* rtl.h (rtunion_def): Constify member `rtstr'.
[official-gcc.git] / gcc / explow.c
blobb87764b618076abbe198ffbc47a7ec97be757cd2
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "hard-reg-set.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "insn-flags.h"
36 #include "insn-codes.h"
38 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
39 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
40 #endif
42 static rtx break_out_memory_refs PARAMS ((rtx));
43 static void emit_stack_probe PARAMS ((rtx));
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
48 HOST_WIDE_INT
49 trunc_int_for_mode (c, mode)
50 HOST_WIDE_INT c;
51 enum machine_mode mode;
53 int width = GET_MODE_BITSIZE (mode);
55 /* We clear out all bits that don't belong in MODE, unless they and our
56 sign bit are all one. So we get either a reasonable negative
57 value or a reasonable unsigned value. */
59 if (width < HOST_BITS_PER_WIDE_INT
60 && ((c & ((HOST_WIDE_INT) (-1) << (width - 1)))
61 != ((HOST_WIDE_INT) (-1) << (width - 1))))
62 c &= ((HOST_WIDE_INT) 1 << width) - 1;
64 /* If this would be an entire word for the target, but is not for
65 the host, then sign-extend on the host so that the number will look
66 the same way on the host that it would on the target.
68 For example, when building a 64 bit alpha hosted 32 bit sparc
69 targeted compiler, then we want the 32 bit unsigned value -1 to be
70 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
71 The later confuses the sparc backend. */
73 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT
74 && BITS_PER_WORD == width
75 && (c & ((HOST_WIDE_INT) 1 << (width - 1))))
76 c |= ((HOST_WIDE_INT) (-1) << width);
78 return c;
81 /* Return an rtx for the sum of X and the integer C.
83 This function should be used via the `plus_constant' macro. */
85 rtx
86 plus_constant_wide (x, c)
87 register rtx x;
88 register HOST_WIDE_INT c;
90 register RTX_CODE code;
91 register enum machine_mode mode;
92 register rtx tem;
93 int all_constant = 0;
95 if (c == 0)
96 return x;
98 restart:
100 code = GET_CODE (x);
101 mode = GET_MODE (x);
102 switch (code)
104 case CONST_INT:
105 return GEN_INT (INTVAL (x) + c);
107 case CONST_DOUBLE:
109 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
110 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
111 HOST_WIDE_INT l2 = c;
112 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
113 HOST_WIDE_INT lv, hv;
115 add_double (l1, h1, l2, h2, &lv, &hv);
117 return immed_double_const (lv, hv, VOIDmode);
120 case MEM:
121 /* If this is a reference to the constant pool, try replacing it with
122 a reference to a new constant. If the resulting address isn't
123 valid, don't return it because we have no way to validize it. */
124 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
125 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
127 /* Any rtl we create here must go in a saveable obstack, since
128 we might have been called from within combine. */
129 push_obstacks_nochange ();
130 rtl_in_saveable_obstack ();
132 = force_const_mem (GET_MODE (x),
133 plus_constant (get_pool_constant (XEXP (x, 0)),
134 c));
135 pop_obstacks ();
136 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
137 return tem;
139 break;
141 case CONST:
142 /* If adding to something entirely constant, set a flag
143 so that we can add a CONST around the result. */
144 x = XEXP (x, 0);
145 all_constant = 1;
146 goto restart;
148 case SYMBOL_REF:
149 case LABEL_REF:
150 all_constant = 1;
151 break;
153 case PLUS:
154 /* The interesting case is adding the integer to a sum.
155 Look for constant term in the sum and combine
156 with C. For an integer constant term, we make a combined
157 integer. For a constant term that is not an explicit integer,
158 we cannot really combine, but group them together anyway.
160 Restart or use a recursive call in case the remaining operand is
161 something that we handle specially, such as a SYMBOL_REF.
163 We may not immediately return from the recursive call here, lest
164 all_constant gets lost. */
166 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
168 c += INTVAL (XEXP (x, 1));
170 if (GET_MODE (x) != VOIDmode)
171 c = trunc_int_for_mode (c, GET_MODE (x));
173 x = XEXP (x, 0);
174 goto restart;
176 else if (CONSTANT_P (XEXP (x, 0)))
178 x = gen_rtx_PLUS (mode,
179 plus_constant (XEXP (x, 0), c),
180 XEXP (x, 1));
181 c = 0;
183 else if (CONSTANT_P (XEXP (x, 1)))
185 x = gen_rtx_PLUS (mode,
186 XEXP (x, 0),
187 plus_constant (XEXP (x, 1), c));
188 c = 0;
190 break;
192 default:
193 break;
196 if (c != 0)
197 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
199 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
200 return x;
201 else if (all_constant)
202 return gen_rtx_CONST (mode, x);
203 else
204 return x;
207 /* This is the same as `plus_constant', except that it handles LO_SUM.
209 This function should be used via the `plus_constant_for_output' macro. */
212 plus_constant_for_output_wide (x, c)
213 register rtx x;
214 register HOST_WIDE_INT c;
216 register enum machine_mode mode = GET_MODE (x);
218 if (GET_CODE (x) == LO_SUM)
219 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
220 plus_constant_for_output (XEXP (x, 1), c));
222 else
223 return plus_constant (x, c);
226 /* If X is a sum, return a new sum like X but lacking any constant terms.
227 Add all the removed constant terms into *CONSTPTR.
228 X itself is not altered. The result != X if and only if
229 it is not isomorphic to X. */
232 eliminate_constant_term (x, constptr)
233 rtx x;
234 rtx *constptr;
236 register rtx x0, x1;
237 rtx tem;
239 if (GET_CODE (x) != PLUS)
240 return x;
242 /* First handle constants appearing at this level explicitly. */
243 if (GET_CODE (XEXP (x, 1)) == CONST_INT
244 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
245 XEXP (x, 1)))
246 && GET_CODE (tem) == CONST_INT)
248 *constptr = tem;
249 return eliminate_constant_term (XEXP (x, 0), constptr);
252 tem = const0_rtx;
253 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
254 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
255 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
256 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
257 *constptr, tem))
258 && GET_CODE (tem) == CONST_INT)
260 *constptr = tem;
261 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
264 return x;
267 /* Returns the insn that next references REG after INSN, or 0
268 if REG is clobbered before next referenced or we cannot find
269 an insn that references REG in a straight-line piece of code. */
272 find_next_ref (reg, insn)
273 rtx reg;
274 rtx insn;
276 rtx next;
278 for (insn = NEXT_INSN (insn); insn; insn = next)
280 next = NEXT_INSN (insn);
281 if (GET_CODE (insn) == NOTE)
282 continue;
283 if (GET_CODE (insn) == CODE_LABEL
284 || GET_CODE (insn) == BARRIER)
285 return 0;
286 if (GET_CODE (insn) == INSN
287 || GET_CODE (insn) == JUMP_INSN
288 || GET_CODE (insn) == CALL_INSN)
290 if (reg_set_p (reg, insn))
291 return 0;
292 if (reg_mentioned_p (reg, PATTERN (insn)))
293 return insn;
294 if (GET_CODE (insn) == JUMP_INSN)
296 if (simplejump_p (insn))
297 next = JUMP_LABEL (insn);
298 else
299 return 0;
301 if (GET_CODE (insn) == CALL_INSN
302 && REGNO (reg) < FIRST_PSEUDO_REGISTER
303 && call_used_regs[REGNO (reg)])
304 return 0;
306 else
307 abort ();
309 return 0;
312 /* Return an rtx for the size in bytes of the value of EXP. */
315 expr_size (exp)
316 tree exp;
318 tree size = size_in_bytes (TREE_TYPE (exp));
320 if (TREE_CODE (size) != INTEGER_CST
321 && contains_placeholder_p (size))
322 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
324 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
325 EXPAND_MEMORY_USE_BAD);
328 /* Return a copy of X in which all memory references
329 and all constants that involve symbol refs
330 have been replaced with new temporary registers.
331 Also emit code to load the memory locations and constants
332 into those registers.
334 If X contains no such constants or memory references,
335 X itself (not a copy) is returned.
337 If a constant is found in the address that is not a legitimate constant
338 in an insn, it is left alone in the hope that it might be valid in the
339 address.
341 X may contain no arithmetic except addition, subtraction and multiplication.
342 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
344 static rtx
345 break_out_memory_refs (x)
346 register rtx x;
348 if (GET_CODE (x) == MEM
349 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
350 && GET_MODE (x) != VOIDmode))
351 x = force_reg (GET_MODE (x), x);
352 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
353 || GET_CODE (x) == MULT)
355 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
356 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
358 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
359 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
362 return x;
365 #ifdef POINTERS_EXTEND_UNSIGNED
367 /* Given X, a memory address in ptr_mode, convert it to an address
368 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
369 the fact that pointers are not allowed to overflow by commuting arithmetic
370 operations over conversions so that address arithmetic insns can be
371 used. */
374 convert_memory_address (to_mode, x)
375 enum machine_mode to_mode;
376 rtx x;
378 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
379 rtx temp;
381 /* Here we handle some special cases. If none of them apply, fall through
382 to the default case. */
383 switch (GET_CODE (x))
385 case CONST_INT:
386 case CONST_DOUBLE:
387 return x;
389 case LABEL_REF:
390 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
391 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
392 return temp;
394 case SYMBOL_REF:
395 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
396 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
397 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
398 return temp;
400 case CONST:
401 return gen_rtx_CONST (to_mode,
402 convert_memory_address (to_mode, XEXP (x, 0)));
404 case PLUS:
405 case MULT:
406 /* For addition the second operand is a small constant, we can safely
407 permute the conversion and addition operation. We can always safely
408 permute them if we are making the address narrower. In addition,
409 always permute the operations if this is a constant. */
410 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
411 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
412 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
413 || CONSTANT_P (XEXP (x, 0)))))
414 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
415 convert_memory_address (to_mode, XEXP (x, 0)),
416 convert_memory_address (to_mode, XEXP (x, 1)));
417 break;
419 default:
420 break;
423 return convert_modes (to_mode, from_mode,
424 x, POINTERS_EXTEND_UNSIGNED);
426 #endif
428 /* Given a memory address or facsimile X, construct a new address,
429 currently equivalent, that is stable: future stores won't change it.
431 X must be composed of constants, register and memory references
432 combined with addition, subtraction and multiplication:
433 in other words, just what you can get from expand_expr if sum_ok is 1.
435 Works by making copies of all regs and memory locations used
436 by X and combining them the same way X does.
437 You could also stabilize the reference to this address
438 by copying the address to a register with copy_to_reg;
439 but then you wouldn't get indexed addressing in the reference. */
442 copy_all_regs (x)
443 register rtx x;
445 if (GET_CODE (x) == REG)
447 if (REGNO (x) != FRAME_POINTER_REGNUM
448 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
449 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
450 #endif
452 x = copy_to_reg (x);
454 else if (GET_CODE (x) == MEM)
455 x = copy_to_reg (x);
456 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
457 || GET_CODE (x) == MULT)
459 register rtx op0 = copy_all_regs (XEXP (x, 0));
460 register rtx op1 = copy_all_regs (XEXP (x, 1));
461 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
462 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
464 return x;
467 /* Return something equivalent to X but valid as a memory address
468 for something of mode MODE. When X is not itself valid, this
469 works by copying X or subexpressions of it into registers. */
472 memory_address (mode, x)
473 enum machine_mode mode;
474 register rtx x;
476 register rtx oldx = x;
478 if (GET_CODE (x) == ADDRESSOF)
479 return x;
481 #ifdef POINTERS_EXTEND_UNSIGNED
482 if (GET_MODE (x) == ptr_mode)
483 x = convert_memory_address (Pmode, x);
484 #endif
486 /* By passing constant addresses thru registers
487 we get a chance to cse them. */
488 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
489 x = force_reg (Pmode, x);
491 /* Accept a QUEUED that refers to a REG
492 even though that isn't a valid address.
493 On attempting to put this in an insn we will call protect_from_queue
494 which will turn it into a REG, which is valid. */
495 else if (GET_CODE (x) == QUEUED
496 && GET_CODE (QUEUED_VAR (x)) == REG)
499 /* We get better cse by rejecting indirect addressing at this stage.
500 Let the combiner create indirect addresses where appropriate.
501 For now, generate the code so that the subexpressions useful to share
502 are visible. But not if cse won't be done! */
503 else
505 if (! cse_not_expected && GET_CODE (x) != REG)
506 x = break_out_memory_refs (x);
508 /* At this point, any valid address is accepted. */
509 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
511 /* If it was valid before but breaking out memory refs invalidated it,
512 use it the old way. */
513 if (memory_address_p (mode, oldx))
514 goto win2;
516 /* Perform machine-dependent transformations on X
517 in certain cases. This is not necessary since the code
518 below can handle all possible cases, but machine-dependent
519 transformations can make better code. */
520 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
522 /* PLUS and MULT can appear in special ways
523 as the result of attempts to make an address usable for indexing.
524 Usually they are dealt with by calling force_operand, below.
525 But a sum containing constant terms is special
526 if removing them makes the sum a valid address:
527 then we generate that address in a register
528 and index off of it. We do this because it often makes
529 shorter code, and because the addresses thus generated
530 in registers often become common subexpressions. */
531 if (GET_CODE (x) == PLUS)
533 rtx constant_term = const0_rtx;
534 rtx y = eliminate_constant_term (x, &constant_term);
535 if (constant_term == const0_rtx
536 || ! memory_address_p (mode, y))
537 x = force_operand (x, NULL_RTX);
538 else
540 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
541 if (! memory_address_p (mode, y))
542 x = force_operand (x, NULL_RTX);
543 else
544 x = y;
548 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
549 x = force_operand (x, NULL_RTX);
551 /* If we have a register that's an invalid address,
552 it must be a hard reg of the wrong class. Copy it to a pseudo. */
553 else if (GET_CODE (x) == REG)
554 x = copy_to_reg (x);
556 /* Last resort: copy the value to a register, since
557 the register is a valid address. */
558 else
559 x = force_reg (Pmode, x);
561 goto done;
563 win2:
564 x = oldx;
565 win:
566 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
567 /* Don't copy an addr via a reg if it is one of our stack slots. */
568 && ! (GET_CODE (x) == PLUS
569 && (XEXP (x, 0) == virtual_stack_vars_rtx
570 || XEXP (x, 0) == virtual_incoming_args_rtx)))
572 if (general_operand (x, Pmode))
573 x = force_reg (Pmode, x);
574 else
575 x = force_operand (x, NULL_RTX);
579 done:
581 /* If we didn't change the address, we are done. Otherwise, mark
582 a reg as a pointer if we have REG or REG + CONST_INT. */
583 if (oldx == x)
584 return x;
585 else if (GET_CODE (x) == REG)
586 mark_reg_pointer (x, 1);
587 else if (GET_CODE (x) == PLUS
588 && GET_CODE (XEXP (x, 0)) == REG
589 && GET_CODE (XEXP (x, 1)) == CONST_INT)
590 mark_reg_pointer (XEXP (x, 0), 1);
592 /* OLDX may have been the address on a temporary. Update the address
593 to indicate that X is now used. */
594 update_temp_slot_address (oldx, x);
596 return x;
599 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
602 memory_address_noforce (mode, x)
603 enum machine_mode mode;
604 rtx x;
606 int ambient_force_addr = flag_force_addr;
607 rtx val;
609 flag_force_addr = 0;
610 val = memory_address (mode, x);
611 flag_force_addr = ambient_force_addr;
612 return val;
615 /* Convert a mem ref into one with a valid memory address.
616 Pass through anything else unchanged. */
619 validize_mem (ref)
620 rtx ref;
622 if (GET_CODE (ref) != MEM)
623 return ref;
624 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
625 return ref;
626 /* Don't alter REF itself, since that is probably a stack slot. */
627 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
630 /* Return a modified copy of X with its memory address copied
631 into a temporary register to protect it from side effects.
632 If X is not a MEM, it is returned unchanged (and not copied).
633 Perhaps even if it is a MEM, if there is no need to change it. */
636 stabilize (x)
637 rtx x;
639 register rtx addr;
640 if (GET_CODE (x) != MEM)
641 return x;
642 addr = XEXP (x, 0);
643 if (rtx_unstable_p (addr))
645 rtx temp = copy_all_regs (addr);
646 rtx mem;
647 if (GET_CODE (temp) != REG)
648 temp = copy_to_reg (temp);
649 mem = gen_rtx_MEM (GET_MODE (x), temp);
651 /* Mark returned memref with in_struct if it's in an array or
652 structure. Copy const and volatile from original memref. */
654 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
655 MEM_COPY_ATTRIBUTES (mem, x);
656 if (GET_CODE (addr) == PLUS)
657 MEM_SET_IN_STRUCT_P (mem, 1);
659 /* Since the new MEM is just like the old X, it can alias only
660 the things that X could. */
661 MEM_ALIAS_SET (mem) = MEM_ALIAS_SET (x);
663 return mem;
665 return x;
668 /* Copy the value or contents of X to a new temp reg and return that reg. */
671 copy_to_reg (x)
672 rtx x;
674 register rtx temp = gen_reg_rtx (GET_MODE (x));
676 /* If not an operand, must be an address with PLUS and MULT so
677 do the computation. */
678 if (! general_operand (x, VOIDmode))
679 x = force_operand (x, temp);
681 if (x != temp)
682 emit_move_insn (temp, x);
684 return temp;
687 /* Like copy_to_reg but always give the new register mode Pmode
688 in case X is a constant. */
691 copy_addr_to_reg (x)
692 rtx x;
694 return copy_to_mode_reg (Pmode, x);
697 /* Like copy_to_reg but always give the new register mode MODE
698 in case X is a constant. */
701 copy_to_mode_reg (mode, x)
702 enum machine_mode mode;
703 rtx x;
705 register rtx temp = gen_reg_rtx (mode);
707 /* If not an operand, must be an address with PLUS and MULT so
708 do the computation. */
709 if (! general_operand (x, VOIDmode))
710 x = force_operand (x, temp);
712 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
713 abort ();
714 if (x != temp)
715 emit_move_insn (temp, x);
716 return temp;
719 /* Load X into a register if it is not already one.
720 Use mode MODE for the register.
721 X should be valid for mode MODE, but it may be a constant which
722 is valid for all integer modes; that's why caller must specify MODE.
724 The caller must not alter the value in the register we return,
725 since we mark it as a "constant" register. */
728 force_reg (mode, x)
729 enum machine_mode mode;
730 rtx x;
732 register rtx temp, insn, set;
734 if (GET_CODE (x) == REG)
735 return x;
737 temp = gen_reg_rtx (mode);
739 if (! general_operand (x, mode))
740 x = force_operand (x, NULL_RTX);
742 insn = emit_move_insn (temp, x);
744 /* Let optimizers know that TEMP's value never changes
745 and that X can be substituted for it. Don't get confused
746 if INSN set something else (such as a SUBREG of TEMP). */
747 if (CONSTANT_P (x)
748 && (set = single_set (insn)) != 0
749 && SET_DEST (set) == temp)
751 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
753 if (note)
754 XEXP (note, 0) = x;
755 else
756 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
758 return temp;
761 /* If X is a memory ref, copy its contents to a new temp reg and return
762 that reg. Otherwise, return X. */
765 force_not_mem (x)
766 rtx x;
768 register rtx temp;
769 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
770 return x;
771 temp = gen_reg_rtx (GET_MODE (x));
772 emit_move_insn (temp, x);
773 return temp;
776 /* Copy X to TARGET (if it's nonzero and a reg)
777 or to a new temp reg and return that reg.
778 MODE is the mode to use for X in case it is a constant. */
781 copy_to_suggested_reg (x, target, mode)
782 rtx x, target;
783 enum machine_mode mode;
785 register rtx temp;
787 if (target && GET_CODE (target) == REG)
788 temp = target;
789 else
790 temp = gen_reg_rtx (mode);
792 emit_move_insn (temp, x);
793 return temp;
796 /* Return the mode to use to store a scalar of TYPE and MODE.
797 PUNSIGNEDP points to the signedness of the type and may be adjusted
798 to show what signedness to use on extension operations.
800 FOR_CALL is non-zero if this call is promoting args for a call. */
802 enum machine_mode
803 promote_mode (type, mode, punsignedp, for_call)
804 tree type;
805 enum machine_mode mode;
806 int *punsignedp;
807 int for_call ATTRIBUTE_UNUSED;
809 enum tree_code code = TREE_CODE (type);
810 int unsignedp = *punsignedp;
812 #ifdef PROMOTE_FOR_CALL_ONLY
813 if (! for_call)
814 return mode;
815 #endif
817 switch (code)
819 #ifdef PROMOTE_MODE
820 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
821 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
822 PROMOTE_MODE (mode, unsignedp, type);
823 break;
824 #endif
826 #ifdef POINTERS_EXTEND_UNSIGNED
827 case REFERENCE_TYPE:
828 case POINTER_TYPE:
829 mode = Pmode;
830 unsignedp = POINTERS_EXTEND_UNSIGNED;
831 break;
832 #endif
834 default:
835 break;
838 *punsignedp = unsignedp;
839 return mode;
842 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
843 This pops when ADJUST is positive. ADJUST need not be constant. */
845 void
846 adjust_stack (adjust)
847 rtx adjust;
849 rtx temp;
850 adjust = protect_from_queue (adjust, 0);
852 if (adjust == const0_rtx)
853 return;
855 temp = expand_binop (Pmode,
856 #ifdef STACK_GROWS_DOWNWARD
857 add_optab,
858 #else
859 sub_optab,
860 #endif
861 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
862 OPTAB_LIB_WIDEN);
864 if (temp != stack_pointer_rtx)
865 emit_move_insn (stack_pointer_rtx, temp);
868 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
869 This pushes when ADJUST is positive. ADJUST need not be constant. */
871 void
872 anti_adjust_stack (adjust)
873 rtx adjust;
875 rtx temp;
876 adjust = protect_from_queue (adjust, 0);
878 if (adjust == const0_rtx)
879 return;
881 temp = expand_binop (Pmode,
882 #ifdef STACK_GROWS_DOWNWARD
883 sub_optab,
884 #else
885 add_optab,
886 #endif
887 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
888 OPTAB_LIB_WIDEN);
890 if (temp != stack_pointer_rtx)
891 emit_move_insn (stack_pointer_rtx, temp);
894 /* Round the size of a block to be pushed up to the boundary required
895 by this machine. SIZE is the desired size, which need not be constant. */
898 round_push (size)
899 rtx size;
901 #ifdef PREFERRED_STACK_BOUNDARY
902 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
903 if (align == 1)
904 return size;
905 if (GET_CODE (size) == CONST_INT)
907 int new = (INTVAL (size) + align - 1) / align * align;
908 if (INTVAL (size) != new)
909 size = GEN_INT (new);
911 else
913 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
914 but we know it can't. So add ourselves and then do
915 TRUNC_DIV_EXPR. */
916 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
917 NULL_RTX, 1, OPTAB_LIB_WIDEN);
918 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
919 NULL_RTX, 1);
920 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
922 #endif /* PREFERRED_STACK_BOUNDARY */
923 return size;
926 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
927 to a previously-created save area. If no save area has been allocated,
928 this function will allocate one. If a save area is specified, it
929 must be of the proper mode.
931 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
932 are emitted at the current position. */
934 void
935 emit_stack_save (save_level, psave, after)
936 enum save_level save_level;
937 rtx *psave;
938 rtx after;
940 rtx sa = *psave;
941 /* The default is that we use a move insn and save in a Pmode object. */
942 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
943 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
945 /* See if this machine has anything special to do for this kind of save. */
946 switch (save_level)
948 #ifdef HAVE_save_stack_block
949 case SAVE_BLOCK:
950 if (HAVE_save_stack_block)
951 fcn = gen_save_stack_block;
952 break;
953 #endif
954 #ifdef HAVE_save_stack_function
955 case SAVE_FUNCTION:
956 if (HAVE_save_stack_function)
957 fcn = gen_save_stack_function;
958 break;
959 #endif
960 #ifdef HAVE_save_stack_nonlocal
961 case SAVE_NONLOCAL:
962 if (HAVE_save_stack_nonlocal)
963 fcn = gen_save_stack_nonlocal;
964 break;
965 #endif
966 default:
967 break;
970 /* If there is no save area and we have to allocate one, do so. Otherwise
971 verify the save area is the proper mode. */
973 if (sa == 0)
975 if (mode != VOIDmode)
977 if (save_level == SAVE_NONLOCAL)
978 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
979 else
980 *psave = sa = gen_reg_rtx (mode);
983 else
985 if (mode == VOIDmode || GET_MODE (sa) != mode)
986 abort ();
989 if (after)
991 rtx seq;
993 start_sequence ();
994 /* We must validize inside the sequence, to ensure that any instructions
995 created by the validize call also get moved to the right place. */
996 if (sa != 0)
997 sa = validize_mem (sa);
998 emit_insn (fcn (sa, stack_pointer_rtx));
999 seq = gen_sequence ();
1000 end_sequence ();
1001 emit_insn_after (seq, after);
1003 else
1005 if (sa != 0)
1006 sa = validize_mem (sa);
1007 emit_insn (fcn (sa, stack_pointer_rtx));
1011 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1012 area made by emit_stack_save. If it is zero, we have nothing to do.
1014 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1015 current position. */
1017 void
1018 emit_stack_restore (save_level, sa, after)
1019 enum save_level save_level;
1020 rtx after;
1021 rtx sa;
1023 /* The default is that we use a move insn. */
1024 rtx (*fcn) PARAMS ((rtx, rtx)) = gen_move_insn;
1026 /* See if this machine has anything special to do for this kind of save. */
1027 switch (save_level)
1029 #ifdef HAVE_restore_stack_block
1030 case SAVE_BLOCK:
1031 if (HAVE_restore_stack_block)
1032 fcn = gen_restore_stack_block;
1033 break;
1034 #endif
1035 #ifdef HAVE_restore_stack_function
1036 case SAVE_FUNCTION:
1037 if (HAVE_restore_stack_function)
1038 fcn = gen_restore_stack_function;
1039 break;
1040 #endif
1041 #ifdef HAVE_restore_stack_nonlocal
1042 case SAVE_NONLOCAL:
1043 if (HAVE_restore_stack_nonlocal)
1044 fcn = gen_restore_stack_nonlocal;
1045 break;
1046 #endif
1047 default:
1048 break;
1051 if (sa != 0)
1052 sa = validize_mem (sa);
1054 if (after)
1056 rtx seq;
1058 start_sequence ();
1059 emit_insn (fcn (stack_pointer_rtx, sa));
1060 seq = gen_sequence ();
1061 end_sequence ();
1062 emit_insn_after (seq, after);
1064 else
1065 emit_insn (fcn (stack_pointer_rtx, sa));
1068 #ifdef SETJMP_VIA_SAVE_AREA
1069 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1070 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1071 platforms, the dynamic stack space used can corrupt the original
1072 frame, thus causing a crash if a longjmp unwinds to it. */
1074 void
1075 optimize_save_area_alloca (insns)
1076 rtx insns;
1078 rtx insn;
1080 for (insn = insns; insn; insn = NEXT_INSN(insn))
1082 rtx note;
1084 if (GET_CODE (insn) != INSN)
1085 continue;
1087 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1089 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1090 continue;
1092 if (!current_function_calls_setjmp)
1094 rtx pat = PATTERN (insn);
1096 /* If we do not see the note in a pattern matching
1097 these precise characteristics, we did something
1098 entirely wrong in allocate_dynamic_stack_space.
1100 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1101 was defined on a machine where stacks grow towards higher
1102 addresses.
1104 Right now only supported port with stack that grow upward
1105 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1106 if (GET_CODE (pat) != SET
1107 || SET_DEST (pat) != stack_pointer_rtx
1108 || GET_CODE (SET_SRC (pat)) != MINUS
1109 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1110 abort ();
1112 /* This will now be transformed into a (set REG REG)
1113 so we can just blow away all the other notes. */
1114 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1115 REG_NOTES (insn) = NULL_RTX;
1117 else
1119 /* setjmp was called, we must remove the REG_SAVE_AREA
1120 note so that later passes do not get confused by its
1121 presence. */
1122 if (note == REG_NOTES (insn))
1124 REG_NOTES (insn) = XEXP (note, 1);
1126 else
1128 rtx srch;
1130 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1131 if (XEXP (srch, 1) == note)
1132 break;
1134 if (srch == NULL_RTX)
1135 abort();
1137 XEXP (srch, 1) = XEXP (note, 1);
1140 /* Once we've seen the note of interest, we need not look at
1141 the rest of them. */
1142 break;
1146 #endif /* SETJMP_VIA_SAVE_AREA */
1148 /* Return an rtx representing the address of an area of memory dynamically
1149 pushed on the stack. This region of memory is always aligned to
1150 a multiple of BIGGEST_ALIGNMENT.
1152 Any required stack pointer alignment is preserved.
1154 SIZE is an rtx representing the size of the area.
1155 TARGET is a place in which the address can be placed.
1157 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1160 allocate_dynamic_stack_space (size, target, known_align)
1161 rtx size;
1162 rtx target;
1163 int known_align;
1165 #ifdef SETJMP_VIA_SAVE_AREA
1166 rtx setjmpless_size = NULL_RTX;
1167 #endif
1169 /* If we're asking for zero bytes, it doesn't matter what we point
1170 to since we can't dereference it. But return a reasonable
1171 address anyway. */
1172 if (size == const0_rtx)
1173 return virtual_stack_dynamic_rtx;
1175 /* Otherwise, show we're calling alloca or equivalent. */
1176 current_function_calls_alloca = 1;
1178 /* Ensure the size is in the proper mode. */
1179 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1180 size = convert_to_mode (Pmode, size, 1);
1182 /* We can't attempt to minimize alignment necessary, because we don't
1183 know the final value of preferred_stack_boundary yet while executing
1184 this code. */
1185 #ifdef PREFERRED_STACK_BOUNDARY
1186 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1187 #endif
1189 /* We will need to ensure that the address we return is aligned to
1190 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1191 always know its final value at this point in the compilation (it
1192 might depend on the size of the outgoing parameter lists, for
1193 example), so we must align the value to be returned in that case.
1194 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1195 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1196 We must also do an alignment operation on the returned value if
1197 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1199 If we have to align, we must leave space in SIZE for the hole
1200 that might result from the alignment operation. */
1202 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
1203 #define MUST_ALIGN 1
1204 #else
1205 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1206 #endif
1208 if (MUST_ALIGN)
1210 if (GET_CODE (size) == CONST_INT)
1211 size = GEN_INT (INTVAL (size)
1212 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1213 else
1214 size = expand_binop (Pmode, add_optab, size,
1215 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1216 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1219 #ifdef SETJMP_VIA_SAVE_AREA
1220 /* If setjmp restores regs from a save area in the stack frame,
1221 avoid clobbering the reg save area. Note that the offset of
1222 virtual_incoming_args_rtx includes the preallocated stack args space.
1223 It would be no problem to clobber that, but it's on the wrong side
1224 of the old save area. */
1226 rtx dynamic_offset
1227 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1228 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1230 if (!current_function_calls_setjmp)
1232 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1234 /* See optimize_save_area_alloca to understand what is being
1235 set up here. */
1237 #if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1238 /* If anyone creates a target with these characteristics, let them
1239 know that our optimization cannot work correctly in such a case. */
1240 abort();
1241 #endif
1243 if (GET_CODE (size) == CONST_INT)
1245 int new = INTVAL (size) / align * align;
1247 if (INTVAL (size) != new)
1248 setjmpless_size = GEN_INT (new);
1249 else
1250 setjmpless_size = size;
1252 else
1254 /* Since we know overflow is not possible, we avoid using
1255 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1256 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1257 GEN_INT (align), NULL_RTX, 1);
1258 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1259 GEN_INT (align), NULL_RTX, 1);
1261 /* Our optimization works based upon being able to perform a simple
1262 transformation of this RTL into a (set REG REG) so make sure things
1263 did in fact end up in a REG. */
1264 if (!register_operand (setjmpless_size, Pmode))
1265 setjmpless_size = force_reg (Pmode, setjmpless_size);
1268 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1269 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1271 #endif /* SETJMP_VIA_SAVE_AREA */
1273 /* Round the size to a multiple of the required stack alignment.
1274 Since the stack if presumed to be rounded before this allocation,
1275 this will maintain the required alignment.
1277 If the stack grows downward, we could save an insn by subtracting
1278 SIZE from the stack pointer and then aligning the stack pointer.
1279 The problem with this is that the stack pointer may be unaligned
1280 between the execution of the subtraction and alignment insns and
1281 some machines do not allow this. Even on those that do, some
1282 signal handlers malfunction if a signal should occur between those
1283 insns. Since this is an extremely rare event, we have no reliable
1284 way of knowing which systems have this problem. So we avoid even
1285 momentarily mis-aligning the stack. */
1287 #ifdef PREFERRED_STACK_BOUNDARY
1288 /* If we added a variable amount to SIZE,
1289 we can no longer assume it is aligned. */
1290 #if !defined (SETJMP_VIA_SAVE_AREA)
1291 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1292 #endif
1293 size = round_push (size);
1294 #endif
1296 do_pending_stack_adjust ();
1298 /* If needed, check that we have the required amount of stack. Take into
1299 account what has already been checked. */
1300 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1301 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1303 /* Don't use a TARGET that isn't a pseudo. */
1304 if (target == 0 || GET_CODE (target) != REG
1305 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1306 target = gen_reg_rtx (Pmode);
1308 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1310 /* Perform the required allocation from the stack. Some systems do
1311 this differently than simply incrementing/decrementing from the
1312 stack pointer, such as acquiring the space by calling malloc(). */
1313 #ifdef HAVE_allocate_stack
1314 if (HAVE_allocate_stack)
1316 enum machine_mode mode = STACK_SIZE_MODE;
1317 insn_operand_predicate_fn pred;
1319 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[0].predicate;
1320 if (pred && ! ((*pred) (target, Pmode)))
1321 #ifdef POINTERS_EXTEND_UNSIGNED
1322 target = convert_memory_address (Pmode, target);
1323 #else
1324 target = copy_to_mode_reg (Pmode, target);
1325 #endif
1327 if (mode == VOIDmode)
1328 mode = Pmode;
1330 size = convert_modes (mode, ptr_mode, size, 1);
1331 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1332 if (pred && ! ((*pred) (size, mode)))
1333 size = copy_to_mode_reg (mode, size);
1335 emit_insn (gen_allocate_stack (target, size));
1337 else
1338 #endif
1340 #ifndef STACK_GROWS_DOWNWARD
1341 emit_move_insn (target, virtual_stack_dynamic_rtx);
1342 #endif
1343 size = convert_modes (Pmode, ptr_mode, size, 1);
1345 /* Check stack bounds if necessary. */
1346 if (current_function_limit_stack)
1348 rtx available;
1349 rtx space_available = gen_label_rtx ();
1350 #ifdef STACK_GROWS_DOWNWARD
1351 available = expand_binop (Pmode, sub_optab,
1352 stack_pointer_rtx, stack_limit_rtx,
1353 NULL_RTX, 1, OPTAB_WIDEN);
1354 #else
1355 available = expand_binop (Pmode, sub_optab,
1356 stack_limit_rtx, stack_pointer_rtx,
1357 NULL_RTX, 1, OPTAB_WIDEN);
1358 #endif
1359 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1360 0, space_available);
1361 #ifdef HAVE_trap
1362 if (HAVE_trap)
1363 emit_insn (gen_trap ());
1364 else
1365 #endif
1366 error ("stack limits not supported on this target");
1367 emit_barrier ();
1368 emit_label (space_available);
1371 anti_adjust_stack (size);
1372 #ifdef SETJMP_VIA_SAVE_AREA
1373 if (setjmpless_size != NULL_RTX)
1375 rtx note_target = get_last_insn ();
1377 REG_NOTES (note_target)
1378 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1379 REG_NOTES (note_target));
1381 #endif /* SETJMP_VIA_SAVE_AREA */
1382 #ifdef STACK_GROWS_DOWNWARD
1383 emit_move_insn (target, virtual_stack_dynamic_rtx);
1384 #endif
1387 if (MUST_ALIGN)
1389 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1390 but we know it can't. So add ourselves and then do
1391 TRUNC_DIV_EXPR. */
1392 target = expand_binop (Pmode, add_optab, target,
1393 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1394 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1395 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1396 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1397 NULL_RTX, 1);
1398 target = expand_mult (Pmode, target,
1399 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1400 NULL_RTX, 1);
1403 /* Some systems require a particular insn to refer to the stack
1404 to make the pages exist. */
1405 #ifdef HAVE_probe
1406 if (HAVE_probe)
1407 emit_insn (gen_probe ());
1408 #endif
1410 /* Record the new stack level for nonlocal gotos. */
1411 if (nonlocal_goto_handler_slots != 0)
1412 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1414 return target;
1417 /* A front end may want to override GCC's stack checking by providing a
1418 run-time routine to call to check the stack, so provide a mechanism for
1419 calling that routine. */
1421 static rtx stack_check_libfunc;
1423 void
1424 set_stack_check_libfunc (libfunc)
1425 rtx libfunc;
1427 stack_check_libfunc = libfunc;
1430 /* Emit one stack probe at ADDRESS, an address within the stack. */
1432 static void
1433 emit_stack_probe (address)
1434 rtx address;
1436 rtx memref = gen_rtx_MEM (word_mode, address);
1438 MEM_VOLATILE_P (memref) = 1;
1440 if (STACK_CHECK_PROBE_LOAD)
1441 emit_move_insn (gen_reg_rtx (word_mode), memref);
1442 else
1443 emit_move_insn (memref, const0_rtx);
1446 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1447 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1448 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1449 subtract from the stack. If SIZE is constant, this is done
1450 with a fixed number of probes. Otherwise, we must make a loop. */
1452 #ifdef STACK_GROWS_DOWNWARD
1453 #define STACK_GROW_OP MINUS
1454 #else
1455 #define STACK_GROW_OP PLUS
1456 #endif
1458 void
1459 probe_stack_range (first, size)
1460 HOST_WIDE_INT first;
1461 rtx size;
1463 /* First see if the front end has set up a function for us to call to
1464 check the stack. */
1465 if (stack_check_libfunc != 0)
1466 emit_library_call (stack_check_libfunc, 0, VOIDmode, 1,
1467 memory_address (QImode,
1468 gen_rtx (STACK_GROW_OP, Pmode,
1469 stack_pointer_rtx,
1470 plus_constant (size, first))),
1471 ptr_mode);
1473 /* Next see if we have an insn to check the stack. Use it if so. */
1474 #ifdef HAVE_check_stack
1475 else if (HAVE_check_stack)
1477 insn_operand_predicate_fn pred;
1478 rtx last_addr
1479 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1480 stack_pointer_rtx,
1481 plus_constant (size, first)),
1482 NULL_RTX);
1484 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1485 if (pred && ! ((*pred) (last_addr, Pmode)))
1486 last_addr = copy_to_mode_reg (Pmode, last_addr);
1488 emit_insn (gen_check_stack (last_addr));
1490 #endif
1492 /* If we have to generate explicit probes, see if we have a constant
1493 small number of them to generate. If so, that's the easy case. */
1494 else if (GET_CODE (size) == CONST_INT
1495 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1497 HOST_WIDE_INT offset;
1499 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1500 for values of N from 1 until it exceeds LAST. If only one
1501 probe is needed, this will not generate any code. Then probe
1502 at LAST. */
1503 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1504 offset < INTVAL (size);
1505 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1506 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1507 stack_pointer_rtx,
1508 GEN_INT (offset)));
1510 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1511 stack_pointer_rtx,
1512 plus_constant (size, first)));
1515 /* In the variable case, do the same as above, but in a loop. We emit loop
1516 notes so that loop optimization can be done. */
1517 else
1519 rtx test_addr
1520 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1521 stack_pointer_rtx,
1522 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1523 NULL_RTX);
1524 rtx last_addr
1525 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1526 stack_pointer_rtx,
1527 plus_constant (size, first)),
1528 NULL_RTX);
1529 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1530 rtx loop_lab = gen_label_rtx ();
1531 rtx test_lab = gen_label_rtx ();
1532 rtx end_lab = gen_label_rtx ();
1533 rtx temp;
1535 if (GET_CODE (test_addr) != REG
1536 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1537 test_addr = force_reg (Pmode, test_addr);
1539 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1540 emit_jump (test_lab);
1542 emit_label (loop_lab);
1543 emit_stack_probe (test_addr);
1545 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1547 #ifdef STACK_GROWS_DOWNWARD
1548 #define CMP_OPCODE GTU
1549 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1550 1, OPTAB_WIDEN);
1551 #else
1552 #define CMP_OPCODE LTU
1553 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1554 1, OPTAB_WIDEN);
1555 #endif
1557 if (temp != test_addr)
1558 abort ();
1560 emit_label (test_lab);
1561 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1562 NULL_RTX, Pmode, 1, 0, loop_lab);
1563 emit_jump (end_lab);
1564 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1565 emit_label (end_lab);
1567 emit_stack_probe (last_addr);
1571 /* Return an rtx representing the register or memory location
1572 in which a scalar value of data type VALTYPE
1573 was returned by a function call to function FUNC.
1574 FUNC is a FUNCTION_DECL node if the precise function is known,
1575 otherwise 0.
1576 OUTGOING is 1 if on a machine with register windows this function
1577 should return the register in which the function will put its result
1578 and 0 otherwise. */
1581 hard_function_value (valtype, func, outgoing)
1582 tree valtype;
1583 tree func ATTRIBUTE_UNUSED;
1584 int outgoing ATTRIBUTE_UNUSED;
1586 rtx val;
1587 #ifdef FUNCTION_OUTGOING_VALUE
1588 if (outgoing)
1589 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1590 else
1591 #endif
1592 val = FUNCTION_VALUE (valtype, func);
1593 if (GET_CODE (val) == REG
1594 && GET_MODE (val) == BLKmode)
1596 int bytes = int_size_in_bytes (valtype);
1597 enum machine_mode tmpmode;
1598 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1599 tmpmode != VOIDmode;
1600 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1602 /* Have we found a large enough mode? */
1603 if (GET_MODE_SIZE (tmpmode) >= bytes)
1604 break;
1607 /* No suitable mode found. */
1608 if (tmpmode == VOIDmode)
1609 abort ();
1611 PUT_MODE (val, tmpmode);
1613 return val;
1616 /* Return an rtx representing the register or memory location
1617 in which a scalar value of mode MODE was returned by a library call. */
1620 hard_libcall_value (mode)
1621 enum machine_mode mode;
1623 return LIBCALL_VALUE (mode);
1626 /* Look up the tree code for a given rtx code
1627 to provide the arithmetic operation for REAL_ARITHMETIC.
1628 The function returns an int because the caller may not know
1629 what `enum tree_code' means. */
1632 rtx_to_tree_code (code)
1633 enum rtx_code code;
1635 enum tree_code tcode;
1637 switch (code)
1639 case PLUS:
1640 tcode = PLUS_EXPR;
1641 break;
1642 case MINUS:
1643 tcode = MINUS_EXPR;
1644 break;
1645 case MULT:
1646 tcode = MULT_EXPR;
1647 break;
1648 case DIV:
1649 tcode = RDIV_EXPR;
1650 break;
1651 case SMIN:
1652 tcode = MIN_EXPR;
1653 break;
1654 case SMAX:
1655 tcode = MAX_EXPR;
1656 break;
1657 default:
1658 tcode = LAST_AND_UNUSED_TREE_CODE;
1659 break;
1661 return ((int) tcode);