* ggc-page.c (alloc_page): If HAVE_MMAP_ANYWHERE and we're
[official-gcc.git] / libio / floatconv.c
blob9503187b5d574e1d5a4dfe8e76729c661de1bb88
1 /*
2 Copyright (C) 1993, 1994 Free Software Foundation
4 This file is part of the GNU IO Library. This library is free
5 software; you can redistribute it and/or modify it under the
6 terms of the GNU General Public License as published by the
7 Free Software Foundation; either version 2, or (at your option)
8 any later version.
10 This library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this library; see the file COPYING. If not, write to the Free
17 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 As a special exception, if you link this library with files
20 compiled with a GNU compiler to produce an executable, this does not cause
21 the resulting executable to be covered by the GNU General Public License.
22 This exception does not however invalidate any other reasons why
23 the executable file might be covered by the GNU General Public License. */
25 #include <libioP.h>
26 #ifdef _IO_USE_DTOA
27 /****************************************************************
29 * The author of this software is David M. Gay.
31 * Copyright (c) 1991 by AT&T.
33 * Permission to use, copy, modify, and distribute this software for any
34 * purpose without fee is hereby granted, provided that this entire notice
35 * is included in all copies of any software which is or includes a copy
36 * or modification of this software and in all copies of the supporting
37 * documentation for such software.
39 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
40 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
41 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
42 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
44 ***************************************************************/
46 /* Some cleaning up by Per Bothner, bothner@cygnus.com, 1992, 1993.
47 Re-written to not need static variables
48 (except result, result_k, HIWORD, LOWORD). */
50 /* Note that the checking of _DOUBLE_IS_32BITS is for use with the
51 cross targets that employ the newlib ieeefp.h header. -- brendan */
53 /* Please send bug reports to
54 David M. Gay
55 AT&T Bell Laboratories, Room 2C-463
56 600 Mountain Avenue
57 Murray Hill, NJ 07974-2070
58 U.S.A.
59 dmg@research.att.com or research!dmg
62 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
64 * This strtod returns a nearest machine number to the input decimal
65 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
66 * broken by the IEEE round-even rule. Otherwise ties are broken by
67 * biased rounding (add half and chop).
69 * Inspired loosely by William D. Clinger's paper "How to Read Floating
70 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
72 * Modifications:
74 * 1. We only require IEEE, IBM, or VAX double-precision
75 * arithmetic (not IEEE double-extended).
76 * 2. We get by with floating-point arithmetic in a case that
77 * Clinger missed -- when we're computing d * 10^n
78 * for a small integer d and the integer n is not too
79 * much larger than 22 (the maximum integer k for which
80 * we can represent 10^k exactly), we may be able to
81 * compute (d*10^k) * 10^(e-k) with just one roundoff.
82 * 3. Rather than a bit-at-a-time adjustment of the binary
83 * result in the hard case, we use floating-point
84 * arithmetic to determine the adjustment to within
85 * one bit; only in really hard cases do we need to
86 * compute a second residual.
87 * 4. Because of 3., we don't need a large table of powers of 10
88 * for ten-to-e (just some small tables, e.g. of 10^k
89 * for 0 <= k <= 22).
93 * #define IEEE_8087 for IEEE-arithmetic machines where the least
94 * significant byte has the lowest address.
95 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
96 * significant byte has the lowest address.
97 * #define Sudden_Underflow for IEEE-format machines without gradual
98 * underflow (i.e., that flush to zero on underflow).
99 * #define IBM for IBM mainframe-style floating-point arithmetic.
100 * #define VAX for VAX-style floating-point arithmetic.
101 * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
102 * #define No_leftright to omit left-right logic in fast floating-point
103 * computation of dtoa.
104 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
105 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
106 * that use extended-precision instructions to compute rounded
107 * products and quotients) with IBM.
108 * #define ROUND_BIASED for IEEE-format with biased rounding.
109 * #define Inaccurate_Divide for IEEE-format with correctly rounded
110 * products but inaccurate quotients, e.g., for Intel i860.
111 * #define KR_headers for old-style C function headers.
114 #ifdef DEBUG
115 #include <stdio.h>
116 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
117 #endif
119 #ifdef __STDC__
120 #include <stdlib.h>
121 #include <string.h>
122 #include <float.h>
123 #define CONST const
124 #else
125 #define CONST
126 #define KR_headers
128 /* In this case, we assume IEEE floats. */
129 #define FLT_ROUNDS 1
130 #define FLT_RADIX 2
131 #define DBL_MANT_DIG 53
132 #define DBL_DIG 15
133 #define DBL_MAX_10_EXP 308
134 #define DBL_MAX_EXP 1024
135 #endif
137 #include <errno.h>
138 #ifndef __MATH_H__
139 #include <math.h>
140 #endif
142 #ifdef Unsigned_Shifts
143 #define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
144 #else
145 #define Sign_Extend(a,b) /*no-op*/
146 #endif
148 #if defined(__i386__) || defined(__i860__) || defined(clipper)
149 #define IEEE_8087
150 #endif
151 #if defined(MIPSEL) || defined(__alpha__)
152 #define IEEE_8087
153 #endif
154 #if defined(__sparc__) || defined(sparc) || defined(MIPSEB)
155 #define IEEE_MC68k
156 #endif
158 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
160 #ifndef _DOUBLE_IS_32BITS
161 #if FLT_RADIX==16
162 #define IBM
163 #else
164 #if DBL_MANT_DIG==56
165 #define VAX
166 #else
167 #if DBL_MANT_DIG==53 && DBL_MAX_10_EXP==308
168 #define IEEE_Unknown
169 #else
170 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
171 #endif
172 #endif
173 #endif
174 #endif /* !_DOUBLE_IS_32BITS */
175 #endif
177 typedef _G_uint32_t unsigned32;
179 union doubleword {
180 double d;
181 unsigned32 u[2];
184 #ifdef IEEE_8087
185 #define HIWORD 1
186 #define LOWORD 0
187 #define TEST_ENDIANNESS /* nothing */
188 #else
189 #if defined(IEEE_MC68k)
190 #define HIWORD 0
191 #define LOWORD 1
192 #define TEST_ENDIANNESS /* nothing */
193 #else
194 static int HIWORD = -1, LOWORD;
195 static void test_endianness()
197 union doubleword dw;
198 dw.d = 10;
199 if (dw.u[0] != 0) /* big-endian */
200 HIWORD=0, LOWORD=1;
201 else
202 HIWORD=1, LOWORD=0;
204 #define TEST_ENDIANNESS if (HIWORD<0) test_endianness();
205 #endif
206 #endif
208 #if 0
209 union doubleword _temp;
210 #endif
211 #if defined(__GNUC__) && !defined(_DOUBLE_IS_32BITS)
212 #define word0(x) ({ union doubleword _du; _du.d = (x); _du.u[HIWORD]; })
213 #define word1(x) ({ union doubleword _du; _du.d = (x); _du.u[LOWORD]; })
214 #define setword0(D,W) \
215 ({ union doubleword _du; _du.d = (D); _du.u[HIWORD]=(W); (D)=_du.d; })
216 #define setword1(D,W) \
217 ({ union doubleword _du; _du.d = (D); _du.u[LOWORD]=(W); (D)=_du.d; })
218 #define setwords(D,W0,W1) ({ union doubleword _du; \
219 _du.u[HIWORD]=(W0); _du.u[LOWORD]=(W1); (D)=_du.d; })
220 #define addword0(D,W) \
221 ({ union doubleword _du; _du.d = (D); _du.u[HIWORD]+=(W); (D)=_du.d; })
222 #else
223 #define word0(x) ((unsigned32 *)&x)[HIWORD]
224 #ifndef _DOUBLE_IS_32BITS
225 #define word1(x) ((unsigned32 *)&x)[LOWORD]
226 #else
227 #define word1(x) 0
228 #endif
229 #define setword0(D,W) word0(D) = (W)
230 #ifndef _DOUBLE_IS_32BITS
231 #define setword1(D,W) word1(D) = (W)
232 #define setwords(D,W0,W1) (setword0(D,W0),setword1(D,W1))
233 #else
234 #define setword1(D,W)
235 #define setwords(D,W0,W1) (setword0(D,W0))
236 #endif
237 #define addword0(D,X) (word0(D) += (X))
238 #endif
240 /* The following definition of Storeinc is appropriate for MIPS processors. */
241 #if defined(IEEE_8087) + defined(VAX)
242 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
243 ((unsigned short *)a)[0] = (unsigned short)c, a++)
244 #else
245 #if defined(IEEE_MC68k)
246 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
247 ((unsigned short *)a)[1] = (unsigned short)c, a++)
248 #else
249 #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
250 #endif
251 #endif
253 /* #define P DBL_MANT_DIG */
254 /* Ten_pmax = floor(P*log(2)/log(5)) */
255 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
256 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
257 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
259 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_Unknown)
260 #define Exp_shift 20
261 #define Exp_shift1 20
262 #define Exp_msk1 0x100000
263 #define Exp_msk11 0x100000
264 #define Exp_mask 0x7ff00000
265 #define P 53
266 #define Bias 1023
267 #define IEEE_Arith
268 #define Emin (-1022)
269 #define Exp_1 0x3ff00000
270 #define Exp_11 0x3ff00000
271 #define Ebits 11
272 #define Frac_mask 0xfffff
273 #define Frac_mask1 0xfffff
274 #define Ten_pmax 22
275 #define Bletch 0x10
276 #define Bndry_mask 0xfffff
277 #define Bndry_mask1 0xfffff
278 #define LSB 1
279 #define Sign_bit 0x80000000
280 #define Log2P 1
281 #define Tiny0 0
282 #define Tiny1 1
283 #define Quick_max 14
284 #define Int_max 14
285 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
286 #else
287 #undef Sudden_Underflow
288 #define Sudden_Underflow
289 #ifdef IBM
290 #define Exp_shift 24
291 #define Exp_shift1 24
292 #define Exp_msk1 0x1000000
293 #define Exp_msk11 0x1000000
294 #define Exp_mask 0x7f000000
295 #define P 14
296 #define Bias 65
297 #define Exp_1 0x41000000
298 #define Exp_11 0x41000000
299 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
300 #define Frac_mask 0xffffff
301 #define Frac_mask1 0xffffff
302 #define Bletch 4
303 #define Ten_pmax 22
304 #define Bndry_mask 0xefffff
305 #define Bndry_mask1 0xffffff
306 #define LSB 1
307 #define Sign_bit 0x80000000
308 #define Log2P 4
309 #define Tiny0 0x100000
310 #define Tiny1 0
311 #define Quick_max 14
312 #define Int_max 15
313 #else /* VAX */
314 #define Exp_shift 23
315 #define Exp_shift1 7
316 #define Exp_msk1 0x80
317 #define Exp_msk11 0x800000
318 #define Exp_mask 0x7f80
319 #define P 56
320 #define Bias 129
321 #define Exp_1 0x40800000
322 #define Exp_11 0x4080
323 #define Ebits 8
324 #define Frac_mask 0x7fffff
325 #define Frac_mask1 0xffff007f
326 #define Ten_pmax 24
327 #define Bletch 2
328 #define Bndry_mask 0xffff007f
329 #define Bndry_mask1 0xffff007f
330 #define LSB 0x10000
331 #define Sign_bit 0x8000
332 #define Log2P 1
333 #define Tiny0 0x80
334 #define Tiny1 0
335 #define Quick_max 15
336 #define Int_max 15
337 #endif
338 #endif
340 #ifndef IEEE_Arith
341 #define ROUND_BIASED
342 #endif
344 #ifdef RND_PRODQUOT
345 #define rounded_product(a,b) a = rnd_prod(a, b)
346 #define rounded_quotient(a,b) a = rnd_quot(a, b)
347 extern double rnd_prod(double, double), rnd_quot(double, double);
348 #else
349 #define rounded_product(a,b) a *= b
350 #define rounded_quotient(a,b) a /= b
351 #endif
353 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
354 #define Big1 0xffffffff
356 #define Kmax 15
358 /* (1<<BIGINT_MINIMUM_K) is the minimum number of words to allocate
359 in a Bigint. dtoa usually manages with 1<<2, and has not been
360 known to need more than 1<<3. */
362 #define BIGINT_MINIMUM_K 3
364 struct Bigint {
365 struct Bigint *next;
366 int k; /* Parameter given to Balloc(k) */
367 int maxwds; /* Allocated space: equals 1<<k. */
368 short on_stack; /* 1 if stack-allocated. */
369 short sign; /* 0 if value is positive or zero; 1 if negative. */
370 int wds; /* Current length. */
371 unsigned32 x[1<<BIGINT_MINIMUM_K]; /* Actually: x[maxwds] */
374 #define BIGINT_HEADER_SIZE \
375 (sizeof(Bigint) - (1<<BIGINT_MINIMUM_K) * sizeof(unsigned32))
377 typedef struct Bigint Bigint;
379 /* Initialize a stack-allocated Bigint. */
381 static Bigint *
382 Binit
383 #ifdef KR_headers
384 (v) Bigint *v;
385 #else
386 (Bigint *v)
387 #endif
389 v->on_stack = 1;
390 v->k = BIGINT_MINIMUM_K;
391 v->maxwds = 1 << BIGINT_MINIMUM_K;
392 v->sign = v->wds = 0;
393 return v;
396 /* Allocate a Bigint with '1<<k' big digits. */
398 static Bigint *
399 Balloc
400 #ifdef KR_headers
401 (k) int k;
402 #else
403 (int k)
404 #endif
406 int x;
407 Bigint *rv;
409 if (k < BIGINT_MINIMUM_K)
410 k = BIGINT_MINIMUM_K;
412 x = 1 << k;
413 rv = (Bigint *)
414 malloc(BIGINT_HEADER_SIZE + x * sizeof(unsigned32));
415 rv->k = k;
416 rv->maxwds = x;
417 rv->sign = rv->wds = 0;
418 rv->on_stack = 0;
419 return rv;
422 static void
423 Bfree
424 #ifdef KR_headers
425 (v) Bigint *v;
426 #else
427 (Bigint *v)
428 #endif
430 if (v && !v->on_stack)
431 free (v);
434 static void
435 Bcopy
436 #ifdef KR_headers
437 (x, y) Bigint *x, *y;
438 #else
439 (Bigint *x, Bigint *y)
440 #endif
442 register unsigned32 *xp, *yp;
443 register int i = y->wds;
444 x->sign = y->sign;
445 x->wds = i;
446 for (xp = x->x, yp = y->x; --i >= 0; )
447 *xp++ = *yp++;
450 /* Make sure b has room for at least 1<<k big digits. */
452 static Bigint *
453 Brealloc
454 #ifdef KR_headers
455 (b, k) Bigint *b; int k;
456 #else
457 (Bigint * b, int k)
458 #endif
460 if (b == NULL)
461 return Balloc(k);
462 if (b->k >= k)
463 return b;
464 else
466 Bigint *rv = Balloc (k);
467 Bcopy(rv, b);
468 Bfree(b);
469 return rv;
473 /* Return b*m+a. b is modified.
474 Assumption: 0xFFFF*m+a fits in 32 bits. */
476 static Bigint *
477 multadd
478 #ifdef KR_headers
479 (b, m, a) Bigint *b; int m, a;
480 #else
481 (Bigint *b, int m, int a)
482 #endif
484 int i, wds;
485 unsigned32 *x, y;
486 unsigned32 xi, z;
488 wds = b->wds;
489 x = b->x;
490 i = 0;
491 do {
492 xi = *x;
493 y = (xi & 0xffff) * m + a;
494 z = (xi >> 16) * m + (y >> 16);
495 a = (int)(z >> 16);
496 *x++ = (z << 16) + (y & 0xffff);
498 while(++i < wds);
499 if (a) {
500 if (wds >= b->maxwds)
501 b = Brealloc(b, b->k+1);
502 b->x[wds++] = a;
503 b->wds = wds;
505 return b;
508 static Bigint *
510 #ifdef KR_headers
511 (result, s, nd0, nd, y9)
512 Bigint *result; CONST char *s; int nd0, nd; unsigned32 y9;
513 #else
514 (Bigint *result, CONST char *s, int nd0, int nd, unsigned32 y9)
515 #endif
517 int i, k;
518 _G_int32_t x, y;
520 x = (nd + 8) / 9;
521 for(k = 0, y = 1; x > y; y <<= 1, k++) ;
522 result = Brealloc(result, k);
523 result->x[0] = y9;
524 result->wds = 1;
526 i = 9;
527 if (9 < nd0)
529 s += 9;
531 result = multadd(result, 10, *s++ - '0');
532 while (++i < nd0);
533 s++;
535 else
536 s += 10;
537 for(; i < nd; i++)
538 result = multadd(result, 10, *s++ - '0');
539 return result;
542 static int
543 hi0bits
544 #ifdef KR_headers
545 (x) register unsigned32 x;
546 #else
547 (register unsigned32 x)
548 #endif
550 register int k = 0;
552 if (!(x & 0xffff0000)) {
553 k = 16;
554 x <<= 16;
556 if (!(x & 0xff000000)) {
557 k += 8;
558 x <<= 8;
560 if (!(x & 0xf0000000)) {
561 k += 4;
562 x <<= 4;
564 if (!(x & 0xc0000000)) {
565 k += 2;
566 x <<= 2;
568 if (!(x & 0x80000000)) {
569 k++;
570 if (!(x & 0x40000000))
571 return 32;
573 return k;
576 static int
577 lo0bits
578 #ifdef KR_headers
579 (y) unsigned32 *y;
580 #else
581 (unsigned32 *y)
582 #endif
584 register int k;
585 register unsigned32 x = *y;
587 if (x & 7) {
588 if (x & 1)
589 return 0;
590 if (x & 2) {
591 *y = x >> 1;
592 return 1;
594 *y = x >> 2;
595 return 2;
597 k = 0;
598 if (!(x & 0xffff)) {
599 k = 16;
600 x >>= 16;
602 if (!(x & 0xff)) {
603 k += 8;
604 x >>= 8;
606 if (!(x & 0xf)) {
607 k += 4;
608 x >>= 4;
610 if (!(x & 0x3)) {
611 k += 2;
612 x >>= 2;
614 if (!(x & 1)) {
615 k++;
616 x >>= 1;
617 if (!x & 1)
618 return 32;
620 *y = x;
621 return k;
624 static Bigint *
626 #ifdef KR_headers
627 (result, i) Bigint *result; int i;
628 #else
629 (Bigint* result, int i)
630 #endif
632 result = Brealloc(result, 1);
633 result->x[0] = i;
634 result->wds = 1;
635 return result;
638 /* Do: c = a * b. */
640 static Bigint *
641 mult
642 #ifdef KR_headers
643 (c, a, b) Bigint *a, *b, *c;
644 #else
645 (Bigint *c, Bigint *a, Bigint *b)
646 #endif
648 int k, wa, wb, wc;
649 unsigned32 carry, y, z;
650 unsigned32 *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
651 unsigned32 z2;
652 if (a->wds < b->wds) {
653 Bigint *tmp = a;
654 a = b;
655 b = tmp;
657 k = a->k;
658 wa = a->wds;
659 wb = b->wds;
660 wc = wa + wb;
661 if (wc > a->maxwds)
662 k++;
663 c = Brealloc(c, k);
664 for(x = c->x, xa = x + wc; x < xa; x++)
665 *x = 0;
666 xa = a->x;
667 xae = xa + wa;
668 xb = b->x;
669 xbe = xb + wb;
670 xc0 = c->x;
671 for(; xb < xbe; xb++, xc0++) {
672 if ((y = *xb & 0xffff)) {
673 x = xa;
674 xc = xc0;
675 carry = 0;
676 do {
677 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
678 carry = z >> 16;
679 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
680 carry = z2 >> 16;
681 Storeinc(xc, z2, z);
683 while(x < xae);
684 *xc = carry;
686 if ((y = *xb >> 16)) {
687 x = xa;
688 xc = xc0;
689 carry = 0;
690 z2 = *xc;
691 do {
692 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
693 carry = z >> 16;
694 Storeinc(xc, z, z2);
695 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
696 carry = z2 >> 16;
698 while(x < xae);
699 *xc = z2;
702 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
703 c->wds = wc;
704 return c;
707 /* Returns b*(5**k). b is modified. */
708 /* Re-written by Per Bothner to not need a static list. */
710 static Bigint *
711 pow5mult
712 #ifdef KR_headers
713 (b, k) Bigint *b; int k;
714 #else
715 (Bigint *b, int k)
716 #endif
718 static int p05[6] = { 5, 25, 125, 625, 3125, 15625 };
720 for (; k > 6; k -= 6)
721 b = multadd(b, 15625, 0); /* b *= 5**6 */
722 if (k == 0)
723 return b;
724 else
725 return multadd(b, p05[k-1], 0);
728 /* Re-written by Per Bothner so shift can be in place. */
730 static Bigint *
731 lshift
732 #ifdef KR_headers
733 (b, k) Bigint *b; int k;
734 #else
735 (Bigint *b, int k)
736 #endif
738 int i;
739 unsigned32 *x, *x1, *xe;
740 int old_wds = b->wds;
741 int n = k >> 5;
742 int k1 = b->k;
743 int n1 = n + old_wds + 1;
745 if (k == 0)
746 return b;
748 for(i = b->maxwds; n1 > i; i <<= 1)
749 k1++;
750 b = Brealloc(b, k1);
752 xe = b->x; /* Source limit */
753 x = xe + old_wds; /* Source pointer */
754 x1 = x + n; /* Destination pointer */
755 if (k &= 0x1f) {
756 int k1 = 32 - k;
757 unsigned32 z = *--x;
758 if ((*x1 = (z >> k1)) != 0) {
759 ++n1;
761 while (x > xe) {
762 unsigned32 w = *--x;
763 *--x1 = (z << k) | (w >> k1);
764 z = w;
766 *--x1 = z << k;
768 else
769 do {
770 *--x1 = *--x;
771 } while(x > xe);
772 while (x1 > xe)
773 *--x1 = 0;
774 b->wds = n1 - 1;
775 return b;
778 static int
780 #ifdef KR_headers
781 (a, b) Bigint *a, *b;
782 #else
783 (Bigint *a, Bigint *b)
784 #endif
786 unsigned32 *xa, *xa0, *xb, *xb0;
787 int i, j;
789 i = a->wds;
790 j = b->wds;
791 #ifdef DEBUG
792 if (i > 1 && !a->x[i-1])
793 Bug("cmp called with a->x[a->wds-1] == 0");
794 if (j > 1 && !b->x[j-1])
795 Bug("cmp called with b->x[b->wds-1] == 0");
796 #endif
797 if (i -= j)
798 return i;
799 xa0 = a->x;
800 xa = xa0 + j;
801 xb0 = b->x;
802 xb = xb0 + j;
803 for(;;) {
804 if (*--xa != *--xb)
805 return *xa < *xb ? -1 : 1;
806 if (xa <= xa0)
807 break;
809 return 0;
812 /* Do: c = a-b. */
814 static Bigint *
815 diff
816 #ifdef KR_headers
817 (c, a, b) Bigint *c, *a, *b;
818 #else
819 (Bigint *c, Bigint *a, Bigint *b)
820 #endif
822 int i, wa, wb;
823 _G_int32_t borrow, y; /* We need signed shifts here. */
824 unsigned32 *xa, *xae, *xb, *xbe, *xc;
825 _G_int32_t z;
827 i = cmp(a,b);
828 if (!i) {
829 c = Brealloc(c, 0);
830 c->wds = 1;
831 c->x[0] = 0;
832 return c;
834 if (i < 0) {
835 Bigint *tmp = a;
836 a = b;
837 b = tmp;
838 i = 1;
840 else
841 i = 0;
842 c = Brealloc(c, a->k);
843 c->sign = i;
844 wa = a->wds;
845 xa = a->x;
846 xae = xa + wa;
847 wb = b->wds;
848 xb = b->x;
849 xbe = xb + wb;
850 xc = c->x;
851 borrow = 0;
852 do {
853 y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
854 borrow = y >> 16;
855 Sign_Extend(borrow, y);
856 z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
857 borrow = z >> 16;
858 Sign_Extend(borrow, z);
859 Storeinc(xc, z, y);
861 while(xb < xbe);
862 while(xa < xae) {
863 y = (*xa & 0xffff) + borrow;
864 borrow = y >> 16;
865 Sign_Extend(borrow, y);
866 z = (*xa++ >> 16) + borrow;
867 borrow = z >> 16;
868 Sign_Extend(borrow, z);
869 Storeinc(xc, z, y);
871 while(!*--xc)
872 wa--;
873 c->wds = wa;
874 return c;
877 static double
879 #ifdef KR_headers
880 (x) double x;
881 #else
882 (double x)
883 #endif
885 register _G_int32_t L;
886 double a;
888 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
889 #ifndef Sudden_Underflow
890 if (L > 0) {
891 #endif
892 #ifdef IBM
893 L |= Exp_msk1 >> 4;
894 #endif
895 setwords(a, L, 0);
896 #ifndef Sudden_Underflow
898 else {
899 L = -L >> Exp_shift;
900 if (L < Exp_shift)
901 setwords(a, 0x80000 >> L, 0);
902 else {
903 L -= Exp_shift;
904 setwords(a, 0, L >= 31 ? 1 : 1 << (31 - L));
907 #endif
908 return a;
911 static double
913 #ifdef KR_headers
914 (a, e) Bigint *a; int *e;
915 #else
916 (Bigint *a, int *e)
917 #endif
919 unsigned32 *xa, *xa0, w, y, z;
920 int k;
921 double d;
922 unsigned32 d0, d1;
924 xa0 = a->x;
925 xa = xa0 + a->wds;
926 y = *--xa;
927 #ifdef DEBUG
928 if (!y) Bug("zero y in b2d");
929 #endif
930 k = hi0bits(y);
931 *e = 32 - k;
932 if (k < Ebits) {
933 d0 = Exp_1 | y >> (Ebits - k);
934 w = xa > xa0 ? *--xa : 0;
935 #ifndef _DOUBLE_IS_32BITS
936 d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
937 #endif
938 goto ret_d;
940 z = xa > xa0 ? *--xa : 0;
941 if (k -= Ebits) {
942 d0 = Exp_1 | y << k | z >> (32 - k);
943 y = xa > xa0 ? *--xa : 0;
944 #ifndef _DOUBLE_IS_32BITS
945 d1 = z << k | y >> (32 - k);
946 #endif
948 else {
949 d0 = Exp_1 | y;
950 #ifndef _DOUBLE_IS_32BITS
951 d1 = z;
952 #endif
954 ret_d:
955 #ifdef VAX
956 setwords(d, d0 >> 16 | d0 << 16, d1 >> 16 | d1 << 16);
957 #else
958 setwords (d, d0, d1);
959 #endif
960 return d;
963 static Bigint *
965 #ifdef KR_headers
966 (result, d, e, bits) Bigint *result; double d; _G_int32_t *e, *bits;
967 #else
968 (Bigint *result, double d, _G_int32_t *e, _G_int32_t *bits)
969 #endif
971 int de, i, k;
972 unsigned32 *x, y, z;
973 unsigned32 d0, d1;
974 #ifdef VAX
975 d0 = word0(d) >> 16 | word0(d) << 16;
976 d1 = word1(d) >> 16 | word1(d) << 16;
977 #else
978 d0 = word0(d);
979 d1 = word1(d);
980 #endif
982 result = Brealloc(result, 1);
983 x = result->x;
985 z = d0 & Frac_mask;
986 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
988 de = (int)(d0 >> Exp_shift); /* The exponent part of d. */
990 /* Put back the suppressed high-order bit, if normalized. */
991 #ifndef IBM
992 #ifndef Sudden_Underflow
993 if (de)
994 #endif
995 z |= Exp_msk11;
996 #endif
998 #ifndef _DOUBLE_IS_32BITS
999 if ((y = d1)) {
1000 if ((k = lo0bits(&y))) {
1001 x[0] = y | z << (32 - k);
1002 z >>= k;
1004 else
1005 x[0] = y;
1006 i = result->wds = (x[1] = z) ? 2 : 1;
1008 else {
1009 #endif /* !_DOUBLE_IS_32BITS */
1010 #ifdef DEBUG
1011 if (!z)
1012 Bug("Zero passed to d2b");
1013 #endif
1014 k = lo0bits(&z);
1015 x[0] = z;
1016 i = result->wds = 1;
1017 #ifndef _DOUBLE_IS_32BITS
1018 k += 32;
1020 #endif
1021 #ifndef Sudden_Underflow
1022 if (de) {
1023 #endif
1024 #ifdef IBM
1025 *e = (de - Bias - (P-1) << 2) + k;
1026 *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1027 #else
1028 *e = de - Bias - (P-1) + k;
1029 *bits = P - k;
1030 #endif
1031 #ifndef Sudden_Underflow
1033 else {
1034 *e = de - Bias - (P-1) + 1 + k;
1035 *bits = 32*i - hi0bits(x[i-1]);
1037 #endif
1038 return result;
1041 static double
1042 ratio
1043 #ifdef KR_headers
1044 (a, b) Bigint *a, *b;
1045 #else
1046 (Bigint *a, Bigint *b)
1047 #endif
1049 double da, db;
1050 int k, ka, kb;
1052 da = b2d(a, &ka);
1053 db = b2d(b, &kb);
1054 k = ka - kb + 32*(a->wds - b->wds);
1055 #ifdef IBM
1056 if (k > 0) {
1057 addword0(da, (k >> 2)*Exp_msk1);
1058 if (k &= 3)
1059 da *= 1 << k;
1061 else {
1062 k = -k;
1063 addword0(db,(k >> 2)*Exp_msk1);
1064 if (k &= 3)
1065 db *= 1 << k;
1067 #else
1068 if (k > 0)
1069 addword0(da, k*Exp_msk1);
1070 else {
1071 k = -k;
1072 addword0(db, k*Exp_msk1);
1074 #endif
1075 return da / db;
1078 static CONST double
1079 tens[] = {
1080 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1081 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1082 1e20, 1e21, 1e22
1083 #ifdef VAX
1084 , 1e23, 1e24
1085 #endif
1088 #ifdef IEEE_Arith
1089 static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1090 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1091 #define n_bigtens 5
1092 #else
1093 #ifdef IBM
1094 static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
1095 static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1096 #define n_bigtens 3
1097 #else
1098 /* Also used for the case when !_DOUBLE_IS_32BITS. */
1099 static CONST double bigtens[] = { 1e16, 1e32 };
1100 static CONST double tinytens[] = { 1e-16, 1e-32 };
1101 #define n_bigtens 2
1102 #endif
1103 #endif
1105 double
1106 _IO_strtod
1107 #ifdef KR_headers
1108 (s00, se) CONST char *s00; char **se;
1109 #else
1110 (CONST char *s00, char **se)
1111 #endif
1113 _G_int32_t bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1114 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1115 CONST char *s, *s0, *s1;
1116 double aadj, aadj1, adj, rv, rv0;
1117 _G_int32_t L;
1118 unsigned32 y, z;
1119 Bigint _bb, _b_avail, _bd, _bd0, _bs, _delta;
1120 Bigint *bb = Binit(&_bb);
1121 Bigint *bd = Binit(&_bd);
1122 Bigint *bd0 = Binit(&_bd0);
1123 Bigint *bs = Binit(&_bs);
1124 Bigint *b_avail = Binit(&_b_avail);
1125 Bigint *delta = Binit(&_delta);
1127 TEST_ENDIANNESS;
1128 sign = nz0 = nz = 0;
1129 rv = 0.;
1130 (void)&rv; /* Force rv into the stack */
1131 for(s = s00;;s++) switch(*s) {
1132 case '-':
1133 sign = 1;
1134 /* no break */
1135 case '+':
1136 if (*++s)
1137 goto break2;
1138 /* no break */
1139 case 0:
1140 /* "+" and "-" should be reported as an error? */
1141 sign = 0;
1142 s = s00;
1143 goto ret;
1144 case '\t':
1145 case '\n':
1146 case '\v':
1147 case '\f':
1148 case '\r':
1149 case ' ':
1150 continue;
1151 default:
1152 goto break2;
1154 break2:
1155 if (*s == '0') {
1156 nz0 = 1;
1157 while(*++s == '0') ;
1158 if (!*s)
1159 goto ret;
1161 s0 = s;
1162 y = z = 0;
1163 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1164 if (nd < 9)
1165 y = 10*y + c - '0';
1166 else if (nd < 16)
1167 z = 10*z + c - '0';
1168 nd0 = nd;
1169 if (c == '.') {
1170 c = *++s;
1171 if (!nd) {
1172 for(; c == '0'; c = *++s)
1173 nz++;
1174 if (c > '0' && c <= '9') {
1175 s0 = s;
1176 nf += nz;
1177 nz = 0;
1178 goto have_dig;
1180 goto dig_done;
1182 for(; c >= '0' && c <= '9'; c = *++s) {
1183 have_dig:
1184 nz++;
1185 if (c -= '0') {
1186 nf += nz;
1187 for(i = 1; i < nz; i++)
1188 if (nd++ < 9)
1189 y *= 10;
1190 else if (nd <= DBL_DIG + 1)
1191 z *= 10;
1192 if (nd++ < 9)
1193 y = 10*y + c;
1194 else if (nd <= DBL_DIG + 1)
1195 z = 10*z + c;
1196 nz = 0;
1200 dig_done:
1201 e = 0;
1202 if (c == 'e' || c == 'E') {
1203 if (!nd && !nz && !nz0) {
1204 s = s00;
1205 goto ret;
1207 s00 = s;
1208 esign = 0;
1209 switch(c = *++s) {
1210 case '-':
1211 esign = 1;
1212 case '+':
1213 c = *++s;
1215 if (c >= '0' && c <= '9') {
1216 while(c == '0')
1217 c = *++s;
1218 if (c > '0' && c <= '9') {
1219 e = c - '0';
1220 s1 = s;
1221 while((c = *++s) >= '0' && c <= '9')
1222 e = 10*e + c - '0';
1223 if (s - s1 > 8)
1224 /* Avoid confusion from exponents
1225 * so large that e might overflow.
1227 e = 9999999;
1228 if (esign)
1229 e = -e;
1231 else
1232 e = 0;
1234 else
1235 s = s00;
1237 if (!nd) {
1238 if (!nz && !nz0)
1239 s = s00;
1240 goto ret;
1242 e1 = e -= nf;
1244 /* Now we have nd0 digits, starting at s0, followed by a
1245 * decimal point, followed by nd-nd0 digits. The number we're
1246 * after is the integer represented by those digits times
1247 * 10**e */
1249 if (!nd0)
1250 nd0 = nd;
1251 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1252 rv = y;
1253 if (k > 9)
1254 rv = tens[k - 9] * rv + z;
1255 if (nd <= DBL_DIG
1256 #ifndef RND_PRODQUOT
1257 && FLT_ROUNDS == 1
1258 #endif
1260 if (!e)
1261 goto ret;
1262 if (e > 0) {
1263 if (e <= Ten_pmax) {
1264 #ifdef VAX
1265 goto vax_ovfl_check;
1266 #else
1267 /* rv = */ rounded_product(rv, tens[e]);
1268 goto ret;
1269 #endif
1271 i = DBL_DIG - nd;
1272 if (e <= Ten_pmax + i) {
1273 /* A fancier test would sometimes let us do
1274 * this for larger i values.
1276 e -= i;
1277 rv *= tens[i];
1278 #ifdef VAX
1279 /* VAX exponent range is so narrow we must
1280 * worry about overflow here...
1282 vax_ovfl_check:
1283 addword0(rv, - P*Exp_msk1);
1284 /* rv = */ rounded_product(rv, tens[e]);
1285 if ((word0(rv) & Exp_mask)
1286 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1287 goto ovfl;
1288 addword0(rv, P*Exp_msk1);
1289 #else
1290 /* rv = */ rounded_product(rv, tens[e]);
1291 #endif
1292 goto ret;
1295 #ifndef Inaccurate_Divide
1296 else if (e >= -Ten_pmax) {
1297 /* rv = */ rounded_quotient(rv, tens[-e]);
1298 goto ret;
1300 #endif
1302 e1 += nd - k;
1304 /* Get starting approximation = rv * 10**e1 */
1306 if (e1 > 0) {
1307 if ((i = e1 & 15))
1308 rv *= tens[i];
1309 if (e1 &= ~15) {
1310 if (e1 > DBL_MAX_10_EXP) {
1311 ovfl:
1312 errno = ERANGE;
1313 #if defined(sun) && !defined(__svr4__)
1314 /* SunOS defines HUGE_VAL as __infinity(), which is in libm. */
1315 #undef HUGE_VAL
1316 #endif
1317 #ifndef HUGE_VAL
1318 #define HUGE_VAL 1.7976931348623157E+308
1319 #endif
1320 rv = HUGE_VAL;
1321 goto ret;
1323 if (e1 >>= 4) {
1324 for(j = 0; e1 > 1; j++, e1 >>= 1)
1325 if (e1 & 1)
1326 rv *= bigtens[j];
1327 /* The last multiplication could overflow. */
1328 addword0(rv, -P*Exp_msk1);
1329 rv *= bigtens[j];
1330 if ((z = word0(rv) & Exp_mask)
1331 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1332 goto ovfl;
1333 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1334 /* set to largest number */
1335 /* (Can't trust DBL_MAX) */
1336 setwords(rv, Big0, Big1);
1338 else
1339 addword0(rv, P*Exp_msk1);
1344 else if (e1 < 0) {
1345 e1 = -e1;
1346 if ((i = e1 & 15))
1347 rv /= tens[i];
1348 if (e1 &= ~15) {
1349 e1 >>= 4;
1350 for(j = 0; e1 > 1; j++, e1 >>= 1)
1351 if (e1 & 1)
1352 rv *= tinytens[j];
1353 /* The last multiplication could underflow. */
1354 rv0 = rv;
1355 rv *= tinytens[j];
1356 if (!rv) {
1357 rv = 2.*rv0;
1358 rv *= tinytens[j];
1359 if (!rv) {
1360 undfl:
1361 rv = 0.;
1362 errno = ERANGE;
1363 goto ret;
1365 setwords(rv, Tiny0, Tiny1);
1366 /* The refinement below will clean
1367 * this approximation up.
1373 /* Now the hard part -- adjusting rv to the correct value.*/
1375 /* Put digits into bd: true value = bd * 10^e */
1377 bd0 = s2b(bd0, s0, nd0, nd, y);
1378 bd = Brealloc(bd, bd0->k);
1380 for(;;) {
1381 Bcopy(bd, bd0);
1382 bb = d2b(bb, rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
1383 bs = i2b(bs, 1);
1385 if (e >= 0) {
1386 bb2 = bb5 = 0;
1387 bd2 = bd5 = e;
1389 else {
1390 bb2 = bb5 = -e;
1391 bd2 = bd5 = 0;
1393 if (bbe >= 0)
1394 bb2 += bbe;
1395 else
1396 bd2 -= bbe;
1397 bs2 = bb2;
1398 #ifdef Sudden_Underflow
1399 #ifdef IBM
1400 j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1401 #else
1402 j = P + 1 - bbbits;
1403 #endif
1404 #else
1405 i = bbe + bbbits - 1; /* logb(rv) */
1406 if (i < Emin) /* denormal */
1407 j = bbe + (P-Emin);
1408 else
1409 j = P + 1 - bbbits;
1410 #endif
1411 bb2 += j;
1412 bd2 += j;
1413 i = bb2 < bd2 ? bb2 : bd2;
1414 if (i > bs2)
1415 i = bs2;
1416 if (i > 0) {
1417 bb2 -= i;
1418 bd2 -= i;
1419 bs2 -= i;
1421 if (bb5 > 0) {
1422 Bigint *b_tmp;
1423 bs = pow5mult(bs, bb5);
1424 b_tmp = mult(b_avail, bs, bb);
1425 b_avail = bb;
1426 bb = b_tmp;
1428 if (bb2 > 0)
1429 bb = lshift(bb, bb2);
1430 if (bd5 > 0)
1431 bd = pow5mult(bd, bd5);
1432 if (bd2 > 0)
1433 bd = lshift(bd, bd2);
1434 if (bs2 > 0)
1435 bs = lshift(bs, bs2);
1436 delta = diff(delta, bb, bd);
1437 dsign = delta->sign;
1438 delta->sign = 0;
1439 i = cmp(delta, bs);
1440 if (i < 0) {
1441 /* Error is less than half an ulp -- check for
1442 * special case of mantissa a power of two.
1444 if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1445 break;
1446 delta = lshift(delta,Log2P);
1447 if (cmp(delta, bs) > 0)
1448 goto drop_down;
1449 break;
1451 if (i == 0) {
1452 /* exactly half-way between */
1453 if (dsign) {
1454 if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1455 && word1(rv) == 0xffffffff) {
1456 /*boundary case -- increment exponent*/
1457 setword0(rv, (word0(rv) & Exp_mask)
1458 + Exp_msk1);
1459 #ifdef IBM
1460 setword0 (rv,
1461 word0(rv) | (Exp_msk1 >> 4));
1462 #endif
1463 setword1(rv, 0);
1464 break;
1467 else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1468 drop_down:
1469 /* boundary case -- decrement exponent */
1470 #ifdef Sudden_Underflow
1471 L = word0(rv) & Exp_mask;
1472 #ifdef IBM
1473 if (L < Exp_msk1)
1474 #else
1475 if (L <= Exp_msk1)
1476 #endif
1477 goto undfl;
1478 L -= Exp_msk1;
1479 #else
1480 L = (word0(rv) & Exp_mask) - Exp_msk1;
1481 #endif
1482 setwords(rv, L | Bndry_mask1, 0xffffffff);
1483 #ifdef IBM
1484 continue;
1485 #else
1486 break;
1487 #endif
1489 #ifndef ROUND_BIASED
1490 if (!(word1(rv) & LSB))
1491 break;
1492 #endif
1493 if (dsign)
1494 rv += ulp(rv);
1495 #ifndef ROUND_BIASED
1496 else {
1497 rv -= ulp(rv);
1498 #ifndef Sudden_Underflow
1499 if (!rv)
1500 goto undfl;
1501 #endif
1503 #endif
1504 break;
1506 if ((aadj = ratio(delta, bs)) <= 2.) {
1507 if (dsign)
1508 aadj = aadj1 = 1.;
1509 else if (word1(rv) || word0(rv) & Bndry_mask) {
1510 #ifndef Sudden_Underflow
1511 if (word1(rv) == Tiny1 && !word0(rv))
1512 goto undfl;
1513 #endif
1514 aadj = 1.;
1515 aadj1 = -1.;
1517 else {
1518 /* special case -- power of FLT_RADIX to be */
1519 /* rounded down... */
1521 if (aadj < 2./FLT_RADIX)
1522 aadj = 1./FLT_RADIX;
1523 else
1524 aadj *= 0.5;
1525 aadj1 = -aadj;
1528 else {
1529 aadj *= 0.5;
1530 aadj1 = dsign ? aadj : -aadj;
1531 #ifdef Check_FLT_ROUNDS
1532 switch(FLT_ROUNDS) {
1533 case 2: /* towards +infinity */
1534 aadj1 -= 0.5;
1535 break;
1536 case 0: /* towards 0 */
1537 case 3: /* towards -infinity */
1538 aadj1 += 0.5;
1540 #else
1541 if (FLT_ROUNDS == 0)
1542 aadj1 += 0.5;
1543 #endif
1545 y = word0(rv) & Exp_mask;
1547 /* Check for overflow */
1549 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1550 rv0 = rv;
1551 addword0(rv, - P*Exp_msk1);
1552 adj = aadj1 * ulp(rv);
1553 rv += adj;
1554 if ((word0(rv) & Exp_mask) >=
1555 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1556 if (word0(rv0) == Big0 && word1(rv0) == Big1)
1557 goto ovfl;
1558 setwords(rv, Big0, Big1);
1559 continue;
1561 else
1562 addword0(rv, P*Exp_msk1);
1564 else {
1565 #ifdef Sudden_Underflow
1566 if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1567 rv0 = rv;
1568 addword0(rv, P*Exp_msk1);
1569 adj = aadj1 * ulp(rv);
1570 rv += adj;
1571 #ifdef IBM
1572 if ((word0(rv) & Exp_mask) < P*Exp_msk1)
1573 #else
1574 if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1575 #endif
1577 if (word0(rv0) == Tiny0
1578 && word1(rv0) == Tiny1)
1579 goto undfl;
1580 setwords(rv, Tiny0, Tiny1);
1581 continue;
1583 else
1584 addword0(rv, -P*Exp_msk1);
1586 else {
1587 adj = aadj1 * ulp(rv);
1588 rv += adj;
1590 #else
1591 /* Compute adj so that the IEEE rounding rules will
1592 * correctly round rv + adj in some half-way cases.
1593 * If rv * ulp(rv) is denormalized (i.e.,
1594 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1595 * trouble from bits lost to denormalization;
1596 * example: 1.2e-307 .
1598 if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1599 aadj1 = (double)(int)(aadj + 0.5);
1600 if (!dsign)
1601 aadj1 = -aadj1;
1603 adj = aadj1 * ulp(rv);
1604 rv += adj;
1605 #endif
1607 z = word0(rv) & Exp_mask;
1608 if (y == z) {
1609 /* Can we stop now? */
1610 L = (_G_int32_t)aadj;
1611 aadj -= L;
1612 /* The tolerances below are conservative. */
1613 if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1614 if (aadj < .4999999 || aadj > .5000001)
1615 break;
1617 else if (aadj < .4999999/FLT_RADIX)
1618 break;
1621 Bfree(bb);
1622 Bfree(bd);
1623 Bfree(bs);
1624 Bfree(bd0);
1625 Bfree(delta);
1626 Bfree(b_avail);
1627 ret:
1628 if (se)
1629 *se = (char *)s;
1630 return sign ? -rv : rv;
1633 static int
1634 quorem
1635 #ifdef KR_headers
1636 (b, S) Bigint *b, *S;
1637 #else
1638 (Bigint *b, Bigint *S)
1639 #endif
1641 int n;
1642 _G_int32_t borrow, y;
1643 unsigned32 carry, q, ys;
1644 unsigned32 *bx, *bxe, *sx, *sxe;
1645 _G_int32_t z;
1646 unsigned32 si, zs;
1648 n = S->wds;
1649 #ifdef DEBUG
1650 /*debug*/ if (b->wds > n)
1651 /*debug*/ Bug("oversize b in quorem");
1652 #endif
1653 if (b->wds < n)
1654 return 0;
1655 sx = S->x;
1656 sxe = sx + --n;
1657 bx = b->x;
1658 bxe = bx + n;
1659 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
1660 #ifdef DEBUG
1661 /*debug*/ if (q > 9)
1662 /*debug*/ Bug("oversized quotient in quorem");
1663 #endif
1664 if (q) {
1665 borrow = 0;
1666 carry = 0;
1667 do {
1668 si = *sx++;
1669 ys = (si & 0xffff) * q + carry;
1670 zs = (si >> 16) * q + (ys >> 16);
1671 carry = zs >> 16;
1672 y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1673 borrow = y >> 16;
1674 Sign_Extend(borrow, y);
1675 z = (*bx >> 16) - (zs & 0xffff) + borrow;
1676 borrow = z >> 16;
1677 Sign_Extend(borrow, z);
1678 Storeinc(bx, z, y);
1680 while(sx <= sxe);
1681 if (!*bxe) {
1682 bx = b->x;
1683 while(--bxe > bx && !*bxe)
1684 --n;
1685 b->wds = n;
1688 if (cmp(b, S) >= 0) {
1689 q++;
1690 borrow = 0;
1691 carry = 0;
1692 bx = b->x;
1693 sx = S->x;
1694 do {
1695 si = *sx++;
1696 ys = (si & 0xffff) + carry;
1697 zs = (si >> 16) + (ys >> 16);
1698 carry = zs >> 16;
1699 y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1700 borrow = y >> 16;
1701 Sign_Extend(borrow, y);
1702 z = (*bx >> 16) - (zs & 0xffff) + borrow;
1703 borrow = z >> 16;
1704 Sign_Extend(borrow, z);
1705 Storeinc(bx, z, y);
1707 while(sx <= sxe);
1708 bx = b->x;
1709 bxe = bx + n;
1710 if (!*bxe) {
1711 while(--bxe > bx && !*bxe)
1712 --n;
1713 b->wds = n;
1716 return q;
1719 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1721 * Inspired by "How to Print Floating-Point Numbers Accurately" by
1722 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1724 * Modifications:
1725 * 1. Rather than iterating, we use a simple numeric overestimate
1726 * to determine k = floor(log10(d)). We scale relevant
1727 * quantities using O(log2(k)) rather than O(k) multiplications.
1728 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1729 * try to generate digits strictly left to right. Instead, we
1730 * compute with fewer bits and propagate the carry if necessary
1731 * when rounding the final digit up. This is often faster.
1732 * 3. Under the assumption that input will be rounded nearest,
1733 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1734 * That is, we allow equality in stopping tests when the
1735 * round-nearest rule will give the same floating-point value
1736 * as would satisfaction of the stopping test with strict
1737 * inequality.
1738 * 4. We remove common factors of powers of 2 from relevant
1739 * quantities.
1740 * 5. When converting floating-point integers less than 1e16,
1741 * we use floating-point arithmetic rather than resorting
1742 * to multiple-precision integers.
1743 * 6. When asked to produce fewer than 15 digits, we first try
1744 * to get by with floating-point arithmetic; we resort to
1745 * multiple-precision integer arithmetic only if we cannot
1746 * guarantee that the floating-point calculation has given
1747 * the correctly rounded result. For k requested digits and
1748 * "uniformly" distributed input, the probability is
1749 * something like 10^(k-15) that we must resort to the long
1750 * calculation.
1753 char *
1754 _IO_dtoa
1755 #ifdef KR_headers
1756 (d, mode, ndigits, decpt, sign, rve)
1757 double d; int mode, ndigits, *decpt, *sign; char **rve;
1758 #else
1759 (double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
1760 #endif
1762 /* Arguments ndigits, decpt, sign are similar to those
1763 of ecvt and fcvt; trailing zeros are suppressed from
1764 the returned string. If not null, *rve is set to point
1765 to the end of the return value. If d is +-Infinity or NaN,
1766 then *decpt is set to 9999.
1768 mode:
1769 0 ==> shortest string that yields d when read in
1770 and rounded to nearest.
1771 1 ==> like 0, but with Steele & White stopping rule;
1772 e.g. with IEEE P754 arithmetic , mode 0 gives
1773 1e23 whereas mode 1 gives 9.999999999999999e22.
1774 2 ==> max(1,ndigits) significant digits. This gives a
1775 return value similar to that of ecvt, except
1776 that trailing zeros are suppressed.
1777 3 ==> through ndigits past the decimal point. This
1778 gives a return value similar to that from fcvt,
1779 except that trailing zeros are suppressed, and
1780 ndigits can be negative.
1781 4-9 should give the same return values as 2-3, i.e.,
1782 4 <= mode <= 9 ==> same return as mode
1783 2 + (mode & 1). These modes are mainly for
1784 debugging; often they run slower but sometimes
1785 faster than modes 2-3.
1786 4,5,8,9 ==> left-to-right digit generation.
1787 6-9 ==> don't try fast floating-point estimate
1788 (if applicable).
1790 Values of mode other than 0-9 are treated as mode 0.
1792 Sufficient space is allocated to the return value
1793 to hold the suppressed trailing zeros.
1796 _G_int32_t bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1797 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1798 spec_case, try_quick;
1799 _G_int32_t L;
1800 #ifndef Sudden_Underflow
1801 int denorm;
1802 #endif
1803 Bigint _b_avail, _b, _mhi, _mlo, _S;
1804 Bigint *b_avail = Binit(&_b_avail);
1805 Bigint *b = Binit(&_b);
1806 Bigint *S = Binit(&_S);
1807 /* mhi and mlo are only set and used if leftright. */
1808 Bigint *mhi = NULL, *mlo = NULL;
1809 double d2, ds, eps;
1810 char *s, *s0;
1811 static Bigint *result = NULL;
1812 static int result_k;
1814 TEST_ENDIANNESS;
1815 if (result) {
1816 /* result is contains a string, so its fields (interpreted
1817 as a Bigint have been trashed. Restore them.
1818 This is a really ugly interface - result should
1819 not be static, since that is not thread-safe. FIXME. */
1820 result->k = result_k;
1821 result->maxwds = 1 << result_k;
1822 result->on_stack = 0;
1825 if (word0(d) & Sign_bit) {
1826 /* set sign for everything, including 0's and NaNs */
1827 *sign = 1;
1828 setword0(d, word0(d) & ~Sign_bit); /* clear sign bit */
1830 else
1831 *sign = 0;
1833 #if defined(IEEE_Arith) + defined(VAX)
1834 #ifdef IEEE_Arith
1835 if ((word0(d) & Exp_mask) == Exp_mask)
1836 #else
1837 if (word0(d) == 0x8000)
1838 #endif
1840 /* Infinity or NaN */
1841 *decpt = 9999;
1842 #ifdef IEEE_Arith
1843 if (!word1(d) && !(word0(d) & 0xfffff))
1845 s = "Infinity";
1846 if (rve)
1847 *rve = s + 8;
1849 else
1850 #endif
1852 s = "NaN";
1853 if (rve)
1854 *rve = s +3;
1856 return s;
1858 #endif
1859 #ifdef IBM
1860 d += 0; /* normalize */
1861 #endif
1862 if (!d) {
1863 *decpt = 1;
1864 s = "0";
1865 if (rve)
1866 *rve = s + 1;
1867 return s;
1870 b = d2b(b, d, &be, &bbits);
1871 i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1872 #ifndef Sudden_Underflow
1873 if (i) {
1874 #endif
1875 d2 = d;
1876 setword0(d2, (word0(d2) & Frac_mask1) | Exp_11);
1877 #ifdef IBM
1878 if (j = 11 - hi0bits(word0(d2) & Frac_mask))
1879 d2 /= 1 << j;
1880 #endif
1882 i -= Bias;
1883 #ifdef IBM
1884 i <<= 2;
1885 i += j;
1886 #endif
1887 #ifndef Sudden_Underflow
1888 denorm = 0;
1890 else {
1891 /* d is denormalized */
1892 unsigned32 x;
1894 i = bbits + be + (Bias + (P-1) - 1);
1895 x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32)
1896 : word1(d) << (32 - i);
1897 d2 = x;
1898 addword0(d2, - 31*Exp_msk1); /* adjust exponent */
1899 i -= (Bias + (P-1) - 1) + 1;
1900 denorm = 1;
1902 #endif
1904 /* Now i is the unbiased base-2 exponent. */
1906 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
1907 * log10(x) = log(x) / log(10)
1908 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1909 * log10(d) = i*log(2)/log(10) + log10(d2)
1911 * This suggests computing an approximation k to log10(d) by
1913 * k = i*0.301029995663981
1914 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1916 * We want k to be too large rather than too small.
1917 * The error in the first-order Taylor series approximation
1918 * is in our favor, so we just round up the constant enough
1919 * to compensate for any error in the multiplication of
1920 * (i) by 0.301029995663981; since |i| <= 1077,
1921 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1922 * adding 1e-13 to the constant term more than suffices.
1923 * Hence we adjust the constant term to 0.1760912590558.
1924 * (We could get a more accurate k by invoking log10,
1925 * but this is probably not worthwhile.)
1928 ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1929 k = (int)ds;
1930 if (ds < 0. && ds != k)
1931 k--; /* want k = floor(ds) */
1932 k_check = 1;
1933 if (k >= 0 && k <= Ten_pmax) {
1934 if (d < tens[k])
1935 k--;
1936 k_check = 0;
1938 j = bbits - i - 1;
1939 if (j >= 0) {
1940 b2 = 0;
1941 s2 = j;
1943 else {
1944 b2 = -j;
1945 s2 = 0;
1947 if (k >= 0) {
1948 b5 = 0;
1949 s5 = k;
1950 s2 += k;
1952 else {
1953 b2 -= k;
1954 b5 = -k;
1955 s5 = 0;
1957 if (mode < 0 || mode > 9)
1958 mode = 0;
1959 try_quick = 1;
1960 if (mode > 5) {
1961 mode -= 4;
1962 try_quick = 0;
1964 leftright = 1;
1965 switch(mode) {
1966 case 0:
1967 case 1:
1968 ilim = ilim1 = -1;
1969 i = 18;
1970 ndigits = 0;
1971 break;
1972 case 2:
1973 leftright = 0;
1974 /* no break */
1975 case 4:
1976 if (ndigits <= 0)
1977 ndigits = 1;
1978 ilim = ilim1 = i = ndigits;
1979 break;
1980 case 3:
1981 leftright = 0;
1982 /* no break */
1983 case 5:
1984 i = ndigits + k + 1;
1985 ilim = i;
1986 ilim1 = i - 1;
1987 if (i <= 0)
1988 i = 1;
1990 /* i is now an upper bound of the number of digits to generate. */
1991 j = sizeof(unsigned32) * (1<<BIGINT_MINIMUM_K);
1992 /* The test is <= so as to allow room for the final '\0'. */
1993 for(result_k = BIGINT_MINIMUM_K; BIGINT_HEADER_SIZE + j <= i;
1994 j <<= 1) result_k++;
1995 if (!result || result_k > result->k)
1997 Bfree (result);
1998 result = Balloc(result_k);
2000 s = s0 = (char *)result;
2002 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2004 /* Try to get by with floating-point arithmetic. */
2006 i = 0;
2007 d2 = d;
2008 k0 = k;
2009 ilim0 = ilim;
2010 ieps = 2; /* conservative */
2011 if (k > 0) {
2012 ds = tens[k&0xf];
2013 j = k >> 4;
2014 if (j & Bletch) {
2015 /* prevent overflows */
2016 j &= Bletch - 1;
2017 d /= bigtens[n_bigtens-1];
2018 ieps++;
2020 for(; j; j >>= 1, i++)
2021 if (j & 1) {
2022 ieps++;
2023 ds *= bigtens[i];
2025 d /= ds;
2027 else if ((j1 = -k)) {
2028 d *= tens[j1 & 0xf];
2029 for(j = j1 >> 4; j; j >>= 1, i++)
2030 if (j & 1) {
2031 ieps++;
2032 d *= bigtens[i];
2035 if (k_check && d < 1. && ilim > 0) {
2036 if (ilim1 <= 0)
2037 goto fast_failed;
2038 ilim = ilim1;
2039 k--;
2040 d *= 10.;
2041 ieps++;
2043 eps = ieps*d + 7.;
2044 addword0(eps, - (P-1)*Exp_msk1);
2045 if (ilim == 0) {
2046 d -= 5.;
2047 if (d > eps)
2048 goto one_digit;
2049 if (d < -eps)
2050 goto no_digits;
2051 goto fast_failed;
2053 #ifndef No_leftright
2054 if (leftright) {
2055 /* Use Steele & White method of only
2056 * generating digits needed.
2058 eps = 0.5/tens[ilim-1] - eps;
2059 for(i = 0;;) {
2060 L = (_G_int32_t)d;
2061 d -= L;
2062 *s++ = '0' + (int)L;
2063 if (d < eps)
2064 goto ret1;
2065 if (1. - d < eps)
2066 goto bump_up;
2067 if (++i >= ilim)
2068 break;
2069 eps *= 10.;
2070 d *= 10.;
2073 else {
2074 #endif
2075 /* Generate ilim digits, then fix them up. */
2076 eps *= tens[ilim-1];
2077 for(i = 1;; i++, d *= 10.) {
2078 L = (_G_int32_t)d;
2079 d -= L;
2080 *s++ = '0' + (int)L;
2081 if (i == ilim) {
2082 if (d > 0.5 + eps)
2083 goto bump_up;
2084 else if (d < 0.5 - eps) {
2085 while(*--s == '0');
2086 s++;
2087 goto ret1;
2089 break;
2092 #ifndef No_leftright
2094 #endif
2095 fast_failed:
2096 s = s0;
2097 d = d2;
2098 k = k0;
2099 ilim = ilim0;
2102 /* Do we have a "small" integer? */
2104 if (be >= 0 && k <= Int_max) {
2105 /* Yes. */
2106 ds = tens[k];
2107 if (ndigits < 0 && ilim <= 0) {
2108 if (ilim < 0 || d <= 5*ds)
2109 goto no_digits;
2110 goto one_digit;
2112 for(i = 1;; i++) {
2113 L = (_G_int32_t)(d / ds);
2114 d -= L*ds;
2115 #ifdef Check_FLT_ROUNDS
2116 /* If FLT_ROUNDS == 2, L will usually be high by 1 */
2117 if (d < 0) {
2118 L--;
2119 d += ds;
2121 #endif
2122 *s++ = '0' + (int)L;
2123 if (i == ilim) {
2124 d += d;
2125 if (d > ds || (d == ds && L & 1)) {
2126 bump_up:
2127 while(*--s == '9')
2128 if (s == s0) {
2129 k++;
2130 *s = '0';
2131 break;
2133 ++*s++;
2135 break;
2137 if (!(d *= 10.))
2138 break;
2140 goto ret1;
2143 m2 = b2;
2144 m5 = b5;
2145 if (leftright) {
2146 if (mode < 2) {
2148 #ifndef Sudden_Underflow
2149 denorm ? be + (Bias + (P-1) - 1 + 1) :
2150 #endif
2151 #ifdef IBM
2152 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2153 #else
2154 1 + P - bbits;
2155 #endif
2157 else {
2158 j = ilim - 1;
2159 if (m5 >= j)
2160 m5 -= j;
2161 else {
2162 s5 += j -= m5;
2163 b5 += j;
2164 m5 = 0;
2166 if ((i = ilim) < 0) {
2167 m2 -= i;
2168 i = 0;
2171 b2 += i;
2172 s2 += i;
2173 mhi = i2b(Binit(&_mhi), 1);
2175 if (m2 > 0 && s2 > 0) {
2176 i = m2 < s2 ? m2 : s2;
2177 b2 -= i;
2178 m2 -= i;
2179 s2 -= i;
2181 if (b5 > 0) {
2182 if (leftright) {
2183 if (m5 > 0) {
2184 Bigint *b_tmp;
2185 mhi = pow5mult(mhi, m5);
2186 b_tmp = mult(b_avail, mhi, b);
2187 b_avail = b;
2188 b = b_tmp;
2190 if ((j = b5 - m5))
2191 b = pow5mult(b, j);
2193 else
2194 b = pow5mult(b, b5);
2196 S = i2b(S, 1);
2197 if (s5 > 0)
2198 S = pow5mult(S, s5);
2200 /* Check for special case that d is a normalized power of 2. */
2202 if (mode < 2) {
2203 if (!word1(d) && !(word0(d) & Bndry_mask)
2204 #ifndef Sudden_Underflow
2205 && word0(d) & Exp_mask
2206 #endif
2208 /* The special case */
2209 b2 += Log2P;
2210 s2 += Log2P;
2211 spec_case = 1;
2213 else
2214 spec_case = 0;
2217 /* Arrange for convenient computation of quotients:
2218 * shift left if necessary so divisor has 4 leading 0 bits.
2220 * Perhaps we should just compute leading 28 bits of S once
2221 * and for all and pass them and a shift to quorem, so it
2222 * can do shifts and ors to compute the numerator for q.
2224 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
2225 i = 32 - i;
2226 if (i > 4) {
2227 i -= 4;
2228 b2 += i;
2229 m2 += i;
2230 s2 += i;
2232 else if (i < 4) {
2233 i += 28;
2234 b2 += i;
2235 m2 += i;
2236 s2 += i;
2238 if (b2 > 0)
2239 b = lshift(b, b2);
2240 if (s2 > 0)
2241 S = lshift(S, s2);
2242 if (k_check) {
2243 if (cmp(b,S) < 0) {
2244 k--;
2245 b = multadd(b, 10, 0); /* we botched the k estimate */
2246 if (leftright)
2247 mhi = multadd(mhi, 10, 0);
2248 ilim = ilim1;
2251 if (ilim <= 0 && mode > 2) {
2252 if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2253 /* no digits, fcvt style */
2254 no_digits:
2255 k = -1 - ndigits;
2256 goto ret;
2258 one_digit:
2259 *s++ = '1';
2260 k++;
2261 goto ret;
2263 if (leftright) {
2264 if (m2 > 0)
2265 mhi = lshift(mhi, m2);
2267 /* Compute mlo -- check for special case
2268 * that d is a normalized power of 2.
2271 if (spec_case) {
2272 mlo = Brealloc(Binit(&_mlo), mhi->k);
2273 Bcopy(mlo, mhi);
2274 mhi = lshift(mhi, Log2P);
2276 else
2277 mlo = mhi;
2279 for(i = 1;;i++) {
2280 dig = quorem(b,S) + '0';
2281 /* Do we yet have the shortest decimal string
2282 * that will round to d?
2284 j = cmp(b, mlo);
2285 b_avail = diff(b_avail, S, mhi); /* b_avail = S - mi */
2286 j1 = b_avail->sign ? 1 : cmp(b, b_avail);
2287 #ifndef ROUND_BIASED
2288 if (j1 == 0 && !mode && !(word1(d) & 1)) {
2289 if (dig == '9')
2290 goto round_9_up;
2291 if (j > 0)
2292 dig++;
2293 *s++ = dig;
2294 goto ret;
2296 #endif
2297 if (j < 0 || (j == 0 && !mode
2298 #ifndef ROUND_BIASED
2299 && !(word1(d) & 1)
2300 #endif
2301 )) {
2302 if (j1 > 0) {
2303 b = lshift(b, 1);
2304 j1 = cmp(b, S);
2305 if ((j1 > 0 || (j1 == 0 && dig & 1))
2306 && dig++ == '9')
2307 goto round_9_up;
2309 *s++ = dig;
2310 goto ret;
2312 if (j1 > 0) {
2313 if (dig == '9') { /* possible if i == 1 */
2314 round_9_up:
2315 *s++ = '9';
2316 goto roundoff;
2318 *s++ = dig + 1;
2319 goto ret;
2321 *s++ = dig;
2322 if (i == ilim)
2323 break;
2324 b = multadd(b, 10, 0);
2325 if (mlo == mhi)
2326 mlo = mhi = multadd(mhi, 10, 0);
2327 else {
2328 mlo = multadd(mlo, 10, 0);
2329 mhi = multadd(mhi, 10, 0);
2333 else
2334 for(i = 1;; i++) {
2335 *s++ = dig = quorem(b,S) + '0';
2336 if (i >= ilim)
2337 break;
2338 b = multadd(b, 10, 0);
2341 /* Round off last digit */
2343 b = lshift(b, 1);
2344 j = cmp(b, S);
2345 if (j > 0 || (j == 0 && dig & 1)) {
2346 roundoff:
2347 while(*--s == '9')
2348 if (s == s0) {
2349 k++;
2350 *s++ = '1';
2351 goto ret;
2353 ++*s++;
2355 else {
2356 while(*--s == '0');
2357 s++;
2359 ret:
2360 Bfree(b_avail);
2361 Bfree(S);
2362 if (mhi) {
2363 if (mlo && mlo != mhi)
2364 Bfree(mlo);
2365 Bfree(mhi);
2367 ret1:
2368 Bfree(b);
2369 *s = 0;
2370 *decpt = k + 1;
2371 if (rve)
2372 *rve = s;
2373 return s0;
2375 #endif /* _IO_USE_DTOA */