, 0);
167 mpz_set_ui (bnds
->up
, 0);
172 mpz_set_double_int (m
, double_int::mask (TYPE_PRECISION (type
)), true);
173 mpz_add_ui (m
, m
, 1);
174 mpz_sub (bnds
->up
, x
, y
);
175 mpz_set (bnds
->below
, bnds
->up
);
180 mpz_sub (bnds
->below
, bnds
->below
, m
);
182 mpz_add (bnds
->up
, bnds
->up
, m
);
188 /* From condition C0 CMP C1 derives information regarding the
189 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
190 and stores it to BNDS. */
193 refine_bounds_using_guard (tree type
, tree varx
, mpz_t offx
,
194 tree vary
, mpz_t offy
,
195 tree c0
, enum tree_code cmp
, tree c1
,
198 tree varc0
, varc1
, tmp
, ctype
;
199 mpz_t offc0
, offc1
, loffx
, loffy
, bnd
;
201 bool no_wrap
= nowrap_type_p (type
);
210 STRIP_SIGN_NOPS (c0
);
211 STRIP_SIGN_NOPS (c1
);
212 ctype
= TREE_TYPE (c0
);
213 if (!useless_type_conversion_p (ctype
, type
))
219 /* We could derive quite precise information from EQ_EXPR, however, such
220 a guard is unlikely to appear, so we do not bother with handling
225 /* NE_EXPR comparisons do not contain much of useful information, except for
226 special case of comparing with the bounds of the type. */
227 if (TREE_CODE (c1
) != INTEGER_CST
228 || !INTEGRAL_TYPE_P (type
))
231 /* Ensure that the condition speaks about an expression in the same type
233 ctype
= TREE_TYPE (c0
);
234 if (TYPE_PRECISION (ctype
) != TYPE_PRECISION (type
))
236 c0
= fold_convert (type
, c0
);
237 c1
= fold_convert (type
, c1
);
239 if (TYPE_MIN_VALUE (type
)
240 && operand_equal_p (c1
, TYPE_MIN_VALUE (type
), 0))
245 if (TYPE_MAX_VALUE (type
)
246 && operand_equal_p (c1
, TYPE_MAX_VALUE (type
), 0))
259 split_to_var_and_offset (expand_simple_operations (c0
), &varc0
, offc0
);
260 split_to_var_and_offset (expand_simple_operations (c1
), &varc1
, offc1
);
262 /* We are only interested in comparisons of expressions based on VARX and
263 VARY. TODO -- we might also be able to derive some bounds from
264 expressions containing just one of the variables. */
266 if (operand_equal_p (varx
, varc1
, 0))
268 tmp
= varc0
; varc0
= varc1
; varc1
= tmp
;
269 mpz_swap (offc0
, offc1
);
270 cmp
= swap_tree_comparison (cmp
);
273 if (!operand_equal_p (varx
, varc0
, 0)
274 || !operand_equal_p (vary
, varc1
, 0))
277 mpz_init_set (loffx
, offx
);
278 mpz_init_set (loffy
, offy
);
280 if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
282 tmp
= varx
; varx
= vary
; vary
= tmp
;
283 mpz_swap (offc0
, offc1
);
284 mpz_swap (loffx
, loffy
);
285 cmp
= swap_tree_comparison (cmp
);
289 /* If there is no overflow, the condition implies that
291 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
293 The overflows and underflows may complicate things a bit; each
294 overflow decreases the appropriate offset by M, and underflow
295 increases it by M. The above inequality would not necessarily be
298 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
299 VARX + OFFC0 overflows, but VARX + OFFX does not.
300 This may only happen if OFFX < OFFC0.
301 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
302 VARY + OFFC1 underflows and VARY + OFFY does not.
303 This may only happen if OFFY > OFFC1. */
312 x_ok
= (integer_zerop (varx
)
313 || mpz_cmp (loffx
, offc0
) >= 0);
314 y_ok
= (integer_zerop (vary
)
315 || mpz_cmp (loffy
, offc1
) <= 0);
321 mpz_sub (bnd
, loffx
, loffy
);
322 mpz_add (bnd
, bnd
, offc1
);
323 mpz_sub (bnd
, bnd
, offc0
);
326 mpz_sub_ui (bnd
, bnd
, 1);
331 if (mpz_cmp (bnds
->below
, bnd
) < 0)
332 mpz_set (bnds
->below
, bnd
);
336 if (mpz_cmp (bnd
, bnds
->up
) < 0)
337 mpz_set (bnds
->up
, bnd
);
349 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
350 The subtraction is considered to be performed in arbitrary precision,
353 We do not attempt to be too clever regarding the value ranges of X and
354 Y; most of the time, they are just integers or ssa names offsetted by
355 integer. However, we try to use the information contained in the
356 comparisons before the loop (usually created by loop header copying). */
359 bound_difference (struct loop
*loop
, tree x
, tree y
, bounds
*bnds
)
361 tree type
= TREE_TYPE (x
);
364 mpz_t minx
, maxx
, miny
, maxy
;
372 /* Get rid of unnecessary casts, but preserve the value of
377 mpz_init (bnds
->below
);
381 split_to_var_and_offset (x
, &varx
, offx
);
382 split_to_var_and_offset (y
, &vary
, offy
);
384 if (!integer_zerop (varx
)
385 && operand_equal_p (varx
, vary
, 0))
387 /* Special case VARX == VARY -- we just need to compare the
388 offsets. The matters are a bit more complicated in the
389 case addition of offsets may wrap. */
390 bound_difference_of_offsetted_base (type
, offx
, offy
, bnds
);
394 /* Otherwise, use the value ranges to determine the initial
395 estimates on below and up. */
400 determine_value_range (type
, varx
, offx
, minx
, maxx
);
401 determine_value_range (type
, vary
, offy
, miny
, maxy
);
403 mpz_sub (bnds
->below
, minx
, maxy
);
404 mpz_sub (bnds
->up
, maxx
, miny
);
411 /* If both X and Y are constants, we cannot get any more precise. */
412 if (integer_zerop (varx
) && integer_zerop (vary
))
415 /* Now walk the dominators of the loop header and use the entry
416 guards to refine the estimates. */
417 for (bb
= loop
->header
;
418 bb
!= ENTRY_BLOCK_PTR
&& cnt
< MAX_DOMINATORS_TO_WALK
;
419 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
421 if (!single_pred_p (bb
))
423 e
= single_pred_edge (bb
);
425 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
428 cond
= last_stmt (e
->src
);
429 c0
= gimple_cond_lhs (cond
);
430 cmp
= gimple_cond_code (cond
);
431 c1
= gimple_cond_rhs (cond
);
433 if (e
->flags
& EDGE_FALSE_VALUE
)
434 cmp
= invert_tree_comparison (cmp
, false);
436 refine_bounds_using_guard (type
, varx
, offx
, vary
, offy
,
446 /* Update the bounds in BNDS that restrict the value of X to the bounds
447 that restrict the value of X + DELTA. X can be obtained as a
448 difference of two values in TYPE. */
451 bounds_add (bounds
*bnds
, double_int delta
, tree type
)
456 mpz_set_double_int (mdelta
, delta
, false);
459 mpz_set_double_int (max
, double_int::mask (TYPE_PRECISION (type
)), true);
461 mpz_add (bnds
->up
, bnds
->up
, mdelta
);
462 mpz_add (bnds
->below
, bnds
->below
, mdelta
);
464 if (mpz_cmp (bnds
->up
, max
) > 0)
465 mpz_set (bnds
->up
, max
);
468 if (mpz_cmp (bnds
->below
, max
) < 0)
469 mpz_set (bnds
->below
, max
);
475 /* Update the bounds in BNDS that restrict the value of X to the bounds
476 that restrict the value of -X. */
479 bounds_negate (bounds
*bnds
)
483 mpz_init_set (tmp
, bnds
->up
);
484 mpz_neg (bnds
->up
, bnds
->below
);
485 mpz_neg (bnds
->below
, tmp
);
489 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
492 inverse (tree x
, tree mask
)
494 tree type
= TREE_TYPE (x
);
496 unsigned ctr
= tree_floor_log2 (mask
);
498 if (TYPE_PRECISION (type
) <= HOST_BITS_PER_WIDE_INT
)
500 unsigned HOST_WIDE_INT ix
;
501 unsigned HOST_WIDE_INT imask
;
502 unsigned HOST_WIDE_INT irslt
= 1;
504 gcc_assert (cst_and_fits_in_hwi (x
));
505 gcc_assert (cst_and_fits_in_hwi (mask
));
507 ix
= int_cst_value (x
);
508 imask
= int_cst_value (mask
);
517 rslt
= build_int_cst_type (type
, irslt
);
521 rslt
= build_int_cst (type
, 1);
524 rslt
= int_const_binop (MULT_EXPR
, rslt
, x
);
525 x
= int_const_binop (MULT_EXPR
, x
, x
);
527 rslt
= int_const_binop (BIT_AND_EXPR
, rslt
, mask
);
533 /* Derives the upper bound BND on the number of executions of loop with exit
534 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
535 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
536 that the loop ends through this exit, i.e., the induction variable ever
537 reaches the value of C.
539 The value C is equal to final - base, where final and base are the final and
540 initial value of the actual induction variable in the analysed loop. BNDS
541 bounds the value of this difference when computed in signed type with
542 unbounded range, while the computation of C is performed in an unsigned
543 type with the range matching the range of the type of the induction variable.
544 In particular, BNDS.up contains an upper bound on C in the following cases:
545 -- if the iv must reach its final value without overflow, i.e., if
546 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
547 -- if final >= base, which we know to hold when BNDS.below >= 0. */
550 number_of_iterations_ne_max (mpz_t bnd
, bool no_overflow
, tree c
, tree s
,
551 bounds
*bnds
, bool exit_must_be_taken
)
555 tree type
= TREE_TYPE (c
);
556 bool bnds_u_valid
= ((no_overflow
&& exit_must_be_taken
)
557 || mpz_sgn (bnds
->below
) >= 0);
560 || (TREE_CODE (c
) == INTEGER_CST
561 && TREE_CODE (s
) == INTEGER_CST
562 && tree_to_double_int (c
).mod (tree_to_double_int (s
),
563 TYPE_UNSIGNED (type
),
564 EXACT_DIV_EXPR
).is_zero ())
565 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (c
))
566 && multiple_of_p (type
, c
, s
)))
568 /* If C is an exact multiple of S, then its value will be reached before
569 the induction variable overflows (unless the loop is exited in some
570 other way before). Note that the actual induction variable in the
571 loop (which ranges from base to final instead of from 0 to C) may
572 overflow, in which case BNDS.up will not be giving a correct upper
573 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
575 exit_must_be_taken
= true;
578 /* If the induction variable can overflow, the number of iterations is at
579 most the period of the control variable (or infinite, but in that case
580 the whole # of iterations analysis will fail). */
583 max
= double_int::mask (TYPE_PRECISION (type
)
584 - tree_low_cst (num_ending_zeros (s
), 1));
585 mpz_set_double_int (bnd
, max
, true);
589 /* Now we know that the induction variable does not overflow, so the loop
590 iterates at most (range of type / S) times. */
591 mpz_set_double_int (bnd
, double_int::mask (TYPE_PRECISION (type
)), true);
593 /* If the induction variable is guaranteed to reach the value of C before
595 if (exit_must_be_taken
)
597 /* ... then we can strengthen this to C / S, and possibly we can use
598 the upper bound on C given by BNDS. */
599 if (TREE_CODE (c
) == INTEGER_CST
)
600 mpz_set_double_int (bnd
, tree_to_double_int (c
), true);
601 else if (bnds_u_valid
)
602 mpz_set (bnd
, bnds
->up
);
606 mpz_set_double_int (d
, tree_to_double_int (s
), true);
607 mpz_fdiv_q (bnd
, bnd
, d
);
611 /* Determines number of iterations of loop whose ending condition
612 is IV <> FINAL. TYPE is the type of the iv. The number of
613 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
614 we know that the exit must be taken eventually, i.e., that the IV
615 ever reaches the value FINAL (we derived this earlier, and possibly set
616 NITER->assumptions to make sure this is the case). BNDS contains the
617 bounds on the difference FINAL - IV->base. */
620 number_of_iterations_ne (tree type
, affine_iv
*iv
, tree final
,
621 struct tree_niter_desc
*niter
, bool exit_must_be_taken
,
624 tree niter_type
= unsigned_type_for (type
);
625 tree s
, c
, d
, bits
, assumption
, tmp
, bound
;
628 niter
->control
= *iv
;
629 niter
->bound
= final
;
630 niter
->cmp
= NE_EXPR
;
632 /* Rearrange the terms so that we get inequality S * i <> C, with S
633 positive. Also cast everything to the unsigned type. If IV does
634 not overflow, BNDS bounds the value of C. Also, this is the
635 case if the computation |FINAL - IV->base| does not overflow, i.e.,
636 if BNDS->below in the result is nonnegative. */
637 if (tree_int_cst_sign_bit (iv
->step
))
639 s
= fold_convert (niter_type
,
640 fold_build1 (NEGATE_EXPR
, type
, iv
->step
));
641 c
= fold_build2 (MINUS_EXPR
, niter_type
,
642 fold_convert (niter_type
, iv
->base
),
643 fold_convert (niter_type
, final
));
644 bounds_negate (bnds
);
648 s
= fold_convert (niter_type
, iv
->step
);
649 c
= fold_build2 (MINUS_EXPR
, niter_type
,
650 fold_convert (niter_type
, final
),
651 fold_convert (niter_type
, iv
->base
));
655 number_of_iterations_ne_max (max
, iv
->no_overflow
, c
, s
, bnds
,
657 niter
->max
= mpz_get_double_int (niter_type
, max
, false);
660 /* First the trivial cases -- when the step is 1. */
661 if (integer_onep (s
))
667 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
668 is infinite. Otherwise, the number of iterations is
669 (inverse(s/d) * (c/d)) mod (size of mode/d). */
670 bits
= num_ending_zeros (s
);
671 bound
= build_low_bits_mask (niter_type
,
672 (TYPE_PRECISION (niter_type
)
673 - tree_low_cst (bits
, 1)));
675 d
= fold_binary_to_constant (LSHIFT_EXPR
, niter_type
,
676 build_int_cst (niter_type
, 1), bits
);
677 s
= fold_binary_to_constant (RSHIFT_EXPR
, niter_type
, s
, bits
);
679 if (!exit_must_be_taken
)
681 /* If we cannot assume that the exit is taken eventually, record the
682 assumptions for divisibility of c. */
683 assumption
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, c
, d
);
684 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
,
685 assumption
, build_int_cst (niter_type
, 0));
686 if (!integer_nonzerop (assumption
))
687 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
688 niter
->assumptions
, assumption
);
691 c
= fold_build2 (EXACT_DIV_EXPR
, niter_type
, c
, d
);
692 tmp
= fold_build2 (MULT_EXPR
, niter_type
, c
, inverse (s
, bound
));
693 niter
->niter
= fold_build2 (BIT_AND_EXPR
, niter_type
, tmp
, bound
);
697 /* Checks whether we can determine the final value of the control variable
698 of the loop with ending condition IV0 < IV1 (computed in TYPE).
699 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
700 of the step. The assumptions necessary to ensure that the computation
701 of the final value does not overflow are recorded in NITER. If we
702 find the final value, we adjust DELTA and return TRUE. Otherwise
703 we return false. BNDS bounds the value of IV1->base - IV0->base,
704 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
705 true if we know that the exit must be taken eventually. */
708 number_of_iterations_lt_to_ne (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
709 struct tree_niter_desc
*niter
,
710 tree
*delta
, tree step
,
711 bool exit_must_be_taken
, bounds
*bnds
)
713 tree niter_type
= TREE_TYPE (step
);
714 tree mod
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, *delta
, step
);
717 tree assumption
= boolean_true_node
, bound
, noloop
;
718 bool ret
= false, fv_comp_no_overflow
;
720 if (POINTER_TYPE_P (type
))
723 if (TREE_CODE (mod
) != INTEGER_CST
)
725 if (integer_nonzerop (mod
))
726 mod
= fold_build2 (MINUS_EXPR
, niter_type
, step
, mod
);
727 tmod
= fold_convert (type1
, mod
);
730 mpz_set_double_int (mmod
, tree_to_double_int (mod
), true);
731 mpz_neg (mmod
, mmod
);
733 /* If the induction variable does not overflow and the exit is taken,
734 then the computation of the final value does not overflow. This is
735 also obviously the case if the new final value is equal to the
736 current one. Finally, we postulate this for pointer type variables,
737 as the code cannot rely on the object to that the pointer points being
738 placed at the end of the address space (and more pragmatically,
739 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
740 if (integer_zerop (mod
) || POINTER_TYPE_P (type
))
741 fv_comp_no_overflow
= true;
742 else if (!exit_must_be_taken
)
743 fv_comp_no_overflow
= false;
745 fv_comp_no_overflow
=
746 (iv0
->no_overflow
&& integer_nonzerop (iv0
->step
))
747 || (iv1
->no_overflow
&& integer_nonzerop (iv1
->step
));
749 if (integer_nonzerop (iv0
->step
))
751 /* The final value of the iv is iv1->base + MOD, assuming that this
752 computation does not overflow, and that
753 iv0->base <= iv1->base + MOD. */
754 if (!fv_comp_no_overflow
)
756 bound
= fold_build2 (MINUS_EXPR
, type1
,
757 TYPE_MAX_VALUE (type1
), tmod
);
758 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
760 if (integer_zerop (assumption
))
763 if (mpz_cmp (mmod
, bnds
->below
) < 0)
764 noloop
= boolean_false_node
;
765 else if (POINTER_TYPE_P (type
))
766 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
768 fold_build_pointer_plus (iv1
->base
, tmod
));
770 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
772 fold_build2 (PLUS_EXPR
, type1
,
777 /* The final value of the iv is iv0->base - MOD, assuming that this
778 computation does not overflow, and that
779 iv0->base - MOD <= iv1->base. */
780 if (!fv_comp_no_overflow
)
782 bound
= fold_build2 (PLUS_EXPR
, type1
,
783 TYPE_MIN_VALUE (type1
), tmod
);
784 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
786 if (integer_zerop (assumption
))
789 if (mpz_cmp (mmod
, bnds
->below
) < 0)
790 noloop
= boolean_false_node
;
791 else if (POINTER_TYPE_P (type
))
792 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
793 fold_build_pointer_plus (iv0
->base
,
794 fold_build1 (NEGATE_EXPR
,
798 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
799 fold_build2 (MINUS_EXPR
, type1
,
804 if (!integer_nonzerop (assumption
))
805 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
808 if (!integer_zerop (noloop
))
809 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
812 bounds_add (bnds
, tree_to_double_int (mod
), type
);
813 *delta
= fold_build2 (PLUS_EXPR
, niter_type
, *delta
, mod
);
821 /* Add assertions to NITER that ensure that the control variable of the loop
822 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
823 are TYPE. Returns false if we can prove that there is an overflow, true
824 otherwise. STEP is the absolute value of the step. */
827 assert_no_overflow_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
828 struct tree_niter_desc
*niter
, tree step
)
830 tree bound
, d
, assumption
, diff
;
831 tree niter_type
= TREE_TYPE (step
);
833 if (integer_nonzerop (iv0
->step
))
835 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
836 if (iv0
->no_overflow
)
839 /* If iv0->base is a constant, we can determine the last value before
840 overflow precisely; otherwise we conservatively assume
843 if (TREE_CODE (iv0
->base
) == INTEGER_CST
)
845 d
= fold_build2 (MINUS_EXPR
, niter_type
,
846 fold_convert (niter_type
, TYPE_MAX_VALUE (type
)),
847 fold_convert (niter_type
, iv0
->base
));
848 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
851 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
852 build_int_cst (niter_type
, 1));
853 bound
= fold_build2 (MINUS_EXPR
, type
,
854 TYPE_MAX_VALUE (type
), fold_convert (type
, diff
));
855 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
860 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
861 if (iv1
->no_overflow
)
864 if (TREE_CODE (iv1
->base
) == INTEGER_CST
)
866 d
= fold_build2 (MINUS_EXPR
, niter_type
,
867 fold_convert (niter_type
, iv1
->base
),
868 fold_convert (niter_type
, TYPE_MIN_VALUE (type
)));
869 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
872 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
873 build_int_cst (niter_type
, 1));
874 bound
= fold_build2 (PLUS_EXPR
, type
,
875 TYPE_MIN_VALUE (type
), fold_convert (type
, diff
));
876 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
880 if (integer_zerop (assumption
))
882 if (!integer_nonzerop (assumption
))
883 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
884 niter
->assumptions
, assumption
);
886 iv0
->no_overflow
= true;
887 iv1
->no_overflow
= true;
891 /* Add an assumption to NITER that a loop whose ending condition
892 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
893 bounds the value of IV1->base - IV0->base. */
896 assert_loop_rolls_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
897 struct tree_niter_desc
*niter
, bounds
*bnds
)
899 tree assumption
= boolean_true_node
, bound
, diff
;
900 tree mbz
, mbzl
, mbzr
, type1
;
901 bool rolls_p
, no_overflow_p
;
905 /* We are going to compute the number of iterations as
906 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
907 variant of TYPE. This formula only works if
909 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
911 (where MAX is the maximum value of the unsigned variant of TYPE, and
912 the computations in this formula are performed in full precision,
913 i.e., without overflows).
915 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
916 we have a condition of the form iv0->base - step < iv1->base before the loop,
917 and for loops iv0->base < iv1->base - step * i the condition
918 iv0->base < iv1->base + step, due to loop header copying, which enable us
919 to prove the lower bound.
921 The upper bound is more complicated. Unless the expressions for initial
922 and final value themselves contain enough information, we usually cannot
923 derive it from the context. */
925 /* First check whether the answer does not follow from the bounds we gathered
927 if (integer_nonzerop (iv0
->step
))
928 dstep
= tree_to_double_int (iv0
->step
);
931 dstep
= tree_to_double_int (iv1
->step
).sext (TYPE_PRECISION (type
));
936 mpz_set_double_int (mstep
, dstep
, true);
937 mpz_neg (mstep
, mstep
);
938 mpz_add_ui (mstep
, mstep
, 1);
940 rolls_p
= mpz_cmp (mstep
, bnds
->below
) <= 0;
943 mpz_set_double_int (max
, double_int::mask (TYPE_PRECISION (type
)), true);
944 mpz_add (max
, max
, mstep
);
945 no_overflow_p
= (mpz_cmp (bnds
->up
, max
) <= 0
946 /* For pointers, only values lying inside a single object
947 can be compared or manipulated by pointer arithmetics.
948 Gcc in general does not allow or handle objects larger
949 than half of the address space, hence the upper bound
950 is satisfied for pointers. */
951 || POINTER_TYPE_P (type
));
955 if (rolls_p
&& no_overflow_p
)
959 if (POINTER_TYPE_P (type
))
962 /* Now the hard part; we must formulate the assumption(s) as expressions, and
963 we must be careful not to introduce overflow. */
965 if (integer_nonzerop (iv0
->step
))
967 diff
= fold_build2 (MINUS_EXPR
, type1
,
968 iv0
->step
, build_int_cst (type1
, 1));
970 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
971 0 address never belongs to any object, we can assume this for
973 if (!POINTER_TYPE_P (type
))
975 bound
= fold_build2 (PLUS_EXPR
, type1
,
976 TYPE_MIN_VALUE (type
), diff
);
977 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
981 /* And then we can compute iv0->base - diff, and compare it with
983 mbzl
= fold_build2 (MINUS_EXPR
, type1
,
984 fold_convert (type1
, iv0
->base
), diff
);
985 mbzr
= fold_convert (type1
, iv1
->base
);
989 diff
= fold_build2 (PLUS_EXPR
, type1
,
990 iv1
->step
, build_int_cst (type1
, 1));
992 if (!POINTER_TYPE_P (type
))
994 bound
= fold_build2 (PLUS_EXPR
, type1
,
995 TYPE_MAX_VALUE (type
), diff
);
996 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
1000 mbzl
= fold_convert (type1
, iv0
->base
);
1001 mbzr
= fold_build2 (MINUS_EXPR
, type1
,
1002 fold_convert (type1
, iv1
->base
), diff
);
1005 if (!integer_nonzerop (assumption
))
1006 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1007 niter
->assumptions
, assumption
);
1010 mbz
= fold_build2 (GT_EXPR
, boolean_type_node
, mbzl
, mbzr
);
1011 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1012 niter
->may_be_zero
, mbz
);
1016 /* Determines number of iterations of loop whose ending condition
1017 is IV0 < IV1. TYPE is the type of the iv. The number of
1018 iterations is stored to NITER. BNDS bounds the difference
1019 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1020 that the exit must be taken eventually. */
1023 number_of_iterations_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1024 struct tree_niter_desc
*niter
,
1025 bool exit_must_be_taken
, bounds
*bnds
)
1027 tree niter_type
= unsigned_type_for (type
);
1028 tree delta
, step
, s
;
1031 if (integer_nonzerop (iv0
->step
))
1033 niter
->control
= *iv0
;
1034 niter
->cmp
= LT_EXPR
;
1035 niter
->bound
= iv1
->base
;
1039 niter
->control
= *iv1
;
1040 niter
->cmp
= GT_EXPR
;
1041 niter
->bound
= iv0
->base
;
1044 delta
= fold_build2 (MINUS_EXPR
, niter_type
,
1045 fold_convert (niter_type
, iv1
->base
),
1046 fold_convert (niter_type
, iv0
->base
));
1048 /* First handle the special case that the step is +-1. */
1049 if ((integer_onep (iv0
->step
) && integer_zerop (iv1
->step
))
1050 || (integer_all_onesp (iv1
->step
) && integer_zerop (iv0
->step
)))
1052 /* for (i = iv0->base; i < iv1->base; i++)
1056 for (i = iv1->base; i > iv0->base; i--).
1058 In both cases # of iterations is iv1->base - iv0->base, assuming that
1059 iv1->base >= iv0->base.
1061 First try to derive a lower bound on the value of
1062 iv1->base - iv0->base, computed in full precision. If the difference
1063 is nonnegative, we are done, otherwise we must record the
1066 if (mpz_sgn (bnds
->below
) < 0)
1067 niter
->may_be_zero
= fold_build2 (LT_EXPR
, boolean_type_node
,
1068 iv1
->base
, iv0
->base
);
1069 niter
->niter
= delta
;
1070 niter
->max
= mpz_get_double_int (niter_type
, bnds
->up
, false);
1074 if (integer_nonzerop (iv0
->step
))
1075 step
= fold_convert (niter_type
, iv0
->step
);
1077 step
= fold_convert (niter_type
,
1078 fold_build1 (NEGATE_EXPR
, type
, iv1
->step
));
1080 /* If we can determine the final value of the control iv exactly, we can
1081 transform the condition to != comparison. In particular, this will be
1082 the case if DELTA is constant. */
1083 if (number_of_iterations_lt_to_ne (type
, iv0
, iv1
, niter
, &delta
, step
,
1084 exit_must_be_taken
, bnds
))
1088 zps
.base
= build_int_cst (niter_type
, 0);
1090 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1091 zps does not overflow. */
1092 zps
.no_overflow
= true;
1094 return number_of_iterations_ne (type
, &zps
, delta
, niter
, true, bnds
);
1097 /* Make sure that the control iv does not overflow. */
1098 if (!assert_no_overflow_lt (type
, iv0
, iv1
, niter
, step
))
1101 /* We determine the number of iterations as (delta + step - 1) / step. For
1102 this to work, we must know that iv1->base >= iv0->base - step + 1,
1103 otherwise the loop does not roll. */
1104 assert_loop_rolls_lt (type
, iv0
, iv1
, niter
, bnds
);
1106 s
= fold_build2 (MINUS_EXPR
, niter_type
,
1107 step
, build_int_cst (niter_type
, 1));
1108 delta
= fold_build2 (PLUS_EXPR
, niter_type
, delta
, s
);
1109 niter
->niter
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, delta
, step
);
1113 mpz_set_double_int (mstep
, tree_to_double_int (step
), true);
1114 mpz_add (tmp
, bnds
->up
, mstep
);
1115 mpz_sub_ui (tmp
, tmp
, 1);
1116 mpz_fdiv_q (tmp
, tmp
, mstep
);
1117 niter
->max
= mpz_get_double_int (niter_type
, tmp
, false);
1124 /* Determines number of iterations of loop whose ending condition
1125 is IV0 <= IV1. TYPE is the type of the iv. The number of
1126 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1127 we know that this condition must eventually become false (we derived this
1128 earlier, and possibly set NITER->assumptions to make sure this
1129 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1132 number_of_iterations_le (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1133 struct tree_niter_desc
*niter
, bool exit_must_be_taken
,
1138 if (POINTER_TYPE_P (type
))
1141 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1142 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1143 value of the type. This we must know anyway, since if it is
1144 equal to this value, the loop rolls forever. We do not check
1145 this condition for pointer type ivs, as the code cannot rely on
1146 the object to that the pointer points being placed at the end of
1147 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1148 not defined for pointers). */
1150 if (!exit_must_be_taken
&& !POINTER_TYPE_P (type
))
1152 if (integer_nonzerop (iv0
->step
))
1153 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1154 iv1
->base
, TYPE_MAX_VALUE (type
));
1156 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1157 iv0
->base
, TYPE_MIN_VALUE (type
));
1159 if (integer_zerop (assumption
))
1161 if (!integer_nonzerop (assumption
))
1162 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1163 niter
->assumptions
, assumption
);
1166 if (integer_nonzerop (iv0
->step
))
1168 if (POINTER_TYPE_P (type
))
1169 iv1
->base
= fold_build_pointer_plus_hwi (iv1
->base
, 1);
1171 iv1
->base
= fold_build2 (PLUS_EXPR
, type1
, iv1
->base
,
1172 build_int_cst (type1
, 1));
1174 else if (POINTER_TYPE_P (type
))
1175 iv0
->base
= fold_build_pointer_plus_hwi (iv0
->base
, -1);
1177 iv0
->base
= fold_build2 (MINUS_EXPR
, type1
,
1178 iv0
->base
, build_int_cst (type1
, 1));
1180 bounds_add (bnds
, double_int_one
, type1
);
1182 return number_of_iterations_lt (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1186 /* Dumps description of affine induction variable IV to FILE. */
1189 dump_affine_iv (FILE *file
, affine_iv
*iv
)
1191 if (!integer_zerop (iv
->step
))
1192 fprintf (file
, "[");
1194 print_generic_expr (dump_file
, iv
->base
, TDF_SLIM
);
1196 if (!integer_zerop (iv
->step
))
1198 fprintf (file
, ", + , ");
1199 print_generic_expr (dump_file
, iv
->step
, TDF_SLIM
);
1200 fprintf (file
, "]%s", iv
->no_overflow
? "(no_overflow)" : "");
1204 /* Determine the number of iterations according to condition (for staying
1205 inside loop) which compares two induction variables using comparison
1206 operator CODE. The induction variable on left side of the comparison
1207 is IV0, the right-hand side is IV1. Both induction variables must have
1208 type TYPE, which must be an integer or pointer type. The steps of the
1209 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1211 LOOP is the loop whose number of iterations we are determining.
1213 ONLY_EXIT is true if we are sure this is the only way the loop could be
1214 exited (including possibly non-returning function calls, exceptions, etc.)
1215 -- in this case we can use the information whether the control induction
1216 variables can overflow or not in a more efficient way.
1218 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1220 The results (number of iterations and assumptions as described in
1221 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1222 Returns false if it fails to determine number of iterations, true if it
1223 was determined (possibly with some assumptions). */
1226 number_of_iterations_cond (struct loop
*loop
,
1227 tree type
, affine_iv
*iv0
, enum tree_code code
,
1228 affine_iv
*iv1
, struct tree_niter_desc
*niter
,
1229 bool only_exit
, bool every_iteration
)
1231 bool exit_must_be_taken
= false, ret
;
1234 /* If the test is not executed every iteration, wrapping may make the test
1236 TODO: the overflow case can be still used as unreliable estimate of upper
1237 bound. But we have no API to pass it down to number of iterations code
1238 and, at present, it will not use it anyway. */
1239 if (!every_iteration
1240 && (!iv0
->no_overflow
|| !iv1
->no_overflow
1241 || code
== NE_EXPR
|| code
== EQ_EXPR
))
1244 /* The meaning of these assumptions is this:
1246 then the rest of information does not have to be valid
1247 if may_be_zero then the loop does not roll, even if
1249 niter
->assumptions
= boolean_true_node
;
1250 niter
->may_be_zero
= boolean_false_node
;
1251 niter
->niter
= NULL_TREE
;
1252 niter
->max
= double_int_zero
;
1254 niter
->bound
= NULL_TREE
;
1255 niter
->cmp
= ERROR_MARK
;
1257 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1258 the control variable is on lhs. */
1259 if (code
== GE_EXPR
|| code
== GT_EXPR
1260 || (code
== NE_EXPR
&& integer_zerop (iv0
->step
)))
1263 code
= swap_tree_comparison (code
);
1266 if (POINTER_TYPE_P (type
))
1268 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1269 to the same object. If they do, the control variable cannot wrap
1270 (as wrap around the bounds of memory will never return a pointer
1271 that would be guaranteed to point to the same object, even if we
1272 avoid undefined behavior by casting to size_t and back). */
1273 iv0
->no_overflow
= true;
1274 iv1
->no_overflow
= true;
1277 /* If the control induction variable does not overflow and the only exit
1278 from the loop is the one that we analyze, we know it must be taken
1282 if (!integer_zerop (iv0
->step
) && iv0
->no_overflow
)
1283 exit_must_be_taken
= true;
1284 else if (!integer_zerop (iv1
->step
) && iv1
->no_overflow
)
1285 exit_must_be_taken
= true;
1288 /* We can handle the case when neither of the sides of the comparison is
1289 invariant, provided that the test is NE_EXPR. This rarely occurs in
1290 practice, but it is simple enough to manage. */
1291 if (!integer_zerop (iv0
->step
) && !integer_zerop (iv1
->step
))
1293 tree step_type
= POINTER_TYPE_P (type
) ? sizetype
: type
;
1294 if (code
!= NE_EXPR
)
1297 iv0
->step
= fold_binary_to_constant (MINUS_EXPR
, step_type
,
1298 iv0
->step
, iv1
->step
);
1299 iv0
->no_overflow
= false;
1300 iv1
->step
= build_int_cst (step_type
, 0);
1301 iv1
->no_overflow
= true;
1304 /* If the result of the comparison is a constant, the loop is weird. More
1305 precise handling would be possible, but the situation is not common enough
1306 to waste time on it. */
1307 if (integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
))
1310 /* Ignore loops of while (i-- < 10) type. */
1311 if (code
!= NE_EXPR
)
1313 if (iv0
->step
&& tree_int_cst_sign_bit (iv0
->step
))
1316 if (!integer_zerop (iv1
->step
) && !tree_int_cst_sign_bit (iv1
->step
))
1320 /* If the loop exits immediately, there is nothing to do. */
1321 tree tem
= fold_binary (code
, boolean_type_node
, iv0
->base
, iv1
->base
);
1322 if (tem
&& integer_zerop (tem
))
1324 niter
->niter
= build_int_cst (unsigned_type_for (type
), 0);
1325 niter
->max
= double_int_zero
;
1329 /* OK, now we know we have a senseful loop. Handle several cases, depending
1330 on what comparison operator is used. */
1331 bound_difference (loop
, iv1
->base
, iv0
->base
, &bnds
);
1333 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1336 "Analyzing # of iterations of loop %d\n", loop
->num
);
1338 fprintf (dump_file
, " exit condition ");
1339 dump_affine_iv (dump_file
, iv0
);
1340 fprintf (dump_file
, " %s ",
1341 code
== NE_EXPR
? "!="
1342 : code
== LT_EXPR
? "<"
1344 dump_affine_iv (dump_file
, iv1
);
1345 fprintf (dump_file
, "\n");
1347 fprintf (dump_file
, " bounds on difference of bases: ");
1348 mpz_out_str (dump_file
, 10, bnds
.below
);
1349 fprintf (dump_file
, " ... ");
1350 mpz_out_str (dump_file
, 10, bnds
.up
);
1351 fprintf (dump_file
, "\n");
1357 gcc_assert (integer_zerop (iv1
->step
));
1358 ret
= number_of_iterations_ne (type
, iv0
, iv1
->base
, niter
,
1359 exit_must_be_taken
, &bnds
);
1363 ret
= number_of_iterations_lt (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1368 ret
= number_of_iterations_le (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1376 mpz_clear (bnds
.up
);
1377 mpz_clear (bnds
.below
);
1379 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1383 fprintf (dump_file
, " result:\n");
1384 if (!integer_nonzerop (niter
->assumptions
))
1386 fprintf (dump_file
, " under assumptions ");
1387 print_generic_expr (dump_file
, niter
->assumptions
, TDF_SLIM
);
1388 fprintf (dump_file
, "\n");
1391 if (!integer_zerop (niter
->may_be_zero
))
1393 fprintf (dump_file
, " zero if ");
1394 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1395 fprintf (dump_file
, "\n");
1398 fprintf (dump_file
, " # of iterations ");
1399 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1400 fprintf (dump_file
, ", bounded by ");
1401 dump_double_int (dump_file
, niter
->max
, true);
1402 fprintf (dump_file
, "\n");
1405 fprintf (dump_file
, " failed\n\n");
1410 /* Substitute NEW for OLD in EXPR and fold the result. */
1413 simplify_replace_tree (tree expr
, tree old
, tree new_tree
)
1416 tree ret
= NULL_TREE
, e
, se
;
1421 /* Do not bother to replace constants. */
1422 if (CONSTANT_CLASS_P (old
))
1426 || operand_equal_p (expr
, old
, 0))
1427 return unshare_expr (new_tree
);
1432 n
= TREE_OPERAND_LENGTH (expr
);
1433 for (i
= 0; i
< n
; i
++)
1435 e
= TREE_OPERAND (expr
, i
);
1436 se
= simplify_replace_tree (e
, old
, new_tree
);
1441 ret
= copy_node (expr
);
1443 TREE_OPERAND (ret
, i
) = se
;
1446 return (ret
? fold (ret
) : expr
);
1449 /* Expand definitions of ssa names in EXPR as long as they are simple
1450 enough, and return the new expression. */
1453 expand_simple_operations (tree expr
)
1456 tree ret
= NULL_TREE
, e
, ee
, e1
;
1457 enum tree_code code
;
1460 if (expr
== NULL_TREE
)
1463 if (is_gimple_min_invariant (expr
))
1466 code
= TREE_CODE (expr
);
1467 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1469 n
= TREE_OPERAND_LENGTH (expr
);
1470 for (i
= 0; i
< n
; i
++)
1472 e
= TREE_OPERAND (expr
, i
);
1473 ee
= expand_simple_operations (e
);
1478 ret
= copy_node (expr
);
1480 TREE_OPERAND (ret
, i
) = ee
;
1486 fold_defer_overflow_warnings ();
1488 fold_undefer_and_ignore_overflow_warnings ();
1492 if (TREE_CODE (expr
) != SSA_NAME
)
1495 stmt
= SSA_NAME_DEF_STMT (expr
);
1496 if (gimple_code (stmt
) == GIMPLE_PHI
)
1498 basic_block src
, dest
;
1500 if (gimple_phi_num_args (stmt
) != 1)
1502 e
= PHI_ARG_DEF (stmt
, 0);
1504 /* Avoid propagating through loop exit phi nodes, which
1505 could break loop-closed SSA form restrictions. */
1506 dest
= gimple_bb (stmt
);
1507 src
= single_pred (dest
);
1508 if (TREE_CODE (e
) == SSA_NAME
1509 && src
->loop_father
!= dest
->loop_father
)
1512 return expand_simple_operations (e
);
1514 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1517 e
= gimple_assign_rhs1 (stmt
);
1518 code
= gimple_assign_rhs_code (stmt
);
1519 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1521 if (is_gimple_min_invariant (e
))
1524 if (code
== SSA_NAME
)
1525 return expand_simple_operations (e
);
1533 /* Casts are simple. */
1534 ee
= expand_simple_operations (e
);
1535 return fold_build1 (code
, TREE_TYPE (expr
), ee
);
1539 case POINTER_PLUS_EXPR
:
1540 /* And increments and decrements by a constant are simple. */
1541 e1
= gimple_assign_rhs2 (stmt
);
1542 if (!is_gimple_min_invariant (e1
))
1545 ee
= expand_simple_operations (e
);
1546 return fold_build2 (code
, TREE_TYPE (expr
), ee
, e1
);
1553 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1554 expression (or EXPR unchanged, if no simplification was possible). */
1557 tree_simplify_using_condition_1 (tree cond
, tree expr
)
1560 tree e
, te
, e0
, e1
, e2
, notcond
;
1561 enum tree_code code
= TREE_CODE (expr
);
1563 if (code
== INTEGER_CST
)
1566 if (code
== TRUTH_OR_EXPR
1567 || code
== TRUTH_AND_EXPR
1568 || code
== COND_EXPR
)
1572 e0
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 0));
1573 if (TREE_OPERAND (expr
, 0) != e0
)
1576 e1
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 1));
1577 if (TREE_OPERAND (expr
, 1) != e1
)
1580 if (code
== COND_EXPR
)
1582 e2
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 2));
1583 if (TREE_OPERAND (expr
, 2) != e2
)
1591 if (code
== COND_EXPR
)
1592 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
1594 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
1600 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1601 propagation, and vice versa. Fold does not handle this, since it is
1602 considered too expensive. */
1603 if (TREE_CODE (cond
) == EQ_EXPR
)
1605 e0
= TREE_OPERAND (cond
, 0);
1606 e1
= TREE_OPERAND (cond
, 1);
1608 /* We know that e0 == e1. Check whether we cannot simplify expr
1610 e
= simplify_replace_tree (expr
, e0
, e1
);
1611 if (integer_zerop (e
) || integer_nonzerop (e
))
1614 e
= simplify_replace_tree (expr
, e1
, e0
);
1615 if (integer_zerop (e
) || integer_nonzerop (e
))
1618 if (TREE_CODE (expr
) == EQ_EXPR
)
1620 e0
= TREE_OPERAND (expr
, 0);
1621 e1
= TREE_OPERAND (expr
, 1);
1623 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1624 e
= simplify_replace_tree (cond
, e0
, e1
);
1625 if (integer_zerop (e
))
1627 e
= simplify_replace_tree (cond
, e1
, e0
);
1628 if (integer_zerop (e
))
1631 if (TREE_CODE (expr
) == NE_EXPR
)
1633 e0
= TREE_OPERAND (expr
, 0);
1634 e1
= TREE_OPERAND (expr
, 1);
1636 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1637 e
= simplify_replace_tree (cond
, e0
, e1
);
1638 if (integer_zerop (e
))
1639 return boolean_true_node
;
1640 e
= simplify_replace_tree (cond
, e1
, e0
);
1641 if (integer_zerop (e
))
1642 return boolean_true_node
;
1645 te
= expand_simple_operations (expr
);
1647 /* Check whether COND ==> EXPR. */
1648 notcond
= invert_truthvalue (cond
);
1649 e
= fold_binary (TRUTH_OR_EXPR
, boolean_type_node
, notcond
, te
);
1650 if (e
&& integer_nonzerop (e
))
1653 /* Check whether COND ==> not EXPR. */
1654 e
= fold_binary (TRUTH_AND_EXPR
, boolean_type_node
, cond
, te
);
1655 if (e
&& integer_zerop (e
))
1661 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1662 expression (or EXPR unchanged, if no simplification was possible).
1663 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1664 of simple operations in definitions of ssa names in COND are expanded,
1665 so that things like casts or incrementing the value of the bound before
1666 the loop do not cause us to fail. */
1669 tree_simplify_using_condition (tree cond
, tree expr
)
1671 cond
= expand_simple_operations (cond
);
1673 return tree_simplify_using_condition_1 (cond
, expr
);
1676 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1677 Returns the simplified expression (or EXPR unchanged, if no
1678 simplification was possible).*/
1681 simplify_using_initial_conditions (struct loop
*loop
, tree expr
)
1689 if (TREE_CODE (expr
) == INTEGER_CST
)
1692 /* Limit walking the dominators to avoid quadraticness in
1693 the number of BBs times the number of loops in degenerate
1695 for (bb
= loop
->header
;
1696 bb
!= ENTRY_BLOCK_PTR
&& cnt
< MAX_DOMINATORS_TO_WALK
;
1697 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
1699 if (!single_pred_p (bb
))
1701 e
= single_pred_edge (bb
);
1703 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
1706 stmt
= last_stmt (e
->src
);
1707 cond
= fold_build2 (gimple_cond_code (stmt
),
1709 gimple_cond_lhs (stmt
),
1710 gimple_cond_rhs (stmt
));
1711 if (e
->flags
& EDGE_FALSE_VALUE
)
1712 cond
= invert_truthvalue (cond
);
1713 expr
= tree_simplify_using_condition (cond
, expr
);
1720 /* Tries to simplify EXPR using the evolutions of the loop invariants
1721 in the superloops of LOOP. Returns the simplified expression
1722 (or EXPR unchanged, if no simplification was possible). */
1725 simplify_using_outer_evolutions (struct loop
*loop
, tree expr
)
1727 enum tree_code code
= TREE_CODE (expr
);
1731 if (is_gimple_min_invariant (expr
))
1734 if (code
== TRUTH_OR_EXPR
1735 || code
== TRUTH_AND_EXPR
1736 || code
== COND_EXPR
)
1740 e0
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 0));
1741 if (TREE_OPERAND (expr
, 0) != e0
)
1744 e1
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 1));
1745 if (TREE_OPERAND (expr
, 1) != e1
)
1748 if (code
== COND_EXPR
)
1750 e2
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 2));
1751 if (TREE_OPERAND (expr
, 2) != e2
)
1759 if (code
== COND_EXPR
)
1760 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
1762 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
1768 e
= instantiate_parameters (loop
, expr
);
1769 if (is_gimple_min_invariant (e
))
1775 /* Returns true if EXIT is the only possible exit from LOOP. */
1778 loop_only_exit_p (const struct loop
*loop
, const_edge exit
)
1781 gimple_stmt_iterator bsi
;
1785 if (exit
!= single_exit (loop
))
1788 body
= get_loop_body (loop
);
1789 for (i
= 0; i
< loop
->num_nodes
; i
++)
1791 for (bsi
= gsi_start_bb (body
[i
]); !gsi_end_p (bsi
); gsi_next (&bsi
))
1793 call
= gsi_stmt (bsi
);
1794 if (gimple_code (call
) != GIMPLE_CALL
)
1797 if (gimple_has_side_effects (call
))
1809 /* Stores description of number of iterations of LOOP derived from
1810 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1811 useful information could be derived (and fields of NITER has
1812 meaning described in comments at struct tree_niter_desc
1813 declaration), false otherwise. If WARN is true and
1814 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1815 potentially unsafe assumptions.
1816 When EVERY_ITERATION is true, only tests that are known to be executed
1817 every iteration are considered (i.e. only test that alone bounds the loop).
1821 number_of_iterations_exit (struct loop
*loop
, edge exit
,
1822 struct tree_niter_desc
*niter
,
1823 bool warn
, bool every_iteration
)
1828 enum tree_code code
;
1832 safe
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
);
1834 if (every_iteration
&& !safe
)
1837 niter
->assumptions
= boolean_false_node
;
1838 stmt
= last_stmt (exit
->src
);
1839 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1842 /* We want the condition for staying inside loop. */
1843 code
= gimple_cond_code (stmt
);
1844 if (exit
->flags
& EDGE_TRUE_VALUE
)
1845 code
= invert_tree_comparison (code
, false);
1860 op0
= gimple_cond_lhs (stmt
);
1861 op1
= gimple_cond_rhs (stmt
);
1862 type
= TREE_TYPE (op0
);
1864 if (TREE_CODE (type
) != INTEGER_TYPE
1865 && !POINTER_TYPE_P (type
))
1868 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, false))
1870 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, false))
1873 /* We don't want to see undefined signed overflow warnings while
1874 computing the number of iterations. */
1875 fold_defer_overflow_warnings ();
1877 iv0
.base
= expand_simple_operations (iv0
.base
);
1878 iv1
.base
= expand_simple_operations (iv1
.base
);
1879 if (!number_of_iterations_cond (loop
, type
, &iv0
, code
, &iv1
, niter
,
1880 loop_only_exit_p (loop
, exit
), safe
))
1882 fold_undefer_and_ignore_overflow_warnings ();
1888 niter
->assumptions
= simplify_using_outer_evolutions (loop
,
1889 niter
->assumptions
);
1890 niter
->may_be_zero
= simplify_using_outer_evolutions (loop
,
1891 niter
->may_be_zero
);
1892 niter
->niter
= simplify_using_outer_evolutions (loop
, niter
->niter
);
1896 = simplify_using_initial_conditions (loop
,
1897 niter
->assumptions
);
1899 = simplify_using_initial_conditions (loop
,
1900 niter
->may_be_zero
);
1902 fold_undefer_and_ignore_overflow_warnings ();
1904 /* If NITER has simplified into a constant, update MAX. */
1905 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
1906 niter
->max
= tree_to_double_int (niter
->niter
);
1908 if (integer_onep (niter
->assumptions
))
1911 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1912 But if we can prove that there is overflow or some other source of weird
1913 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1914 if (integer_zerop (niter
->assumptions
) || !single_exit (loop
))
1917 if (flag_unsafe_loop_optimizations
)
1918 niter
->assumptions
= boolean_true_node
;
1922 const char *wording
;
1923 location_t loc
= gimple_location (stmt
);
1925 /* We can provide a more specific warning if one of the operator is
1926 constant and the other advances by +1 or -1. */
1927 if (!integer_zerop (iv1
.step
)
1928 ? (integer_zerop (iv0
.step
)
1929 && (integer_onep (iv1
.step
) || integer_all_onesp (iv1
.step
)))
1930 : (integer_onep (iv0
.step
) || integer_all_onesp (iv0
.step
)))
1932 flag_unsafe_loop_optimizations
1933 ? N_("assuming that the loop is not infinite")
1934 : N_("cannot optimize possibly infinite loops");
1937 flag_unsafe_loop_optimizations
1938 ? N_("assuming that the loop counter does not overflow")
1939 : N_("cannot optimize loop, the loop counter may overflow");
1941 warning_at ((LOCATION_LINE (loc
) > 0) ? loc
: input_location
,
1942 OPT_Wunsafe_loop_optimizations
, "%s", gettext (wording
));
1945 return flag_unsafe_loop_optimizations
;
1948 /* Try to determine the number of iterations of LOOP. If we succeed,
1949 expression giving number of iterations is returned and *EXIT is
1950 set to the edge from that the information is obtained. Otherwise
1951 chrec_dont_know is returned. */
1954 find_loop_niter (struct loop
*loop
, edge
*exit
)
1957 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1959 tree niter
= NULL_TREE
, aniter
;
1960 struct tree_niter_desc desc
;
1963 FOR_EACH_VEC_ELT (exits
, i
, ex
)
1965 if (!number_of_iterations_exit (loop
, ex
, &desc
, false))
1968 if (integer_nonzerop (desc
.may_be_zero
))
1970 /* We exit in the first iteration through this exit.
1971 We won't find anything better. */
1972 niter
= build_int_cst (unsigned_type_node
, 0);
1977 if (!integer_zerop (desc
.may_be_zero
))
1980 aniter
= desc
.niter
;
1984 /* Nothing recorded yet. */
1990 /* Prefer constants, the lower the better. */
1991 if (TREE_CODE (aniter
) != INTEGER_CST
)
1994 if (TREE_CODE (niter
) != INTEGER_CST
)
2001 if (tree_int_cst_lt (aniter
, niter
))
2010 return niter
? niter
: chrec_dont_know
;
2013 /* Return true if loop is known to have bounded number of iterations. */
2016 finite_loop_p (struct loop
*loop
)
2021 if (flag_unsafe_loop_optimizations
)
2023 flags
= flags_from_decl_or_type (current_function_decl
);
2024 if ((flags
& (ECF_CONST
|ECF_PURE
)) && !(flags
& ECF_LOOPING_CONST_OR_PURE
))
2026 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2027 fprintf (dump_file
, "Found loop %i to be finite: it is within pure or const function.\n",
2032 if (loop
->any_upper_bound
2033 || max_loop_iterations (loop
, &nit
))
2035 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2036 fprintf (dump_file
, "Found loop %i to be finite: upper bound found.\n",
2045 Analysis of a number of iterations of a loop by a brute-force evaluation.
2049 /* Bound on the number of iterations we try to evaluate. */
2051 #define MAX_ITERATIONS_TO_TRACK \
2052 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2054 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2055 result by a chain of operations such that all but exactly one of their
2056 operands are constants. */
2059 chain_of_csts_start (struct loop
*loop
, tree x
)
2061 gimple stmt
= SSA_NAME_DEF_STMT (x
);
2063 basic_block bb
= gimple_bb (stmt
);
2064 enum tree_code code
;
2067 || !flow_bb_inside_loop_p (loop
, bb
))
2070 if (gimple_code (stmt
) == GIMPLE_PHI
)
2072 if (bb
== loop
->header
)
2078 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2081 code
= gimple_assign_rhs_code (stmt
);
2082 if (gimple_references_memory_p (stmt
)
2083 || TREE_CODE_CLASS (code
) == tcc_reference
2084 || (code
== ADDR_EXPR
2085 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))))
2088 use
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
2089 if (use
== NULL_TREE
)
2092 return chain_of_csts_start (loop
, use
);
2095 /* Determines whether the expression X is derived from a result of a phi node
2096 in header of LOOP such that
2098 * the derivation of X consists only from operations with constants
2099 * the initial value of the phi node is constant
2100 * the value of the phi node in the next iteration can be derived from the
2101 value in the current iteration by a chain of operations with constants.
2103 If such phi node exists, it is returned, otherwise NULL is returned. */
2106 get_base_for (struct loop
*loop
, tree x
)
2111 if (is_gimple_min_invariant (x
))
2114 phi
= chain_of_csts_start (loop
, x
);
2118 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2119 next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2121 if (TREE_CODE (next
) != SSA_NAME
)
2124 if (!is_gimple_min_invariant (init
))
2127 if (chain_of_csts_start (loop
, next
) != phi
)
2133 /* Given an expression X, then
2135 * if X is NULL_TREE, we return the constant BASE.
2136 * otherwise X is a SSA name, whose value in the considered loop is derived
2137 by a chain of operations with constant from a result of a phi node in
2138 the header of the loop. Then we return value of X when the value of the
2139 result of this phi node is given by the constant BASE. */
2142 get_val_for (tree x
, tree base
)
2146 gcc_assert (is_gimple_min_invariant (base
));
2151 stmt
= SSA_NAME_DEF_STMT (x
);
2152 if (gimple_code (stmt
) == GIMPLE_PHI
)
2155 gcc_assert (is_gimple_assign (stmt
));
2157 /* STMT must be either an assignment of a single SSA name or an
2158 expression involving an SSA name and a constant. Try to fold that
2159 expression using the value for the SSA name. */
2160 if (gimple_assign_ssa_name_copy_p (stmt
))
2161 return get_val_for (gimple_assign_rhs1 (stmt
), base
);
2162 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_UNARY_RHS
2163 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
2165 return fold_build1 (gimple_assign_rhs_code (stmt
),
2166 gimple_expr_type (stmt
),
2167 get_val_for (gimple_assign_rhs1 (stmt
), base
));
2169 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_BINARY_RHS
)
2171 tree rhs1
= gimple_assign_rhs1 (stmt
);
2172 tree rhs2
= gimple_assign_rhs2 (stmt
);
2173 if (TREE_CODE (rhs1
) == SSA_NAME
)
2174 rhs1
= get_val_for (rhs1
, base
);
2175 else if (TREE_CODE (rhs2
) == SSA_NAME
)
2176 rhs2
= get_val_for (rhs2
, base
);
2179 return fold_build2 (gimple_assign_rhs_code (stmt
),
2180 gimple_expr_type (stmt
), rhs1
, rhs2
);
2187 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2188 by brute force -- i.e. by determining the value of the operands of the
2189 condition at EXIT in first few iterations of the loop (assuming that
2190 these values are constant) and determining the first one in that the
2191 condition is not satisfied. Returns the constant giving the number
2192 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2195 loop_niter_by_eval (struct loop
*loop
, edge exit
)
2198 tree op
[2], val
[2], next
[2], aval
[2];
2203 cond
= last_stmt (exit
->src
);
2204 if (!cond
|| gimple_code (cond
) != GIMPLE_COND
)
2205 return chrec_dont_know
;
2207 cmp
= gimple_cond_code (cond
);
2208 if (exit
->flags
& EDGE_TRUE_VALUE
)
2209 cmp
= invert_tree_comparison (cmp
, false);
2219 op
[0] = gimple_cond_lhs (cond
);
2220 op
[1] = gimple_cond_rhs (cond
);
2224 return chrec_dont_know
;
2227 for (j
= 0; j
< 2; j
++)
2229 if (is_gimple_min_invariant (op
[j
]))
2232 next
[j
] = NULL_TREE
;
2237 phi
= get_base_for (loop
, op
[j
]);
2239 return chrec_dont_know
;
2240 val
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2241 next
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2245 /* Don't issue signed overflow warnings. */
2246 fold_defer_overflow_warnings ();
2248 for (i
= 0; i
< MAX_ITERATIONS_TO_TRACK
; i
++)
2250 for (j
= 0; j
< 2; j
++)
2251 aval
[j
] = get_val_for (op
[j
], val
[j
]);
2253 acnd
= fold_binary (cmp
, boolean_type_node
, aval
[0], aval
[1]);
2254 if (acnd
&& integer_zerop (acnd
))
2256 fold_undefer_and_ignore_overflow_warnings ();
2257 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2259 "Proved that loop %d iterates %d times using brute force.\n",
2261 return build_int_cst (unsigned_type_node
, i
);
2264 for (j
= 0; j
< 2; j
++)
2266 val
[j
] = get_val_for (next
[j
], val
[j
]);
2267 if (!is_gimple_min_invariant (val
[j
]))
2269 fold_undefer_and_ignore_overflow_warnings ();
2270 return chrec_dont_know
;
2275 fold_undefer_and_ignore_overflow_warnings ();
2277 return chrec_dont_know
;
2280 /* Finds the exit of the LOOP by that the loop exits after a constant
2281 number of iterations and stores the exit edge to *EXIT. The constant
2282 giving the number of iterations of LOOP is returned. The number of
2283 iterations is determined using loop_niter_by_eval (i.e. by brute force
2284 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2285 determines the number of iterations, chrec_dont_know is returned. */
2288 find_loop_niter_by_eval (struct loop
*loop
, edge
*exit
)
2291 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2293 tree niter
= NULL_TREE
, aniter
;
2297 /* Loops with multiple exits are expensive to handle and less important. */
2298 if (!flag_expensive_optimizations
2299 && exits
.length () > 1)
2302 return chrec_dont_know
;
2305 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2307 if (!just_once_each_iteration_p (loop
, ex
->src
))
2310 aniter
= loop_niter_by_eval (loop
, ex
);
2311 if (chrec_contains_undetermined (aniter
))
2315 && !tree_int_cst_lt (aniter
, niter
))
2323 return niter
? niter
: chrec_dont_know
;
2328 Analysis of upper bounds on number of iterations of a loop.
2332 static double_int
derive_constant_upper_bound_ops (tree
, tree
,
2333 enum tree_code
, tree
);
2335 /* Returns a constant upper bound on the value of the right-hand side of
2336 an assignment statement STMT. */
2339 derive_constant_upper_bound_assign (gimple stmt
)
2341 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2342 tree op0
= gimple_assign_rhs1 (stmt
);
2343 tree op1
= gimple_assign_rhs2 (stmt
);
2345 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt
)),
2349 /* Returns a constant upper bound on the value of expression VAL. VAL
2350 is considered to be unsigned. If its type is signed, its value must
2354 derive_constant_upper_bound (tree val
)
2356 enum tree_code code
;
2359 extract_ops_from_tree (val
, &code
, &op0
, &op1
);
2360 return derive_constant_upper_bound_ops (TREE_TYPE (val
), op0
, code
, op1
);
2363 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2364 whose type is TYPE. The expression is considered to be unsigned. If
2365 its type is signed, its value must be nonnegative. */
2368 derive_constant_upper_bound_ops (tree type
, tree op0
,
2369 enum tree_code code
, tree op1
)
2372 double_int bnd
, max
, mmax
, cst
;
2375 if (INTEGRAL_TYPE_P (type
))
2376 maxt
= TYPE_MAX_VALUE (type
);
2378 maxt
= upper_bound_in_type (type
, type
);
2380 max
= tree_to_double_int (maxt
);
2385 return tree_to_double_int (op0
);
2388 subtype
= TREE_TYPE (op0
);
2389 if (!TYPE_UNSIGNED (subtype
)
2390 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2391 that OP0 is nonnegative. */
2392 && TYPE_UNSIGNED (type
)
2393 && !tree_expr_nonnegative_p (op0
))
2395 /* If we cannot prove that the casted expression is nonnegative,
2396 we cannot establish more useful upper bound than the precision
2397 of the type gives us. */
2401 /* We now know that op0 is an nonnegative value. Try deriving an upper
2403 bnd
= derive_constant_upper_bound (op0
);
2405 /* If the bound does not fit in TYPE, max. value of TYPE could be
2413 case POINTER_PLUS_EXPR
:
2415 if (TREE_CODE (op1
) != INTEGER_CST
2416 || !tree_expr_nonnegative_p (op0
))
2419 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2420 choose the most logical way how to treat this constant regardless
2421 of the signedness of the type. */
2422 cst
= tree_to_double_int (op1
);
2423 cst
= cst
.sext (TYPE_PRECISION (type
));
2424 if (code
!= MINUS_EXPR
)
2427 bnd
= derive_constant_upper_bound (op0
);
2429 if (cst
.is_negative ())
2432 /* Avoid CST == 0x80000... */
2433 if (cst
.is_negative ())
2436 /* OP0 + CST. We need to check that
2437 BND <= MAX (type) - CST. */
2447 /* OP0 - CST, where CST >= 0.
2449 If TYPE is signed, we have already verified that OP0 >= 0, and we
2450 know that the result is nonnegative. This implies that
2453 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2454 otherwise the operation underflows.
2457 /* This should only happen if the type is unsigned; however, for
2458 buggy programs that use overflowing signed arithmetics even with
2459 -fno-wrapv, this condition may also be true for signed values. */
2463 if (TYPE_UNSIGNED (type
))
2465 tree tem
= fold_binary (GE_EXPR
, boolean_type_node
, op0
,
2466 double_int_to_tree (type
, cst
));
2467 if (!tem
|| integer_nonzerop (tem
))
2476 case FLOOR_DIV_EXPR
:
2477 case EXACT_DIV_EXPR
:
2478 if (TREE_CODE (op1
) != INTEGER_CST
2479 || tree_int_cst_sign_bit (op1
))
2482 bnd
= derive_constant_upper_bound (op0
);
2483 return bnd
.udiv (tree_to_double_int (op1
), FLOOR_DIV_EXPR
);
2486 if (TREE_CODE (op1
) != INTEGER_CST
2487 || tree_int_cst_sign_bit (op1
))
2489 return tree_to_double_int (op1
);
2492 stmt
= SSA_NAME_DEF_STMT (op0
);
2493 if (gimple_code (stmt
) != GIMPLE_ASSIGN
2494 || gimple_assign_lhs (stmt
) != op0
)
2496 return derive_constant_upper_bound_assign (stmt
);
2503 /* Records that every statement in LOOP is executed I_BOUND times.
2504 REALISTIC is true if I_BOUND is expected to be close to the real number
2505 of iterations. UPPER is true if we are sure the loop iterates at most
2509 record_niter_bound (struct loop
*loop
, double_int i_bound
, bool realistic
,
2512 /* Update the bounds only when there is no previous estimation, or when the
2513 current estimation is smaller. */
2515 && (!loop
->any_upper_bound
2516 || i_bound
.ult (loop
->nb_iterations_upper_bound
)))
2518 loop
->any_upper_bound
= true;
2519 loop
->nb_iterations_upper_bound
= i_bound
;
2522 && (!loop
->any_estimate
2523 || i_bound
.ult (loop
->nb_iterations_estimate
)))
2525 loop
->any_estimate
= true;
2526 loop
->nb_iterations_estimate
= i_bound
;
2529 /* If an upper bound is smaller than the realistic estimate of the
2530 number of iterations, use the upper bound instead. */
2531 if (loop
->any_upper_bound
2532 && loop
->any_estimate
2533 && loop
->nb_iterations_upper_bound
.ult (loop
->nb_iterations_estimate
))
2534 loop
->nb_iterations_estimate
= loop
->nb_iterations_upper_bound
;
2537 /* Emit a -Waggressive-loop-optimizations warning if needed. */
2540 do_warn_aggressive_loop_optimizations (struct loop
*loop
,
2541 double_int i_bound
, gimple stmt
)
2543 /* Don't warn if the loop doesn't have known constant bound. */
2544 if (!loop
->nb_iterations
2545 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
2546 || !warn_aggressive_loop_optimizations
2547 /* To avoid warning multiple times for the same loop,
2548 only start warning when we preserve loops. */
2549 || (cfun
->curr_properties
& PROP_loops
) == 0
2550 /* Only warn once per loop. */
2551 || loop
->warned_aggressive_loop_optimizations
2552 /* Only warn if undefined behavior gives us lower estimate than the
2553 known constant bound. */
2554 || i_bound
.ucmp (tree_to_double_int (loop
->nb_iterations
)) >= 0
2555 /* And undefined behavior happens unconditionally. */
2556 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (stmt
)))
2559 edge e
= single_exit (loop
);
2563 gimple estmt
= last_stmt (e
->src
);
2564 if (warning_at (gimple_location (stmt
), OPT_Waggressive_loop_optimizations
,
2565 "iteration %E invokes undefined behavior",
2566 double_int_to_tree (TREE_TYPE (loop
->nb_iterations
),
2568 inform (gimple_location (estmt
), "containing loop");
2569 loop
->warned_aggressive_loop_optimizations
= true;
2572 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2573 is true if the loop is exited immediately after STMT, and this exit
2574 is taken at last when the STMT is executed BOUND + 1 times.
2575 REALISTIC is true if BOUND is expected to be close to the real number
2576 of iterations. UPPER is true if we are sure the loop iterates at most
2577 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2580 record_estimate (struct loop
*loop
, tree bound
, double_int i_bound
,
2581 gimple at_stmt
, bool is_exit
, bool realistic
, bool upper
)
2585 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2587 fprintf (dump_file
, "Statement %s", is_exit
? "(exit)" : "");
2588 print_gimple_stmt (dump_file
, at_stmt
, 0, TDF_SLIM
);
2589 fprintf (dump_file
, " is %sexecuted at most ",
2590 upper
? "" : "probably ");
2591 print_generic_expr (dump_file
, bound
, TDF_SLIM
);
2592 fprintf (dump_file
, " (bounded by ");
2593 dump_double_int (dump_file
, i_bound
, true);
2594 fprintf (dump_file
, ") + 1 times in loop %d.\n", loop
->num
);
2597 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2598 real number of iterations. */
2599 if (TREE_CODE (bound
) != INTEGER_CST
)
2602 gcc_checking_assert (i_bound
== tree_to_double_int (bound
));
2603 if (!upper
&& !realistic
)
2606 /* If we have a guaranteed upper bound, record it in the appropriate
2607 list, unless this is an !is_exit bound (i.e. undefined behavior in
2608 at_stmt) in a loop with known constant number of iterations. */
2611 || loop
->nb_iterations
== NULL_TREE
2612 || TREE_CODE (loop
->nb_iterations
) != INTEGER_CST
))
2614 struct nb_iter_bound
*elt
= ggc_alloc_nb_iter_bound ();
2616 elt
->bound
= i_bound
;
2617 elt
->stmt
= at_stmt
;
2618 elt
->is_exit
= is_exit
;
2619 elt
->next
= loop
->bounds
;
2623 /* If statement is executed on every path to the loop latch, we can directly
2624 infer the upper bound on the # of iterations of the loop. */
2625 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (at_stmt
)))
2628 /* Update the number of iteration estimates according to the bound.
2629 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2630 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2631 later if such statement must be executed on last iteration */
2633 delta
= double_int_zero
;
2635 delta
= double_int_one
;
2638 /* If an overflow occurred, ignore the result. */
2639 if (i_bound
.ult (delta
))
2642 if (upper
&& !is_exit
)
2643 do_warn_aggressive_loop_optimizations (loop
, i_bound
, at_stmt
);
2644 record_niter_bound (loop
, i_bound
, realistic
, upper
);
2647 /* Record the estimate on number of iterations of LOOP based on the fact that
2648 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2649 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2650 estimated number of iterations is expected to be close to the real one.
2651 UPPER is true if we are sure the induction variable does not wrap. */
2654 record_nonwrapping_iv (struct loop
*loop
, tree base
, tree step
, gimple stmt
,
2655 tree low
, tree high
, bool realistic
, bool upper
)
2657 tree niter_bound
, extreme
, delta
;
2658 tree type
= TREE_TYPE (base
), unsigned_type
;
2661 if (TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
2664 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2666 fprintf (dump_file
, "Induction variable (");
2667 print_generic_expr (dump_file
, TREE_TYPE (base
), TDF_SLIM
);
2668 fprintf (dump_file
, ") ");
2669 print_generic_expr (dump_file
, base
, TDF_SLIM
);
2670 fprintf (dump_file
, " + ");
2671 print_generic_expr (dump_file
, step
, TDF_SLIM
);
2672 fprintf (dump_file
, " * iteration does not wrap in statement ");
2673 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2674 fprintf (dump_file
, " in loop %d.\n", loop
->num
);
2677 unsigned_type
= unsigned_type_for (type
);
2678 base
= fold_convert (unsigned_type
, base
);
2679 step
= fold_convert (unsigned_type
, step
);
2681 if (tree_int_cst_sign_bit (step
))
2683 extreme
= fold_convert (unsigned_type
, low
);
2684 if (TREE_CODE (base
) != INTEGER_CST
)
2685 base
= fold_convert (unsigned_type
, high
);
2686 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
2687 step
= fold_build1 (NEGATE_EXPR
, unsigned_type
, step
);
2691 extreme
= fold_convert (unsigned_type
, high
);
2692 if (TREE_CODE (base
) != INTEGER_CST
)
2693 base
= fold_convert (unsigned_type
, low
);
2694 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
2697 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2698 would get out of the range. */
2699 niter_bound
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step
);
2700 max
= derive_constant_upper_bound (niter_bound
);
2701 record_estimate (loop
, niter_bound
, max
, stmt
, false, realistic
, upper
);
2704 /* Determine information about number of iterations a LOOP from the index
2705 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2706 guaranteed to be executed in every iteration of LOOP. Callback for
2716 idx_infer_loop_bounds (tree base
, tree
*idx
, void *dta
)
2718 struct ilb_data
*data
= (struct ilb_data
*) dta
;
2719 tree ev
, init
, step
;
2720 tree low
, high
, type
, next
;
2721 bool sign
, upper
= true, at_end
= false;
2722 struct loop
*loop
= data
->loop
;
2723 bool reliable
= true;
2725 if (TREE_CODE (base
) != ARRAY_REF
)
2728 /* For arrays at the end of the structure, we are not guaranteed that they
2729 do not really extend over their declared size. However, for arrays of
2730 size greater than one, this is unlikely to be intended. */
2731 if (array_at_struct_end_p (base
))
2737 struct loop
*dloop
= loop_containing_stmt (data
->stmt
);
2741 ev
= analyze_scalar_evolution (dloop
, *idx
);
2742 ev
= instantiate_parameters (loop
, ev
);
2743 init
= initial_condition (ev
);
2744 step
= evolution_part_in_loop_num (ev
, loop
->num
);
2748 || TREE_CODE (step
) != INTEGER_CST
2749 || integer_zerop (step
)
2750 || tree_contains_chrecs (init
, NULL
)
2751 || chrec_contains_symbols_defined_in_loop (init
, loop
->num
))
2754 low
= array_ref_low_bound (base
);
2755 high
= array_ref_up_bound (base
);
2757 /* The case of nonconstant bounds could be handled, but it would be
2759 if (TREE_CODE (low
) != INTEGER_CST
2761 || TREE_CODE (high
) != INTEGER_CST
)
2763 sign
= tree_int_cst_sign_bit (step
);
2764 type
= TREE_TYPE (step
);
2766 /* The array of length 1 at the end of a structure most likely extends
2767 beyond its bounds. */
2769 && operand_equal_p (low
, high
, 0))
2772 /* In case the relevant bound of the array does not fit in type, or
2773 it does, but bound + step (in type) still belongs into the range of the
2774 array, the index may wrap and still stay within the range of the array
2775 (consider e.g. if the array is indexed by the full range of
2778 To make things simpler, we require both bounds to fit into type, although
2779 there are cases where this would not be strictly necessary. */
2780 if (!int_fits_type_p (high
, type
)
2781 || !int_fits_type_p (low
, type
))
2783 low
= fold_convert (type
, low
);
2784 high
= fold_convert (type
, high
);
2787 next
= fold_binary (PLUS_EXPR
, type
, low
, step
);
2789 next
= fold_binary (PLUS_EXPR
, type
, high
, step
);
2791 if (tree_int_cst_compare (low
, next
) <= 0
2792 && tree_int_cst_compare (next
, high
) <= 0)
2795 /* If access is not executed on every iteration, we must ensure that overlow may
2796 not make the access valid later. */
2797 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (data
->stmt
))
2798 && scev_probably_wraps_p (initial_condition_in_loop_num (ev
, loop
->num
),
2799 step
, data
->stmt
, loop
, true))
2802 record_nonwrapping_iv (loop
, init
, step
, data
->stmt
, low
, high
, reliable
, upper
);
2806 /* Determine information about number of iterations a LOOP from the bounds
2807 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2808 STMT is guaranteed to be executed in every iteration of LOOP.*/
2811 infer_loop_bounds_from_ref (struct loop
*loop
, gimple stmt
, tree ref
)
2813 struct ilb_data data
;
2817 for_each_index (&ref
, idx_infer_loop_bounds
, &data
);
2820 /* Determine information about number of iterations of a LOOP from the way
2821 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2822 executed in every iteration of LOOP. */
2825 infer_loop_bounds_from_array (struct loop
*loop
, gimple stmt
)
2827 if (is_gimple_assign (stmt
))
2829 tree op0
= gimple_assign_lhs (stmt
);
2830 tree op1
= gimple_assign_rhs1 (stmt
);
2832 /* For each memory access, analyze its access function
2833 and record a bound on the loop iteration domain. */
2834 if (REFERENCE_CLASS_P (op0
))
2835 infer_loop_bounds_from_ref (loop
, stmt
, op0
);
2837 if (REFERENCE_CLASS_P (op1
))
2838 infer_loop_bounds_from_ref (loop
, stmt
, op1
);
2840 else if (is_gimple_call (stmt
))
2843 unsigned i
, n
= gimple_call_num_args (stmt
);
2845 lhs
= gimple_call_lhs (stmt
);
2846 if (lhs
&& REFERENCE_CLASS_P (lhs
))
2847 infer_loop_bounds_from_ref (loop
, stmt
, lhs
);
2849 for (i
= 0; i
< n
; i
++)
2851 arg
= gimple_call_arg (stmt
, i
);
2852 if (REFERENCE_CLASS_P (arg
))
2853 infer_loop_bounds_from_ref (loop
, stmt
, arg
);
2858 /* Determine information about number of iterations of a LOOP from the fact
2859 that pointer arithmetics in STMT does not overflow. */
2862 infer_loop_bounds_from_pointer_arith (struct loop
*loop
, gimple stmt
)
2864 tree def
, base
, step
, scev
, type
, low
, high
;
2867 if (!is_gimple_assign (stmt
)
2868 || gimple_assign_rhs_code (stmt
) != POINTER_PLUS_EXPR
)
2871 def
= gimple_assign_lhs (stmt
);
2872 if (TREE_CODE (def
) != SSA_NAME
)
2875 type
= TREE_TYPE (def
);
2876 if (!nowrap_type_p (type
))
2879 ptr
= gimple_assign_rhs1 (stmt
);
2880 if (!expr_invariant_in_loop_p (loop
, ptr
))
2883 var
= gimple_assign_rhs2 (stmt
);
2884 if (TYPE_PRECISION (type
) != TYPE_PRECISION (TREE_TYPE (var
)))
2887 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
2888 if (chrec_contains_undetermined (scev
))
2891 base
= initial_condition_in_loop_num (scev
, loop
->num
);
2892 step
= evolution_part_in_loop_num (scev
, loop
->num
);
2895 || TREE_CODE (step
) != INTEGER_CST
2896 || tree_contains_chrecs (base
, NULL
)
2897 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
2900 low
= lower_bound_in_type (type
, type
);
2901 high
= upper_bound_in_type (type
, type
);
2903 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2904 produce a NULL pointer. The contrary would mean NULL points to an object,
2905 while NULL is supposed to compare unequal with the address of all objects.
2906 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2907 NULL pointer since that would mean wrapping, which we assume here not to
2908 happen. So, we can exclude NULL from the valid range of pointer
2910 if (flag_delete_null_pointer_checks
&& int_cst_value (low
) == 0)
2911 low
= build_int_cstu (TREE_TYPE (low
), TYPE_ALIGN_UNIT (TREE_TYPE (type
)));
2913 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
2916 /* Determine information about number of iterations of a LOOP from the fact
2917 that signed arithmetics in STMT does not overflow. */
2920 infer_loop_bounds_from_signedness (struct loop
*loop
, gimple stmt
)
2922 tree def
, base
, step
, scev
, type
, low
, high
;
2924 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2927 def
= gimple_assign_lhs (stmt
);
2929 if (TREE_CODE (def
) != SSA_NAME
)
2932 type
= TREE_TYPE (def
);
2933 if (!INTEGRAL_TYPE_P (type
)
2934 || !TYPE_OVERFLOW_UNDEFINED (type
))
2937 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
2938 if (chrec_contains_undetermined (scev
))
2941 base
= initial_condition_in_loop_num (scev
, loop
->num
);
2942 step
= evolution_part_in_loop_num (scev
, loop
->num
);
2945 || TREE_CODE (step
) != INTEGER_CST
2946 || tree_contains_chrecs (base
, NULL
)
2947 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
2950 low
= lower_bound_in_type (type
, type
);
2951 high
= upper_bound_in_type (type
, type
);
2953 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
2956 /* The following analyzers are extracting informations on the bounds
2957 of LOOP from the following undefined behaviors:
2959 - data references should not access elements over the statically
2962 - signed variables should not overflow when flag_wrapv is not set.
2966 infer_loop_bounds_from_undefined (struct loop
*loop
)
2970 gimple_stmt_iterator bsi
;
2974 bbs
= get_loop_body (loop
);
2976 for (i
= 0; i
< loop
->num_nodes
; i
++)
2980 /* If BB is not executed in each iteration of the loop, we cannot
2981 use the operations in it to infer reliable upper bound on the
2982 # of iterations of the loop. However, we can use it as a guess.
2983 Reliable guesses come only from array bounds. */
2984 reliable
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
);
2986 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2988 gimple stmt
= gsi_stmt (bsi
);
2990 infer_loop_bounds_from_array (loop
, stmt
);
2994 infer_loop_bounds_from_signedness (loop
, stmt
);
2995 infer_loop_bounds_from_pointer_arith (loop
, stmt
);
3004 /* Converts VAL to double_int. */
3007 gcov_type_to_double_int (gcov_type val
)
3011 ret
.low
= (unsigned HOST_WIDE_INT
) val
;
3012 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
3013 the size of type. */
3014 val
>>= HOST_BITS_PER_WIDE_INT
- 1;
3016 ret
.high
= (unsigned HOST_WIDE_INT
) val
;
3021 /* Compare double ints, callback for qsort. */
3024 double_int_cmp (const void *p1
, const void *p2
)
3026 const double_int
*d1
= (const double_int
*)p1
;
3027 const double_int
*d2
= (const double_int
*)p2
;
3035 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3036 Lookup by binary search. */
3039 bound_index (vec
<double_int
> bounds
, double_int bound
)
3041 unsigned int end
= bounds
.length ();
3042 unsigned int begin
= 0;
3044 /* Find a matching index by means of a binary search. */
3045 while (begin
!= end
)
3047 unsigned int middle
= (begin
+ end
) / 2;
3048 double_int index
= bounds
[middle
];
3052 else if (index
.ult (bound
))
3060 /* We recorded loop bounds only for statements dominating loop latch (and thus
3061 executed each loop iteration). If there are any bounds on statements not
3062 dominating the loop latch we can improve the estimate by walking the loop
3063 body and seeing if every path from loop header to loop latch contains
3064 some bounded statement. */
3067 discover_iteration_bound_by_body_walk (struct loop
*loop
)
3069 pointer_map_t
*bb_bounds
;
3070 struct nb_iter_bound
*elt
;
3071 vec
<double_int
> bounds
= vNULL
;
3072 vec
<vec
<basic_block
> > queues
= vNULL
;
3073 vec
<basic_block
> queue
= vNULL
;
3074 ptrdiff_t queue_index
;
3075 ptrdiff_t latch_index
= 0;
3076 pointer_map_t
*block_priority
;
3078 /* Discover what bounds may interest us. */
3079 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3081 double_int bound
= elt
->bound
;
3083 /* Exit terminates loop at given iteration, while non-exits produce undefined
3084 effect on the next iteration. */
3087 bound
+= double_int_one
;
3088 /* If an overflow occurred, ignore the result. */
3089 if (bound
.is_zero ())
3093 if (!loop
->any_upper_bound
3094 || bound
.ult (loop
->nb_iterations_upper_bound
))
3095 bounds
.safe_push (bound
);
3098 /* Exit early if there is nothing to do. */
3099 if (!bounds
.exists ())
3102 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3103 fprintf (dump_file
, " Trying to walk loop body to reduce the bound.\n");
3105 /* Sort the bounds in decreasing order. */
3106 qsort (bounds
.address (), bounds
.length (),
3107 sizeof (double_int
), double_int_cmp
);
3109 /* For every basic block record the lowest bound that is guaranteed to
3110 terminate the loop. */
3112 bb_bounds
= pointer_map_create ();
3113 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3115 double_int bound
= elt
->bound
;
3118 bound
+= double_int_one
;
3119 /* If an overflow occurred, ignore the result. */
3120 if (bound
.is_zero ())
3124 if (!loop
->any_upper_bound
3125 || bound
.ult (loop
->nb_iterations_upper_bound
))
3127 ptrdiff_t index
= bound_index (bounds
, bound
);
3128 void **entry
= pointer_map_contains (bb_bounds
,
3129 gimple_bb (elt
->stmt
));
3131 *pointer_map_insert (bb_bounds
,
3132 gimple_bb (elt
->stmt
)) = (void *)index
;
3133 else if ((ptrdiff_t)*entry
> index
)
3134 *entry
= (void *)index
;
3138 block_priority
= pointer_map_create ();
3140 /* Perform shortest path discovery loop->header ... loop->latch.
3142 The "distance" is given by the smallest loop bound of basic block
3143 present in the path and we look for path with largest smallest bound
3146 To avoid the need for fibonacci heap on double ints we simply compress
3147 double ints into indexes to BOUNDS array and then represent the queue
3148 as arrays of queues for every index.
3149 Index of BOUNDS.length() means that the execution of given BB has
3150 no bounds determined.
3152 VISITED is a pointer map translating basic block into smallest index
3153 it was inserted into the priority queue with. */
3156 /* Start walk in loop header with index set to infinite bound. */
3157 queue_index
= bounds
.length ();
3158 queues
.safe_grow_cleared (queue_index
+ 1);
3159 queue
.safe_push (loop
->header
);
3160 queues
[queue_index
] = queue
;
3161 *pointer_map_insert (block_priority
, loop
->header
) = (void *)queue_index
;
3163 for (; queue_index
>= 0; queue_index
--)
3165 if (latch_index
< queue_index
)
3167 while (queues
[queue_index
].length ())
3170 ptrdiff_t bound_index
= queue_index
;
3175 queue
= queues
[queue_index
];
3178 /* OK, we later inserted the BB with lower priority, skip it. */
3179 if ((ptrdiff_t)*pointer_map_contains (block_priority
, bb
) > queue_index
)
3182 /* See if we can improve the bound. */
3183 entry
= pointer_map_contains (bb_bounds
, bb
);
3184 if (entry
&& (ptrdiff_t)*entry
< bound_index
)
3185 bound_index
= (ptrdiff_t)*entry
;
3187 /* Insert succesors into the queue, watch for latch edge
3188 and record greatest index we saw. */
3189 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3191 bool insert
= false;
3194 if (loop_exit_edge_p (loop
, e
))
3197 if (e
== loop_latch_edge (loop
)
3198 && latch_index
< bound_index
)
3199 latch_index
= bound_index
;
3200 else if (!(entry
= pointer_map_contains (block_priority
, e
->dest
)))
3203 *pointer_map_insert (block_priority
, e
->dest
) = (void *)bound_index
;
3205 else if ((ptrdiff_t)*entry
< bound_index
)
3208 *entry
= (void *)bound_index
;
3212 queues
[bound_index
].safe_push (e
->dest
);
3216 queues
[queue_index
].release ();
3219 gcc_assert (latch_index
>= 0);
3220 if ((unsigned)latch_index
< bounds
.length ())
3222 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3224 fprintf (dump_file
, "Found better loop bound ");
3225 dump_double_int (dump_file
, bounds
[latch_index
], true);
3226 fprintf (dump_file
, "\n");
3228 record_niter_bound (loop
, bounds
[latch_index
], false, true);
3233 pointer_map_destroy (bb_bounds
);
3234 pointer_map_destroy (block_priority
);
3237 /* See if every path cross the loop goes through a statement that is known
3238 to not execute at the last iteration. In that case we can decrese iteration
3242 maybe_lower_iteration_bound (struct loop
*loop
)
3244 pointer_set_t
*not_executed_last_iteration
= NULL
;
3245 struct nb_iter_bound
*elt
;
3246 bool found_exit
= false;
3247 vec
<basic_block
> queue
= vNULL
;
3250 /* Collect all statements with interesting (i.e. lower than
3251 nb_iterations_upper_bound) bound on them.
3253 TODO: Due to the way record_estimate choose estimates to store, the bounds
3254 will be always nb_iterations_upper_bound-1. We can change this to record
3255 also statements not dominating the loop latch and update the walk bellow
3256 to the shortest path algorthm. */
3257 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3260 && elt
->bound
.ult (loop
->nb_iterations_upper_bound
))
3262 if (!not_executed_last_iteration
)
3263 not_executed_last_iteration
= pointer_set_create ();
3264 pointer_set_insert (not_executed_last_iteration
, elt
->stmt
);
3267 if (!not_executed_last_iteration
)
3270 /* Start DFS walk in the loop header and see if we can reach the
3271 loop latch or any of the exits (including statements with side
3272 effects that may terminate the loop otherwise) without visiting
3273 any of the statements known to have undefined effect on the last
3275 queue
.safe_push (loop
->header
);
3276 visited
= BITMAP_ALLOC (NULL
);
3277 bitmap_set_bit (visited
, loop
->header
->index
);
3282 basic_block bb
= queue
.pop ();
3283 gimple_stmt_iterator gsi
;
3284 bool stmt_found
= false;
3286 /* Loop for possible exits and statements bounding the execution. */
3287 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3289 gimple stmt
= gsi_stmt (gsi
);
3290 if (pointer_set_contains (not_executed_last_iteration
, stmt
))
3295 if (gimple_has_side_effects (stmt
))
3304 /* If no bounding statement is found, continue the walk. */
3310 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3312 if (loop_exit_edge_p (loop
, e
)
3313 || e
== loop_latch_edge (loop
))
3318 if (bitmap_set_bit (visited
, e
->dest
->index
))
3319 queue
.safe_push (e
->dest
);
3323 while (queue
.length () && !found_exit
);
3325 /* If every path through the loop reach bounding statement before exit,
3326 then we know the last iteration of the loop will have undefined effect
3327 and we can decrease number of iterations. */
3331 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3332 fprintf (dump_file
, "Reducing loop iteration estimate by 1; "
3333 "undefined statement must be executed at the last iteration.\n");
3334 record_niter_bound (loop
, loop
->nb_iterations_upper_bound
- double_int_one
,
3337 BITMAP_FREE (visited
);
3339 pointer_set_destroy (not_executed_last_iteration
);
3342 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3343 is true also use estimates derived from undefined behavior. */
3346 estimate_numbers_of_iterations_loop (struct loop
*loop
)
3351 struct tree_niter_desc niter_desc
;
3356 /* Give up if we already have tried to compute an estimation. */
3357 if (loop
->estimate_state
!= EST_NOT_COMPUTED
)
3360 loop
->estimate_state
= EST_AVAILABLE
;
3361 /* Force estimate compuation but leave any existing upper bound in place. */
3362 loop
->any_estimate
= false;
3364 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3365 to be constant, we avoid undefined behavior implied bounds and instead
3366 diagnose those loops with -Waggressive-loop-optimizations. */
3367 number_of_latch_executions (loop
);
3369 exits
= get_loop_exit_edges (loop
);
3370 likely_exit
= single_likely_exit (loop
);
3371 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3373 if (!number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
3376 niter
= niter_desc
.niter
;
3377 type
= TREE_TYPE (niter
);
3378 if (TREE_CODE (niter_desc
.may_be_zero
) != INTEGER_CST
)
3379 niter
= build3 (COND_EXPR
, type
, niter_desc
.may_be_zero
,
3380 build_int_cst (type
, 0),
3382 record_estimate (loop
, niter
, niter_desc
.max
,
3383 last_stmt (ex
->src
),
3384 true, ex
== likely_exit
, true);
3388 if (flag_aggressive_loop_optimizations
)
3389 infer_loop_bounds_from_undefined (loop
);
3391 discover_iteration_bound_by_body_walk (loop
);
3393 maybe_lower_iteration_bound (loop
);
3395 /* If we have a measured profile, use it to estimate the number of
3397 if (loop
->header
->count
!= 0)
3399 gcov_type nit
= expected_loop_iterations_unbounded (loop
) + 1;
3400 bound
= gcov_type_to_double_int (nit
);
3401 record_niter_bound (loop
, bound
, true, false);
3404 /* If we know the exact number of iterations of this loop, try to
3405 not break code with undefined behavior by not recording smaller
3406 maximum number of iterations. */
3407 if (loop
->nb_iterations
3408 && TREE_CODE (loop
->nb_iterations
) == INTEGER_CST
)
3410 loop
->any_upper_bound
= true;
3411 loop
->nb_iterations_upper_bound
3412 = tree_to_double_int (loop
->nb_iterations
);
3416 /* Sets NIT to the estimated number of executions of the latch of the
3417 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3418 large as the number of iterations. If we have no reliable estimate,
3419 the function returns false, otherwise returns true. */
3422 estimated_loop_iterations (struct loop
*loop
, double_int
*nit
)
3424 /* When SCEV information is available, try to update loop iterations
3425 estimate. Otherwise just return whatever we recorded earlier. */
3426 if (scev_initialized_p ())
3427 estimate_numbers_of_iterations_loop (loop
);
3429 /* Even if the bound is not recorded, possibly we can derrive one from
3431 if (!loop
->any_estimate
)
3433 if (loop
->header
->count
)
3435 *nit
= gcov_type_to_double_int
3436 (expected_loop_iterations_unbounded (loop
) + 1);
3442 *nit
= loop
->nb_iterations_estimate
;
3446 /* Sets NIT to an upper bound for the maximum number of executions of the
3447 latch of the LOOP. If we have no reliable estimate, the function returns
3448 false, otherwise returns true. */
3451 max_loop_iterations (struct loop
*loop
, double_int
*nit
)
3453 /* When SCEV information is available, try to update loop iterations
3454 estimate. Otherwise just return whatever we recorded earlier. */
3455 if (scev_initialized_p ())
3456 estimate_numbers_of_iterations_loop (loop
);
3457 if (!loop
->any_upper_bound
)
3460 *nit
= loop
->nb_iterations_upper_bound
;
3464 /* Similar to estimated_loop_iterations, but returns the estimate only
3465 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3466 on the number of iterations of LOOP could not be derived, returns -1. */
3469 estimated_loop_iterations_int (struct loop
*loop
)
3472 HOST_WIDE_INT hwi_nit
;
3474 if (!estimated_loop_iterations (loop
, &nit
))
3477 if (!nit
.fits_shwi ())
3479 hwi_nit
= nit
.to_shwi ();
3481 return hwi_nit
< 0 ? -1 : hwi_nit
;
3484 /* Similar to max_loop_iterations, but returns the estimate only
3485 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3486 on the number of iterations of LOOP could not be derived, returns -1. */
3489 max_loop_iterations_int (struct loop
*loop
)
3492 HOST_WIDE_INT hwi_nit
;
3494 if (!max_loop_iterations (loop
, &nit
))
3497 if (!nit
.fits_shwi ())
3499 hwi_nit
= nit
.to_shwi ();
3501 return hwi_nit
< 0 ? -1 : hwi_nit
;
3504 /* Returns an upper bound on the number of executions of statements
3505 in the LOOP. For statements before the loop exit, this exceeds
3506 the number of execution of the latch by one. */
3509 max_stmt_executions_int (struct loop
*loop
)
3511 HOST_WIDE_INT nit
= max_loop_iterations_int (loop
);
3517 snit
= (HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) nit
+ 1);
3519 /* If the computation overflows, return -1. */
3520 return snit
< 0 ? -1 : snit
;
3523 /* Returns an estimate for the number of executions of statements
3524 in the LOOP. For statements before the loop exit, this exceeds
3525 the number of execution of the latch by one. */
3528 estimated_stmt_executions_int (struct loop
*loop
)
3530 HOST_WIDE_INT nit
= estimated_loop_iterations_int (loop
);
3536 snit
= (HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) nit
+ 1);
3538 /* If the computation overflows, return -1. */
3539 return snit
< 0 ? -1 : snit
;
3542 /* Sets NIT to the estimated maximum number of executions of the latch of the
3543 LOOP, plus one. If we have no reliable estimate, the function returns
3544 false, otherwise returns true. */
3547 max_stmt_executions (struct loop
*loop
, double_int
*nit
)
3549 double_int nit_minus_one
;
3551 if (!max_loop_iterations (loop
, nit
))
3554 nit_minus_one
= *nit
;
3556 *nit
+= double_int_one
;
3558 return (*nit
).ugt (nit_minus_one
);
3561 /* Sets NIT to the estimated number of executions of the latch of the
3562 LOOP, plus one. If we have no reliable estimate, the function returns
3563 false, otherwise returns true. */
3566 estimated_stmt_executions (struct loop
*loop
, double_int
*nit
)
3568 double_int nit_minus_one
;
3570 if (!estimated_loop_iterations (loop
, nit
))
3573 nit_minus_one
= *nit
;
3575 *nit
+= double_int_one
;
3577 return (*nit
).ugt (nit_minus_one
);
3580 /* Records estimates on numbers of iterations of loops. */
3583 estimate_numbers_of_iterations (void)
3588 /* We don't want to issue signed overflow warnings while getting
3589 loop iteration estimates. */
3590 fold_defer_overflow_warnings ();
3592 FOR_EACH_LOOP (li
, loop
, 0)
3594 estimate_numbers_of_iterations_loop (loop
);
3597 fold_undefer_and_ignore_overflow_warnings ();
3600 /* Returns true if statement S1 dominates statement S2. */
3603 stmt_dominates_stmt_p (gimple s1
, gimple s2
)
3605 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
3613 gimple_stmt_iterator bsi
;
3615 if (gimple_code (s2
) == GIMPLE_PHI
)
3618 if (gimple_code (s1
) == GIMPLE_PHI
)
3621 for (bsi
= gsi_start_bb (bb1
); gsi_stmt (bsi
) != s2
; gsi_next (&bsi
))
3622 if (gsi_stmt (bsi
) == s1
)
3628 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
3631 /* Returns true when we can prove that the number of executions of
3632 STMT in the loop is at most NITER, according to the bound on
3633 the number of executions of the statement NITER_BOUND->stmt recorded in
3634 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3636 ??? This code can become quite a CPU hog - we can have many bounds,
3637 and large basic block forcing stmt_dominates_stmt_p to be queried
3638 many times on a large basic blocks, so the whole thing is O(n^2)
3639 for scev_probably_wraps_p invocation (that can be done n times).
3641 It would make more sense (and give better answers) to remember BB
3642 bounds computed by discover_iteration_bound_by_body_walk. */
3645 n_of_executions_at_most (gimple stmt
,
3646 struct nb_iter_bound
*niter_bound
,
3649 double_int bound
= niter_bound
->bound
;
3650 tree nit_type
= TREE_TYPE (niter
), e
;
3653 gcc_assert (TYPE_UNSIGNED (nit_type
));
3655 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3656 the number of iterations is small. */
3657 if (!double_int_fits_to_tree_p (nit_type
, bound
))
3660 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3661 times. This means that:
3663 -- if NITER_BOUND->is_exit is true, then everything after
3664 it at most NITER_BOUND->bound times.
3666 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3667 is executed, then NITER_BOUND->stmt is executed as well in the same
3668 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
3670 If we can determine that NITER_BOUND->stmt is always executed
3671 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
3672 We conclude that if both statements belong to the same
3673 basic block and STMT is before NITER_BOUND->stmt and there are no
3674 statements with side effects in between. */
3676 if (niter_bound
->is_exit
)
3678 if (stmt
== niter_bound
->stmt
3679 || !stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
3685 if (!stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
3687 gimple_stmt_iterator bsi
;
3688 if (gimple_bb (stmt
) != gimple_bb (niter_bound
->stmt
)
3689 || gimple_code (stmt
) == GIMPLE_PHI
3690 || gimple_code (niter_bound
->stmt
) == GIMPLE_PHI
)
3693 /* By stmt_dominates_stmt_p we already know that STMT appears
3694 before NITER_BOUND->STMT. Still need to test that the loop
3695 can not be terinated by a side effect in between. */
3696 for (bsi
= gsi_for_stmt (stmt
); gsi_stmt (bsi
) != niter_bound
->stmt
;
3698 if (gimple_has_side_effects (gsi_stmt (bsi
)))
3700 bound
+= double_int_one
;
3701 if (bound
.is_zero ()
3702 || !double_int_fits_to_tree_p (nit_type
, bound
))
3708 e
= fold_binary (cmp
, boolean_type_node
,
3709 niter
, double_int_to_tree (nit_type
, bound
));
3710 return e
&& integer_nonzerop (e
);
3713 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3716 nowrap_type_p (tree type
)
3718 if (INTEGRAL_TYPE_P (type
)
3719 && TYPE_OVERFLOW_UNDEFINED (type
))
3722 if (POINTER_TYPE_P (type
))
3728 /* Return false only when the induction variable BASE + STEP * I is
3729 known to not overflow: i.e. when the number of iterations is small
3730 enough with respect to the step and initial condition in order to
3731 keep the evolution confined in TYPEs bounds. Return true when the
3732 iv is known to overflow or when the property is not computable.
3734 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3735 the rules for overflow of the given language apply (e.g., that signed
3736 arithmetics in C does not overflow). */
3739 scev_probably_wraps_p (tree base
, tree step
,
3740 gimple at_stmt
, struct loop
*loop
,
3741 bool use_overflow_semantics
)
3743 tree delta
, step_abs
;
3744 tree unsigned_type
, valid_niter
;
3745 tree type
= TREE_TYPE (step
);
3748 struct nb_iter_bound
*bound
;
3750 /* FIXME: We really need something like
3751 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3753 We used to test for the following situation that frequently appears
3754 during address arithmetics:
3756 D.1621_13 = (long unsigned intD.4) D.1620_12;
3757 D.1622_14 = D.1621_13 * 8;
3758 D.1623_15 = (doubleD.29 *) D.1622_14;
3760 And derived that the sequence corresponding to D_14
3761 can be proved to not wrap because it is used for computing a
3762 memory access; however, this is not really the case -- for example,
3763 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3764 2032, 2040, 0, 8, ..., but the code is still legal. */
3766 if (chrec_contains_undetermined (base
)
3767 || chrec_contains_undetermined (step
))
3770 if (integer_zerop (step
))
3773 /* If we can use the fact that signed and pointer arithmetics does not
3774 wrap, we are done. */
3775 if (use_overflow_semantics
&& nowrap_type_p (TREE_TYPE (base
)))
3778 /* To be able to use estimates on number of iterations of the loop,
3779 we must have an upper bound on the absolute value of the step. */
3780 if (TREE_CODE (step
) != INTEGER_CST
)
3783 /* Don't issue signed overflow warnings. */
3784 fold_defer_overflow_warnings ();
3786 /* Otherwise, compute the number of iterations before we reach the
3787 bound of the type, and verify that the loop is exited before this
3789 unsigned_type
= unsigned_type_for (type
);
3790 base
= fold_convert (unsigned_type
, base
);
3792 if (tree_int_cst_sign_bit (step
))
3794 tree extreme
= fold_convert (unsigned_type
,
3795 lower_bound_in_type (type
, type
));
3796 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
3797 step_abs
= fold_build1 (NEGATE_EXPR
, unsigned_type
,
3798 fold_convert (unsigned_type
, step
));
3802 tree extreme
= fold_convert (unsigned_type
,
3803 upper_bound_in_type (type
, type
));
3804 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
3805 step_abs
= fold_convert (unsigned_type
, step
);
3808 valid_niter
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step_abs
);
3810 estimate_numbers_of_iterations_loop (loop
);
3812 if (max_loop_iterations (loop
, &niter
)
3813 && double_int_fits_to_tree_p (TREE_TYPE (valid_niter
), niter
)
3814 && (e
= fold_binary (GT_EXPR
, boolean_type_node
, valid_niter
,
3815 double_int_to_tree (TREE_TYPE (valid_niter
),
3817 && integer_nonzerop (e
))
3819 fold_undefer_and_ignore_overflow_warnings ();
3823 for (bound
= loop
->bounds
; bound
; bound
= bound
->next
)
3825 if (n_of_executions_at_most (at_stmt
, bound
, valid_niter
))
3827 fold_undefer_and_ignore_overflow_warnings ();
3832 fold_undefer_and_ignore_overflow_warnings ();
3834 /* At this point we still don't have a proof that the iv does not
3835 overflow: give up. */
3839 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3842 free_numbers_of_iterations_estimates_loop (struct loop
*loop
)
3844 struct nb_iter_bound
*bound
, *next
;
3846 loop
->nb_iterations
= NULL
;
3847 loop
->estimate_state
= EST_NOT_COMPUTED
;
3848 for (bound
= loop
->bounds
; bound
; bound
= next
)
3854 loop
->bounds
= NULL
;
3857 /* Frees the information on upper bounds on numbers of iterations of loops. */
3860 free_numbers_of_iterations_estimates (void)
3865 FOR_EACH_LOOP (li
, loop
, 0)
3867 free_numbers_of_iterations_estimates_loop (loop
);
3871 /* Substitute value VAL for ssa name NAME inside expressions held
3875 substitute_in_loop_info (struct loop
*loop
, tree name
, tree val
)
3877 loop
->nb_iterations
= simplify_replace_tree (loop
->nb_iterations
, name
, val
);