* rtl.h (rtunion_def): Constify member `rtstr'.
[official-gcc.git] / gcc / expr.c
blob321abd798316f8e3fe0debaa65ab2fff26fd38ab
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000
3 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "machmode.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "obstack.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-flags.h"
35 #include "insn-codes.h"
36 #include "insn-config.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "recog.h"
40 #include "output.h"
41 #include "typeclass.h"
42 #include "defaults.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "tm_p.h"
47 /* Decide whether a function's arguments should be processed
48 from first to last or from last to first.
50 They should if the stack and args grow in opposite directions, but
51 only if we have push insns. */
53 #ifdef PUSH_ROUNDING
55 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
56 #define PUSH_ARGS_REVERSED /* If it's last to first */
57 #endif
59 #endif
61 #ifndef STACK_PUSH_CODE
62 #ifdef STACK_GROWS_DOWNWARD
63 #define STACK_PUSH_CODE PRE_DEC
64 #else
65 #define STACK_PUSH_CODE PRE_INC
66 #endif
67 #endif
69 /* Assume that case vectors are not pc-relative. */
70 #ifndef CASE_VECTOR_PC_RELATIVE
71 #define CASE_VECTOR_PC_RELATIVE 0
72 #endif
74 /* If this is nonzero, we do not bother generating VOLATILE
75 around volatile memory references, and we are willing to
76 output indirect addresses. If cse is to follow, we reject
77 indirect addresses so a useful potential cse is generated;
78 if it is used only once, instruction combination will produce
79 the same indirect address eventually. */
80 int cse_not_expected;
82 /* Nonzero to generate code for all the subroutines within an
83 expression before generating the upper levels of the expression.
84 Nowadays this is never zero. */
85 int do_preexpand_calls = 1;
87 /* Don't check memory usage, since code is being emitted to check a memory
88 usage. Used when current_function_check_memory_usage is true, to avoid
89 infinite recursion. */
90 static int in_check_memory_usage;
92 /* Chain of pending expressions for PLACEHOLDER_EXPR to replace. */
93 static tree placeholder_list = 0;
95 /* This structure is used by move_by_pieces to describe the move to
96 be performed. */
97 struct move_by_pieces
99 rtx to;
100 rtx to_addr;
101 int autinc_to;
102 int explicit_inc_to;
103 int to_struct;
104 int to_readonly;
105 rtx from;
106 rtx from_addr;
107 int autinc_from;
108 int explicit_inc_from;
109 int from_struct;
110 int from_readonly;
111 int len;
112 int offset;
113 int reverse;
116 /* This structure is used by clear_by_pieces to describe the clear to
117 be performed. */
119 struct clear_by_pieces
121 rtx to;
122 rtx to_addr;
123 int autinc_to;
124 int explicit_inc_to;
125 int to_struct;
126 int len;
127 int offset;
128 int reverse;
131 extern struct obstack permanent_obstack;
133 static rtx get_push_address PARAMS ((int));
135 static rtx enqueue_insn PARAMS ((rtx, rtx));
136 static int move_by_pieces_ninsns PARAMS ((unsigned int, unsigned int));
137 static void move_by_pieces_1 PARAMS ((rtx (*) (rtx, ...), enum machine_mode,
138 struct move_by_pieces *));
139 static void clear_by_pieces PARAMS ((rtx, int, unsigned int));
140 static void clear_by_pieces_1 PARAMS ((rtx (*) (rtx, ...),
141 enum machine_mode,
142 struct clear_by_pieces *));
143 static int is_zeros_p PARAMS ((tree));
144 static int mostly_zeros_p PARAMS ((tree));
145 static void store_constructor_field PARAMS ((rtx, int, int, enum machine_mode,
146 tree, tree, unsigned int, int));
147 static void store_constructor PARAMS ((tree, rtx, unsigned int, int, int));
148 static rtx store_field PARAMS ((rtx, int, int, enum machine_mode,
149 tree, enum machine_mode, int,
150 unsigned int, int, int));
151 static enum memory_use_mode
152 get_memory_usage_from_modifier PARAMS ((enum expand_modifier));
153 static tree save_noncopied_parts PARAMS ((tree, tree));
154 static tree init_noncopied_parts PARAMS ((tree, tree));
155 static int safe_from_p PARAMS ((rtx, tree, int));
156 static int fixed_type_p PARAMS ((tree));
157 static rtx var_rtx PARAMS ((tree));
158 static int readonly_fields_p PARAMS ((tree));
159 static rtx expand_expr_unaligned PARAMS ((tree, unsigned int *));
160 static rtx expand_increment PARAMS ((tree, int, int));
161 static void preexpand_calls PARAMS ((tree));
162 static void do_jump_by_parts_greater PARAMS ((tree, int, rtx, rtx));
163 static void do_jump_by_parts_equality PARAMS ((tree, rtx, rtx));
164 static void do_compare_and_jump PARAMS ((tree, enum rtx_code, enum rtx_code, rtx, rtx));
165 static rtx do_store_flag PARAMS ((tree, rtx, enum machine_mode, int));
167 /* Record for each mode whether we can move a register directly to or
168 from an object of that mode in memory. If we can't, we won't try
169 to use that mode directly when accessing a field of that mode. */
171 static char direct_load[NUM_MACHINE_MODES];
172 static char direct_store[NUM_MACHINE_MODES];
174 /* If a memory-to-memory move would take MOVE_RATIO or more simple
175 move-instruction sequences, we will do a movstr or libcall instead. */
177 #ifndef MOVE_RATIO
178 #if defined (HAVE_movstrqi) || defined (HAVE_movstrhi) || defined (HAVE_movstrsi) || defined (HAVE_movstrdi) || defined (HAVE_movstrti)
179 #define MOVE_RATIO 2
180 #else
181 /* If we are optimizing for space (-Os), cut down the default move ratio */
182 #define MOVE_RATIO (optimize_size ? 3 : 15)
183 #endif
184 #endif
186 /* This macro is used to determine whether move_by_pieces should be called
187 to perform a structure copy. */
188 #ifndef MOVE_BY_PIECES_P
189 #define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns \
190 (SIZE, ALIGN) < MOVE_RATIO)
191 #endif
193 /* This array records the insn_code of insns to perform block moves. */
194 enum insn_code movstr_optab[NUM_MACHINE_MODES];
196 /* This array records the insn_code of insns to perform block clears. */
197 enum insn_code clrstr_optab[NUM_MACHINE_MODES];
199 /* SLOW_UNALIGNED_ACCESS is non-zero if unaligned accesses are very slow. */
201 #ifndef SLOW_UNALIGNED_ACCESS
202 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
203 #endif
205 /* This is run once per compilation to set up which modes can be used
206 directly in memory and to initialize the block move optab. */
208 void
209 init_expr_once ()
211 rtx insn, pat;
212 enum machine_mode mode;
213 int num_clobbers;
214 rtx mem, mem1;
215 char *free_point;
217 start_sequence ();
219 /* Since we are on the permanent obstack, we must be sure we save this
220 spot AFTER we call start_sequence, since it will reuse the rtl it
221 makes. */
222 free_point = (char *) oballoc (0);
224 /* Try indexing by frame ptr and try by stack ptr.
225 It is known that on the Convex the stack ptr isn't a valid index.
226 With luck, one or the other is valid on any machine. */
227 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
228 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
230 insn = emit_insn (gen_rtx_SET (0, NULL_RTX, NULL_RTX));
231 pat = PATTERN (insn);
233 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
234 mode = (enum machine_mode) ((int) mode + 1))
236 int regno;
237 rtx reg;
239 direct_load[(int) mode] = direct_store[(int) mode] = 0;
240 PUT_MODE (mem, mode);
241 PUT_MODE (mem1, mode);
243 /* See if there is some register that can be used in this mode and
244 directly loaded or stored from memory. */
246 if (mode != VOIDmode && mode != BLKmode)
247 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
248 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
249 regno++)
251 if (! HARD_REGNO_MODE_OK (regno, mode))
252 continue;
254 reg = gen_rtx_REG (mode, regno);
256 SET_SRC (pat) = mem;
257 SET_DEST (pat) = reg;
258 if (recog (pat, insn, &num_clobbers) >= 0)
259 direct_load[(int) mode] = 1;
261 SET_SRC (pat) = mem1;
262 SET_DEST (pat) = reg;
263 if (recog (pat, insn, &num_clobbers) >= 0)
264 direct_load[(int) mode] = 1;
266 SET_SRC (pat) = reg;
267 SET_DEST (pat) = mem;
268 if (recog (pat, insn, &num_clobbers) >= 0)
269 direct_store[(int) mode] = 1;
271 SET_SRC (pat) = reg;
272 SET_DEST (pat) = mem1;
273 if (recog (pat, insn, &num_clobbers) >= 0)
274 direct_store[(int) mode] = 1;
278 end_sequence ();
279 obfree (free_point);
282 /* This is run at the start of compiling a function. */
284 void
285 init_expr ()
287 cfun->expr = (struct expr_status *) xmalloc (sizeof (struct expr_status));
289 pending_chain = 0;
290 pending_stack_adjust = 0;
291 arg_space_so_far = 0;
292 inhibit_defer_pop = 0;
293 saveregs_value = 0;
294 apply_args_value = 0;
295 forced_labels = 0;
298 void
299 mark_expr_status (p)
300 struct expr_status *p;
302 if (p == NULL)
303 return;
305 ggc_mark_rtx (p->x_saveregs_value);
306 ggc_mark_rtx (p->x_apply_args_value);
307 ggc_mark_rtx (p->x_forced_labels);
310 void
311 free_expr_status (f)
312 struct function *f;
314 free (f->expr);
315 f->expr = NULL;
318 /* Small sanity check that the queue is empty at the end of a function. */
319 void
320 finish_expr_for_function ()
322 if (pending_chain)
323 abort ();
326 /* Manage the queue of increment instructions to be output
327 for POSTINCREMENT_EXPR expressions, etc. */
329 /* Queue up to increment (or change) VAR later. BODY says how:
330 BODY should be the same thing you would pass to emit_insn
331 to increment right away. It will go to emit_insn later on.
333 The value is a QUEUED expression to be used in place of VAR
334 where you want to guarantee the pre-incrementation value of VAR. */
336 static rtx
337 enqueue_insn (var, body)
338 rtx var, body;
340 pending_chain = gen_rtx_QUEUED (GET_MODE (var), var, NULL_RTX, NULL_RTX,
341 body, pending_chain);
342 return pending_chain;
345 /* Use protect_from_queue to convert a QUEUED expression
346 into something that you can put immediately into an instruction.
347 If the queued incrementation has not happened yet,
348 protect_from_queue returns the variable itself.
349 If the incrementation has happened, protect_from_queue returns a temp
350 that contains a copy of the old value of the variable.
352 Any time an rtx which might possibly be a QUEUED is to be put
353 into an instruction, it must be passed through protect_from_queue first.
354 QUEUED expressions are not meaningful in instructions.
356 Do not pass a value through protect_from_queue and then hold
357 on to it for a while before putting it in an instruction!
358 If the queue is flushed in between, incorrect code will result. */
361 protect_from_queue (x, modify)
362 register rtx x;
363 int modify;
365 register RTX_CODE code = GET_CODE (x);
367 #if 0 /* A QUEUED can hang around after the queue is forced out. */
368 /* Shortcut for most common case. */
369 if (pending_chain == 0)
370 return x;
371 #endif
373 if (code != QUEUED)
375 /* A special hack for read access to (MEM (QUEUED ...)) to facilitate
376 use of autoincrement. Make a copy of the contents of the memory
377 location rather than a copy of the address, but not if the value is
378 of mode BLKmode. Don't modify X in place since it might be
379 shared. */
380 if (code == MEM && GET_MODE (x) != BLKmode
381 && GET_CODE (XEXP (x, 0)) == QUEUED && !modify)
383 register rtx y = XEXP (x, 0);
384 register rtx new = gen_rtx_MEM (GET_MODE (x), QUEUED_VAR (y));
386 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
387 MEM_COPY_ATTRIBUTES (new, x);
388 MEM_ALIAS_SET (new) = MEM_ALIAS_SET (x);
390 if (QUEUED_INSN (y))
392 register rtx temp = gen_reg_rtx (GET_MODE (new));
393 emit_insn_before (gen_move_insn (temp, new),
394 QUEUED_INSN (y));
395 return temp;
397 return new;
399 /* Otherwise, recursively protect the subexpressions of all
400 the kinds of rtx's that can contain a QUEUED. */
401 if (code == MEM)
403 rtx tem = protect_from_queue (XEXP (x, 0), 0);
404 if (tem != XEXP (x, 0))
406 x = copy_rtx (x);
407 XEXP (x, 0) = tem;
410 else if (code == PLUS || code == MULT)
412 rtx new0 = protect_from_queue (XEXP (x, 0), 0);
413 rtx new1 = protect_from_queue (XEXP (x, 1), 0);
414 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
416 x = copy_rtx (x);
417 XEXP (x, 0) = new0;
418 XEXP (x, 1) = new1;
421 return x;
423 /* If the increment has not happened, use the variable itself. */
424 if (QUEUED_INSN (x) == 0)
425 return QUEUED_VAR (x);
426 /* If the increment has happened and a pre-increment copy exists,
427 use that copy. */
428 if (QUEUED_COPY (x) != 0)
429 return QUEUED_COPY (x);
430 /* The increment has happened but we haven't set up a pre-increment copy.
431 Set one up now, and use it. */
432 QUEUED_COPY (x) = gen_reg_rtx (GET_MODE (QUEUED_VAR (x)));
433 emit_insn_before (gen_move_insn (QUEUED_COPY (x), QUEUED_VAR (x)),
434 QUEUED_INSN (x));
435 return QUEUED_COPY (x);
438 /* Return nonzero if X contains a QUEUED expression:
439 if it contains anything that will be altered by a queued increment.
440 We handle only combinations of MEM, PLUS, MINUS and MULT operators
441 since memory addresses generally contain only those. */
444 queued_subexp_p (x)
445 rtx x;
447 register enum rtx_code code = GET_CODE (x);
448 switch (code)
450 case QUEUED:
451 return 1;
452 case MEM:
453 return queued_subexp_p (XEXP (x, 0));
454 case MULT:
455 case PLUS:
456 case MINUS:
457 return (queued_subexp_p (XEXP (x, 0))
458 || queued_subexp_p (XEXP (x, 1)));
459 default:
460 return 0;
464 /* Perform all the pending incrementations. */
466 void
467 emit_queue ()
469 register rtx p;
470 while ((p = pending_chain))
472 rtx body = QUEUED_BODY (p);
474 if (GET_CODE (body) == SEQUENCE)
476 QUEUED_INSN (p) = XVECEXP (QUEUED_BODY (p), 0, 0);
477 emit_insn (QUEUED_BODY (p));
479 else
480 QUEUED_INSN (p) = emit_insn (QUEUED_BODY (p));
481 pending_chain = QUEUED_NEXT (p);
485 /* Copy data from FROM to TO, where the machine modes are not the same.
486 Both modes may be integer, or both may be floating.
487 UNSIGNEDP should be nonzero if FROM is an unsigned type.
488 This causes zero-extension instead of sign-extension. */
490 void
491 convert_move (to, from, unsignedp)
492 register rtx to, from;
493 int unsignedp;
495 enum machine_mode to_mode = GET_MODE (to);
496 enum machine_mode from_mode = GET_MODE (from);
497 int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
498 int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
499 enum insn_code code;
500 rtx libcall;
502 /* rtx code for making an equivalent value. */
503 enum rtx_code equiv_code = (unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
505 to = protect_from_queue (to, 1);
506 from = protect_from_queue (from, 0);
508 if (to_real != from_real)
509 abort ();
511 /* If FROM is a SUBREG that indicates that we have already done at least
512 the required extension, strip it. We don't handle such SUBREGs as
513 TO here. */
515 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
516 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
517 >= GET_MODE_SIZE (to_mode))
518 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
519 from = gen_lowpart (to_mode, from), from_mode = to_mode;
521 if (GET_CODE (to) == SUBREG && SUBREG_PROMOTED_VAR_P (to))
522 abort ();
524 if (to_mode == from_mode
525 || (from_mode == VOIDmode && CONSTANT_P (from)))
527 emit_move_insn (to, from);
528 return;
531 if (to_real)
533 rtx value;
535 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode))
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, 0))
539 != CODE_FOR_nothing)
541 emit_unop_insn (code, to, from, UNKNOWN);
542 return;
546 #ifdef HAVE_trunchfqf2
547 if (HAVE_trunchfqf2 && from_mode == HFmode && to_mode == QFmode)
549 emit_unop_insn (CODE_FOR_trunchfqf2, to, from, UNKNOWN);
550 return;
552 #endif
553 #ifdef HAVE_trunctqfqf2
554 if (HAVE_trunctqfqf2 && from_mode == TQFmode && to_mode == QFmode)
556 emit_unop_insn (CODE_FOR_trunctqfqf2, to, from, UNKNOWN);
557 return;
559 #endif
560 #ifdef HAVE_truncsfqf2
561 if (HAVE_truncsfqf2 && from_mode == SFmode && to_mode == QFmode)
563 emit_unop_insn (CODE_FOR_truncsfqf2, to, from, UNKNOWN);
564 return;
566 #endif
567 #ifdef HAVE_truncdfqf2
568 if (HAVE_truncdfqf2 && from_mode == DFmode && to_mode == QFmode)
570 emit_unop_insn (CODE_FOR_truncdfqf2, to, from, UNKNOWN);
571 return;
573 #endif
574 #ifdef HAVE_truncxfqf2
575 if (HAVE_truncxfqf2 && from_mode == XFmode && to_mode == QFmode)
577 emit_unop_insn (CODE_FOR_truncxfqf2, to, from, UNKNOWN);
578 return;
580 #endif
581 #ifdef HAVE_trunctfqf2
582 if (HAVE_trunctfqf2 && from_mode == TFmode && to_mode == QFmode)
584 emit_unop_insn (CODE_FOR_trunctfqf2, to, from, UNKNOWN);
585 return;
587 #endif
589 #ifdef HAVE_trunctqfhf2
590 if (HAVE_trunctqfhf2 && from_mode == TQFmode && to_mode == HFmode)
592 emit_unop_insn (CODE_FOR_trunctqfhf2, to, from, UNKNOWN);
593 return;
595 #endif
596 #ifdef HAVE_truncsfhf2
597 if (HAVE_truncsfhf2 && from_mode == SFmode && to_mode == HFmode)
599 emit_unop_insn (CODE_FOR_truncsfhf2, to, from, UNKNOWN);
600 return;
602 #endif
603 #ifdef HAVE_truncdfhf2
604 if (HAVE_truncdfhf2 && from_mode == DFmode && to_mode == HFmode)
606 emit_unop_insn (CODE_FOR_truncdfhf2, to, from, UNKNOWN);
607 return;
609 #endif
610 #ifdef HAVE_truncxfhf2
611 if (HAVE_truncxfhf2 && from_mode == XFmode && to_mode == HFmode)
613 emit_unop_insn (CODE_FOR_truncxfhf2, to, from, UNKNOWN);
614 return;
616 #endif
617 #ifdef HAVE_trunctfhf2
618 if (HAVE_trunctfhf2 && from_mode == TFmode && to_mode == HFmode)
620 emit_unop_insn (CODE_FOR_trunctfhf2, to, from, UNKNOWN);
621 return;
623 #endif
625 #ifdef HAVE_truncsftqf2
626 if (HAVE_truncsftqf2 && from_mode == SFmode && to_mode == TQFmode)
628 emit_unop_insn (CODE_FOR_truncsftqf2, to, from, UNKNOWN);
629 return;
631 #endif
632 #ifdef HAVE_truncdftqf2
633 if (HAVE_truncdftqf2 && from_mode == DFmode && to_mode == TQFmode)
635 emit_unop_insn (CODE_FOR_truncdftqf2, to, from, UNKNOWN);
636 return;
638 #endif
639 #ifdef HAVE_truncxftqf2
640 if (HAVE_truncxftqf2 && from_mode == XFmode && to_mode == TQFmode)
642 emit_unop_insn (CODE_FOR_truncxftqf2, to, from, UNKNOWN);
643 return;
645 #endif
646 #ifdef HAVE_trunctftqf2
647 if (HAVE_trunctftqf2 && from_mode == TFmode && to_mode == TQFmode)
649 emit_unop_insn (CODE_FOR_trunctftqf2, to, from, UNKNOWN);
650 return;
652 #endif
654 #ifdef HAVE_truncdfsf2
655 if (HAVE_truncdfsf2 && from_mode == DFmode && to_mode == SFmode)
657 emit_unop_insn (CODE_FOR_truncdfsf2, to, from, UNKNOWN);
658 return;
660 #endif
661 #ifdef HAVE_truncxfsf2
662 if (HAVE_truncxfsf2 && from_mode == XFmode && to_mode == SFmode)
664 emit_unop_insn (CODE_FOR_truncxfsf2, to, from, UNKNOWN);
665 return;
667 #endif
668 #ifdef HAVE_trunctfsf2
669 if (HAVE_trunctfsf2 && from_mode == TFmode && to_mode == SFmode)
671 emit_unop_insn (CODE_FOR_trunctfsf2, to, from, UNKNOWN);
672 return;
674 #endif
675 #ifdef HAVE_truncxfdf2
676 if (HAVE_truncxfdf2 && from_mode == XFmode && to_mode == DFmode)
678 emit_unop_insn (CODE_FOR_truncxfdf2, to, from, UNKNOWN);
679 return;
681 #endif
682 #ifdef HAVE_trunctfdf2
683 if (HAVE_trunctfdf2 && from_mode == TFmode && to_mode == DFmode)
685 emit_unop_insn (CODE_FOR_trunctfdf2, to, from, UNKNOWN);
686 return;
688 #endif
690 libcall = (rtx) 0;
691 switch (from_mode)
693 case SFmode:
694 switch (to_mode)
696 case DFmode:
697 libcall = extendsfdf2_libfunc;
698 break;
700 case XFmode:
701 libcall = extendsfxf2_libfunc;
702 break;
704 case TFmode:
705 libcall = extendsftf2_libfunc;
706 break;
708 default:
709 break;
711 break;
713 case DFmode:
714 switch (to_mode)
716 case SFmode:
717 libcall = truncdfsf2_libfunc;
718 break;
720 case XFmode:
721 libcall = extenddfxf2_libfunc;
722 break;
724 case TFmode:
725 libcall = extenddftf2_libfunc;
726 break;
728 default:
729 break;
731 break;
733 case XFmode:
734 switch (to_mode)
736 case SFmode:
737 libcall = truncxfsf2_libfunc;
738 break;
740 case DFmode:
741 libcall = truncxfdf2_libfunc;
742 break;
744 default:
745 break;
747 break;
749 case TFmode:
750 switch (to_mode)
752 case SFmode:
753 libcall = trunctfsf2_libfunc;
754 break;
756 case DFmode:
757 libcall = trunctfdf2_libfunc;
758 break;
760 default:
761 break;
763 break;
765 default:
766 break;
769 if (libcall == (rtx) 0)
770 /* This conversion is not implemented yet. */
771 abort ();
773 value = emit_library_call_value (libcall, NULL_RTX, 1, to_mode,
774 1, from, from_mode);
775 emit_move_insn (to, value);
776 return;
779 /* Now both modes are integers. */
781 /* Handle expanding beyond a word. */
782 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
783 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
785 rtx insns;
786 rtx lowpart;
787 rtx fill_value;
788 rtx lowfrom;
789 int i;
790 enum machine_mode lowpart_mode;
791 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
793 /* Try converting directly if the insn is supported. */
794 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
795 != CODE_FOR_nothing)
797 /* If FROM is a SUBREG, put it into a register. Do this
798 so that we always generate the same set of insns for
799 better cse'ing; if an intermediate assignment occurred,
800 we won't be doing the operation directly on the SUBREG. */
801 if (optimize > 0 && GET_CODE (from) == SUBREG)
802 from = force_reg (from_mode, from);
803 emit_unop_insn (code, to, from, equiv_code);
804 return;
806 /* Next, try converting via full word. */
807 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
808 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
809 != CODE_FOR_nothing))
811 if (GET_CODE (to) == REG)
812 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
813 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
814 emit_unop_insn (code, to,
815 gen_lowpart (word_mode, to), equiv_code);
816 return;
819 /* No special multiword conversion insn; do it by hand. */
820 start_sequence ();
822 /* Since we will turn this into a no conflict block, we must ensure
823 that the source does not overlap the target. */
825 if (reg_overlap_mentioned_p (to, from))
826 from = force_reg (from_mode, from);
828 /* Get a copy of FROM widened to a word, if necessary. */
829 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
830 lowpart_mode = word_mode;
831 else
832 lowpart_mode = from_mode;
834 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
836 lowpart = gen_lowpart (lowpart_mode, to);
837 emit_move_insn (lowpart, lowfrom);
839 /* Compute the value to put in each remaining word. */
840 if (unsignedp)
841 fill_value = const0_rtx;
842 else
844 #ifdef HAVE_slt
845 if (HAVE_slt
846 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
847 && STORE_FLAG_VALUE == -1)
849 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
850 lowpart_mode, 0, 0);
851 fill_value = gen_reg_rtx (word_mode);
852 emit_insn (gen_slt (fill_value));
854 else
855 #endif
857 fill_value
858 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
859 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
860 NULL_RTX, 0);
861 fill_value = convert_to_mode (word_mode, fill_value, 1);
865 /* Fill the remaining words. */
866 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
868 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
869 rtx subword = operand_subword (to, index, 1, to_mode);
871 if (subword == 0)
872 abort ();
874 if (fill_value != subword)
875 emit_move_insn (subword, fill_value);
878 insns = get_insns ();
879 end_sequence ();
881 emit_no_conflict_block (insns, to, from, NULL_RTX,
882 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
883 return;
886 /* Truncating multi-word to a word or less. */
887 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
888 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
890 if (!((GET_CODE (from) == MEM
891 && ! MEM_VOLATILE_P (from)
892 && direct_load[(int) to_mode]
893 && ! mode_dependent_address_p (XEXP (from, 0)))
894 || GET_CODE (from) == REG
895 || GET_CODE (from) == SUBREG))
896 from = force_reg (from_mode, from);
897 convert_move (to, gen_lowpart (word_mode, from), 0);
898 return;
901 /* Handle pointer conversion */ /* SPEE 900220 */
902 if (to_mode == PQImode)
904 if (from_mode != QImode)
905 from = convert_to_mode (QImode, from, unsignedp);
907 #ifdef HAVE_truncqipqi2
908 if (HAVE_truncqipqi2)
910 emit_unop_insn (CODE_FOR_truncqipqi2, to, from, UNKNOWN);
911 return;
913 #endif /* HAVE_truncqipqi2 */
914 abort ();
917 if (from_mode == PQImode)
919 if (to_mode != QImode)
921 from = convert_to_mode (QImode, from, unsignedp);
922 from_mode = QImode;
924 else
926 #ifdef HAVE_extendpqiqi2
927 if (HAVE_extendpqiqi2)
929 emit_unop_insn (CODE_FOR_extendpqiqi2, to, from, UNKNOWN);
930 return;
932 #endif /* HAVE_extendpqiqi2 */
933 abort ();
937 if (to_mode == PSImode)
939 if (from_mode != SImode)
940 from = convert_to_mode (SImode, from, unsignedp);
942 #ifdef HAVE_truncsipsi2
943 if (HAVE_truncsipsi2)
945 emit_unop_insn (CODE_FOR_truncsipsi2, to, from, UNKNOWN);
946 return;
948 #endif /* HAVE_truncsipsi2 */
949 abort ();
952 if (from_mode == PSImode)
954 if (to_mode != SImode)
956 from = convert_to_mode (SImode, from, unsignedp);
957 from_mode = SImode;
959 else
961 #ifdef HAVE_extendpsisi2
962 if (HAVE_extendpsisi2)
964 emit_unop_insn (CODE_FOR_extendpsisi2, to, from, UNKNOWN);
965 return;
967 #endif /* HAVE_extendpsisi2 */
968 abort ();
972 if (to_mode == PDImode)
974 if (from_mode != DImode)
975 from = convert_to_mode (DImode, from, unsignedp);
977 #ifdef HAVE_truncdipdi2
978 if (HAVE_truncdipdi2)
980 emit_unop_insn (CODE_FOR_truncdipdi2, to, from, UNKNOWN);
981 return;
983 #endif /* HAVE_truncdipdi2 */
984 abort ();
987 if (from_mode == PDImode)
989 if (to_mode != DImode)
991 from = convert_to_mode (DImode, from, unsignedp);
992 from_mode = DImode;
994 else
996 #ifdef HAVE_extendpdidi2
997 if (HAVE_extendpdidi2)
999 emit_unop_insn (CODE_FOR_extendpdidi2, to, from, UNKNOWN);
1000 return;
1002 #endif /* HAVE_extendpdidi2 */
1003 abort ();
1007 /* Now follow all the conversions between integers
1008 no more than a word long. */
1010 /* For truncation, usually we can just refer to FROM in a narrower mode. */
1011 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
1012 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
1013 GET_MODE_BITSIZE (from_mode)))
1015 if (!((GET_CODE (from) == MEM
1016 && ! MEM_VOLATILE_P (from)
1017 && direct_load[(int) to_mode]
1018 && ! mode_dependent_address_p (XEXP (from, 0)))
1019 || GET_CODE (from) == REG
1020 || GET_CODE (from) == SUBREG))
1021 from = force_reg (from_mode, from);
1022 if (GET_CODE (from) == REG && REGNO (from) < FIRST_PSEUDO_REGISTER
1023 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
1024 from = copy_to_reg (from);
1025 emit_move_insn (to, gen_lowpart (to_mode, from));
1026 return;
1029 /* Handle extension. */
1030 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
1032 /* Convert directly if that works. */
1033 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
1034 != CODE_FOR_nothing)
1036 emit_unop_insn (code, to, from, equiv_code);
1037 return;
1039 else
1041 enum machine_mode intermediate;
1042 rtx tmp;
1043 tree shift_amount;
1045 /* Search for a mode to convert via. */
1046 for (intermediate = from_mode; intermediate != VOIDmode;
1047 intermediate = GET_MODE_WIDER_MODE (intermediate))
1048 if (((can_extend_p (to_mode, intermediate, unsignedp)
1049 != CODE_FOR_nothing)
1050 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
1051 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
1052 GET_MODE_BITSIZE (intermediate))))
1053 && (can_extend_p (intermediate, from_mode, unsignedp)
1054 != CODE_FOR_nothing))
1056 convert_move (to, convert_to_mode (intermediate, from,
1057 unsignedp), unsignedp);
1058 return;
1061 /* No suitable intermediate mode.
1062 Generate what we need with shifts. */
1063 shift_amount = build_int_2 (GET_MODE_BITSIZE (to_mode)
1064 - GET_MODE_BITSIZE (from_mode), 0);
1065 from = gen_lowpart (to_mode, force_reg (from_mode, from));
1066 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
1067 to, unsignedp);
1068 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
1069 to, unsignedp);
1070 if (tmp != to)
1071 emit_move_insn (to, tmp);
1072 return;
1076 /* Support special truncate insns for certain modes. */
1078 if (from_mode == DImode && to_mode == SImode)
1080 #ifdef HAVE_truncdisi2
1081 if (HAVE_truncdisi2)
1083 emit_unop_insn (CODE_FOR_truncdisi2, to, from, UNKNOWN);
1084 return;
1086 #endif
1087 convert_move (to, force_reg (from_mode, from), unsignedp);
1088 return;
1091 if (from_mode == DImode && to_mode == HImode)
1093 #ifdef HAVE_truncdihi2
1094 if (HAVE_truncdihi2)
1096 emit_unop_insn (CODE_FOR_truncdihi2, to, from, UNKNOWN);
1097 return;
1099 #endif
1100 convert_move (to, force_reg (from_mode, from), unsignedp);
1101 return;
1104 if (from_mode == DImode && to_mode == QImode)
1106 #ifdef HAVE_truncdiqi2
1107 if (HAVE_truncdiqi2)
1109 emit_unop_insn (CODE_FOR_truncdiqi2, to, from, UNKNOWN);
1110 return;
1112 #endif
1113 convert_move (to, force_reg (from_mode, from), unsignedp);
1114 return;
1117 if (from_mode == SImode && to_mode == HImode)
1119 #ifdef HAVE_truncsihi2
1120 if (HAVE_truncsihi2)
1122 emit_unop_insn (CODE_FOR_truncsihi2, to, from, UNKNOWN);
1123 return;
1125 #endif
1126 convert_move (to, force_reg (from_mode, from), unsignedp);
1127 return;
1130 if (from_mode == SImode && to_mode == QImode)
1132 #ifdef HAVE_truncsiqi2
1133 if (HAVE_truncsiqi2)
1135 emit_unop_insn (CODE_FOR_truncsiqi2, to, from, UNKNOWN);
1136 return;
1138 #endif
1139 convert_move (to, force_reg (from_mode, from), unsignedp);
1140 return;
1143 if (from_mode == HImode && to_mode == QImode)
1145 #ifdef HAVE_trunchiqi2
1146 if (HAVE_trunchiqi2)
1148 emit_unop_insn (CODE_FOR_trunchiqi2, to, from, UNKNOWN);
1149 return;
1151 #endif
1152 convert_move (to, force_reg (from_mode, from), unsignedp);
1153 return;
1156 if (from_mode == TImode && to_mode == DImode)
1158 #ifdef HAVE_trunctidi2
1159 if (HAVE_trunctidi2)
1161 emit_unop_insn (CODE_FOR_trunctidi2, to, from, UNKNOWN);
1162 return;
1164 #endif
1165 convert_move (to, force_reg (from_mode, from), unsignedp);
1166 return;
1169 if (from_mode == TImode && to_mode == SImode)
1171 #ifdef HAVE_trunctisi2
1172 if (HAVE_trunctisi2)
1174 emit_unop_insn (CODE_FOR_trunctisi2, to, from, UNKNOWN);
1175 return;
1177 #endif
1178 convert_move (to, force_reg (from_mode, from), unsignedp);
1179 return;
1182 if (from_mode == TImode && to_mode == HImode)
1184 #ifdef HAVE_trunctihi2
1185 if (HAVE_trunctihi2)
1187 emit_unop_insn (CODE_FOR_trunctihi2, to, from, UNKNOWN);
1188 return;
1190 #endif
1191 convert_move (to, force_reg (from_mode, from), unsignedp);
1192 return;
1195 if (from_mode == TImode && to_mode == QImode)
1197 #ifdef HAVE_trunctiqi2
1198 if (HAVE_trunctiqi2)
1200 emit_unop_insn (CODE_FOR_trunctiqi2, to, from, UNKNOWN);
1201 return;
1203 #endif
1204 convert_move (to, force_reg (from_mode, from), unsignedp);
1205 return;
1208 /* Handle truncation of volatile memrefs, and so on;
1209 the things that couldn't be truncated directly,
1210 and for which there was no special instruction. */
1211 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
1213 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
1214 emit_move_insn (to, temp);
1215 return;
1218 /* Mode combination is not recognized. */
1219 abort ();
1222 /* Return an rtx for a value that would result
1223 from converting X to mode MODE.
1224 Both X and MODE may be floating, or both integer.
1225 UNSIGNEDP is nonzero if X is an unsigned value.
1226 This can be done by referring to a part of X in place
1227 or by copying to a new temporary with conversion.
1229 This function *must not* call protect_from_queue
1230 except when putting X into an insn (in which case convert_move does it). */
1233 convert_to_mode (mode, x, unsignedp)
1234 enum machine_mode mode;
1235 rtx x;
1236 int unsignedp;
1238 return convert_modes (mode, VOIDmode, x, unsignedp);
1241 /* Return an rtx for a value that would result
1242 from converting X from mode OLDMODE to mode MODE.
1243 Both modes may be floating, or both integer.
1244 UNSIGNEDP is nonzero if X is an unsigned value.
1246 This can be done by referring to a part of X in place
1247 or by copying to a new temporary with conversion.
1249 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.
1251 This function *must not* call protect_from_queue
1252 except when putting X into an insn (in which case convert_move does it). */
1255 convert_modes (mode, oldmode, x, unsignedp)
1256 enum machine_mode mode, oldmode;
1257 rtx x;
1258 int unsignedp;
1260 register rtx temp;
1262 /* If FROM is a SUBREG that indicates that we have already done at least
1263 the required extension, strip it. */
1265 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
1266 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
1267 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
1268 x = gen_lowpart (mode, x);
1270 if (GET_MODE (x) != VOIDmode)
1271 oldmode = GET_MODE (x);
1273 if (mode == oldmode)
1274 return x;
1276 /* There is one case that we must handle specially: If we are converting
1277 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
1278 we are to interpret the constant as unsigned, gen_lowpart will do
1279 the wrong if the constant appears negative. What we want to do is
1280 make the high-order word of the constant zero, not all ones. */
1282 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
1283 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
1284 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
1286 HOST_WIDE_INT val = INTVAL (x);
1288 if (oldmode != VOIDmode
1289 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
1291 int width = GET_MODE_BITSIZE (oldmode);
1293 /* We need to zero extend VAL. */
1294 val &= ((HOST_WIDE_INT) 1 << width) - 1;
1297 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
1300 /* We can do this with a gen_lowpart if both desired and current modes
1301 are integer, and this is either a constant integer, a register, or a
1302 non-volatile MEM. Except for the constant case where MODE is no
1303 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
1305 if ((GET_CODE (x) == CONST_INT
1306 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1307 || (GET_MODE_CLASS (mode) == MODE_INT
1308 && GET_MODE_CLASS (oldmode) == MODE_INT
1309 && (GET_CODE (x) == CONST_DOUBLE
1310 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
1311 && ((GET_CODE (x) == MEM && ! MEM_VOLATILE_P (x)
1312 && direct_load[(int) mode])
1313 || (GET_CODE (x) == REG
1314 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1315 GET_MODE_BITSIZE (GET_MODE (x)))))))))
1317 /* ?? If we don't know OLDMODE, we have to assume here that
1318 X does not need sign- or zero-extension. This may not be
1319 the case, but it's the best we can do. */
1320 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
1321 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
1323 HOST_WIDE_INT val = INTVAL (x);
1324 int width = GET_MODE_BITSIZE (oldmode);
1326 /* We must sign or zero-extend in this case. Start by
1327 zero-extending, then sign extend if we need to. */
1328 val &= ((HOST_WIDE_INT) 1 << width) - 1;
1329 if (! unsignedp
1330 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
1331 val |= (HOST_WIDE_INT) (-1) << width;
1333 return GEN_INT (val);
1336 return gen_lowpart (mode, x);
1339 temp = gen_reg_rtx (mode);
1340 convert_move (temp, x, unsignedp);
1341 return temp;
1345 /* This macro is used to determine what the largest unit size that
1346 move_by_pieces can use is. */
1348 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1349 move efficiently, as opposed to MOVE_MAX which is the maximum
1350 number of bhytes we can move with a single instruction. */
1352 #ifndef MOVE_MAX_PIECES
1353 #define MOVE_MAX_PIECES MOVE_MAX
1354 #endif
1356 /* Generate several move instructions to copy LEN bytes
1357 from block FROM to block TO. (These are MEM rtx's with BLKmode).
1358 The caller must pass FROM and TO
1359 through protect_from_queue before calling.
1360 ALIGN (in bytes) is maximum alignment we can assume. */
1362 void
1363 move_by_pieces (to, from, len, align)
1364 rtx to, from;
1365 int len;
1366 unsigned int align;
1368 struct move_by_pieces data;
1369 rtx to_addr = XEXP (to, 0), from_addr = XEXP (from, 0);
1370 int max_size = MOVE_MAX_PIECES + 1;
1371 enum machine_mode mode = VOIDmode, tmode;
1372 enum insn_code icode;
1374 data.offset = 0;
1375 data.to_addr = to_addr;
1376 data.from_addr = from_addr;
1377 data.to = to;
1378 data.from = from;
1379 data.autinc_to
1380 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
1381 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
1382 data.autinc_from
1383 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
1384 || GET_CODE (from_addr) == POST_INC
1385 || GET_CODE (from_addr) == POST_DEC);
1387 data.explicit_inc_from = 0;
1388 data.explicit_inc_to = 0;
1389 data.reverse
1390 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
1391 if (data.reverse) data.offset = len;
1392 data.len = len;
1394 data.to_struct = MEM_IN_STRUCT_P (to);
1395 data.from_struct = MEM_IN_STRUCT_P (from);
1396 data.to_readonly = RTX_UNCHANGING_P (to);
1397 data.from_readonly = RTX_UNCHANGING_P (from);
1399 /* If copying requires more than two move insns,
1400 copy addresses to registers (to make displacements shorter)
1401 and use post-increment if available. */
1402 if (!(data.autinc_from && data.autinc_to)
1403 && move_by_pieces_ninsns (len, align) > 2)
1405 /* Find the mode of the largest move... */
1406 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1407 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1408 if (GET_MODE_SIZE (tmode) < max_size)
1409 mode = tmode;
1411 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
1413 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
1414 data.autinc_from = 1;
1415 data.explicit_inc_from = -1;
1417 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
1419 data.from_addr = copy_addr_to_reg (from_addr);
1420 data.autinc_from = 1;
1421 data.explicit_inc_from = 1;
1423 if (!data.autinc_from && CONSTANT_P (from_addr))
1424 data.from_addr = copy_addr_to_reg (from_addr);
1425 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
1427 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
1428 data.autinc_to = 1;
1429 data.explicit_inc_to = -1;
1431 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
1433 data.to_addr = copy_addr_to_reg (to_addr);
1434 data.autinc_to = 1;
1435 data.explicit_inc_to = 1;
1437 if (!data.autinc_to && CONSTANT_P (to_addr))
1438 data.to_addr = copy_addr_to_reg (to_addr);
1441 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
1442 || align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
1443 align = MOVE_MAX;
1445 /* First move what we can in the largest integer mode, then go to
1446 successively smaller modes. */
1448 while (max_size > 1)
1450 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1451 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1452 if (GET_MODE_SIZE (tmode) < max_size)
1453 mode = tmode;
1455 if (mode == VOIDmode)
1456 break;
1458 icode = mov_optab->handlers[(int) mode].insn_code;
1459 if (icode != CODE_FOR_nothing
1460 && align >= MIN (BIGGEST_ALIGNMENT / BITS_PER_UNIT,
1461 (unsigned int) GET_MODE_SIZE (mode)))
1462 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1464 max_size = GET_MODE_SIZE (mode);
1467 /* The code above should have handled everything. */
1468 if (data.len > 0)
1469 abort ();
1472 /* Return number of insns required to move L bytes by pieces.
1473 ALIGN (in bytes) is maximum alignment we can assume. */
1475 static int
1476 move_by_pieces_ninsns (l, align)
1477 unsigned int l;
1478 unsigned int align;
1480 register int n_insns = 0;
1481 int max_size = MOVE_MAX + 1;
1483 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
1484 || align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
1485 align = MOVE_MAX;
1487 while (max_size > 1)
1489 enum machine_mode mode = VOIDmode, tmode;
1490 enum insn_code icode;
1492 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1493 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1494 if (GET_MODE_SIZE (tmode) < max_size)
1495 mode = tmode;
1497 if (mode == VOIDmode)
1498 break;
1500 icode = mov_optab->handlers[(int) mode].insn_code;
1501 if (icode != CODE_FOR_nothing
1502 && align >= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1503 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1505 max_size = GET_MODE_SIZE (mode);
1508 return n_insns;
1511 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1512 with move instructions for mode MODE. GENFUN is the gen_... function
1513 to make a move insn for that mode. DATA has all the other info. */
1515 static void
1516 move_by_pieces_1 (genfun, mode, data)
1517 rtx (*genfun) PARAMS ((rtx, ...));
1518 enum machine_mode mode;
1519 struct move_by_pieces *data;
1521 register int size = GET_MODE_SIZE (mode);
1522 register rtx to1, from1;
1524 while (data->len >= size)
1526 if (data->reverse) data->offset -= size;
1528 to1 = (data->autinc_to
1529 ? gen_rtx_MEM (mode, data->to_addr)
1530 : copy_rtx (change_address (data->to, mode,
1531 plus_constant (data->to_addr,
1532 data->offset))));
1533 MEM_IN_STRUCT_P (to1) = data->to_struct;
1534 RTX_UNCHANGING_P (to1) = data->to_readonly;
1536 from1
1537 = (data->autinc_from
1538 ? gen_rtx_MEM (mode, data->from_addr)
1539 : copy_rtx (change_address (data->from, mode,
1540 plus_constant (data->from_addr,
1541 data->offset))));
1542 MEM_IN_STRUCT_P (from1) = data->from_struct;
1543 RTX_UNCHANGING_P (from1) = data->from_readonly;
1545 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1546 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
1547 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1548 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (-size)));
1550 emit_insn ((*genfun) (to1, from1));
1551 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1552 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1553 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1554 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1556 if (! data->reverse) data->offset += size;
1558 data->len -= size;
1562 /* Emit code to move a block Y to a block X.
1563 This may be done with string-move instructions,
1564 with multiple scalar move instructions, or with a library call.
1566 Both X and Y must be MEM rtx's (perhaps inside VOLATILE)
1567 with mode BLKmode.
1568 SIZE is an rtx that says how long they are.
1569 ALIGN is the maximum alignment we can assume they have,
1570 measured in bytes.
1572 Return the address of the new block, if memcpy is called and returns it,
1573 0 otherwise. */
1576 emit_block_move (x, y, size, align)
1577 rtx x, y;
1578 rtx size;
1579 unsigned int align;
1581 rtx retval = 0;
1582 #ifdef TARGET_MEM_FUNCTIONS
1583 static tree fn;
1584 tree call_expr, arg_list;
1585 #endif
1587 if (GET_MODE (x) != BLKmode)
1588 abort ();
1590 if (GET_MODE (y) != BLKmode)
1591 abort ();
1593 x = protect_from_queue (x, 1);
1594 y = protect_from_queue (y, 0);
1595 size = protect_from_queue (size, 0);
1597 if (GET_CODE (x) != MEM)
1598 abort ();
1599 if (GET_CODE (y) != MEM)
1600 abort ();
1601 if (size == 0)
1602 abort ();
1604 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1605 move_by_pieces (x, y, INTVAL (size), align);
1606 else
1608 /* Try the most limited insn first, because there's no point
1609 including more than one in the machine description unless
1610 the more limited one has some advantage. */
1612 rtx opalign = GEN_INT (align);
1613 enum machine_mode mode;
1615 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1616 mode = GET_MODE_WIDER_MODE (mode))
1618 enum insn_code code = movstr_optab[(int) mode];
1619 insn_operand_predicate_fn pred;
1621 if (code != CODE_FOR_nothing
1622 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1623 here because if SIZE is less than the mode mask, as it is
1624 returned by the macro, it will definitely be less than the
1625 actual mode mask. */
1626 && ((GET_CODE (size) == CONST_INT
1627 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1628 <= (GET_MODE_MASK (mode) >> 1)))
1629 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1630 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1631 || (*pred) (x, BLKmode))
1632 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1633 || (*pred) (y, BLKmode))
1634 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1635 || (*pred) (opalign, VOIDmode)))
1637 rtx op2;
1638 rtx last = get_last_insn ();
1639 rtx pat;
1641 op2 = convert_to_mode (mode, size, 1);
1642 pred = insn_data[(int) code].operand[2].predicate;
1643 if (pred != 0 && ! (*pred) (op2, mode))
1644 op2 = copy_to_mode_reg (mode, op2);
1646 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1647 if (pat)
1649 emit_insn (pat);
1650 return 0;
1652 else
1653 delete_insns_since (last);
1657 /* X, Y, or SIZE may have been passed through protect_from_queue.
1659 It is unsafe to save the value generated by protect_from_queue
1660 and reuse it later. Consider what happens if emit_queue is
1661 called before the return value from protect_from_queue is used.
1663 Expansion of the CALL_EXPR below will call emit_queue before
1664 we are finished emitting RTL for argument setup. So if we are
1665 not careful we could get the wrong value for an argument.
1667 To avoid this problem we go ahead and emit code to copy X, Y &
1668 SIZE into new pseudos. We can then place those new pseudos
1669 into an RTL_EXPR and use them later, even after a call to
1670 emit_queue.
1672 Note this is not strictly needed for library calls since they
1673 do not call emit_queue before loading their arguments. However,
1674 we may need to have library calls call emit_queue in the future
1675 since failing to do so could cause problems for targets which
1676 define SMALL_REGISTER_CLASSES and pass arguments in registers. */
1677 x = copy_to_mode_reg (Pmode, XEXP (x, 0));
1678 y = copy_to_mode_reg (Pmode, XEXP (y, 0));
1680 #ifdef TARGET_MEM_FUNCTIONS
1681 size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
1682 #else
1683 size = convert_to_mode (TYPE_MODE (integer_type_node), size,
1684 TREE_UNSIGNED (integer_type_node));
1685 size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
1686 #endif
1688 #ifdef TARGET_MEM_FUNCTIONS
1689 /* It is incorrect to use the libcall calling conventions to call
1690 memcpy in this context.
1692 This could be a user call to memcpy and the user may wish to
1693 examine the return value from memcpy.
1695 For targets where libcalls and normal calls have different conventions
1696 for returning pointers, we could end up generating incorrect code.
1698 So instead of using a libcall sequence we build up a suitable
1699 CALL_EXPR and expand the call in the normal fashion. */
1700 if (fn == NULL_TREE)
1702 tree fntype;
1704 /* This was copied from except.c, I don't know if all this is
1705 necessary in this context or not. */
1706 fn = get_identifier ("memcpy");
1707 push_obstacks_nochange ();
1708 end_temporary_allocation ();
1709 fntype = build_pointer_type (void_type_node);
1710 fntype = build_function_type (fntype, NULL_TREE);
1711 fn = build_decl (FUNCTION_DECL, fn, fntype);
1712 ggc_add_tree_root (&fn, 1);
1713 DECL_EXTERNAL (fn) = 1;
1714 TREE_PUBLIC (fn) = 1;
1715 DECL_ARTIFICIAL (fn) = 1;
1716 make_decl_rtl (fn, NULL_PTR, 1);
1717 assemble_external (fn);
1718 pop_obstacks ();
1721 /* We need to make an argument list for the function call.
1723 memcpy has three arguments, the first two are void * addresses and
1724 the last is a size_t byte count for the copy. */
1725 arg_list
1726 = build_tree_list (NULL_TREE,
1727 make_tree (build_pointer_type (void_type_node), x));
1728 TREE_CHAIN (arg_list)
1729 = build_tree_list (NULL_TREE,
1730 make_tree (build_pointer_type (void_type_node), y));
1731 TREE_CHAIN (TREE_CHAIN (arg_list))
1732 = build_tree_list (NULL_TREE, make_tree (sizetype, size));
1733 TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
1735 /* Now we have to build up the CALL_EXPR itself. */
1736 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1737 call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1738 call_expr, arg_list, NULL_TREE);
1739 TREE_SIDE_EFFECTS (call_expr) = 1;
1741 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
1742 #else
1743 emit_library_call (bcopy_libfunc, 0,
1744 VOIDmode, 3, y, Pmode, x, Pmode,
1745 convert_to_mode (TYPE_MODE (integer_type_node), size,
1746 TREE_UNSIGNED (integer_type_node)),
1747 TYPE_MODE (integer_type_node));
1748 #endif
1751 return retval;
1754 /* Copy all or part of a value X into registers starting at REGNO.
1755 The number of registers to be filled is NREGS. */
1757 void
1758 move_block_to_reg (regno, x, nregs, mode)
1759 int regno;
1760 rtx x;
1761 int nregs;
1762 enum machine_mode mode;
1764 int i;
1765 #ifdef HAVE_load_multiple
1766 rtx pat;
1767 rtx last;
1768 #endif
1770 if (nregs == 0)
1771 return;
1773 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1774 x = validize_mem (force_const_mem (mode, x));
1776 /* See if the machine can do this with a load multiple insn. */
1777 #ifdef HAVE_load_multiple
1778 if (HAVE_load_multiple)
1780 last = get_last_insn ();
1781 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1782 GEN_INT (nregs));
1783 if (pat)
1785 emit_insn (pat);
1786 return;
1788 else
1789 delete_insns_since (last);
1791 #endif
1793 for (i = 0; i < nregs; i++)
1794 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1795 operand_subword_force (x, i, mode));
1798 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1799 The number of registers to be filled is NREGS. SIZE indicates the number
1800 of bytes in the object X. */
1803 void
1804 move_block_from_reg (regno, x, nregs, size)
1805 int regno;
1806 rtx x;
1807 int nregs;
1808 int size;
1810 int i;
1811 #ifdef HAVE_store_multiple
1812 rtx pat;
1813 rtx last;
1814 #endif
1815 enum machine_mode mode;
1817 /* If SIZE is that of a mode no bigger than a word, just use that
1818 mode's store operation. */
1819 if (size <= UNITS_PER_WORD
1820 && (mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0)) != BLKmode)
1822 emit_move_insn (change_address (x, mode, NULL),
1823 gen_rtx_REG (mode, regno));
1824 return;
1827 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN machine must be aligned
1828 to the left before storing to memory. Note that the previous test
1829 doesn't handle all cases (e.g. SIZE == 3). */
1830 if (size < UNITS_PER_WORD && BYTES_BIG_ENDIAN)
1832 rtx tem = operand_subword (x, 0, 1, BLKmode);
1833 rtx shift;
1835 if (tem == 0)
1836 abort ();
1838 shift = expand_shift (LSHIFT_EXPR, word_mode,
1839 gen_rtx_REG (word_mode, regno),
1840 build_int_2 ((UNITS_PER_WORD - size)
1841 * BITS_PER_UNIT, 0), NULL_RTX, 0);
1842 emit_move_insn (tem, shift);
1843 return;
1846 /* See if the machine can do this with a store multiple insn. */
1847 #ifdef HAVE_store_multiple
1848 if (HAVE_store_multiple)
1850 last = get_last_insn ();
1851 pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1852 GEN_INT (nregs));
1853 if (pat)
1855 emit_insn (pat);
1856 return;
1858 else
1859 delete_insns_since (last);
1861 #endif
1863 for (i = 0; i < nregs; i++)
1865 rtx tem = operand_subword (x, i, 1, BLKmode);
1867 if (tem == 0)
1868 abort ();
1870 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1874 /* Emit code to move a block SRC to a block DST, where DST is non-consecutive
1875 registers represented by a PARALLEL. SSIZE represents the total size of
1876 block SRC in bytes, or -1 if not known. ALIGN is the known alignment of
1877 SRC in bits. */
1878 /* ??? If SSIZE % UNITS_PER_WORD != 0, we make the blatent assumption that
1879 the balance will be in what would be the low-order memory addresses, i.e.
1880 left justified for big endian, right justified for little endian. This
1881 happens to be true for the targets currently using this support. If this
1882 ever changes, a new target macro along the lines of FUNCTION_ARG_PADDING
1883 would be needed. */
1885 void
1886 emit_group_load (dst, orig_src, ssize, align)
1887 rtx dst, orig_src;
1888 unsigned int align;
1889 int ssize;
1891 rtx *tmps, src;
1892 int start, i;
1894 if (GET_CODE (dst) != PARALLEL)
1895 abort ();
1897 /* Check for a NULL entry, used to indicate that the parameter goes
1898 both on the stack and in registers. */
1899 if (XEXP (XVECEXP (dst, 0, 0), 0))
1900 start = 0;
1901 else
1902 start = 1;
1904 tmps = (rtx *) alloca (sizeof(rtx) * XVECLEN (dst, 0));
1906 /* If we won't be loading directly from memory, protect the real source
1907 from strange tricks we might play. */
1908 src = orig_src;
1909 if (GET_CODE (src) != MEM)
1911 if (GET_CODE (src) == VOIDmode)
1912 src = gen_reg_rtx (GET_MODE (dst));
1913 else
1914 src = gen_reg_rtx (GET_MODE (orig_src));
1915 emit_move_insn (src, orig_src);
1918 /* Process the pieces. */
1919 for (i = start; i < XVECLEN (dst, 0); i++)
1921 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1922 int bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1923 int bytelen = GET_MODE_SIZE (mode);
1924 int shift = 0;
1926 /* Handle trailing fragments that run over the size of the struct. */
1927 if (ssize >= 0 && bytepos + bytelen > ssize)
1929 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1930 bytelen = ssize - bytepos;
1931 if (bytelen <= 0)
1932 abort ();
1935 /* Optimize the access just a bit. */
1936 if (GET_CODE (src) == MEM
1937 && align * BITS_PER_UNIT >= GET_MODE_ALIGNMENT (mode)
1938 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1939 && bytelen == GET_MODE_SIZE (mode))
1941 tmps[i] = gen_reg_rtx (mode);
1942 emit_move_insn (tmps[i],
1943 change_address (src, mode,
1944 plus_constant (XEXP (src, 0),
1945 bytepos)));
1947 else if (GET_CODE (src) == CONCAT)
1949 if (bytepos == 0
1950 && bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 0))))
1951 tmps[i] = XEXP (src, 0);
1952 else if (bytepos == GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
1953 && bytelen == GET_MODE_SIZE (GET_MODE (XEXP (src, 1))))
1954 tmps[i] = XEXP (src, 1);
1955 else
1956 abort ();
1958 else
1960 tmps[i] = extract_bit_field (src, bytelen*BITS_PER_UNIT,
1961 bytepos*BITS_PER_UNIT, 1, NULL_RTX,
1962 mode, mode, align, ssize);
1965 if (BYTES_BIG_ENDIAN && shift)
1967 expand_binop (mode, ashl_optab, tmps[i], GEN_INT (shift),
1968 tmps[i], 0, OPTAB_WIDEN);
1971 emit_queue();
1973 /* Copy the extracted pieces into the proper (probable) hard regs. */
1974 for (i = start; i < XVECLEN (dst, 0); i++)
1975 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), tmps[i]);
1978 /* Emit code to move a block SRC to a block DST, where SRC is non-consecutive
1979 registers represented by a PARALLEL. SSIZE represents the total size of
1980 block DST, or -1 if not known. ALIGN is the known alignment of DST. */
1982 void
1983 emit_group_store (orig_dst, src, ssize, align)
1984 rtx orig_dst, src;
1985 int ssize;
1986 unsigned int align;
1988 rtx *tmps, dst;
1989 int start, i;
1991 if (GET_CODE (src) != PARALLEL)
1992 abort ();
1994 /* Check for a NULL entry, used to indicate that the parameter goes
1995 both on the stack and in registers. */
1996 if (XEXP (XVECEXP (src, 0, 0), 0))
1997 start = 0;
1998 else
1999 start = 1;
2001 tmps = (rtx *) alloca (sizeof(rtx) * XVECLEN (src, 0));
2003 /* Copy the (probable) hard regs into pseudos. */
2004 for (i = start; i < XVECLEN (src, 0); i++)
2006 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2007 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2008 emit_move_insn (tmps[i], reg);
2010 emit_queue();
2012 /* If we won't be storing directly into memory, protect the real destination
2013 from strange tricks we might play. */
2014 dst = orig_dst;
2015 if (GET_CODE (dst) == PARALLEL)
2017 rtx temp;
2019 /* We can get a PARALLEL dst if there is a conditional expression in
2020 a return statement. In that case, the dst and src are the same,
2021 so no action is necessary. */
2022 if (rtx_equal_p (dst, src))
2023 return;
2025 /* It is unclear if we can ever reach here, but we may as well handle
2026 it. Allocate a temporary, and split this into a store/load to/from
2027 the temporary. */
2029 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
2030 emit_group_store (temp, src, ssize, align);
2031 emit_group_load (dst, temp, ssize, align);
2032 return;
2034 else if (GET_CODE (dst) != MEM)
2036 dst = gen_reg_rtx (GET_MODE (orig_dst));
2037 /* Make life a bit easier for combine. */
2038 emit_move_insn (dst, const0_rtx);
2040 else if (! MEM_IN_STRUCT_P (dst))
2042 /* store_bit_field requires that memory operations have
2043 mem_in_struct_p set; we might not. */
2045 dst = copy_rtx (orig_dst);
2046 MEM_SET_IN_STRUCT_P (dst, 1);
2049 /* Process the pieces. */
2050 for (i = start; i < XVECLEN (src, 0); i++)
2052 int bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2053 enum machine_mode mode = GET_MODE (tmps[i]);
2054 int bytelen = GET_MODE_SIZE (mode);
2056 /* Handle trailing fragments that run over the size of the struct. */
2057 if (ssize >= 0 && bytepos + bytelen > ssize)
2059 if (BYTES_BIG_ENDIAN)
2061 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2062 expand_binop (mode, ashr_optab, tmps[i], GEN_INT (shift),
2063 tmps[i], 0, OPTAB_WIDEN);
2065 bytelen = ssize - bytepos;
2068 /* Optimize the access just a bit. */
2069 if (GET_CODE (dst) == MEM
2070 && align * BITS_PER_UNIT >= GET_MODE_ALIGNMENT (mode)
2071 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2072 && bytelen == GET_MODE_SIZE (mode))
2073 emit_move_insn (change_address (dst, mode,
2074 plus_constant (XEXP (dst, 0),
2075 bytepos)),
2076 tmps[i]);
2077 else
2078 store_bit_field (dst, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2079 mode, tmps[i], align, ssize);
2082 emit_queue();
2084 /* Copy from the pseudo into the (probable) hard reg. */
2085 if (GET_CODE (dst) == REG)
2086 emit_move_insn (orig_dst, dst);
2089 /* Generate code to copy a BLKmode object of TYPE out of a
2090 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2091 is null, a stack temporary is created. TGTBLK is returned.
2093 The primary purpose of this routine is to handle functions
2094 that return BLKmode structures in registers. Some machines
2095 (the PA for example) want to return all small structures
2096 in registers regardless of the structure's alignment. */
2099 copy_blkmode_from_reg (tgtblk,srcreg,type)
2100 rtx tgtblk;
2101 rtx srcreg;
2102 tree type;
2104 int bytes = int_size_in_bytes (type);
2105 rtx src = NULL, dst = NULL;
2106 int bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2107 int bitpos, xbitpos, big_endian_correction = 0;
2109 if (tgtblk == 0)
2111 tgtblk = assign_stack_temp (BLKmode, bytes, 0);
2112 MEM_SET_IN_STRUCT_P (tgtblk, AGGREGATE_TYPE_P (type));
2113 preserve_temp_slots (tgtblk);
2116 /* This code assumes srcreg is at least a full word. If it isn't,
2117 copy it into a new pseudo which is a full word. */
2118 if (GET_MODE (srcreg) != BLKmode
2119 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2120 srcreg = convert_to_mode (word_mode, srcreg,
2121 TREE_UNSIGNED (type));
2123 /* Structures whose size is not a multiple of a word are aligned
2124 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2125 machine, this means we must skip the empty high order bytes when
2126 calculating the bit offset. */
2127 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
2128 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2129 * BITS_PER_UNIT));
2131 /* Copy the structure BITSIZE bites at a time.
2133 We could probably emit more efficient code for machines
2134 which do not use strict alignment, but it doesn't seem
2135 worth the effort at the current time. */
2136 for (bitpos = 0, xbitpos = big_endian_correction;
2137 bitpos < bytes * BITS_PER_UNIT;
2138 bitpos += bitsize, xbitpos += bitsize)
2141 /* We need a new source operand each time xbitpos is on a
2142 word boundary and when xbitpos == big_endian_correction
2143 (the first time through). */
2144 if (xbitpos % BITS_PER_WORD == 0
2145 || xbitpos == big_endian_correction)
2146 src = operand_subword_force (srcreg,
2147 xbitpos / BITS_PER_WORD,
2148 BLKmode);
2150 /* We need a new destination operand each time bitpos is on
2151 a word boundary. */
2152 if (bitpos % BITS_PER_WORD == 0)
2153 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2155 /* Use xbitpos for the source extraction (right justified) and
2156 xbitpos for the destination store (left justified). */
2157 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2158 extract_bit_field (src, bitsize,
2159 xbitpos % BITS_PER_WORD, 1,
2160 NULL_RTX, word_mode,
2161 word_mode,
2162 bitsize / BITS_PER_UNIT,
2163 BITS_PER_WORD),
2164 bitsize / BITS_PER_UNIT, BITS_PER_WORD);
2166 return tgtblk;
2170 /* Add a USE expression for REG to the (possibly empty) list pointed
2171 to by CALL_FUSAGE. REG must denote a hard register. */
2173 void
2174 use_reg (call_fusage, reg)
2175 rtx *call_fusage, reg;
2177 if (GET_CODE (reg) != REG
2178 || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
2179 abort();
2181 *call_fusage
2182 = gen_rtx_EXPR_LIST (VOIDmode,
2183 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2186 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2187 starting at REGNO. All of these registers must be hard registers. */
2189 void
2190 use_regs (call_fusage, regno, nregs)
2191 rtx *call_fusage;
2192 int regno;
2193 int nregs;
2195 int i;
2197 if (regno + nregs > FIRST_PSEUDO_REGISTER)
2198 abort ();
2200 for (i = 0; i < nregs; i++)
2201 use_reg (call_fusage, gen_rtx_REG (reg_raw_mode[regno + i], regno + i));
2204 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2205 PARALLEL REGS. This is for calls that pass values in multiple
2206 non-contiguous locations. The Irix 6 ABI has examples of this. */
2208 void
2209 use_group_regs (call_fusage, regs)
2210 rtx *call_fusage;
2211 rtx regs;
2213 int i;
2215 for (i = 0; i < XVECLEN (regs, 0); i++)
2217 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2219 /* A NULL entry means the parameter goes both on the stack and in
2220 registers. This can also be a MEM for targets that pass values
2221 partially on the stack and partially in registers. */
2222 if (reg != 0 && GET_CODE (reg) == REG)
2223 use_reg (call_fusage, reg);
2227 /* Generate several move instructions to clear LEN bytes of block TO.
2228 (A MEM rtx with BLKmode). The caller must pass TO through
2229 protect_from_queue before calling. ALIGN (in bytes) is maximum alignment
2230 we can assume. */
2232 static void
2233 clear_by_pieces (to, len, align)
2234 rtx to;
2235 int len;
2236 unsigned int align;
2238 struct clear_by_pieces data;
2239 rtx to_addr = XEXP (to, 0);
2240 int max_size = MOVE_MAX_PIECES + 1;
2241 enum machine_mode mode = VOIDmode, tmode;
2242 enum insn_code icode;
2244 data.offset = 0;
2245 data.to_addr = to_addr;
2246 data.to = to;
2247 data.autinc_to
2248 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2249 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2251 data.explicit_inc_to = 0;
2252 data.reverse
2253 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2254 if (data.reverse) data.offset = len;
2255 data.len = len;
2257 data.to_struct = MEM_IN_STRUCT_P (to);
2259 /* If copying requires more than two move insns,
2260 copy addresses to registers (to make displacements shorter)
2261 and use post-increment if available. */
2262 if (!data.autinc_to
2263 && move_by_pieces_ninsns (len, align) > 2)
2265 /* Determine the main mode we'll be using */
2266 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2267 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2268 if (GET_MODE_SIZE (tmode) < max_size)
2269 mode = tmode;
2271 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
2273 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
2274 data.autinc_to = 1;
2275 data.explicit_inc_to = -1;
2277 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
2279 data.to_addr = copy_addr_to_reg (to_addr);
2280 data.autinc_to = 1;
2281 data.explicit_inc_to = 1;
2283 if (!data.autinc_to && CONSTANT_P (to_addr))
2284 data.to_addr = copy_addr_to_reg (to_addr);
2287 if (! SLOW_UNALIGNED_ACCESS (word_mode, align)
2288 || align > MOVE_MAX || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT)
2289 align = MOVE_MAX;
2291 /* First move what we can in the largest integer mode, then go to
2292 successively smaller modes. */
2294 while (max_size > 1)
2296 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2297 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2298 if (GET_MODE_SIZE (tmode) < max_size)
2299 mode = tmode;
2301 if (mode == VOIDmode)
2302 break;
2304 icode = mov_optab->handlers[(int) mode].insn_code;
2305 if (icode != CODE_FOR_nothing
2306 && align >= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2307 clear_by_pieces_1 (GEN_FCN (icode), mode, &data);
2309 max_size = GET_MODE_SIZE (mode);
2312 /* The code above should have handled everything. */
2313 if (data.len != 0)
2314 abort ();
2317 /* Subroutine of clear_by_pieces. Clear as many bytes as appropriate
2318 with move instructions for mode MODE. GENFUN is the gen_... function
2319 to make a move insn for that mode. DATA has all the other info. */
2321 static void
2322 clear_by_pieces_1 (genfun, mode, data)
2323 rtx (*genfun) PARAMS ((rtx, ...));
2324 enum machine_mode mode;
2325 struct clear_by_pieces *data;
2327 register int size = GET_MODE_SIZE (mode);
2328 register rtx to1;
2330 while (data->len >= size)
2332 if (data->reverse) data->offset -= size;
2334 to1 = (data->autinc_to
2335 ? gen_rtx_MEM (mode, data->to_addr)
2336 : copy_rtx (change_address (data->to, mode,
2337 plus_constant (data->to_addr,
2338 data->offset))));
2339 MEM_IN_STRUCT_P (to1) = data->to_struct;
2341 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2342 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (-size)));
2344 emit_insn ((*genfun) (to1, const0_rtx));
2345 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2346 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2348 if (! data->reverse) data->offset += size;
2350 data->len -= size;
2354 /* Write zeros through the storage of OBJECT.
2355 If OBJECT has BLKmode, SIZE is its length in bytes and ALIGN is
2356 the maximum alignment we can is has, measured in bytes.
2358 If we call a function that returns the length of the block, return it. */
2361 clear_storage (object, size, align)
2362 rtx object;
2363 rtx size;
2364 unsigned int align;
2366 #ifdef TARGET_MEM_FUNCTIONS
2367 static tree fn;
2368 tree call_expr, arg_list;
2369 #endif
2370 rtx retval = 0;
2372 if (GET_MODE (object) == BLKmode)
2374 object = protect_from_queue (object, 1);
2375 size = protect_from_queue (size, 0);
2377 if (GET_CODE (size) == CONST_INT
2378 && MOVE_BY_PIECES_P (INTVAL (size), align))
2379 clear_by_pieces (object, INTVAL (size), align);
2381 else
2383 /* Try the most limited insn first, because there's no point
2384 including more than one in the machine description unless
2385 the more limited one has some advantage. */
2387 rtx opalign = GEN_INT (align);
2388 enum machine_mode mode;
2390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2391 mode = GET_MODE_WIDER_MODE (mode))
2393 enum insn_code code = clrstr_optab[(int) mode];
2394 insn_operand_predicate_fn pred;
2396 if (code != CODE_FOR_nothing
2397 /* We don't need MODE to be narrower than
2398 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2399 the mode mask, as it is returned by the macro, it will
2400 definitely be less than the actual mode mask. */
2401 && ((GET_CODE (size) == CONST_INT
2402 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2403 <= (GET_MODE_MASK (mode) >> 1)))
2404 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2405 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2406 || (*pred) (object, BLKmode))
2407 && ((pred = insn_data[(int) code].operand[2].predicate) == 0
2408 || (*pred) (opalign, VOIDmode)))
2410 rtx op1;
2411 rtx last = get_last_insn ();
2412 rtx pat;
2414 op1 = convert_to_mode (mode, size, 1);
2415 pred = insn_data[(int) code].operand[1].predicate;
2416 if (pred != 0 && ! (*pred) (op1, mode))
2417 op1 = copy_to_mode_reg (mode, op1);
2419 pat = GEN_FCN ((int) code) (object, op1, opalign);
2420 if (pat)
2422 emit_insn (pat);
2423 return 0;
2425 else
2426 delete_insns_since (last);
2430 /* OBJECT or SIZE may have been passed through protect_from_queue.
2432 It is unsafe to save the value generated by protect_from_queue
2433 and reuse it later. Consider what happens if emit_queue is
2434 called before the return value from protect_from_queue is used.
2436 Expansion of the CALL_EXPR below will call emit_queue before
2437 we are finished emitting RTL for argument setup. So if we are
2438 not careful we could get the wrong value for an argument.
2440 To avoid this problem we go ahead and emit code to copy OBJECT
2441 and SIZE into new pseudos. We can then place those new pseudos
2442 into an RTL_EXPR and use them later, even after a call to
2443 emit_queue.
2445 Note this is not strictly needed for library calls since they
2446 do not call emit_queue before loading their arguments. However,
2447 we may need to have library calls call emit_queue in the future
2448 since failing to do so could cause problems for targets which
2449 define SMALL_REGISTER_CLASSES and pass arguments in registers. */
2450 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2452 #ifdef TARGET_MEM_FUNCTIONS
2453 size = copy_to_mode_reg (TYPE_MODE (sizetype), size);
2454 #else
2455 size = convert_to_mode (TYPE_MODE (integer_type_node), size,
2456 TREE_UNSIGNED (integer_type_node));
2457 size = copy_to_mode_reg (TYPE_MODE (integer_type_node), size);
2458 #endif
2461 #ifdef TARGET_MEM_FUNCTIONS
2462 /* It is incorrect to use the libcall calling conventions to call
2463 memset in this context.
2465 This could be a user call to memset and the user may wish to
2466 examine the return value from memset.
2468 For targets where libcalls and normal calls have different
2469 conventions for returning pointers, we could end up generating
2470 incorrect code.
2472 So instead of using a libcall sequence we build up a suitable
2473 CALL_EXPR and expand the call in the normal fashion. */
2474 if (fn == NULL_TREE)
2476 tree fntype;
2478 /* This was copied from except.c, I don't know if all this is
2479 necessary in this context or not. */
2480 fn = get_identifier ("memset");
2481 push_obstacks_nochange ();
2482 end_temporary_allocation ();
2483 fntype = build_pointer_type (void_type_node);
2484 fntype = build_function_type (fntype, NULL_TREE);
2485 fn = build_decl (FUNCTION_DECL, fn, fntype);
2486 ggc_add_tree_root (&fn, 1);
2487 DECL_EXTERNAL (fn) = 1;
2488 TREE_PUBLIC (fn) = 1;
2489 DECL_ARTIFICIAL (fn) = 1;
2490 make_decl_rtl (fn, NULL_PTR, 1);
2491 assemble_external (fn);
2492 pop_obstacks ();
2495 /* We need to make an argument list for the function call.
2497 memset has three arguments, the first is a void * addresses, the
2498 second a integer with the initialization value, the last is a
2499 size_t byte count for the copy. */
2500 arg_list
2501 = build_tree_list (NULL_TREE,
2502 make_tree (build_pointer_type (void_type_node),
2503 object));
2504 TREE_CHAIN (arg_list)
2505 = build_tree_list (NULL_TREE,
2506 make_tree (integer_type_node, const0_rtx));
2507 TREE_CHAIN (TREE_CHAIN (arg_list))
2508 = build_tree_list (NULL_TREE, make_tree (sizetype, size));
2509 TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arg_list))) = NULL_TREE;
2511 /* Now we have to build up the CALL_EXPR itself. */
2512 call_expr = build1 (ADDR_EXPR,
2513 build_pointer_type (TREE_TYPE (fn)), fn);
2514 call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2515 call_expr, arg_list, NULL_TREE);
2516 TREE_SIDE_EFFECTS (call_expr) = 1;
2518 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
2519 #else
2520 emit_library_call (bzero_libfunc, 0,
2521 VOIDmode, 2, object, Pmode, size,
2522 TYPE_MODE (integer_type_node));
2523 #endif
2526 else
2527 emit_move_insn (object, CONST0_RTX (GET_MODE (object)));
2529 return retval;
2532 /* Generate code to copy Y into X.
2533 Both Y and X must have the same mode, except that
2534 Y can be a constant with VOIDmode.
2535 This mode cannot be BLKmode; use emit_block_move for that.
2537 Return the last instruction emitted. */
2540 emit_move_insn (x, y)
2541 rtx x, y;
2543 enum machine_mode mode = GET_MODE (x);
2545 x = protect_from_queue (x, 1);
2546 y = protect_from_queue (y, 0);
2548 if (mode == BLKmode || (GET_MODE (y) != mode && GET_MODE (y) != VOIDmode))
2549 abort ();
2551 /* Never force constant_p_rtx to memory. */
2552 if (GET_CODE (y) == CONSTANT_P_RTX)
2554 else if (CONSTANT_P (y) && ! LEGITIMATE_CONSTANT_P (y))
2555 y = force_const_mem (mode, y);
2557 /* If X or Y are memory references, verify that their addresses are valid
2558 for the machine. */
2559 if (GET_CODE (x) == MEM
2560 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
2561 && ! push_operand (x, GET_MODE (x)))
2562 || (flag_force_addr
2563 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
2564 x = change_address (x, VOIDmode, XEXP (x, 0));
2566 if (GET_CODE (y) == MEM
2567 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
2568 || (flag_force_addr
2569 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
2570 y = change_address (y, VOIDmode, XEXP (y, 0));
2572 if (mode == BLKmode)
2573 abort ();
2575 return emit_move_insn_1 (x, y);
2578 /* Low level part of emit_move_insn.
2579 Called just like emit_move_insn, but assumes X and Y
2580 are basically valid. */
2583 emit_move_insn_1 (x, y)
2584 rtx x, y;
2586 enum machine_mode mode = GET_MODE (x);
2587 enum machine_mode submode;
2588 enum mode_class class = GET_MODE_CLASS (mode);
2589 int i;
2591 if (mode >= MAX_MACHINE_MODE)
2592 abort ();
2594 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2595 return
2596 emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y));
2598 /* Expand complex moves by moving real part and imag part, if possible. */
2599 else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
2600 && BLKmode != (submode = mode_for_size ((GET_MODE_UNIT_SIZE (mode)
2601 * BITS_PER_UNIT),
2602 (class == MODE_COMPLEX_INT
2603 ? MODE_INT : MODE_FLOAT),
2605 && (mov_optab->handlers[(int) submode].insn_code
2606 != CODE_FOR_nothing))
2608 /* Don't split destination if it is a stack push. */
2609 int stack = push_operand (x, GET_MODE (x));
2611 /* If this is a stack, push the highpart first, so it
2612 will be in the argument order.
2614 In that case, change_address is used only to convert
2615 the mode, not to change the address. */
2616 if (stack)
2618 /* Note that the real part always precedes the imag part in memory
2619 regardless of machine's endianness. */
2620 #ifdef STACK_GROWS_DOWNWARD
2621 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2622 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2623 gen_imagpart (submode, y)));
2624 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2625 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2626 gen_realpart (submode, y)));
2627 #else
2628 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2629 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2630 gen_realpart (submode, y)));
2631 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2632 (gen_rtx_MEM (submode, (XEXP (x, 0))),
2633 gen_imagpart (submode, y)));
2634 #endif
2636 else
2638 rtx realpart_x, realpart_y;
2639 rtx imagpart_x, imagpart_y;
2641 /* If this is a complex value with each part being smaller than a
2642 word, the usual calling sequence will likely pack the pieces into
2643 a single register. Unfortunately, SUBREG of hard registers only
2644 deals in terms of words, so we have a problem converting input
2645 arguments to the CONCAT of two registers that is used elsewhere
2646 for complex values. If this is before reload, we can copy it into
2647 memory and reload. FIXME, we should see about using extract and
2648 insert on integer registers, but complex short and complex char
2649 variables should be rarely used. */
2650 if (GET_MODE_BITSIZE (mode) < 2*BITS_PER_WORD
2651 && (reload_in_progress | reload_completed) == 0)
2653 int packed_dest_p = (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER);
2654 int packed_src_p = (REG_P (y) && REGNO (y) < FIRST_PSEUDO_REGISTER);
2656 if (packed_dest_p || packed_src_p)
2658 enum mode_class reg_class = ((class == MODE_COMPLEX_FLOAT)
2659 ? MODE_FLOAT : MODE_INT);
2661 enum machine_mode reg_mode =
2662 mode_for_size (GET_MODE_BITSIZE (mode), reg_class, 1);
2664 if (reg_mode != BLKmode)
2666 rtx mem = assign_stack_temp (reg_mode,
2667 GET_MODE_SIZE (mode), 0);
2669 rtx cmem = change_address (mem, mode, NULL_RTX);
2671 cfun->cannot_inline = "function uses short complex types";
2673 if (packed_dest_p)
2675 rtx sreg = gen_rtx_SUBREG (reg_mode, x, 0);
2676 emit_move_insn_1 (cmem, y);
2677 return emit_move_insn_1 (sreg, mem);
2679 else
2681 rtx sreg = gen_rtx_SUBREG (reg_mode, y, 0);
2682 emit_move_insn_1 (mem, sreg);
2683 return emit_move_insn_1 (x, cmem);
2689 realpart_x = gen_realpart (submode, x);
2690 realpart_y = gen_realpart (submode, y);
2691 imagpart_x = gen_imagpart (submode, x);
2692 imagpart_y = gen_imagpart (submode, y);
2694 /* Show the output dies here. This is necessary for SUBREGs
2695 of pseudos since we cannot track their lifetimes correctly;
2696 hard regs shouldn't appear here except as return values.
2697 We never want to emit such a clobber after reload. */
2698 if (x != y
2699 && ! (reload_in_progress || reload_completed)
2700 && (GET_CODE (realpart_x) == SUBREG
2701 || GET_CODE (imagpart_x) == SUBREG))
2703 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2706 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2707 (realpart_x, realpart_y));
2708 emit_insn (GEN_FCN (mov_optab->handlers[(int) submode].insn_code)
2709 (imagpart_x, imagpart_y));
2712 return get_last_insn ();
2715 /* This will handle any multi-word mode that lacks a move_insn pattern.
2716 However, you will get better code if you define such patterns,
2717 even if they must turn into multiple assembler instructions. */
2718 else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
2720 rtx last_insn = 0;
2721 rtx seq;
2722 int need_clobber;
2724 #ifdef PUSH_ROUNDING
2726 /* If X is a push on the stack, do the push now and replace
2727 X with a reference to the stack pointer. */
2728 if (push_operand (x, GET_MODE (x)))
2730 anti_adjust_stack (GEN_INT (GET_MODE_SIZE (GET_MODE (x))));
2731 x = change_address (x, VOIDmode, stack_pointer_rtx);
2733 #endif
2735 start_sequence ();
2737 need_clobber = 0;
2738 for (i = 0;
2739 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2740 i++)
2742 rtx xpart = operand_subword (x, i, 1, mode);
2743 rtx ypart = operand_subword (y, i, 1, mode);
2745 /* If we can't get a part of Y, put Y into memory if it is a
2746 constant. Otherwise, force it into a register. If we still
2747 can't get a part of Y, abort. */
2748 if (ypart == 0 && CONSTANT_P (y))
2750 y = force_const_mem (mode, y);
2751 ypart = operand_subword (y, i, 1, mode);
2753 else if (ypart == 0)
2754 ypart = operand_subword_force (y, i, mode);
2756 if (xpart == 0 || ypart == 0)
2757 abort ();
2759 need_clobber |= (GET_CODE (xpart) == SUBREG);
2761 last_insn = emit_move_insn (xpart, ypart);
2764 seq = gen_sequence ();
2765 end_sequence ();
2767 /* Show the output dies here. This is necessary for SUBREGs
2768 of pseudos since we cannot track their lifetimes correctly;
2769 hard regs shouldn't appear here except as return values.
2770 We never want to emit such a clobber after reload. */
2771 if (x != y
2772 && ! (reload_in_progress || reload_completed)
2773 && need_clobber != 0)
2775 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2778 emit_insn (seq);
2780 return last_insn;
2782 else
2783 abort ();
2786 /* Pushing data onto the stack. */
2788 /* Push a block of length SIZE (perhaps variable)
2789 and return an rtx to address the beginning of the block.
2790 Note that it is not possible for the value returned to be a QUEUED.
2791 The value may be virtual_outgoing_args_rtx.
2793 EXTRA is the number of bytes of padding to push in addition to SIZE.
2794 BELOW nonzero means this padding comes at low addresses;
2795 otherwise, the padding comes at high addresses. */
2798 push_block (size, extra, below)
2799 rtx size;
2800 int extra, below;
2802 register rtx temp;
2804 size = convert_modes (Pmode, ptr_mode, size, 1);
2805 if (CONSTANT_P (size))
2806 anti_adjust_stack (plus_constant (size, extra));
2807 else if (GET_CODE (size) == REG && extra == 0)
2808 anti_adjust_stack (size);
2809 else
2811 rtx temp = copy_to_mode_reg (Pmode, size);
2812 if (extra != 0)
2813 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
2814 temp, 0, OPTAB_LIB_WIDEN);
2815 anti_adjust_stack (temp);
2818 #if defined (STACK_GROWS_DOWNWARD) \
2819 || (defined (ARGS_GROW_DOWNWARD) \
2820 && !defined (ACCUMULATE_OUTGOING_ARGS))
2822 /* Return the lowest stack address when STACK or ARGS grow downward and
2823 we are not aaccumulating outgoing arguments (the c4x port uses such
2824 conventions). */
2825 temp = virtual_outgoing_args_rtx;
2826 if (extra != 0 && below)
2827 temp = plus_constant (temp, extra);
2828 #else
2829 if (GET_CODE (size) == CONST_INT)
2830 temp = plus_constant (virtual_outgoing_args_rtx,
2831 - INTVAL (size) - (below ? 0 : extra));
2832 else if (extra != 0 && !below)
2833 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
2834 negate_rtx (Pmode, plus_constant (size, extra)));
2835 else
2836 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
2837 negate_rtx (Pmode, size));
2838 #endif
2840 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
2844 gen_push_operand ()
2846 return gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
2849 /* Return an rtx for the address of the beginning of a as-if-it-was-pushed
2850 block of SIZE bytes. */
2852 static rtx
2853 get_push_address (size)
2854 int size;
2856 register rtx temp;
2858 if (STACK_PUSH_CODE == POST_DEC)
2859 temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (size));
2860 else if (STACK_PUSH_CODE == POST_INC)
2861 temp = gen_rtx_MINUS (Pmode, stack_pointer_rtx, GEN_INT (size));
2862 else
2863 temp = stack_pointer_rtx;
2865 return copy_to_reg (temp);
2868 /* Generate code to push X onto the stack, assuming it has mode MODE and
2869 type TYPE.
2870 MODE is redundant except when X is a CONST_INT (since they don't
2871 carry mode info).
2872 SIZE is an rtx for the size of data to be copied (in bytes),
2873 needed only if X is BLKmode.
2875 ALIGN (in bytes) is maximum alignment we can assume.
2877 If PARTIAL and REG are both nonzero, then copy that many of the first
2878 words of X into registers starting with REG, and push the rest of X.
2879 The amount of space pushed is decreased by PARTIAL words,
2880 rounded *down* to a multiple of PARM_BOUNDARY.
2881 REG must be a hard register in this case.
2882 If REG is zero but PARTIAL is not, take any all others actions for an
2883 argument partially in registers, but do not actually load any
2884 registers.
2886 EXTRA is the amount in bytes of extra space to leave next to this arg.
2887 This is ignored if an argument block has already been allocated.
2889 On a machine that lacks real push insns, ARGS_ADDR is the address of
2890 the bottom of the argument block for this call. We use indexing off there
2891 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
2892 argument block has not been preallocated.
2894 ARGS_SO_FAR is the size of args previously pushed for this call.
2896 REG_PARM_STACK_SPACE is nonzero if functions require stack space
2897 for arguments passed in registers. If nonzero, it will be the number
2898 of bytes required. */
2900 void
2901 emit_push_insn (x, mode, type, size, align, partial, reg, extra,
2902 args_addr, args_so_far, reg_parm_stack_space,
2903 alignment_pad)
2904 register rtx x;
2905 enum machine_mode mode;
2906 tree type;
2907 rtx size;
2908 unsigned int align;
2909 int partial;
2910 rtx reg;
2911 int extra;
2912 rtx args_addr;
2913 rtx args_so_far;
2914 int reg_parm_stack_space;
2915 rtx alignment_pad;
2917 rtx xinner;
2918 enum direction stack_direction
2919 #ifdef STACK_GROWS_DOWNWARD
2920 = downward;
2921 #else
2922 = upward;
2923 #endif
2925 /* Decide where to pad the argument: `downward' for below,
2926 `upward' for above, or `none' for don't pad it.
2927 Default is below for small data on big-endian machines; else above. */
2928 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
2930 /* Invert direction if stack is post-update. */
2931 if (STACK_PUSH_CODE == POST_INC || STACK_PUSH_CODE == POST_DEC)
2932 if (where_pad != none)
2933 where_pad = (where_pad == downward ? upward : downward);
2935 xinner = x = protect_from_queue (x, 0);
2937 if (mode == BLKmode)
2939 /* Copy a block into the stack, entirely or partially. */
2941 register rtx temp;
2942 int used = partial * UNITS_PER_WORD;
2943 int offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
2944 int skip;
2946 if (size == 0)
2947 abort ();
2949 used -= offset;
2951 /* USED is now the # of bytes we need not copy to the stack
2952 because registers will take care of them. */
2954 if (partial != 0)
2955 xinner = change_address (xinner, BLKmode,
2956 plus_constant (XEXP (xinner, 0), used));
2958 /* If the partial register-part of the arg counts in its stack size,
2959 skip the part of stack space corresponding to the registers.
2960 Otherwise, start copying to the beginning of the stack space,
2961 by setting SKIP to 0. */
2962 skip = (reg_parm_stack_space == 0) ? 0 : used;
2964 #ifdef PUSH_ROUNDING
2965 /* Do it with several push insns if that doesn't take lots of insns
2966 and if there is no difficulty with push insns that skip bytes
2967 on the stack for alignment purposes. */
2968 if (args_addr == 0
2969 && GET_CODE (size) == CONST_INT
2970 && skip == 0
2971 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
2972 /* Here we avoid the case of a structure whose weak alignment
2973 forces many pushes of a small amount of data,
2974 and such small pushes do rounding that causes trouble. */
2975 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
2976 || align >= BIGGEST_ALIGNMENT / BITS_PER_UNIT
2977 || PUSH_ROUNDING (align) == align)
2978 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
2980 /* Push padding now if padding above and stack grows down,
2981 or if padding below and stack grows up.
2982 But if space already allocated, this has already been done. */
2983 if (extra && args_addr == 0
2984 && where_pad != none && where_pad != stack_direction)
2985 anti_adjust_stack (GEN_INT (extra));
2987 move_by_pieces (gen_rtx_MEM (BLKmode, gen_push_operand ()), xinner,
2988 INTVAL (size) - used, align);
2990 if (current_function_check_memory_usage && ! in_check_memory_usage)
2992 rtx temp;
2994 in_check_memory_usage = 1;
2995 temp = get_push_address (INTVAL(size) - used);
2996 if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
2997 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
2998 temp, Pmode,
2999 XEXP (xinner, 0), Pmode,
3000 GEN_INT (INTVAL(size) - used),
3001 TYPE_MODE (sizetype));
3002 else
3003 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
3004 temp, Pmode,
3005 GEN_INT (INTVAL(size) - used),
3006 TYPE_MODE (sizetype),
3007 GEN_INT (MEMORY_USE_RW),
3008 TYPE_MODE (integer_type_node));
3009 in_check_memory_usage = 0;
3012 else
3013 #endif /* PUSH_ROUNDING */
3015 /* Otherwise make space on the stack and copy the data
3016 to the address of that space. */
3018 /* Deduct words put into registers from the size we must copy. */
3019 if (partial != 0)
3021 if (GET_CODE (size) == CONST_INT)
3022 size = GEN_INT (INTVAL (size) - used);
3023 else
3024 size = expand_binop (GET_MODE (size), sub_optab, size,
3025 GEN_INT (used), NULL_RTX, 0,
3026 OPTAB_LIB_WIDEN);
3029 /* Get the address of the stack space.
3030 In this case, we do not deal with EXTRA separately.
3031 A single stack adjust will do. */
3032 if (! args_addr)
3034 temp = push_block (size, extra, where_pad == downward);
3035 extra = 0;
3037 else if (GET_CODE (args_so_far) == CONST_INT)
3038 temp = memory_address (BLKmode,
3039 plus_constant (args_addr,
3040 skip + INTVAL (args_so_far)));
3041 else
3042 temp = memory_address (BLKmode,
3043 plus_constant (gen_rtx_PLUS (Pmode,
3044 args_addr,
3045 args_so_far),
3046 skip));
3047 if (current_function_check_memory_usage && ! in_check_memory_usage)
3049 rtx target;
3051 in_check_memory_usage = 1;
3052 target = copy_to_reg (temp);
3053 if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
3054 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3055 target, Pmode,
3056 XEXP (xinner, 0), Pmode,
3057 size, TYPE_MODE (sizetype));
3058 else
3059 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
3060 target, Pmode,
3061 size, TYPE_MODE (sizetype),
3062 GEN_INT (MEMORY_USE_RW),
3063 TYPE_MODE (integer_type_node));
3064 in_check_memory_usage = 0;
3067 /* TEMP is the address of the block. Copy the data there. */
3068 if (GET_CODE (size) == CONST_INT
3069 && MOVE_BY_PIECES_P ((unsigned) INTVAL (size), align))
3071 move_by_pieces (gen_rtx_MEM (BLKmode, temp), xinner,
3072 INTVAL (size), align);
3073 goto ret;
3075 else
3077 rtx opalign = GEN_INT (align);
3078 enum machine_mode mode;
3079 rtx target = gen_rtx_MEM (BLKmode, temp);
3081 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3082 mode != VOIDmode;
3083 mode = GET_MODE_WIDER_MODE (mode))
3085 enum insn_code code = movstr_optab[(int) mode];
3086 insn_operand_predicate_fn pred;
3088 if (code != CODE_FOR_nothing
3089 && ((GET_CODE (size) == CONST_INT
3090 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3091 <= (GET_MODE_MASK (mode) >> 1)))
3092 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
3093 && (!(pred = insn_data[(int) code].operand[0].predicate)
3094 || ((*pred) (target, BLKmode)))
3095 && (!(pred = insn_data[(int) code].operand[1].predicate)
3096 || ((*pred) (xinner, BLKmode)))
3097 && (!(pred = insn_data[(int) code].operand[3].predicate)
3098 || ((*pred) (opalign, VOIDmode))))
3100 rtx op2 = convert_to_mode (mode, size, 1);
3101 rtx last = get_last_insn ();
3102 rtx pat;
3104 pred = insn_data[(int) code].operand[2].predicate;
3105 if (pred != 0 && ! (*pred) (op2, mode))
3106 op2 = copy_to_mode_reg (mode, op2);
3108 pat = GEN_FCN ((int) code) (target, xinner,
3109 op2, opalign);
3110 if (pat)
3112 emit_insn (pat);
3113 goto ret;
3115 else
3116 delete_insns_since (last);
3121 #ifndef ACCUMULATE_OUTGOING_ARGS
3122 /* If the source is referenced relative to the stack pointer,
3123 copy it to another register to stabilize it. We do not need
3124 to do this if we know that we won't be changing sp. */
3126 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3127 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3128 temp = copy_to_reg (temp);
3129 #endif
3131 /* Make inhibit_defer_pop nonzero around the library call
3132 to force it to pop the bcopy-arguments right away. */
3133 NO_DEFER_POP;
3134 #ifdef TARGET_MEM_FUNCTIONS
3135 emit_library_call (memcpy_libfunc, 0,
3136 VOIDmode, 3, temp, Pmode, XEXP (xinner, 0), Pmode,
3137 convert_to_mode (TYPE_MODE (sizetype),
3138 size, TREE_UNSIGNED (sizetype)),
3139 TYPE_MODE (sizetype));
3140 #else
3141 emit_library_call (bcopy_libfunc, 0,
3142 VOIDmode, 3, XEXP (xinner, 0), Pmode, temp, Pmode,
3143 convert_to_mode (TYPE_MODE (integer_type_node),
3144 size,
3145 TREE_UNSIGNED (integer_type_node)),
3146 TYPE_MODE (integer_type_node));
3147 #endif
3148 OK_DEFER_POP;
3151 else if (partial > 0)
3153 /* Scalar partly in registers. */
3155 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3156 int i;
3157 int not_stack;
3158 /* # words of start of argument
3159 that we must make space for but need not store. */
3160 int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
3161 int args_offset = INTVAL (args_so_far);
3162 int skip;
3164 /* Push padding now if padding above and stack grows down,
3165 or if padding below and stack grows up.
3166 But if space already allocated, this has already been done. */
3167 if (extra && args_addr == 0
3168 && where_pad != none && where_pad != stack_direction)
3169 anti_adjust_stack (GEN_INT (extra));
3171 /* If we make space by pushing it, we might as well push
3172 the real data. Otherwise, we can leave OFFSET nonzero
3173 and leave the space uninitialized. */
3174 if (args_addr == 0)
3175 offset = 0;
3177 /* Now NOT_STACK gets the number of words that we don't need to
3178 allocate on the stack. */
3179 not_stack = partial - offset;
3181 /* If the partial register-part of the arg counts in its stack size,
3182 skip the part of stack space corresponding to the registers.
3183 Otherwise, start copying to the beginning of the stack space,
3184 by setting SKIP to 0. */
3185 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3187 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3188 x = validize_mem (force_const_mem (mode, x));
3190 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3191 SUBREGs of such registers are not allowed. */
3192 if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER
3193 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3194 x = copy_to_reg (x);
3196 /* Loop over all the words allocated on the stack for this arg. */
3197 /* We can do it by words, because any scalar bigger than a word
3198 has a size a multiple of a word. */
3199 #ifndef PUSH_ARGS_REVERSED
3200 for (i = not_stack; i < size; i++)
3201 #else
3202 for (i = size - 1; i >= not_stack; i--)
3203 #endif
3204 if (i >= not_stack + offset)
3205 emit_push_insn (operand_subword_force (x, i, mode),
3206 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3207 0, args_addr,
3208 GEN_INT (args_offset + ((i - not_stack + skip)
3209 * UNITS_PER_WORD)),
3210 reg_parm_stack_space, alignment_pad);
3212 else
3214 rtx addr;
3215 rtx target = NULL_RTX;
3217 /* Push padding now if padding above and stack grows down,
3218 or if padding below and stack grows up.
3219 But if space already allocated, this has already been done. */
3220 if (extra && args_addr == 0
3221 && where_pad != none && where_pad != stack_direction)
3222 anti_adjust_stack (GEN_INT (extra));
3224 #ifdef PUSH_ROUNDING
3225 if (args_addr == 0)
3226 addr = gen_push_operand ();
3227 else
3228 #endif
3230 if (GET_CODE (args_so_far) == CONST_INT)
3231 addr
3232 = memory_address (mode,
3233 plus_constant (args_addr,
3234 INTVAL (args_so_far)));
3235 else
3236 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3237 args_so_far));
3238 target = addr;
3241 emit_move_insn (gen_rtx_MEM (mode, addr), x);
3243 if (current_function_check_memory_usage && ! in_check_memory_usage)
3245 in_check_memory_usage = 1;
3246 if (target == 0)
3247 target = get_push_address (GET_MODE_SIZE (mode));
3249 if (GET_CODE (x) == MEM && type && AGGREGATE_TYPE_P (type))
3250 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3251 target, Pmode,
3252 XEXP (x, 0), Pmode,
3253 GEN_INT (GET_MODE_SIZE (mode)),
3254 TYPE_MODE (sizetype));
3255 else
3256 emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
3257 target, Pmode,
3258 GEN_INT (GET_MODE_SIZE (mode)),
3259 TYPE_MODE (sizetype),
3260 GEN_INT (MEMORY_USE_RW),
3261 TYPE_MODE (integer_type_node));
3262 in_check_memory_usage = 0;
3266 ret:
3267 /* If part should go in registers, copy that part
3268 into the appropriate registers. Do this now, at the end,
3269 since mem-to-mem copies above may do function calls. */
3270 if (partial > 0 && reg != 0)
3272 /* Handle calls that pass values in multiple non-contiguous locations.
3273 The Irix 6 ABI has examples of this. */
3274 if (GET_CODE (reg) == PARALLEL)
3275 emit_group_load (reg, x, -1, align); /* ??? size? */
3276 else
3277 move_block_to_reg (REGNO (reg), x, partial, mode);
3280 if (extra && args_addr == 0 && where_pad == stack_direction)
3281 anti_adjust_stack (GEN_INT (extra));
3283 if (alignment_pad)
3284 anti_adjust_stack (alignment_pad);
3287 /* Expand an assignment that stores the value of FROM into TO.
3288 If WANT_VALUE is nonzero, return an rtx for the value of TO.
3289 (This may contain a QUEUED rtx;
3290 if the value is constant, this rtx is a constant.)
3291 Otherwise, the returned value is NULL_RTX.
3293 SUGGEST_REG is no longer actually used.
3294 It used to mean, copy the value through a register
3295 and return that register, if that is possible.
3296 We now use WANT_VALUE to decide whether to do this. */
3299 expand_assignment (to, from, want_value, suggest_reg)
3300 tree to, from;
3301 int want_value;
3302 int suggest_reg ATTRIBUTE_UNUSED;
3304 register rtx to_rtx = 0;
3305 rtx result;
3307 /* Don't crash if the lhs of the assignment was erroneous. */
3309 if (TREE_CODE (to) == ERROR_MARK)
3311 result = expand_expr (from, NULL_RTX, VOIDmode, 0);
3312 return want_value ? result : NULL_RTX;
3315 /* Assignment of a structure component needs special treatment
3316 if the structure component's rtx is not simply a MEM.
3317 Assignment of an array element at a constant index, and assignment of
3318 an array element in an unaligned packed structure field, has the same
3319 problem. */
3321 if (TREE_CODE (to) == COMPONENT_REF || TREE_CODE (to) == BIT_FIELD_REF
3322 || TREE_CODE (to) == ARRAY_REF)
3324 enum machine_mode mode1;
3325 int bitsize;
3326 int bitpos;
3327 tree offset;
3328 int unsignedp;
3329 int volatilep = 0;
3330 tree tem;
3331 unsigned int alignment;
3333 push_temp_slots ();
3334 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3335 &unsignedp, &volatilep, &alignment);
3337 /* If we are going to use store_bit_field and extract_bit_field,
3338 make sure to_rtx will be safe for multiple use. */
3340 if (mode1 == VOIDmode && want_value)
3341 tem = stabilize_reference (tem);
3343 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_DONT);
3344 if (offset != 0)
3346 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
3348 if (GET_CODE (to_rtx) != MEM)
3349 abort ();
3351 if (GET_MODE (offset_rtx) != ptr_mode)
3353 #ifdef POINTERS_EXTEND_UNSIGNED
3354 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
3355 #else
3356 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3357 #endif
3360 /* A constant address in TO_RTX can have VOIDmode, we must not try
3361 to call force_reg for that case. Avoid that case. */
3362 if (GET_CODE (to_rtx) == MEM
3363 && GET_MODE (to_rtx) == BLKmode
3364 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3365 && bitsize
3366 && (bitpos % bitsize) == 0
3367 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3368 && (alignment * BITS_PER_UNIT) == GET_MODE_ALIGNMENT (mode1))
3370 rtx temp = change_address (to_rtx, mode1,
3371 plus_constant (XEXP (to_rtx, 0),
3372 (bitpos /
3373 BITS_PER_UNIT)));
3374 if (GET_CODE (XEXP (temp, 0)) == REG)
3375 to_rtx = temp;
3376 else
3377 to_rtx = change_address (to_rtx, mode1,
3378 force_reg (GET_MODE (XEXP (temp, 0)),
3379 XEXP (temp, 0)));
3380 bitpos = 0;
3383 to_rtx = change_address (to_rtx, VOIDmode,
3384 gen_rtx_PLUS (ptr_mode, XEXP (to_rtx, 0),
3385 force_reg (ptr_mode,
3386 offset_rtx)));
3389 if (volatilep)
3391 if (GET_CODE (to_rtx) == MEM)
3393 /* When the offset is zero, to_rtx is the address of the
3394 structure we are storing into, and hence may be shared.
3395 We must make a new MEM before setting the volatile bit. */
3396 if (offset == 0)
3397 to_rtx = copy_rtx (to_rtx);
3399 MEM_VOLATILE_P (to_rtx) = 1;
3401 #if 0 /* This was turned off because, when a field is volatile
3402 in an object which is not volatile, the object may be in a register,
3403 and then we would abort over here. */
3404 else
3405 abort ();
3406 #endif
3409 if (TREE_CODE (to) == COMPONENT_REF
3410 && TREE_READONLY (TREE_OPERAND (to, 1)))
3412 if (offset == 0)
3413 to_rtx = copy_rtx (to_rtx);
3415 RTX_UNCHANGING_P (to_rtx) = 1;
3418 /* Check the access. */
3419 if (current_function_check_memory_usage && GET_CODE (to_rtx) == MEM)
3421 rtx to_addr;
3422 int size;
3423 int best_mode_size;
3424 enum machine_mode best_mode;
3426 best_mode = get_best_mode (bitsize, bitpos,
3427 TYPE_ALIGN (TREE_TYPE (tem)),
3428 mode1, volatilep);
3429 if (best_mode == VOIDmode)
3430 best_mode = QImode;
3432 best_mode_size = GET_MODE_BITSIZE (best_mode);
3433 to_addr = plus_constant (XEXP (to_rtx, 0), (bitpos / BITS_PER_UNIT));
3434 size = CEIL ((bitpos % best_mode_size) + bitsize, best_mode_size);
3435 size *= GET_MODE_SIZE (best_mode);
3437 /* Check the access right of the pointer. */
3438 if (size)
3439 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
3440 to_addr, Pmode,
3441 GEN_INT (size), TYPE_MODE (sizetype),
3442 GEN_INT (MEMORY_USE_WO),
3443 TYPE_MODE (integer_type_node));
3446 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
3447 (want_value
3448 /* Spurious cast makes HPUX compiler happy. */
3449 ? (enum machine_mode) TYPE_MODE (TREE_TYPE (to))
3450 : VOIDmode),
3451 unsignedp,
3452 /* Required alignment of containing datum. */
3453 alignment,
3454 int_size_in_bytes (TREE_TYPE (tem)),
3455 get_alias_set (to));
3456 preserve_temp_slots (result);
3457 free_temp_slots ();
3458 pop_temp_slots ();
3460 /* If the value is meaningful, convert RESULT to the proper mode.
3461 Otherwise, return nothing. */
3462 return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)),
3463 TYPE_MODE (TREE_TYPE (from)),
3464 result,
3465 TREE_UNSIGNED (TREE_TYPE (to)))
3466 : NULL_RTX);
3469 /* If the rhs is a function call and its value is not an aggregate,
3470 call the function before we start to compute the lhs.
3471 This is needed for correct code for cases such as
3472 val = setjmp (buf) on machines where reference to val
3473 requires loading up part of an address in a separate insn.
3475 Don't do this if TO is a VAR_DECL whose DECL_RTL is REG since it might be
3476 a promoted variable where the zero- or sign- extension needs to be done.
3477 Handling this in the normal way is safe because no computation is done
3478 before the call. */
3479 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from)
3480 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
3481 && ! (TREE_CODE (to) == VAR_DECL && GET_CODE (DECL_RTL (to)) == REG))
3483 rtx value;
3485 push_temp_slots ();
3486 value = expand_expr (from, NULL_RTX, VOIDmode, 0);
3487 if (to_rtx == 0)
3488 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
3490 /* Handle calls that return values in multiple non-contiguous locations.
3491 The Irix 6 ABI has examples of this. */
3492 if (GET_CODE (to_rtx) == PARALLEL)
3493 emit_group_load (to_rtx, value, int_size_in_bytes (TREE_TYPE (from)),
3494 TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
3495 else if (GET_MODE (to_rtx) == BLKmode)
3496 emit_block_move (to_rtx, value, expr_size (from),
3497 TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
3498 else
3500 #ifdef POINTERS_EXTEND_UNSIGNED
3501 if (TREE_CODE (TREE_TYPE (to)) == REFERENCE_TYPE
3502 || TREE_CODE (TREE_TYPE (to)) == POINTER_TYPE)
3503 value = convert_memory_address (GET_MODE (to_rtx), value);
3504 #endif
3505 emit_move_insn (to_rtx, value);
3507 preserve_temp_slots (to_rtx);
3508 free_temp_slots ();
3509 pop_temp_slots ();
3510 return want_value ? to_rtx : NULL_RTX;
3513 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3514 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3516 if (to_rtx == 0)
3518 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_WO);
3519 if (GET_CODE (to_rtx) == MEM)
3520 MEM_ALIAS_SET (to_rtx) = get_alias_set (to);
3523 /* Don't move directly into a return register. */
3524 if (TREE_CODE (to) == RESULT_DECL
3525 && (GET_CODE (to_rtx) == REG || GET_CODE (to_rtx) == PARALLEL))
3527 rtx temp;
3529 push_temp_slots ();
3530 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
3532 if (GET_CODE (to_rtx) == PARALLEL)
3533 emit_group_load (to_rtx, temp, int_size_in_bytes (TREE_TYPE (from)),
3534 TYPE_ALIGN (TREE_TYPE (from)) / BITS_PER_UNIT);
3535 else
3536 emit_move_insn (to_rtx, temp);
3538 preserve_temp_slots (to_rtx);
3539 free_temp_slots ();
3540 pop_temp_slots ();
3541 return want_value ? to_rtx : NULL_RTX;
3544 /* In case we are returning the contents of an object which overlaps
3545 the place the value is being stored, use a safe function when copying
3546 a value through a pointer into a structure value return block. */
3547 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
3548 && current_function_returns_struct
3549 && !current_function_returns_pcc_struct)
3551 rtx from_rtx, size;
3553 push_temp_slots ();
3554 size = expr_size (from);
3555 from_rtx = expand_expr (from, NULL_RTX, VOIDmode,
3556 EXPAND_MEMORY_USE_DONT);
3558 /* Copy the rights of the bitmap. */
3559 if (current_function_check_memory_usage)
3560 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3561 XEXP (to_rtx, 0), Pmode,
3562 XEXP (from_rtx, 0), Pmode,
3563 convert_to_mode (TYPE_MODE (sizetype),
3564 size, TREE_UNSIGNED (sizetype)),
3565 TYPE_MODE (sizetype));
3567 #ifdef TARGET_MEM_FUNCTIONS
3568 emit_library_call (memcpy_libfunc, 0,
3569 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
3570 XEXP (from_rtx, 0), Pmode,
3571 convert_to_mode (TYPE_MODE (sizetype),
3572 size, TREE_UNSIGNED (sizetype)),
3573 TYPE_MODE (sizetype));
3574 #else
3575 emit_library_call (bcopy_libfunc, 0,
3576 VOIDmode, 3, XEXP (from_rtx, 0), Pmode,
3577 XEXP (to_rtx, 0), Pmode,
3578 convert_to_mode (TYPE_MODE (integer_type_node),
3579 size, TREE_UNSIGNED (integer_type_node)),
3580 TYPE_MODE (integer_type_node));
3581 #endif
3583 preserve_temp_slots (to_rtx);
3584 free_temp_slots ();
3585 pop_temp_slots ();
3586 return want_value ? to_rtx : NULL_RTX;
3589 /* Compute FROM and store the value in the rtx we got. */
3591 push_temp_slots ();
3592 result = store_expr (from, to_rtx, want_value);
3593 preserve_temp_slots (result);
3594 free_temp_slots ();
3595 pop_temp_slots ();
3596 return want_value ? result : NULL_RTX;
3599 /* Generate code for computing expression EXP,
3600 and storing the value into TARGET.
3601 TARGET may contain a QUEUED rtx.
3603 If WANT_VALUE is nonzero, return a copy of the value
3604 not in TARGET, so that we can be sure to use the proper
3605 value in a containing expression even if TARGET has something
3606 else stored in it. If possible, we copy the value through a pseudo
3607 and return that pseudo. Or, if the value is constant, we try to
3608 return the constant. In some cases, we return a pseudo
3609 copied *from* TARGET.
3611 If the mode is BLKmode then we may return TARGET itself.
3612 It turns out that in BLKmode it doesn't cause a problem.
3613 because C has no operators that could combine two different
3614 assignments into the same BLKmode object with different values
3615 with no sequence point. Will other languages need this to
3616 be more thorough?
3618 If WANT_VALUE is 0, we return NULL, to make sure
3619 to catch quickly any cases where the caller uses the value
3620 and fails to set WANT_VALUE. */
3623 store_expr (exp, target, want_value)
3624 register tree exp;
3625 register rtx target;
3626 int want_value;
3628 register rtx temp;
3629 int dont_return_target = 0;
3631 if (TREE_CODE (exp) == COMPOUND_EXPR)
3633 /* Perform first part of compound expression, then assign from second
3634 part. */
3635 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
3636 emit_queue ();
3637 return store_expr (TREE_OPERAND (exp, 1), target, want_value);
3639 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
3641 /* For conditional expression, get safe form of the target. Then
3642 test the condition, doing the appropriate assignment on either
3643 side. This avoids the creation of unnecessary temporaries.
3644 For non-BLKmode, it is more efficient not to do this. */
3646 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
3648 emit_queue ();
3649 target = protect_from_queue (target, 1);
3651 do_pending_stack_adjust ();
3652 NO_DEFER_POP;
3653 jumpifnot (TREE_OPERAND (exp, 0), lab1);
3654 start_cleanup_deferral ();
3655 store_expr (TREE_OPERAND (exp, 1), target, 0);
3656 end_cleanup_deferral ();
3657 emit_queue ();
3658 emit_jump_insn (gen_jump (lab2));
3659 emit_barrier ();
3660 emit_label (lab1);
3661 start_cleanup_deferral ();
3662 store_expr (TREE_OPERAND (exp, 2), target, 0);
3663 end_cleanup_deferral ();
3664 emit_queue ();
3665 emit_label (lab2);
3666 OK_DEFER_POP;
3668 return want_value ? target : NULL_RTX;
3670 else if (queued_subexp_p (target))
3671 /* If target contains a postincrement, let's not risk
3672 using it as the place to generate the rhs. */
3674 if (GET_MODE (target) != BLKmode && GET_MODE (target) != VOIDmode)
3676 /* Expand EXP into a new pseudo. */
3677 temp = gen_reg_rtx (GET_MODE (target));
3678 temp = expand_expr (exp, temp, GET_MODE (target), 0);
3680 else
3681 temp = expand_expr (exp, NULL_RTX, GET_MODE (target), 0);
3683 /* If target is volatile, ANSI requires accessing the value
3684 *from* the target, if it is accessed. So make that happen.
3685 In no case return the target itself. */
3686 if (! MEM_VOLATILE_P (target) && want_value)
3687 dont_return_target = 1;
3689 else if (want_value && GET_CODE (target) == MEM && ! MEM_VOLATILE_P (target)
3690 && GET_MODE (target) != BLKmode)
3691 /* If target is in memory and caller wants value in a register instead,
3692 arrange that. Pass TARGET as target for expand_expr so that,
3693 if EXP is another assignment, WANT_VALUE will be nonzero for it.
3694 We know expand_expr will not use the target in that case.
3695 Don't do this if TARGET is volatile because we are supposed
3696 to write it and then read it. */
3698 temp = expand_expr (exp, target, GET_MODE (target), 0);
3699 if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode)
3700 temp = copy_to_reg (temp);
3701 dont_return_target = 1;
3703 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
3704 /* If this is an scalar in a register that is stored in a wider mode
3705 than the declared mode, compute the result into its declared mode
3706 and then convert to the wider mode. Our value is the computed
3707 expression. */
3709 /* If we don't want a value, we can do the conversion inside EXP,
3710 which will often result in some optimizations. Do the conversion
3711 in two steps: first change the signedness, if needed, then
3712 the extend. But don't do this if the type of EXP is a subtype
3713 of something else since then the conversion might involve
3714 more than just converting modes. */
3715 if (! want_value && INTEGRAL_TYPE_P (TREE_TYPE (exp))
3716 && TREE_TYPE (TREE_TYPE (exp)) == 0)
3718 if (TREE_UNSIGNED (TREE_TYPE (exp))
3719 != SUBREG_PROMOTED_UNSIGNED_P (target))
3721 = convert
3722 (signed_or_unsigned_type (SUBREG_PROMOTED_UNSIGNED_P (target),
3723 TREE_TYPE (exp)),
3724 exp);
3726 exp = convert (type_for_mode (GET_MODE (SUBREG_REG (target)),
3727 SUBREG_PROMOTED_UNSIGNED_P (target)),
3728 exp);
3731 temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
3733 /* If TEMP is a volatile MEM and we want a result value, make
3734 the access now so it gets done only once. Likewise if
3735 it contains TARGET. */
3736 if (GET_CODE (temp) == MEM && want_value
3737 && (MEM_VOLATILE_P (temp)
3738 || reg_mentioned_p (SUBREG_REG (target), XEXP (temp, 0))))
3739 temp = copy_to_reg (temp);
3741 /* If TEMP is a VOIDmode constant, use convert_modes to make
3742 sure that we properly convert it. */
3743 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
3744 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
3745 TYPE_MODE (TREE_TYPE (exp)), temp,
3746 SUBREG_PROMOTED_UNSIGNED_P (target));
3748 convert_move (SUBREG_REG (target), temp,
3749 SUBREG_PROMOTED_UNSIGNED_P (target));
3751 /* If we promoted a constant, change the mode back down to match
3752 target. Otherwise, the caller might get confused by a result whose
3753 mode is larger than expected. */
3755 if (want_value && GET_MODE (temp) != GET_MODE (target)
3756 && GET_MODE (temp) != VOIDmode)
3758 temp = gen_rtx_SUBREG (GET_MODE (target), temp, 0);
3759 SUBREG_PROMOTED_VAR_P (temp) = 1;
3760 SUBREG_PROMOTED_UNSIGNED_P (temp)
3761 = SUBREG_PROMOTED_UNSIGNED_P (target);
3764 return want_value ? temp : NULL_RTX;
3766 else
3768 temp = expand_expr (exp, target, GET_MODE (target), 0);
3769 /* Return TARGET if it's a specified hardware register.
3770 If TARGET is a volatile mem ref, either return TARGET
3771 or return a reg copied *from* TARGET; ANSI requires this.
3773 Otherwise, if TEMP is not TARGET, return TEMP
3774 if it is constant (for efficiency),
3775 or if we really want the correct value. */
3776 if (!(target && GET_CODE (target) == REG
3777 && REGNO (target) < FIRST_PSEUDO_REGISTER)
3778 && !(GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
3779 && ! rtx_equal_p (temp, target)
3780 && (CONSTANT_P (temp) || want_value))
3781 dont_return_target = 1;
3784 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
3785 the same as that of TARGET, adjust the constant. This is needed, for
3786 example, in case it is a CONST_DOUBLE and we want only a word-sized
3787 value. */
3788 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
3789 && TREE_CODE (exp) != ERROR_MARK
3790 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
3791 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
3792 temp, TREE_UNSIGNED (TREE_TYPE (exp)));
3794 if (current_function_check_memory_usage
3795 && GET_CODE (target) == MEM
3796 && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
3798 if (GET_CODE (temp) == MEM)
3799 emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
3800 XEXP (target, 0), Pmode,
3801 XEXP (temp, 0), Pmode,
3802 expr_size (exp), TYPE_MODE (sizetype));
3803 else
3804 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
3805 XEXP (target, 0), Pmode,
3806 expr_size (exp), TYPE_MODE (sizetype),
3807 GEN_INT (MEMORY_USE_WO),
3808 TYPE_MODE (integer_type_node));
3811 /* If value was not generated in the target, store it there.
3812 Convert the value to TARGET's type first if nec. */
3813 /* If TEMP and TARGET compare equal according to rtx_equal_p, but
3814 one or both of them are volatile memory refs, we have to distinguish
3815 two cases:
3816 - expand_expr has used TARGET. In this case, we must not generate
3817 another copy. This can be detected by TARGET being equal according
3818 to == .
3819 - expand_expr has not used TARGET - that means that the source just
3820 happens to have the same RTX form. Since temp will have been created
3821 by expand_expr, it will compare unequal according to == .
3822 We must generate a copy in this case, to reach the correct number
3823 of volatile memory references. */
3825 if ((! rtx_equal_p (temp, target)
3826 || (temp != target && (side_effects_p (temp)
3827 || side_effects_p (target))))
3828 && TREE_CODE (exp) != ERROR_MARK)
3830 target = protect_from_queue (target, 1);
3831 if (GET_MODE (temp) != GET_MODE (target)
3832 && GET_MODE (temp) != VOIDmode)
3834 int unsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
3835 if (dont_return_target)
3837 /* In this case, we will return TEMP,
3838 so make sure it has the proper mode.
3839 But don't forget to store the value into TARGET. */
3840 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
3841 emit_move_insn (target, temp);
3843 else
3844 convert_move (target, temp, unsignedp);
3847 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
3849 /* Handle copying a string constant into an array.
3850 The string constant may be shorter than the array.
3851 So copy just the string's actual length, and clear the rest. */
3852 rtx size;
3853 rtx addr;
3855 /* Get the size of the data type of the string,
3856 which is actually the size of the target. */
3857 size = expr_size (exp);
3858 if (GET_CODE (size) == CONST_INT
3859 && INTVAL (size) < TREE_STRING_LENGTH (exp))
3860 emit_block_move (target, temp, size,
3861 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3862 else
3864 /* Compute the size of the data to copy from the string. */
3865 tree copy_size
3866 = size_binop (MIN_EXPR,
3867 make_tree (sizetype, size),
3868 size_int (TREE_STRING_LENGTH (exp)));
3869 rtx copy_size_rtx = expand_expr (copy_size, NULL_RTX,
3870 VOIDmode, 0);
3871 rtx label = 0;
3873 /* Copy that much. */
3874 emit_block_move (target, temp, copy_size_rtx,
3875 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3877 /* Figure out how much is left in TARGET that we have to clear.
3878 Do all calculations in ptr_mode. */
3880 addr = XEXP (target, 0);
3881 addr = convert_modes (ptr_mode, Pmode, addr, 1);
3883 if (GET_CODE (copy_size_rtx) == CONST_INT)
3885 addr = plus_constant (addr, TREE_STRING_LENGTH (exp));
3886 size = plus_constant (size, - TREE_STRING_LENGTH (exp));
3888 else
3890 addr = force_reg (ptr_mode, addr);
3891 addr = expand_binop (ptr_mode, add_optab, addr,
3892 copy_size_rtx, NULL_RTX, 0,
3893 OPTAB_LIB_WIDEN);
3895 size = expand_binop (ptr_mode, sub_optab, size,
3896 copy_size_rtx, NULL_RTX, 0,
3897 OPTAB_LIB_WIDEN);
3899 label = gen_label_rtx ();
3900 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
3901 GET_MODE (size), 0, 0, label);
3904 if (size != const0_rtx)
3906 /* Be sure we can write on ADDR. */
3907 if (current_function_check_memory_usage)
3908 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
3909 addr, Pmode,
3910 size, TYPE_MODE (sizetype),
3911 GEN_INT (MEMORY_USE_WO),
3912 TYPE_MODE (integer_type_node));
3913 #ifdef TARGET_MEM_FUNCTIONS
3914 emit_library_call (memset_libfunc, 0, VOIDmode, 3,
3915 addr, ptr_mode,
3916 const0_rtx, TYPE_MODE (integer_type_node),
3917 convert_to_mode (TYPE_MODE (sizetype),
3918 size,
3919 TREE_UNSIGNED (sizetype)),
3920 TYPE_MODE (sizetype));
3921 #else
3922 emit_library_call (bzero_libfunc, 0, VOIDmode, 2,
3923 addr, ptr_mode,
3924 convert_to_mode (TYPE_MODE (integer_type_node),
3925 size,
3926 TREE_UNSIGNED (integer_type_node)),
3927 TYPE_MODE (integer_type_node));
3928 #endif
3931 if (label)
3932 emit_label (label);
3935 /* Handle calls that return values in multiple non-contiguous locations.
3936 The Irix 6 ABI has examples of this. */
3937 else if (GET_CODE (target) == PARALLEL)
3938 emit_group_load (target, temp, int_size_in_bytes (TREE_TYPE (exp)),
3939 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3940 else if (GET_MODE (temp) == BLKmode)
3941 emit_block_move (target, temp, expr_size (exp),
3942 TYPE_ALIGN (TREE_TYPE (exp)) / BITS_PER_UNIT);
3943 else
3944 emit_move_insn (target, temp);
3947 /* If we don't want a value, return NULL_RTX. */
3948 if (! want_value)
3949 return NULL_RTX;
3951 /* If we are supposed to return TEMP, do so as long as it isn't a MEM.
3952 ??? The latter test doesn't seem to make sense. */
3953 else if (dont_return_target && GET_CODE (temp) != MEM)
3954 return temp;
3956 /* Return TARGET itself if it is a hard register. */
3957 else if (want_value && GET_MODE (target) != BLKmode
3958 && ! (GET_CODE (target) == REG
3959 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3960 return copy_to_reg (target);
3962 else
3963 return target;
3966 /* Return 1 if EXP just contains zeros. */
3968 static int
3969 is_zeros_p (exp)
3970 tree exp;
3972 tree elt;
3974 switch (TREE_CODE (exp))
3976 case CONVERT_EXPR:
3977 case NOP_EXPR:
3978 case NON_LVALUE_EXPR:
3979 return is_zeros_p (TREE_OPERAND (exp, 0));
3981 case INTEGER_CST:
3982 return integer_zerop (exp);
3984 case COMPLEX_CST:
3985 return
3986 is_zeros_p (TREE_REALPART (exp)) && is_zeros_p (TREE_IMAGPART (exp));
3988 case REAL_CST:
3989 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (exp), dconst0);
3991 case CONSTRUCTOR:
3992 if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
3993 return CONSTRUCTOR_ELTS (exp) == NULL_TREE;
3994 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
3995 if (! is_zeros_p (TREE_VALUE (elt)))
3996 return 0;
3998 return 1;
4000 default:
4001 return 0;
4005 /* Return 1 if EXP contains mostly (3/4) zeros. */
4007 static int
4008 mostly_zeros_p (exp)
4009 tree exp;
4011 if (TREE_CODE (exp) == CONSTRUCTOR)
4013 int elts = 0, zeros = 0;
4014 tree elt = CONSTRUCTOR_ELTS (exp);
4015 if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
4017 /* If there are no ranges of true bits, it is all zero. */
4018 return elt == NULL_TREE;
4020 for (; elt; elt = TREE_CHAIN (elt))
4022 /* We do not handle the case where the index is a RANGE_EXPR,
4023 so the statistic will be somewhat inaccurate.
4024 We do make a more accurate count in store_constructor itself,
4025 so since this function is only used for nested array elements,
4026 this should be close enough. */
4027 if (mostly_zeros_p (TREE_VALUE (elt)))
4028 zeros++;
4029 elts++;
4032 return 4 * zeros >= 3 * elts;
4035 return is_zeros_p (exp);
4038 /* Helper function for store_constructor.
4039 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4040 TYPE is the type of the CONSTRUCTOR, not the element type.
4041 ALIGN and CLEARED are as for store_constructor.
4043 This provides a recursive shortcut back to store_constructor when it isn't
4044 necessary to go through store_field. This is so that we can pass through
4045 the cleared field to let store_constructor know that we may not have to
4046 clear a substructure if the outer structure has already been cleared. */
4048 static void
4049 store_constructor_field (target, bitsize, bitpos,
4050 mode, exp, type, align, cleared)
4051 rtx target;
4052 int bitsize, bitpos;
4053 enum machine_mode mode;
4054 tree exp, type;
4055 unsigned int align;
4056 int cleared;
4058 if (TREE_CODE (exp) == CONSTRUCTOR
4059 && bitpos % BITS_PER_UNIT == 0
4060 /* If we have a non-zero bitpos for a register target, then we just
4061 let store_field do the bitfield handling. This is unlikely to
4062 generate unnecessary clear instructions anyways. */
4063 && (bitpos == 0 || GET_CODE (target) == MEM))
4065 if (bitpos != 0)
4066 target
4067 = change_address (target,
4068 GET_MODE (target) == BLKmode
4069 || 0 != (bitpos
4070 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4071 ? BLKmode : VOIDmode,
4072 plus_constant (XEXP (target, 0),
4073 bitpos / BITS_PER_UNIT));
4074 store_constructor (exp, target, align, cleared, bitsize / BITS_PER_UNIT);
4076 else
4077 store_field (target, bitsize, bitpos, mode, exp, VOIDmode, 0,
4078 (align + BITS_PER_UNIT - 1) / BITS_PER_UNIT,
4079 int_size_in_bytes (type), 0);
4082 /* Store the value of constructor EXP into the rtx TARGET.
4083 TARGET is either a REG or a MEM.
4084 ALIGN is the maximum known alignment for TARGET, in bits.
4085 CLEARED is true if TARGET is known to have been zero'd.
4086 SIZE is the number of bytes of TARGET we are allowed to modify: this
4087 may not be the same as the size of EXP if we are assigning to a field
4088 which has been packed to exclude padding bits. */
4090 static void
4091 store_constructor (exp, target, align, cleared, size)
4092 tree exp;
4093 rtx target;
4094 unsigned int align;
4095 int cleared;
4096 int size;
4098 tree type = TREE_TYPE (exp);
4099 #ifdef WORD_REGISTER_OPERATIONS
4100 rtx exp_size = expr_size (exp);
4101 #endif
4103 /* We know our target cannot conflict, since safe_from_p has been called. */
4104 #if 0
4105 /* Don't try copying piece by piece into a hard register
4106 since that is vulnerable to being clobbered by EXP.
4107 Instead, construct in a pseudo register and then copy it all. */
4108 if (GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER)
4110 rtx temp = gen_reg_rtx (GET_MODE (target));
4111 store_constructor (exp, temp, align, cleared, size);
4112 emit_move_insn (target, temp);
4113 return;
4115 #endif
4117 if (TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
4118 || TREE_CODE (type) == QUAL_UNION_TYPE)
4120 register tree elt;
4122 /* Inform later passes that the whole union value is dead. */
4123 if ((TREE_CODE (type) == UNION_TYPE
4124 || TREE_CODE (type) == QUAL_UNION_TYPE)
4125 && ! cleared)
4127 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4129 /* If the constructor is empty, clear the union. */
4130 if (! CONSTRUCTOR_ELTS (exp) && ! cleared)
4131 clear_storage (target, expr_size (exp),
4132 TYPE_ALIGN (type) / BITS_PER_UNIT);
4135 /* If we are building a static constructor into a register,
4136 set the initial value as zero so we can fold the value into
4137 a constant. But if more than one register is involved,
4138 this probably loses. */
4139 else if (GET_CODE (target) == REG && TREE_STATIC (exp)
4140 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4142 if (! cleared)
4143 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4145 cleared = 1;
4148 /* If the constructor has fewer fields than the structure
4149 or if we are initializing the structure to mostly zeros,
4150 clear the whole structure first. */
4151 else if (size > 0
4152 && ((list_length (CONSTRUCTOR_ELTS (exp))
4153 != list_length (TYPE_FIELDS (type)))
4154 || mostly_zeros_p (exp)))
4156 if (! cleared)
4157 clear_storage (target, GEN_INT (size),
4158 (align + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
4160 cleared = 1;
4162 else if (! cleared)
4163 /* Inform later passes that the old value is dead. */
4164 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4166 /* Store each element of the constructor into
4167 the corresponding field of TARGET. */
4169 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
4171 register tree field = TREE_PURPOSE (elt);
4172 #ifdef WORD_REGISTER_OPERATIONS
4173 tree value = TREE_VALUE (elt);
4174 #endif
4175 register enum machine_mode mode;
4176 int bitsize;
4177 int bitpos = 0;
4178 int unsignedp;
4179 tree pos, constant = 0, offset = 0;
4180 rtx to_rtx = target;
4182 /* Just ignore missing fields.
4183 We cleared the whole structure, above,
4184 if any fields are missing. */
4185 if (field == 0)
4186 continue;
4188 if (cleared && is_zeros_p (TREE_VALUE (elt)))
4189 continue;
4191 if (TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
4192 bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
4193 else
4194 bitsize = -1;
4196 unsignedp = TREE_UNSIGNED (field);
4197 mode = DECL_MODE (field);
4198 if (DECL_BIT_FIELD (field))
4199 mode = VOIDmode;
4201 pos = DECL_FIELD_BITPOS (field);
4202 if (TREE_CODE (pos) == INTEGER_CST)
4203 constant = pos;
4204 else if (TREE_CODE (pos) == PLUS_EXPR
4205 && TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
4206 constant = TREE_OPERAND (pos, 1), offset = TREE_OPERAND (pos, 0);
4207 else
4208 offset = pos;
4210 if (constant)
4211 bitpos = TREE_INT_CST_LOW (constant);
4213 if (offset)
4215 rtx offset_rtx;
4217 if (contains_placeholder_p (offset))
4218 offset = build (WITH_RECORD_EXPR, bitsizetype,
4219 offset, make_tree (TREE_TYPE (exp), target));
4221 offset = size_binop (EXACT_DIV_EXPR, offset,
4222 bitsize_int (BITS_PER_UNIT));
4223 offset = convert (sizetype, offset);
4225 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
4226 if (GET_CODE (to_rtx) != MEM)
4227 abort ();
4229 if (GET_MODE (offset_rtx) != ptr_mode)
4231 #ifdef POINTERS_EXTEND_UNSIGNED
4232 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
4233 #else
4234 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4235 #endif
4238 to_rtx
4239 = change_address (to_rtx, VOIDmode,
4240 gen_rtx_PLUS (ptr_mode, XEXP (to_rtx, 0),
4241 force_reg (ptr_mode,
4242 offset_rtx)));
4245 if (TREE_READONLY (field))
4247 if (GET_CODE (to_rtx) == MEM)
4248 to_rtx = copy_rtx (to_rtx);
4250 RTX_UNCHANGING_P (to_rtx) = 1;
4253 #ifdef WORD_REGISTER_OPERATIONS
4254 /* If this initializes a field that is smaller than a word, at the
4255 start of a word, try to widen it to a full word.
4256 This special case allows us to output C++ member function
4257 initializations in a form that the optimizers can understand. */
4258 if (constant
4259 && GET_CODE (target) == REG
4260 && bitsize < BITS_PER_WORD
4261 && bitpos % BITS_PER_WORD == 0
4262 && GET_MODE_CLASS (mode) == MODE_INT
4263 && TREE_CODE (value) == INTEGER_CST
4264 && GET_CODE (exp_size) == CONST_INT
4265 && bitpos + BITS_PER_WORD <= INTVAL (exp_size) * BITS_PER_UNIT)
4267 tree type = TREE_TYPE (value);
4268 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4270 type = type_for_size (BITS_PER_WORD, TREE_UNSIGNED (type));
4271 value = convert (type, value);
4273 if (BYTES_BIG_ENDIAN)
4274 value
4275 = fold (build (LSHIFT_EXPR, type, value,
4276 build_int_2 (BITS_PER_WORD - bitsize, 0)));
4277 bitsize = BITS_PER_WORD;
4278 mode = word_mode;
4280 #endif
4281 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4282 TREE_VALUE (elt), type,
4283 MIN (align,
4284 DECL_ALIGN (TREE_PURPOSE (elt))),
4285 cleared);
4288 else if (TREE_CODE (type) == ARRAY_TYPE)
4290 register tree elt;
4291 register int i;
4292 int need_to_clear;
4293 tree domain = TYPE_DOMAIN (type);
4294 HOST_WIDE_INT minelt = TREE_INT_CST_LOW (TYPE_MIN_VALUE (domain));
4295 HOST_WIDE_INT maxelt = TREE_INT_CST_LOW (TYPE_MAX_VALUE (domain));
4296 tree elttype = TREE_TYPE (type);
4298 /* If the constructor has fewer elements than the array,
4299 clear the whole array first. Similarly if this is
4300 static constructor of a non-BLKmode object. */
4301 if (cleared || (GET_CODE (target) == REG && TREE_STATIC (exp)))
4302 need_to_clear = 1;
4303 else
4305 HOST_WIDE_INT count = 0, zero_count = 0;
4306 need_to_clear = 0;
4307 /* This loop is a more accurate version of the loop in
4308 mostly_zeros_p (it handles RANGE_EXPR in an index).
4309 It is also needed to check for missing elements. */
4310 for (elt = CONSTRUCTOR_ELTS (exp);
4311 elt != NULL_TREE;
4312 elt = TREE_CHAIN (elt))
4314 tree index = TREE_PURPOSE (elt);
4315 HOST_WIDE_INT this_node_count;
4316 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4318 tree lo_index = TREE_OPERAND (index, 0);
4319 tree hi_index = TREE_OPERAND (index, 1);
4321 if (TREE_CODE (lo_index) != INTEGER_CST
4322 || TREE_CODE (hi_index) != INTEGER_CST)
4324 need_to_clear = 1;
4325 break;
4327 this_node_count = (TREE_INT_CST_LOW (hi_index)
4328 - TREE_INT_CST_LOW (lo_index) + 1);
4330 else
4331 this_node_count = 1;
4332 count += this_node_count;
4333 if (mostly_zeros_p (TREE_VALUE (elt)))
4334 zero_count += this_node_count;
4336 /* Clear the entire array first if there are any missing elements,
4337 or if the incidence of zero elements is >= 75%. */
4338 if (count < maxelt - minelt + 1
4339 || 4 * zero_count >= 3 * count)
4340 need_to_clear = 1;
4342 if (need_to_clear && size > 0)
4344 if (! cleared)
4345 clear_storage (target, GEN_INT (size),
4346 (align + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
4347 cleared = 1;
4349 else
4350 /* Inform later passes that the old value is dead. */
4351 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4353 /* Store each element of the constructor into
4354 the corresponding element of TARGET, determined
4355 by counting the elements. */
4356 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
4357 elt;
4358 elt = TREE_CHAIN (elt), i++)
4360 register enum machine_mode mode;
4361 int bitsize;
4362 int bitpos;
4363 int unsignedp;
4364 tree value = TREE_VALUE (elt);
4365 unsigned int align = TYPE_ALIGN (TREE_TYPE (value));
4366 tree index = TREE_PURPOSE (elt);
4367 rtx xtarget = target;
4369 if (cleared && is_zeros_p (value))
4370 continue;
4372 unsignedp = TREE_UNSIGNED (elttype);
4373 mode = TYPE_MODE (elttype);
4374 if (mode == BLKmode)
4376 if (TREE_CODE (TYPE_SIZE (elttype)) == INTEGER_CST
4377 && TREE_INT_CST_HIGH (TYPE_SIZE (elttype)) == 0)
4378 bitsize = TREE_INT_CST_LOW (TYPE_SIZE (elttype));
4379 else
4380 bitsize = -1;
4382 else
4383 bitsize = GET_MODE_BITSIZE (mode);
4385 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4387 tree lo_index = TREE_OPERAND (index, 0);
4388 tree hi_index = TREE_OPERAND (index, 1);
4389 rtx index_r, pos_rtx, addr, hi_r, loop_top, loop_end;
4390 struct nesting *loop;
4391 HOST_WIDE_INT lo, hi, count;
4392 tree position;
4394 /* If the range is constant and "small", unroll the loop. */
4395 if (TREE_CODE (lo_index) == INTEGER_CST
4396 && TREE_CODE (hi_index) == INTEGER_CST
4397 && (lo = TREE_INT_CST_LOW (lo_index),
4398 hi = TREE_INT_CST_LOW (hi_index),
4399 count = hi - lo + 1,
4400 (GET_CODE (target) != MEM
4401 || count <= 2
4402 || (TREE_CODE (TYPE_SIZE (elttype)) == INTEGER_CST
4403 && TREE_INT_CST_LOW (TYPE_SIZE (elttype)) * count
4404 <= 40 * 8))))
4406 lo -= minelt; hi -= minelt;
4407 for (; lo <= hi; lo++)
4409 bitpos = lo * TREE_INT_CST_LOW (TYPE_SIZE (elttype));
4410 store_constructor_field (target, bitsize, bitpos, mode,
4411 value, type, align, cleared);
4414 else
4416 hi_r = expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
4417 loop_top = gen_label_rtx ();
4418 loop_end = gen_label_rtx ();
4420 unsignedp = TREE_UNSIGNED (domain);
4422 index = build_decl (VAR_DECL, NULL_TREE, domain);
4424 DECL_RTL (index) = index_r
4425 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
4426 &unsignedp, 0));
4428 if (TREE_CODE (value) == SAVE_EXPR
4429 && SAVE_EXPR_RTL (value) == 0)
4431 /* Make sure value gets expanded once before the
4432 loop. */
4433 expand_expr (value, const0_rtx, VOIDmode, 0);
4434 emit_queue ();
4436 store_expr (lo_index, index_r, 0);
4437 loop = expand_start_loop (0);
4439 /* Assign value to element index. */
4440 position
4441 = convert (ssizetype,
4442 fold (build (MINUS_EXPR, TREE_TYPE (index),
4443 index, TYPE_MIN_VALUE (domain))));
4444 position = size_binop (MULT_EXPR, position,
4445 convert (ssizetype,
4446 TYPE_SIZE_UNIT (elttype)));
4448 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4449 addr = gen_rtx_PLUS (Pmode, XEXP (target, 0), pos_rtx);
4450 xtarget = change_address (target, mode, addr);
4451 if (TREE_CODE (value) == CONSTRUCTOR)
4452 store_constructor (value, xtarget, align, cleared,
4453 bitsize / BITS_PER_UNIT);
4454 else
4455 store_expr (value, xtarget, 0);
4457 expand_exit_loop_if_false (loop,
4458 build (LT_EXPR, integer_type_node,
4459 index, hi_index));
4461 expand_increment (build (PREINCREMENT_EXPR,
4462 TREE_TYPE (index),
4463 index, integer_one_node), 0, 0);
4464 expand_end_loop ();
4465 emit_label (loop_end);
4468 else if ((index != 0 && TREE_CODE (index) != INTEGER_CST)
4469 || TREE_CODE (TYPE_SIZE (elttype)) != INTEGER_CST)
4471 rtx pos_rtx, addr;
4472 tree position;
4474 if (index == 0)
4475 index = ssize_int (1);
4477 if (minelt)
4478 index = convert (ssizetype,
4479 fold (build (MINUS_EXPR, index,
4480 TYPE_MIN_VALUE (domain))));
4481 position = size_binop (MULT_EXPR, index,
4482 convert (ssizetype,
4483 TYPE_SIZE_UNIT (elttype)));
4484 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4485 addr = gen_rtx_PLUS (Pmode, XEXP (target, 0), pos_rtx);
4486 xtarget = change_address (target, mode, addr);
4487 store_expr (value, xtarget, 0);
4489 else
4491 if (index != 0)
4492 bitpos = ((TREE_INT_CST_LOW (index) - minelt)
4493 * TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
4494 else
4495 bitpos = (i * TREE_INT_CST_LOW (TYPE_SIZE (elttype)));
4496 store_constructor_field (target, bitsize, bitpos, mode, value,
4497 type, align, cleared);
4501 /* set constructor assignments */
4502 else if (TREE_CODE (type) == SET_TYPE)
4504 tree elt = CONSTRUCTOR_ELTS (exp);
4505 int nbytes = int_size_in_bytes (type), nbits;
4506 tree domain = TYPE_DOMAIN (type);
4507 tree domain_min, domain_max, bitlength;
4509 /* The default implementation strategy is to extract the constant
4510 parts of the constructor, use that to initialize the target,
4511 and then "or" in whatever non-constant ranges we need in addition.
4513 If a large set is all zero or all ones, it is
4514 probably better to set it using memset (if available) or bzero.
4515 Also, if a large set has just a single range, it may also be
4516 better to first clear all the first clear the set (using
4517 bzero/memset), and set the bits we want. */
4519 /* Check for all zeros. */
4520 if (elt == NULL_TREE && size > 0)
4522 if (!cleared)
4523 clear_storage (target, GEN_INT (size),
4524 TYPE_ALIGN (type) / BITS_PER_UNIT);
4525 return;
4528 domain_min = convert (sizetype, TYPE_MIN_VALUE (domain));
4529 domain_max = convert (sizetype, TYPE_MAX_VALUE (domain));
4530 bitlength = size_binop (PLUS_EXPR,
4531 size_diffop (domain_max, domain_min),
4532 ssize_int (1));
4534 if (nbytes < 0 || TREE_CODE (bitlength) != INTEGER_CST)
4535 abort ();
4536 nbits = TREE_INT_CST_LOW (bitlength);
4538 /* For "small" sets, or "medium-sized" (up to 32 bytes) sets that
4539 are "complicated" (more than one range), initialize (the
4540 constant parts) by copying from a constant. */
4541 if (GET_MODE (target) != BLKmode || nbits <= 2 * BITS_PER_WORD
4542 || (nbytes <= 32 && TREE_CHAIN (elt) != NULL_TREE))
4544 int set_word_size = TYPE_ALIGN (TREE_TYPE (exp));
4545 enum machine_mode mode = mode_for_size (set_word_size, MODE_INT, 1);
4546 char *bit_buffer = (char *) alloca (nbits);
4547 HOST_WIDE_INT word = 0;
4548 int bit_pos = 0;
4549 int ibit = 0;
4550 int offset = 0; /* In bytes from beginning of set. */
4551 elt = get_set_constructor_bits (exp, bit_buffer, nbits);
4552 for (;;)
4554 if (bit_buffer[ibit])
4556 if (BYTES_BIG_ENDIAN)
4557 word |= (1 << (set_word_size - 1 - bit_pos));
4558 else
4559 word |= 1 << bit_pos;
4561 bit_pos++; ibit++;
4562 if (bit_pos >= set_word_size || ibit == nbits)
4564 if (word != 0 || ! cleared)
4566 rtx datum = GEN_INT (word);
4567 rtx to_rtx;
4568 /* The assumption here is that it is safe to use
4569 XEXP if the set is multi-word, but not if
4570 it's single-word. */
4571 if (GET_CODE (target) == MEM)
4573 to_rtx = plus_constant (XEXP (target, 0), offset);
4574 to_rtx = change_address (target, mode, to_rtx);
4576 else if (offset == 0)
4577 to_rtx = target;
4578 else
4579 abort ();
4580 emit_move_insn (to_rtx, datum);
4582 if (ibit == nbits)
4583 break;
4584 word = 0;
4585 bit_pos = 0;
4586 offset += set_word_size / BITS_PER_UNIT;
4590 else if (!cleared)
4592 /* Don't bother clearing storage if the set is all ones. */
4593 if (TREE_CHAIN (elt) != NULL_TREE
4594 || (TREE_PURPOSE (elt) == NULL_TREE
4595 ? nbits != 1
4596 : (TREE_CODE (TREE_VALUE (elt)) != INTEGER_CST
4597 || TREE_CODE (TREE_PURPOSE (elt)) != INTEGER_CST
4598 || ((HOST_WIDE_INT) TREE_INT_CST_LOW (TREE_VALUE (elt))
4599 - (HOST_WIDE_INT) TREE_INT_CST_LOW (TREE_PURPOSE (elt)) + 1
4600 != nbits))))
4601 clear_storage (target, expr_size (exp),
4602 TYPE_ALIGN (type) / BITS_PER_UNIT);
4605 for (; elt != NULL_TREE; elt = TREE_CHAIN (elt))
4607 /* start of range of element or NULL */
4608 tree startbit = TREE_PURPOSE (elt);
4609 /* end of range of element, or element value */
4610 tree endbit = TREE_VALUE (elt);
4611 #ifdef TARGET_MEM_FUNCTIONS
4612 HOST_WIDE_INT startb, endb;
4613 #endif
4614 rtx bitlength_rtx, startbit_rtx, endbit_rtx, targetx;
4616 bitlength_rtx = expand_expr (bitlength,
4617 NULL_RTX, MEM, EXPAND_CONST_ADDRESS);
4619 /* handle non-range tuple element like [ expr ] */
4620 if (startbit == NULL_TREE)
4622 startbit = save_expr (endbit);
4623 endbit = startbit;
4625 startbit = convert (sizetype, startbit);
4626 endbit = convert (sizetype, endbit);
4627 if (! integer_zerop (domain_min))
4629 startbit = size_binop (MINUS_EXPR, startbit, domain_min);
4630 endbit = size_binop (MINUS_EXPR, endbit, domain_min);
4632 startbit_rtx = expand_expr (startbit, NULL_RTX, MEM,
4633 EXPAND_CONST_ADDRESS);
4634 endbit_rtx = expand_expr (endbit, NULL_RTX, MEM,
4635 EXPAND_CONST_ADDRESS);
4637 if (REG_P (target))
4639 targetx = assign_stack_temp (GET_MODE (target),
4640 GET_MODE_SIZE (GET_MODE (target)),
4642 emit_move_insn (targetx, target);
4644 else if (GET_CODE (target) == MEM)
4645 targetx = target;
4646 else
4647 abort ();
4649 #ifdef TARGET_MEM_FUNCTIONS
4650 /* Optimization: If startbit and endbit are
4651 constants divisible by BITS_PER_UNIT,
4652 call memset instead. */
4653 if (TREE_CODE (startbit) == INTEGER_CST
4654 && TREE_CODE (endbit) == INTEGER_CST
4655 && (startb = TREE_INT_CST_LOW (startbit)) % BITS_PER_UNIT == 0
4656 && (endb = TREE_INT_CST_LOW (endbit) + 1) % BITS_PER_UNIT == 0)
4658 emit_library_call (memset_libfunc, 0,
4659 VOIDmode, 3,
4660 plus_constant (XEXP (targetx, 0),
4661 startb / BITS_PER_UNIT),
4662 Pmode,
4663 constm1_rtx, TYPE_MODE (integer_type_node),
4664 GEN_INT ((endb - startb) / BITS_PER_UNIT),
4665 TYPE_MODE (sizetype));
4667 else
4668 #endif
4670 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__setbits"),
4671 0, VOIDmode, 4, XEXP (targetx, 0), Pmode,
4672 bitlength_rtx, TYPE_MODE (sizetype),
4673 startbit_rtx, TYPE_MODE (sizetype),
4674 endbit_rtx, TYPE_MODE (sizetype));
4676 if (REG_P (target))
4677 emit_move_insn (target, targetx);
4681 else
4682 abort ();
4685 /* Store the value of EXP (an expression tree)
4686 into a subfield of TARGET which has mode MODE and occupies
4687 BITSIZE bits, starting BITPOS bits from the start of TARGET.
4688 If MODE is VOIDmode, it means that we are storing into a bit-field.
4690 If VALUE_MODE is VOIDmode, return nothing in particular.
4691 UNSIGNEDP is not used in this case.
4693 Otherwise, return an rtx for the value stored. This rtx
4694 has mode VALUE_MODE if that is convenient to do.
4695 In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
4697 ALIGN is the alignment that TARGET is known to have, measured in bytes.
4698 TOTAL_SIZE is the size in bytes of the structure, or -1 if varying.
4700 ALIAS_SET is the alias set for the destination. This value will
4701 (in general) be different from that for TARGET, since TARGET is a
4702 reference to the containing structure. */
4704 static rtx
4705 store_field (target, bitsize, bitpos, mode, exp, value_mode,
4706 unsignedp, align, total_size, alias_set)
4707 rtx target;
4708 int bitsize, bitpos;
4709 enum machine_mode mode;
4710 tree exp;
4711 enum machine_mode value_mode;
4712 int unsignedp;
4713 unsigned int align;
4714 int total_size;
4715 int alias_set;
4717 HOST_WIDE_INT width_mask = 0;
4719 if (TREE_CODE (exp) == ERROR_MARK)
4720 return const0_rtx;
4722 if (bitsize < HOST_BITS_PER_WIDE_INT)
4723 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
4725 /* If we are storing into an unaligned field of an aligned union that is
4726 in a register, we may have the mode of TARGET being an integer mode but
4727 MODE == BLKmode. In that case, get an aligned object whose size and
4728 alignment are the same as TARGET and store TARGET into it (we can avoid
4729 the store if the field being stored is the entire width of TARGET). Then
4730 call ourselves recursively to store the field into a BLKmode version of
4731 that object. Finally, load from the object into TARGET. This is not
4732 very efficient in general, but should only be slightly more expensive
4733 than the otherwise-required unaligned accesses. Perhaps this can be
4734 cleaned up later. */
4736 if (mode == BLKmode
4737 && (GET_CODE (target) == REG || GET_CODE (target) == SUBREG))
4739 rtx object = assign_stack_temp (GET_MODE (target),
4740 GET_MODE_SIZE (GET_MODE (target)), 0);
4741 rtx blk_object = copy_rtx (object);
4743 MEM_SET_IN_STRUCT_P (object, 1);
4744 MEM_SET_IN_STRUCT_P (blk_object, 1);
4745 PUT_MODE (blk_object, BLKmode);
4747 if (bitsize != GET_MODE_BITSIZE (GET_MODE (target)))
4748 emit_move_insn (object, target);
4750 store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0,
4751 align, total_size, alias_set);
4753 /* Even though we aren't returning target, we need to
4754 give it the updated value. */
4755 emit_move_insn (target, object);
4757 return blk_object;
4760 /* If the structure is in a register or if the component
4761 is a bit field, we cannot use addressing to access it.
4762 Use bit-field techniques or SUBREG to store in it. */
4764 if (mode == VOIDmode
4765 || (mode != BLKmode && ! direct_store[(int) mode]
4766 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
4767 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
4768 || GET_CODE (target) == REG
4769 || GET_CODE (target) == SUBREG
4770 /* If the field isn't aligned enough to store as an ordinary memref,
4771 store it as a bit field. */
4772 || (mode != BLKmode && SLOW_UNALIGNED_ACCESS (mode, align)
4773 && (align * BITS_PER_UNIT < GET_MODE_ALIGNMENT (mode)
4774 || bitpos % GET_MODE_ALIGNMENT (mode)))
4775 || (mode == BLKmode && SLOW_UNALIGNED_ACCESS (mode, align)
4776 && (TYPE_ALIGN (TREE_TYPE (exp)) > align * BITS_PER_UNIT
4777 || bitpos % TYPE_ALIGN (TREE_TYPE (exp)) != 0))
4778 /* If the RHS and field are a constant size and the size of the
4779 RHS isn't the same size as the bitfield, we must use bitfield
4780 operations. */
4781 || (bitsize >= 0
4782 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
4783 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
4785 rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
4787 /* If BITSIZE is narrower than the size of the type of EXP
4788 we will be narrowing TEMP. Normally, what's wanted are the
4789 low-order bits. However, if EXP's type is a record and this is
4790 big-endian machine, we want the upper BITSIZE bits. */
4791 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
4792 && bitsize < GET_MODE_BITSIZE (GET_MODE (temp))
4793 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
4794 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
4795 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
4796 - bitsize),
4797 temp, 1);
4799 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
4800 MODE. */
4801 if (mode != VOIDmode && mode != BLKmode
4802 && mode != TYPE_MODE (TREE_TYPE (exp)))
4803 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
4805 /* If the modes of TARGET and TEMP are both BLKmode, both
4806 must be in memory and BITPOS must be aligned on a byte
4807 boundary. If so, we simply do a block copy. */
4808 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
4810 unsigned int exp_align = expr_align (exp) / BITS_PER_UNIT;
4812 if (GET_CODE (target) != MEM || GET_CODE (temp) != MEM
4813 || bitpos % BITS_PER_UNIT != 0)
4814 abort ();
4816 target = change_address (target, VOIDmode,
4817 plus_constant (XEXP (target, 0),
4818 bitpos / BITS_PER_UNIT));
4820 /* Make sure that ALIGN is no stricter than the alignment of EXP. */
4821 align = MIN (exp_align, align);
4823 /* Find an alignment that is consistent with the bit position. */
4824 while ((bitpos % (align * BITS_PER_UNIT)) != 0)
4825 align >>= 1;
4827 emit_block_move (target, temp,
4828 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
4829 / BITS_PER_UNIT),
4830 align);
4832 return value_mode == VOIDmode ? const0_rtx : target;
4835 /* Store the value in the bitfield. */
4836 store_bit_field (target, bitsize, bitpos, mode, temp, align, total_size);
4837 if (value_mode != VOIDmode)
4839 /* The caller wants an rtx for the value. */
4840 /* If possible, avoid refetching from the bitfield itself. */
4841 if (width_mask != 0
4842 && ! (GET_CODE (target) == MEM && MEM_VOLATILE_P (target)))
4844 tree count;
4845 enum machine_mode tmode;
4847 if (unsignedp)
4848 return expand_and (temp, GEN_INT (width_mask), NULL_RTX);
4849 tmode = GET_MODE (temp);
4850 if (tmode == VOIDmode)
4851 tmode = value_mode;
4852 count = build_int_2 (GET_MODE_BITSIZE (tmode) - bitsize, 0);
4853 temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0);
4854 return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0);
4856 return extract_bit_field (target, bitsize, bitpos, unsignedp,
4857 NULL_RTX, value_mode, 0, align,
4858 total_size);
4860 return const0_rtx;
4862 else
4864 rtx addr = XEXP (target, 0);
4865 rtx to_rtx;
4867 /* If a value is wanted, it must be the lhs;
4868 so make the address stable for multiple use. */
4870 if (value_mode != VOIDmode && GET_CODE (addr) != REG
4871 && ! CONSTANT_ADDRESS_P (addr)
4872 /* A frame-pointer reference is already stable. */
4873 && ! (GET_CODE (addr) == PLUS
4874 && GET_CODE (XEXP (addr, 1)) == CONST_INT
4875 && (XEXP (addr, 0) == virtual_incoming_args_rtx
4876 || XEXP (addr, 0) == virtual_stack_vars_rtx)))
4877 addr = copy_to_reg (addr);
4879 /* Now build a reference to just the desired component. */
4881 to_rtx = copy_rtx (change_address (target, mode,
4882 plus_constant (addr,
4883 (bitpos
4884 / BITS_PER_UNIT))));
4885 MEM_SET_IN_STRUCT_P (to_rtx, 1);
4886 MEM_ALIAS_SET (to_rtx) = alias_set;
4888 return store_expr (exp, to_rtx, value_mode != VOIDmode);
4892 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
4893 or an ARRAY_REF, look for nested COMPONENT_REFs, BIT_FIELD_REFs, or
4894 ARRAY_REFs and find the ultimate containing object, which we return.
4896 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
4897 bit position, and *PUNSIGNEDP to the signedness of the field.
4898 If the position of the field is variable, we store a tree
4899 giving the variable offset (in units) in *POFFSET.
4900 This offset is in addition to the bit position.
4901 If the position is not variable, we store 0 in *POFFSET.
4902 We set *PALIGNMENT to the alignment in bytes of the address that will be
4903 computed. This is the alignment of the thing we return if *POFFSET
4904 is zero, but can be more less strictly aligned if *POFFSET is nonzero.
4906 If any of the extraction expressions is volatile,
4907 we store 1 in *PVOLATILEP. Otherwise we don't change that.
4909 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
4910 is a mode that can be used to access the field. In that case, *PBITSIZE
4911 is redundant.
4913 If the field describes a variable-sized object, *PMODE is set to
4914 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
4915 this case, but the address of the object can be found. */
4917 tree
4918 get_inner_reference (exp, pbitsize, pbitpos, poffset, pmode,
4919 punsignedp, pvolatilep, palignment)
4920 tree exp;
4921 int *pbitsize;
4922 int *pbitpos;
4923 tree *poffset;
4924 enum machine_mode *pmode;
4925 int *punsignedp;
4926 int *pvolatilep;
4927 unsigned int *palignment;
4929 tree orig_exp = exp;
4930 tree size_tree = 0;
4931 enum machine_mode mode = VOIDmode;
4932 tree offset = size_zero_node;
4933 unsigned int alignment = BIGGEST_ALIGNMENT;
4935 if (TREE_CODE (exp) == COMPONENT_REF)
4937 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
4938 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
4939 mode = DECL_MODE (TREE_OPERAND (exp, 1));
4940 *punsignedp = TREE_UNSIGNED (TREE_OPERAND (exp, 1));
4942 else if (TREE_CODE (exp) == BIT_FIELD_REF)
4944 size_tree = TREE_OPERAND (exp, 1);
4945 *punsignedp = TREE_UNSIGNED (exp);
4947 else
4949 mode = TYPE_MODE (TREE_TYPE (exp));
4950 if (mode == BLKmode)
4951 size_tree = TYPE_SIZE (TREE_TYPE (exp));
4953 *pbitsize = GET_MODE_BITSIZE (mode);
4954 *punsignedp = TREE_UNSIGNED (TREE_TYPE (exp));
4957 if (size_tree)
4959 if (TREE_CODE (size_tree) != INTEGER_CST)
4960 mode = BLKmode, *pbitsize = -1;
4961 else
4962 *pbitsize = TREE_INT_CST_LOW (size_tree);
4965 /* Compute cumulative bit-offset for nested component-refs and array-refs,
4966 and find the ultimate containing object. */
4968 *pbitpos = 0;
4970 while (1)
4972 if (TREE_CODE (exp) == COMPONENT_REF || TREE_CODE (exp) == BIT_FIELD_REF)
4974 tree pos = (TREE_CODE (exp) == COMPONENT_REF
4975 ? DECL_FIELD_BITPOS (TREE_OPERAND (exp, 1))
4976 : TREE_OPERAND (exp, 2));
4977 tree constant = bitsize_int (0), var = pos;
4979 /* If this field hasn't been filled in yet, don't go
4980 past it. This should only happen when folding expressions
4981 made during type construction. */
4982 if (pos == 0)
4983 break;
4985 /* Assume here that the offset is a multiple of a unit.
4986 If not, there should be an explicitly added constant. */
4987 if (TREE_CODE (pos) == PLUS_EXPR
4988 && TREE_CODE (TREE_OPERAND (pos, 1)) == INTEGER_CST)
4989 constant = TREE_OPERAND (pos, 1), var = TREE_OPERAND (pos, 0);
4990 else if (TREE_CODE (pos) == INTEGER_CST)
4991 constant = pos, var = bitsize_int (0);
4993 *pbitpos += TREE_INT_CST_LOW (constant);
4994 offset
4995 = size_binop (PLUS_EXPR, offset,
4996 convert (sizetype,
4997 size_binop (EXACT_DIV_EXPR, var,
4998 bitsize_int (BITS_PER_UNIT))));
5001 else if (TREE_CODE (exp) == ARRAY_REF)
5003 /* This code is based on the code in case ARRAY_REF in expand_expr
5004 below. We assume here that the size of an array element is
5005 always an integral multiple of BITS_PER_UNIT. */
5007 tree index = TREE_OPERAND (exp, 1);
5008 tree domain = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5009 tree low_bound
5010 = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
5011 tree index_type = TREE_TYPE (index);
5012 tree xindex;
5014 if (TYPE_PRECISION (index_type) != TYPE_PRECISION (sizetype))
5016 index = convert (type_for_size (TYPE_PRECISION (sizetype), 0),
5017 index);
5018 index_type = TREE_TYPE (index);
5021 /* Optimize the special-case of a zero lower bound.
5023 We convert the low_bound to sizetype to avoid some problems
5024 with constant folding. (E.g. suppose the lower bound is 1,
5025 and its mode is QI. Without the conversion, (ARRAY
5026 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
5027 +INDEX), which becomes (ARRAY+255+INDEX). Oops!)
5029 But sizetype isn't quite right either (especially if
5030 the lowbound is negative). FIXME */
5032 if (! integer_zerop (low_bound))
5033 index = fold (build (MINUS_EXPR, index_type, index,
5034 convert (sizetype, low_bound)));
5036 if (TREE_CODE (index) == INTEGER_CST)
5038 index = convert (sbitsizetype, index);
5039 index_type = TREE_TYPE (index);
5042 xindex = fold (build (MULT_EXPR, sbitsizetype, index,
5043 convert (sbitsizetype,
5044 TYPE_SIZE (TREE_TYPE (exp)))));
5046 if (TREE_CODE (xindex) == INTEGER_CST
5047 && TREE_INT_CST_HIGH (xindex) == 0)
5048 *pbitpos += TREE_INT_CST_LOW (xindex);
5049 else
5051 /* Either the bit offset calculated above is not constant, or
5052 it overflowed. In either case, redo the multiplication
5053 against the size in units. This is especially important
5054 in the non-constant case to avoid a division at runtime. */
5055 xindex
5056 = fold (build (MULT_EXPR, ssizetype, index,
5057 convert (ssizetype,
5058 TYPE_SIZE_UNIT (TREE_TYPE (exp)))));
5060 if (contains_placeholder_p (xindex))
5061 xindex = build (WITH_RECORD_EXPR, ssizetype, xindex, exp);
5063 offset
5064 = size_binop (PLUS_EXPR, offset, convert (sizetype, xindex));
5067 else if (TREE_CODE (exp) != NON_LVALUE_EXPR
5068 && ! ((TREE_CODE (exp) == NOP_EXPR
5069 || TREE_CODE (exp) == CONVERT_EXPR)
5070 && (TYPE_MODE (TREE_TYPE (exp))
5071 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
5072 break;
5074 /* If any reference in the chain is volatile, the effect is volatile. */
5075 if (TREE_THIS_VOLATILE (exp))
5076 *pvolatilep = 1;
5078 /* If the offset is non-constant already, then we can't assume any
5079 alignment more than the alignment here. */
5080 if (! integer_zerop (offset))
5081 alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
5083 exp = TREE_OPERAND (exp, 0);
5086 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
5087 alignment = MIN (alignment, DECL_ALIGN (exp));
5088 else if (TREE_TYPE (exp) != 0)
5089 alignment = MIN (alignment, TYPE_ALIGN (TREE_TYPE (exp)));
5091 if (integer_zerop (offset))
5092 offset = 0;
5094 if (offset != 0 && contains_placeholder_p (offset))
5095 offset = build (WITH_RECORD_EXPR, sizetype, offset, orig_exp);
5097 *pmode = mode;
5098 *poffset = offset;
5099 *palignment = alignment / BITS_PER_UNIT;
5100 return exp;
5103 /* Subroutine of expand_exp: compute memory_usage from modifier. */
5104 static enum memory_use_mode
5105 get_memory_usage_from_modifier (modifier)
5106 enum expand_modifier modifier;
5108 switch (modifier)
5110 case EXPAND_NORMAL:
5111 case EXPAND_SUM:
5112 return MEMORY_USE_RO;
5113 break;
5114 case EXPAND_MEMORY_USE_WO:
5115 return MEMORY_USE_WO;
5116 break;
5117 case EXPAND_MEMORY_USE_RW:
5118 return MEMORY_USE_RW;
5119 break;
5120 case EXPAND_MEMORY_USE_DONT:
5121 /* EXPAND_CONST_ADDRESS and EXPAND_INITIALIZER are converted into
5122 MEMORY_USE_DONT, because they are modifiers to a call of
5123 expand_expr in the ADDR_EXPR case of expand_expr. */
5124 case EXPAND_CONST_ADDRESS:
5125 case EXPAND_INITIALIZER:
5126 return MEMORY_USE_DONT;
5127 case EXPAND_MEMORY_USE_BAD:
5128 default:
5129 abort ();
5133 /* Given an rtx VALUE that may contain additions and multiplications,
5134 return an equivalent value that just refers to a register or memory.
5135 This is done by generating instructions to perform the arithmetic
5136 and returning a pseudo-register containing the value.
5138 The returned value may be a REG, SUBREG, MEM or constant. */
5141 force_operand (value, target)
5142 rtx value, target;
5144 register optab binoptab = 0;
5145 /* Use a temporary to force order of execution of calls to
5146 `force_operand'. */
5147 rtx tmp;
5148 register rtx op2;
5149 /* Use subtarget as the target for operand 0 of a binary operation. */
5150 register rtx subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
5152 /* Check for a PIC address load. */
5153 if (flag_pic
5154 && (GET_CODE (value) == PLUS || GET_CODE (value) == MINUS)
5155 && XEXP (value, 0) == pic_offset_table_rtx
5156 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5157 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5158 || GET_CODE (XEXP (value, 1)) == CONST))
5160 if (!subtarget)
5161 subtarget = gen_reg_rtx (GET_MODE (value));
5162 emit_move_insn (subtarget, value);
5163 return subtarget;
5166 if (GET_CODE (value) == PLUS)
5167 binoptab = add_optab;
5168 else if (GET_CODE (value) == MINUS)
5169 binoptab = sub_optab;
5170 else if (GET_CODE (value) == MULT)
5172 op2 = XEXP (value, 1);
5173 if (!CONSTANT_P (op2)
5174 && !(GET_CODE (op2) == REG && op2 != subtarget))
5175 subtarget = 0;
5176 tmp = force_operand (XEXP (value, 0), subtarget);
5177 return expand_mult (GET_MODE (value), tmp,
5178 force_operand (op2, NULL_RTX),
5179 target, 0);
5182 if (binoptab)
5184 op2 = XEXP (value, 1);
5185 if (!CONSTANT_P (op2)
5186 && !(GET_CODE (op2) == REG && op2 != subtarget))
5187 subtarget = 0;
5188 if (binoptab == sub_optab && GET_CODE (op2) == CONST_INT)
5190 binoptab = add_optab;
5191 op2 = negate_rtx (GET_MODE (value), op2);
5194 /* Check for an addition with OP2 a constant integer and our first
5195 operand a PLUS of a virtual register and something else. In that
5196 case, we want to emit the sum of the virtual register and the
5197 constant first and then add the other value. This allows virtual
5198 register instantiation to simply modify the constant rather than
5199 creating another one around this addition. */
5200 if (binoptab == add_optab && GET_CODE (op2) == CONST_INT
5201 && GET_CODE (XEXP (value, 0)) == PLUS
5202 && GET_CODE (XEXP (XEXP (value, 0), 0)) == REG
5203 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5204 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5206 rtx temp = expand_binop (GET_MODE (value), binoptab,
5207 XEXP (XEXP (value, 0), 0), op2,
5208 subtarget, 0, OPTAB_LIB_WIDEN);
5209 return expand_binop (GET_MODE (value), binoptab, temp,
5210 force_operand (XEXP (XEXP (value, 0), 1), 0),
5211 target, 0, OPTAB_LIB_WIDEN);
5214 tmp = force_operand (XEXP (value, 0), subtarget);
5215 return expand_binop (GET_MODE (value), binoptab, tmp,
5216 force_operand (op2, NULL_RTX),
5217 target, 0, OPTAB_LIB_WIDEN);
5218 /* We give UNSIGNEDP = 0 to expand_binop
5219 because the only operations we are expanding here are signed ones. */
5221 return value;
5224 /* Subroutine of expand_expr:
5225 save the non-copied parts (LIST) of an expr (LHS), and return a list
5226 which can restore these values to their previous values,
5227 should something modify their storage. */
5229 static tree
5230 save_noncopied_parts (lhs, list)
5231 tree lhs;
5232 tree list;
5234 tree tail;
5235 tree parts = 0;
5237 for (tail = list; tail; tail = TREE_CHAIN (tail))
5238 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
5239 parts = chainon (parts, save_noncopied_parts (lhs, TREE_VALUE (tail)));
5240 else
5242 tree part = TREE_VALUE (tail);
5243 tree part_type = TREE_TYPE (part);
5244 tree to_be_saved = build (COMPONENT_REF, part_type, lhs, part);
5245 rtx target = assign_temp (part_type, 0, 1, 1);
5246 if (! memory_address_p (TYPE_MODE (part_type), XEXP (target, 0)))
5247 target = change_address (target, TYPE_MODE (part_type), NULL_RTX);
5248 parts = tree_cons (to_be_saved,
5249 build (RTL_EXPR, part_type, NULL_TREE,
5250 (tree) target),
5251 parts);
5252 store_expr (TREE_PURPOSE (parts), RTL_EXPR_RTL (TREE_VALUE (parts)), 0);
5254 return parts;
5257 /* Subroutine of expand_expr:
5258 record the non-copied parts (LIST) of an expr (LHS), and return a list
5259 which specifies the initial values of these parts. */
5261 static tree
5262 init_noncopied_parts (lhs, list)
5263 tree lhs;
5264 tree list;
5266 tree tail;
5267 tree parts = 0;
5269 for (tail = list; tail; tail = TREE_CHAIN (tail))
5270 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
5271 parts = chainon (parts, init_noncopied_parts (lhs, TREE_VALUE (tail)));
5272 else if (TREE_PURPOSE (tail))
5274 tree part = TREE_VALUE (tail);
5275 tree part_type = TREE_TYPE (part);
5276 tree to_be_initialized = build (COMPONENT_REF, part_type, lhs, part);
5277 parts = tree_cons (TREE_PURPOSE (tail), to_be_initialized, parts);
5279 return parts;
5282 /* Subroutine of expand_expr: return nonzero iff there is no way that
5283 EXP can reference X, which is being modified. TOP_P is nonzero if this
5284 call is going to be used to determine whether we need a temporary
5285 for EXP, as opposed to a recursive call to this function.
5287 It is always safe for this routine to return zero since it merely
5288 searches for optimization opportunities. */
5290 static int
5291 safe_from_p (x, exp, top_p)
5292 rtx x;
5293 tree exp;
5294 int top_p;
5296 rtx exp_rtl = 0;
5297 int i, nops;
5298 static int save_expr_count;
5299 static int save_expr_size = 0;
5300 static tree *save_expr_rewritten;
5301 static tree save_expr_trees[256];
5303 if (x == 0
5304 /* If EXP has varying size, we MUST use a target since we currently
5305 have no way of allocating temporaries of variable size
5306 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5307 So we assume here that something at a higher level has prevented a
5308 clash. This is somewhat bogus, but the best we can do. Only
5309 do this when X is BLKmode and when we are at the top level. */
5310 || (top_p && TREE_TYPE (exp) != 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
5311 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5312 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5313 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5314 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5315 != INTEGER_CST)
5316 && GET_MODE (x) == BLKmode))
5317 return 1;
5319 if (top_p && save_expr_size == 0)
5321 int rtn;
5323 save_expr_count = 0;
5324 save_expr_size = sizeof (save_expr_trees) / sizeof (save_expr_trees[0]);
5325 save_expr_rewritten = &save_expr_trees[0];
5327 rtn = safe_from_p (x, exp, 1);
5329 for (i = 0; i < save_expr_count; ++i)
5331 if (TREE_CODE (save_expr_trees[i]) != ERROR_MARK)
5332 abort ();
5333 TREE_SET_CODE (save_expr_trees[i], SAVE_EXPR);
5336 save_expr_size = 0;
5338 return rtn;
5341 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5342 find the underlying pseudo. */
5343 if (GET_CODE (x) == SUBREG)
5345 x = SUBREG_REG (x);
5346 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
5347 return 0;
5350 /* If X is a location in the outgoing argument area, it is always safe. */
5351 if (GET_CODE (x) == MEM
5352 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5353 || (GET_CODE (XEXP (x, 0)) == PLUS
5354 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx)))
5355 return 1;
5357 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5359 case 'd':
5360 exp_rtl = DECL_RTL (exp);
5361 break;
5363 case 'c':
5364 return 1;
5366 case 'x':
5367 if (TREE_CODE (exp) == TREE_LIST)
5368 return ((TREE_VALUE (exp) == 0
5369 || safe_from_p (x, TREE_VALUE (exp), 0))
5370 && (TREE_CHAIN (exp) == 0
5371 || safe_from_p (x, TREE_CHAIN (exp), 0)));
5372 else if (TREE_CODE (exp) == ERROR_MARK)
5373 return 1; /* An already-visited SAVE_EXPR? */
5374 else
5375 return 0;
5377 case '1':
5378 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5380 case '2':
5381 case '<':
5382 return (safe_from_p (x, TREE_OPERAND (exp, 0), 0)
5383 && safe_from_p (x, TREE_OPERAND (exp, 1), 0));
5385 case 'e':
5386 case 'r':
5387 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5388 the expression. If it is set, we conflict iff we are that rtx or
5389 both are in memory. Otherwise, we check all operands of the
5390 expression recursively. */
5392 switch (TREE_CODE (exp))
5394 case ADDR_EXPR:
5395 return (staticp (TREE_OPERAND (exp, 0))
5396 || safe_from_p (x, TREE_OPERAND (exp, 0), 0)
5397 || TREE_STATIC (exp));
5399 case INDIRECT_REF:
5400 if (GET_CODE (x) == MEM)
5401 return 0;
5402 break;
5404 case CALL_EXPR:
5405 exp_rtl = CALL_EXPR_RTL (exp);
5406 if (exp_rtl == 0)
5408 /* Assume that the call will clobber all hard registers and
5409 all of memory. */
5410 if ((GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
5411 || GET_CODE (x) == MEM)
5412 return 0;
5415 break;
5417 case RTL_EXPR:
5418 /* If a sequence exists, we would have to scan every instruction
5419 in the sequence to see if it was safe. This is probably not
5420 worthwhile. */
5421 if (RTL_EXPR_SEQUENCE (exp))
5422 return 0;
5424 exp_rtl = RTL_EXPR_RTL (exp);
5425 break;
5427 case WITH_CLEANUP_EXPR:
5428 exp_rtl = RTL_EXPR_RTL (exp);
5429 break;
5431 case CLEANUP_POINT_EXPR:
5432 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5434 case SAVE_EXPR:
5435 exp_rtl = SAVE_EXPR_RTL (exp);
5436 if (exp_rtl)
5437 break;
5439 /* This SAVE_EXPR might appear many times in the top-level
5440 safe_from_p() expression, and if it has a complex
5441 subexpression, examining it multiple times could result
5442 in a combinatorial explosion. E.g. on an Alpha
5443 running at least 200MHz, a Fortran test case compiled with
5444 optimization took about 28 minutes to compile -- even though
5445 it was only a few lines long, and the complicated line causing
5446 so much time to be spent in the earlier version of safe_from_p()
5447 had only 293 or so unique nodes.
5449 So, turn this SAVE_EXPR into an ERROR_MARK for now, but remember
5450 where it is so we can turn it back in the top-level safe_from_p()
5451 when we're done. */
5453 /* For now, don't bother re-sizing the array. */
5454 if (save_expr_count >= save_expr_size)
5455 return 0;
5456 save_expr_rewritten[save_expr_count++] = exp;
5458 nops = tree_code_length[(int) SAVE_EXPR];
5459 for (i = 0; i < nops; i++)
5461 tree operand = TREE_OPERAND (exp, i);
5462 if (operand == NULL_TREE)
5463 continue;
5464 TREE_SET_CODE (exp, ERROR_MARK);
5465 if (!safe_from_p (x, operand, 0))
5466 return 0;
5467 TREE_SET_CODE (exp, SAVE_EXPR);
5469 TREE_SET_CODE (exp, ERROR_MARK);
5470 return 1;
5472 case BIND_EXPR:
5473 /* The only operand we look at is operand 1. The rest aren't
5474 part of the expression. */
5475 return safe_from_p (x, TREE_OPERAND (exp, 1), 0);
5477 case METHOD_CALL_EXPR:
5478 /* This takes a rtx argument, but shouldn't appear here. */
5479 abort ();
5481 default:
5482 break;
5485 /* If we have an rtx, we do not need to scan our operands. */
5486 if (exp_rtl)
5487 break;
5489 nops = tree_code_length[(int) TREE_CODE (exp)];
5490 for (i = 0; i < nops; i++)
5491 if (TREE_OPERAND (exp, i) != 0
5492 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
5493 return 0;
5496 /* If we have an rtl, find any enclosed object. Then see if we conflict
5497 with it. */
5498 if (exp_rtl)
5500 if (GET_CODE (exp_rtl) == SUBREG)
5502 exp_rtl = SUBREG_REG (exp_rtl);
5503 if (GET_CODE (exp_rtl) == REG
5504 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
5505 return 0;
5508 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5509 are memory and EXP is not readonly. */
5510 return ! (rtx_equal_p (x, exp_rtl)
5511 || (GET_CODE (x) == MEM && GET_CODE (exp_rtl) == MEM
5512 && ! TREE_READONLY (exp)));
5515 /* If we reach here, it is safe. */
5516 return 1;
5519 /* Subroutine of expand_expr: return nonzero iff EXP is an
5520 expression whose type is statically determinable. */
5522 static int
5523 fixed_type_p (exp)
5524 tree exp;
5526 if (TREE_CODE (exp) == PARM_DECL
5527 || TREE_CODE (exp) == VAR_DECL
5528 || TREE_CODE (exp) == CALL_EXPR || TREE_CODE (exp) == TARGET_EXPR
5529 || TREE_CODE (exp) == COMPONENT_REF
5530 || TREE_CODE (exp) == ARRAY_REF)
5531 return 1;
5532 return 0;
5535 /* Subroutine of expand_expr: return rtx if EXP is a
5536 variable or parameter; else return 0. */
5538 static rtx
5539 var_rtx (exp)
5540 tree exp;
5542 STRIP_NOPS (exp);
5543 switch (TREE_CODE (exp))
5545 case PARM_DECL:
5546 case VAR_DECL:
5547 return DECL_RTL (exp);
5548 default:
5549 return 0;
5553 #ifdef MAX_INTEGER_COMPUTATION_MODE
5554 void
5555 check_max_integer_computation_mode (exp)
5556 tree exp;
5558 enum tree_code code;
5559 enum machine_mode mode;
5561 /* Strip any NOPs that don't change the mode. */
5562 STRIP_NOPS (exp);
5563 code = TREE_CODE (exp);
5565 /* We must allow conversions of constants to MAX_INTEGER_COMPUTATION_MODE. */
5566 if (code == NOP_EXPR
5567 && TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
5568 return;
5570 /* First check the type of the overall operation. We need only look at
5571 unary, binary and relational operations. */
5572 if (TREE_CODE_CLASS (code) == '1'
5573 || TREE_CODE_CLASS (code) == '2'
5574 || TREE_CODE_CLASS (code) == '<')
5576 mode = TYPE_MODE (TREE_TYPE (exp));
5577 if (GET_MODE_CLASS (mode) == MODE_INT
5578 && mode > MAX_INTEGER_COMPUTATION_MODE)
5579 fatal ("unsupported wide integer operation");
5582 /* Check operand of a unary op. */
5583 if (TREE_CODE_CLASS (code) == '1')
5585 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5586 if (GET_MODE_CLASS (mode) == MODE_INT
5587 && mode > MAX_INTEGER_COMPUTATION_MODE)
5588 fatal ("unsupported wide integer operation");
5591 /* Check operands of a binary/comparison op. */
5592 if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<')
5594 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5595 if (GET_MODE_CLASS (mode) == MODE_INT
5596 && mode > MAX_INTEGER_COMPUTATION_MODE)
5597 fatal ("unsupported wide integer operation");
5599 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1)));
5600 if (GET_MODE_CLASS (mode) == MODE_INT
5601 && mode > MAX_INTEGER_COMPUTATION_MODE)
5602 fatal ("unsupported wide integer operation");
5605 #endif
5608 /* Utility function used by expand_expr to see if TYPE, a RECORD_TYPE,
5609 has any readonly fields. If any of the fields have types that
5610 contain readonly fields, return true as well. */
5612 static int
5613 readonly_fields_p (type)
5614 tree type;
5616 tree field;
5618 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
5619 if (TREE_CODE (field) == FIELD_DECL
5620 && (TREE_READONLY (field)
5621 || (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
5622 && readonly_fields_p (TREE_TYPE (field)))))
5623 return 1;
5625 return 0;
5628 /* expand_expr: generate code for computing expression EXP.
5629 An rtx for the computed value is returned. The value is never null.
5630 In the case of a void EXP, const0_rtx is returned.
5632 The value may be stored in TARGET if TARGET is nonzero.
5633 TARGET is just a suggestion; callers must assume that
5634 the rtx returned may not be the same as TARGET.
5636 If TARGET is CONST0_RTX, it means that the value will be ignored.
5638 If TMODE is not VOIDmode, it suggests generating the
5639 result in mode TMODE. But this is done only when convenient.
5640 Otherwise, TMODE is ignored and the value generated in its natural mode.
5641 TMODE is just a suggestion; callers must assume that
5642 the rtx returned may not have mode TMODE.
5644 Note that TARGET may have neither TMODE nor MODE. In that case, it
5645 probably will not be used.
5647 If MODIFIER is EXPAND_SUM then when EXP is an addition
5648 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
5649 or a nest of (PLUS ...) and (MINUS ...) where the terms are
5650 products as above, or REG or MEM, or constant.
5651 Ordinarily in such cases we would output mul or add instructions
5652 and then return a pseudo reg containing the sum.
5654 EXPAND_INITIALIZER is much like EXPAND_SUM except that
5655 it also marks a label as absolutely required (it can't be dead).
5656 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
5657 This is used for outputting expressions used in initializers.
5659 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
5660 with a constant address even if that address is not normally legitimate.
5661 EXPAND_INITIALIZER and EXPAND_SUM also have this effect. */
5664 expand_expr (exp, target, tmode, modifier)
5665 register tree exp;
5666 rtx target;
5667 enum machine_mode tmode;
5668 enum expand_modifier modifier;
5670 register rtx op0, op1, temp;
5671 tree type = TREE_TYPE (exp);
5672 int unsignedp = TREE_UNSIGNED (type);
5673 register enum machine_mode mode;
5674 register enum tree_code code = TREE_CODE (exp);
5675 optab this_optab;
5676 rtx subtarget, original_target;
5677 int ignore;
5678 tree context;
5679 /* Used by check-memory-usage to make modifier read only. */
5680 enum expand_modifier ro_modifier;
5682 /* Handle ERROR_MARK before anybody tries to access its type. */
5683 if (TREE_CODE (exp) == ERROR_MARK)
5685 op0 = CONST0_RTX (tmode);
5686 if (op0 != 0)
5687 return op0;
5688 return const0_rtx;
5691 mode = TYPE_MODE (type);
5692 /* Use subtarget as the target for operand 0 of a binary operation. */
5693 subtarget = (target != 0 && GET_CODE (target) == REG ? target : 0);
5694 original_target = target;
5695 ignore = (target == const0_rtx
5696 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
5697 || code == CONVERT_EXPR || code == REFERENCE_EXPR
5698 || code == COND_EXPR)
5699 && TREE_CODE (type) == VOID_TYPE));
5701 /* Make a read-only version of the modifier. */
5702 if (modifier == EXPAND_NORMAL || modifier == EXPAND_SUM
5703 || modifier == EXPAND_CONST_ADDRESS || modifier == EXPAND_INITIALIZER)
5704 ro_modifier = modifier;
5705 else
5706 ro_modifier = EXPAND_NORMAL;
5708 /* Don't use hard regs as subtargets, because the combiner
5709 can only handle pseudo regs. */
5710 if (subtarget && REGNO (subtarget) < FIRST_PSEUDO_REGISTER)
5711 subtarget = 0;
5712 /* Avoid subtargets inside loops,
5713 since they hide some invariant expressions. */
5714 if (preserve_subexpressions_p ())
5715 subtarget = 0;
5717 /* If we are going to ignore this result, we need only do something
5718 if there is a side-effect somewhere in the expression. If there
5719 is, short-circuit the most common cases here. Note that we must
5720 not call expand_expr with anything but const0_rtx in case this
5721 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
5723 if (ignore)
5725 if (! TREE_SIDE_EFFECTS (exp))
5726 return const0_rtx;
5728 /* Ensure we reference a volatile object even if value is ignored, but
5729 don't do this if all we are doing is taking its address. */
5730 if (TREE_THIS_VOLATILE (exp)
5731 && TREE_CODE (exp) != FUNCTION_DECL
5732 && mode != VOIDmode && mode != BLKmode
5733 && modifier != EXPAND_CONST_ADDRESS)
5735 temp = expand_expr (exp, NULL_RTX, VOIDmode, ro_modifier);
5736 if (GET_CODE (temp) == MEM)
5737 temp = copy_to_reg (temp);
5738 return const0_rtx;
5741 if (TREE_CODE_CLASS (code) == '1' || code == COMPONENT_REF
5742 || code == INDIRECT_REF || code == BUFFER_REF)
5743 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
5744 VOIDmode, ro_modifier);
5745 else if (TREE_CODE_CLASS (code) == '2' || TREE_CODE_CLASS (code) == '<'
5746 || code == ARRAY_REF)
5748 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, ro_modifier);
5749 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, ro_modifier);
5750 return const0_rtx;
5752 else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
5753 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
5754 /* If the second operand has no side effects, just evaluate
5755 the first. */
5756 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx,
5757 VOIDmode, ro_modifier);
5758 else if (code == BIT_FIELD_REF)
5760 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, ro_modifier);
5761 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, ro_modifier);
5762 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, ro_modifier);
5763 return const0_rtx;
5766 target = 0;
5769 #ifdef MAX_INTEGER_COMPUTATION_MODE
5770 /* Only check stuff here if the mode we want is different from the mode
5771 of the expression; if it's the same, check_max_integer_computiation_mode
5772 will handle it. Do we really need to check this stuff at all? */
5774 if (target
5775 && GET_MODE (target) != mode
5776 && TREE_CODE (exp) != INTEGER_CST
5777 && TREE_CODE (exp) != PARM_DECL
5778 && TREE_CODE (exp) != ARRAY_REF
5779 && TREE_CODE (exp) != COMPONENT_REF
5780 && TREE_CODE (exp) != BIT_FIELD_REF
5781 && TREE_CODE (exp) != INDIRECT_REF
5782 && TREE_CODE (exp) != CALL_EXPR
5783 && TREE_CODE (exp) != VAR_DECL
5784 && TREE_CODE (exp) != RTL_EXPR)
5786 enum machine_mode mode = GET_MODE (target);
5788 if (GET_MODE_CLASS (mode) == MODE_INT
5789 && mode > MAX_INTEGER_COMPUTATION_MODE)
5790 fatal ("unsupported wide integer operation");
5793 if (tmode != mode
5794 && TREE_CODE (exp) != INTEGER_CST
5795 && TREE_CODE (exp) != PARM_DECL
5796 && TREE_CODE (exp) != ARRAY_REF
5797 && TREE_CODE (exp) != COMPONENT_REF
5798 && TREE_CODE (exp) != BIT_FIELD_REF
5799 && TREE_CODE (exp) != INDIRECT_REF
5800 && TREE_CODE (exp) != VAR_DECL
5801 && TREE_CODE (exp) != CALL_EXPR
5802 && TREE_CODE (exp) != RTL_EXPR
5803 && GET_MODE_CLASS (tmode) == MODE_INT
5804 && tmode > MAX_INTEGER_COMPUTATION_MODE)
5805 fatal ("unsupported wide integer operation");
5807 check_max_integer_computation_mode (exp);
5808 #endif
5810 /* If will do cse, generate all results into pseudo registers
5811 since 1) that allows cse to find more things
5812 and 2) otherwise cse could produce an insn the machine
5813 cannot support. */
5815 if (! cse_not_expected && mode != BLKmode && target
5816 && (GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER))
5817 target = subtarget;
5819 switch (code)
5821 case LABEL_DECL:
5823 tree function = decl_function_context (exp);
5824 /* Handle using a label in a containing function. */
5825 if (function != current_function_decl
5826 && function != inline_function_decl && function != 0)
5828 struct function *p = find_function_data (function);
5829 /* Allocate in the memory associated with the function
5830 that the label is in. */
5831 push_obstacks (p->function_obstack,
5832 p->function_maybepermanent_obstack);
5834 p->expr->x_forced_labels
5835 = gen_rtx_EXPR_LIST (VOIDmode, label_rtx (exp),
5836 p->expr->x_forced_labels);
5837 pop_obstacks ();
5839 else
5841 if (modifier == EXPAND_INITIALIZER)
5842 forced_labels = gen_rtx_EXPR_LIST (VOIDmode,
5843 label_rtx (exp),
5844 forced_labels);
5847 temp = gen_rtx_MEM (FUNCTION_MODE,
5848 gen_rtx_LABEL_REF (Pmode, label_rtx (exp)));
5849 if (function != current_function_decl
5850 && function != inline_function_decl && function != 0)
5851 LABEL_REF_NONLOCAL_P (XEXP (temp, 0)) = 1;
5852 return temp;
5855 case PARM_DECL:
5856 if (DECL_RTL (exp) == 0)
5858 error_with_decl (exp, "prior parameter's size depends on `%s'");
5859 return CONST0_RTX (mode);
5862 /* ... fall through ... */
5864 case VAR_DECL:
5865 /* If a static var's type was incomplete when the decl was written,
5866 but the type is complete now, lay out the decl now. */
5867 if (DECL_SIZE (exp) == 0 && TYPE_SIZE (TREE_TYPE (exp)) != 0
5868 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
5870 push_obstacks_nochange ();
5871 end_temporary_allocation ();
5872 layout_decl (exp, 0);
5873 PUT_MODE (DECL_RTL (exp), DECL_MODE (exp));
5874 pop_obstacks ();
5877 /* Although static-storage variables start off initialized, according to
5878 ANSI C, a memcpy could overwrite them with uninitialized values. So
5879 we check them too. This also lets us check for read-only variables
5880 accessed via a non-const declaration, in case it won't be detected
5881 any other way (e.g., in an embedded system or OS kernel without
5882 memory protection).
5884 Aggregates are not checked here; they're handled elsewhere. */
5885 if (cfun && current_function_check_memory_usage
5886 && code == VAR_DECL
5887 && GET_CODE (DECL_RTL (exp)) == MEM
5888 && ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
5890 enum memory_use_mode memory_usage;
5891 memory_usage = get_memory_usage_from_modifier (modifier);
5893 if (memory_usage != MEMORY_USE_DONT)
5894 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
5895 XEXP (DECL_RTL (exp), 0), Pmode,
5896 GEN_INT (int_size_in_bytes (type)),
5897 TYPE_MODE (sizetype),
5898 GEN_INT (memory_usage),
5899 TYPE_MODE (integer_type_node));
5902 /* ... fall through ... */
5904 case FUNCTION_DECL:
5905 case RESULT_DECL:
5906 if (DECL_RTL (exp) == 0)
5907 abort ();
5909 /* Ensure variable marked as used even if it doesn't go through
5910 a parser. If it hasn't be used yet, write out an external
5911 definition. */
5912 if (! TREE_USED (exp))
5914 assemble_external (exp);
5915 TREE_USED (exp) = 1;
5918 /* Show we haven't gotten RTL for this yet. */
5919 temp = 0;
5921 /* Handle variables inherited from containing functions. */
5922 context = decl_function_context (exp);
5924 /* We treat inline_function_decl as an alias for the current function
5925 because that is the inline function whose vars, types, etc.
5926 are being merged into the current function.
5927 See expand_inline_function. */
5929 if (context != 0 && context != current_function_decl
5930 && context != inline_function_decl
5931 /* If var is static, we don't need a static chain to access it. */
5932 && ! (GET_CODE (DECL_RTL (exp)) == MEM
5933 && CONSTANT_P (XEXP (DECL_RTL (exp), 0))))
5935 rtx addr;
5937 /* Mark as non-local and addressable. */
5938 DECL_NONLOCAL (exp) = 1;
5939 if (DECL_NO_STATIC_CHAIN (current_function_decl))
5940 abort ();
5941 mark_addressable (exp);
5942 if (GET_CODE (DECL_RTL (exp)) != MEM)
5943 abort ();
5944 addr = XEXP (DECL_RTL (exp), 0);
5945 if (GET_CODE (addr) == MEM)
5946 addr = gen_rtx_MEM (Pmode,
5947 fix_lexical_addr (XEXP (addr, 0), exp));
5948 else
5949 addr = fix_lexical_addr (addr, exp);
5950 temp = change_address (DECL_RTL (exp), mode, addr);
5953 /* This is the case of an array whose size is to be determined
5954 from its initializer, while the initializer is still being parsed.
5955 See expand_decl. */
5957 else if (GET_CODE (DECL_RTL (exp)) == MEM
5958 && GET_CODE (XEXP (DECL_RTL (exp), 0)) == REG)
5959 temp = change_address (DECL_RTL (exp), GET_MODE (DECL_RTL (exp)),
5960 XEXP (DECL_RTL (exp), 0));
5962 /* If DECL_RTL is memory, we are in the normal case and either
5963 the address is not valid or it is not a register and -fforce-addr
5964 is specified, get the address into a register. */
5966 else if (GET_CODE (DECL_RTL (exp)) == MEM
5967 && modifier != EXPAND_CONST_ADDRESS
5968 && modifier != EXPAND_SUM
5969 && modifier != EXPAND_INITIALIZER
5970 && (! memory_address_p (DECL_MODE (exp),
5971 XEXP (DECL_RTL (exp), 0))
5972 || (flag_force_addr
5973 && GET_CODE (XEXP (DECL_RTL (exp), 0)) != REG)))
5974 temp = change_address (DECL_RTL (exp), VOIDmode,
5975 copy_rtx (XEXP (DECL_RTL (exp), 0)));
5977 /* If we got something, return it. But first, set the alignment
5978 the address is a register. */
5979 if (temp != 0)
5981 if (GET_CODE (temp) == MEM && GET_CODE (XEXP (temp, 0)) == REG)
5982 mark_reg_pointer (XEXP (temp, 0),
5983 DECL_ALIGN (exp) / BITS_PER_UNIT);
5985 return temp;
5988 /* If the mode of DECL_RTL does not match that of the decl, it
5989 must be a promoted value. We return a SUBREG of the wanted mode,
5990 but mark it so that we know that it was already extended. */
5992 if (GET_CODE (DECL_RTL (exp)) == REG
5993 && GET_MODE (DECL_RTL (exp)) != mode)
5995 /* Get the signedness used for this variable. Ensure we get the
5996 same mode we got when the variable was declared. */
5997 if (GET_MODE (DECL_RTL (exp))
5998 != promote_mode (type, DECL_MODE (exp), &unsignedp, 0))
5999 abort ();
6001 temp = gen_rtx_SUBREG (mode, DECL_RTL (exp), 0);
6002 SUBREG_PROMOTED_VAR_P (temp) = 1;
6003 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6004 return temp;
6007 return DECL_RTL (exp);
6009 case INTEGER_CST:
6010 return immed_double_const (TREE_INT_CST_LOW (exp),
6011 TREE_INT_CST_HIGH (exp), mode);
6013 case CONST_DECL:
6014 return expand_expr (DECL_INITIAL (exp), target, VOIDmode,
6015 EXPAND_MEMORY_USE_BAD);
6017 case REAL_CST:
6018 /* If optimized, generate immediate CONST_DOUBLE
6019 which will be turned into memory by reload if necessary.
6021 We used to force a register so that loop.c could see it. But
6022 this does not allow gen_* patterns to perform optimizations with
6023 the constants. It also produces two insns in cases like "x = 1.0;".
6024 On most machines, floating-point constants are not permitted in
6025 many insns, so we'd end up copying it to a register in any case.
6027 Now, we do the copying in expand_binop, if appropriate. */
6028 return immed_real_const (exp);
6030 case COMPLEX_CST:
6031 case STRING_CST:
6032 if (! TREE_CST_RTL (exp))
6033 output_constant_def (exp);
6035 /* TREE_CST_RTL probably contains a constant address.
6036 On RISC machines where a constant address isn't valid,
6037 make some insns to get that address into a register. */
6038 if (GET_CODE (TREE_CST_RTL (exp)) == MEM
6039 && modifier != EXPAND_CONST_ADDRESS
6040 && modifier != EXPAND_INITIALIZER
6041 && modifier != EXPAND_SUM
6042 && (! memory_address_p (mode, XEXP (TREE_CST_RTL (exp), 0))
6043 || (flag_force_addr
6044 && GET_CODE (XEXP (TREE_CST_RTL (exp), 0)) != REG)))
6045 return change_address (TREE_CST_RTL (exp), VOIDmode,
6046 copy_rtx (XEXP (TREE_CST_RTL (exp), 0)));
6047 return TREE_CST_RTL (exp);
6049 case EXPR_WITH_FILE_LOCATION:
6051 rtx to_return;
6052 char *saved_input_filename = input_filename;
6053 int saved_lineno = lineno;
6054 input_filename = EXPR_WFL_FILENAME (exp);
6055 lineno = EXPR_WFL_LINENO (exp);
6056 if (EXPR_WFL_EMIT_LINE_NOTE (exp))
6057 emit_line_note (input_filename, lineno);
6058 /* Possibly avoid switching back and force here */
6059 to_return = expand_expr (EXPR_WFL_NODE (exp), target, tmode, modifier);
6060 input_filename = saved_input_filename;
6061 lineno = saved_lineno;
6062 return to_return;
6065 case SAVE_EXPR:
6066 context = decl_function_context (exp);
6068 /* If this SAVE_EXPR was at global context, assume we are an
6069 initialization function and move it into our context. */
6070 if (context == 0)
6071 SAVE_EXPR_CONTEXT (exp) = current_function_decl;
6073 /* We treat inline_function_decl as an alias for the current function
6074 because that is the inline function whose vars, types, etc.
6075 are being merged into the current function.
6076 See expand_inline_function. */
6077 if (context == current_function_decl || context == inline_function_decl)
6078 context = 0;
6080 /* If this is non-local, handle it. */
6081 if (context)
6083 /* The following call just exists to abort if the context is
6084 not of a containing function. */
6085 find_function_data (context);
6087 temp = SAVE_EXPR_RTL (exp);
6088 if (temp && GET_CODE (temp) == REG)
6090 put_var_into_stack (exp);
6091 temp = SAVE_EXPR_RTL (exp);
6093 if (temp == 0 || GET_CODE (temp) != MEM)
6094 abort ();
6095 return change_address (temp, mode,
6096 fix_lexical_addr (XEXP (temp, 0), exp));
6098 if (SAVE_EXPR_RTL (exp) == 0)
6100 if (mode == VOIDmode)
6101 temp = const0_rtx;
6102 else
6103 temp = assign_temp (type, 3, 0, 0);
6105 SAVE_EXPR_RTL (exp) = temp;
6106 if (!optimize && GET_CODE (temp) == REG)
6107 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, temp,
6108 save_expr_regs);
6110 /* If the mode of TEMP does not match that of the expression, it
6111 must be a promoted value. We pass store_expr a SUBREG of the
6112 wanted mode but mark it so that we know that it was already
6113 extended. Note that `unsignedp' was modified above in
6114 this case. */
6116 if (GET_CODE (temp) == REG && GET_MODE (temp) != mode)
6118 temp = gen_rtx_SUBREG (mode, SAVE_EXPR_RTL (exp), 0);
6119 SUBREG_PROMOTED_VAR_P (temp) = 1;
6120 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6123 if (temp == const0_rtx)
6124 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6125 EXPAND_MEMORY_USE_BAD);
6126 else
6127 store_expr (TREE_OPERAND (exp, 0), temp, 0);
6129 TREE_USED (exp) = 1;
6132 /* If the mode of SAVE_EXPR_RTL does not match that of the expression, it
6133 must be a promoted value. We return a SUBREG of the wanted mode,
6134 but mark it so that we know that it was already extended. */
6136 if (GET_CODE (SAVE_EXPR_RTL (exp)) == REG
6137 && GET_MODE (SAVE_EXPR_RTL (exp)) != mode)
6139 /* Compute the signedness and make the proper SUBREG. */
6140 promote_mode (type, mode, &unsignedp, 0);
6141 temp = gen_rtx_SUBREG (mode, SAVE_EXPR_RTL (exp), 0);
6142 SUBREG_PROMOTED_VAR_P (temp) = 1;
6143 SUBREG_PROMOTED_UNSIGNED_P (temp) = unsignedp;
6144 return temp;
6147 return SAVE_EXPR_RTL (exp);
6149 case UNSAVE_EXPR:
6151 rtx temp;
6152 temp = expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6153 TREE_OPERAND (exp, 0) = unsave_expr_now (TREE_OPERAND (exp, 0));
6154 return temp;
6157 case PLACEHOLDER_EXPR:
6159 tree placeholder_expr;
6161 /* If there is an object on the head of the placeholder list,
6162 see if some object in it of type TYPE or a pointer to it. For
6163 further information, see tree.def. */
6164 for (placeholder_expr = placeholder_list;
6165 placeholder_expr != 0;
6166 placeholder_expr = TREE_CHAIN (placeholder_expr))
6168 tree need_type = TYPE_MAIN_VARIANT (type);
6169 tree object = 0;
6170 tree old_list = placeholder_list;
6171 tree elt;
6173 /* Find the outermost reference that is of the type we want.
6174 If none, see if any object has a type that is a pointer to
6175 the type we want. */
6176 for (elt = TREE_PURPOSE (placeholder_expr);
6177 elt != 0 && object == 0;
6179 = ((TREE_CODE (elt) == COMPOUND_EXPR
6180 || TREE_CODE (elt) == COND_EXPR)
6181 ? TREE_OPERAND (elt, 1)
6182 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
6183 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
6184 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
6185 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
6186 ? TREE_OPERAND (elt, 0) : 0))
6187 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
6188 object = elt;
6190 for (elt = TREE_PURPOSE (placeholder_expr);
6191 elt != 0 && object == 0;
6193 = ((TREE_CODE (elt) == COMPOUND_EXPR
6194 || TREE_CODE (elt) == COND_EXPR)
6195 ? TREE_OPERAND (elt, 1)
6196 : (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
6197 || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
6198 || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
6199 || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e')
6200 ? TREE_OPERAND (elt, 0) : 0))
6201 if (POINTER_TYPE_P (TREE_TYPE (elt))
6202 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
6203 == need_type))
6204 object = build1 (INDIRECT_REF, need_type, elt);
6206 if (object != 0)
6208 /* Expand this object skipping the list entries before
6209 it was found in case it is also a PLACEHOLDER_EXPR.
6210 In that case, we want to translate it using subsequent
6211 entries. */
6212 placeholder_list = TREE_CHAIN (placeholder_expr);
6213 temp = expand_expr (object, original_target, tmode,
6214 ro_modifier);
6215 placeholder_list = old_list;
6216 return temp;
6221 /* We can't find the object or there was a missing WITH_RECORD_EXPR. */
6222 abort ();
6224 case WITH_RECORD_EXPR:
6225 /* Put the object on the placeholder list, expand our first operand,
6226 and pop the list. */
6227 placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
6228 placeholder_list);
6229 target = expand_expr (TREE_OPERAND (exp, 0), original_target,
6230 tmode, ro_modifier);
6231 placeholder_list = TREE_CHAIN (placeholder_list);
6232 return target;
6234 case GOTO_EXPR:
6235 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6236 expand_goto (TREE_OPERAND (exp, 0));
6237 else
6238 expand_computed_goto (TREE_OPERAND (exp, 0));
6239 return const0_rtx;
6241 case EXIT_EXPR:
6242 expand_exit_loop_if_false (NULL_PTR,
6243 invert_truthvalue (TREE_OPERAND (exp, 0)));
6244 return const0_rtx;
6246 case LABELED_BLOCK_EXPR:
6247 if (LABELED_BLOCK_BODY (exp))
6248 expand_expr_stmt (LABELED_BLOCK_BODY (exp));
6249 emit_label (label_rtx (LABELED_BLOCK_LABEL (exp)));
6250 return const0_rtx;
6252 case EXIT_BLOCK_EXPR:
6253 if (EXIT_BLOCK_RETURN (exp))
6254 sorry ("returned value in block_exit_expr");
6255 expand_goto (LABELED_BLOCK_LABEL (EXIT_BLOCK_LABELED_BLOCK (exp)));
6256 return const0_rtx;
6258 case LOOP_EXPR:
6259 push_temp_slots ();
6260 expand_start_loop (1);
6261 expand_expr_stmt (TREE_OPERAND (exp, 0));
6262 expand_end_loop ();
6263 pop_temp_slots ();
6265 return const0_rtx;
6267 case BIND_EXPR:
6269 tree vars = TREE_OPERAND (exp, 0);
6270 int vars_need_expansion = 0;
6272 /* Need to open a binding contour here because
6273 if there are any cleanups they must be contained here. */
6274 expand_start_bindings (2);
6276 /* Mark the corresponding BLOCK for output in its proper place. */
6277 if (TREE_OPERAND (exp, 2) != 0
6278 && ! TREE_USED (TREE_OPERAND (exp, 2)))
6279 insert_block (TREE_OPERAND (exp, 2));
6281 /* If VARS have not yet been expanded, expand them now. */
6282 while (vars)
6284 if (DECL_RTL (vars) == 0)
6286 vars_need_expansion = 1;
6287 expand_decl (vars);
6289 expand_decl_init (vars);
6290 vars = TREE_CHAIN (vars);
6293 temp = expand_expr (TREE_OPERAND (exp, 1), target, tmode, ro_modifier);
6295 expand_end_bindings (TREE_OPERAND (exp, 0), 0, 0);
6297 return temp;
6300 case RTL_EXPR:
6301 if (RTL_EXPR_SEQUENCE (exp))
6303 if (RTL_EXPR_SEQUENCE (exp) == const0_rtx)
6304 abort ();
6305 emit_insns (RTL_EXPR_SEQUENCE (exp));
6306 RTL_EXPR_SEQUENCE (exp) = const0_rtx;
6308 preserve_rtl_expr_result (RTL_EXPR_RTL (exp));
6309 free_temps_for_rtl_expr (exp);
6310 return RTL_EXPR_RTL (exp);
6312 case CONSTRUCTOR:
6313 /* If we don't need the result, just ensure we evaluate any
6314 subexpressions. */
6315 if (ignore)
6317 tree elt;
6318 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
6319 expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode,
6320 EXPAND_MEMORY_USE_BAD);
6321 return const0_rtx;
6324 /* All elts simple constants => refer to a constant in memory. But
6325 if this is a non-BLKmode mode, let it store a field at a time
6326 since that should make a CONST_INT or CONST_DOUBLE when we
6327 fold. Likewise, if we have a target we can use, it is best to
6328 store directly into the target unless the type is large enough
6329 that memcpy will be used. If we are making an initializer and
6330 all operands are constant, put it in memory as well. */
6331 else if ((TREE_STATIC (exp)
6332 && ((mode == BLKmode
6333 && ! (target != 0 && safe_from_p (target, exp, 1)))
6334 || TREE_ADDRESSABLE (exp)
6335 || (TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
6336 && TREE_INT_CST_HIGH (TYPE_SIZE_UNIT (type)) == 0
6337 && (! MOVE_BY_PIECES_P
6338 (TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type)),
6339 TYPE_ALIGN (type) / BITS_PER_UNIT))
6340 && ! mostly_zeros_p (exp))))
6341 || (modifier == EXPAND_INITIALIZER && TREE_CONSTANT (exp)))
6343 rtx constructor = output_constant_def (exp);
6344 if (modifier != EXPAND_CONST_ADDRESS
6345 && modifier != EXPAND_INITIALIZER
6346 && modifier != EXPAND_SUM
6347 && (! memory_address_p (GET_MODE (constructor),
6348 XEXP (constructor, 0))
6349 || (flag_force_addr
6350 && GET_CODE (XEXP (constructor, 0)) != REG)))
6351 constructor = change_address (constructor, VOIDmode,
6352 XEXP (constructor, 0));
6353 return constructor;
6356 else
6358 /* Handle calls that pass values in multiple non-contiguous
6359 locations. The Irix 6 ABI has examples of this. */
6360 if (target == 0 || ! safe_from_p (target, exp, 1)
6361 || GET_CODE (target) == PARALLEL)
6363 if (mode != BLKmode && ! TREE_ADDRESSABLE (exp))
6364 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
6365 else
6366 target = assign_temp (type, 0, 1, 1);
6369 if (TREE_READONLY (exp))
6371 if (GET_CODE (target) == MEM)
6372 target = copy_rtx (target);
6374 RTX_UNCHANGING_P (target) = 1;
6377 store_constructor (exp, target, TYPE_ALIGN (TREE_TYPE (exp)), 0,
6378 int_size_in_bytes (TREE_TYPE (exp)));
6379 return target;
6382 case INDIRECT_REF:
6384 tree exp1 = TREE_OPERAND (exp, 0);
6385 tree exp2;
6386 tree index;
6387 tree string = string_constant (exp1, &index);
6389 /* Try to optimize reads from const strings. */
6390 if (string
6391 && TREE_CODE (string) == STRING_CST
6392 && TREE_CODE (index) == INTEGER_CST
6393 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
6394 && GET_MODE_CLASS (mode) == MODE_INT
6395 && GET_MODE_SIZE (mode) == 1
6396 && modifier != EXPAND_MEMORY_USE_WO)
6397 return
6398 GEN_INT (TREE_STRING_POINTER (string)[TREE_INT_CST_LOW (index)]);
6400 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
6401 op0 = memory_address (mode, op0);
6403 if (cfun && current_function_check_memory_usage
6404 && ! AGGREGATE_TYPE_P (TREE_TYPE (exp)))
6406 enum memory_use_mode memory_usage;
6407 memory_usage = get_memory_usage_from_modifier (modifier);
6409 if (memory_usage != MEMORY_USE_DONT)
6411 in_check_memory_usage = 1;
6412 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
6413 op0, Pmode,
6414 GEN_INT (int_size_in_bytes (type)),
6415 TYPE_MODE (sizetype),
6416 GEN_INT (memory_usage),
6417 TYPE_MODE (integer_type_node));
6418 in_check_memory_usage = 0;
6422 temp = gen_rtx_MEM (mode, op0);
6423 /* If address was computed by addition,
6424 mark this as an element of an aggregate. */
6425 if (TREE_CODE (exp1) == PLUS_EXPR
6426 || (TREE_CODE (exp1) == SAVE_EXPR
6427 && TREE_CODE (TREE_OPERAND (exp1, 0)) == PLUS_EXPR)
6428 || AGGREGATE_TYPE_P (TREE_TYPE (exp))
6429 || (TREE_CODE (exp1) == ADDR_EXPR
6430 && (exp2 = TREE_OPERAND (exp1, 0))
6431 && AGGREGATE_TYPE_P (TREE_TYPE (exp2))))
6432 MEM_SET_IN_STRUCT_P (temp, 1);
6434 MEM_VOLATILE_P (temp) = TREE_THIS_VOLATILE (exp) | flag_volatile;
6435 MEM_ALIAS_SET (temp) = get_alias_set (exp);
6437 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY
6438 here, because, in C and C++, the fact that a location is accessed
6439 through a pointer to const does not mean that the value there can
6440 never change. Languages where it can never change should
6441 also set TREE_STATIC. */
6442 RTX_UNCHANGING_P (temp) = TREE_READONLY (exp) & TREE_STATIC (exp);
6444 /* If we are writing to this object and its type is a record with
6445 readonly fields, we must mark it as readonly so it will
6446 conflict with readonly references to those fields. */
6447 if (modifier == EXPAND_MEMORY_USE_WO
6448 && TREE_CODE (type) == RECORD_TYPE && readonly_fields_p (type))
6449 RTX_UNCHANGING_P (temp) = 1;
6451 return temp;
6454 case ARRAY_REF:
6455 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
6456 abort ();
6459 tree array = TREE_OPERAND (exp, 0);
6460 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
6461 tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
6462 tree index = convert (sizetype, TREE_OPERAND (exp, 1));
6463 HOST_WIDE_INT i;
6465 /* Optimize the special-case of a zero lower bound.
6467 We convert the low_bound to sizetype to avoid some problems
6468 with constant folding. (E.g. suppose the lower bound is 1,
6469 and its mode is QI. Without the conversion, (ARRAY
6470 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
6471 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
6473 if (! integer_zerop (low_bound))
6474 index = size_diffop (index, convert (sizetype, low_bound));
6476 /* Fold an expression like: "foo"[2].
6477 This is not done in fold so it won't happen inside &.
6478 Don't fold if this is for wide characters since it's too
6479 difficult to do correctly and this is a very rare case. */
6481 if (TREE_CODE (array) == STRING_CST
6482 && TREE_CODE (index) == INTEGER_CST
6483 && compare_tree_int (index, TREE_STRING_LENGTH (array)) < 0
6484 && GET_MODE_CLASS (mode) == MODE_INT
6485 && GET_MODE_SIZE (mode) == 1)
6486 return
6487 GEN_INT (TREE_STRING_POINTER (array)[TREE_INT_CST_LOW (index)]);
6489 /* If this is a constant index into a constant array,
6490 just get the value from the array. Handle both the cases when
6491 we have an explicit constructor and when our operand is a variable
6492 that was declared const. */
6494 if (TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array)
6495 && TREE_CODE (index) == INTEGER_CST
6496 && 0 > compare_tree_int (index,
6497 list_length (CONSTRUCTOR_ELTS
6498 (TREE_OPERAND (exp, 0)))))
6500 tree elem;
6502 for (elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
6503 i = TREE_INT_CST_LOW (index);
6504 elem != 0 && i != 0; i--, elem = TREE_CHAIN (elem))
6507 if (elem)
6508 return expand_expr (fold (TREE_VALUE (elem)), target,
6509 tmode, ro_modifier);
6512 else if (optimize >= 1
6513 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
6514 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
6515 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
6517 if (TREE_CODE (index) == INTEGER_CST)
6519 tree init = DECL_INITIAL (array);
6521 if (TREE_CODE (init) == CONSTRUCTOR)
6523 tree elem = CONSTRUCTOR_ELTS (init);
6525 for (elem = CONSTRUCTOR_ELTS (init);
6526 ! tree_int_cst_equal (TREE_PURPOSE (elem), index);
6527 elem = TREE_CHAIN (elem))
6530 if (elem)
6531 return expand_expr (fold (TREE_VALUE (elem)), target,
6532 tmode, ro_modifier);
6534 else if (TREE_CODE (init) == STRING_CST
6535 && 0 > compare_tree_int (index,
6536 TREE_STRING_LENGTH (init)))
6537 return (GEN_INT
6538 (TREE_STRING_POINTER
6539 (init)[TREE_INT_CST_LOW (index)]));
6544 /* ... fall through ... */
6546 case COMPONENT_REF:
6547 case BIT_FIELD_REF:
6548 /* If the operand is a CONSTRUCTOR, we can just extract the
6549 appropriate field if it is present. Don't do this if we have
6550 already written the data since we want to refer to that copy
6551 and varasm.c assumes that's what we'll do. */
6552 if (code != ARRAY_REF
6553 && TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
6554 && TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
6556 tree elt;
6558 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
6559 elt = TREE_CHAIN (elt))
6560 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
6561 /* We can normally use the value of the field in the
6562 CONSTRUCTOR. However, if this is a bitfield in
6563 an integral mode that we can fit in a HOST_WIDE_INT,
6564 we must mask only the number of bits in the bitfield,
6565 since this is done implicitly by the constructor. If
6566 the bitfield does not meet either of those conditions,
6567 we can't do this optimization. */
6568 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
6569 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
6570 == MODE_INT)
6571 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
6572 <= HOST_BITS_PER_WIDE_INT))))
6574 op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
6575 if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
6577 HOST_WIDE_INT bitsize
6578 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt)));
6580 if (TREE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
6582 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
6583 op0 = expand_and (op0, op1, target);
6585 else
6587 enum machine_mode imode
6588 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
6589 tree count
6590 = build_int_2 (GET_MODE_BITSIZE (imode) - bitsize,
6593 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
6594 target, 0);
6595 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
6596 target, 0);
6600 return op0;
6605 enum machine_mode mode1;
6606 int bitsize;
6607 int bitpos;
6608 tree offset;
6609 int volatilep = 0;
6610 unsigned int alignment;
6611 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6612 &mode1, &unsignedp, &volatilep,
6613 &alignment);
6615 /* If we got back the original object, something is wrong. Perhaps
6616 we are evaluating an expression too early. In any event, don't
6617 infinitely recurse. */
6618 if (tem == exp)
6619 abort ();
6621 /* If TEM's type is a union of variable size, pass TARGET to the inner
6622 computation, since it will need a temporary and TARGET is known
6623 to have to do. This occurs in unchecked conversion in Ada. */
6625 op0 = expand_expr (tem,
6626 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
6627 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
6628 != INTEGER_CST)
6629 ? target : NULL_RTX),
6630 VOIDmode,
6631 (modifier == EXPAND_INITIALIZER
6632 || modifier == EXPAND_CONST_ADDRESS)
6633 ? modifier : EXPAND_NORMAL);
6635 /* If this is a constant, put it into a register if it is a
6636 legitimate constant and OFFSET is 0 and memory if it isn't. */
6637 if (CONSTANT_P (op0))
6639 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
6640 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
6641 && offset == 0)
6642 op0 = force_reg (mode, op0);
6643 else
6644 op0 = validize_mem (force_const_mem (mode, op0));
6647 if (offset != 0)
6649 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
6651 /* If this object is in memory, put it into a register.
6652 This case can't occur in C, but can in Ada if we have
6653 unchecked conversion of an expression from a scalar type to
6654 an array or record type. */
6655 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
6656 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
6658 rtx memloc = assign_temp (TREE_TYPE (tem), 1, 1, 1);
6660 mark_temp_addr_taken (memloc);
6661 emit_move_insn (memloc, op0);
6662 op0 = memloc;
6665 if (GET_CODE (op0) != MEM)
6666 abort ();
6668 if (GET_MODE (offset_rtx) != ptr_mode)
6670 #ifdef POINTERS_EXTEND_UNSIGNED
6671 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
6672 #else
6673 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
6674 #endif
6677 /* A constant address in OP0 can have VOIDmode, we must not try
6678 to call force_reg for that case. Avoid that case. */
6679 if (GET_CODE (op0) == MEM
6680 && GET_MODE (op0) == BLKmode
6681 && GET_MODE (XEXP (op0, 0)) != VOIDmode
6682 && bitsize != 0
6683 && (bitpos % bitsize) == 0
6684 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
6685 && (alignment * BITS_PER_UNIT) == GET_MODE_ALIGNMENT (mode1))
6687 rtx temp = change_address (op0, mode1,
6688 plus_constant (XEXP (op0, 0),
6689 (bitpos /
6690 BITS_PER_UNIT)));
6691 if (GET_CODE (XEXP (temp, 0)) == REG)
6692 op0 = temp;
6693 else
6694 op0 = change_address (op0, mode1,
6695 force_reg (GET_MODE (XEXP (temp, 0)),
6696 XEXP (temp, 0)));
6697 bitpos = 0;
6701 op0 = change_address (op0, VOIDmode,
6702 gen_rtx_PLUS (ptr_mode, XEXP (op0, 0),
6703 force_reg (ptr_mode,
6704 offset_rtx)));
6707 /* Don't forget about volatility even if this is a bitfield. */
6708 if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
6710 op0 = copy_rtx (op0);
6711 MEM_VOLATILE_P (op0) = 1;
6714 /* Check the access. */
6715 if (current_function_check_memory_usage && GET_CODE (op0) == MEM)
6717 enum memory_use_mode memory_usage;
6718 memory_usage = get_memory_usage_from_modifier (modifier);
6720 if (memory_usage != MEMORY_USE_DONT)
6722 rtx to;
6723 int size;
6725 to = plus_constant (XEXP (op0, 0), (bitpos / BITS_PER_UNIT));
6726 size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
6728 /* Check the access right of the pointer. */
6729 if (size > BITS_PER_UNIT)
6730 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
6731 to, Pmode,
6732 GEN_INT (size / BITS_PER_UNIT),
6733 TYPE_MODE (sizetype),
6734 GEN_INT (memory_usage),
6735 TYPE_MODE (integer_type_node));
6739 /* In cases where an aligned union has an unaligned object
6740 as a field, we might be extracting a BLKmode value from
6741 an integer-mode (e.g., SImode) object. Handle this case
6742 by doing the extract into an object as wide as the field
6743 (which we know to be the width of a basic mode), then
6744 storing into memory, and changing the mode to BLKmode.
6745 If we ultimately want the address (EXPAND_CONST_ADDRESS or
6746 EXPAND_INITIALIZER), then we must not copy to a temporary. */
6747 if (mode1 == VOIDmode
6748 || GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
6749 || (modifier != EXPAND_CONST_ADDRESS
6750 && modifier != EXPAND_INITIALIZER
6751 && ((mode1 != BLKmode && ! direct_load[(int) mode1]
6752 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6753 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6754 /* If the field isn't aligned enough to fetch as a memref,
6755 fetch it as a bit field. */
6756 || (mode1 != BLKmode
6757 && SLOW_UNALIGNED_ACCESS (mode1, alignment)
6758 && ((TYPE_ALIGN (TREE_TYPE (tem))
6759 < (unsigned int) GET_MODE_ALIGNMENT (mode))
6760 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)))
6761 /* If the type and the field are a constant size and the
6762 size of the type isn't the same size as the bitfield,
6763 we must use bitfield operations. */
6764 || ((bitsize >= 0
6765 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (exp)))
6766 == INTEGER_CST)
6767 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
6768 bitsize)))))
6769 || (modifier != EXPAND_CONST_ADDRESS
6770 && modifier != EXPAND_INITIALIZER
6771 && mode == BLKmode
6772 && SLOW_UNALIGNED_ACCESS (mode, alignment)
6773 && (TYPE_ALIGN (type) > alignment * BITS_PER_UNIT
6774 || bitpos % TYPE_ALIGN (type) != 0)))
6776 enum machine_mode ext_mode = mode;
6778 if (ext_mode == BLKmode
6779 && ! (target != 0 && GET_CODE (op0) == MEM
6780 && GET_CODE (target) == MEM
6781 && bitpos % BITS_PER_UNIT == 0))
6782 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
6784 if (ext_mode == BLKmode)
6786 /* In this case, BITPOS must start at a byte boundary and
6787 TARGET, if specified, must be a MEM. */
6788 if (GET_CODE (op0) != MEM
6789 || (target != 0 && GET_CODE (target) != MEM)
6790 || bitpos % BITS_PER_UNIT != 0)
6791 abort ();
6793 op0 = change_address (op0, VOIDmode,
6794 plus_constant (XEXP (op0, 0),
6795 bitpos / BITS_PER_UNIT));
6796 if (target == 0)
6797 target = assign_temp (type, 0, 1, 1);
6799 emit_block_move (target, op0,
6800 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6801 / BITS_PER_UNIT),
6804 return target;
6807 op0 = validize_mem (op0);
6809 if (GET_CODE (op0) == MEM && GET_CODE (XEXP (op0, 0)) == REG)
6810 mark_reg_pointer (XEXP (op0, 0), alignment);
6812 op0 = extract_bit_field (op0, bitsize, bitpos,
6813 unsignedp, target, ext_mode, ext_mode,
6814 alignment,
6815 int_size_in_bytes (TREE_TYPE (tem)));
6817 /* If the result is a record type and BITSIZE is narrower than
6818 the mode of OP0, an integral mode, and this is a big endian
6819 machine, we must put the field into the high-order bits. */
6820 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
6821 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
6822 && bitsize < GET_MODE_BITSIZE (GET_MODE (op0)))
6823 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
6824 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
6825 - bitsize),
6826 op0, 1);
6828 if (mode == BLKmode)
6830 rtx new = assign_stack_temp (ext_mode,
6831 bitsize / BITS_PER_UNIT, 0);
6833 emit_move_insn (new, op0);
6834 op0 = copy_rtx (new);
6835 PUT_MODE (op0, BLKmode);
6836 MEM_SET_IN_STRUCT_P (op0, 1);
6839 return op0;
6842 /* If the result is BLKmode, use that to access the object
6843 now as well. */
6844 if (mode == BLKmode)
6845 mode1 = BLKmode;
6847 /* Get a reference to just this component. */
6848 if (modifier == EXPAND_CONST_ADDRESS
6849 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6850 op0 = gen_rtx_MEM (mode1, plus_constant (XEXP (op0, 0),
6851 (bitpos / BITS_PER_UNIT)));
6852 else
6853 op0 = change_address (op0, mode1,
6854 plus_constant (XEXP (op0, 0),
6855 (bitpos / BITS_PER_UNIT)));
6857 if (GET_CODE (op0) == MEM)
6858 MEM_ALIAS_SET (op0) = get_alias_set (exp);
6860 if (GET_CODE (XEXP (op0, 0)) == REG)
6861 mark_reg_pointer (XEXP (op0, 0), alignment);
6863 MEM_SET_IN_STRUCT_P (op0, 1);
6864 MEM_VOLATILE_P (op0) |= volatilep;
6865 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
6866 || modifier == EXPAND_CONST_ADDRESS
6867 || modifier == EXPAND_INITIALIZER)
6868 return op0;
6869 else if (target == 0)
6870 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
6872 convert_move (target, op0, unsignedp);
6873 return target;
6876 /* Intended for a reference to a buffer of a file-object in Pascal.
6877 But it's not certain that a special tree code will really be
6878 necessary for these. INDIRECT_REF might work for them. */
6879 case BUFFER_REF:
6880 abort ();
6882 case IN_EXPR:
6884 /* Pascal set IN expression.
6886 Algorithm:
6887 rlo = set_low - (set_low%bits_per_word);
6888 the_word = set [ (index - rlo)/bits_per_word ];
6889 bit_index = index % bits_per_word;
6890 bitmask = 1 << bit_index;
6891 return !!(the_word & bitmask); */
6893 tree set = TREE_OPERAND (exp, 0);
6894 tree index = TREE_OPERAND (exp, 1);
6895 int iunsignedp = TREE_UNSIGNED (TREE_TYPE (index));
6896 tree set_type = TREE_TYPE (set);
6897 tree set_low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (set_type));
6898 tree set_high_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (set_type));
6899 rtx index_val = expand_expr (index, 0, VOIDmode, 0);
6900 rtx lo_r = expand_expr (set_low_bound, 0, VOIDmode, 0);
6901 rtx hi_r = expand_expr (set_high_bound, 0, VOIDmode, 0);
6902 rtx setval = expand_expr (set, 0, VOIDmode, 0);
6903 rtx setaddr = XEXP (setval, 0);
6904 enum machine_mode index_mode = TYPE_MODE (TREE_TYPE (index));
6905 rtx rlow;
6906 rtx diff, quo, rem, addr, bit, result;
6908 preexpand_calls (exp);
6910 /* If domain is empty, answer is no. Likewise if index is constant
6911 and out of bounds. */
6912 if (((TREE_CODE (set_high_bound) == INTEGER_CST
6913 && TREE_CODE (set_low_bound) == INTEGER_CST
6914 && tree_int_cst_lt (set_high_bound, set_low_bound))
6915 || (TREE_CODE (index) == INTEGER_CST
6916 && TREE_CODE (set_low_bound) == INTEGER_CST
6917 && tree_int_cst_lt (index, set_low_bound))
6918 || (TREE_CODE (set_high_bound) == INTEGER_CST
6919 && TREE_CODE (index) == INTEGER_CST
6920 && tree_int_cst_lt (set_high_bound, index))))
6921 return const0_rtx;
6923 if (target == 0)
6924 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
6926 /* If we get here, we have to generate the code for both cases
6927 (in range and out of range). */
6929 op0 = gen_label_rtx ();
6930 op1 = gen_label_rtx ();
6932 if (! (GET_CODE (index_val) == CONST_INT
6933 && GET_CODE (lo_r) == CONST_INT))
6935 emit_cmp_and_jump_insns (index_val, lo_r, LT, NULL_RTX,
6936 GET_MODE (index_val), iunsignedp, 0, op1);
6939 if (! (GET_CODE (index_val) == CONST_INT
6940 && GET_CODE (hi_r) == CONST_INT))
6942 emit_cmp_and_jump_insns (index_val, hi_r, GT, NULL_RTX,
6943 GET_MODE (index_val), iunsignedp, 0, op1);
6946 /* Calculate the element number of bit zero in the first word
6947 of the set. */
6948 if (GET_CODE (lo_r) == CONST_INT)
6949 rlow = GEN_INT (INTVAL (lo_r)
6950 & ~ ((HOST_WIDE_INT) 1 << BITS_PER_UNIT));
6951 else
6952 rlow = expand_binop (index_mode, and_optab, lo_r,
6953 GEN_INT (~((HOST_WIDE_INT) 1 << BITS_PER_UNIT)),
6954 NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
6956 diff = expand_binop (index_mode, sub_optab, index_val, rlow,
6957 NULL_RTX, iunsignedp, OPTAB_LIB_WIDEN);
6959 quo = expand_divmod (0, TRUNC_DIV_EXPR, index_mode, diff,
6960 GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
6961 rem = expand_divmod (1, TRUNC_MOD_EXPR, index_mode, index_val,
6962 GEN_INT (BITS_PER_UNIT), NULL_RTX, iunsignedp);
6964 addr = memory_address (byte_mode,
6965 expand_binop (index_mode, add_optab, diff,
6966 setaddr, NULL_RTX, iunsignedp,
6967 OPTAB_LIB_WIDEN));
6969 /* Extract the bit we want to examine */
6970 bit = expand_shift (RSHIFT_EXPR, byte_mode,
6971 gen_rtx_MEM (byte_mode, addr),
6972 make_tree (TREE_TYPE (index), rem),
6973 NULL_RTX, 1);
6974 result = expand_binop (byte_mode, and_optab, bit, const1_rtx,
6975 GET_MODE (target) == byte_mode ? target : 0,
6976 1, OPTAB_LIB_WIDEN);
6978 if (result != target)
6979 convert_move (target, result, 1);
6981 /* Output the code to handle the out-of-range case. */
6982 emit_jump (op0);
6983 emit_label (op1);
6984 emit_move_insn (target, const0_rtx);
6985 emit_label (op0);
6986 return target;
6989 case WITH_CLEANUP_EXPR:
6990 if (RTL_EXPR_RTL (exp) == 0)
6992 RTL_EXPR_RTL (exp)
6993 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
6994 expand_decl_cleanup (NULL_TREE, TREE_OPERAND (exp, 2));
6996 /* That's it for this cleanup. */
6997 TREE_OPERAND (exp, 2) = 0;
6999 return RTL_EXPR_RTL (exp);
7001 case CLEANUP_POINT_EXPR:
7003 /* Start a new binding layer that will keep track of all cleanup
7004 actions to be performed. */
7005 expand_start_bindings (2);
7007 target_temp_slot_level = temp_slot_level;
7009 op0 = expand_expr (TREE_OPERAND (exp, 0), target, tmode, ro_modifier);
7010 /* If we're going to use this value, load it up now. */
7011 if (! ignore)
7012 op0 = force_not_mem (op0);
7013 preserve_temp_slots (op0);
7014 expand_end_bindings (NULL_TREE, 0, 0);
7016 return op0;
7018 case CALL_EXPR:
7019 /* Check for a built-in function. */
7020 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7021 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7022 == FUNCTION_DECL)
7023 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7024 return expand_builtin (exp, target, subtarget, tmode, ignore);
7026 /* If this call was expanded already by preexpand_calls,
7027 just return the result we got. */
7028 if (CALL_EXPR_RTL (exp) != 0)
7029 return CALL_EXPR_RTL (exp);
7031 return expand_call (exp, target, ignore);
7033 case NON_LVALUE_EXPR:
7034 case NOP_EXPR:
7035 case CONVERT_EXPR:
7036 case REFERENCE_EXPR:
7037 if (TREE_CODE (type) == UNION_TYPE)
7039 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7041 /* If both input and output are BLKmode, this conversion
7042 isn't actually doing anything unless we need to make the
7043 alignment stricter. */
7044 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode
7045 && (TYPE_ALIGN (type) <= TYPE_ALIGN (valtype)
7046 || TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT))
7047 return expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7048 modifier);
7050 if (target == 0)
7052 if (mode != BLKmode)
7053 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7054 else
7055 target = assign_temp (type, 0, 1, 1);
7058 if (GET_CODE (target) == MEM)
7059 /* Store data into beginning of memory target. */
7060 store_expr (TREE_OPERAND (exp, 0),
7061 change_address (target, TYPE_MODE (valtype), 0), 0);
7063 else if (GET_CODE (target) == REG)
7064 /* Store this field into a union of the proper type. */
7065 store_field (target,
7066 MIN ((int_size_in_bytes (TREE_TYPE
7067 (TREE_OPERAND (exp, 0)))
7068 * BITS_PER_UNIT),
7069 GET_MODE_BITSIZE (mode)),
7070 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7071 VOIDmode, 0, 1, int_size_in_bytes (type), 0);
7072 else
7073 abort ();
7075 /* Return the entire union. */
7076 return target;
7079 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7081 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7082 ro_modifier);
7084 /* If the signedness of the conversion differs and OP0 is
7085 a promoted SUBREG, clear that indication since we now
7086 have to do the proper extension. */
7087 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7088 && GET_CODE (op0) == SUBREG)
7089 SUBREG_PROMOTED_VAR_P (op0) = 0;
7091 return op0;
7094 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, 0);
7095 if (GET_MODE (op0) == mode)
7096 return op0;
7098 /* If OP0 is a constant, just convert it into the proper mode. */
7099 if (CONSTANT_P (op0))
7100 return
7101 convert_modes (mode, TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7102 op0, TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7104 if (modifier == EXPAND_INITIALIZER)
7105 return gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7107 if (target == 0)
7108 return
7109 convert_to_mode (mode, op0,
7110 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7111 else
7112 convert_move (target, op0,
7113 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7114 return target;
7116 case PLUS_EXPR:
7117 /* We come here from MINUS_EXPR when the second operand is a
7118 constant. */
7119 plus_expr:
7120 this_optab = add_optab;
7122 /* If we are adding a constant, an RTL_EXPR that is sp, fp, or ap, and
7123 something else, make sure we add the register to the constant and
7124 then to the other thing. This case can occur during strength
7125 reduction and doing it this way will produce better code if the
7126 frame pointer or argument pointer is eliminated.
7128 fold-const.c will ensure that the constant is always in the inner
7129 PLUS_EXPR, so the only case we need to do anything about is if
7130 sp, ap, or fp is our second argument, in which case we must swap
7131 the innermost first argument and our second argument. */
7133 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7134 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7135 && TREE_CODE (TREE_OPERAND (exp, 1)) == RTL_EXPR
7136 && (RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7137 || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7138 || RTL_EXPR_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7140 tree t = TREE_OPERAND (exp, 1);
7142 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7143 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7146 /* If the result is to be ptr_mode and we are adding an integer to
7147 something, we might be forming a constant. So try to use
7148 plus_constant. If it produces a sum and we can't accept it,
7149 use force_operand. This allows P = &ARR[const] to generate
7150 efficient code on machines where a SYMBOL_REF is not a valid
7151 address.
7153 If this is an EXPAND_SUM call, always return the sum. */
7154 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7155 || mode == ptr_mode)
7157 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7158 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7159 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7161 rtx constant_part;
7163 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7164 EXPAND_SUM);
7165 /* Use immed_double_const to ensure that the constant is
7166 truncated according to the mode of OP1, then sign extended
7167 to a HOST_WIDE_INT. Using the constant directly can result
7168 in non-canonical RTL in a 64x32 cross compile. */
7169 constant_part
7170 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7171 (HOST_WIDE_INT) 0,
7172 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7173 op1 = plus_constant (op1, INTVAL (constant_part));
7174 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7175 op1 = force_operand (op1, target);
7176 return op1;
7179 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7180 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
7181 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7183 rtx constant_part;
7185 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7186 EXPAND_SUM);
7187 if (! CONSTANT_P (op0))
7189 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7190 VOIDmode, modifier);
7191 /* Don't go to both_summands if modifier
7192 says it's not right to return a PLUS. */
7193 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7194 goto binop2;
7195 goto both_summands;
7197 /* Use immed_double_const to ensure that the constant is
7198 truncated according to the mode of OP1, then sign extended
7199 to a HOST_WIDE_INT. Using the constant directly can result
7200 in non-canonical RTL in a 64x32 cross compile. */
7201 constant_part
7202 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7203 (HOST_WIDE_INT) 0,
7204 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7205 op0 = plus_constant (op0, INTVAL (constant_part));
7206 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7207 op0 = force_operand (op0, target);
7208 return op0;
7212 /* No sense saving up arithmetic to be done
7213 if it's all in the wrong mode to form part of an address.
7214 And force_operand won't know whether to sign-extend or
7215 zero-extend. */
7216 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7217 || mode != ptr_mode)
7218 goto binop;
7220 preexpand_calls (exp);
7221 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7222 subtarget = 0;
7224 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, ro_modifier);
7225 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, ro_modifier);
7227 both_summands:
7228 /* Make sure any term that's a sum with a constant comes last. */
7229 if (GET_CODE (op0) == PLUS
7230 && CONSTANT_P (XEXP (op0, 1)))
7232 temp = op0;
7233 op0 = op1;
7234 op1 = temp;
7236 /* If adding to a sum including a constant,
7237 associate it to put the constant outside. */
7238 if (GET_CODE (op1) == PLUS
7239 && CONSTANT_P (XEXP (op1, 1)))
7241 rtx constant_term = const0_rtx;
7243 temp = simplify_binary_operation (PLUS, mode, XEXP (op1, 0), op0);
7244 if (temp != 0)
7245 op0 = temp;
7246 /* Ensure that MULT comes first if there is one. */
7247 else if (GET_CODE (op0) == MULT)
7248 op0 = gen_rtx_PLUS (mode, op0, XEXP (op1, 0));
7249 else
7250 op0 = gen_rtx_PLUS (mode, XEXP (op1, 0), op0);
7252 /* Let's also eliminate constants from op0 if possible. */
7253 op0 = eliminate_constant_term (op0, &constant_term);
7255 /* CONSTANT_TERM and XEXP (op1, 1) are known to be constant, so
7256 their sum should be a constant. Form it into OP1, since the
7257 result we want will then be OP0 + OP1. */
7259 temp = simplify_binary_operation (PLUS, mode, constant_term,
7260 XEXP (op1, 1));
7261 if (temp != 0)
7262 op1 = temp;
7263 else
7264 op1 = gen_rtx_PLUS (mode, constant_term, XEXP (op1, 1));
7267 /* Put a constant term last and put a multiplication first. */
7268 if (CONSTANT_P (op0) || GET_CODE (op1) == MULT)
7269 temp = op1, op1 = op0, op0 = temp;
7271 temp = simplify_binary_operation (PLUS, mode, op0, op1);
7272 return temp ? temp : gen_rtx_PLUS (mode, op0, op1);
7274 case MINUS_EXPR:
7275 /* For initializers, we are allowed to return a MINUS of two
7276 symbolic constants. Here we handle all cases when both operands
7277 are constant. */
7278 /* Handle difference of two symbolic constants,
7279 for the sake of an initializer. */
7280 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7281 && really_constant_p (TREE_OPERAND (exp, 0))
7282 && really_constant_p (TREE_OPERAND (exp, 1)))
7284 rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX,
7285 VOIDmode, ro_modifier);
7286 rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7287 VOIDmode, ro_modifier);
7289 /* If the last operand is a CONST_INT, use plus_constant of
7290 the negated constant. Else make the MINUS. */
7291 if (GET_CODE (op1) == CONST_INT)
7292 return plus_constant (op0, - INTVAL (op1));
7293 else
7294 return gen_rtx_MINUS (mode, op0, op1);
7296 /* Convert A - const to A + (-const). */
7297 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7299 tree negated = fold (build1 (NEGATE_EXPR, type,
7300 TREE_OPERAND (exp, 1)));
7302 if (TREE_UNSIGNED (type) || TREE_OVERFLOW (negated))
7303 /* If we can't negate the constant in TYPE, leave it alone and
7304 expand_binop will negate it for us. We used to try to do it
7305 here in the signed version of TYPE, but that doesn't work
7306 on POINTER_TYPEs. */;
7307 else
7309 exp = build (PLUS_EXPR, type, TREE_OPERAND (exp, 0), negated);
7310 goto plus_expr;
7313 this_optab = sub_optab;
7314 goto binop;
7316 case MULT_EXPR:
7317 preexpand_calls (exp);
7318 /* If first operand is constant, swap them.
7319 Thus the following special case checks need only
7320 check the second operand. */
7321 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7323 register tree t1 = TREE_OPERAND (exp, 0);
7324 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7325 TREE_OPERAND (exp, 1) = t1;
7328 /* Attempt to return something suitable for generating an
7329 indexed address, for machines that support that. */
7331 if (modifier == EXPAND_SUM && mode == ptr_mode
7332 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7333 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
7335 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7336 EXPAND_SUM);
7338 /* Apply distributive law if OP0 is x+c. */
7339 if (GET_CODE (op0) == PLUS
7340 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
7341 return
7342 gen_rtx_PLUS
7343 (mode,
7344 gen_rtx_MULT
7345 (mode, XEXP (op0, 0),
7346 GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)))),
7347 GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))
7348 * INTVAL (XEXP (op0, 1))));
7350 if (GET_CODE (op0) != REG)
7351 op0 = force_operand (op0, NULL_RTX);
7352 if (GET_CODE (op0) != REG)
7353 op0 = copy_to_mode_reg (mode, op0);
7355 return
7356 gen_rtx_MULT (mode, op0,
7357 GEN_INT (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))));
7360 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7361 subtarget = 0;
7363 /* Check for multiplying things that have been extended
7364 from a narrower type. If this machine supports multiplying
7365 in that narrower type with a result in the desired type,
7366 do it that way, and avoid the explicit type-conversion. */
7367 if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7368 && TREE_CODE (type) == INTEGER_TYPE
7369 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7370 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7371 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7372 && int_fits_type_p (TREE_OPERAND (exp, 1),
7373 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7374 /* Don't use a widening multiply if a shift will do. */
7375 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7376 > HOST_BITS_PER_WIDE_INT)
7377 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7379 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7380 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7382 TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
7383 /* If both operands are extended, they must either both
7384 be zero-extended or both be sign-extended. */
7385 && (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7387 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))))))
7389 enum machine_mode innermode
7390 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)));
7391 optab other_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7392 ? smul_widen_optab : umul_widen_optab);
7393 this_optab = (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7394 ? umul_widen_optab : smul_widen_optab);
7395 if (mode == GET_MODE_WIDER_MODE (innermode))
7397 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7399 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7400 NULL_RTX, VOIDmode, 0);
7401 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7402 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7403 VOIDmode, 0);
7404 else
7405 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7406 NULL_RTX, VOIDmode, 0);
7407 goto binop2;
7409 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7410 && innermode == word_mode)
7412 rtx htem;
7413 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7414 NULL_RTX, VOIDmode, 0);
7415 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7416 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7417 VOIDmode, 0);
7418 else
7419 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7420 NULL_RTX, VOIDmode, 0);
7421 temp = expand_binop (mode, other_optab, op0, op1, target,
7422 unsignedp, OPTAB_LIB_WIDEN);
7423 htem = expand_mult_highpart_adjust (innermode,
7424 gen_highpart (innermode, temp),
7425 op0, op1,
7426 gen_highpart (innermode, temp),
7427 unsignedp);
7428 emit_move_insn (gen_highpart (innermode, temp), htem);
7429 return temp;
7433 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7434 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7435 return expand_mult (mode, op0, op1, target, unsignedp);
7437 case TRUNC_DIV_EXPR:
7438 case FLOOR_DIV_EXPR:
7439 case CEIL_DIV_EXPR:
7440 case ROUND_DIV_EXPR:
7441 case EXACT_DIV_EXPR:
7442 preexpand_calls (exp);
7443 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7444 subtarget = 0;
7445 /* Possible optimization: compute the dividend with EXPAND_SUM
7446 then if the divisor is constant can optimize the case
7447 where some terms of the dividend have coeffs divisible by it. */
7448 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7449 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7450 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7452 case RDIV_EXPR:
7453 this_optab = flodiv_optab;
7454 goto binop;
7456 case TRUNC_MOD_EXPR:
7457 case FLOOR_MOD_EXPR:
7458 case CEIL_MOD_EXPR:
7459 case ROUND_MOD_EXPR:
7460 preexpand_calls (exp);
7461 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7462 subtarget = 0;
7463 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7464 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7465 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7467 case FIX_ROUND_EXPR:
7468 case FIX_FLOOR_EXPR:
7469 case FIX_CEIL_EXPR:
7470 abort (); /* Not used for C. */
7472 case FIX_TRUNC_EXPR:
7473 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7474 if (target == 0)
7475 target = gen_reg_rtx (mode);
7476 expand_fix (target, op0, unsignedp);
7477 return target;
7479 case FLOAT_EXPR:
7480 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7481 if (target == 0)
7482 target = gen_reg_rtx (mode);
7483 /* expand_float can't figure out what to do if FROM has VOIDmode.
7484 So give it the correct mode. With -O, cse will optimize this. */
7485 if (GET_MODE (op0) == VOIDmode)
7486 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7487 op0);
7488 expand_float (target, op0,
7489 TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7490 return target;
7492 case NEGATE_EXPR:
7493 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7494 temp = expand_unop (mode, neg_optab, op0, target, 0);
7495 if (temp == 0)
7496 abort ();
7497 return temp;
7499 case ABS_EXPR:
7500 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7502 /* Handle complex values specially. */
7503 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
7504 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
7505 return expand_complex_abs (mode, op0, target, unsignedp);
7507 /* Unsigned abs is simply the operand. Testing here means we don't
7508 risk generating incorrect code below. */
7509 if (TREE_UNSIGNED (type))
7510 return op0;
7512 return expand_abs (mode, op0, target,
7513 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
7515 case MAX_EXPR:
7516 case MIN_EXPR:
7517 target = original_target;
7518 if (target == 0 || ! safe_from_p (target, TREE_OPERAND (exp, 1), 1)
7519 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
7520 || GET_MODE (target) != mode
7521 || (GET_CODE (target) == REG
7522 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7523 target = gen_reg_rtx (mode);
7524 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
7525 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7527 /* First try to do it with a special MIN or MAX instruction.
7528 If that does not win, use a conditional jump to select the proper
7529 value. */
7530 this_optab = (TREE_UNSIGNED (type)
7531 ? (code == MIN_EXPR ? umin_optab : umax_optab)
7532 : (code == MIN_EXPR ? smin_optab : smax_optab));
7534 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7535 OPTAB_WIDEN);
7536 if (temp != 0)
7537 return temp;
7539 /* At this point, a MEM target is no longer useful; we will get better
7540 code without it. */
7542 if (GET_CODE (target) == MEM)
7543 target = gen_reg_rtx (mode);
7545 if (target != op0)
7546 emit_move_insn (target, op0);
7548 op0 = gen_label_rtx ();
7550 /* If this mode is an integer too wide to compare properly,
7551 compare word by word. Rely on cse to optimize constant cases. */
7552 if (GET_MODE_CLASS (mode) == MODE_INT
7553 && ! can_compare_p (GE, mode, ccp_jump))
7555 if (code == MAX_EXPR)
7556 do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
7557 target, op1, NULL_RTX, op0);
7558 else
7559 do_jump_by_parts_greater_rtx (mode, TREE_UNSIGNED (type),
7560 op1, target, NULL_RTX, op0);
7562 else
7564 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 1)));
7565 do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
7566 unsignedp, mode, NULL_RTX, 0, NULL_RTX,
7567 op0);
7569 emit_move_insn (target, op1);
7570 emit_label (op0);
7571 return target;
7573 case BIT_NOT_EXPR:
7574 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7575 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7576 if (temp == 0)
7577 abort ();
7578 return temp;
7580 case FFS_EXPR:
7581 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7582 temp = expand_unop (mode, ffs_optab, op0, target, 1);
7583 if (temp == 0)
7584 abort ();
7585 return temp;
7587 /* ??? Can optimize bitwise operations with one arg constant.
7588 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7589 and (a bitwise1 b) bitwise2 b (etc)
7590 but that is probably not worth while. */
7592 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7593 boolean values when we want in all cases to compute both of them. In
7594 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7595 as actual zero-or-1 values and then bitwise anding. In cases where
7596 there cannot be any side effects, better code would be made by
7597 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7598 how to recognize those cases. */
7600 case TRUTH_AND_EXPR:
7601 case BIT_AND_EXPR:
7602 this_optab = and_optab;
7603 goto binop;
7605 case TRUTH_OR_EXPR:
7606 case BIT_IOR_EXPR:
7607 this_optab = ior_optab;
7608 goto binop;
7610 case TRUTH_XOR_EXPR:
7611 case BIT_XOR_EXPR:
7612 this_optab = xor_optab;
7613 goto binop;
7615 case LSHIFT_EXPR:
7616 case RSHIFT_EXPR:
7617 case LROTATE_EXPR:
7618 case RROTATE_EXPR:
7619 preexpand_calls (exp);
7620 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7621 subtarget = 0;
7622 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7623 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
7624 unsignedp);
7626 /* Could determine the answer when only additive constants differ. Also,
7627 the addition of one can be handled by changing the condition. */
7628 case LT_EXPR:
7629 case LE_EXPR:
7630 case GT_EXPR:
7631 case GE_EXPR:
7632 case EQ_EXPR:
7633 case NE_EXPR:
7634 case UNORDERED_EXPR:
7635 case ORDERED_EXPR:
7636 case UNLT_EXPR:
7637 case UNLE_EXPR:
7638 case UNGT_EXPR:
7639 case UNGE_EXPR:
7640 case UNEQ_EXPR:
7641 preexpand_calls (exp);
7642 temp = do_store_flag (exp, target, tmode != VOIDmode ? tmode : mode, 0);
7643 if (temp != 0)
7644 return temp;
7646 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
7647 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
7648 && original_target
7649 && GET_CODE (original_target) == REG
7650 && (GET_MODE (original_target)
7651 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
7653 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
7654 VOIDmode, 0);
7656 if (temp != original_target)
7657 temp = copy_to_reg (temp);
7659 op1 = gen_label_rtx ();
7660 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
7661 GET_MODE (temp), unsignedp, 0, op1);
7662 emit_move_insn (temp, const1_rtx);
7663 emit_label (op1);
7664 return temp;
7667 /* If no set-flag instruction, must generate a conditional
7668 store into a temporary variable. Drop through
7669 and handle this like && and ||. */
7671 case TRUTH_ANDIF_EXPR:
7672 case TRUTH_ORIF_EXPR:
7673 if (! ignore
7674 && (target == 0 || ! safe_from_p (target, exp, 1)
7675 /* Make sure we don't have a hard reg (such as function's return
7676 value) live across basic blocks, if not optimizing. */
7677 || (!optimize && GET_CODE (target) == REG
7678 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
7679 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7681 if (target)
7682 emit_clr_insn (target);
7684 op1 = gen_label_rtx ();
7685 jumpifnot (exp, op1);
7687 if (target)
7688 emit_0_to_1_insn (target);
7690 emit_label (op1);
7691 return ignore ? const0_rtx : target;
7693 case TRUTH_NOT_EXPR:
7694 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7695 /* The parser is careful to generate TRUTH_NOT_EXPR
7696 only with operands that are always zero or one. */
7697 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
7698 target, 1, OPTAB_LIB_WIDEN);
7699 if (temp == 0)
7700 abort ();
7701 return temp;
7703 case COMPOUND_EXPR:
7704 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
7705 emit_queue ();
7706 return expand_expr (TREE_OPERAND (exp, 1),
7707 (ignore ? const0_rtx : target),
7708 VOIDmode, 0);
7710 case COND_EXPR:
7711 /* If we would have a "singleton" (see below) were it not for a
7712 conversion in each arm, bring that conversion back out. */
7713 if (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7714 && TREE_CODE (TREE_OPERAND (exp, 2)) == NOP_EXPR
7715 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0))
7716 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 2), 0))))
7718 tree true = TREE_OPERAND (TREE_OPERAND (exp, 1), 0);
7719 tree false = TREE_OPERAND (TREE_OPERAND (exp, 2), 0);
7721 if ((TREE_CODE_CLASS (TREE_CODE (true)) == '2'
7722 && operand_equal_p (false, TREE_OPERAND (true, 0), 0))
7723 || (TREE_CODE_CLASS (TREE_CODE (false)) == '2'
7724 && operand_equal_p (true, TREE_OPERAND (false, 0), 0))
7725 || (TREE_CODE_CLASS (TREE_CODE (true)) == '1'
7726 && operand_equal_p (false, TREE_OPERAND (true, 0), 0))
7727 || (TREE_CODE_CLASS (TREE_CODE (false)) == '1'
7728 && operand_equal_p (true, TREE_OPERAND (false, 0), 0)))
7729 return expand_expr (build1 (NOP_EXPR, type,
7730 build (COND_EXPR, TREE_TYPE (true),
7731 TREE_OPERAND (exp, 0),
7732 true, false)),
7733 target, tmode, modifier);
7737 /* Note that COND_EXPRs whose type is a structure or union
7738 are required to be constructed to contain assignments of
7739 a temporary variable, so that we can evaluate them here
7740 for side effect only. If type is void, we must do likewise. */
7742 /* If an arm of the branch requires a cleanup,
7743 only that cleanup is performed. */
7745 tree singleton = 0;
7746 tree binary_op = 0, unary_op = 0;
7748 /* If this is (A ? 1 : 0) and A is a condition, just evaluate it and
7749 convert it to our mode, if necessary. */
7750 if (integer_onep (TREE_OPERAND (exp, 1))
7751 && integer_zerop (TREE_OPERAND (exp, 2))
7752 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
7754 if (ignore)
7756 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7757 ro_modifier);
7758 return const0_rtx;
7761 op0 = expand_expr (TREE_OPERAND (exp, 0), target, mode, ro_modifier);
7762 if (GET_MODE (op0) == mode)
7763 return op0;
7765 if (target == 0)
7766 target = gen_reg_rtx (mode);
7767 convert_move (target, op0, unsignedp);
7768 return target;
7771 /* Check for X ? A + B : A. If we have this, we can copy A to the
7772 output and conditionally add B. Similarly for unary operations.
7773 Don't do this if X has side-effects because those side effects
7774 might affect A or B and the "?" operation is a sequence point in
7775 ANSI. (operand_equal_p tests for side effects.) */
7777 if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '2'
7778 && operand_equal_p (TREE_OPERAND (exp, 2),
7779 TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
7780 singleton = TREE_OPERAND (exp, 2), binary_op = TREE_OPERAND (exp, 1);
7781 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '2'
7782 && operand_equal_p (TREE_OPERAND (exp, 1),
7783 TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
7784 singleton = TREE_OPERAND (exp, 1), binary_op = TREE_OPERAND (exp, 2);
7785 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 1))) == '1'
7786 && operand_equal_p (TREE_OPERAND (exp, 2),
7787 TREE_OPERAND (TREE_OPERAND (exp, 1), 0), 0))
7788 singleton = TREE_OPERAND (exp, 2), unary_op = TREE_OPERAND (exp, 1);
7789 else if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 2))) == '1'
7790 && operand_equal_p (TREE_OPERAND (exp, 1),
7791 TREE_OPERAND (TREE_OPERAND (exp, 2), 0), 0))
7792 singleton = TREE_OPERAND (exp, 1), unary_op = TREE_OPERAND (exp, 2);
7794 /* If we are not to produce a result, we have no target. Otherwise,
7795 if a target was specified use it; it will not be used as an
7796 intermediate target unless it is safe. If no target, use a
7797 temporary. */
7799 if (ignore)
7800 temp = 0;
7801 else if (original_target
7802 && (safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
7803 || (singleton && GET_CODE (original_target) == REG
7804 && REGNO (original_target) >= FIRST_PSEUDO_REGISTER
7805 && original_target == var_rtx (singleton)))
7806 && GET_MODE (original_target) == mode
7807 #ifdef HAVE_conditional_move
7808 && (! can_conditionally_move_p (mode)
7809 || GET_CODE (original_target) == REG
7810 || TREE_ADDRESSABLE (type))
7811 #endif
7812 && ! (GET_CODE (original_target) == MEM
7813 && MEM_VOLATILE_P (original_target)))
7814 temp = original_target;
7815 else if (TREE_ADDRESSABLE (type))
7816 abort ();
7817 else
7818 temp = assign_temp (type, 0, 0, 1);
7820 /* If we had X ? A + C : A, with C a constant power of 2, and we can
7821 do the test of X as a store-flag operation, do this as
7822 A + ((X != 0) << log C). Similarly for other simple binary
7823 operators. Only do for C == 1 if BRANCH_COST is low. */
7824 if (temp && singleton && binary_op
7825 && (TREE_CODE (binary_op) == PLUS_EXPR
7826 || TREE_CODE (binary_op) == MINUS_EXPR
7827 || TREE_CODE (binary_op) == BIT_IOR_EXPR
7828 || TREE_CODE (binary_op) == BIT_XOR_EXPR)
7829 && (BRANCH_COST >= 3 ? integer_pow2p (TREE_OPERAND (binary_op, 1))
7830 : integer_onep (TREE_OPERAND (binary_op, 1)))
7831 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<')
7833 rtx result;
7834 optab boptab = (TREE_CODE (binary_op) == PLUS_EXPR ? add_optab
7835 : TREE_CODE (binary_op) == MINUS_EXPR ? sub_optab
7836 : TREE_CODE (binary_op) == BIT_IOR_EXPR ? ior_optab
7837 : xor_optab);
7839 /* If we had X ? A : A + 1, do this as A + (X == 0).
7841 We have to invert the truth value here and then put it
7842 back later if do_store_flag fails. We cannot simply copy
7843 TREE_OPERAND (exp, 0) to another variable and modify that
7844 because invert_truthvalue can modify the tree pointed to
7845 by its argument. */
7846 if (singleton == TREE_OPERAND (exp, 1))
7847 TREE_OPERAND (exp, 0)
7848 = invert_truthvalue (TREE_OPERAND (exp, 0));
7850 result = do_store_flag (TREE_OPERAND (exp, 0),
7851 (safe_from_p (temp, singleton, 1)
7852 ? temp : NULL_RTX),
7853 mode, BRANCH_COST <= 1);
7855 if (result != 0 && ! integer_onep (TREE_OPERAND (binary_op, 1)))
7856 result = expand_shift (LSHIFT_EXPR, mode, result,
7857 build_int_2 (tree_log2
7858 (TREE_OPERAND
7859 (binary_op, 1)),
7861 (safe_from_p (temp, singleton, 1)
7862 ? temp : NULL_RTX), 0);
7864 if (result)
7866 op1 = expand_expr (singleton, NULL_RTX, VOIDmode, 0);
7867 return expand_binop (mode, boptab, op1, result, temp,
7868 unsignedp, OPTAB_LIB_WIDEN);
7870 else if (singleton == TREE_OPERAND (exp, 1))
7871 TREE_OPERAND (exp, 0)
7872 = invert_truthvalue (TREE_OPERAND (exp, 0));
7875 do_pending_stack_adjust ();
7876 NO_DEFER_POP;
7877 op0 = gen_label_rtx ();
7879 if (singleton && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0)))
7881 if (temp != 0)
7883 /* If the target conflicts with the other operand of the
7884 binary op, we can't use it. Also, we can't use the target
7885 if it is a hard register, because evaluating the condition
7886 might clobber it. */
7887 if ((binary_op
7888 && ! safe_from_p (temp, TREE_OPERAND (binary_op, 1), 1))
7889 || (GET_CODE (temp) == REG
7890 && REGNO (temp) < FIRST_PSEUDO_REGISTER))
7891 temp = gen_reg_rtx (mode);
7892 store_expr (singleton, temp, 0);
7894 else
7895 expand_expr (singleton,
7896 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7897 if (singleton == TREE_OPERAND (exp, 1))
7898 jumpif (TREE_OPERAND (exp, 0), op0);
7899 else
7900 jumpifnot (TREE_OPERAND (exp, 0), op0);
7902 start_cleanup_deferral ();
7903 if (binary_op && temp == 0)
7904 /* Just touch the other operand. */
7905 expand_expr (TREE_OPERAND (binary_op, 1),
7906 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7907 else if (binary_op)
7908 store_expr (build (TREE_CODE (binary_op), type,
7909 make_tree (type, temp),
7910 TREE_OPERAND (binary_op, 1)),
7911 temp, 0);
7912 else
7913 store_expr (build1 (TREE_CODE (unary_op), type,
7914 make_tree (type, temp)),
7915 temp, 0);
7916 op1 = op0;
7918 /* Check for A op 0 ? A : FOO and A op 0 ? FOO : A where OP is any
7919 comparison operator. If we have one of these cases, set the
7920 output to A, branch on A (cse will merge these two references),
7921 then set the output to FOO. */
7922 else if (temp
7923 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
7924 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
7925 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7926 TREE_OPERAND (exp, 1), 0)
7927 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
7928 || TREE_CODE (TREE_OPERAND (exp, 1)) == SAVE_EXPR)
7929 && safe_from_p (temp, TREE_OPERAND (exp, 2), 1))
7931 if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
7932 temp = gen_reg_rtx (mode);
7933 store_expr (TREE_OPERAND (exp, 1), temp, 0);
7934 jumpif (TREE_OPERAND (exp, 0), op0);
7936 start_cleanup_deferral ();
7937 store_expr (TREE_OPERAND (exp, 2), temp, 0);
7938 op1 = op0;
7940 else if (temp
7941 && TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, 0))) == '<'
7942 && integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
7943 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7944 TREE_OPERAND (exp, 2), 0)
7945 && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
7946 || TREE_CODE (TREE_OPERAND (exp, 2)) == SAVE_EXPR)
7947 && safe_from_p (temp, TREE_OPERAND (exp, 1), 1))
7949 if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
7950 temp = gen_reg_rtx (mode);
7951 store_expr (TREE_OPERAND (exp, 2), temp, 0);
7952 jumpifnot (TREE_OPERAND (exp, 0), op0);
7954 start_cleanup_deferral ();
7955 store_expr (TREE_OPERAND (exp, 1), temp, 0);
7956 op1 = op0;
7958 else
7960 op1 = gen_label_rtx ();
7961 jumpifnot (TREE_OPERAND (exp, 0), op0);
7963 start_cleanup_deferral ();
7965 /* One branch of the cond can be void, if it never returns. For
7966 example A ? throw : E */
7967 if (temp != 0
7968 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node)
7969 store_expr (TREE_OPERAND (exp, 1), temp, 0);
7970 else
7971 expand_expr (TREE_OPERAND (exp, 1),
7972 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7973 end_cleanup_deferral ();
7974 emit_queue ();
7975 emit_jump_insn (gen_jump (op1));
7976 emit_barrier ();
7977 emit_label (op0);
7978 start_cleanup_deferral ();
7979 if (temp != 0
7980 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node)
7981 store_expr (TREE_OPERAND (exp, 2), temp, 0);
7982 else
7983 expand_expr (TREE_OPERAND (exp, 2),
7984 ignore ? const0_rtx : NULL_RTX, VOIDmode, 0);
7987 end_cleanup_deferral ();
7989 emit_queue ();
7990 emit_label (op1);
7991 OK_DEFER_POP;
7993 return temp;
7996 case TARGET_EXPR:
7998 /* Something needs to be initialized, but we didn't know
7999 where that thing was when building the tree. For example,
8000 it could be the return value of a function, or a parameter
8001 to a function which lays down in the stack, or a temporary
8002 variable which must be passed by reference.
8004 We guarantee that the expression will either be constructed
8005 or copied into our original target. */
8007 tree slot = TREE_OPERAND (exp, 0);
8008 tree cleanups = NULL_TREE;
8009 tree exp1;
8011 if (TREE_CODE (slot) != VAR_DECL)
8012 abort ();
8014 if (! ignore)
8015 target = original_target;
8017 /* Set this here so that if we get a target that refers to a
8018 register variable that's already been used, put_reg_into_stack
8019 knows that it should fix up those uses. */
8020 TREE_USED (slot) = 1;
8022 if (target == 0)
8024 if (DECL_RTL (slot) != 0)
8026 target = DECL_RTL (slot);
8027 /* If we have already expanded the slot, so don't do
8028 it again. (mrs) */
8029 if (TREE_OPERAND (exp, 1) == NULL_TREE)
8030 return target;
8032 else
8034 target = assign_temp (type, 2, 0, 1);
8035 /* All temp slots at this level must not conflict. */
8036 preserve_temp_slots (target);
8037 DECL_RTL (slot) = target;
8038 if (TREE_ADDRESSABLE (slot))
8040 TREE_ADDRESSABLE (slot) = 0;
8041 mark_addressable (slot);
8044 /* Since SLOT is not known to the called function
8045 to belong to its stack frame, we must build an explicit
8046 cleanup. This case occurs when we must build up a reference
8047 to pass the reference as an argument. In this case,
8048 it is very likely that such a reference need not be
8049 built here. */
8051 if (TREE_OPERAND (exp, 2) == 0)
8052 TREE_OPERAND (exp, 2) = maybe_build_cleanup (slot);
8053 cleanups = TREE_OPERAND (exp, 2);
8056 else
8058 /* This case does occur, when expanding a parameter which
8059 needs to be constructed on the stack. The target
8060 is the actual stack address that we want to initialize.
8061 The function we call will perform the cleanup in this case. */
8063 /* If we have already assigned it space, use that space,
8064 not target that we were passed in, as our target
8065 parameter is only a hint. */
8066 if (DECL_RTL (slot) != 0)
8068 target = DECL_RTL (slot);
8069 /* If we have already expanded the slot, so don't do
8070 it again. (mrs) */
8071 if (TREE_OPERAND (exp, 1) == NULL_TREE)
8072 return target;
8074 else
8076 DECL_RTL (slot) = target;
8077 /* If we must have an addressable slot, then make sure that
8078 the RTL that we just stored in slot is OK. */
8079 if (TREE_ADDRESSABLE (slot))
8081 TREE_ADDRESSABLE (slot) = 0;
8082 mark_addressable (slot);
8087 exp1 = TREE_OPERAND (exp, 3) = TREE_OPERAND (exp, 1);
8088 /* Mark it as expanded. */
8089 TREE_OPERAND (exp, 1) = NULL_TREE;
8091 store_expr (exp1, target, 0);
8093 expand_decl_cleanup (NULL_TREE, cleanups);
8095 return target;
8098 case INIT_EXPR:
8100 tree lhs = TREE_OPERAND (exp, 0);
8101 tree rhs = TREE_OPERAND (exp, 1);
8102 tree noncopied_parts = 0;
8103 tree lhs_type = TREE_TYPE (lhs);
8105 temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
8106 if (TYPE_NONCOPIED_PARTS (lhs_type) != 0 && !fixed_type_p (rhs))
8107 noncopied_parts = init_noncopied_parts (stabilize_reference (lhs),
8108 TYPE_NONCOPIED_PARTS (lhs_type));
8109 while (noncopied_parts != 0)
8111 expand_assignment (TREE_VALUE (noncopied_parts),
8112 TREE_PURPOSE (noncopied_parts), 0, 0);
8113 noncopied_parts = TREE_CHAIN (noncopied_parts);
8115 return temp;
8118 case MODIFY_EXPR:
8120 /* If lhs is complex, expand calls in rhs before computing it.
8121 That's so we don't compute a pointer and save it over a call.
8122 If lhs is simple, compute it first so we can give it as a
8123 target if the rhs is just a call. This avoids an extra temp and copy
8124 and that prevents a partial-subsumption which makes bad code.
8125 Actually we could treat component_ref's of vars like vars. */
8127 tree lhs = TREE_OPERAND (exp, 0);
8128 tree rhs = TREE_OPERAND (exp, 1);
8129 tree noncopied_parts = 0;
8130 tree lhs_type = TREE_TYPE (lhs);
8132 temp = 0;
8134 if (TREE_CODE (lhs) != VAR_DECL
8135 && TREE_CODE (lhs) != RESULT_DECL
8136 && TREE_CODE (lhs) != PARM_DECL
8137 && ! (TREE_CODE (lhs) == INDIRECT_REF
8138 && TYPE_READONLY (TREE_TYPE (TREE_OPERAND (lhs, 0)))))
8139 preexpand_calls (exp);
8141 /* Check for |= or &= of a bitfield of size one into another bitfield
8142 of size 1. In this case, (unless we need the result of the
8143 assignment) we can do this more efficiently with a
8144 test followed by an assignment, if necessary.
8146 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8147 things change so we do, this code should be enhanced to
8148 support it. */
8149 if (ignore
8150 && TREE_CODE (lhs) == COMPONENT_REF
8151 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8152 || TREE_CODE (rhs) == BIT_AND_EXPR)
8153 && TREE_OPERAND (rhs, 0) == lhs
8154 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8155 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8156 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8158 rtx label = gen_label_rtx ();
8160 do_jump (TREE_OPERAND (rhs, 1),
8161 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8162 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8163 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8164 (TREE_CODE (rhs) == BIT_IOR_EXPR
8165 ? integer_one_node
8166 : integer_zero_node)),
8167 0, 0);
8168 do_pending_stack_adjust ();
8169 emit_label (label);
8170 return const0_rtx;
8173 if (TYPE_NONCOPIED_PARTS (lhs_type) != 0
8174 && ! (fixed_type_p (lhs) && fixed_type_p (rhs)))
8175 noncopied_parts = save_noncopied_parts (stabilize_reference (lhs),
8176 TYPE_NONCOPIED_PARTS (lhs_type));
8178 temp = expand_assignment (lhs, rhs, ! ignore, original_target != 0);
8179 while (noncopied_parts != 0)
8181 expand_assignment (TREE_PURPOSE (noncopied_parts),
8182 TREE_VALUE (noncopied_parts), 0, 0);
8183 noncopied_parts = TREE_CHAIN (noncopied_parts);
8185 return temp;
8188 case RETURN_EXPR:
8189 if (!TREE_OPERAND (exp, 0))
8190 expand_null_return ();
8191 else
8192 expand_return (TREE_OPERAND (exp, 0));
8193 return const0_rtx;
8195 case PREINCREMENT_EXPR:
8196 case PREDECREMENT_EXPR:
8197 return expand_increment (exp, 0, ignore);
8199 case POSTINCREMENT_EXPR:
8200 case POSTDECREMENT_EXPR:
8201 /* Faster to treat as pre-increment if result is not used. */
8202 return expand_increment (exp, ! ignore, ignore);
8204 case ADDR_EXPR:
8205 /* If nonzero, TEMP will be set to the address of something that might
8206 be a MEM corresponding to a stack slot. */
8207 temp = 0;
8209 /* Are we taking the address of a nested function? */
8210 if (TREE_CODE (TREE_OPERAND (exp, 0)) == FUNCTION_DECL
8211 && decl_function_context (TREE_OPERAND (exp, 0)) != 0
8212 && ! DECL_NO_STATIC_CHAIN (TREE_OPERAND (exp, 0))
8213 && ! TREE_STATIC (exp))
8215 op0 = trampoline_address (TREE_OPERAND (exp, 0));
8216 op0 = force_operand (op0, target);
8218 /* If we are taking the address of something erroneous, just
8219 return a zero. */
8220 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
8221 return const0_rtx;
8222 else
8224 /* We make sure to pass const0_rtx down if we came in with
8225 ignore set, to avoid doing the cleanups twice for something. */
8226 op0 = expand_expr (TREE_OPERAND (exp, 0),
8227 ignore ? const0_rtx : NULL_RTX, VOIDmode,
8228 (modifier == EXPAND_INITIALIZER
8229 ? modifier : EXPAND_CONST_ADDRESS));
8231 /* If we are going to ignore the result, OP0 will have been set
8232 to const0_rtx, so just return it. Don't get confused and
8233 think we are taking the address of the constant. */
8234 if (ignore)
8235 return op0;
8237 op0 = protect_from_queue (op0, 0);
8239 /* We would like the object in memory. If it is a constant, we can
8240 have it be statically allocated into memory. For a non-constant,
8241 we need to allocate some memory and store the value into it. */
8243 if (CONSTANT_P (op0))
8244 op0 = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8245 op0);
8246 else if (GET_CODE (op0) == MEM)
8248 mark_temp_addr_taken (op0);
8249 temp = XEXP (op0, 0);
8252 else if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
8253 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
8255 /* If this object is in a register, it must be not
8256 be BLKmode. */
8257 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8258 rtx memloc = assign_temp (inner_type, 1, 1, 1);
8260 mark_temp_addr_taken (memloc);
8261 emit_move_insn (memloc, op0);
8262 op0 = memloc;
8265 if (GET_CODE (op0) != MEM)
8266 abort ();
8268 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8270 temp = XEXP (op0, 0);
8271 #ifdef POINTERS_EXTEND_UNSIGNED
8272 if (GET_MODE (temp) == Pmode && GET_MODE (temp) != mode
8273 && mode == ptr_mode)
8274 temp = convert_memory_address (ptr_mode, temp);
8275 #endif
8276 return temp;
8279 op0 = force_operand (XEXP (op0, 0), target);
8282 if (flag_force_addr && GET_CODE (op0) != REG)
8283 op0 = force_reg (Pmode, op0);
8285 if (GET_CODE (op0) == REG
8286 && ! REG_USERVAR_P (op0))
8287 mark_reg_pointer (op0, TYPE_ALIGN (TREE_TYPE (type)) / BITS_PER_UNIT);
8289 /* If we might have had a temp slot, add an equivalent address
8290 for it. */
8291 if (temp != 0)
8292 update_temp_slot_address (temp, op0);
8294 #ifdef POINTERS_EXTEND_UNSIGNED
8295 if (GET_MODE (op0) == Pmode && GET_MODE (op0) != mode
8296 && mode == ptr_mode)
8297 op0 = convert_memory_address (ptr_mode, op0);
8298 #endif
8300 return op0;
8302 case ENTRY_VALUE_EXPR:
8303 abort ();
8305 /* COMPLEX type for Extended Pascal & Fortran */
8306 case COMPLEX_EXPR:
8308 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8309 rtx insns;
8311 /* Get the rtx code of the operands. */
8312 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8313 op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
8315 if (! target)
8316 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8318 start_sequence ();
8320 /* Move the real (op0) and imaginary (op1) parts to their location. */
8321 emit_move_insn (gen_realpart (mode, target), op0);
8322 emit_move_insn (gen_imagpart (mode, target), op1);
8324 insns = get_insns ();
8325 end_sequence ();
8327 /* Complex construction should appear as a single unit. */
8328 /* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
8329 each with a separate pseudo as destination.
8330 It's not correct for flow to treat them as a unit. */
8331 if (GET_CODE (target) != CONCAT)
8332 emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
8333 else
8334 emit_insns (insns);
8336 return target;
8339 case REALPART_EXPR:
8340 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8341 return gen_realpart (mode, op0);
8343 case IMAGPART_EXPR:
8344 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8345 return gen_imagpart (mode, op0);
8347 case CONJ_EXPR:
8349 enum machine_mode partmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8350 rtx imag_t;
8351 rtx insns;
8353 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8355 if (! target)
8356 target = gen_reg_rtx (mode);
8358 start_sequence ();
8360 /* Store the realpart and the negated imagpart to target. */
8361 emit_move_insn (gen_realpart (partmode, target),
8362 gen_realpart (partmode, op0));
8364 imag_t = gen_imagpart (partmode, target);
8365 temp = expand_unop (partmode, neg_optab,
8366 gen_imagpart (partmode, op0), imag_t, 0);
8367 if (temp != imag_t)
8368 emit_move_insn (imag_t, temp);
8370 insns = get_insns ();
8371 end_sequence ();
8373 /* Conjugate should appear as a single unit
8374 If TARGET is a CONCAT, we got insns like RD = RS, ID = - IS,
8375 each with a separate pseudo as destination.
8376 It's not correct for flow to treat them as a unit. */
8377 if (GET_CODE (target) != CONCAT)
8378 emit_no_conflict_block (insns, target, op0, NULL_RTX, NULL_RTX);
8379 else
8380 emit_insns (insns);
8382 return target;
8385 case TRY_CATCH_EXPR:
8387 tree handler = TREE_OPERAND (exp, 1);
8389 expand_eh_region_start ();
8391 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8393 expand_eh_region_end (handler);
8395 return op0;
8398 case TRY_FINALLY_EXPR:
8400 tree try_block = TREE_OPERAND (exp, 0);
8401 tree finally_block = TREE_OPERAND (exp, 1);
8402 rtx finally_label = gen_label_rtx ();
8403 rtx done_label = gen_label_rtx ();
8404 rtx return_link = gen_reg_rtx (Pmode);
8405 tree cleanup = build (GOTO_SUBROUTINE_EXPR, void_type_node,
8406 (tree) finally_label, (tree) return_link);
8407 TREE_SIDE_EFFECTS (cleanup) = 1;
8409 /* Start a new binding layer that will keep track of all cleanup
8410 actions to be performed. */
8411 expand_start_bindings (2);
8413 target_temp_slot_level = temp_slot_level;
8415 expand_decl_cleanup (NULL_TREE, cleanup);
8416 op0 = expand_expr (try_block, target, tmode, modifier);
8418 preserve_temp_slots (op0);
8419 expand_end_bindings (NULL_TREE, 0, 0);
8420 emit_jump (done_label);
8421 emit_label (finally_label);
8422 expand_expr (finally_block, const0_rtx, VOIDmode, 0);
8423 emit_indirect_jump (return_link);
8424 emit_label (done_label);
8425 return op0;
8428 case GOTO_SUBROUTINE_EXPR:
8430 rtx subr = (rtx) TREE_OPERAND (exp, 0);
8431 rtx return_link = *(rtx *) &TREE_OPERAND (exp, 1);
8432 rtx return_address = gen_label_rtx ();
8433 emit_move_insn (return_link, gen_rtx_LABEL_REF (Pmode, return_address));
8434 emit_jump (subr);
8435 emit_label (return_address);
8436 return const0_rtx;
8439 case POPDCC_EXPR:
8441 rtx dcc = get_dynamic_cleanup_chain ();
8442 emit_move_insn (dcc, validize_mem (gen_rtx_MEM (Pmode, dcc)));
8443 return const0_rtx;
8446 case POPDHC_EXPR:
8448 rtx dhc = get_dynamic_handler_chain ();
8449 emit_move_insn (dhc, validize_mem (gen_rtx_MEM (Pmode, dhc)));
8450 return const0_rtx;
8453 case VA_ARG_EXPR:
8454 return expand_builtin_va_arg (TREE_OPERAND (exp, 0), type);
8456 default:
8457 return (*lang_expand_expr) (exp, original_target, tmode, modifier);
8460 /* Here to do an ordinary binary operator, generating an instruction
8461 from the optab already placed in `this_optab'. */
8462 binop:
8463 preexpand_calls (exp);
8464 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8465 subtarget = 0;
8466 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8467 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
8468 binop2:
8469 temp = expand_binop (mode, this_optab, op0, op1, target,
8470 unsignedp, OPTAB_LIB_WIDEN);
8471 if (temp == 0)
8472 abort ();
8473 return temp;
8476 /* Similar to expand_expr, except that we don't specify a target, target
8477 mode, or modifier and we return the alignment of the inner type. This is
8478 used in cases where it is not necessary to align the result to the
8479 alignment of its type as long as we know the alignment of the result, for
8480 example for comparisons of BLKmode values. */
8482 static rtx
8483 expand_expr_unaligned (exp, palign)
8484 register tree exp;
8485 unsigned int *palign;
8487 register rtx op0;
8488 tree type = TREE_TYPE (exp);
8489 register enum machine_mode mode = TYPE_MODE (type);
8491 /* Default the alignment we return to that of the type. */
8492 *palign = TYPE_ALIGN (type);
8494 /* The only cases in which we do anything special is if the resulting mode
8495 is BLKmode. */
8496 if (mode != BLKmode)
8497 return expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8499 switch (TREE_CODE (exp))
8501 case CONVERT_EXPR:
8502 case NOP_EXPR:
8503 case NON_LVALUE_EXPR:
8504 /* Conversions between BLKmode values don't change the underlying
8505 alignment or value. */
8506 if (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == BLKmode)
8507 return expand_expr_unaligned (TREE_OPERAND (exp, 0), palign);
8508 break;
8510 case ARRAY_REF:
8511 /* Much of the code for this case is copied directly from expand_expr.
8512 We need to duplicate it here because we will do something different
8513 in the fall-through case, so we need to handle the same exceptions
8514 it does. */
8516 tree array = TREE_OPERAND (exp, 0);
8517 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
8518 tree low_bound = domain ? TYPE_MIN_VALUE (domain) : integer_zero_node;
8519 tree index = convert (sizetype, TREE_OPERAND (exp, 1));
8520 HOST_WIDE_INT i;
8522 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != ARRAY_TYPE)
8523 abort ();
8525 /* Optimize the special-case of a zero lower bound.
8527 We convert the low_bound to sizetype to avoid some problems
8528 with constant folding. (E.g. suppose the lower bound is 1,
8529 and its mode is QI. Without the conversion, (ARRAY
8530 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8531 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
8533 if (! integer_zerop (low_bound))
8534 index = size_diffop (index, convert (sizetype, low_bound));
8536 /* If this is a constant index into a constant array,
8537 just get the value from the array. Handle both the cases when
8538 we have an explicit constructor and when our operand is a variable
8539 that was declared const. */
8541 if (TREE_CODE (array) == CONSTRUCTOR && ! TREE_SIDE_EFFECTS (array)
8542 && 0 > compare_tree_int (index,
8543 list_length (CONSTRUCTOR_ELTS
8544 (TREE_OPERAND (exp, 0)))))
8546 tree elem;
8548 for (elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
8549 i = TREE_INT_CST_LOW (index);
8550 elem != 0 && i != 0; i--, elem = TREE_CHAIN (elem))
8553 if (elem)
8554 return expand_expr_unaligned (fold (TREE_VALUE (elem)), palign);
8557 else if (optimize >= 1
8558 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8559 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8560 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK)
8562 if (TREE_CODE (index) == INTEGER_CST)
8564 tree init = DECL_INITIAL (array);
8566 if (TREE_CODE (init) == CONSTRUCTOR)
8568 tree elem;
8570 for (elem = CONSTRUCTOR_ELTS (init);
8571 ! tree_int_cst_equal (TREE_PURPOSE (elem), index);
8572 elem = TREE_CHAIN (elem))
8575 if (elem)
8576 return expand_expr_unaligned (fold (TREE_VALUE (elem)),
8577 palign);
8583 /* ... fall through ... */
8585 case COMPONENT_REF:
8586 case BIT_FIELD_REF:
8587 /* If the operand is a CONSTRUCTOR, we can just extract the
8588 appropriate field if it is present. Don't do this if we have
8589 already written the data since we want to refer to that copy
8590 and varasm.c assumes that's what we'll do. */
8591 if (TREE_CODE (exp) != ARRAY_REF
8592 && TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR
8593 && TREE_CST_RTL (TREE_OPERAND (exp, 0)) == 0)
8595 tree elt;
8597 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
8598 elt = TREE_CHAIN (elt))
8599 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1))
8600 /* Note that unlike the case in expand_expr, we know this is
8601 BLKmode and hence not an integer. */
8602 return expand_expr_unaligned (TREE_VALUE (elt), palign);
8606 enum machine_mode mode1;
8607 int bitsize;
8608 int bitpos;
8609 tree offset;
8610 int volatilep = 0;
8611 unsigned int alignment;
8612 int unsignedp;
8613 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8614 &mode1, &unsignedp, &volatilep,
8615 &alignment);
8617 /* If we got back the original object, something is wrong. Perhaps
8618 we are evaluating an expression too early. In any event, don't
8619 infinitely recurse. */
8620 if (tem == exp)
8621 abort ();
8623 op0 = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8625 /* If this is a constant, put it into a register if it is a
8626 legitimate constant and OFFSET is 0 and memory if it isn't. */
8627 if (CONSTANT_P (op0))
8629 enum machine_mode inner_mode = TYPE_MODE (TREE_TYPE (tem));
8631 if (inner_mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
8632 && offset == 0)
8633 op0 = force_reg (inner_mode, op0);
8634 else
8635 op0 = validize_mem (force_const_mem (inner_mode, op0));
8638 if (offset != 0)
8640 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
8642 /* If this object is in a register, put it into memory.
8643 This case can't occur in C, but can in Ada if we have
8644 unchecked conversion of an expression from a scalar type to
8645 an array or record type. */
8646 if (GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
8647 || GET_CODE (op0) == CONCAT || GET_CODE (op0) == ADDRESSOF)
8649 rtx memloc = assign_temp (TREE_TYPE (tem), 1, 1, 1);
8651 mark_temp_addr_taken (memloc);
8652 emit_move_insn (memloc, op0);
8653 op0 = memloc;
8656 if (GET_CODE (op0) != MEM)
8657 abort ();
8659 if (GET_MODE (offset_rtx) != ptr_mode)
8661 #ifdef POINTERS_EXTEND_UNSIGNED
8662 offset_rtx = convert_memory_address (ptr_mode, offset_rtx);
8663 #else
8664 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
8665 #endif
8668 op0 = change_address (op0, VOIDmode,
8669 gen_rtx_PLUS (ptr_mode, XEXP (op0, 0),
8670 force_reg (ptr_mode,
8671 offset_rtx)));
8674 /* Don't forget about volatility even if this is a bitfield. */
8675 if (GET_CODE (op0) == MEM && volatilep && ! MEM_VOLATILE_P (op0))
8677 op0 = copy_rtx (op0);
8678 MEM_VOLATILE_P (op0) = 1;
8681 /* Check the access. */
8682 if (current_function_check_memory_usage && GET_CODE (op0) == MEM)
8684 rtx to;
8685 int size;
8687 to = plus_constant (XEXP (op0, 0), (bitpos / BITS_PER_UNIT));
8688 size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
8690 /* Check the access right of the pointer. */
8691 if (size > BITS_PER_UNIT)
8692 emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
8693 to, ptr_mode, GEN_INT (size / BITS_PER_UNIT),
8694 TYPE_MODE (sizetype),
8695 GEN_INT (MEMORY_USE_RO),
8696 TYPE_MODE (integer_type_node));
8699 /* In cases where an aligned union has an unaligned object
8700 as a field, we might be extracting a BLKmode value from
8701 an integer-mode (e.g., SImode) object. Handle this case
8702 by doing the extract into an object as wide as the field
8703 (which we know to be the width of a basic mode), then
8704 storing into memory, and changing the mode to BLKmode.
8705 If we ultimately want the address (EXPAND_CONST_ADDRESS or
8706 EXPAND_INITIALIZER), then we must not copy to a temporary. */
8707 if (mode1 == VOIDmode
8708 || GET_CODE (op0) == REG || GET_CODE (op0) == SUBREG
8709 || (SLOW_UNALIGNED_ACCESS (mode1, alignment)
8710 && (TYPE_ALIGN (type) > alignment * BITS_PER_UNIT
8711 || bitpos % TYPE_ALIGN (type) != 0)))
8713 enum machine_mode ext_mode = mode_for_size (bitsize, MODE_INT, 1);
8715 if (ext_mode == BLKmode)
8717 /* In this case, BITPOS must start at a byte boundary. */
8718 if (GET_CODE (op0) != MEM
8719 || bitpos % BITS_PER_UNIT != 0)
8720 abort ();
8722 op0 = change_address (op0, VOIDmode,
8723 plus_constant (XEXP (op0, 0),
8724 bitpos / BITS_PER_UNIT));
8726 else
8728 rtx new = assign_stack_temp (ext_mode,
8729 bitsize / BITS_PER_UNIT, 0);
8731 op0 = extract_bit_field (validize_mem (op0), bitsize, bitpos,
8732 unsignedp, NULL_RTX, ext_mode,
8733 ext_mode, alignment,
8734 int_size_in_bytes (TREE_TYPE (tem)));
8736 /* If the result is a record type and BITSIZE is narrower than
8737 the mode of OP0, an integral mode, and this is a big endian
8738 machine, we must put the field into the high-order bits. */
8739 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
8740 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
8741 && bitsize < GET_MODE_BITSIZE (GET_MODE (op0)))
8742 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
8743 size_int (GET_MODE_BITSIZE
8744 (GET_MODE (op0))
8745 - bitsize),
8746 op0, 1);
8749 emit_move_insn (new, op0);
8750 op0 = copy_rtx (new);
8751 PUT_MODE (op0, BLKmode);
8754 else
8755 /* Get a reference to just this component. */
8756 op0 = change_address (op0, mode1,
8757 plus_constant (XEXP (op0, 0),
8758 (bitpos / BITS_PER_UNIT)));
8760 MEM_ALIAS_SET (op0) = get_alias_set (exp);
8762 /* Adjust the alignment in case the bit position is not
8763 a multiple of the alignment of the inner object. */
8764 while (bitpos % alignment != 0)
8765 alignment >>= 1;
8767 if (GET_CODE (XEXP (op0, 0)) == REG)
8768 mark_reg_pointer (XEXP (op0, 0), alignment);
8770 MEM_IN_STRUCT_P (op0) = 1;
8771 MEM_VOLATILE_P (op0) |= volatilep;
8773 *palign = alignment;
8774 return op0;
8777 default:
8778 break;
8782 return expand_expr (exp, NULL_RTX, VOIDmode, EXPAND_NORMAL);
8785 /* Return the tree node if a ARG corresponds to a string constant or zero
8786 if it doesn't. If we return non-zero, set *PTR_OFFSET to the offset
8787 in bytes within the string that ARG is accessing. The type of the
8788 offset will be `sizetype'. */
8790 tree
8791 string_constant (arg, ptr_offset)
8792 tree arg;
8793 tree *ptr_offset;
8795 STRIP_NOPS (arg);
8797 if (TREE_CODE (arg) == ADDR_EXPR
8798 && TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8800 *ptr_offset = size_zero_node;
8801 return TREE_OPERAND (arg, 0);
8803 else if (TREE_CODE (arg) == PLUS_EXPR)
8805 tree arg0 = TREE_OPERAND (arg, 0);
8806 tree arg1 = TREE_OPERAND (arg, 1);
8808 STRIP_NOPS (arg0);
8809 STRIP_NOPS (arg1);
8811 if (TREE_CODE (arg0) == ADDR_EXPR
8812 && TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST)
8814 *ptr_offset = convert (sizetype, arg1);
8815 return TREE_OPERAND (arg0, 0);
8817 else if (TREE_CODE (arg1) == ADDR_EXPR
8818 && TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST)
8820 *ptr_offset = convert (sizetype, arg0);
8821 return TREE_OPERAND (arg1, 0);
8825 return 0;
8828 /* Expand code for a post- or pre- increment or decrement
8829 and return the RTX for the result.
8830 POST is 1 for postinc/decrements and 0 for preinc/decrements. */
8832 static rtx
8833 expand_increment (exp, post, ignore)
8834 register tree exp;
8835 int post, ignore;
8837 register rtx op0, op1;
8838 register rtx temp, value;
8839 register tree incremented = TREE_OPERAND (exp, 0);
8840 optab this_optab = add_optab;
8841 int icode;
8842 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
8843 int op0_is_copy = 0;
8844 int single_insn = 0;
8845 /* 1 means we can't store into OP0 directly,
8846 because it is a subreg narrower than a word,
8847 and we don't dare clobber the rest of the word. */
8848 int bad_subreg = 0;
8850 /* Stabilize any component ref that might need to be
8851 evaluated more than once below. */
8852 if (!post
8853 || TREE_CODE (incremented) == BIT_FIELD_REF
8854 || (TREE_CODE (incremented) == COMPONENT_REF
8855 && (TREE_CODE (TREE_OPERAND (incremented, 0)) != INDIRECT_REF
8856 || DECL_BIT_FIELD (TREE_OPERAND (incremented, 1)))))
8857 incremented = stabilize_reference (incremented);
8858 /* Nested *INCREMENT_EXPRs can happen in C++. We must force innermost
8859 ones into save exprs so that they don't accidentally get evaluated
8860 more than once by the code below. */
8861 if (TREE_CODE (incremented) == PREINCREMENT_EXPR
8862 || TREE_CODE (incremented) == PREDECREMENT_EXPR)
8863 incremented = save_expr (incremented);
8865 /* Compute the operands as RTX.
8866 Note whether OP0 is the actual lvalue or a copy of it:
8867 I believe it is a copy iff it is a register or subreg
8868 and insns were generated in computing it. */
8870 temp = get_last_insn ();
8871 op0 = expand_expr (incremented, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_RW);
8873 /* If OP0 is a SUBREG made for a promoted variable, we cannot increment
8874 in place but instead must do sign- or zero-extension during assignment,
8875 so we copy it into a new register and let the code below use it as
8876 a copy.
8878 Note that we can safely modify this SUBREG since it is know not to be
8879 shared (it was made by the expand_expr call above). */
8881 if (GET_CODE (op0) == SUBREG && SUBREG_PROMOTED_VAR_P (op0))
8883 if (post)
8884 SUBREG_REG (op0) = copy_to_reg (SUBREG_REG (op0));
8885 else
8886 bad_subreg = 1;
8888 else if (GET_CODE (op0) == SUBREG
8889 && GET_MODE_BITSIZE (GET_MODE (op0)) < BITS_PER_WORD)
8891 /* We cannot increment this SUBREG in place. If we are
8892 post-incrementing, get a copy of the old value. Otherwise,
8893 just mark that we cannot increment in place. */
8894 if (post)
8895 op0 = copy_to_reg (op0);
8896 else
8897 bad_subreg = 1;
8900 op0_is_copy = ((GET_CODE (op0) == SUBREG || GET_CODE (op0) == REG)
8901 && temp != get_last_insn ());
8902 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode,
8903 EXPAND_MEMORY_USE_BAD);
8905 /* Decide whether incrementing or decrementing. */
8906 if (TREE_CODE (exp) == POSTDECREMENT_EXPR
8907 || TREE_CODE (exp) == PREDECREMENT_EXPR)
8908 this_optab = sub_optab;
8910 /* Convert decrement by a constant into a negative increment. */
8911 if (this_optab == sub_optab
8912 && GET_CODE (op1) == CONST_INT)
8914 op1 = GEN_INT (- INTVAL (op1));
8915 this_optab = add_optab;
8918 /* For a preincrement, see if we can do this with a single instruction. */
8919 if (!post)
8921 icode = (int) this_optab->handlers[(int) mode].insn_code;
8922 if (icode != (int) CODE_FOR_nothing
8923 /* Make sure that OP0 is valid for operands 0 and 1
8924 of the insn we want to queue. */
8925 && (*insn_data[icode].operand[0].predicate) (op0, mode)
8926 && (*insn_data[icode].operand[1].predicate) (op0, mode)
8927 && (*insn_data[icode].operand[2].predicate) (op1, mode))
8928 single_insn = 1;
8931 /* If OP0 is not the actual lvalue, but rather a copy in a register,
8932 then we cannot just increment OP0. We must therefore contrive to
8933 increment the original value. Then, for postincrement, we can return
8934 OP0 since it is a copy of the old value. For preincrement, expand here
8935 unless we can do it with a single insn.
8937 Likewise if storing directly into OP0 would clobber high bits
8938 we need to preserve (bad_subreg). */
8939 if (op0_is_copy || (!post && !single_insn) || bad_subreg)
8941 /* This is the easiest way to increment the value wherever it is.
8942 Problems with multiple evaluation of INCREMENTED are prevented
8943 because either (1) it is a component_ref or preincrement,
8944 in which case it was stabilized above, or (2) it is an array_ref
8945 with constant index in an array in a register, which is
8946 safe to reevaluate. */
8947 tree newexp = build (((TREE_CODE (exp) == POSTDECREMENT_EXPR
8948 || TREE_CODE (exp) == PREDECREMENT_EXPR)
8949 ? MINUS_EXPR : PLUS_EXPR),
8950 TREE_TYPE (exp),
8951 incremented,
8952 TREE_OPERAND (exp, 1));
8954 while (TREE_CODE (incremented) == NOP_EXPR
8955 || TREE_CODE (incremented) == CONVERT_EXPR)
8957 newexp = convert (TREE_TYPE (incremented), newexp);
8958 incremented = TREE_OPERAND (incremented, 0);
8961 temp = expand_assignment (incremented, newexp, ! post && ! ignore , 0);
8962 return post ? op0 : temp;
8965 if (post)
8967 /* We have a true reference to the value in OP0.
8968 If there is an insn to add or subtract in this mode, queue it.
8969 Queueing the increment insn avoids the register shuffling
8970 that often results if we must increment now and first save
8971 the old value for subsequent use. */
8973 #if 0 /* Turned off to avoid making extra insn for indexed memref. */
8974 op0 = stabilize (op0);
8975 #endif
8977 icode = (int) this_optab->handlers[(int) mode].insn_code;
8978 if (icode != (int) CODE_FOR_nothing
8979 /* Make sure that OP0 is valid for operands 0 and 1
8980 of the insn we want to queue. */
8981 && (*insn_data[icode].operand[0].predicate) (op0, mode)
8982 && (*insn_data[icode].operand[1].predicate) (op0, mode))
8984 if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
8985 op1 = force_reg (mode, op1);
8987 return enqueue_insn (op0, GEN_FCN (icode) (op0, op0, op1));
8989 if (icode != (int) CODE_FOR_nothing && GET_CODE (op0) == MEM)
8991 rtx addr = (general_operand (XEXP (op0, 0), mode)
8992 ? force_reg (Pmode, XEXP (op0, 0))
8993 : copy_to_reg (XEXP (op0, 0)));
8994 rtx temp, result;
8996 op0 = change_address (op0, VOIDmode, addr);
8997 temp = force_reg (GET_MODE (op0), op0);
8998 if (! (*insn_data[icode].operand[2].predicate) (op1, mode))
8999 op1 = force_reg (mode, op1);
9001 /* The increment queue is LIFO, thus we have to `queue'
9002 the instructions in reverse order. */
9003 enqueue_insn (op0, gen_move_insn (op0, temp));
9004 result = enqueue_insn (temp, GEN_FCN (icode) (temp, temp, op1));
9005 return result;
9009 /* Preincrement, or we can't increment with one simple insn. */
9010 if (post)
9011 /* Save a copy of the value before inc or dec, to return it later. */
9012 temp = value = copy_to_reg (op0);
9013 else
9014 /* Arrange to return the incremented value. */
9015 /* Copy the rtx because expand_binop will protect from the queue,
9016 and the results of that would be invalid for us to return
9017 if our caller does emit_queue before using our result. */
9018 temp = copy_rtx (value = op0);
9020 /* Increment however we can. */
9021 op1 = expand_binop (mode, this_optab, value, op1,
9022 current_function_check_memory_usage ? NULL_RTX : op0,
9023 TREE_UNSIGNED (TREE_TYPE (exp)), OPTAB_LIB_WIDEN);
9024 /* Make sure the value is stored into OP0. */
9025 if (op1 != op0)
9026 emit_move_insn (op0, op1);
9028 return temp;
9031 /* Expand all function calls contained within EXP, innermost ones first.
9032 But don't look within expressions that have sequence points.
9033 For each CALL_EXPR, record the rtx for its value
9034 in the CALL_EXPR_RTL field. */
9036 static void
9037 preexpand_calls (exp)
9038 tree exp;
9040 register int nops, i;
9041 int type = TREE_CODE_CLASS (TREE_CODE (exp));
9043 if (! do_preexpand_calls)
9044 return;
9046 /* Only expressions and references can contain calls. */
9048 if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r')
9049 return;
9051 switch (TREE_CODE (exp))
9053 case CALL_EXPR:
9054 /* Do nothing if already expanded. */
9055 if (CALL_EXPR_RTL (exp) != 0
9056 /* Do nothing if the call returns a variable-sized object. */
9057 || TREE_CODE (TYPE_SIZE (TREE_TYPE(exp))) != INTEGER_CST
9058 /* Do nothing to built-in functions. */
9059 || (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
9060 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
9061 == FUNCTION_DECL)
9062 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))))
9063 return;
9065 CALL_EXPR_RTL (exp) = expand_call (exp, NULL_RTX, 0);
9066 return;
9068 case COMPOUND_EXPR:
9069 case COND_EXPR:
9070 case TRUTH_ANDIF_EXPR:
9071 case TRUTH_ORIF_EXPR:
9072 /* If we find one of these, then we can be sure
9073 the adjust will be done for it (since it makes jumps).
9074 Do it now, so that if this is inside an argument
9075 of a function, we don't get the stack adjustment
9076 after some other args have already been pushed. */
9077 do_pending_stack_adjust ();
9078 return;
9080 case BLOCK:
9081 case RTL_EXPR:
9082 case WITH_CLEANUP_EXPR:
9083 case CLEANUP_POINT_EXPR:
9084 case TRY_CATCH_EXPR:
9085 return;
9087 case SAVE_EXPR:
9088 if (SAVE_EXPR_RTL (exp) != 0)
9089 return;
9091 default:
9092 break;
9095 nops = tree_code_length[(int) TREE_CODE (exp)];
9096 for (i = 0; i < nops; i++)
9097 if (TREE_OPERAND (exp, i) != 0)
9099 if (TREE_CODE (exp) == TARGET_EXPR && i == 2)
9100 /* We don't need to preexpand the cleanup for a TARGET_EXPR.
9101 It doesn't happen before the call is made. */
9103 else
9105 type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
9106 if (type == 'e' || type == '<' || type == '1' || type == '2'
9107 || type == 'r')
9108 preexpand_calls (TREE_OPERAND (exp, i));
9113 /* At the start of a function, record that we have no previously-pushed
9114 arguments waiting to be popped. */
9116 void
9117 init_pending_stack_adjust ()
9119 pending_stack_adjust = 0;
9122 /* When exiting from function, if safe, clear out any pending stack adjust
9123 so the adjustment won't get done.
9125 Note, if the current function calls alloca, then it must have a
9126 frame pointer regardless of the value of flag_omit_frame_pointer. */
9128 void
9129 clear_pending_stack_adjust ()
9131 #ifdef EXIT_IGNORE_STACK
9132 if (optimize > 0
9133 && (! flag_omit_frame_pointer || current_function_calls_alloca)
9134 && EXIT_IGNORE_STACK
9135 && ! (DECL_INLINE (current_function_decl) && ! flag_no_inline)
9136 && ! flag_inline_functions)
9137 pending_stack_adjust = 0;
9138 #endif
9141 /* Pop any previously-pushed arguments that have not been popped yet. */
9143 void
9144 do_pending_stack_adjust ()
9146 if (inhibit_defer_pop == 0)
9148 if (pending_stack_adjust != 0)
9149 adjust_stack (GEN_INT (pending_stack_adjust));
9150 pending_stack_adjust = 0;
9154 /* Expand conditional expressions. */
9156 /* Generate code to evaluate EXP and jump to LABEL if the value is zero.
9157 LABEL is an rtx of code CODE_LABEL, in this function and all the
9158 functions here. */
9160 void
9161 jumpifnot (exp, label)
9162 tree exp;
9163 rtx label;
9165 do_jump (exp, label, NULL_RTX);
9168 /* Generate code to evaluate EXP and jump to LABEL if the value is nonzero. */
9170 void
9171 jumpif (exp, label)
9172 tree exp;
9173 rtx label;
9175 do_jump (exp, NULL_RTX, label);
9178 /* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if
9179 the result is zero, or IF_TRUE_LABEL if the result is one.
9180 Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero,
9181 meaning fall through in that case.
9183 do_jump always does any pending stack adjust except when it does not
9184 actually perform a jump. An example where there is no jump
9185 is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null.
9187 This function is responsible for optimizing cases such as
9188 &&, || and comparison operators in EXP. */
9190 void
9191 do_jump (exp, if_false_label, if_true_label)
9192 tree exp;
9193 rtx if_false_label, if_true_label;
9195 register enum tree_code code = TREE_CODE (exp);
9196 /* Some cases need to create a label to jump to
9197 in order to properly fall through.
9198 These cases set DROP_THROUGH_LABEL nonzero. */
9199 rtx drop_through_label = 0;
9200 rtx temp;
9201 int i;
9202 tree type;
9203 enum machine_mode mode;
9205 #ifdef MAX_INTEGER_COMPUTATION_MODE
9206 check_max_integer_computation_mode (exp);
9207 #endif
9209 emit_queue ();
9211 switch (code)
9213 case ERROR_MARK:
9214 break;
9216 case INTEGER_CST:
9217 temp = integer_zerop (exp) ? if_false_label : if_true_label;
9218 if (temp)
9219 emit_jump (temp);
9220 break;
9222 #if 0
9223 /* This is not true with #pragma weak */
9224 case ADDR_EXPR:
9225 /* The address of something can never be zero. */
9226 if (if_true_label)
9227 emit_jump (if_true_label);
9228 break;
9229 #endif
9231 case NOP_EXPR:
9232 if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF
9233 || TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF
9234 || TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF)
9235 goto normal;
9236 case CONVERT_EXPR:
9237 /* If we are narrowing the operand, we have to do the compare in the
9238 narrower mode. */
9239 if ((TYPE_PRECISION (TREE_TYPE (exp))
9240 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0)))))
9241 goto normal;
9242 case NON_LVALUE_EXPR:
9243 case REFERENCE_EXPR:
9244 case ABS_EXPR:
9245 case NEGATE_EXPR:
9246 case LROTATE_EXPR:
9247 case RROTATE_EXPR:
9248 /* These cannot change zero->non-zero or vice versa. */
9249 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9250 break;
9252 case WITH_RECORD_EXPR:
9253 /* Put the object on the placeholder list, recurse through our first
9254 operand, and pop the list. */
9255 placeholder_list = tree_cons (TREE_OPERAND (exp, 1), NULL_TREE,
9256 placeholder_list);
9257 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9258 placeholder_list = TREE_CHAIN (placeholder_list);
9259 break;
9261 #if 0
9262 /* This is never less insns than evaluating the PLUS_EXPR followed by
9263 a test and can be longer if the test is eliminated. */
9264 case PLUS_EXPR:
9265 /* Reduce to minus. */
9266 exp = build (MINUS_EXPR, TREE_TYPE (exp),
9267 TREE_OPERAND (exp, 0),
9268 fold (build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
9269 TREE_OPERAND (exp, 1))));
9270 /* Process as MINUS. */
9271 #endif
9273 case MINUS_EXPR:
9274 /* Non-zero iff operands of minus differ. */
9275 do_compare_and_jump (build (NE_EXPR, TREE_TYPE (exp),
9276 TREE_OPERAND (exp, 0),
9277 TREE_OPERAND (exp, 1)),
9278 NE, NE, if_false_label, if_true_label);
9279 break;
9281 case BIT_AND_EXPR:
9282 /* If we are AND'ing with a small constant, do this comparison in the
9283 smallest type that fits. If the machine doesn't have comparisons
9284 that small, it will be converted back to the wider comparison.
9285 This helps if we are testing the sign bit of a narrower object.
9286 combine can't do this for us because it can't know whether a
9287 ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */
9289 if (! SLOW_BYTE_ACCESS
9290 && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
9291 && TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT
9292 && (i = tree_floor_log2 (TREE_OPERAND (exp, 1))) >= 0
9293 && (mode = mode_for_size (i + 1, MODE_INT, 0)) != BLKmode
9294 && (type = type_for_mode (mode, 1)) != 0
9295 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
9296 && (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
9297 != CODE_FOR_nothing))
9299 do_jump (convert (type, exp), if_false_label, if_true_label);
9300 break;
9302 goto normal;
9304 case TRUTH_NOT_EXPR:
9305 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9306 break;
9308 case TRUTH_ANDIF_EXPR:
9309 if (if_false_label == 0)
9310 if_false_label = drop_through_label = gen_label_rtx ();
9311 do_jump (TREE_OPERAND (exp, 0), if_false_label, NULL_RTX);
9312 start_cleanup_deferral ();
9313 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9314 end_cleanup_deferral ();
9315 break;
9317 case TRUTH_ORIF_EXPR:
9318 if (if_true_label == 0)
9319 if_true_label = drop_through_label = gen_label_rtx ();
9320 do_jump (TREE_OPERAND (exp, 0), NULL_RTX, if_true_label);
9321 start_cleanup_deferral ();
9322 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9323 end_cleanup_deferral ();
9324 break;
9326 case COMPOUND_EXPR:
9327 push_temp_slots ();
9328 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 0);
9329 preserve_temp_slots (NULL_RTX);
9330 free_temp_slots ();
9331 pop_temp_slots ();
9332 emit_queue ();
9333 do_pending_stack_adjust ();
9334 do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label);
9335 break;
9337 case COMPONENT_REF:
9338 case BIT_FIELD_REF:
9339 case ARRAY_REF:
9341 int bitsize, bitpos, unsignedp;
9342 enum machine_mode mode;
9343 tree type;
9344 tree offset;
9345 int volatilep = 0;
9346 unsigned int alignment;
9348 /* Get description of this reference. We don't actually care
9349 about the underlying object here. */
9350 get_inner_reference (exp, &bitsize, &bitpos, &offset,
9351 &mode, &unsignedp, &volatilep,
9352 &alignment);
9354 type = type_for_size (bitsize, unsignedp);
9355 if (! SLOW_BYTE_ACCESS
9356 && type != 0 && bitsize >= 0
9357 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp))
9358 && (cmp_optab->handlers[(int) TYPE_MODE (type)].insn_code
9359 != CODE_FOR_nothing))
9361 do_jump (convert (type, exp), if_false_label, if_true_label);
9362 break;
9364 goto normal;
9367 case COND_EXPR:
9368 /* Do (a ? 1 : 0) and (a ? 0 : 1) as special cases. */
9369 if (integer_onep (TREE_OPERAND (exp, 1))
9370 && integer_zerop (TREE_OPERAND (exp, 2)))
9371 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9373 else if (integer_zerop (TREE_OPERAND (exp, 1))
9374 && integer_onep (TREE_OPERAND (exp, 2)))
9375 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9377 else
9379 register rtx label1 = gen_label_rtx ();
9380 drop_through_label = gen_label_rtx ();
9382 do_jump (TREE_OPERAND (exp, 0), label1, NULL_RTX);
9384 start_cleanup_deferral ();
9385 /* Now the THEN-expression. */
9386 do_jump (TREE_OPERAND (exp, 1),
9387 if_false_label ? if_false_label : drop_through_label,
9388 if_true_label ? if_true_label : drop_through_label);
9389 /* In case the do_jump just above never jumps. */
9390 do_pending_stack_adjust ();
9391 emit_label (label1);
9393 /* Now the ELSE-expression. */
9394 do_jump (TREE_OPERAND (exp, 2),
9395 if_false_label ? if_false_label : drop_through_label,
9396 if_true_label ? if_true_label : drop_through_label);
9397 end_cleanup_deferral ();
9399 break;
9401 case EQ_EXPR:
9403 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9405 if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
9406 || GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
9408 tree exp0 = save_expr (TREE_OPERAND (exp, 0));
9409 tree exp1 = save_expr (TREE_OPERAND (exp, 1));
9410 do_jump
9411 (fold
9412 (build (TRUTH_ANDIF_EXPR, TREE_TYPE (exp),
9413 fold (build (EQ_EXPR, TREE_TYPE (exp),
9414 fold (build1 (REALPART_EXPR,
9415 TREE_TYPE (inner_type),
9416 exp0)),
9417 fold (build1 (REALPART_EXPR,
9418 TREE_TYPE (inner_type),
9419 exp1)))),
9420 fold (build (EQ_EXPR, TREE_TYPE (exp),
9421 fold (build1 (IMAGPART_EXPR,
9422 TREE_TYPE (inner_type),
9423 exp0)),
9424 fold (build1 (IMAGPART_EXPR,
9425 TREE_TYPE (inner_type),
9426 exp1)))))),
9427 if_false_label, if_true_label);
9430 else if (integer_zerop (TREE_OPERAND (exp, 1)))
9431 do_jump (TREE_OPERAND (exp, 0), if_true_label, if_false_label);
9433 else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
9434 && !can_compare_p (EQ, TYPE_MODE (inner_type), ccp_jump))
9435 do_jump_by_parts_equality (exp, if_false_label, if_true_label);
9436 else
9437 do_compare_and_jump (exp, EQ, EQ, if_false_label, if_true_label);
9438 break;
9441 case NE_EXPR:
9443 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
9445 if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_FLOAT
9446 || GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_COMPLEX_INT)
9448 tree exp0 = save_expr (TREE_OPERAND (exp, 0));
9449 tree exp1 = save_expr (TREE_OPERAND (exp, 1));
9450 do_jump
9451 (fold
9452 (build (TRUTH_ORIF_EXPR, TREE_TYPE (exp),
9453 fold (build (NE_EXPR, TREE_TYPE (exp),
9454 fold (build1 (REALPART_EXPR,
9455 TREE_TYPE (inner_type),
9456 exp0)),
9457 fold (build1 (REALPART_EXPR,
9458 TREE_TYPE (inner_type),
9459 exp1)))),
9460 fold (build (NE_EXPR, TREE_TYPE (exp),
9461 fold (build1 (IMAGPART_EXPR,
9462 TREE_TYPE (inner_type),
9463 exp0)),
9464 fold (build1 (IMAGPART_EXPR,
9465 TREE_TYPE (inner_type),
9466 exp1)))))),
9467 if_false_label, if_true_label);
9470 else if (integer_zerop (TREE_OPERAND (exp, 1)))
9471 do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label);
9473 else if (GET_MODE_CLASS (TYPE_MODE (inner_type)) == MODE_INT
9474 && !can_compare_p (NE, TYPE_MODE (inner_type), ccp_jump))
9475 do_jump_by_parts_equality (exp, if_true_label, if_false_label);
9476 else
9477 do_compare_and_jump (exp, NE, NE, if_false_label, if_true_label);
9478 break;
9481 case LT_EXPR:
9482 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9483 if (GET_MODE_CLASS (mode) == MODE_INT
9484 && ! can_compare_p (LT, mode, ccp_jump))
9485 do_jump_by_parts_greater (exp, 1, if_false_label, if_true_label);
9486 else
9487 do_compare_and_jump (exp, LT, LTU, if_false_label, if_true_label);
9488 break;
9490 case LE_EXPR:
9491 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9492 if (GET_MODE_CLASS (mode) == MODE_INT
9493 && ! can_compare_p (LE, mode, ccp_jump))
9494 do_jump_by_parts_greater (exp, 0, if_true_label, if_false_label);
9495 else
9496 do_compare_and_jump (exp, LE, LEU, if_false_label, if_true_label);
9497 break;
9499 case GT_EXPR:
9500 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9501 if (GET_MODE_CLASS (mode) == MODE_INT
9502 && ! can_compare_p (GT, mode, ccp_jump))
9503 do_jump_by_parts_greater (exp, 0, if_false_label, if_true_label);
9504 else
9505 do_compare_and_jump (exp, GT, GTU, if_false_label, if_true_label);
9506 break;
9508 case GE_EXPR:
9509 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9510 if (GET_MODE_CLASS (mode) == MODE_INT
9511 && ! can_compare_p (GE, mode, ccp_jump))
9512 do_jump_by_parts_greater (exp, 1, if_true_label, if_false_label);
9513 else
9514 do_compare_and_jump (exp, GE, GEU, if_false_label, if_true_label);
9515 break;
9517 case UNORDERED_EXPR:
9518 case ORDERED_EXPR:
9520 enum rtx_code cmp, rcmp;
9521 int do_rev;
9523 if (code == UNORDERED_EXPR)
9524 cmp = UNORDERED, rcmp = ORDERED;
9525 else
9526 cmp = ORDERED, rcmp = UNORDERED;
9527 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9529 do_rev = 0;
9530 if (! can_compare_p (cmp, mode, ccp_jump)
9531 && (can_compare_p (rcmp, mode, ccp_jump)
9532 /* If the target doesn't provide either UNORDERED or ORDERED
9533 comparisons, canonicalize on UNORDERED for the library. */
9534 || rcmp == UNORDERED))
9535 do_rev = 1;
9537 if (! do_rev)
9538 do_compare_and_jump (exp, cmp, cmp, if_false_label, if_true_label);
9539 else
9540 do_compare_and_jump (exp, rcmp, rcmp, if_true_label, if_false_label);
9542 break;
9545 enum rtx_code rcode1;
9546 enum tree_code tcode2;
9548 case UNLT_EXPR:
9549 rcode1 = UNLT;
9550 tcode2 = LT_EXPR;
9551 goto unordered_bcc;
9552 case UNLE_EXPR:
9553 rcode1 = UNLE;
9554 tcode2 = LE_EXPR;
9555 goto unordered_bcc;
9556 case UNGT_EXPR:
9557 rcode1 = UNGT;
9558 tcode2 = GT_EXPR;
9559 goto unordered_bcc;
9560 case UNGE_EXPR:
9561 rcode1 = UNGE;
9562 tcode2 = GE_EXPR;
9563 goto unordered_bcc;
9564 case UNEQ_EXPR:
9565 rcode1 = UNEQ;
9566 tcode2 = EQ_EXPR;
9567 goto unordered_bcc;
9569 unordered_bcc:
9570 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9571 if (can_compare_p (rcode1, mode, ccp_jump))
9572 do_compare_and_jump (exp, rcode1, rcode1, if_false_label,
9573 if_true_label);
9574 else
9576 tree op0 = save_expr (TREE_OPERAND (exp, 0));
9577 tree op1 = save_expr (TREE_OPERAND (exp, 1));
9578 tree cmp0, cmp1;
9580 /* If the target doesn't support combined unordered
9581 compares, decompose into UNORDERED + comparison. */
9582 cmp0 = fold (build (UNORDERED_EXPR, TREE_TYPE (exp), op0, op1));
9583 cmp1 = fold (build (tcode2, TREE_TYPE (exp), op0, op1));
9584 exp = build (TRUTH_ORIF_EXPR, TREE_TYPE (exp), cmp0, cmp1);
9585 do_jump (exp, if_false_label, if_true_label);
9588 break;
9590 default:
9591 normal:
9592 temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
9593 #if 0
9594 /* This is not needed any more and causes poor code since it causes
9595 comparisons and tests from non-SI objects to have different code
9596 sequences. */
9597 /* Copy to register to avoid generating bad insns by cse
9598 from (set (mem ...) (arithop)) (set (cc0) (mem ...)). */
9599 if (!cse_not_expected && GET_CODE (temp) == MEM)
9600 temp = copy_to_reg (temp);
9601 #endif
9602 do_pending_stack_adjust ();
9603 /* Do any postincrements in the expression that was tested. */
9604 emit_queue ();
9606 if (GET_CODE (temp) == CONST_INT || GET_CODE (temp) == LABEL_REF)
9608 rtx target = temp == const0_rtx ? if_false_label : if_true_label;
9609 if (target)
9610 emit_jump (target);
9612 else if (GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
9613 && ! can_compare_p (NE, GET_MODE (temp), ccp_jump))
9614 /* Note swapping the labels gives us not-equal. */
9615 do_jump_by_parts_equality_rtx (temp, if_true_label, if_false_label);
9616 else if (GET_MODE (temp) != VOIDmode)
9617 do_compare_rtx_and_jump (temp, CONST0_RTX (GET_MODE (temp)),
9618 NE, TREE_UNSIGNED (TREE_TYPE (exp)),
9619 GET_MODE (temp), NULL_RTX, 0,
9620 if_false_label, if_true_label);
9621 else
9622 abort ();
9625 if (drop_through_label)
9627 /* If do_jump produces code that might be jumped around,
9628 do any stack adjusts from that code, before the place
9629 where control merges in. */
9630 do_pending_stack_adjust ();
9631 emit_label (drop_through_label);
9635 /* Given a comparison expression EXP for values too wide to be compared
9636 with one insn, test the comparison and jump to the appropriate label.
9637 The code of EXP is ignored; we always test GT if SWAP is 0,
9638 and LT if SWAP is 1. */
9640 static void
9641 do_jump_by_parts_greater (exp, swap, if_false_label, if_true_label)
9642 tree exp;
9643 int swap;
9644 rtx if_false_label, if_true_label;
9646 rtx op0 = expand_expr (TREE_OPERAND (exp, swap), NULL_RTX, VOIDmode, 0);
9647 rtx op1 = expand_expr (TREE_OPERAND (exp, !swap), NULL_RTX, VOIDmode, 0);
9648 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9649 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0)));
9651 do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label);
9654 /* Compare OP0 with OP1, word at a time, in mode MODE.
9655 UNSIGNEDP says to do unsigned comparison.
9656 Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */
9658 void
9659 do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, if_true_label)
9660 enum machine_mode mode;
9661 int unsignedp;
9662 rtx op0, op1;
9663 rtx if_false_label, if_true_label;
9665 int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
9666 rtx drop_through_label = 0;
9667 int i;
9669 if (! if_true_label || ! if_false_label)
9670 drop_through_label = gen_label_rtx ();
9671 if (! if_true_label)
9672 if_true_label = drop_through_label;
9673 if (! if_false_label)
9674 if_false_label = drop_through_label;
9676 /* Compare a word at a time, high order first. */
9677 for (i = 0; i < nwords; i++)
9679 rtx op0_word, op1_word;
9681 if (WORDS_BIG_ENDIAN)
9683 op0_word = operand_subword_force (op0, i, mode);
9684 op1_word = operand_subword_force (op1, i, mode);
9686 else
9688 op0_word = operand_subword_force (op0, nwords - 1 - i, mode);
9689 op1_word = operand_subword_force (op1, nwords - 1 - i, mode);
9692 /* All but high-order word must be compared as unsigned. */
9693 do_compare_rtx_and_jump (op0_word, op1_word, GT,
9694 (unsignedp || i > 0), word_mode, NULL_RTX, 0,
9695 NULL_RTX, if_true_label);
9697 /* Consider lower words only if these are equal. */
9698 do_compare_rtx_and_jump (op0_word, op1_word, NE, unsignedp, word_mode,
9699 NULL_RTX, 0, NULL_RTX, if_false_label);
9702 if (if_false_label)
9703 emit_jump (if_false_label);
9704 if (drop_through_label)
9705 emit_label (drop_through_label);
9708 /* Given an EQ_EXPR expression EXP for values too wide to be compared
9709 with one insn, test the comparison and jump to the appropriate label. */
9711 static void
9712 do_jump_by_parts_equality (exp, if_false_label, if_true_label)
9713 tree exp;
9714 rtx if_false_label, if_true_label;
9716 rtx op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
9717 rtx op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX, VOIDmode, 0);
9718 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9719 int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD);
9720 int i;
9721 rtx drop_through_label = 0;
9723 if (! if_false_label)
9724 drop_through_label = if_false_label = gen_label_rtx ();
9726 for (i = 0; i < nwords; i++)
9727 do_compare_rtx_and_jump (operand_subword_force (op0, i, mode),
9728 operand_subword_force (op1, i, mode),
9729 EQ, TREE_UNSIGNED (TREE_TYPE (exp)),
9730 word_mode, NULL_RTX, 0, if_false_label,
9731 NULL_RTX);
9733 if (if_true_label)
9734 emit_jump (if_true_label);
9735 if (drop_through_label)
9736 emit_label (drop_through_label);
9739 /* Jump according to whether OP0 is 0.
9740 We assume that OP0 has an integer mode that is too wide
9741 for the available compare insns. */
9743 void
9744 do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
9745 rtx op0;
9746 rtx if_false_label, if_true_label;
9748 int nwords = GET_MODE_SIZE (GET_MODE (op0)) / UNITS_PER_WORD;
9749 rtx part;
9750 int i;
9751 rtx drop_through_label = 0;
9753 /* The fastest way of doing this comparison on almost any machine is to
9754 "or" all the words and compare the result. If all have to be loaded
9755 from memory and this is a very wide item, it's possible this may
9756 be slower, but that's highly unlikely. */
9758 part = gen_reg_rtx (word_mode);
9759 emit_move_insn (part, operand_subword_force (op0, 0, GET_MODE (op0)));
9760 for (i = 1; i < nwords && part != 0; i++)
9761 part = expand_binop (word_mode, ior_optab, part,
9762 operand_subword_force (op0, i, GET_MODE (op0)),
9763 part, 1, OPTAB_WIDEN);
9765 if (part != 0)
9767 do_compare_rtx_and_jump (part, const0_rtx, EQ, 1, word_mode,
9768 NULL_RTX, 0, if_false_label, if_true_label);
9770 return;
9773 /* If we couldn't do the "or" simply, do this with a series of compares. */
9774 if (! if_false_label)
9775 drop_through_label = if_false_label = gen_label_rtx ();
9777 for (i = 0; i < nwords; i++)
9778 do_compare_rtx_and_jump (operand_subword_force (op0, i, GET_MODE (op0)),
9779 const0_rtx, EQ, 1, word_mode, NULL_RTX, 0,
9780 if_false_label, NULL_RTX);
9782 if (if_true_label)
9783 emit_jump (if_true_label);
9785 if (drop_through_label)
9786 emit_label (drop_through_label);
9789 /* Generate code for a comparison of OP0 and OP1 with rtx code CODE.
9790 (including code to compute the values to be compared)
9791 and set (CC0) according to the result.
9792 The decision as to signed or unsigned comparison must be made by the caller.
9794 We force a stack adjustment unless there are currently
9795 things pushed on the stack that aren't yet used.
9797 If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
9798 compared.
9800 If ALIGN is non-zero, it is the alignment of this type; if zero, the
9801 size of MODE should be used. */
9804 compare_from_rtx (op0, op1, code, unsignedp, mode, size, align)
9805 register rtx op0, op1;
9806 enum rtx_code code;
9807 int unsignedp;
9808 enum machine_mode mode;
9809 rtx size;
9810 unsigned int align;
9812 rtx tem;
9814 /* If one operand is constant, make it the second one. Only do this
9815 if the other operand is not constant as well. */
9817 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
9818 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
9820 tem = op0;
9821 op0 = op1;
9822 op1 = tem;
9823 code = swap_condition (code);
9826 if (flag_force_mem)
9828 op0 = force_not_mem (op0);
9829 op1 = force_not_mem (op1);
9832 do_pending_stack_adjust ();
9834 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
9835 && (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
9836 return tem;
9838 #if 0
9839 /* There's no need to do this now that combine.c can eliminate lots of
9840 sign extensions. This can be less efficient in certain cases on other
9841 machines. */
9843 /* If this is a signed equality comparison, we can do it as an
9844 unsigned comparison since zero-extension is cheaper than sign
9845 extension and comparisons with zero are done as unsigned. This is
9846 the case even on machines that can do fast sign extension, since
9847 zero-extension is easier to combine with other operations than
9848 sign-extension is. If we are comparing against a constant, we must
9849 convert it to what it would look like unsigned. */
9850 if ((code == EQ || code == NE) && ! unsignedp
9851 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9853 if (GET_CODE (op1) == CONST_INT
9854 && (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
9855 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
9856 unsignedp = 1;
9858 #endif
9860 emit_cmp_insn (op0, op1, code, size, mode, unsignedp, align);
9862 return gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
9865 /* Like do_compare_and_jump but expects the values to compare as two rtx's.
9866 The decision as to signed or unsigned comparison must be made by the caller.
9868 If MODE is BLKmode, SIZE is an RTX giving the size of the objects being
9869 compared.
9871 If ALIGN is non-zero, it is the alignment of this type; if zero, the
9872 size of MODE should be used. */
9874 void
9875 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, size, align,
9876 if_false_label, if_true_label)
9877 register rtx op0, op1;
9878 enum rtx_code code;
9879 int unsignedp;
9880 enum machine_mode mode;
9881 rtx size;
9882 unsigned int align;
9883 rtx if_false_label, if_true_label;
9885 rtx tem;
9886 int dummy_true_label = 0;
9888 /* Reverse the comparison if that is safe and we want to jump if it is
9889 false. */
9890 if (! if_true_label && ! FLOAT_MODE_P (mode))
9892 if_true_label = if_false_label;
9893 if_false_label = 0;
9894 code = reverse_condition (code);
9897 /* If one operand is constant, make it the second one. Only do this
9898 if the other operand is not constant as well. */
9900 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
9901 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
9903 tem = op0;
9904 op0 = op1;
9905 op1 = tem;
9906 code = swap_condition (code);
9909 if (flag_force_mem)
9911 op0 = force_not_mem (op0);
9912 op1 = force_not_mem (op1);
9915 do_pending_stack_adjust ();
9917 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
9918 && (tem = simplify_relational_operation (code, mode, op0, op1)) != 0)
9920 if (tem == const_true_rtx)
9922 if (if_true_label)
9923 emit_jump (if_true_label);
9925 else
9927 if (if_false_label)
9928 emit_jump (if_false_label);
9930 return;
9933 #if 0
9934 /* There's no need to do this now that combine.c can eliminate lots of
9935 sign extensions. This can be less efficient in certain cases on other
9936 machines. */
9938 /* If this is a signed equality comparison, we can do it as an
9939 unsigned comparison since zero-extension is cheaper than sign
9940 extension and comparisons with zero are done as unsigned. This is
9941 the case even on machines that can do fast sign extension, since
9942 zero-extension is easier to combine with other operations than
9943 sign-extension is. If we are comparing against a constant, we must
9944 convert it to what it would look like unsigned. */
9945 if ((code == EQ || code == NE) && ! unsignedp
9946 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9948 if (GET_CODE (op1) == CONST_INT
9949 && (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0))) != INTVAL (op1))
9950 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (GET_MODE (op0)));
9951 unsignedp = 1;
9953 #endif
9955 if (! if_true_label)
9957 dummy_true_label = 1;
9958 if_true_label = gen_label_rtx ();
9961 emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp, align,
9962 if_true_label);
9964 if (if_false_label)
9965 emit_jump (if_false_label);
9966 if (dummy_true_label)
9967 emit_label (if_true_label);
9970 /* Generate code for a comparison expression EXP (including code to compute
9971 the values to be compared) and a conditional jump to IF_FALSE_LABEL and/or
9972 IF_TRUE_LABEL. One of the labels can be NULL_RTX, in which case the
9973 generated code will drop through.
9974 SIGNED_CODE should be the rtx operation for this comparison for
9975 signed data; UNSIGNED_CODE, likewise for use if data is unsigned.
9977 We force a stack adjustment unless there are currently
9978 things pushed on the stack that aren't yet used. */
9980 static void
9981 do_compare_and_jump (exp, signed_code, unsigned_code, if_false_label,
9982 if_true_label)
9983 register tree exp;
9984 enum rtx_code signed_code, unsigned_code;
9985 rtx if_false_label, if_true_label;
9987 unsigned int align0, align1;
9988 register rtx op0, op1;
9989 register tree type;
9990 register enum machine_mode mode;
9991 int unsignedp;
9992 enum rtx_code code;
9994 /* Don't crash if the comparison was erroneous. */
9995 op0 = expand_expr_unaligned (TREE_OPERAND (exp, 0), &align0);
9996 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ERROR_MARK)
9997 return;
9999 op1 = expand_expr_unaligned (TREE_OPERAND (exp, 1), &align1);
10000 type = TREE_TYPE (TREE_OPERAND (exp, 0));
10001 mode = TYPE_MODE (type);
10002 unsignedp = TREE_UNSIGNED (type);
10003 code = unsignedp ? unsigned_code : signed_code;
10005 #ifdef HAVE_canonicalize_funcptr_for_compare
10006 /* If function pointers need to be "canonicalized" before they can
10007 be reliably compared, then canonicalize them. */
10008 if (HAVE_canonicalize_funcptr_for_compare
10009 && TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
10010 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
10011 == FUNCTION_TYPE))
10013 rtx new_op0 = gen_reg_rtx (mode);
10015 emit_insn (gen_canonicalize_funcptr_for_compare (new_op0, op0));
10016 op0 = new_op0;
10019 if (HAVE_canonicalize_funcptr_for_compare
10020 && TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
10021 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
10022 == FUNCTION_TYPE))
10024 rtx new_op1 = gen_reg_rtx (mode);
10026 emit_insn (gen_canonicalize_funcptr_for_compare (new_op1, op1));
10027 op1 = new_op1;
10029 #endif
10031 /* Do any postincrements in the expression that was tested. */
10032 emit_queue ();
10034 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode,
10035 ((mode == BLKmode)
10036 ? expr_size (TREE_OPERAND (exp, 0)) : NULL_RTX),
10037 MIN (align0, align1) / BITS_PER_UNIT,
10038 if_false_label, if_true_label);
10041 /* Generate code to calculate EXP using a store-flag instruction
10042 and return an rtx for the result. EXP is either a comparison
10043 or a TRUTH_NOT_EXPR whose operand is a comparison.
10045 If TARGET is nonzero, store the result there if convenient.
10047 If ONLY_CHEAP is non-zero, only do this if it is likely to be very
10048 cheap.
10050 Return zero if there is no suitable set-flag instruction
10051 available on this machine.
10053 Once expand_expr has been called on the arguments of the comparison,
10054 we are committed to doing the store flag, since it is not safe to
10055 re-evaluate the expression. We emit the store-flag insn by calling
10056 emit_store_flag, but only expand the arguments if we have a reason
10057 to believe that emit_store_flag will be successful. If we think that
10058 it will, but it isn't, we have to simulate the store-flag with a
10059 set/jump/set sequence. */
10061 static rtx
10062 do_store_flag (exp, target, mode, only_cheap)
10063 tree exp;
10064 rtx target;
10065 enum machine_mode mode;
10066 int only_cheap;
10068 enum rtx_code code;
10069 tree arg0, arg1, type;
10070 tree tem;
10071 enum machine_mode operand_mode;
10072 int invert = 0;
10073 int unsignedp;
10074 rtx op0, op1;
10075 enum insn_code icode;
10076 rtx subtarget = target;
10077 rtx result, label;
10079 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
10080 result at the end. We can't simply invert the test since it would
10081 have already been inverted if it were valid. This case occurs for
10082 some floating-point comparisons. */
10084 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
10085 invert = 1, exp = TREE_OPERAND (exp, 0);
10087 arg0 = TREE_OPERAND (exp, 0);
10088 arg1 = TREE_OPERAND (exp, 1);
10089 type = TREE_TYPE (arg0);
10090 operand_mode = TYPE_MODE (type);
10091 unsignedp = TREE_UNSIGNED (type);
10093 /* We won't bother with BLKmode store-flag operations because it would mean
10094 passing a lot of information to emit_store_flag. */
10095 if (operand_mode == BLKmode)
10096 return 0;
10098 /* We won't bother with store-flag operations involving function pointers
10099 when function pointers must be canonicalized before comparisons. */
10100 #ifdef HAVE_canonicalize_funcptr_for_compare
10101 if (HAVE_canonicalize_funcptr_for_compare
10102 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
10103 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
10104 == FUNCTION_TYPE))
10105 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
10106 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
10107 == FUNCTION_TYPE))))
10108 return 0;
10109 #endif
10111 STRIP_NOPS (arg0);
10112 STRIP_NOPS (arg1);
10114 /* Get the rtx comparison code to use. We know that EXP is a comparison
10115 operation of some type. Some comparisons against 1 and -1 can be
10116 converted to comparisons with zero. Do so here so that the tests
10117 below will be aware that we have a comparison with zero. These
10118 tests will not catch constants in the first operand, but constants
10119 are rarely passed as the first operand. */
10121 switch (TREE_CODE (exp))
10123 case EQ_EXPR:
10124 code = EQ;
10125 break;
10126 case NE_EXPR:
10127 code = NE;
10128 break;
10129 case LT_EXPR:
10130 if (integer_onep (arg1))
10131 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10132 else
10133 code = unsignedp ? LTU : LT;
10134 break;
10135 case LE_EXPR:
10136 if (! unsignedp && integer_all_onesp (arg1))
10137 arg1 = integer_zero_node, code = LT;
10138 else
10139 code = unsignedp ? LEU : LE;
10140 break;
10141 case GT_EXPR:
10142 if (! unsignedp && integer_all_onesp (arg1))
10143 arg1 = integer_zero_node, code = GE;
10144 else
10145 code = unsignedp ? GTU : GT;
10146 break;
10147 case GE_EXPR:
10148 if (integer_onep (arg1))
10149 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10150 else
10151 code = unsignedp ? GEU : GE;
10152 break;
10154 case UNORDERED_EXPR:
10155 code = UNORDERED;
10156 break;
10157 case ORDERED_EXPR:
10158 code = ORDERED;
10159 break;
10160 case UNLT_EXPR:
10161 code = UNLT;
10162 break;
10163 case UNLE_EXPR:
10164 code = UNLE;
10165 break;
10166 case UNGT_EXPR:
10167 code = UNGT;
10168 break;
10169 case UNGE_EXPR:
10170 code = UNGE;
10171 break;
10172 case UNEQ_EXPR:
10173 code = UNEQ;
10174 break;
10176 default:
10177 abort ();
10180 /* Put a constant second. */
10181 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
10183 tem = arg0; arg0 = arg1; arg1 = tem;
10184 code = swap_condition (code);
10187 /* If this is an equality or inequality test of a single bit, we can
10188 do this by shifting the bit being tested to the low-order bit and
10189 masking the result with the constant 1. If the condition was EQ,
10190 we xor it with 1. This does not require an scc insn and is faster
10191 than an scc insn even if we have it. */
10193 if ((code == NE || code == EQ)
10194 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10195 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10197 tree inner = TREE_OPERAND (arg0, 0);
10198 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
10199 int ops_unsignedp;
10201 /* If INNER is a right shift of a constant and it plus BITNUM does
10202 not overflow, adjust BITNUM and INNER. */
10204 if (TREE_CODE (inner) == RSHIFT_EXPR
10205 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
10206 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
10207 && bitnum < TYPE_PRECISION (type)
10208 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
10209 bitnum - TYPE_PRECISION (type)))
10211 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
10212 inner = TREE_OPERAND (inner, 0);
10215 /* If we are going to be able to omit the AND below, we must do our
10216 operations as unsigned. If we must use the AND, we have a choice.
10217 Normally unsigned is faster, but for some machines signed is. */
10218 ops_unsignedp = (bitnum == TYPE_PRECISION (type) - 1 ? 1
10219 #ifdef LOAD_EXTEND_OP
10220 : (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1)
10221 #else
10223 #endif
10226 if (subtarget == 0 || GET_CODE (subtarget) != REG
10227 || GET_MODE (subtarget) != operand_mode
10228 || ! safe_from_p (subtarget, inner, 1))
10229 subtarget = 0;
10231 op0 = expand_expr (inner, subtarget, VOIDmode, 0);
10233 if (bitnum != 0)
10234 op0 = expand_shift (RSHIFT_EXPR, GET_MODE (op0), op0,
10235 size_int (bitnum), subtarget, ops_unsignedp);
10237 if (GET_MODE (op0) != mode)
10238 op0 = convert_to_mode (mode, op0, ops_unsignedp);
10240 if ((code == EQ && ! invert) || (code == NE && invert))
10241 op0 = expand_binop (mode, xor_optab, op0, const1_rtx, subtarget,
10242 ops_unsignedp, OPTAB_LIB_WIDEN);
10244 /* Put the AND last so it can combine with more things. */
10245 if (bitnum != TYPE_PRECISION (type) - 1)
10246 op0 = expand_and (op0, const1_rtx, subtarget);
10248 return op0;
10251 /* Now see if we are likely to be able to do this. Return if not. */
10252 if (! can_compare_p (code, operand_mode, ccp_store_flag))
10253 return 0;
10255 icode = setcc_gen_code[(int) code];
10256 if (icode == CODE_FOR_nothing
10257 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
10259 /* We can only do this if it is one of the special cases that
10260 can be handled without an scc insn. */
10261 if ((code == LT && integer_zerop (arg1))
10262 || (! only_cheap && code == GE && integer_zerop (arg1)))
10264 else if (BRANCH_COST >= 0
10265 && ! only_cheap && (code == NE || code == EQ)
10266 && TREE_CODE (type) != REAL_TYPE
10267 && ((abs_optab->handlers[(int) operand_mode].insn_code
10268 != CODE_FOR_nothing)
10269 || (ffs_optab->handlers[(int) operand_mode].insn_code
10270 != CODE_FOR_nothing)))
10272 else
10273 return 0;
10276 preexpand_calls (exp);
10277 if (subtarget == 0 || GET_CODE (subtarget) != REG
10278 || GET_MODE (subtarget) != operand_mode
10279 || ! safe_from_p (subtarget, arg1, 1))
10280 subtarget = 0;
10282 op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
10283 op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
10285 if (target == 0)
10286 target = gen_reg_rtx (mode);
10288 /* Pass copies of OP0 and OP1 in case they contain a QUEUED. This is safe
10289 because, if the emit_store_flag does anything it will succeed and
10290 OP0 and OP1 will not be used subsequently. */
10292 result = emit_store_flag (target, code,
10293 queued_subexp_p (op0) ? copy_rtx (op0) : op0,
10294 queued_subexp_p (op1) ? copy_rtx (op1) : op1,
10295 operand_mode, unsignedp, 1);
10297 if (result)
10299 if (invert)
10300 result = expand_binop (mode, xor_optab, result, const1_rtx,
10301 result, 0, OPTAB_LIB_WIDEN);
10302 return result;
10305 /* If this failed, we have to do this with set/compare/jump/set code. */
10306 if (GET_CODE (target) != REG
10307 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
10308 target = gen_reg_rtx (GET_MODE (target));
10310 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
10311 result = compare_from_rtx (op0, op1, code, unsignedp,
10312 operand_mode, NULL_RTX, 0);
10313 if (GET_CODE (result) == CONST_INT)
10314 return (((result == const0_rtx && ! invert)
10315 || (result != const0_rtx && invert))
10316 ? const0_rtx : const1_rtx);
10318 label = gen_label_rtx ();
10319 if (bcc_gen_fctn[(int) code] == 0)
10320 abort ();
10322 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
10323 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
10324 emit_label (label);
10326 return target;
10329 /* Generate a tablejump instruction (used for switch statements). */
10331 #ifdef HAVE_tablejump
10333 /* INDEX is the value being switched on, with the lowest value
10334 in the table already subtracted.
10335 MODE is its expected mode (needed if INDEX is constant).
10336 RANGE is the length of the jump table.
10337 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10339 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10340 index value is out of range. */
10342 void
10343 do_tablejump (index, mode, range, table_label, default_label)
10344 rtx index, range, table_label, default_label;
10345 enum machine_mode mode;
10347 register rtx temp, vector;
10349 /* Do an unsigned comparison (in the proper mode) between the index
10350 expression and the value which represents the length of the range.
10351 Since we just finished subtracting the lower bound of the range
10352 from the index expression, this comparison allows us to simultaneously
10353 check that the original index expression value is both greater than
10354 or equal to the minimum value of the range and less than or equal to
10355 the maximum value of the range. */
10357 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10358 0, default_label);
10360 /* If index is in range, it must fit in Pmode.
10361 Convert to Pmode so we can index with it. */
10362 if (mode != Pmode)
10363 index = convert_to_mode (Pmode, index, 1);
10365 /* Don't let a MEM slip thru, because then INDEX that comes
10366 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10367 and break_out_memory_refs will go to work on it and mess it up. */
10368 #ifdef PIC_CASE_VECTOR_ADDRESS
10369 if (flag_pic && GET_CODE (index) != REG)
10370 index = copy_to_mode_reg (Pmode, index);
10371 #endif
10373 /* If flag_force_addr were to affect this address
10374 it could interfere with the tricky assumptions made
10375 about addresses that contain label-refs,
10376 which may be valid only very near the tablejump itself. */
10377 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10378 GET_MODE_SIZE, because this indicates how large insns are. The other
10379 uses should all be Pmode, because they are addresses. This code
10380 could fail if addresses and insns are not the same size. */
10381 index = gen_rtx_PLUS (Pmode,
10382 gen_rtx_MULT (Pmode, index,
10383 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10384 gen_rtx_LABEL_REF (Pmode, table_label));
10385 #ifdef PIC_CASE_VECTOR_ADDRESS
10386 if (flag_pic)
10387 index = PIC_CASE_VECTOR_ADDRESS (index);
10388 else
10389 #endif
10390 index = memory_address_noforce (CASE_VECTOR_MODE, index);
10391 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10392 vector = gen_rtx_MEM (CASE_VECTOR_MODE, index);
10393 RTX_UNCHANGING_P (vector) = 1;
10394 convert_move (temp, vector, 0);
10396 emit_jump_insn (gen_tablejump (temp, table_label));
10398 /* If we are generating PIC code or if the table is PC-relative, the
10399 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10400 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10401 emit_barrier ();
10404 #endif /* HAVE_tablejump */