expr.c (convert_move): Use emit_store_flag instead of "emulating" it.
[official-gcc.git] / gcc / fortran / trans-types.c
blob717859c5360f61f0683610a696309f4a7a5b0230
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* trans-types.c -- gfortran backend types */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tree.h"
29 #include "langhooks.h"
30 #include "tm.h"
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h"
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "real.h"
39 #include "flags.h"
40 #include "dwarf2out.h"
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
56 static tree gfc_get_derived_type (gfc_symbol * derived);
58 tree gfc_array_index_type;
59 tree gfc_array_range_type;
60 tree gfc_character1_type_node;
61 tree pvoid_type_node;
62 tree ppvoid_type_node;
63 tree pchar_type_node;
64 tree pfunc_type_node;
66 tree gfc_charlen_type_node;
68 static GTY(()) tree gfc_desc_dim_type;
69 static GTY(()) tree gfc_max_array_element_size;
70 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
72 /* Arrays for all integral and real kinds. We'll fill this in at runtime
73 after the target has a chance to process command-line options. */
75 #define MAX_INT_KINDS 5
76 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
77 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
79 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
81 #define MAX_REAL_KINDS 5
82 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
84 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
86 #define MAX_CHARACTER_KINDS 2
87 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
89 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
95 int gfc_index_integer_kind;
97 /* The default kinds of the various types. */
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
120 gfc_try
121 gfc_check_any_c_kind (gfc_typespec *ts)
123 int i;
125 for (i = 0; i < ISOCBINDING_NUMBER; i++)
127 /* Check for any C interoperable kind for the given type/kind in ts.
128 This can be used after verify_c_interop to make sure that the
129 Fortran kind being used exists in at least some form for C. */
130 if (c_interop_kinds_table[i].f90_type == ts->type &&
131 c_interop_kinds_table[i].value == ts->kind)
132 return SUCCESS;
135 return FAILURE;
139 static int
140 get_real_kind_from_node (tree type)
142 int i;
144 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
145 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
146 return gfc_real_kinds[i].kind;
148 return -4;
151 static int
152 get_int_kind_from_node (tree type)
154 int i;
156 if (!type)
157 return -2;
159 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
160 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
161 return gfc_integer_kinds[i].kind;
163 return -1;
166 static int
167 get_int_kind_from_width (int size)
169 int i;
171 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
172 if (gfc_integer_kinds[i].bit_size == size)
173 return gfc_integer_kinds[i].kind;
175 return -2;
178 static int
179 get_int_kind_from_minimal_width (int size)
181 int i;
183 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
184 if (gfc_integer_kinds[i].bit_size >= size)
185 return gfc_integer_kinds[i].kind;
187 return -2;
191 /* Generate the CInteropKind_t objects for the C interoperable
192 kinds. */
194 static
195 void init_c_interop_kinds (void)
197 int i;
198 tree intmax_type_node = INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
199 integer_type_node :
200 (LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
201 long_integer_type_node :
202 long_long_integer_type_node);
204 /* init all pointers in the list to NULL */
205 for (i = 0; i < ISOCBINDING_NUMBER; i++)
207 /* Initialize the name and value fields. */
208 c_interop_kinds_table[i].name[0] = '\0';
209 c_interop_kinds_table[i].value = -100;
210 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
213 #define NAMED_INTCST(a,b,c,d) \
214 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
215 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
216 c_interop_kinds_table[a].value = c;
217 #define NAMED_REALCST(a,b,c) \
218 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
219 c_interop_kinds_table[a].f90_type = BT_REAL; \
220 c_interop_kinds_table[a].value = c;
221 #define NAMED_CMPXCST(a,b,c) \
222 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
223 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
224 c_interop_kinds_table[a].value = c;
225 #define NAMED_LOGCST(a,b,c) \
226 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
227 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
228 c_interop_kinds_table[a].value = c;
229 #define NAMED_CHARKNDCST(a,b,c) \
230 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
231 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
232 c_interop_kinds_table[a].value = c;
233 #define NAMED_CHARCST(a,b,c) \
234 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
235 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
236 c_interop_kinds_table[a].value = c;
237 #define DERIVED_TYPE(a,b,c) \
238 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
239 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
240 c_interop_kinds_table[a].value = c;
241 #define PROCEDURE(a,b) \
242 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
243 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
244 c_interop_kinds_table[a].value = 0;
245 #include "iso-c-binding.def"
249 /* Query the target to determine which machine modes are available for
250 computation. Choose KIND numbers for them. */
252 void
253 gfc_init_kinds (void)
255 enum machine_mode mode;
256 int i_index, r_index, kind;
257 bool saw_i4 = false, saw_i8 = false;
258 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
260 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
262 int kind, bitsize;
264 if (!targetm.scalar_mode_supported_p (mode))
265 continue;
267 /* The middle end doesn't support constants larger than 2*HWI.
268 Perhaps the target hook shouldn't have accepted these either,
269 but just to be safe... */
270 bitsize = GET_MODE_BITSIZE (mode);
271 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
272 continue;
274 gcc_assert (i_index != MAX_INT_KINDS);
276 /* Let the kind equal the bit size divided by 8. This insulates the
277 programmer from the underlying byte size. */
278 kind = bitsize / 8;
280 if (kind == 4)
281 saw_i4 = true;
282 if (kind == 8)
283 saw_i8 = true;
285 gfc_integer_kinds[i_index].kind = kind;
286 gfc_integer_kinds[i_index].radix = 2;
287 gfc_integer_kinds[i_index].digits = bitsize - 1;
288 gfc_integer_kinds[i_index].bit_size = bitsize;
290 gfc_logical_kinds[i_index].kind = kind;
291 gfc_logical_kinds[i_index].bit_size = bitsize;
293 i_index += 1;
296 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
297 used for large file access. */
299 if (saw_i8)
300 gfc_intio_kind = 8;
301 else
302 gfc_intio_kind = 4;
304 /* If we do not at least have kind = 4, everything is pointless. */
305 gcc_assert(saw_i4);
307 /* Set the maximum integer kind. Used with at least BOZ constants. */
308 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
310 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
312 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
313 int kind;
315 if (fmt == NULL)
316 continue;
317 if (!targetm.scalar_mode_supported_p (mode))
318 continue;
320 /* Only let float/double/long double go through because the fortran
321 library assumes these are the only floating point types. */
323 if (mode != TYPE_MODE (float_type_node)
324 && (mode != TYPE_MODE (double_type_node))
325 && (mode != TYPE_MODE (long_double_type_node)))
326 continue;
328 /* Let the kind equal the precision divided by 8, rounding up. Again,
329 this insulates the programmer from the underlying byte size.
331 Also, it effectively deals with IEEE extended formats. There, the
332 total size of the type may equal 16, but it's got 6 bytes of padding
333 and the increased size can get in the way of a real IEEE quad format
334 which may also be supported by the target.
336 We round up so as to handle IA-64 __floatreg (RFmode), which is an
337 82 bit type. Not to be confused with __float80 (XFmode), which is
338 an 80 bit type also supported by IA-64. So XFmode should come out
339 to be kind=10, and RFmode should come out to be kind=11. Egads. */
341 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
343 if (kind == 4)
344 saw_r4 = true;
345 if (kind == 8)
346 saw_r8 = true;
347 if (kind == 16)
348 saw_r16 = true;
350 /* Careful we don't stumble a weird internal mode. */
351 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
352 /* Or have too many modes for the allocated space. */
353 gcc_assert (r_index != MAX_REAL_KINDS);
355 gfc_real_kinds[r_index].kind = kind;
356 gfc_real_kinds[r_index].radix = fmt->b;
357 gfc_real_kinds[r_index].digits = fmt->p;
358 gfc_real_kinds[r_index].min_exponent = fmt->emin;
359 gfc_real_kinds[r_index].max_exponent = fmt->emax;
360 if (fmt->pnan < fmt->p)
361 /* This is an IBM extended double format (or the MIPS variant)
362 made up of two IEEE doubles. The value of the long double is
363 the sum of the values of the two parts. The most significant
364 part is required to be the value of the long double rounded
365 to the nearest double. If we use emax of 1024 then we can't
366 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
367 rounding will make the most significant part overflow. */
368 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
369 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
370 r_index += 1;
373 /* Choose the default integer kind. We choose 4 unless the user
374 directs us otherwise. */
375 if (gfc_option.flag_default_integer)
377 if (!saw_i8)
378 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
379 gfc_default_integer_kind = 8;
381 /* Even if the user specified that the default integer kind be 8,
382 the numeric storage size isn't 64. In this case, a warning will
383 be issued when NUMERIC_STORAGE_SIZE is used. */
384 gfc_numeric_storage_size = 4 * 8;
386 else if (saw_i4)
388 gfc_default_integer_kind = 4;
389 gfc_numeric_storage_size = 4 * 8;
391 else
393 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
394 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
397 /* Choose the default real kind. Again, we choose 4 when possible. */
398 if (gfc_option.flag_default_real)
400 if (!saw_r8)
401 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
402 gfc_default_real_kind = 8;
404 else if (saw_r4)
405 gfc_default_real_kind = 4;
406 else
407 gfc_default_real_kind = gfc_real_kinds[0].kind;
409 /* Choose the default double kind. If -fdefault-real and -fdefault-double
410 are specified, we use kind=8, if it's available. If -fdefault-real is
411 specified without -fdefault-double, we use kind=16, if it's available.
412 Otherwise we do not change anything. */
413 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
414 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
416 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
417 gfc_default_double_kind = 8;
418 else if (gfc_option.flag_default_real && saw_r16)
419 gfc_default_double_kind = 16;
420 else if (saw_r4 && saw_r8)
421 gfc_default_double_kind = 8;
422 else
424 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
425 real ... occupies two contiguous numeric storage units.
427 Therefore we must be supplied a kind twice as large as we chose
428 for single precision. There are loopholes, in that double
429 precision must *occupy* two storage units, though it doesn't have
430 to *use* two storage units. Which means that you can make this
431 kind artificially wide by padding it. But at present there are
432 no GCC targets for which a two-word type does not exist, so we
433 just let gfc_validate_kind abort and tell us if something breaks. */
435 gfc_default_double_kind
436 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
439 /* The default logical kind is constrained to be the same as the
440 default integer kind. Similarly with complex and real. */
441 gfc_default_logical_kind = gfc_default_integer_kind;
442 gfc_default_complex_kind = gfc_default_real_kind;
444 /* We only have two character kinds: ASCII and UCS-4.
445 ASCII corresponds to a 8-bit integer type, if one is available.
446 UCS-4 corresponds to a 32-bit integer type, if one is available. */
447 i_index = 0;
448 if ((kind = get_int_kind_from_width (8)) > 0)
450 gfc_character_kinds[i_index].kind = kind;
451 gfc_character_kinds[i_index].bit_size = 8;
452 gfc_character_kinds[i_index].name = "ascii";
453 i_index++;
455 if ((kind = get_int_kind_from_width (32)) > 0)
457 gfc_character_kinds[i_index].kind = kind;
458 gfc_character_kinds[i_index].bit_size = 32;
459 gfc_character_kinds[i_index].name = "iso_10646";
460 i_index++;
463 /* Choose the smallest integer kind for our default character. */
464 gfc_default_character_kind = gfc_character_kinds[0].kind;
465 gfc_character_storage_size = gfc_default_character_kind * 8;
467 /* Choose the integer kind the same size as "void*" for our index kind. */
468 gfc_index_integer_kind = POINTER_SIZE / 8;
469 /* Pick a kind the same size as the C "int" type. */
470 gfc_c_int_kind = INT_TYPE_SIZE / 8;
472 /* initialize the C interoperable kinds */
473 init_c_interop_kinds();
476 /* Make sure that a valid kind is present. Returns an index into the
477 associated kinds array, -1 if the kind is not present. */
479 static int
480 validate_integer (int kind)
482 int i;
484 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
485 if (gfc_integer_kinds[i].kind == kind)
486 return i;
488 return -1;
491 static int
492 validate_real (int kind)
494 int i;
496 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
497 if (gfc_real_kinds[i].kind == kind)
498 return i;
500 return -1;
503 static int
504 validate_logical (int kind)
506 int i;
508 for (i = 0; gfc_logical_kinds[i].kind; i++)
509 if (gfc_logical_kinds[i].kind == kind)
510 return i;
512 return -1;
515 static int
516 validate_character (int kind)
518 int i;
520 for (i = 0; gfc_character_kinds[i].kind; i++)
521 if (gfc_character_kinds[i].kind == kind)
522 return i;
524 return -1;
527 /* Validate a kind given a basic type. The return value is the same
528 for the child functions, with -1 indicating nonexistence of the
529 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
532 gfc_validate_kind (bt type, int kind, bool may_fail)
534 int rc;
536 switch (type)
538 case BT_REAL: /* Fall through */
539 case BT_COMPLEX:
540 rc = validate_real (kind);
541 break;
542 case BT_INTEGER:
543 rc = validate_integer (kind);
544 break;
545 case BT_LOGICAL:
546 rc = validate_logical (kind);
547 break;
548 case BT_CHARACTER:
549 rc = validate_character (kind);
550 break;
552 default:
553 gfc_internal_error ("gfc_validate_kind(): Got bad type");
556 if (rc < 0 && !may_fail)
557 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
559 return rc;
563 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
564 Reuse common type nodes where possible. Recognize if the kind matches up
565 with a C type. This will be used later in determining which routines may
566 be scarfed from libm. */
568 static tree
569 gfc_build_int_type (gfc_integer_info *info)
571 int mode_precision = info->bit_size;
573 if (mode_precision == CHAR_TYPE_SIZE)
574 info->c_char = 1;
575 if (mode_precision == SHORT_TYPE_SIZE)
576 info->c_short = 1;
577 if (mode_precision == INT_TYPE_SIZE)
578 info->c_int = 1;
579 if (mode_precision == LONG_TYPE_SIZE)
580 info->c_long = 1;
581 if (mode_precision == LONG_LONG_TYPE_SIZE)
582 info->c_long_long = 1;
584 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
585 return intQI_type_node;
586 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
587 return intHI_type_node;
588 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
589 return intSI_type_node;
590 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
591 return intDI_type_node;
592 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
593 return intTI_type_node;
595 return make_signed_type (mode_precision);
598 static tree
599 gfc_build_uint_type (int size)
601 if (size == CHAR_TYPE_SIZE)
602 return unsigned_char_type_node;
603 if (size == SHORT_TYPE_SIZE)
604 return short_unsigned_type_node;
605 if (size == INT_TYPE_SIZE)
606 return unsigned_type_node;
607 if (size == LONG_TYPE_SIZE)
608 return long_unsigned_type_node;
609 if (size == LONG_LONG_TYPE_SIZE)
610 return long_long_unsigned_type_node;
612 return make_unsigned_type (size);
616 static tree
617 gfc_build_real_type (gfc_real_info *info)
619 int mode_precision = info->mode_precision;
620 tree new_type;
622 if (mode_precision == FLOAT_TYPE_SIZE)
623 info->c_float = 1;
624 if (mode_precision == DOUBLE_TYPE_SIZE)
625 info->c_double = 1;
626 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
627 info->c_long_double = 1;
629 if (TYPE_PRECISION (float_type_node) == mode_precision)
630 return float_type_node;
631 if (TYPE_PRECISION (double_type_node) == mode_precision)
632 return double_type_node;
633 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
634 return long_double_type_node;
636 new_type = make_node (REAL_TYPE);
637 TYPE_PRECISION (new_type) = mode_precision;
638 layout_type (new_type);
639 return new_type;
642 static tree
643 gfc_build_complex_type (tree scalar_type)
645 tree new_type;
647 if (scalar_type == NULL)
648 return NULL;
649 if (scalar_type == float_type_node)
650 return complex_float_type_node;
651 if (scalar_type == double_type_node)
652 return complex_double_type_node;
653 if (scalar_type == long_double_type_node)
654 return complex_long_double_type_node;
656 new_type = make_node (COMPLEX_TYPE);
657 TREE_TYPE (new_type) = scalar_type;
658 layout_type (new_type);
659 return new_type;
662 static tree
663 gfc_build_logical_type (gfc_logical_info *info)
665 int bit_size = info->bit_size;
666 tree new_type;
668 if (bit_size == BOOL_TYPE_SIZE)
670 info->c_bool = 1;
671 return boolean_type_node;
674 new_type = make_unsigned_type (bit_size);
675 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
676 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
677 TYPE_PRECISION (new_type) = 1;
679 return new_type;
682 #if 0
683 /* Return the bit size of the C "size_t". */
685 static unsigned int
686 c_size_t_size (void)
688 #ifdef SIZE_TYPE
689 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
690 return INT_TYPE_SIZE;
691 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
692 return LONG_TYPE_SIZE;
693 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
694 return SHORT_TYPE_SIZE;
695 gcc_unreachable ();
696 #else
697 return LONG_TYPE_SIZE;
698 #endif
700 #endif
702 /* Create the backend type nodes. We map them to their
703 equivalent C type, at least for now. We also give
704 names to the types here, and we push them in the
705 global binding level context.*/
707 void
708 gfc_init_types (void)
710 char name_buf[18];
711 int index;
712 tree type;
713 unsigned n;
714 unsigned HOST_WIDE_INT hi;
715 unsigned HOST_WIDE_INT lo;
717 /* Create and name the types. */
718 #define PUSH_TYPE(name, node) \
719 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
721 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
723 type = gfc_build_int_type (&gfc_integer_kinds[index]);
724 gfc_integer_types[index] = type;
725 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
726 gfc_integer_kinds[index].kind);
727 PUSH_TYPE (name_buf, type);
730 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
732 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
733 gfc_logical_types[index] = type;
734 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
735 gfc_logical_kinds[index].kind);
736 PUSH_TYPE (name_buf, type);
739 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
741 type = gfc_build_real_type (&gfc_real_kinds[index]);
742 gfc_real_types[index] = type;
743 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
744 gfc_real_kinds[index].kind);
745 PUSH_TYPE (name_buf, type);
747 type = gfc_build_complex_type (type);
748 gfc_complex_types[index] = type;
749 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
750 gfc_real_kinds[index].kind);
751 PUSH_TYPE (name_buf, type);
754 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
756 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
757 type = build_qualified_type (type, TYPE_UNQUALIFIED);
758 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
759 gfc_character_kinds[index].kind);
760 PUSH_TYPE (name_buf, type);
761 gfc_character_types[index] = type;
762 gfc_pcharacter_types[index] = build_pointer_type (type);
764 gfc_character1_type_node = gfc_character_types[0];
766 PUSH_TYPE ("byte", unsigned_char_type_node);
767 PUSH_TYPE ("void", void_type_node);
769 /* DBX debugging output gets upset if these aren't set. */
770 if (!TYPE_NAME (integer_type_node))
771 PUSH_TYPE ("c_integer", integer_type_node);
772 if (!TYPE_NAME (char_type_node))
773 PUSH_TYPE ("c_char", char_type_node);
775 #undef PUSH_TYPE
777 pvoid_type_node = build_pointer_type (void_type_node);
778 ppvoid_type_node = build_pointer_type (pvoid_type_node);
779 pchar_type_node = build_pointer_type (gfc_character1_type_node);
780 pfunc_type_node
781 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
783 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
784 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
785 since this function is called before gfc_init_constants. */
786 gfc_array_range_type
787 = build_range_type (gfc_array_index_type,
788 build_int_cst (gfc_array_index_type, 0),
789 NULL_TREE);
791 /* The maximum array element size that can be handled is determined
792 by the number of bits available to store this field in the array
793 descriptor. */
795 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
796 lo = ~ (unsigned HOST_WIDE_INT) 0;
797 if (n > HOST_BITS_PER_WIDE_INT)
798 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
799 else
800 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
801 gfc_max_array_element_size
802 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
804 size_type_node = gfc_array_index_type;
806 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
807 boolean_true_node = build_int_cst (boolean_type_node, 1);
808 boolean_false_node = build_int_cst (boolean_type_node, 0);
810 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
811 gfc_charlen_int_kind = 4;
812 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
815 /* Get the type node for the given type and kind. */
817 tree
818 gfc_get_int_type (int kind)
820 int index = gfc_validate_kind (BT_INTEGER, kind, true);
821 return index < 0 ? 0 : gfc_integer_types[index];
824 tree
825 gfc_get_real_type (int kind)
827 int index = gfc_validate_kind (BT_REAL, kind, true);
828 return index < 0 ? 0 : gfc_real_types[index];
831 tree
832 gfc_get_complex_type (int kind)
834 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
835 return index < 0 ? 0 : gfc_complex_types[index];
838 tree
839 gfc_get_logical_type (int kind)
841 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
842 return index < 0 ? 0 : gfc_logical_types[index];
845 tree
846 gfc_get_char_type (int kind)
848 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
849 return index < 0 ? 0 : gfc_character_types[index];
852 tree
853 gfc_get_pchar_type (int kind)
855 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
856 return index < 0 ? 0 : gfc_pcharacter_types[index];
860 /* Create a character type with the given kind and length. */
862 tree
863 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
865 tree bounds, type;
867 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
868 type = build_array_type (eltype, bounds);
869 TYPE_STRING_FLAG (type) = 1;
871 return type;
874 tree
875 gfc_get_character_type_len (int kind, tree len)
877 gfc_validate_kind (BT_CHARACTER, kind, false);
878 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
882 /* Get a type node for a character kind. */
884 tree
885 gfc_get_character_type (int kind, gfc_charlen * cl)
887 tree len;
889 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
891 return gfc_get_character_type_len (kind, len);
894 /* Covert a basic type. This will be an array for character types. */
896 tree
897 gfc_typenode_for_spec (gfc_typespec * spec)
899 tree basetype;
901 switch (spec->type)
903 case BT_UNKNOWN:
904 gcc_unreachable ();
906 case BT_INTEGER:
907 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
908 has been resolved. This is done so we can convert C_PTR and
909 C_FUNPTR to simple variables that get translated to (void *). */
910 if (spec->f90_type == BT_VOID)
912 if (spec->derived
913 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
914 basetype = ptr_type_node;
915 else
916 basetype = pfunc_type_node;
918 else
919 basetype = gfc_get_int_type (spec->kind);
920 break;
922 case BT_REAL:
923 basetype = gfc_get_real_type (spec->kind);
924 break;
926 case BT_COMPLEX:
927 basetype = gfc_get_complex_type (spec->kind);
928 break;
930 case BT_LOGICAL:
931 basetype = gfc_get_logical_type (spec->kind);
932 break;
934 case BT_CHARACTER:
935 basetype = gfc_get_character_type (spec->kind, spec->cl);
936 break;
938 case BT_DERIVED:
939 basetype = gfc_get_derived_type (spec->derived);
941 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
942 type and kind to fit a (void *) and the basetype returned was a
943 ptr_type_node. We need to pass up this new information to the
944 symbol that was declared of type C_PTR or C_FUNPTR. */
945 if (spec->derived->attr.is_iso_c)
947 spec->type = spec->derived->ts.type;
948 spec->kind = spec->derived->ts.kind;
949 spec->f90_type = spec->derived->ts.f90_type;
951 break;
952 case BT_VOID:
953 /* This is for the second arg to c_f_pointer and c_f_procpointer
954 of the iso_c_binding module, to accept any ptr type. */
955 basetype = ptr_type_node;
956 if (spec->f90_type == BT_VOID)
958 if (spec->derived
959 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
960 basetype = ptr_type_node;
961 else
962 basetype = pfunc_type_node;
964 break;
965 default:
966 gcc_unreachable ();
968 return basetype;
971 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
973 static tree
974 gfc_conv_array_bound (gfc_expr * expr)
976 /* If expr is an integer constant, return that. */
977 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
978 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
980 /* Otherwise return NULL. */
981 return NULL_TREE;
984 tree
985 gfc_get_element_type (tree type)
987 tree element;
989 if (GFC_ARRAY_TYPE_P (type))
991 if (TREE_CODE (type) == POINTER_TYPE)
992 type = TREE_TYPE (type);
993 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
994 element = TREE_TYPE (type);
996 else
998 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
999 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1001 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1002 element = TREE_TYPE (element);
1004 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1005 element = TREE_TYPE (element);
1008 return element;
1011 /* Build an array. This function is called from gfc_sym_type().
1012 Actually returns array descriptor type.
1014 Format of array descriptors is as follows:
1016 struct gfc_array_descriptor
1018 array *data
1019 index offset;
1020 index dtype;
1021 struct descriptor_dimension dimension[N_DIM];
1024 struct descriptor_dimension
1026 index stride;
1027 index lbound;
1028 index ubound;
1031 Translation code should use gfc_conv_descriptor_* rather than
1032 accessing the descriptor directly. Any changes to the array
1033 descriptor type will require changes in gfc_conv_descriptor_* and
1034 gfc_build_array_initializer.
1036 This is represented internally as a RECORD_TYPE. The index nodes
1037 are gfc_array_index_type and the data node is a pointer to the
1038 data. See below for the handling of character types.
1040 The dtype member is formatted as follows:
1041 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1042 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1043 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1045 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1046 this generated poor code for assumed/deferred size arrays. These
1047 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1048 of the GENERIC grammar. Also, there is no way to explicitly set
1049 the array stride, so all data must be packed(1). I've tried to
1050 mark all the functions which would require modification with a GCC
1051 ARRAYS comment.
1053 The data component points to the first element in the array. The
1054 offset field is the position of the origin of the array (i.e. element
1055 (0, 0 ...)). This may be outside the bounds of the array.
1057 An element is accessed by
1058 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1059 This gives good performance as the computation does not involve the
1060 bounds of the array. For packed arrays, this is optimized further
1061 by substituting the known strides.
1063 This system has one problem: all array bounds must be within 2^31
1064 elements of the origin (2^63 on 64-bit machines). For example
1065 integer, dimension (80000:90000, 80000:90000, 2) :: array
1066 may not work properly on 32-bit machines because 80000*80000 >
1067 2^31, so the calculation for stride2 would overflow. This may
1068 still work, but I haven't checked, and it relies on the overflow
1069 doing the right thing.
1071 The way to fix this problem is to access elements as follows:
1072 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1073 Obviously this is much slower. I will make this a compile time
1074 option, something like -fsmall-array-offsets. Mixing code compiled
1075 with and without this switch will work.
1077 (1) This can be worked around by modifying the upper bound of the
1078 previous dimension. This requires extra fields in the descriptor
1079 (both real_ubound and fake_ubound). */
1082 /* Returns true if the array sym does not require a descriptor. */
1085 gfc_is_nodesc_array (gfc_symbol * sym)
1087 gcc_assert (sym->attr.dimension);
1089 /* We only want local arrays. */
1090 if (sym->attr.pointer || sym->attr.allocatable)
1091 return 0;
1093 if (sym->attr.dummy)
1095 if (sym->as->type != AS_ASSUMED_SHAPE)
1096 return 1;
1097 else
1098 return 0;
1101 if (sym->attr.result || sym->attr.function)
1102 return 0;
1104 gcc_assert (sym->as->type == AS_EXPLICIT);
1106 return 1;
1110 /* Create an array descriptor type. */
1112 static tree
1113 gfc_build_array_type (tree type, gfc_array_spec * as,
1114 enum gfc_array_kind akind)
1116 tree lbound[GFC_MAX_DIMENSIONS];
1117 tree ubound[GFC_MAX_DIMENSIONS];
1118 int n;
1120 for (n = 0; n < as->rank; n++)
1122 /* Create expressions for the known bounds of the array. */
1123 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1124 lbound[n] = gfc_index_one_node;
1125 else
1126 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1127 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1130 if (as->type == AS_ASSUMED_SHAPE)
1131 akind = GFC_ARRAY_ASSUMED_SHAPE;
1132 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0, akind);
1135 /* Returns the struct descriptor_dimension type. */
1137 static tree
1138 gfc_get_desc_dim_type (void)
1140 tree type;
1141 tree decl;
1142 tree fieldlist;
1144 if (gfc_desc_dim_type)
1145 return gfc_desc_dim_type;
1147 /* Build the type node. */
1148 type = make_node (RECORD_TYPE);
1150 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1151 TYPE_PACKED (type) = 1;
1153 /* Consists of the stride, lbound and ubound members. */
1154 decl = build_decl (FIELD_DECL,
1155 get_identifier ("stride"), gfc_array_index_type);
1156 DECL_CONTEXT (decl) = type;
1157 TREE_NO_WARNING (decl) = 1;
1158 fieldlist = decl;
1160 decl = build_decl (FIELD_DECL,
1161 get_identifier ("lbound"), gfc_array_index_type);
1162 DECL_CONTEXT (decl) = type;
1163 TREE_NO_WARNING (decl) = 1;
1164 fieldlist = chainon (fieldlist, decl);
1166 decl = build_decl (FIELD_DECL,
1167 get_identifier ("ubound"), gfc_array_index_type);
1168 DECL_CONTEXT (decl) = type;
1169 TREE_NO_WARNING (decl) = 1;
1170 fieldlist = chainon (fieldlist, decl);
1172 /* Finish off the type. */
1173 TYPE_FIELDS (type) = fieldlist;
1175 gfc_finish_type (type);
1176 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1178 gfc_desc_dim_type = type;
1179 return type;
1183 /* Return the DTYPE for an array. This describes the type and type parameters
1184 of the array. */
1185 /* TODO: Only call this when the value is actually used, and make all the
1186 unknown cases abort. */
1188 tree
1189 gfc_get_dtype (tree type)
1191 tree size;
1192 int n;
1193 HOST_WIDE_INT i;
1194 tree tmp;
1195 tree dtype;
1196 tree etype;
1197 int rank;
1199 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1201 if (GFC_TYPE_ARRAY_DTYPE (type))
1202 return GFC_TYPE_ARRAY_DTYPE (type);
1204 rank = GFC_TYPE_ARRAY_RANK (type);
1205 etype = gfc_get_element_type (type);
1207 switch (TREE_CODE (etype))
1209 case INTEGER_TYPE:
1210 n = GFC_DTYPE_INTEGER;
1211 break;
1213 case BOOLEAN_TYPE:
1214 n = GFC_DTYPE_LOGICAL;
1215 break;
1217 case REAL_TYPE:
1218 n = GFC_DTYPE_REAL;
1219 break;
1221 case COMPLEX_TYPE:
1222 n = GFC_DTYPE_COMPLEX;
1223 break;
1225 /* We will never have arrays of arrays. */
1226 case RECORD_TYPE:
1227 n = GFC_DTYPE_DERIVED;
1228 break;
1230 case ARRAY_TYPE:
1231 n = GFC_DTYPE_CHARACTER;
1232 break;
1234 default:
1235 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1236 /* We can strange array types for temporary arrays. */
1237 return gfc_index_zero_node;
1240 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1241 size = TYPE_SIZE_UNIT (etype);
1243 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1244 if (size && INTEGER_CST_P (size))
1246 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1247 internal_error ("Array element size too big");
1249 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1251 dtype = build_int_cst (gfc_array_index_type, i);
1253 if (size && !INTEGER_CST_P (size))
1255 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1256 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1257 fold_convert (gfc_array_index_type, size), tmp);
1258 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1260 /* If we don't know the size we leave it as zero. This should never happen
1261 for anything that is actually used. */
1262 /* TODO: Check this is actually true, particularly when repacking
1263 assumed size parameters. */
1265 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1266 return dtype;
1270 /* Build an array type for use without a descriptor, packed according
1271 to the value of PACKED. */
1273 tree
1274 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1276 tree range;
1277 tree type;
1278 tree tmp;
1279 int n;
1280 int known_stride;
1281 int known_offset;
1282 mpz_t offset;
1283 mpz_t stride;
1284 mpz_t delta;
1285 gfc_expr *expr;
1287 mpz_init_set_ui (offset, 0);
1288 mpz_init_set_ui (stride, 1);
1289 mpz_init (delta);
1291 /* We don't use build_array_type because this does not include include
1292 lang-specific information (i.e. the bounds of the array) when checking
1293 for duplicates. */
1294 type = make_node (ARRAY_TYPE);
1296 GFC_ARRAY_TYPE_P (type) = 1;
1297 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1298 ggc_alloc_cleared (sizeof (struct lang_type));
1300 known_stride = (packed != PACKED_NO);
1301 known_offset = 1;
1302 for (n = 0; n < as->rank; n++)
1304 /* Fill in the stride and bound components of the type. */
1305 if (known_stride)
1306 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1307 else
1308 tmp = NULL_TREE;
1309 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1311 expr = as->lower[n];
1312 if (expr->expr_type == EXPR_CONSTANT)
1314 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1315 gfc_index_integer_kind);
1317 else
1319 known_stride = 0;
1320 tmp = NULL_TREE;
1322 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1324 if (known_stride)
1326 /* Calculate the offset. */
1327 mpz_mul (delta, stride, as->lower[n]->value.integer);
1328 mpz_sub (offset, offset, delta);
1330 else
1331 known_offset = 0;
1333 expr = as->upper[n];
1334 if (expr && expr->expr_type == EXPR_CONSTANT)
1336 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1337 gfc_index_integer_kind);
1339 else
1341 tmp = NULL_TREE;
1342 known_stride = 0;
1344 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1346 if (known_stride)
1348 /* Calculate the stride. */
1349 mpz_sub (delta, as->upper[n]->value.integer,
1350 as->lower[n]->value.integer);
1351 mpz_add_ui (delta, delta, 1);
1352 mpz_mul (stride, stride, delta);
1355 /* Only the first stride is known for partial packed arrays. */
1356 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1357 known_stride = 0;
1360 if (known_offset)
1362 GFC_TYPE_ARRAY_OFFSET (type) =
1363 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1365 else
1366 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1368 if (known_stride)
1370 GFC_TYPE_ARRAY_SIZE (type) =
1371 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1373 else
1374 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1376 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1377 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1378 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1379 NULL_TREE);
1380 /* TODO: use main type if it is unbounded. */
1381 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1382 build_pointer_type (build_array_type (etype, range));
1384 if (known_stride)
1386 mpz_sub_ui (stride, stride, 1);
1387 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1389 else
1390 range = NULL_TREE;
1392 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1393 TYPE_DOMAIN (type) = range;
1395 build_pointer_type (etype);
1396 TREE_TYPE (type) = etype;
1398 layout_type (type);
1400 mpz_clear (offset);
1401 mpz_clear (stride);
1402 mpz_clear (delta);
1404 /* Represent packed arrays as multi-dimensional if they have rank >
1405 1 and with proper bounds, instead of flat arrays. This makes for
1406 better debug info. */
1407 if (known_offset)
1409 tree gtype = etype, rtype, type_decl;
1411 for (n = as->rank - 1; n >= 0; n--)
1413 rtype = build_range_type (gfc_array_index_type,
1414 GFC_TYPE_ARRAY_LBOUND (type, n),
1415 GFC_TYPE_ARRAY_UBOUND (type, n));
1416 gtype = build_array_type (gtype, rtype);
1418 TYPE_NAME (type) = type_decl = build_decl (TYPE_DECL, NULL, gtype);
1419 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1422 if (packed != PACKED_STATIC || !known_stride)
1424 /* For dummy arrays and automatic (heap allocated) arrays we
1425 want a pointer to the array. */
1426 type = build_pointer_type (type);
1427 GFC_ARRAY_TYPE_P (type) = 1;
1428 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1430 return type;
1433 /* Return or create the base type for an array descriptor. */
1435 static tree
1436 gfc_get_array_descriptor_base (int dimen)
1438 tree fat_type, fieldlist, decl, arraytype;
1439 char name[16 + GFC_RANK_DIGITS + 1];
1441 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1442 if (gfc_array_descriptor_base[dimen - 1])
1443 return gfc_array_descriptor_base[dimen - 1];
1445 /* Build the type node. */
1446 fat_type = make_node (RECORD_TYPE);
1448 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1449 TYPE_NAME (fat_type) = get_identifier (name);
1451 /* Add the data member as the first element of the descriptor. */
1452 decl = build_decl (FIELD_DECL, get_identifier ("data"), ptr_type_node);
1454 DECL_CONTEXT (decl) = fat_type;
1455 fieldlist = decl;
1457 /* Add the base component. */
1458 decl = build_decl (FIELD_DECL, get_identifier ("offset"),
1459 gfc_array_index_type);
1460 DECL_CONTEXT (decl) = fat_type;
1461 TREE_NO_WARNING (decl) = 1;
1462 fieldlist = chainon (fieldlist, decl);
1464 /* Add the dtype component. */
1465 decl = build_decl (FIELD_DECL, get_identifier ("dtype"),
1466 gfc_array_index_type);
1467 DECL_CONTEXT (decl) = fat_type;
1468 TREE_NO_WARNING (decl) = 1;
1469 fieldlist = chainon (fieldlist, decl);
1471 /* Build the array type for the stride and bound components. */
1472 arraytype =
1473 build_array_type (gfc_get_desc_dim_type (),
1474 build_range_type (gfc_array_index_type,
1475 gfc_index_zero_node,
1476 gfc_rank_cst[dimen - 1]));
1478 decl = build_decl (FIELD_DECL, get_identifier ("dim"), arraytype);
1479 DECL_CONTEXT (decl) = fat_type;
1480 TREE_NO_WARNING (decl) = 1;
1481 fieldlist = chainon (fieldlist, decl);
1483 /* Finish off the type. */
1484 TYPE_FIELDS (fat_type) = fieldlist;
1486 gfc_finish_type (fat_type);
1487 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1489 gfc_array_descriptor_base[dimen - 1] = fat_type;
1490 return fat_type;
1493 /* Build an array (descriptor) type with given bounds. */
1495 tree
1496 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1497 tree * ubound, int packed,
1498 enum gfc_array_kind akind)
1500 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1501 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1502 const char *type_name;
1503 int n;
1505 base_type = gfc_get_array_descriptor_base (dimen);
1506 fat_type = build_variant_type_copy (base_type);
1508 tmp = TYPE_NAME (etype);
1509 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1510 tmp = DECL_NAME (tmp);
1511 if (tmp)
1512 type_name = IDENTIFIER_POINTER (tmp);
1513 else
1514 type_name = "unknown";
1515 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1516 GFC_MAX_SYMBOL_LEN, type_name);
1517 TYPE_NAME (fat_type) = get_identifier (name);
1519 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1520 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1521 ggc_alloc_cleared (sizeof (struct lang_type));
1523 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1524 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1525 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1527 /* Build an array descriptor record type. */
1528 if (packed != 0)
1529 stride = gfc_index_one_node;
1530 else
1531 stride = NULL_TREE;
1532 for (n = 0; n < dimen; n++)
1534 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1536 if (lbound)
1537 lower = lbound[n];
1538 else
1539 lower = NULL_TREE;
1541 if (lower != NULL_TREE)
1543 if (INTEGER_CST_P (lower))
1544 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1545 else
1546 lower = NULL_TREE;
1549 upper = ubound[n];
1550 if (upper != NULL_TREE)
1552 if (INTEGER_CST_P (upper))
1553 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1554 else
1555 upper = NULL_TREE;
1558 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1560 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1561 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1562 gfc_index_one_node);
1563 stride =
1564 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1565 /* Check the folding worked. */
1566 gcc_assert (INTEGER_CST_P (stride));
1568 else
1569 stride = NULL_TREE;
1571 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1573 /* TODO: known offsets for descriptors. */
1574 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1576 /* We define data as an array with the correct size if possible.
1577 Much better than doing pointer arithmetic. */
1578 if (stride)
1579 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1580 int_const_binop (MINUS_EXPR, stride,
1581 integer_one_node, 0));
1582 else
1583 rtype = gfc_array_range_type;
1584 arraytype = build_array_type (etype, rtype);
1585 arraytype = build_pointer_type (arraytype);
1586 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1588 return fat_type;
1591 /* Build a pointer type. This function is called from gfc_sym_type(). */
1593 static tree
1594 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1596 /* Array pointer types aren't actually pointers. */
1597 if (sym->attr.dimension)
1598 return type;
1599 else
1600 return build_pointer_type (type);
1603 /* Return the type for a symbol. Special handling is required for character
1604 types to get the correct level of indirection.
1605 For functions return the return type.
1606 For subroutines return void_type_node.
1607 Calling this multiple times for the same symbol should be avoided,
1608 especially for character and array types. */
1610 tree
1611 gfc_sym_type (gfc_symbol * sym)
1613 tree type;
1614 int byref;
1616 /* Procedure Pointers inside COMMON blocks or as function result. */
1617 if (sym->attr.proc_pointer && (sym->attr.in_common || sym->attr.result))
1619 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1620 sym->attr.proc_pointer = 0;
1621 type = build_pointer_type (gfc_get_function_type (sym));
1622 sym->attr.proc_pointer = 1;
1623 return type;
1626 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1627 return void_type_node;
1629 /* In the case of a function the fake result variable may have a
1630 type different from the function type, so don't return early in
1631 that case. */
1632 if (sym->backend_decl && !sym->attr.function)
1633 return TREE_TYPE (sym->backend_decl);
1635 if (sym->ts.type == BT_CHARACTER
1636 && ((sym->attr.function && sym->attr.is_bind_c)
1637 || (sym->attr.result
1638 && sym->ns->proc_name
1639 && sym->ns->proc_name->attr.is_bind_c)))
1640 type = gfc_character1_type_node;
1641 else
1642 type = gfc_typenode_for_spec (&sym->ts);
1644 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1645 byref = 1;
1646 else
1647 byref = 0;
1649 if (sym->attr.dimension)
1651 if (gfc_is_nodesc_array (sym))
1653 /* If this is a character argument of unknown length, just use the
1654 base type. */
1655 if (sym->ts.type != BT_CHARACTER
1656 || !(sym->attr.dummy || sym->attr.function)
1657 || sym->ts.cl->backend_decl)
1659 type = gfc_get_nodesc_array_type (type, sym->as,
1660 byref ? PACKED_FULL
1661 : PACKED_STATIC);
1662 byref = 0;
1665 else
1667 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1668 if (sym->attr.pointer)
1669 akind = GFC_ARRAY_POINTER;
1670 else if (sym->attr.allocatable)
1671 akind = GFC_ARRAY_ALLOCATABLE;
1672 type = gfc_build_array_type (type, sym->as, akind);
1675 else
1677 if (sym->attr.allocatable || sym->attr.pointer)
1678 type = gfc_build_pointer_type (sym, type);
1679 if (sym->attr.pointer)
1680 GFC_POINTER_TYPE_P (type) = 1;
1683 /* We currently pass all parameters by reference.
1684 See f95_get_function_decl. For dummy function parameters return the
1685 function type. */
1686 if (byref)
1688 /* We must use pointer types for potentially absent variables. The
1689 optimizers assume a reference type argument is never NULL. */
1690 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1691 type = build_pointer_type (type);
1692 else
1693 type = build_reference_type (type);
1696 return (type);
1699 /* Layout and output debug info for a record type. */
1701 void
1702 gfc_finish_type (tree type)
1704 tree decl;
1706 decl = build_decl (TYPE_DECL, NULL_TREE, type);
1707 TYPE_STUB_DECL (type) = decl;
1708 layout_type (type);
1709 rest_of_type_compilation (type, 1);
1710 rest_of_decl_compilation (decl, 1, 0);
1713 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1714 or RECORD_TYPE pointed to by STYPE. The new field is chained
1715 to the fieldlist pointed to by FIELDLIST.
1717 Returns a pointer to the new field. */
1719 tree
1720 gfc_add_field_to_struct (tree *fieldlist, tree context,
1721 tree name, tree type)
1723 tree decl;
1725 decl = build_decl (FIELD_DECL, name, type);
1727 DECL_CONTEXT (decl) = context;
1728 DECL_INITIAL (decl) = 0;
1729 DECL_ALIGN (decl) = 0;
1730 DECL_USER_ALIGN (decl) = 0;
1731 TREE_CHAIN (decl) = NULL_TREE;
1732 *fieldlist = chainon (*fieldlist, decl);
1734 return decl;
1738 /* Copy the backend_decl and component backend_decls if
1739 the two derived type symbols are "equal", as described
1740 in 4.4.2 and resolved by gfc_compare_derived_types. */
1742 static int
1743 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1745 gfc_component *to_cm;
1746 gfc_component *from_cm;
1748 if (from->backend_decl == NULL
1749 || !gfc_compare_derived_types (from, to))
1750 return 0;
1752 to->backend_decl = from->backend_decl;
1754 to_cm = to->components;
1755 from_cm = from->components;
1757 /* Copy the component declarations. If a component is itself
1758 a derived type, we need a copy of its component declarations.
1759 This is done by recursing into gfc_get_derived_type and
1760 ensures that the component's component declarations have
1761 been built. If it is a character, we need the character
1762 length, as well. */
1763 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1765 to_cm->backend_decl = from_cm->backend_decl;
1766 if (!from_cm->attr.pointer && from_cm->ts.type == BT_DERIVED)
1767 gfc_get_derived_type (to_cm->ts.derived);
1769 else if (from_cm->ts.type == BT_CHARACTER)
1770 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1773 return 1;
1777 /* Build a tree node for a derived type. If there are equal
1778 derived types, with different local names, these are built
1779 at the same time. If an equal derived type has been built
1780 in a parent namespace, this is used. */
1782 static tree
1783 gfc_get_derived_type (gfc_symbol * derived)
1785 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1786 gfc_component *c;
1787 gfc_dt_list *dt;
1789 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1791 /* See if it's one of the iso_c_binding derived types. */
1792 if (derived->attr.is_iso_c == 1)
1794 if (derived->backend_decl)
1795 return derived->backend_decl;
1797 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1798 derived->backend_decl = ptr_type_node;
1799 else
1800 derived->backend_decl = pfunc_type_node;
1802 /* Create a backend_decl for the __c_ptr_c_address field. */
1803 derived->components->backend_decl =
1804 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1805 derived->backend_decl,
1806 get_identifier (derived->components->name),
1807 gfc_typenode_for_spec (
1808 &(derived->components->ts)));
1810 derived->ts.kind = gfc_index_integer_kind;
1811 derived->ts.type = BT_INTEGER;
1812 /* Set the f90_type to BT_VOID as a way to recognize something of type
1813 BT_INTEGER that needs to fit a void * for the purpose of the
1814 iso_c_binding derived types. */
1815 derived->ts.f90_type = BT_VOID;
1817 return derived->backend_decl;
1820 /* derived->backend_decl != 0 means we saw it before, but its
1821 components' backend_decl may have not been built. */
1822 if (derived->backend_decl)
1824 /* Its components' backend_decl have been built. */
1825 if (TYPE_FIELDS (derived->backend_decl))
1826 return derived->backend_decl;
1827 else
1828 typenode = derived->backend_decl;
1830 else
1833 /* We see this derived type first time, so build the type node. */
1834 typenode = make_node (RECORD_TYPE);
1835 TYPE_NAME (typenode) = get_identifier (derived->name);
1836 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1837 derived->backend_decl = typenode;
1840 /* Go through the derived type components, building them as
1841 necessary. The reason for doing this now is that it is
1842 possible to recurse back to this derived type through a
1843 pointer component (PR24092). If this happens, the fields
1844 will be built and so we can return the type. */
1845 for (c = derived->components; c; c = c->next)
1847 if (c->ts.type != BT_DERIVED)
1848 continue;
1850 if (!c->attr.pointer || c->ts.derived->backend_decl == NULL)
1851 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1853 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1855 /* Need to copy the modified ts from the derived type. The
1856 typespec was modified because C_PTR/C_FUNPTR are translated
1857 into (void *) from derived types. */
1858 c->ts.type = c->ts.derived->ts.type;
1859 c->ts.kind = c->ts.derived->ts.kind;
1860 c->ts.f90_type = c->ts.derived->ts.f90_type;
1861 if (c->initializer)
1863 c->initializer->ts.type = c->ts.type;
1864 c->initializer->ts.kind = c->ts.kind;
1865 c->initializer->ts.f90_type = c->ts.f90_type;
1866 c->initializer->expr_type = EXPR_NULL;
1871 if (TYPE_FIELDS (derived->backend_decl))
1872 return derived->backend_decl;
1874 /* Build the type member list. Install the newly created RECORD_TYPE
1875 node as DECL_CONTEXT of each FIELD_DECL. */
1876 fieldlist = NULL_TREE;
1877 for (c = derived->components; c; c = c->next)
1879 if (c->ts.type == BT_DERIVED)
1880 field_type = c->ts.derived->backend_decl;
1881 else
1883 if (c->ts.type == BT_CHARACTER)
1885 /* Evaluate the string length. */
1886 gfc_conv_const_charlen (c->ts.cl);
1887 gcc_assert (c->ts.cl->backend_decl);
1890 field_type = gfc_typenode_for_spec (&c->ts);
1893 /* This returns an array descriptor type. Initialization may be
1894 required. */
1895 if (c->attr.dimension)
1897 if (c->attr.pointer || c->attr.allocatable)
1899 enum gfc_array_kind akind;
1900 if (c->attr.pointer)
1901 akind = GFC_ARRAY_POINTER;
1902 else
1903 akind = GFC_ARRAY_ALLOCATABLE;
1904 /* Pointers to arrays aren't actually pointer types. The
1905 descriptors are separate, but the data is common. */
1906 field_type = gfc_build_array_type (field_type, c->as, akind);
1908 else
1909 field_type = gfc_get_nodesc_array_type (field_type, c->as,
1910 PACKED_STATIC);
1912 else if (c->attr.pointer)
1913 field_type = build_pointer_type (field_type);
1915 field = gfc_add_field_to_struct (&fieldlist, typenode,
1916 get_identifier (c->name),
1917 field_type);
1918 if (c->loc.lb)
1919 gfc_set_decl_location (field, &c->loc);
1920 else if (derived->declared_at.lb)
1921 gfc_set_decl_location (field, &derived->declared_at);
1923 DECL_PACKED (field) |= TYPE_PACKED (typenode);
1925 gcc_assert (field);
1926 if (!c->backend_decl)
1927 c->backend_decl = field;
1930 /* Now we have the final fieldlist. Record it, then lay out the
1931 derived type, including the fields. */
1932 TYPE_FIELDS (typenode) = fieldlist;
1934 gfc_finish_type (typenode);
1935 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
1936 if (derived->module && derived->ns->proc_name
1937 && derived->ns->proc_name->attr.flavor == FL_MODULE)
1939 if (derived->ns->proc_name->backend_decl
1940 && TREE_CODE (derived->ns->proc_name->backend_decl)
1941 == NAMESPACE_DECL)
1943 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
1944 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
1945 = derived->ns->proc_name->backend_decl;
1949 derived->backend_decl = typenode;
1951 /* Add this backend_decl to all the other, equal derived types. */
1952 for (dt = gfc_derived_types; dt; dt = dt->next)
1953 copy_dt_decls_ifequal (derived, dt->derived);
1955 return derived->backend_decl;
1960 gfc_return_by_reference (gfc_symbol * sym)
1962 if (!sym->attr.function)
1963 return 0;
1965 if (sym->attr.dimension)
1966 return 1;
1968 if (sym->ts.type == BT_CHARACTER
1969 && !sym->attr.is_bind_c
1970 && (!sym->attr.result
1971 || !sym->ns->proc_name
1972 || !sym->ns->proc_name->attr.is_bind_c))
1973 return 1;
1975 /* Possibly return complex numbers by reference for g77 compatibility.
1976 We don't do this for calls to intrinsics (as the library uses the
1977 -fno-f2c calling convention), nor for calls to functions which always
1978 require an explicit interface, as no compatibility problems can
1979 arise there. */
1980 if (gfc_option.flag_f2c
1981 && sym->ts.type == BT_COMPLEX
1982 && !sym->attr.intrinsic && !sym->attr.always_explicit)
1983 return 1;
1985 return 0;
1988 static tree
1989 gfc_get_mixed_entry_union (gfc_namespace *ns)
1991 tree type;
1992 tree decl;
1993 tree fieldlist;
1994 char name[GFC_MAX_SYMBOL_LEN + 1];
1995 gfc_entry_list *el, *el2;
1997 gcc_assert (ns->proc_name->attr.mixed_entry_master);
1998 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2000 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2002 /* Build the type node. */
2003 type = make_node (UNION_TYPE);
2005 TYPE_NAME (type) = get_identifier (name);
2006 fieldlist = NULL;
2008 for (el = ns->entries; el; el = el->next)
2010 /* Search for duplicates. */
2011 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2012 if (el2->sym->result == el->sym->result)
2013 break;
2015 if (el == el2)
2017 decl = build_decl (FIELD_DECL,
2018 get_identifier (el->sym->result->name),
2019 gfc_sym_type (el->sym->result));
2020 DECL_CONTEXT (decl) = type;
2021 fieldlist = chainon (fieldlist, decl);
2025 /* Finish off the type. */
2026 TYPE_FIELDS (type) = fieldlist;
2028 gfc_finish_type (type);
2029 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2030 return type;
2033 tree
2034 gfc_get_function_type (gfc_symbol * sym)
2036 tree type;
2037 tree typelist;
2038 gfc_formal_arglist *f;
2039 gfc_symbol *arg;
2040 int nstr;
2041 int alternate_return;
2043 /* Make sure this symbol is a function, a subroutine or the main
2044 program. */
2045 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2046 || sym->attr.flavor == FL_PROGRAM);
2048 if (sym->backend_decl)
2049 return TREE_TYPE (sym->backend_decl);
2051 nstr = 0;
2052 alternate_return = 0;
2053 typelist = NULL_TREE;
2055 if (sym->attr.entry_master)
2057 /* Additional parameter for selecting an entry point. */
2058 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2061 if (sym->result)
2062 arg = sym->result;
2063 else
2064 arg = sym;
2066 if (arg->ts.type == BT_CHARACTER)
2067 gfc_conv_const_charlen (arg->ts.cl);
2069 /* Some functions we use an extra parameter for the return value. */
2070 if (gfc_return_by_reference (sym))
2072 type = gfc_sym_type (arg);
2073 if (arg->ts.type == BT_COMPLEX
2074 || arg->attr.dimension
2075 || arg->ts.type == BT_CHARACTER)
2076 type = build_reference_type (type);
2078 typelist = gfc_chainon_list (typelist, type);
2079 if (arg->ts.type == BT_CHARACTER)
2080 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2083 /* Build the argument types for the function. */
2084 for (f = sym->formal; f; f = f->next)
2086 arg = f->sym;
2087 if (arg)
2089 /* Evaluate constant character lengths here so that they can be
2090 included in the type. */
2091 if (arg->ts.type == BT_CHARACTER)
2092 gfc_conv_const_charlen (arg->ts.cl);
2094 if (arg->attr.flavor == FL_PROCEDURE)
2096 type = gfc_get_function_type (arg);
2097 type = build_pointer_type (type);
2099 else
2100 type = gfc_sym_type (arg);
2102 /* Parameter Passing Convention
2104 We currently pass all parameters by reference.
2105 Parameters with INTENT(IN) could be passed by value.
2106 The problem arises if a function is called via an implicit
2107 prototype. In this situation the INTENT is not known.
2108 For this reason all parameters to global functions must be
2109 passed by reference. Passing by value would potentially
2110 generate bad code. Worse there would be no way of telling that
2111 this code was bad, except that it would give incorrect results.
2113 Contained procedures could pass by value as these are never
2114 used without an explicit interface, and cannot be passed as
2115 actual parameters for a dummy procedure. */
2116 if (arg->ts.type == BT_CHARACTER)
2117 nstr++;
2118 typelist = gfc_chainon_list (typelist, type);
2120 else
2122 if (sym->attr.subroutine)
2123 alternate_return = 1;
2127 /* Add hidden string length parameters. */
2128 while (nstr--)
2129 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2131 if (typelist)
2132 typelist = gfc_chainon_list (typelist, void_type_node);
2134 if (alternate_return)
2135 type = integer_type_node;
2136 else if (!sym->attr.function || gfc_return_by_reference (sym))
2137 type = void_type_node;
2138 else if (sym->attr.mixed_entry_master)
2139 type = gfc_get_mixed_entry_union (sym->ns);
2140 else if (gfc_option.flag_f2c
2141 && sym->ts.type == BT_REAL
2142 && sym->ts.kind == gfc_default_real_kind
2143 && !sym->attr.always_explicit)
2145 /* Special case: f2c calling conventions require that (scalar)
2146 default REAL functions return the C type double instead. f2c
2147 compatibility is only an issue with functions that don't
2148 require an explicit interface, as only these could be
2149 implemented in Fortran 77. */
2150 sym->ts.kind = gfc_default_double_kind;
2151 type = gfc_typenode_for_spec (&sym->ts);
2152 sym->ts.kind = gfc_default_real_kind;
2154 else if (sym->result && sym->result->attr.proc_pointer)
2155 /* Procedure pointer return values. */
2156 type = gfc_sym_type (sym->result);
2157 else
2158 type = gfc_sym_type (sym);
2160 type = build_function_type (type, typelist);
2162 return type;
2165 /* Language hooks for middle-end access to type nodes. */
2167 /* Return an integer type with BITS bits of precision,
2168 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2170 tree
2171 gfc_type_for_size (unsigned bits, int unsignedp)
2173 if (!unsignedp)
2175 int i;
2176 for (i = 0; i <= MAX_INT_KINDS; ++i)
2178 tree type = gfc_integer_types[i];
2179 if (type && bits == TYPE_PRECISION (type))
2180 return type;
2183 /* Handle TImode as a special case because it is used by some backends
2184 (e.g. ARM) even though it is not available for normal use. */
2185 #if HOST_BITS_PER_WIDE_INT >= 64
2186 if (bits == TYPE_PRECISION (intTI_type_node))
2187 return intTI_type_node;
2188 #endif
2190 else
2192 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2193 return unsigned_intQI_type_node;
2194 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2195 return unsigned_intHI_type_node;
2196 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2197 return unsigned_intSI_type_node;
2198 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2199 return unsigned_intDI_type_node;
2200 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2201 return unsigned_intTI_type_node;
2204 return NULL_TREE;
2207 /* Return a data type that has machine mode MODE. If the mode is an
2208 integer, then UNSIGNEDP selects between signed and unsigned types. */
2210 tree
2211 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2213 int i;
2214 tree *base;
2216 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2217 base = gfc_real_types;
2218 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2219 base = gfc_complex_types;
2220 else if (SCALAR_INT_MODE_P (mode))
2221 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2222 else if (VECTOR_MODE_P (mode))
2224 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2225 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2226 if (inner_type != NULL_TREE)
2227 return build_vector_type_for_mode (inner_type, mode);
2228 return NULL_TREE;
2230 else
2231 return NULL_TREE;
2233 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2235 tree type = base[i];
2236 if (type && mode == TYPE_MODE (type))
2237 return type;
2240 return NULL_TREE;
2243 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2244 in that case. */
2246 bool
2247 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2249 int rank, dim;
2250 bool indirect = false;
2251 tree etype, ptype, field, t, base_decl;
2252 tree data_off, offset_off, dim_off, dim_size, elem_size;
2253 tree lower_suboff, upper_suboff, stride_suboff;
2255 if (! GFC_DESCRIPTOR_TYPE_P (type))
2257 if (! POINTER_TYPE_P (type))
2258 return false;
2259 type = TREE_TYPE (type);
2260 if (! GFC_DESCRIPTOR_TYPE_P (type))
2261 return false;
2262 indirect = true;
2265 rank = GFC_TYPE_ARRAY_RANK (type);
2266 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2267 return false;
2269 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2270 gcc_assert (POINTER_TYPE_P (etype));
2271 etype = TREE_TYPE (etype);
2272 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2273 etype = TREE_TYPE (etype);
2274 /* Can't handle variable sized elements yet. */
2275 if (int_size_in_bytes (etype) <= 0)
2276 return false;
2277 /* Nor non-constant lower bounds in assumed shape arrays. */
2278 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2280 for (dim = 0; dim < rank; dim++)
2281 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2282 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2283 return false;
2286 memset (info, '\0', sizeof (*info));
2287 info->ndimensions = rank;
2288 info->element_type = etype;
2289 ptype = build_pointer_type (gfc_array_index_type);
2290 if (indirect)
2292 info->base_decl = build_decl (VAR_DECL, NULL_TREE,
2293 build_pointer_type (ptype));
2294 base_decl = build1 (INDIRECT_REF, ptype, info->base_decl);
2296 else
2297 info->base_decl = base_decl = build_decl (VAR_DECL, NULL_TREE, ptype);
2299 if (GFC_TYPE_ARRAY_SPAN (type))
2300 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2301 else
2302 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2303 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2304 data_off = byte_position (field);
2305 field = TREE_CHAIN (field);
2306 offset_off = byte_position (field);
2307 field = TREE_CHAIN (field);
2308 field = TREE_CHAIN (field);
2309 dim_off = byte_position (field);
2310 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2311 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2312 stride_suboff = byte_position (field);
2313 field = TREE_CHAIN (field);
2314 lower_suboff = byte_position (field);
2315 field = TREE_CHAIN (field);
2316 upper_suboff = byte_position (field);
2318 t = base_decl;
2319 if (!integer_zerop (data_off))
2320 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2321 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2322 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2323 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2324 info->allocated = build2 (NE_EXPR, boolean_type_node,
2325 info->data_location, null_pointer_node);
2326 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER)
2327 info->associated = build2 (NE_EXPR, boolean_type_node,
2328 info->data_location, null_pointer_node);
2330 for (dim = 0; dim < rank; dim++)
2332 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2333 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2334 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2335 info->dimen[dim].lower_bound = t;
2336 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2337 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2338 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2339 info->dimen[dim].upper_bound = t;
2340 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2342 /* Assumed shape arrays have known lower bounds. */
2343 info->dimen[dim].upper_bound
2344 = build2 (MINUS_EXPR, gfc_array_index_type,
2345 info->dimen[dim].upper_bound,
2346 info->dimen[dim].lower_bound);
2347 info->dimen[dim].lower_bound
2348 = fold_convert (gfc_array_index_type,
2349 GFC_TYPE_ARRAY_LBOUND (type, dim));
2350 info->dimen[dim].upper_bound
2351 = build2 (PLUS_EXPR, gfc_array_index_type,
2352 info->dimen[dim].lower_bound,
2353 info->dimen[dim].upper_bound);
2355 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2356 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2357 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2358 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2359 info->dimen[dim].stride = t;
2360 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2363 return true;
2366 #include "gt-fortran-trans-types.h"