* bitmap.c (bitmap_find_bit): Return early if we have the correct
[official-gcc.git] / libiberty / hashtab.c
blob7477c35c3bc0b93eb65f2dca76bbd73a681d2e3d
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
24 Elements in the table are generic pointers.
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
38 #include <sys/types.h>
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
48 #include <stdio.h>
50 #include "libiberty.h"
51 #include "hashtab.h"
53 /* This macro defines reserved value for empty table entry. */
55 #define EMPTY_ENTRY ((PTR) 0)
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
60 #define DELETED_ENTRY ((PTR) 1)
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static int htab_expand PARAMS ((htab_t));
66 static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
74 /* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
83 static const unsigned long primes[] = {
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
120 while (low != high)
122 const unsigned long *mid = low + (high - low) / 2;
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
129 /* If we've run out of primes, abort. */
130 if (n > *low)
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
136 return *low;
139 /* Returns a hash code for P. */
141 static hashval_t
142 hash_pointer (p)
143 const PTR p;
145 return (hashval_t) ((long)p >> 3);
148 /* Returns non-zero if P1 and P2 are equal. */
150 static int
151 eq_pointer (p1, p2)
152 const PTR p1;
153 const PTR p2;
155 return p1 == p2;
158 /* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
161 created hash table. Memory allocation must not fail. */
163 htab_t
164 htab_create (size, hash_f, eq_f, del_f)
165 size_t size;
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
170 htab_t result;
172 size = higher_prime_number (size);
173 result = (htab_t) xcalloc (1, sizeof (struct htab));
174 result->entries = (PTR *) xcalloc (size, sizeof (PTR));
175 result->size = size;
176 result->hash_f = hash_f;
177 result->eq_f = eq_f;
178 result->del_f = del_f;
179 result->return_allocation_failure = 0;
180 return result;
183 /* This function creates table with length slightly longer than given
184 source length. The created hash table is initiated as empty (all the
185 hash table entries are EMPTY_ENTRY). The function returns the created
186 hash table. Memory allocation may fail; it may return NULL. */
188 htab_t
189 htab_try_create (size, hash_f, eq_f, del_f)
190 size_t size;
191 htab_hash hash_f;
192 htab_eq eq_f;
193 htab_del del_f;
195 htab_t result;
197 size = higher_prime_number (size);
198 result = (htab_t) calloc (1, sizeof (struct htab));
199 if (result == NULL)
200 return NULL;
202 result->entries = (PTR *) calloc (size, sizeof (PTR));
203 if (result->entries == NULL)
205 free (result);
206 return NULL;
209 result->size = size;
210 result->hash_f = hash_f;
211 result->eq_f = eq_f;
212 result->del_f = del_f;
213 result->return_allocation_failure = 1;
214 return result;
217 /* This function frees all memory allocated for given hash table.
218 Naturally the hash table must already exist. */
220 void
221 htab_delete (htab)
222 htab_t htab;
224 int i;
226 if (htab->del_f)
227 for (i = htab->size - 1; i >= 0; i--)
228 if (htab->entries[i] != EMPTY_ENTRY
229 && htab->entries[i] != DELETED_ENTRY)
230 (*htab->del_f) (htab->entries[i]);
232 free (htab->entries);
233 free (htab);
236 /* This function clears all entries in the given hash table. */
238 void
239 htab_empty (htab)
240 htab_t htab;
242 int i;
244 if (htab->del_f)
245 for (i = htab->size - 1; i >= 0; i--)
246 if (htab->entries[i] != EMPTY_ENTRY
247 && htab->entries[i] != DELETED_ENTRY)
248 (*htab->del_f) (htab->entries[i]);
250 memset (htab->entries, 0, htab->size * sizeof (PTR));
253 /* Similar to htab_find_slot, but without several unwanted side effects:
254 - Does not call htab->eq_f when it finds an existing entry.
255 - Does not change the count of elements/searches/collisions in the
256 hash table.
257 This function also assumes there are no deleted entries in the table.
258 HASH is the hash value for the element to be inserted. */
260 static PTR *
261 find_empty_slot_for_expand (htab, hash)
262 htab_t htab;
263 hashval_t hash;
265 size_t size = htab->size;
266 unsigned int index = hash % size;
267 PTR *slot = htab->entries + index;
268 hashval_t hash2;
270 if (*slot == EMPTY_ENTRY)
271 return slot;
272 else if (*slot == DELETED_ENTRY)
273 abort ();
275 hash2 = 1 + hash % (size - 2);
276 for (;;)
278 index += hash2;
279 if (index >= size)
280 index -= size;
282 slot = htab->entries + index;
283 if (*slot == EMPTY_ENTRY)
284 return slot;
285 else if (*slot == DELETED_ENTRY)
286 abort ();
290 /* The following function changes size of memory allocated for the
291 entries and repeatedly inserts the table elements. The occupancy
292 of the table after the call will be about 50%. Naturally the hash
293 table must already exist. Remember also that the place of the
294 table entries is changed. If memory allocation failures are allowed,
295 this function will return zero, indicating that the table could not be
296 expanded. If all goes well, it will return a non-zero value. */
298 static int
299 htab_expand (htab)
300 htab_t htab;
302 PTR *oentries;
303 PTR *olimit;
304 PTR *p;
306 oentries = htab->entries;
307 olimit = oentries + htab->size;
309 htab->size = higher_prime_number (htab->size * 2);
311 if (htab->return_allocation_failure)
313 PTR *nentries = (PTR *) calloc (htab->size, sizeof (PTR *));
314 if (nentries == NULL)
315 return 0;
316 htab->entries = nentries;
318 else
319 htab->entries = (PTR *) xcalloc (htab->size, sizeof (PTR *));
321 htab->n_elements -= htab->n_deleted;
322 htab->n_deleted = 0;
324 p = oentries;
327 PTR x = *p;
329 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
331 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
333 *q = x;
336 p++;
338 while (p < olimit);
340 free (oentries);
341 return 1;
344 /* This function searches for a hash table entry equal to the given
345 element. It cannot be used to insert or delete an element. */
348 htab_find_with_hash (htab, element, hash)
349 htab_t htab;
350 const PTR element;
351 hashval_t hash;
353 unsigned int index;
354 hashval_t hash2;
355 size_t size;
356 PTR entry;
358 htab->searches++;
359 size = htab->size;
360 index = hash % size;
362 entry = htab->entries[index];
363 if (entry == EMPTY_ENTRY
364 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
365 return entry;
367 hash2 = 1 + hash % (size - 2);
369 for (;;)
371 htab->collisions++;
372 index += hash2;
373 if (index >= size)
374 index -= size;
376 entry = htab->entries[index];
377 if (entry == EMPTY_ENTRY
378 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
379 return entry;
383 /* Like htab_find_slot_with_hash, but compute the hash value from the
384 element. */
387 htab_find (htab, element)
388 htab_t htab;
389 const PTR element;
391 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
394 /* This function searches for a hash table slot containing an entry
395 equal to the given element. To delete an entry, call this with
396 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
397 after doing some checks). To insert an entry, call this with
398 INSERT = 1, then write the value you want into the returned slot.
399 When inserting an entry, NULL may be returned if memory allocation
400 fails. */
402 PTR *
403 htab_find_slot_with_hash (htab, element, hash, insert)
404 htab_t htab;
405 const PTR element;
406 hashval_t hash;
407 enum insert_option insert;
409 PTR *first_deleted_slot;
410 unsigned int index;
411 hashval_t hash2;
412 size_t size;
413 PTR entry;
415 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
416 && htab_expand (htab) == 0)
417 return NULL;
419 size = htab->size;
420 index = hash % size;
422 htab->searches++;
423 first_deleted_slot = NULL;
425 entry = htab->entries[index];
426 if (entry == EMPTY_ENTRY)
427 goto empty_entry;
428 else if (entry == DELETED_ENTRY)
429 first_deleted_slot = &htab->entries[index];
430 else if ((*htab->eq_f) (entry, element))
431 return &htab->entries[index];
433 hash2 = 1 + hash % (size - 2);
434 for (;;)
436 htab->collisions++;
437 index += hash2;
438 if (index >= size)
439 index -= size;
441 entry = htab->entries[index];
442 if (entry == EMPTY_ENTRY)
443 goto empty_entry;
444 else if (entry == DELETED_ENTRY)
446 if (!first_deleted_slot)
447 first_deleted_slot = &htab->entries[index];
449 else if ((*htab->eq_f) (entry, element))
450 return &htab->entries[index];
453 empty_entry:
454 if (insert == NO_INSERT)
455 return NULL;
457 htab->n_elements++;
459 if (first_deleted_slot)
461 *first_deleted_slot = EMPTY_ENTRY;
462 return first_deleted_slot;
465 return &htab->entries[index];
468 /* Like htab_find_slot_with_hash, but compute the hash value from the
469 element. */
471 PTR *
472 htab_find_slot (htab, element, insert)
473 htab_t htab;
474 const PTR element;
475 enum insert_option insert;
477 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
478 insert);
481 /* This function deletes an element with the given value from hash
482 table. If there is no matching element in the hash table, this
483 function does nothing. */
485 void
486 htab_remove_elt (htab, element)
487 htab_t htab;
488 PTR element;
490 PTR *slot;
492 slot = htab_find_slot (htab, element, NO_INSERT);
493 if (*slot == EMPTY_ENTRY)
494 return;
496 if (htab->del_f)
497 (*htab->del_f) (*slot);
499 *slot = DELETED_ENTRY;
500 htab->n_deleted++;
503 /* This function clears a specified slot in a hash table. It is
504 useful when you've already done the lookup and don't want to do it
505 again. */
507 void
508 htab_clear_slot (htab, slot)
509 htab_t htab;
510 PTR *slot;
512 if (slot < htab->entries || slot >= htab->entries + htab->size
513 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
514 abort ();
516 if (htab->del_f)
517 (*htab->del_f) (*slot);
519 *slot = DELETED_ENTRY;
520 htab->n_deleted++;
523 /* This function scans over the entire hash table calling
524 CALLBACK for each live entry. If CALLBACK returns false,
525 the iteration stops. INFO is passed as CALLBACK's second
526 argument. */
528 void
529 htab_traverse (htab, callback, info)
530 htab_t htab;
531 htab_trav callback;
532 PTR info;
534 PTR *slot = htab->entries;
535 PTR *limit = slot + htab->size;
539 PTR x = *slot;
541 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
542 if (!(*callback) (slot, info))
543 break;
545 while (++slot < limit);
548 /* Return the current size of given hash table. */
550 size_t
551 htab_size (htab)
552 htab_t htab;
554 return htab->size;
557 /* Return the current number of elements in given hash table. */
559 size_t
560 htab_elements (htab)
561 htab_t htab;
563 return htab->n_elements - htab->n_deleted;
566 /* Return the fraction of fixed collisions during all work with given
567 hash table. */
569 double
570 htab_collisions (htab)
571 htab_t htab;
573 if (htab->searches == 0)
574 return 0.0;
576 return (double) htab->collisions / (double) htab->searches;
579 /* Hash P as a null-terminated string.
581 Copied from gcc/hashtable.c. Zack had the following to say with respect
582 to applicability, though note that unlike hashtable.c, this hash table
583 implementation re-hashes rather than chain buckets.
585 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
586 From: Zack Weinberg <zackw@panix.com>
587 Date: Fri, 17 Aug 2001 02:15:56 -0400
589 I got it by extracting all the identifiers from all the source code
590 I had lying around in mid-1999, and testing many recurrences of
591 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
592 prime numbers or the appropriate identity. This was the best one.
593 I don't remember exactly what constituted "best", except I was
594 looking at bucket-length distributions mostly.
596 So it should be very good at hashing identifiers, but might not be
597 as good at arbitrary strings.
599 I'll add that it thoroughly trounces the hash functions recommended
600 for this use at http://burtleburtle.net/bob/hash/index.html, both
601 on speed and bucket distribution. I haven't tried it against the
602 function they just started using for Perl's hashes. */
604 hashval_t
605 htab_hash_string (p)
606 const PTR p;
608 const unsigned char *str = (const unsigned char *) p;
609 hashval_t r = 0;
610 unsigned char c;
612 while ((c = *str++) != 0)
613 r = r * 67 + c - 113;
615 return r;