* gcc.dg/torture/tls/tls-reload-1.c: Add tls options.
[official-gcc.git] / gcc / tree-vrp.c
blob6b8cbf38d847c46141c5ed591f2bb7472ae906ec
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40 #include "gimple-fold.h"
41 #include "expr.h"
42 #include "optabs.h"
45 /* Type of value ranges. See value_range_d for a description of these
46 types. */
47 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
49 /* Range of values that can be associated with an SSA_NAME after VRP
50 has executed. */
51 struct value_range_d
53 /* Lattice value represented by this range. */
54 enum value_range_type type;
56 /* Minimum and maximum values represented by this range. These
57 values should be interpreted as follows:
59 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
60 be NULL.
62 - If TYPE == VR_RANGE then MIN holds the minimum value and
63 MAX holds the maximum value of the range [MIN, MAX].
65 - If TYPE == ANTI_RANGE the variable is known to NOT
66 take any values in the range [MIN, MAX]. */
67 tree min;
68 tree max;
70 /* Set of SSA names whose value ranges are equivalent to this one.
71 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
72 bitmap equiv;
75 typedef struct value_range_d value_range_t;
77 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
81 static sbitmap *live;
83 /* Return true if the SSA name NAME is live on the edge E. */
85 static bool
86 live_on_edge (edge e, tree name)
88 return (live[e->dest->index]
89 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
92 /* Local functions. */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
97 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
98 tree, tree, bool, bool *,
99 bool *);
101 /* Location information for ASSERT_EXPRs. Each instance of this
102 structure describes an ASSERT_EXPR for an SSA name. Since a single
103 SSA name may have more than one assertion associated with it, these
104 locations are kept in a linked list attached to the corresponding
105 SSA name. */
106 struct assert_locus_d
108 /* Basic block where the assertion would be inserted. */
109 basic_block bb;
111 /* Some assertions need to be inserted on an edge (e.g., assertions
112 generated by COND_EXPRs). In those cases, BB will be NULL. */
113 edge e;
115 /* Pointer to the statement that generated this assertion. */
116 gimple_stmt_iterator si;
118 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
119 enum tree_code comp_code;
121 /* Value being compared against. */
122 tree val;
124 /* Expression to compare. */
125 tree expr;
127 /* Next node in the linked list. */
128 struct assert_locus_d *next;
131 typedef struct assert_locus_d *assert_locus_t;
133 /* If bit I is present, it means that SSA name N_i has a list of
134 assertions that should be inserted in the IL. */
135 static bitmap need_assert_for;
137 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
138 holds a list of ASSERT_LOCUS_T nodes that describe where
139 ASSERT_EXPRs for SSA name N_I should be inserted. */
140 static assert_locus_t *asserts_for;
142 /* Value range array. After propagation, VR_VALUE[I] holds the range
143 of values that SSA name N_I may take. */
144 static unsigned num_vr_values;
145 static value_range_t **vr_value;
146 static bool values_propagated;
148 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
149 number of executable edges we saw the last time we visited the
150 node. */
151 static int *vr_phi_edge_counts;
153 typedef struct {
154 gimple stmt;
155 tree vec;
156 } switch_update;
158 static vec<edge> to_remove_edges;
159 static vec<switch_update> to_update_switch_stmts;
162 /* Return the maximum value for TYPE. */
164 static inline tree
165 vrp_val_max (const_tree type)
167 if (!INTEGRAL_TYPE_P (type))
168 return NULL_TREE;
170 return TYPE_MAX_VALUE (type);
173 /* Return the minimum value for TYPE. */
175 static inline tree
176 vrp_val_min (const_tree type)
178 if (!INTEGRAL_TYPE_P (type))
179 return NULL_TREE;
181 return TYPE_MIN_VALUE (type);
184 /* Return whether VAL is equal to the maximum value of its type. This
185 will be true for a positive overflow infinity. We can't do a
186 simple equality comparison with TYPE_MAX_VALUE because C typedefs
187 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
188 to the integer constant with the same value in the type. */
190 static inline bool
191 vrp_val_is_max (const_tree val)
193 tree type_max = vrp_val_max (TREE_TYPE (val));
194 return (val == type_max
195 || (type_max != NULL_TREE
196 && operand_equal_p (val, type_max, 0)));
199 /* Return whether VAL is equal to the minimum value of its type. This
200 will be true for a negative overflow infinity. */
202 static inline bool
203 vrp_val_is_min (const_tree val)
205 tree type_min = vrp_val_min (TREE_TYPE (val));
206 return (val == type_min
207 || (type_min != NULL_TREE
208 && operand_equal_p (val, type_min, 0)));
212 /* Return whether TYPE should use an overflow infinity distinct from
213 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
214 represent a signed overflow during VRP computations. An infinity
215 is distinct from a half-range, which will go from some number to
216 TYPE_{MIN,MAX}_VALUE. */
218 static inline bool
219 needs_overflow_infinity (const_tree type)
221 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
224 /* Return whether TYPE can support our overflow infinity
225 representation: we use the TREE_OVERFLOW flag, which only exists
226 for constants. If TYPE doesn't support this, we don't optimize
227 cases which would require signed overflow--we drop them to
228 VARYING. */
230 static inline bool
231 supports_overflow_infinity (const_tree type)
233 tree min = vrp_val_min (type), max = vrp_val_max (type);
234 #ifdef ENABLE_CHECKING
235 gcc_assert (needs_overflow_infinity (type));
236 #endif
237 return (min != NULL_TREE
238 && CONSTANT_CLASS_P (min)
239 && max != NULL_TREE
240 && CONSTANT_CLASS_P (max));
243 /* VAL is the maximum or minimum value of a type. Return a
244 corresponding overflow infinity. */
246 static inline tree
247 make_overflow_infinity (tree val)
249 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
250 val = copy_node (val);
251 TREE_OVERFLOW (val) = 1;
252 return val;
255 /* Return a negative overflow infinity for TYPE. */
257 static inline tree
258 negative_overflow_infinity (tree type)
260 gcc_checking_assert (supports_overflow_infinity (type));
261 return make_overflow_infinity (vrp_val_min (type));
264 /* Return a positive overflow infinity for TYPE. */
266 static inline tree
267 positive_overflow_infinity (tree type)
269 gcc_checking_assert (supports_overflow_infinity (type));
270 return make_overflow_infinity (vrp_val_max (type));
273 /* Return whether VAL is a negative overflow infinity. */
275 static inline bool
276 is_negative_overflow_infinity (const_tree val)
278 return (needs_overflow_infinity (TREE_TYPE (val))
279 && CONSTANT_CLASS_P (val)
280 && TREE_OVERFLOW (val)
281 && vrp_val_is_min (val));
284 /* Return whether VAL is a positive overflow infinity. */
286 static inline bool
287 is_positive_overflow_infinity (const_tree val)
289 return (needs_overflow_infinity (TREE_TYPE (val))
290 && CONSTANT_CLASS_P (val)
291 && TREE_OVERFLOW (val)
292 && vrp_val_is_max (val));
295 /* Return whether VAL is a positive or negative overflow infinity. */
297 static inline bool
298 is_overflow_infinity (const_tree val)
300 return (needs_overflow_infinity (TREE_TYPE (val))
301 && CONSTANT_CLASS_P (val)
302 && TREE_OVERFLOW (val)
303 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
306 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
308 static inline bool
309 stmt_overflow_infinity (gimple stmt)
311 if (is_gimple_assign (stmt)
312 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
313 GIMPLE_SINGLE_RHS)
314 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
315 return false;
318 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
319 the same value with TREE_OVERFLOW clear. This can be used to avoid
320 confusing a regular value with an overflow value. */
322 static inline tree
323 avoid_overflow_infinity (tree val)
325 if (!is_overflow_infinity (val))
326 return val;
328 if (vrp_val_is_max (val))
329 return vrp_val_max (TREE_TYPE (val));
330 else
332 gcc_checking_assert (vrp_val_is_min (val));
333 return vrp_val_min (TREE_TYPE (val));
338 /* Return true if ARG is marked with the nonnull attribute in the
339 current function signature. */
341 static bool
342 nonnull_arg_p (const_tree arg)
344 tree t, attrs, fntype;
345 unsigned HOST_WIDE_INT arg_num;
347 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
349 /* The static chain decl is always non null. */
350 if (arg == cfun->static_chain_decl)
351 return true;
353 fntype = TREE_TYPE (current_function_decl);
354 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
356 attrs = lookup_attribute ("nonnull", attrs);
358 /* If "nonnull" wasn't specified, we know nothing about the argument. */
359 if (attrs == NULL_TREE)
360 return false;
362 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
363 if (TREE_VALUE (attrs) == NULL_TREE)
364 return true;
366 /* Get the position number for ARG in the function signature. */
367 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
369 t = DECL_CHAIN (t), arg_num++)
371 if (t == arg)
372 break;
375 gcc_assert (t == arg);
377 /* Now see if ARG_NUM is mentioned in the nonnull list. */
378 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
380 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
381 return true;
385 return false;
389 /* Set value range VR to VR_UNDEFINED. */
391 static inline void
392 set_value_range_to_undefined (value_range_t *vr)
394 vr->type = VR_UNDEFINED;
395 vr->min = vr->max = NULL_TREE;
396 if (vr->equiv)
397 bitmap_clear (vr->equiv);
401 /* Set value range VR to VR_VARYING. */
403 static inline void
404 set_value_range_to_varying (value_range_t *vr)
406 vr->type = VR_VARYING;
407 vr->min = vr->max = NULL_TREE;
408 if (vr->equiv)
409 bitmap_clear (vr->equiv);
413 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
415 static void
416 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
417 tree max, bitmap equiv)
419 #if defined ENABLE_CHECKING
420 /* Check the validity of the range. */
421 if (t == VR_RANGE || t == VR_ANTI_RANGE)
423 int cmp;
425 gcc_assert (min && max);
427 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
428 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
430 cmp = compare_values (min, max);
431 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
433 if (needs_overflow_infinity (TREE_TYPE (min)))
434 gcc_assert (!is_overflow_infinity (min)
435 || !is_overflow_infinity (max));
438 if (t == VR_UNDEFINED || t == VR_VARYING)
439 gcc_assert (min == NULL_TREE && max == NULL_TREE);
441 if (t == VR_UNDEFINED || t == VR_VARYING)
442 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
443 #endif
445 vr->type = t;
446 vr->min = min;
447 vr->max = max;
449 /* Since updating the equivalence set involves deep copying the
450 bitmaps, only do it if absolutely necessary. */
451 if (vr->equiv == NULL
452 && equiv != NULL)
453 vr->equiv = BITMAP_ALLOC (NULL);
455 if (equiv != vr->equiv)
457 if (equiv && !bitmap_empty_p (equiv))
458 bitmap_copy (vr->equiv, equiv);
459 else
460 bitmap_clear (vr->equiv);
465 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
466 This means adjusting T, MIN and MAX representing the case of a
467 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
468 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
469 In corner cases where MAX+1 or MIN-1 wraps this will fall back
470 to varying.
471 This routine exists to ease canonicalization in the case where we
472 extract ranges from var + CST op limit. */
474 static void
475 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
476 tree min, tree max, bitmap equiv)
478 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
479 if (t == VR_UNDEFINED)
481 set_value_range_to_undefined (vr);
482 return;
484 else if (t == VR_VARYING)
486 set_value_range_to_varying (vr);
487 return;
490 /* Nothing to canonicalize for symbolic ranges. */
491 if (TREE_CODE (min) != INTEGER_CST
492 || TREE_CODE (max) != INTEGER_CST)
494 set_value_range (vr, t, min, max, equiv);
495 return;
498 /* Wrong order for min and max, to swap them and the VR type we need
499 to adjust them. */
500 if (tree_int_cst_lt (max, min))
502 tree one, tmp;
504 /* For one bit precision if max < min, then the swapped
505 range covers all values, so for VR_RANGE it is varying and
506 for VR_ANTI_RANGE empty range, so drop to varying as well. */
507 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
509 set_value_range_to_varying (vr);
510 return;
513 one = build_int_cst (TREE_TYPE (min), 1);
514 tmp = int_const_binop (PLUS_EXPR, max, one);
515 max = int_const_binop (MINUS_EXPR, min, one);
516 min = tmp;
518 /* There's one corner case, if we had [C+1, C] before we now have
519 that again. But this represents an empty value range, so drop
520 to varying in this case. */
521 if (tree_int_cst_lt (max, min))
523 set_value_range_to_varying (vr);
524 return;
527 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
530 /* Anti-ranges that can be represented as ranges should be so. */
531 if (t == VR_ANTI_RANGE)
533 bool is_min = vrp_val_is_min (min);
534 bool is_max = vrp_val_is_max (max);
536 if (is_min && is_max)
538 /* We cannot deal with empty ranges, drop to varying.
539 ??? This could be VR_UNDEFINED instead. */
540 set_value_range_to_varying (vr);
541 return;
543 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
544 && (is_min || is_max))
546 /* Non-empty boolean ranges can always be represented
547 as a singleton range. */
548 if (is_min)
549 min = max = vrp_val_max (TREE_TYPE (min));
550 else
551 min = max = vrp_val_min (TREE_TYPE (min));
552 t = VR_RANGE;
554 else if (is_min
555 /* As a special exception preserve non-null ranges. */
556 && !(TYPE_UNSIGNED (TREE_TYPE (min))
557 && integer_zerop (max)))
559 tree one = build_int_cst (TREE_TYPE (max), 1);
560 min = int_const_binop (PLUS_EXPR, max, one);
561 max = vrp_val_max (TREE_TYPE (max));
562 t = VR_RANGE;
564 else if (is_max)
566 tree one = build_int_cst (TREE_TYPE (min), 1);
567 max = int_const_binop (MINUS_EXPR, min, one);
568 min = vrp_val_min (TREE_TYPE (min));
569 t = VR_RANGE;
573 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
574 if (needs_overflow_infinity (TREE_TYPE (min))
575 && is_overflow_infinity (min)
576 && is_overflow_infinity (max))
578 set_value_range_to_varying (vr);
579 return;
582 set_value_range (vr, t, min, max, equiv);
585 /* Copy value range FROM into value range TO. */
587 static inline void
588 copy_value_range (value_range_t *to, value_range_t *from)
590 set_value_range (to, from->type, from->min, from->max, from->equiv);
593 /* Set value range VR to a single value. This function is only called
594 with values we get from statements, and exists to clear the
595 TREE_OVERFLOW flag so that we don't think we have an overflow
596 infinity when we shouldn't. */
598 static inline void
599 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
601 gcc_assert (is_gimple_min_invariant (val));
602 val = avoid_overflow_infinity (val);
603 set_value_range (vr, VR_RANGE, val, val, equiv);
606 /* Set value range VR to a non-negative range of type TYPE.
607 OVERFLOW_INFINITY indicates whether to use an overflow infinity
608 rather than TYPE_MAX_VALUE; this should be true if we determine
609 that the range is nonnegative based on the assumption that signed
610 overflow does not occur. */
612 static inline void
613 set_value_range_to_nonnegative (value_range_t *vr, tree type,
614 bool overflow_infinity)
616 tree zero;
618 if (overflow_infinity && !supports_overflow_infinity (type))
620 set_value_range_to_varying (vr);
621 return;
624 zero = build_int_cst (type, 0);
625 set_value_range (vr, VR_RANGE, zero,
626 (overflow_infinity
627 ? positive_overflow_infinity (type)
628 : TYPE_MAX_VALUE (type)),
629 vr->equiv);
632 /* Set value range VR to a non-NULL range of type TYPE. */
634 static inline void
635 set_value_range_to_nonnull (value_range_t *vr, tree type)
637 tree zero = build_int_cst (type, 0);
638 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
642 /* Set value range VR to a NULL range of type TYPE. */
644 static inline void
645 set_value_range_to_null (value_range_t *vr, tree type)
647 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
651 /* Set value range VR to a range of a truthvalue of type TYPE. */
653 static inline void
654 set_value_range_to_truthvalue (value_range_t *vr, tree type)
656 if (TYPE_PRECISION (type) == 1)
657 set_value_range_to_varying (vr);
658 else
659 set_value_range (vr, VR_RANGE,
660 build_int_cst (type, 0), build_int_cst (type, 1),
661 vr->equiv);
665 /* If abs (min) < abs (max), set VR to [-max, max], if
666 abs (min) >= abs (max), set VR to [-min, min]. */
668 static void
669 abs_extent_range (value_range_t *vr, tree min, tree max)
671 int cmp;
673 gcc_assert (TREE_CODE (min) == INTEGER_CST);
674 gcc_assert (TREE_CODE (max) == INTEGER_CST);
675 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
676 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
677 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
678 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
679 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
681 set_value_range_to_varying (vr);
682 return;
684 cmp = compare_values (min, max);
685 if (cmp == -1)
686 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
687 else if (cmp == 0 || cmp == 1)
689 max = min;
690 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
692 else
694 set_value_range_to_varying (vr);
695 return;
697 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
701 /* Return value range information for VAR.
703 If we have no values ranges recorded (ie, VRP is not running), then
704 return NULL. Otherwise create an empty range if none existed for VAR. */
706 static value_range_t *
707 get_value_range (const_tree var)
709 static const struct value_range_d vr_const_varying
710 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
711 value_range_t *vr;
712 tree sym;
713 unsigned ver = SSA_NAME_VERSION (var);
715 /* If we have no recorded ranges, then return NULL. */
716 if (! vr_value)
717 return NULL;
719 /* If we query the range for a new SSA name return an unmodifiable VARYING.
720 We should get here at most from the substitute-and-fold stage which
721 will never try to change values. */
722 if (ver >= num_vr_values)
723 return CONST_CAST (value_range_t *, &vr_const_varying);
725 vr = vr_value[ver];
726 if (vr)
727 return vr;
729 /* After propagation finished do not allocate new value-ranges. */
730 if (values_propagated)
731 return CONST_CAST (value_range_t *, &vr_const_varying);
733 /* Create a default value range. */
734 vr_value[ver] = vr = XCNEW (value_range_t);
736 /* Defer allocating the equivalence set. */
737 vr->equiv = NULL;
739 /* If VAR is a default definition of a parameter, the variable can
740 take any value in VAR's type. */
741 if (SSA_NAME_IS_DEFAULT_DEF (var))
743 sym = SSA_NAME_VAR (var);
744 if (TREE_CODE (sym) == PARM_DECL)
746 /* Try to use the "nonnull" attribute to create ~[0, 0]
747 anti-ranges for pointers. Note that this is only valid with
748 default definitions of PARM_DECLs. */
749 if (POINTER_TYPE_P (TREE_TYPE (sym))
750 && nonnull_arg_p (sym))
751 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
752 else
753 set_value_range_to_varying (vr);
755 else if (TREE_CODE (sym) == RESULT_DECL
756 && DECL_BY_REFERENCE (sym))
757 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
760 return vr;
763 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
765 static inline bool
766 vrp_operand_equal_p (const_tree val1, const_tree val2)
768 if (val1 == val2)
769 return true;
770 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
771 return false;
772 if (is_overflow_infinity (val1))
773 return is_overflow_infinity (val2);
774 return true;
777 /* Return true, if the bitmaps B1 and B2 are equal. */
779 static inline bool
780 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
782 return (b1 == b2
783 || ((!b1 || bitmap_empty_p (b1))
784 && (!b2 || bitmap_empty_p (b2)))
785 || (b1 && b2
786 && bitmap_equal_p (b1, b2)));
789 /* Update the value range and equivalence set for variable VAR to
790 NEW_VR. Return true if NEW_VR is different from VAR's previous
791 value.
793 NOTE: This function assumes that NEW_VR is a temporary value range
794 object created for the sole purpose of updating VAR's range. The
795 storage used by the equivalence set from NEW_VR will be freed by
796 this function. Do not call update_value_range when NEW_VR
797 is the range object associated with another SSA name. */
799 static inline bool
800 update_value_range (const_tree var, value_range_t *new_vr)
802 value_range_t *old_vr;
803 bool is_new;
805 /* Update the value range, if necessary. */
806 old_vr = get_value_range (var);
807 is_new = old_vr->type != new_vr->type
808 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
809 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
810 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
812 if (is_new)
814 /* Do not allow transitions up the lattice. The following
815 is slightly more awkward than just new_vr->type < old_vr->type
816 because VR_RANGE and VR_ANTI_RANGE need to be considered
817 the same. We may not have is_new when transitioning to
818 UNDEFINED or from VARYING. */
819 if (new_vr->type == VR_UNDEFINED
820 || old_vr->type == VR_VARYING)
821 set_value_range_to_varying (old_vr);
822 else
823 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
824 new_vr->equiv);
827 BITMAP_FREE (new_vr->equiv);
829 return is_new;
833 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
834 point where equivalence processing can be turned on/off. */
836 static void
837 add_equivalence (bitmap *equiv, const_tree var)
839 unsigned ver = SSA_NAME_VERSION (var);
840 value_range_t *vr = vr_value[ver];
842 if (*equiv == NULL)
843 *equiv = BITMAP_ALLOC (NULL);
844 bitmap_set_bit (*equiv, ver);
845 if (vr && vr->equiv)
846 bitmap_ior_into (*equiv, vr->equiv);
850 /* Return true if VR is ~[0, 0]. */
852 static inline bool
853 range_is_nonnull (value_range_t *vr)
855 return vr->type == VR_ANTI_RANGE
856 && integer_zerop (vr->min)
857 && integer_zerop (vr->max);
861 /* Return true if VR is [0, 0]. */
863 static inline bool
864 range_is_null (value_range_t *vr)
866 return vr->type == VR_RANGE
867 && integer_zerop (vr->min)
868 && integer_zerop (vr->max);
871 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
872 a singleton. */
874 static inline bool
875 range_int_cst_p (value_range_t *vr)
877 return (vr->type == VR_RANGE
878 && TREE_CODE (vr->max) == INTEGER_CST
879 && TREE_CODE (vr->min) == INTEGER_CST);
882 /* Return true if VR is a INTEGER_CST singleton. */
884 static inline bool
885 range_int_cst_singleton_p (value_range_t *vr)
887 return (range_int_cst_p (vr)
888 && !TREE_OVERFLOW (vr->min)
889 && !TREE_OVERFLOW (vr->max)
890 && tree_int_cst_equal (vr->min, vr->max));
893 /* Return true if value range VR involves at least one symbol. */
895 static inline bool
896 symbolic_range_p (value_range_t *vr)
898 return (!is_gimple_min_invariant (vr->min)
899 || !is_gimple_min_invariant (vr->max));
902 /* Return true if value range VR uses an overflow infinity. */
904 static inline bool
905 overflow_infinity_range_p (value_range_t *vr)
907 return (vr->type == VR_RANGE
908 && (is_overflow_infinity (vr->min)
909 || is_overflow_infinity (vr->max)));
912 /* Return false if we can not make a valid comparison based on VR;
913 this will be the case if it uses an overflow infinity and overflow
914 is not undefined (i.e., -fno-strict-overflow is in effect).
915 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
916 uses an overflow infinity. */
918 static bool
919 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
921 gcc_assert (vr->type == VR_RANGE);
922 if (is_overflow_infinity (vr->min))
924 *strict_overflow_p = true;
925 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
926 return false;
928 if (is_overflow_infinity (vr->max))
930 *strict_overflow_p = true;
931 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
932 return false;
934 return true;
938 /* Return true if the result of assignment STMT is know to be non-negative.
939 If the return value is based on the assumption that signed overflow is
940 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
941 *STRICT_OVERFLOW_P.*/
943 static bool
944 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
946 enum tree_code code = gimple_assign_rhs_code (stmt);
947 switch (get_gimple_rhs_class (code))
949 case GIMPLE_UNARY_RHS:
950 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
951 gimple_expr_type (stmt),
952 gimple_assign_rhs1 (stmt),
953 strict_overflow_p);
954 case GIMPLE_BINARY_RHS:
955 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
956 gimple_expr_type (stmt),
957 gimple_assign_rhs1 (stmt),
958 gimple_assign_rhs2 (stmt),
959 strict_overflow_p);
960 case GIMPLE_TERNARY_RHS:
961 return false;
962 case GIMPLE_SINGLE_RHS:
963 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
964 strict_overflow_p);
965 case GIMPLE_INVALID_RHS:
966 gcc_unreachable ();
967 default:
968 gcc_unreachable ();
972 /* Return true if return value of call STMT is know to be non-negative.
973 If the return value is based on the assumption that signed overflow is
974 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
975 *STRICT_OVERFLOW_P.*/
977 static bool
978 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
980 tree arg0 = gimple_call_num_args (stmt) > 0 ?
981 gimple_call_arg (stmt, 0) : NULL_TREE;
982 tree arg1 = gimple_call_num_args (stmt) > 1 ?
983 gimple_call_arg (stmt, 1) : NULL_TREE;
985 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
986 gimple_call_fndecl (stmt),
987 arg0,
988 arg1,
989 strict_overflow_p);
992 /* Return true if STMT is know to to compute a non-negative value.
993 If the return value is based on the assumption that signed overflow is
994 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
995 *STRICT_OVERFLOW_P.*/
997 static bool
998 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1000 switch (gimple_code (stmt))
1002 case GIMPLE_ASSIGN:
1003 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1004 case GIMPLE_CALL:
1005 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1006 default:
1007 gcc_unreachable ();
1011 /* Return true if the result of assignment STMT is know to be non-zero.
1012 If the return value is based on the assumption that signed overflow is
1013 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1014 *STRICT_OVERFLOW_P.*/
1016 static bool
1017 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1019 enum tree_code code = gimple_assign_rhs_code (stmt);
1020 switch (get_gimple_rhs_class (code))
1022 case GIMPLE_UNARY_RHS:
1023 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1024 gimple_expr_type (stmt),
1025 gimple_assign_rhs1 (stmt),
1026 strict_overflow_p);
1027 case GIMPLE_BINARY_RHS:
1028 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1029 gimple_expr_type (stmt),
1030 gimple_assign_rhs1 (stmt),
1031 gimple_assign_rhs2 (stmt),
1032 strict_overflow_p);
1033 case GIMPLE_TERNARY_RHS:
1034 return false;
1035 case GIMPLE_SINGLE_RHS:
1036 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1037 strict_overflow_p);
1038 case GIMPLE_INVALID_RHS:
1039 gcc_unreachable ();
1040 default:
1041 gcc_unreachable ();
1045 /* Return true if STMT is know to to compute a non-zero value.
1046 If the return value is based on the assumption that signed overflow is
1047 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1048 *STRICT_OVERFLOW_P.*/
1050 static bool
1051 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1053 switch (gimple_code (stmt))
1055 case GIMPLE_ASSIGN:
1056 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1057 case GIMPLE_CALL:
1058 return gimple_alloca_call_p (stmt);
1059 default:
1060 gcc_unreachable ();
1064 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1065 obtained so far. */
1067 static bool
1068 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1070 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1071 return true;
1073 /* If we have an expression of the form &X->a, then the expression
1074 is nonnull if X is nonnull. */
1075 if (is_gimple_assign (stmt)
1076 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1078 tree expr = gimple_assign_rhs1 (stmt);
1079 tree base = get_base_address (TREE_OPERAND (expr, 0));
1081 if (base != NULL_TREE
1082 && TREE_CODE (base) == MEM_REF
1083 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1085 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1086 if (range_is_nonnull (vr))
1087 return true;
1091 return false;
1094 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1095 a gimple invariant, or SSA_NAME +- CST. */
1097 static bool
1098 valid_value_p (tree expr)
1100 if (TREE_CODE (expr) == SSA_NAME)
1101 return true;
1103 if (TREE_CODE (expr) == PLUS_EXPR
1104 || TREE_CODE (expr) == MINUS_EXPR)
1105 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1106 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1108 return is_gimple_min_invariant (expr);
1111 /* Return
1112 1 if VAL < VAL2
1113 0 if !(VAL < VAL2)
1114 -2 if those are incomparable. */
1115 static inline int
1116 operand_less_p (tree val, tree val2)
1118 /* LT is folded faster than GE and others. Inline the common case. */
1119 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1121 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1122 return INT_CST_LT_UNSIGNED (val, val2);
1123 else
1125 if (INT_CST_LT (val, val2))
1126 return 1;
1129 else
1131 tree tcmp;
1133 fold_defer_overflow_warnings ();
1135 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1137 fold_undefer_and_ignore_overflow_warnings ();
1139 if (!tcmp
1140 || TREE_CODE (tcmp) != INTEGER_CST)
1141 return -2;
1143 if (!integer_zerop (tcmp))
1144 return 1;
1147 /* val >= val2, not considering overflow infinity. */
1148 if (is_negative_overflow_infinity (val))
1149 return is_negative_overflow_infinity (val2) ? 0 : 1;
1150 else if (is_positive_overflow_infinity (val2))
1151 return is_positive_overflow_infinity (val) ? 0 : 1;
1153 return 0;
1156 /* Compare two values VAL1 and VAL2. Return
1158 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1159 -1 if VAL1 < VAL2,
1160 0 if VAL1 == VAL2,
1161 +1 if VAL1 > VAL2, and
1162 +2 if VAL1 != VAL2
1164 This is similar to tree_int_cst_compare but supports pointer values
1165 and values that cannot be compared at compile time.
1167 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1168 true if the return value is only valid if we assume that signed
1169 overflow is undefined. */
1171 static int
1172 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1174 if (val1 == val2)
1175 return 0;
1177 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1178 both integers. */
1179 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1180 == POINTER_TYPE_P (TREE_TYPE (val2)));
1181 /* Convert the two values into the same type. This is needed because
1182 sizetype causes sign extension even for unsigned types. */
1183 val2 = fold_convert (TREE_TYPE (val1), val2);
1184 STRIP_USELESS_TYPE_CONVERSION (val2);
1186 if ((TREE_CODE (val1) == SSA_NAME
1187 || TREE_CODE (val1) == PLUS_EXPR
1188 || TREE_CODE (val1) == MINUS_EXPR)
1189 && (TREE_CODE (val2) == SSA_NAME
1190 || TREE_CODE (val2) == PLUS_EXPR
1191 || TREE_CODE (val2) == MINUS_EXPR))
1193 tree n1, c1, n2, c2;
1194 enum tree_code code1, code2;
1196 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1197 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1198 same name, return -2. */
1199 if (TREE_CODE (val1) == SSA_NAME)
1201 code1 = SSA_NAME;
1202 n1 = val1;
1203 c1 = NULL_TREE;
1205 else
1207 code1 = TREE_CODE (val1);
1208 n1 = TREE_OPERAND (val1, 0);
1209 c1 = TREE_OPERAND (val1, 1);
1210 if (tree_int_cst_sgn (c1) == -1)
1212 if (is_negative_overflow_infinity (c1))
1213 return -2;
1214 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1215 if (!c1)
1216 return -2;
1217 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1221 if (TREE_CODE (val2) == SSA_NAME)
1223 code2 = SSA_NAME;
1224 n2 = val2;
1225 c2 = NULL_TREE;
1227 else
1229 code2 = TREE_CODE (val2);
1230 n2 = TREE_OPERAND (val2, 0);
1231 c2 = TREE_OPERAND (val2, 1);
1232 if (tree_int_cst_sgn (c2) == -1)
1234 if (is_negative_overflow_infinity (c2))
1235 return -2;
1236 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1237 if (!c2)
1238 return -2;
1239 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1243 /* Both values must use the same name. */
1244 if (n1 != n2)
1245 return -2;
1247 if (code1 == SSA_NAME
1248 && code2 == SSA_NAME)
1249 /* NAME == NAME */
1250 return 0;
1252 /* If overflow is defined we cannot simplify more. */
1253 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1254 return -2;
1256 if (strict_overflow_p != NULL
1257 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1258 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1259 *strict_overflow_p = true;
1261 if (code1 == SSA_NAME)
1263 if (code2 == PLUS_EXPR)
1264 /* NAME < NAME + CST */
1265 return -1;
1266 else if (code2 == MINUS_EXPR)
1267 /* NAME > NAME - CST */
1268 return 1;
1270 else if (code1 == PLUS_EXPR)
1272 if (code2 == SSA_NAME)
1273 /* NAME + CST > NAME */
1274 return 1;
1275 else if (code2 == PLUS_EXPR)
1276 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1277 return compare_values_warnv (c1, c2, strict_overflow_p);
1278 else if (code2 == MINUS_EXPR)
1279 /* NAME + CST1 > NAME - CST2 */
1280 return 1;
1282 else if (code1 == MINUS_EXPR)
1284 if (code2 == SSA_NAME)
1285 /* NAME - CST < NAME */
1286 return -1;
1287 else if (code2 == PLUS_EXPR)
1288 /* NAME - CST1 < NAME + CST2 */
1289 return -1;
1290 else if (code2 == MINUS_EXPR)
1291 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1292 C1 and C2 are swapped in the call to compare_values. */
1293 return compare_values_warnv (c2, c1, strict_overflow_p);
1296 gcc_unreachable ();
1299 /* We cannot compare non-constants. */
1300 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1301 return -2;
1303 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1305 /* We cannot compare overflowed values, except for overflow
1306 infinities. */
1307 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1309 if (strict_overflow_p != NULL)
1310 *strict_overflow_p = true;
1311 if (is_negative_overflow_infinity (val1))
1312 return is_negative_overflow_infinity (val2) ? 0 : -1;
1313 else if (is_negative_overflow_infinity (val2))
1314 return 1;
1315 else if (is_positive_overflow_infinity (val1))
1316 return is_positive_overflow_infinity (val2) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2))
1318 return -1;
1319 return -2;
1322 return tree_int_cst_compare (val1, val2);
1324 else
1326 tree t;
1328 /* First see if VAL1 and VAL2 are not the same. */
1329 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1330 return 0;
1332 /* If VAL1 is a lower address than VAL2, return -1. */
1333 if (operand_less_p (val1, val2) == 1)
1334 return -1;
1336 /* If VAL1 is a higher address than VAL2, return +1. */
1337 if (operand_less_p (val2, val1) == 1)
1338 return 1;
1340 /* If VAL1 is different than VAL2, return +2.
1341 For integer constants we either have already returned -1 or 1
1342 or they are equivalent. We still might succeed in proving
1343 something about non-trivial operands. */
1344 if (TREE_CODE (val1) != INTEGER_CST
1345 || TREE_CODE (val2) != INTEGER_CST)
1347 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1348 if (t && integer_onep (t))
1349 return 2;
1352 return -2;
1356 /* Compare values like compare_values_warnv, but treat comparisons of
1357 nonconstants which rely on undefined overflow as incomparable. */
1359 static int
1360 compare_values (tree val1, tree val2)
1362 bool sop;
1363 int ret;
1365 sop = false;
1366 ret = compare_values_warnv (val1, val2, &sop);
1367 if (sop
1368 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1369 ret = -2;
1370 return ret;
1374 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1375 0 if VAL is not inside [MIN, MAX],
1376 -2 if we cannot tell either way.
1378 Benchmark compile/20001226-1.c compilation time after changing this
1379 function. */
1381 static inline int
1382 value_inside_range (tree val, tree min, tree max)
1384 int cmp1, cmp2;
1386 cmp1 = operand_less_p (val, min);
1387 if (cmp1 == -2)
1388 return -2;
1389 if (cmp1 == 1)
1390 return 0;
1392 cmp2 = operand_less_p (max, val);
1393 if (cmp2 == -2)
1394 return -2;
1396 return !cmp2;
1400 /* Return true if value ranges VR0 and VR1 have a non-empty
1401 intersection.
1403 Benchmark compile/20001226-1.c compilation time after changing this
1404 function.
1407 static inline bool
1408 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1410 /* The value ranges do not intersect if the maximum of the first range is
1411 less than the minimum of the second range or vice versa.
1412 When those relations are unknown, we can't do any better. */
1413 if (operand_less_p (vr0->max, vr1->min) != 0)
1414 return false;
1415 if (operand_less_p (vr1->max, vr0->min) != 0)
1416 return false;
1417 return true;
1421 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1422 include the value zero, -2 if we cannot tell. */
1424 static inline int
1425 range_includes_zero_p (tree min, tree max)
1427 tree zero = build_int_cst (TREE_TYPE (min), 0);
1428 return value_inside_range (zero, min, max);
1431 /* Return true if *VR is know to only contain nonnegative values. */
1433 static inline bool
1434 value_range_nonnegative_p (value_range_t *vr)
1436 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1437 which would return a useful value should be encoded as a
1438 VR_RANGE. */
1439 if (vr->type == VR_RANGE)
1441 int result = compare_values (vr->min, integer_zero_node);
1442 return (result == 0 || result == 1);
1445 return false;
1448 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1449 false otherwise or if no value range information is available. */
1451 bool
1452 ssa_name_nonnegative_p (const_tree t)
1454 value_range_t *vr = get_value_range (t);
1456 if (INTEGRAL_TYPE_P (t)
1457 && TYPE_UNSIGNED (t))
1458 return true;
1460 if (!vr)
1461 return false;
1463 return value_range_nonnegative_p (vr);
1466 /* If *VR has a value rante that is a single constant value return that,
1467 otherwise return NULL_TREE. */
1469 static tree
1470 value_range_constant_singleton (value_range_t *vr)
1472 if (vr->type == VR_RANGE
1473 && operand_equal_p (vr->min, vr->max, 0)
1474 && is_gimple_min_invariant (vr->min))
1475 return vr->min;
1477 return NULL_TREE;
1480 /* If OP has a value range with a single constant value return that,
1481 otherwise return NULL_TREE. This returns OP itself if OP is a
1482 constant. */
1484 static tree
1485 op_with_constant_singleton_value_range (tree op)
1487 if (is_gimple_min_invariant (op))
1488 return op;
1490 if (TREE_CODE (op) != SSA_NAME)
1491 return NULL_TREE;
1493 return value_range_constant_singleton (get_value_range (op));
1496 /* Return true if op is in a boolean [0, 1] value-range. */
1498 static bool
1499 op_with_boolean_value_range_p (tree op)
1501 value_range_t *vr;
1503 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1504 return true;
1506 if (integer_zerop (op)
1507 || integer_onep (op))
1508 return true;
1510 if (TREE_CODE (op) != SSA_NAME)
1511 return false;
1513 vr = get_value_range (op);
1514 return (vr->type == VR_RANGE
1515 && integer_zerop (vr->min)
1516 && integer_onep (vr->max));
1519 /* Extract value range information from an ASSERT_EXPR EXPR and store
1520 it in *VR_P. */
1522 static void
1523 extract_range_from_assert (value_range_t *vr_p, tree expr)
1525 tree var, cond, limit, min, max, type;
1526 value_range_t *limit_vr;
1527 enum tree_code cond_code;
1529 var = ASSERT_EXPR_VAR (expr);
1530 cond = ASSERT_EXPR_COND (expr);
1532 gcc_assert (COMPARISON_CLASS_P (cond));
1534 /* Find VAR in the ASSERT_EXPR conditional. */
1535 if (var == TREE_OPERAND (cond, 0)
1536 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1537 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1539 /* If the predicate is of the form VAR COMP LIMIT, then we just
1540 take LIMIT from the RHS and use the same comparison code. */
1541 cond_code = TREE_CODE (cond);
1542 limit = TREE_OPERAND (cond, 1);
1543 cond = TREE_OPERAND (cond, 0);
1545 else
1547 /* If the predicate is of the form LIMIT COMP VAR, then we need
1548 to flip around the comparison code to create the proper range
1549 for VAR. */
1550 cond_code = swap_tree_comparison (TREE_CODE (cond));
1551 limit = TREE_OPERAND (cond, 0);
1552 cond = TREE_OPERAND (cond, 1);
1555 limit = avoid_overflow_infinity (limit);
1557 type = TREE_TYPE (var);
1558 gcc_assert (limit != var);
1560 /* For pointer arithmetic, we only keep track of pointer equality
1561 and inequality. */
1562 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1564 set_value_range_to_varying (vr_p);
1565 return;
1568 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1569 try to use LIMIT's range to avoid creating symbolic ranges
1570 unnecessarily. */
1571 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1573 /* LIMIT's range is only interesting if it has any useful information. */
1574 if (limit_vr
1575 && (limit_vr->type == VR_UNDEFINED
1576 || limit_vr->type == VR_VARYING
1577 || symbolic_range_p (limit_vr)))
1578 limit_vr = NULL;
1580 /* Initially, the new range has the same set of equivalences of
1581 VAR's range. This will be revised before returning the final
1582 value. Since assertions may be chained via mutually exclusive
1583 predicates, we will need to trim the set of equivalences before
1584 we are done. */
1585 gcc_assert (vr_p->equiv == NULL);
1586 add_equivalence (&vr_p->equiv, var);
1588 /* Extract a new range based on the asserted comparison for VAR and
1589 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1590 will only use it for equality comparisons (EQ_EXPR). For any
1591 other kind of assertion, we cannot derive a range from LIMIT's
1592 anti-range that can be used to describe the new range. For
1593 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1594 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1595 no single range for x_2 that could describe LE_EXPR, so we might
1596 as well build the range [b_4, +INF] for it.
1597 One special case we handle is extracting a range from a
1598 range test encoded as (unsigned)var + CST <= limit. */
1599 if (TREE_CODE (cond) == NOP_EXPR
1600 || TREE_CODE (cond) == PLUS_EXPR)
1602 if (TREE_CODE (cond) == PLUS_EXPR)
1604 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1605 TREE_OPERAND (cond, 1));
1606 max = int_const_binop (PLUS_EXPR, limit, min);
1607 cond = TREE_OPERAND (cond, 0);
1609 else
1611 min = build_int_cst (TREE_TYPE (var), 0);
1612 max = limit;
1615 /* Make sure to not set TREE_OVERFLOW on the final type
1616 conversion. We are willingly interpreting large positive
1617 unsigned values as negative singed values here. */
1618 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1619 0, false);
1620 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1621 0, false);
1623 /* We can transform a max, min range to an anti-range or
1624 vice-versa. Use set_and_canonicalize_value_range which does
1625 this for us. */
1626 if (cond_code == LE_EXPR)
1627 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1628 min, max, vr_p->equiv);
1629 else if (cond_code == GT_EXPR)
1630 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1631 min, max, vr_p->equiv);
1632 else
1633 gcc_unreachable ();
1635 else if (cond_code == EQ_EXPR)
1637 enum value_range_type range_type;
1639 if (limit_vr)
1641 range_type = limit_vr->type;
1642 min = limit_vr->min;
1643 max = limit_vr->max;
1645 else
1647 range_type = VR_RANGE;
1648 min = limit;
1649 max = limit;
1652 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1654 /* When asserting the equality VAR == LIMIT and LIMIT is another
1655 SSA name, the new range will also inherit the equivalence set
1656 from LIMIT. */
1657 if (TREE_CODE (limit) == SSA_NAME)
1658 add_equivalence (&vr_p->equiv, limit);
1660 else if (cond_code == NE_EXPR)
1662 /* As described above, when LIMIT's range is an anti-range and
1663 this assertion is an inequality (NE_EXPR), then we cannot
1664 derive anything from the anti-range. For instance, if
1665 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1666 not imply that VAR's range is [0, 0]. So, in the case of
1667 anti-ranges, we just assert the inequality using LIMIT and
1668 not its anti-range.
1670 If LIMIT_VR is a range, we can only use it to build a new
1671 anti-range if LIMIT_VR is a single-valued range. For
1672 instance, if LIMIT_VR is [0, 1], the predicate
1673 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1674 Rather, it means that for value 0 VAR should be ~[0, 0]
1675 and for value 1, VAR should be ~[1, 1]. We cannot
1676 represent these ranges.
1678 The only situation in which we can build a valid
1679 anti-range is when LIMIT_VR is a single-valued range
1680 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1681 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1682 if (limit_vr
1683 && limit_vr->type == VR_RANGE
1684 && compare_values (limit_vr->min, limit_vr->max) == 0)
1686 min = limit_vr->min;
1687 max = limit_vr->max;
1689 else
1691 /* In any other case, we cannot use LIMIT's range to build a
1692 valid anti-range. */
1693 min = max = limit;
1696 /* If MIN and MAX cover the whole range for their type, then
1697 just use the original LIMIT. */
1698 if (INTEGRAL_TYPE_P (type)
1699 && vrp_val_is_min (min)
1700 && vrp_val_is_max (max))
1701 min = max = limit;
1703 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1704 min, max, vr_p->equiv);
1706 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1708 min = TYPE_MIN_VALUE (type);
1710 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1711 max = limit;
1712 else
1714 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1715 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1716 LT_EXPR. */
1717 max = limit_vr->max;
1720 /* If the maximum value forces us to be out of bounds, simply punt.
1721 It would be pointless to try and do anything more since this
1722 all should be optimized away above us. */
1723 if ((cond_code == LT_EXPR
1724 && compare_values (max, min) == 0)
1725 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1726 set_value_range_to_varying (vr_p);
1727 else
1729 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1730 if (cond_code == LT_EXPR)
1732 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1733 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1734 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1735 build_int_cst (TREE_TYPE (max), -1));
1736 else
1737 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1738 build_int_cst (TREE_TYPE (max), 1));
1739 if (EXPR_P (max))
1740 TREE_NO_WARNING (max) = 1;
1743 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1746 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1748 max = TYPE_MAX_VALUE (type);
1750 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1751 min = limit;
1752 else
1754 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1755 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1756 GT_EXPR. */
1757 min = limit_vr->min;
1760 /* If the minimum value forces us to be out of bounds, simply punt.
1761 It would be pointless to try and do anything more since this
1762 all should be optimized away above us. */
1763 if ((cond_code == GT_EXPR
1764 && compare_values (min, max) == 0)
1765 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1766 set_value_range_to_varying (vr_p);
1767 else
1769 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1770 if (cond_code == GT_EXPR)
1772 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1773 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1774 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1775 build_int_cst (TREE_TYPE (min), -1));
1776 else
1777 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1778 build_int_cst (TREE_TYPE (min), 1));
1779 if (EXPR_P (min))
1780 TREE_NO_WARNING (min) = 1;
1783 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1786 else
1787 gcc_unreachable ();
1789 /* Finally intersect the new range with what we already know about var. */
1790 vrp_intersect_ranges (vr_p, get_value_range (var));
1794 /* Extract range information from SSA name VAR and store it in VR. If
1795 VAR has an interesting range, use it. Otherwise, create the
1796 range [VAR, VAR] and return it. This is useful in situations where
1797 we may have conditionals testing values of VARYING names. For
1798 instance,
1800 x_3 = y_5;
1801 if (x_3 > y_5)
1804 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1805 always false. */
1807 static void
1808 extract_range_from_ssa_name (value_range_t *vr, tree var)
1810 value_range_t *var_vr = get_value_range (var);
1812 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1813 copy_value_range (vr, var_vr);
1814 else
1815 set_value_range (vr, VR_RANGE, var, var, NULL);
1817 add_equivalence (&vr->equiv, var);
1821 /* Wrapper around int_const_binop. If the operation overflows and we
1822 are not using wrapping arithmetic, then adjust the result to be
1823 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1824 NULL_TREE if we need to use an overflow infinity representation but
1825 the type does not support it. */
1827 static tree
1828 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1830 tree res;
1832 res = int_const_binop (code, val1, val2);
1834 /* If we are using unsigned arithmetic, operate symbolically
1835 on -INF and +INF as int_const_binop only handles signed overflow. */
1836 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1838 int checkz = compare_values (res, val1);
1839 bool overflow = false;
1841 /* Ensure that res = val1 [+*] val2 >= val1
1842 or that res = val1 - val2 <= val1. */
1843 if ((code == PLUS_EXPR
1844 && !(checkz == 1 || checkz == 0))
1845 || (code == MINUS_EXPR
1846 && !(checkz == 0 || checkz == -1)))
1848 overflow = true;
1850 /* Checking for multiplication overflow is done by dividing the
1851 output of the multiplication by the first input of the
1852 multiplication. If the result of that division operation is
1853 not equal to the second input of the multiplication, then the
1854 multiplication overflowed. */
1855 else if (code == MULT_EXPR && !integer_zerop (val1))
1857 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1858 res,
1859 val1);
1860 int check = compare_values (tmp, val2);
1862 if (check != 0)
1863 overflow = true;
1866 if (overflow)
1868 res = copy_node (res);
1869 TREE_OVERFLOW (res) = 1;
1873 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1874 /* If the singed operation wraps then int_const_binop has done
1875 everything we want. */
1877 else if ((TREE_OVERFLOW (res)
1878 && !TREE_OVERFLOW (val1)
1879 && !TREE_OVERFLOW (val2))
1880 || is_overflow_infinity (val1)
1881 || is_overflow_infinity (val2))
1883 /* If the operation overflowed but neither VAL1 nor VAL2 are
1884 overflown, return -INF or +INF depending on the operation
1885 and the combination of signs of the operands. */
1886 int sgn1 = tree_int_cst_sgn (val1);
1887 int sgn2 = tree_int_cst_sgn (val2);
1889 if (needs_overflow_infinity (TREE_TYPE (res))
1890 && !supports_overflow_infinity (TREE_TYPE (res)))
1891 return NULL_TREE;
1893 /* We have to punt on adding infinities of different signs,
1894 since we can't tell what the sign of the result should be.
1895 Likewise for subtracting infinities of the same sign. */
1896 if (((code == PLUS_EXPR && sgn1 != sgn2)
1897 || (code == MINUS_EXPR && sgn1 == sgn2))
1898 && is_overflow_infinity (val1)
1899 && is_overflow_infinity (val2))
1900 return NULL_TREE;
1902 /* Don't try to handle division or shifting of infinities. */
1903 if ((code == TRUNC_DIV_EXPR
1904 || code == FLOOR_DIV_EXPR
1905 || code == CEIL_DIV_EXPR
1906 || code == EXACT_DIV_EXPR
1907 || code == ROUND_DIV_EXPR
1908 || code == RSHIFT_EXPR)
1909 && (is_overflow_infinity (val1)
1910 || is_overflow_infinity (val2)))
1911 return NULL_TREE;
1913 /* Notice that we only need to handle the restricted set of
1914 operations handled by extract_range_from_binary_expr.
1915 Among them, only multiplication, addition and subtraction
1916 can yield overflow without overflown operands because we
1917 are working with integral types only... except in the
1918 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1919 for division too. */
1921 /* For multiplication, the sign of the overflow is given
1922 by the comparison of the signs of the operands. */
1923 if ((code == MULT_EXPR && sgn1 == sgn2)
1924 /* For addition, the operands must be of the same sign
1925 to yield an overflow. Its sign is therefore that
1926 of one of the operands, for example the first. For
1927 infinite operands X + -INF is negative, not positive. */
1928 || (code == PLUS_EXPR
1929 && (sgn1 >= 0
1930 ? !is_negative_overflow_infinity (val2)
1931 : is_positive_overflow_infinity (val2)))
1932 /* For subtraction, non-infinite operands must be of
1933 different signs to yield an overflow. Its sign is
1934 therefore that of the first operand or the opposite of
1935 that of the second operand. A first operand of 0 counts
1936 as positive here, for the corner case 0 - (-INF), which
1937 overflows, but must yield +INF. For infinite operands 0
1938 - INF is negative, not positive. */
1939 || (code == MINUS_EXPR
1940 && (sgn1 >= 0
1941 ? !is_positive_overflow_infinity (val2)
1942 : is_negative_overflow_infinity (val2)))
1943 /* We only get in here with positive shift count, so the
1944 overflow direction is the same as the sign of val1.
1945 Actually rshift does not overflow at all, but we only
1946 handle the case of shifting overflowed -INF and +INF. */
1947 || (code == RSHIFT_EXPR
1948 && sgn1 >= 0)
1949 /* For division, the only case is -INF / -1 = +INF. */
1950 || code == TRUNC_DIV_EXPR
1951 || code == FLOOR_DIV_EXPR
1952 || code == CEIL_DIV_EXPR
1953 || code == EXACT_DIV_EXPR
1954 || code == ROUND_DIV_EXPR)
1955 return (needs_overflow_infinity (TREE_TYPE (res))
1956 ? positive_overflow_infinity (TREE_TYPE (res))
1957 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1958 else
1959 return (needs_overflow_infinity (TREE_TYPE (res))
1960 ? negative_overflow_infinity (TREE_TYPE (res))
1961 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1964 return res;
1968 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1969 bitmask if some bit is unset, it means for all numbers in the range
1970 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1971 bitmask if some bit is set, it means for all numbers in the range
1972 the bit is 1, otherwise it might be 0 or 1. */
1974 static bool
1975 zero_nonzero_bits_from_vr (value_range_t *vr,
1976 double_int *may_be_nonzero,
1977 double_int *must_be_nonzero)
1979 *may_be_nonzero = double_int_minus_one;
1980 *must_be_nonzero = double_int_zero;
1981 if (!range_int_cst_p (vr)
1982 || TREE_OVERFLOW (vr->min)
1983 || TREE_OVERFLOW (vr->max))
1984 return false;
1986 if (range_int_cst_singleton_p (vr))
1988 *may_be_nonzero = tree_to_double_int (vr->min);
1989 *must_be_nonzero = *may_be_nonzero;
1991 else if (tree_int_cst_sgn (vr->min) >= 0
1992 || tree_int_cst_sgn (vr->max) < 0)
1994 double_int dmin = tree_to_double_int (vr->min);
1995 double_int dmax = tree_to_double_int (vr->max);
1996 double_int xor_mask = dmin ^ dmax;
1997 *may_be_nonzero = dmin | dmax;
1998 *must_be_nonzero = dmin & dmax;
1999 if (xor_mask.high != 0)
2001 unsigned HOST_WIDE_INT mask
2002 = ((unsigned HOST_WIDE_INT) 1
2003 << floor_log2 (xor_mask.high)) - 1;
2004 may_be_nonzero->low = ALL_ONES;
2005 may_be_nonzero->high |= mask;
2006 must_be_nonzero->low = 0;
2007 must_be_nonzero->high &= ~mask;
2009 else if (xor_mask.low != 0)
2011 unsigned HOST_WIDE_INT mask
2012 = ((unsigned HOST_WIDE_INT) 1
2013 << floor_log2 (xor_mask.low)) - 1;
2014 may_be_nonzero->low |= mask;
2015 must_be_nonzero->low &= ~mask;
2019 return true;
2022 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2023 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2024 false otherwise. If *AR can be represented with a single range
2025 *VR1 will be VR_UNDEFINED. */
2027 static bool
2028 ranges_from_anti_range (value_range_t *ar,
2029 value_range_t *vr0, value_range_t *vr1)
2031 tree type = TREE_TYPE (ar->min);
2033 vr0->type = VR_UNDEFINED;
2034 vr1->type = VR_UNDEFINED;
2036 if (ar->type != VR_ANTI_RANGE
2037 || TREE_CODE (ar->min) != INTEGER_CST
2038 || TREE_CODE (ar->max) != INTEGER_CST
2039 || !vrp_val_min (type)
2040 || !vrp_val_max (type))
2041 return false;
2043 if (!vrp_val_is_min (ar->min))
2045 vr0->type = VR_RANGE;
2046 vr0->min = vrp_val_min (type);
2047 vr0->max
2048 = double_int_to_tree (type,
2049 tree_to_double_int (ar->min) - double_int_one);
2051 if (!vrp_val_is_max (ar->max))
2053 vr1->type = VR_RANGE;
2054 vr1->min
2055 = double_int_to_tree (type,
2056 tree_to_double_int (ar->max) + double_int_one);
2057 vr1->max = vrp_val_max (type);
2059 if (vr0->type == VR_UNDEFINED)
2061 *vr0 = *vr1;
2062 vr1->type = VR_UNDEFINED;
2065 return vr0->type != VR_UNDEFINED;
2068 /* Helper to extract a value-range *VR for a multiplicative operation
2069 *VR0 CODE *VR1. */
2071 static void
2072 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2073 enum tree_code code,
2074 value_range_t *vr0, value_range_t *vr1)
2076 enum value_range_type type;
2077 tree val[4];
2078 size_t i;
2079 tree min, max;
2080 bool sop;
2081 int cmp;
2083 /* Multiplications, divisions and shifts are a bit tricky to handle,
2084 depending on the mix of signs we have in the two ranges, we
2085 need to operate on different values to get the minimum and
2086 maximum values for the new range. One approach is to figure
2087 out all the variations of range combinations and do the
2088 operations.
2090 However, this involves several calls to compare_values and it
2091 is pretty convoluted. It's simpler to do the 4 operations
2092 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2093 MAX1) and then figure the smallest and largest values to form
2094 the new range. */
2095 gcc_assert (code == MULT_EXPR
2096 || code == TRUNC_DIV_EXPR
2097 || code == FLOOR_DIV_EXPR
2098 || code == CEIL_DIV_EXPR
2099 || code == EXACT_DIV_EXPR
2100 || code == ROUND_DIV_EXPR
2101 || code == RSHIFT_EXPR
2102 || code == LSHIFT_EXPR);
2103 gcc_assert ((vr0->type == VR_RANGE
2104 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2105 && vr0->type == vr1->type);
2107 type = vr0->type;
2109 /* Compute the 4 cross operations. */
2110 sop = false;
2111 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2112 if (val[0] == NULL_TREE)
2113 sop = true;
2115 if (vr1->max == vr1->min)
2116 val[1] = NULL_TREE;
2117 else
2119 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2120 if (val[1] == NULL_TREE)
2121 sop = true;
2124 if (vr0->max == vr0->min)
2125 val[2] = NULL_TREE;
2126 else
2128 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2129 if (val[2] == NULL_TREE)
2130 sop = true;
2133 if (vr0->min == vr0->max || vr1->min == vr1->max)
2134 val[3] = NULL_TREE;
2135 else
2137 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2138 if (val[3] == NULL_TREE)
2139 sop = true;
2142 if (sop)
2144 set_value_range_to_varying (vr);
2145 return;
2148 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2149 of VAL[i]. */
2150 min = val[0];
2151 max = val[0];
2152 for (i = 1; i < 4; i++)
2154 if (!is_gimple_min_invariant (min)
2155 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2156 || !is_gimple_min_invariant (max)
2157 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2158 break;
2160 if (val[i])
2162 if (!is_gimple_min_invariant (val[i])
2163 || (TREE_OVERFLOW (val[i])
2164 && !is_overflow_infinity (val[i])))
2166 /* If we found an overflowed value, set MIN and MAX
2167 to it so that we set the resulting range to
2168 VARYING. */
2169 min = max = val[i];
2170 break;
2173 if (compare_values (val[i], min) == -1)
2174 min = val[i];
2176 if (compare_values (val[i], max) == 1)
2177 max = val[i];
2181 /* If either MIN or MAX overflowed, then set the resulting range to
2182 VARYING. But we do accept an overflow infinity
2183 representation. */
2184 if (min == NULL_TREE
2185 || !is_gimple_min_invariant (min)
2186 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2187 || max == NULL_TREE
2188 || !is_gimple_min_invariant (max)
2189 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2191 set_value_range_to_varying (vr);
2192 return;
2195 /* We punt if:
2196 1) [-INF, +INF]
2197 2) [-INF, +-INF(OVF)]
2198 3) [+-INF(OVF), +INF]
2199 4) [+-INF(OVF), +-INF(OVF)]
2200 We learn nothing when we have INF and INF(OVF) on both sides.
2201 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2202 overflow. */
2203 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2204 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2206 set_value_range_to_varying (vr);
2207 return;
2210 cmp = compare_values (min, max);
2211 if (cmp == -2 || cmp == 1)
2213 /* If the new range has its limits swapped around (MIN > MAX),
2214 then the operation caused one of them to wrap around, mark
2215 the new range VARYING. */
2216 set_value_range_to_varying (vr);
2218 else
2219 set_value_range (vr, type, min, max, NULL);
2222 /* Some quadruple precision helpers. */
2223 static int
2224 quad_int_cmp (double_int l0, double_int h0,
2225 double_int l1, double_int h1, bool uns)
2227 int c = h0.cmp (h1, uns);
2228 if (c != 0) return c;
2229 return l0.ucmp (l1);
2232 static void
2233 quad_int_pair_sort (double_int *l0, double_int *h0,
2234 double_int *l1, double_int *h1, bool uns)
2236 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2238 double_int tmp;
2239 tmp = *l0; *l0 = *l1; *l1 = tmp;
2240 tmp = *h0; *h0 = *h1; *h1 = tmp;
2244 /* Extract range information from a binary operation CODE based on
2245 the ranges of each of its operands, *VR0 and *VR1 with resulting
2246 type EXPR_TYPE. The resulting range is stored in *VR. */
2248 static void
2249 extract_range_from_binary_expr_1 (value_range_t *vr,
2250 enum tree_code code, tree expr_type,
2251 value_range_t *vr0_, value_range_t *vr1_)
2253 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2254 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2255 enum value_range_type type;
2256 tree min = NULL_TREE, max = NULL_TREE;
2257 int cmp;
2259 if (!INTEGRAL_TYPE_P (expr_type)
2260 && !POINTER_TYPE_P (expr_type))
2262 set_value_range_to_varying (vr);
2263 return;
2266 /* Not all binary expressions can be applied to ranges in a
2267 meaningful way. Handle only arithmetic operations. */
2268 if (code != PLUS_EXPR
2269 && code != MINUS_EXPR
2270 && code != POINTER_PLUS_EXPR
2271 && code != MULT_EXPR
2272 && code != TRUNC_DIV_EXPR
2273 && code != FLOOR_DIV_EXPR
2274 && code != CEIL_DIV_EXPR
2275 && code != EXACT_DIV_EXPR
2276 && code != ROUND_DIV_EXPR
2277 && code != TRUNC_MOD_EXPR
2278 && code != RSHIFT_EXPR
2279 && code != LSHIFT_EXPR
2280 && code != MIN_EXPR
2281 && code != MAX_EXPR
2282 && code != BIT_AND_EXPR
2283 && code != BIT_IOR_EXPR
2284 && code != BIT_XOR_EXPR)
2286 set_value_range_to_varying (vr);
2287 return;
2290 /* If both ranges are UNDEFINED, so is the result. */
2291 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2293 set_value_range_to_undefined (vr);
2294 return;
2296 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2297 code. At some point we may want to special-case operations that
2298 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2299 operand. */
2300 else if (vr0.type == VR_UNDEFINED)
2301 set_value_range_to_varying (&vr0);
2302 else if (vr1.type == VR_UNDEFINED)
2303 set_value_range_to_varying (&vr1);
2305 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2306 and express ~[] op X as ([]' op X) U ([]'' op X). */
2307 if (vr0.type == VR_ANTI_RANGE
2308 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2310 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2311 if (vrtem1.type != VR_UNDEFINED)
2313 value_range_t vrres = VR_INITIALIZER;
2314 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2315 &vrtem1, vr1_);
2316 vrp_meet (vr, &vrres);
2318 return;
2320 /* Likewise for X op ~[]. */
2321 if (vr1.type == VR_ANTI_RANGE
2322 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2324 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2325 if (vrtem1.type != VR_UNDEFINED)
2327 value_range_t vrres = VR_INITIALIZER;
2328 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2329 vr0_, &vrtem1);
2330 vrp_meet (vr, &vrres);
2332 return;
2335 /* The type of the resulting value range defaults to VR0.TYPE. */
2336 type = vr0.type;
2338 /* Refuse to operate on VARYING ranges, ranges of different kinds
2339 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2340 because we may be able to derive a useful range even if one of
2341 the operands is VR_VARYING or symbolic range. Similarly for
2342 divisions. TODO, we may be able to derive anti-ranges in
2343 some cases. */
2344 if (code != BIT_AND_EXPR
2345 && code != BIT_IOR_EXPR
2346 && code != TRUNC_DIV_EXPR
2347 && code != FLOOR_DIV_EXPR
2348 && code != CEIL_DIV_EXPR
2349 && code != EXACT_DIV_EXPR
2350 && code != ROUND_DIV_EXPR
2351 && code != TRUNC_MOD_EXPR
2352 && code != MIN_EXPR
2353 && code != MAX_EXPR
2354 && (vr0.type == VR_VARYING
2355 || vr1.type == VR_VARYING
2356 || vr0.type != vr1.type
2357 || symbolic_range_p (&vr0)
2358 || symbolic_range_p (&vr1)))
2360 set_value_range_to_varying (vr);
2361 return;
2364 /* Now evaluate the expression to determine the new range. */
2365 if (POINTER_TYPE_P (expr_type))
2367 if (code == MIN_EXPR || code == MAX_EXPR)
2369 /* For MIN/MAX expressions with pointers, we only care about
2370 nullness, if both are non null, then the result is nonnull.
2371 If both are null, then the result is null. Otherwise they
2372 are varying. */
2373 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2374 set_value_range_to_nonnull (vr, expr_type);
2375 else if (range_is_null (&vr0) && range_is_null (&vr1))
2376 set_value_range_to_null (vr, expr_type);
2377 else
2378 set_value_range_to_varying (vr);
2380 else if (code == POINTER_PLUS_EXPR)
2382 /* For pointer types, we are really only interested in asserting
2383 whether the expression evaluates to non-NULL. */
2384 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2385 set_value_range_to_nonnull (vr, expr_type);
2386 else if (range_is_null (&vr0) && range_is_null (&vr1))
2387 set_value_range_to_null (vr, expr_type);
2388 else
2389 set_value_range_to_varying (vr);
2391 else if (code == BIT_AND_EXPR)
2393 /* For pointer types, we are really only interested in asserting
2394 whether the expression evaluates to non-NULL. */
2395 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2396 set_value_range_to_nonnull (vr, expr_type);
2397 else if (range_is_null (&vr0) || range_is_null (&vr1))
2398 set_value_range_to_null (vr, expr_type);
2399 else
2400 set_value_range_to_varying (vr);
2402 else
2403 set_value_range_to_varying (vr);
2405 return;
2408 /* For integer ranges, apply the operation to each end of the
2409 range and see what we end up with. */
2410 if (code == PLUS_EXPR || code == MINUS_EXPR)
2412 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2413 ranges compute the precise range for such case if possible. */
2414 if (range_int_cst_p (&vr0)
2415 && range_int_cst_p (&vr1)
2416 /* We need as many bits as the possibly unsigned inputs. */
2417 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2419 double_int min0 = tree_to_double_int (vr0.min);
2420 double_int max0 = tree_to_double_int (vr0.max);
2421 double_int min1 = tree_to_double_int (vr1.min);
2422 double_int max1 = tree_to_double_int (vr1.max);
2423 bool uns = TYPE_UNSIGNED (expr_type);
2424 double_int type_min
2425 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2426 double_int type_max
2427 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2428 double_int dmin, dmax;
2429 int min_ovf = 0;
2430 int max_ovf = 0;
2432 if (code == PLUS_EXPR)
2434 dmin = min0 + min1;
2435 dmax = max0 + max1;
2437 /* Check for overflow in double_int. */
2438 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2439 min_ovf = min0.cmp (dmin, uns);
2440 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2441 max_ovf = max0.cmp (dmax, uns);
2443 else /* if (code == MINUS_EXPR) */
2445 dmin = min0 - max1;
2446 dmax = max0 - min1;
2448 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2449 min_ovf = min0.cmp (max1, uns);
2450 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2451 max_ovf = max0.cmp (min1, uns);
2454 /* For non-wrapping arithmetic look at possibly smaller
2455 value-ranges of the type. */
2456 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2458 if (vrp_val_min (expr_type))
2459 type_min = tree_to_double_int (vrp_val_min (expr_type));
2460 if (vrp_val_max (expr_type))
2461 type_max = tree_to_double_int (vrp_val_max (expr_type));
2464 /* Check for type overflow. */
2465 if (min_ovf == 0)
2467 if (dmin.cmp (type_min, uns) == -1)
2468 min_ovf = -1;
2469 else if (dmin.cmp (type_max, uns) == 1)
2470 min_ovf = 1;
2472 if (max_ovf == 0)
2474 if (dmax.cmp (type_min, uns) == -1)
2475 max_ovf = -1;
2476 else if (dmax.cmp (type_max, uns) == 1)
2477 max_ovf = 1;
2480 if (TYPE_OVERFLOW_WRAPS (expr_type))
2482 /* If overflow wraps, truncate the values and adjust the
2483 range kind and bounds appropriately. */
2484 double_int tmin
2485 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2486 double_int tmax
2487 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2488 if (min_ovf == max_ovf)
2490 /* No overflow or both overflow or underflow. The
2491 range kind stays VR_RANGE. */
2492 min = double_int_to_tree (expr_type, tmin);
2493 max = double_int_to_tree (expr_type, tmax);
2495 else if (min_ovf == -1
2496 && max_ovf == 1)
2498 /* Underflow and overflow, drop to VR_VARYING. */
2499 set_value_range_to_varying (vr);
2500 return;
2502 else
2504 /* Min underflow or max overflow. The range kind
2505 changes to VR_ANTI_RANGE. */
2506 bool covers = false;
2507 double_int tem = tmin;
2508 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2509 || (max_ovf == 1 && min_ovf == 0));
2510 type = VR_ANTI_RANGE;
2511 tmin = tmax + double_int_one;
2512 if (tmin.cmp (tmax, uns) < 0)
2513 covers = true;
2514 tmax = tem + double_int_minus_one;
2515 if (tmax.cmp (tem, uns) > 0)
2516 covers = true;
2517 /* If the anti-range would cover nothing, drop to varying.
2518 Likewise if the anti-range bounds are outside of the
2519 types values. */
2520 if (covers || tmin.cmp (tmax, uns) > 0)
2522 set_value_range_to_varying (vr);
2523 return;
2525 min = double_int_to_tree (expr_type, tmin);
2526 max = double_int_to_tree (expr_type, tmax);
2529 else
2531 /* If overflow does not wrap, saturate to the types min/max
2532 value. */
2533 if (min_ovf == -1)
2535 if (needs_overflow_infinity (expr_type)
2536 && supports_overflow_infinity (expr_type))
2537 min = negative_overflow_infinity (expr_type);
2538 else
2539 min = double_int_to_tree (expr_type, type_min);
2541 else if (min_ovf == 1)
2543 if (needs_overflow_infinity (expr_type)
2544 && supports_overflow_infinity (expr_type))
2545 min = positive_overflow_infinity (expr_type);
2546 else
2547 min = double_int_to_tree (expr_type, type_max);
2549 else
2550 min = double_int_to_tree (expr_type, dmin);
2552 if (max_ovf == -1)
2554 if (needs_overflow_infinity (expr_type)
2555 && supports_overflow_infinity (expr_type))
2556 max = negative_overflow_infinity (expr_type);
2557 else
2558 max = double_int_to_tree (expr_type, type_min);
2560 else if (max_ovf == 1)
2562 if (needs_overflow_infinity (expr_type)
2563 && supports_overflow_infinity (expr_type))
2564 max = positive_overflow_infinity (expr_type);
2565 else
2566 max = double_int_to_tree (expr_type, type_max);
2568 else
2569 max = double_int_to_tree (expr_type, dmax);
2571 if (needs_overflow_infinity (expr_type)
2572 && supports_overflow_infinity (expr_type))
2574 if (is_negative_overflow_infinity (vr0.min)
2575 || (code == PLUS_EXPR
2576 ? is_negative_overflow_infinity (vr1.min)
2577 : is_positive_overflow_infinity (vr1.max)))
2578 min = negative_overflow_infinity (expr_type);
2579 if (is_positive_overflow_infinity (vr0.max)
2580 || (code == PLUS_EXPR
2581 ? is_positive_overflow_infinity (vr1.max)
2582 : is_negative_overflow_infinity (vr1.min)))
2583 max = positive_overflow_infinity (expr_type);
2586 else
2588 /* For other cases, for example if we have a PLUS_EXPR with two
2589 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2590 to compute a precise range for such a case.
2591 ??? General even mixed range kind operations can be expressed
2592 by for example transforming ~[3, 5] + [1, 2] to range-only
2593 operations and a union primitive:
2594 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2595 [-INF+1, 4] U [6, +INF(OVF)]
2596 though usually the union is not exactly representable with
2597 a single range or anti-range as the above is
2598 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2599 but one could use a scheme similar to equivalences for this. */
2600 set_value_range_to_varying (vr);
2601 return;
2604 else if (code == MIN_EXPR
2605 || code == MAX_EXPR)
2607 if (vr0.type == VR_RANGE
2608 && !symbolic_range_p (&vr0))
2610 type = VR_RANGE;
2611 if (vr1.type == VR_RANGE
2612 && !symbolic_range_p (&vr1))
2614 /* For operations that make the resulting range directly
2615 proportional to the original ranges, apply the operation to
2616 the same end of each range. */
2617 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2618 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2620 else if (code == MIN_EXPR)
2622 min = vrp_val_min (expr_type);
2623 max = vr0.max;
2625 else if (code == MAX_EXPR)
2627 min = vr0.min;
2628 max = vrp_val_max (expr_type);
2631 else if (vr1.type == VR_RANGE
2632 && !symbolic_range_p (&vr1))
2634 type = VR_RANGE;
2635 if (code == MIN_EXPR)
2637 min = vrp_val_min (expr_type);
2638 max = vr1.max;
2640 else if (code == MAX_EXPR)
2642 min = vr1.min;
2643 max = vrp_val_max (expr_type);
2646 else
2648 set_value_range_to_varying (vr);
2649 return;
2652 else if (code == MULT_EXPR)
2654 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2655 drop to varying. */
2656 if (range_int_cst_p (&vr0)
2657 && range_int_cst_p (&vr1)
2658 && TYPE_OVERFLOW_WRAPS (expr_type))
2660 double_int min0, max0, min1, max1, sizem1, size;
2661 double_int prod0l, prod0h, prod1l, prod1h,
2662 prod2l, prod2h, prod3l, prod3h;
2663 bool uns0, uns1, uns;
2665 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2666 size = sizem1 + double_int_one;
2668 min0 = tree_to_double_int (vr0.min);
2669 max0 = tree_to_double_int (vr0.max);
2670 min1 = tree_to_double_int (vr1.min);
2671 max1 = tree_to_double_int (vr1.max);
2673 uns0 = TYPE_UNSIGNED (expr_type);
2674 uns1 = uns0;
2676 /* Canonicalize the intervals. */
2677 if (TYPE_UNSIGNED (expr_type))
2679 double_int min2 = size - min0;
2680 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2682 min0 = -min2;
2683 max0 -= size;
2684 uns0 = false;
2687 min2 = size - min1;
2688 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2690 min1 = -min2;
2691 max1 -= size;
2692 uns1 = false;
2695 uns = uns0 & uns1;
2697 bool overflow;
2698 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2699 if (!uns0 && min0.is_negative ())
2700 prod0h -= min1;
2701 if (!uns1 && min1.is_negative ())
2702 prod0h -= min0;
2704 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2705 if (!uns0 && min0.is_negative ())
2706 prod1h -= max1;
2707 if (!uns1 && max1.is_negative ())
2708 prod1h -= min0;
2710 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2711 if (!uns0 && max0.is_negative ())
2712 prod2h -= min1;
2713 if (!uns1 && min1.is_negative ())
2714 prod2h -= max0;
2716 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2717 if (!uns0 && max0.is_negative ())
2718 prod3h -= max1;
2719 if (!uns1 && max1.is_negative ())
2720 prod3h -= max0;
2722 /* Sort the 4 products. */
2723 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2724 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2725 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2726 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2728 /* Max - min. */
2729 if (prod0l.is_zero ())
2731 prod1l = double_int_zero;
2732 prod1h = -prod0h;
2734 else
2736 prod1l = -prod0l;
2737 prod1h = ~prod0h;
2739 prod2l = prod3l + prod1l;
2740 prod2h = prod3h + prod1h;
2741 if (prod2l.ult (prod3l))
2742 prod2h += double_int_one; /* carry */
2744 if (!prod2h.is_zero ()
2745 || prod2l.cmp (sizem1, true) >= 0)
2747 /* the range covers all values. */
2748 set_value_range_to_varying (vr);
2749 return;
2752 /* The following should handle the wrapping and selecting
2753 VR_ANTI_RANGE for us. */
2754 min = double_int_to_tree (expr_type, prod0l);
2755 max = double_int_to_tree (expr_type, prod3l);
2756 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2757 return;
2760 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2761 drop to VR_VARYING. It would take more effort to compute a
2762 precise range for such a case. For example, if we have
2763 op0 == 65536 and op1 == 65536 with their ranges both being
2764 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2765 we cannot claim that the product is in ~[0,0]. Note that we
2766 are guaranteed to have vr0.type == vr1.type at this
2767 point. */
2768 if (vr0.type == VR_ANTI_RANGE
2769 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2771 set_value_range_to_varying (vr);
2772 return;
2775 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2776 return;
2778 else if (code == RSHIFT_EXPR
2779 || code == LSHIFT_EXPR)
2781 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2782 then drop to VR_VARYING. Outside of this range we get undefined
2783 behavior from the shift operation. We cannot even trust
2784 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2785 shifts, and the operation at the tree level may be widened. */
2786 if (range_int_cst_p (&vr1)
2787 && compare_tree_int (vr1.min, 0) >= 0
2788 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2790 if (code == RSHIFT_EXPR)
2792 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2793 return;
2795 /* We can map lshifts by constants to MULT_EXPR handling. */
2796 else if (code == LSHIFT_EXPR
2797 && range_int_cst_singleton_p (&vr1))
2799 bool saved_flag_wrapv;
2800 value_range_t vr1p = VR_INITIALIZER;
2801 vr1p.type = VR_RANGE;
2802 vr1p.min
2803 = double_int_to_tree (expr_type,
2804 double_int_one
2805 .llshift (TREE_INT_CST_LOW (vr1.min),
2806 TYPE_PRECISION (expr_type)));
2807 vr1p.max = vr1p.min;
2808 /* We have to use a wrapping multiply though as signed overflow
2809 on lshifts is implementation defined in C89. */
2810 saved_flag_wrapv = flag_wrapv;
2811 flag_wrapv = 1;
2812 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2813 &vr0, &vr1p);
2814 flag_wrapv = saved_flag_wrapv;
2815 return;
2817 else if (code == LSHIFT_EXPR
2818 && range_int_cst_p (&vr0))
2820 int prec = TYPE_PRECISION (expr_type);
2821 int overflow_pos = prec;
2822 int bound_shift;
2823 double_int bound, complement, low_bound, high_bound;
2824 bool uns = TYPE_UNSIGNED (expr_type);
2825 bool in_bounds = false;
2827 if (!uns)
2828 overflow_pos -= 1;
2830 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2831 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2832 overflow. However, for that to happen, vr1.max needs to be
2833 zero, which means vr1 is a singleton range of zero, which
2834 means it should be handled by the previous LSHIFT_EXPR
2835 if-clause. */
2836 bound = double_int_one.llshift (bound_shift, prec);
2837 complement = ~(bound - double_int_one);
2839 if (uns)
2841 low_bound = bound;
2842 high_bound = complement.zext (prec);
2843 if (tree_to_double_int (vr0.max).ult (low_bound))
2845 /* [5, 6] << [1, 2] == [10, 24]. */
2846 /* We're shifting out only zeroes, the value increases
2847 monotonically. */
2848 in_bounds = true;
2850 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2852 /* [0xffffff00, 0xffffffff] << [1, 2]
2853 == [0xfffffc00, 0xfffffffe]. */
2854 /* We're shifting out only ones, the value decreases
2855 monotonically. */
2856 in_bounds = true;
2859 else
2861 /* [-1, 1] << [1, 2] == [-4, 4]. */
2862 low_bound = complement.sext (prec);
2863 high_bound = bound;
2864 if (tree_to_double_int (vr0.max).slt (high_bound)
2865 && low_bound.slt (tree_to_double_int (vr0.min)))
2867 /* For non-negative numbers, we're shifting out only
2868 zeroes, the value increases monotonically.
2869 For negative numbers, we're shifting out only ones, the
2870 value decreases monotomically. */
2871 in_bounds = true;
2875 if (in_bounds)
2877 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2878 return;
2882 set_value_range_to_varying (vr);
2883 return;
2885 else if (code == TRUNC_DIV_EXPR
2886 || code == FLOOR_DIV_EXPR
2887 || code == CEIL_DIV_EXPR
2888 || code == EXACT_DIV_EXPR
2889 || code == ROUND_DIV_EXPR)
2891 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2893 /* For division, if op1 has VR_RANGE but op0 does not, something
2894 can be deduced just from that range. Say [min, max] / [4, max]
2895 gives [min / 4, max / 4] range. */
2896 if (vr1.type == VR_RANGE
2897 && !symbolic_range_p (&vr1)
2898 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2900 vr0.type = type = VR_RANGE;
2901 vr0.min = vrp_val_min (expr_type);
2902 vr0.max = vrp_val_max (expr_type);
2904 else
2906 set_value_range_to_varying (vr);
2907 return;
2911 /* For divisions, if flag_non_call_exceptions is true, we must
2912 not eliminate a division by zero. */
2913 if (cfun->can_throw_non_call_exceptions
2914 && (vr1.type != VR_RANGE
2915 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2917 set_value_range_to_varying (vr);
2918 return;
2921 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2922 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2923 include 0. */
2924 if (vr0.type == VR_RANGE
2925 && (vr1.type != VR_RANGE
2926 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2928 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2929 int cmp;
2931 min = NULL_TREE;
2932 max = NULL_TREE;
2933 if (TYPE_UNSIGNED (expr_type)
2934 || value_range_nonnegative_p (&vr1))
2936 /* For unsigned division or when divisor is known
2937 to be non-negative, the range has to cover
2938 all numbers from 0 to max for positive max
2939 and all numbers from min to 0 for negative min. */
2940 cmp = compare_values (vr0.max, zero);
2941 if (cmp == -1)
2942 max = zero;
2943 else if (cmp == 0 || cmp == 1)
2944 max = vr0.max;
2945 else
2946 type = VR_VARYING;
2947 cmp = compare_values (vr0.min, zero);
2948 if (cmp == 1)
2949 min = zero;
2950 else if (cmp == 0 || cmp == -1)
2951 min = vr0.min;
2952 else
2953 type = VR_VARYING;
2955 else
2957 /* Otherwise the range is -max .. max or min .. -min
2958 depending on which bound is bigger in absolute value,
2959 as the division can change the sign. */
2960 abs_extent_range (vr, vr0.min, vr0.max);
2961 return;
2963 if (type == VR_VARYING)
2965 set_value_range_to_varying (vr);
2966 return;
2969 else
2971 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2972 return;
2975 else if (code == TRUNC_MOD_EXPR)
2977 if (vr1.type != VR_RANGE
2978 || range_includes_zero_p (vr1.min, vr1.max) != 0
2979 || vrp_val_is_min (vr1.min))
2981 set_value_range_to_varying (vr);
2982 return;
2984 type = VR_RANGE;
2985 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2986 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2987 if (tree_int_cst_lt (max, vr1.max))
2988 max = vr1.max;
2989 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2990 /* If the dividend is non-negative the modulus will be
2991 non-negative as well. */
2992 if (TYPE_UNSIGNED (expr_type)
2993 || value_range_nonnegative_p (&vr0))
2994 min = build_int_cst (TREE_TYPE (max), 0);
2995 else
2996 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2998 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3000 bool int_cst_range0, int_cst_range1;
3001 double_int may_be_nonzero0, may_be_nonzero1;
3002 double_int must_be_nonzero0, must_be_nonzero1;
3004 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3005 &must_be_nonzero0);
3006 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3007 &must_be_nonzero1);
3009 type = VR_RANGE;
3010 if (code == BIT_AND_EXPR)
3012 double_int dmax;
3013 min = double_int_to_tree (expr_type,
3014 must_be_nonzero0 & must_be_nonzero1);
3015 dmax = may_be_nonzero0 & may_be_nonzero1;
3016 /* If both input ranges contain only negative values we can
3017 truncate the result range maximum to the minimum of the
3018 input range maxima. */
3019 if (int_cst_range0 && int_cst_range1
3020 && tree_int_cst_sgn (vr0.max) < 0
3021 && tree_int_cst_sgn (vr1.max) < 0)
3023 dmax = dmax.min (tree_to_double_int (vr0.max),
3024 TYPE_UNSIGNED (expr_type));
3025 dmax = dmax.min (tree_to_double_int (vr1.max),
3026 TYPE_UNSIGNED (expr_type));
3028 /* If either input range contains only non-negative values
3029 we can truncate the result range maximum to the respective
3030 maximum of the input range. */
3031 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3032 dmax = dmax.min (tree_to_double_int (vr0.max),
3033 TYPE_UNSIGNED (expr_type));
3034 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3035 dmax = dmax.min (tree_to_double_int (vr1.max),
3036 TYPE_UNSIGNED (expr_type));
3037 max = double_int_to_tree (expr_type, dmax);
3039 else if (code == BIT_IOR_EXPR)
3041 double_int dmin;
3042 max = double_int_to_tree (expr_type,
3043 may_be_nonzero0 | may_be_nonzero1);
3044 dmin = must_be_nonzero0 | must_be_nonzero1;
3045 /* If the input ranges contain only positive values we can
3046 truncate the minimum of the result range to the maximum
3047 of the input range minima. */
3048 if (int_cst_range0 && int_cst_range1
3049 && tree_int_cst_sgn (vr0.min) >= 0
3050 && tree_int_cst_sgn (vr1.min) >= 0)
3052 dmin = dmin.max (tree_to_double_int (vr0.min),
3053 TYPE_UNSIGNED (expr_type));
3054 dmin = dmin.max (tree_to_double_int (vr1.min),
3055 TYPE_UNSIGNED (expr_type));
3057 /* If either input range contains only negative values
3058 we can truncate the minimum of the result range to the
3059 respective minimum range. */
3060 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3061 dmin = dmin.max (tree_to_double_int (vr0.min),
3062 TYPE_UNSIGNED (expr_type));
3063 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3064 dmin = dmin.max (tree_to_double_int (vr1.min),
3065 TYPE_UNSIGNED (expr_type));
3066 min = double_int_to_tree (expr_type, dmin);
3068 else if (code == BIT_XOR_EXPR)
3070 double_int result_zero_bits, result_one_bits;
3071 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3072 | ~(may_be_nonzero0 | may_be_nonzero1);
3073 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3074 | must_be_nonzero1.and_not (may_be_nonzero0);
3075 max = double_int_to_tree (expr_type, ~result_zero_bits);
3076 min = double_int_to_tree (expr_type, result_one_bits);
3077 /* If the range has all positive or all negative values the
3078 result is better than VARYING. */
3079 if (tree_int_cst_sgn (min) < 0
3080 || tree_int_cst_sgn (max) >= 0)
3082 else
3083 max = min = NULL_TREE;
3086 else
3087 gcc_unreachable ();
3089 /* If either MIN or MAX overflowed, then set the resulting range to
3090 VARYING. But we do accept an overflow infinity
3091 representation. */
3092 if (min == NULL_TREE
3093 || !is_gimple_min_invariant (min)
3094 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3095 || max == NULL_TREE
3096 || !is_gimple_min_invariant (max)
3097 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3099 set_value_range_to_varying (vr);
3100 return;
3103 /* We punt if:
3104 1) [-INF, +INF]
3105 2) [-INF, +-INF(OVF)]
3106 3) [+-INF(OVF), +INF]
3107 4) [+-INF(OVF), +-INF(OVF)]
3108 We learn nothing when we have INF and INF(OVF) on both sides.
3109 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3110 overflow. */
3111 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3112 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3114 set_value_range_to_varying (vr);
3115 return;
3118 cmp = compare_values (min, max);
3119 if (cmp == -2 || cmp == 1)
3121 /* If the new range has its limits swapped around (MIN > MAX),
3122 then the operation caused one of them to wrap around, mark
3123 the new range VARYING. */
3124 set_value_range_to_varying (vr);
3126 else
3127 set_value_range (vr, type, min, max, NULL);
3130 /* Extract range information from a binary expression OP0 CODE OP1 based on
3131 the ranges of each of its operands with resulting type EXPR_TYPE.
3132 The resulting range is stored in *VR. */
3134 static void
3135 extract_range_from_binary_expr (value_range_t *vr,
3136 enum tree_code code,
3137 tree expr_type, tree op0, tree op1)
3139 value_range_t vr0 = VR_INITIALIZER;
3140 value_range_t vr1 = VR_INITIALIZER;
3142 /* Get value ranges for each operand. For constant operands, create
3143 a new value range with the operand to simplify processing. */
3144 if (TREE_CODE (op0) == SSA_NAME)
3145 vr0 = *(get_value_range (op0));
3146 else if (is_gimple_min_invariant (op0))
3147 set_value_range_to_value (&vr0, op0, NULL);
3148 else
3149 set_value_range_to_varying (&vr0);
3151 if (TREE_CODE (op1) == SSA_NAME)
3152 vr1 = *(get_value_range (op1));
3153 else if (is_gimple_min_invariant (op1))
3154 set_value_range_to_value (&vr1, op1, NULL);
3155 else
3156 set_value_range_to_varying (&vr1);
3158 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3161 /* Extract range information from a unary operation CODE based on
3162 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3163 The The resulting range is stored in *VR. */
3165 static void
3166 extract_range_from_unary_expr_1 (value_range_t *vr,
3167 enum tree_code code, tree type,
3168 value_range_t *vr0_, tree op0_type)
3170 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3172 /* VRP only operates on integral and pointer types. */
3173 if (!(INTEGRAL_TYPE_P (op0_type)
3174 || POINTER_TYPE_P (op0_type))
3175 || !(INTEGRAL_TYPE_P (type)
3176 || POINTER_TYPE_P (type)))
3178 set_value_range_to_varying (vr);
3179 return;
3182 /* If VR0 is UNDEFINED, so is the result. */
3183 if (vr0.type == VR_UNDEFINED)
3185 set_value_range_to_undefined (vr);
3186 return;
3189 /* Handle operations that we express in terms of others. */
3190 if (code == PAREN_EXPR)
3192 /* PAREN_EXPR is a simple copy. */
3193 copy_value_range (vr, &vr0);
3194 return;
3196 else if (code == NEGATE_EXPR)
3198 /* -X is simply 0 - X, so re-use existing code that also handles
3199 anti-ranges fine. */
3200 value_range_t zero = VR_INITIALIZER;
3201 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3202 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3203 return;
3205 else if (code == BIT_NOT_EXPR)
3207 /* ~X is simply -1 - X, so re-use existing code that also handles
3208 anti-ranges fine. */
3209 value_range_t minusone = VR_INITIALIZER;
3210 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3211 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3212 type, &minusone, &vr0);
3213 return;
3216 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3217 and express op ~[] as (op []') U (op []''). */
3218 if (vr0.type == VR_ANTI_RANGE
3219 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3221 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3222 if (vrtem1.type != VR_UNDEFINED)
3224 value_range_t vrres = VR_INITIALIZER;
3225 extract_range_from_unary_expr_1 (&vrres, code, type,
3226 &vrtem1, op0_type);
3227 vrp_meet (vr, &vrres);
3229 return;
3232 if (CONVERT_EXPR_CODE_P (code))
3234 tree inner_type = op0_type;
3235 tree outer_type = type;
3237 /* If the expression evaluates to a pointer, we are only interested in
3238 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3239 if (POINTER_TYPE_P (type))
3241 if (range_is_nonnull (&vr0))
3242 set_value_range_to_nonnull (vr, type);
3243 else if (range_is_null (&vr0))
3244 set_value_range_to_null (vr, type);
3245 else
3246 set_value_range_to_varying (vr);
3247 return;
3250 /* If VR0 is varying and we increase the type precision, assume
3251 a full range for the following transformation. */
3252 if (vr0.type == VR_VARYING
3253 && INTEGRAL_TYPE_P (inner_type)
3254 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3256 vr0.type = VR_RANGE;
3257 vr0.min = TYPE_MIN_VALUE (inner_type);
3258 vr0.max = TYPE_MAX_VALUE (inner_type);
3261 /* If VR0 is a constant range or anti-range and the conversion is
3262 not truncating we can convert the min and max values and
3263 canonicalize the resulting range. Otherwise we can do the
3264 conversion if the size of the range is less than what the
3265 precision of the target type can represent and the range is
3266 not an anti-range. */
3267 if ((vr0.type == VR_RANGE
3268 || vr0.type == VR_ANTI_RANGE)
3269 && TREE_CODE (vr0.min) == INTEGER_CST
3270 && TREE_CODE (vr0.max) == INTEGER_CST
3271 && (!is_overflow_infinity (vr0.min)
3272 || (vr0.type == VR_RANGE
3273 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3274 && needs_overflow_infinity (outer_type)
3275 && supports_overflow_infinity (outer_type)))
3276 && (!is_overflow_infinity (vr0.max)
3277 || (vr0.type == VR_RANGE
3278 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3279 && needs_overflow_infinity (outer_type)
3280 && supports_overflow_infinity (outer_type)))
3281 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3282 || (vr0.type == VR_RANGE
3283 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3284 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3285 size_int (TYPE_PRECISION (outer_type)))))))
3287 tree new_min, new_max;
3288 if (is_overflow_infinity (vr0.min))
3289 new_min = negative_overflow_infinity (outer_type);
3290 else
3291 new_min = force_fit_type_double (outer_type,
3292 tree_to_double_int (vr0.min),
3293 0, false);
3294 if (is_overflow_infinity (vr0.max))
3295 new_max = positive_overflow_infinity (outer_type);
3296 else
3297 new_max = force_fit_type_double (outer_type,
3298 tree_to_double_int (vr0.max),
3299 0, false);
3300 set_and_canonicalize_value_range (vr, vr0.type,
3301 new_min, new_max, NULL);
3302 return;
3305 set_value_range_to_varying (vr);
3306 return;
3308 else if (code == ABS_EXPR)
3310 tree min, max;
3311 int cmp;
3313 /* Pass through vr0 in the easy cases. */
3314 if (TYPE_UNSIGNED (type)
3315 || value_range_nonnegative_p (&vr0))
3317 copy_value_range (vr, &vr0);
3318 return;
3321 /* For the remaining varying or symbolic ranges we can't do anything
3322 useful. */
3323 if (vr0.type == VR_VARYING
3324 || symbolic_range_p (&vr0))
3326 set_value_range_to_varying (vr);
3327 return;
3330 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3331 useful range. */
3332 if (!TYPE_OVERFLOW_UNDEFINED (type)
3333 && ((vr0.type == VR_RANGE
3334 && vrp_val_is_min (vr0.min))
3335 || (vr0.type == VR_ANTI_RANGE
3336 && !vrp_val_is_min (vr0.min))))
3338 set_value_range_to_varying (vr);
3339 return;
3342 /* ABS_EXPR may flip the range around, if the original range
3343 included negative values. */
3344 if (is_overflow_infinity (vr0.min))
3345 min = positive_overflow_infinity (type);
3346 else if (!vrp_val_is_min (vr0.min))
3347 min = fold_unary_to_constant (code, type, vr0.min);
3348 else if (!needs_overflow_infinity (type))
3349 min = TYPE_MAX_VALUE (type);
3350 else if (supports_overflow_infinity (type))
3351 min = positive_overflow_infinity (type);
3352 else
3354 set_value_range_to_varying (vr);
3355 return;
3358 if (is_overflow_infinity (vr0.max))
3359 max = positive_overflow_infinity (type);
3360 else if (!vrp_val_is_min (vr0.max))
3361 max = fold_unary_to_constant (code, type, vr0.max);
3362 else if (!needs_overflow_infinity (type))
3363 max = TYPE_MAX_VALUE (type);
3364 else if (supports_overflow_infinity (type)
3365 /* We shouldn't generate [+INF, +INF] as set_value_range
3366 doesn't like this and ICEs. */
3367 && !is_positive_overflow_infinity (min))
3368 max = positive_overflow_infinity (type);
3369 else
3371 set_value_range_to_varying (vr);
3372 return;
3375 cmp = compare_values (min, max);
3377 /* If a VR_ANTI_RANGEs contains zero, then we have
3378 ~[-INF, min(MIN, MAX)]. */
3379 if (vr0.type == VR_ANTI_RANGE)
3381 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3383 /* Take the lower of the two values. */
3384 if (cmp != 1)
3385 max = min;
3387 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3388 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3389 flag_wrapv is set and the original anti-range doesn't include
3390 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3391 if (TYPE_OVERFLOW_WRAPS (type))
3393 tree type_min_value = TYPE_MIN_VALUE (type);
3395 min = (vr0.min != type_min_value
3396 ? int_const_binop (PLUS_EXPR, type_min_value,
3397 integer_one_node)
3398 : type_min_value);
3400 else
3402 if (overflow_infinity_range_p (&vr0))
3403 min = negative_overflow_infinity (type);
3404 else
3405 min = TYPE_MIN_VALUE (type);
3408 else
3410 /* All else has failed, so create the range [0, INF], even for
3411 flag_wrapv since TYPE_MIN_VALUE is in the original
3412 anti-range. */
3413 vr0.type = VR_RANGE;
3414 min = build_int_cst (type, 0);
3415 if (needs_overflow_infinity (type))
3417 if (supports_overflow_infinity (type))
3418 max = positive_overflow_infinity (type);
3419 else
3421 set_value_range_to_varying (vr);
3422 return;
3425 else
3426 max = TYPE_MAX_VALUE (type);
3430 /* If the range contains zero then we know that the minimum value in the
3431 range will be zero. */
3432 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3434 if (cmp == 1)
3435 max = min;
3436 min = build_int_cst (type, 0);
3438 else
3440 /* If the range was reversed, swap MIN and MAX. */
3441 if (cmp == 1)
3443 tree t = min;
3444 min = max;
3445 max = t;
3449 cmp = compare_values (min, max);
3450 if (cmp == -2 || cmp == 1)
3452 /* If the new range has its limits swapped around (MIN > MAX),
3453 then the operation caused one of them to wrap around, mark
3454 the new range VARYING. */
3455 set_value_range_to_varying (vr);
3457 else
3458 set_value_range (vr, vr0.type, min, max, NULL);
3459 return;
3462 /* For unhandled operations fall back to varying. */
3463 set_value_range_to_varying (vr);
3464 return;
3468 /* Extract range information from a unary expression CODE OP0 based on
3469 the range of its operand with resulting type TYPE.
3470 The resulting range is stored in *VR. */
3472 static void
3473 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3474 tree type, tree op0)
3476 value_range_t vr0 = VR_INITIALIZER;
3478 /* Get value ranges for the operand. For constant operands, create
3479 a new value range with the operand to simplify processing. */
3480 if (TREE_CODE (op0) == SSA_NAME)
3481 vr0 = *(get_value_range (op0));
3482 else if (is_gimple_min_invariant (op0))
3483 set_value_range_to_value (&vr0, op0, NULL);
3484 else
3485 set_value_range_to_varying (&vr0);
3487 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3491 /* Extract range information from a conditional expression STMT based on
3492 the ranges of each of its operands and the expression code. */
3494 static void
3495 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3497 tree op0, op1;
3498 value_range_t vr0 = VR_INITIALIZER;
3499 value_range_t vr1 = VR_INITIALIZER;
3501 /* Get value ranges for each operand. For constant operands, create
3502 a new value range with the operand to simplify processing. */
3503 op0 = gimple_assign_rhs2 (stmt);
3504 if (TREE_CODE (op0) == SSA_NAME)
3505 vr0 = *(get_value_range (op0));
3506 else if (is_gimple_min_invariant (op0))
3507 set_value_range_to_value (&vr0, op0, NULL);
3508 else
3509 set_value_range_to_varying (&vr0);
3511 op1 = gimple_assign_rhs3 (stmt);
3512 if (TREE_CODE (op1) == SSA_NAME)
3513 vr1 = *(get_value_range (op1));
3514 else if (is_gimple_min_invariant (op1))
3515 set_value_range_to_value (&vr1, op1, NULL);
3516 else
3517 set_value_range_to_varying (&vr1);
3519 /* The resulting value range is the union of the operand ranges */
3520 copy_value_range (vr, &vr0);
3521 vrp_meet (vr, &vr1);
3525 /* Extract range information from a comparison expression EXPR based
3526 on the range of its operand and the expression code. */
3528 static void
3529 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3530 tree type, tree op0, tree op1)
3532 bool sop = false;
3533 tree val;
3535 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3536 NULL);
3538 /* A disadvantage of using a special infinity as an overflow
3539 representation is that we lose the ability to record overflow
3540 when we don't have an infinity. So we have to ignore a result
3541 which relies on overflow. */
3543 if (val && !is_overflow_infinity (val) && !sop)
3545 /* Since this expression was found on the RHS of an assignment,
3546 its type may be different from _Bool. Convert VAL to EXPR's
3547 type. */
3548 val = fold_convert (type, val);
3549 if (is_gimple_min_invariant (val))
3550 set_value_range_to_value (vr, val, vr->equiv);
3551 else
3552 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3554 else
3555 /* The result of a comparison is always true or false. */
3556 set_value_range_to_truthvalue (vr, type);
3559 /* Try to derive a nonnegative or nonzero range out of STMT relying
3560 primarily on generic routines in fold in conjunction with range data.
3561 Store the result in *VR */
3563 static void
3564 extract_range_basic (value_range_t *vr, gimple stmt)
3566 bool sop = false;
3567 tree type = gimple_expr_type (stmt);
3569 if (INTEGRAL_TYPE_P (type)
3570 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3571 set_value_range_to_nonnegative (vr, type,
3572 sop || stmt_overflow_infinity (stmt));
3573 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3574 && !sop)
3575 set_value_range_to_nonnull (vr, type);
3576 else
3577 set_value_range_to_varying (vr);
3581 /* Try to compute a useful range out of assignment STMT and store it
3582 in *VR. */
3584 static void
3585 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3587 enum tree_code code = gimple_assign_rhs_code (stmt);
3589 if (code == ASSERT_EXPR)
3590 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3591 else if (code == SSA_NAME)
3592 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3593 else if (TREE_CODE_CLASS (code) == tcc_binary)
3594 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3595 gimple_expr_type (stmt),
3596 gimple_assign_rhs1 (stmt),
3597 gimple_assign_rhs2 (stmt));
3598 else if (TREE_CODE_CLASS (code) == tcc_unary)
3599 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3600 gimple_expr_type (stmt),
3601 gimple_assign_rhs1 (stmt));
3602 else if (code == COND_EXPR)
3603 extract_range_from_cond_expr (vr, stmt);
3604 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3605 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3606 gimple_expr_type (stmt),
3607 gimple_assign_rhs1 (stmt),
3608 gimple_assign_rhs2 (stmt));
3609 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3610 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3611 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3612 else
3613 set_value_range_to_varying (vr);
3615 if (vr->type == VR_VARYING)
3616 extract_range_basic (vr, stmt);
3619 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3620 would be profitable to adjust VR using scalar evolution information
3621 for VAR. If so, update VR with the new limits. */
3623 static void
3624 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3625 gimple stmt, tree var)
3627 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3628 enum ev_direction dir;
3630 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3631 better opportunities than a regular range, but I'm not sure. */
3632 if (vr->type == VR_ANTI_RANGE)
3633 return;
3635 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3637 /* Like in PR19590, scev can return a constant function. */
3638 if (is_gimple_min_invariant (chrec))
3640 set_value_range_to_value (vr, chrec, vr->equiv);
3641 return;
3644 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3645 return;
3647 init = initial_condition_in_loop_num (chrec, loop->num);
3648 tem = op_with_constant_singleton_value_range (init);
3649 if (tem)
3650 init = tem;
3651 step = evolution_part_in_loop_num (chrec, loop->num);
3652 tem = op_with_constant_singleton_value_range (step);
3653 if (tem)
3654 step = tem;
3656 /* If STEP is symbolic, we can't know whether INIT will be the
3657 minimum or maximum value in the range. Also, unless INIT is
3658 a simple expression, compare_values and possibly other functions
3659 in tree-vrp won't be able to handle it. */
3660 if (step == NULL_TREE
3661 || !is_gimple_min_invariant (step)
3662 || !valid_value_p (init))
3663 return;
3665 dir = scev_direction (chrec);
3666 if (/* Do not adjust ranges if we do not know whether the iv increases
3667 or decreases, ... */
3668 dir == EV_DIR_UNKNOWN
3669 /* ... or if it may wrap. */
3670 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3671 true))
3672 return;
3674 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3675 negative_overflow_infinity and positive_overflow_infinity,
3676 because we have concluded that the loop probably does not
3677 wrap. */
3679 type = TREE_TYPE (var);
3680 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3681 tmin = lower_bound_in_type (type, type);
3682 else
3683 tmin = TYPE_MIN_VALUE (type);
3684 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3685 tmax = upper_bound_in_type (type, type);
3686 else
3687 tmax = TYPE_MAX_VALUE (type);
3689 /* Try to use estimated number of iterations for the loop to constrain the
3690 final value in the evolution. */
3691 if (TREE_CODE (step) == INTEGER_CST
3692 && is_gimple_val (init)
3693 && (TREE_CODE (init) != SSA_NAME
3694 || get_value_range (init)->type == VR_RANGE))
3696 double_int nit;
3698 /* We are only entering here for loop header PHI nodes, so using
3699 the number of latch executions is the correct thing to use. */
3700 if (max_loop_iterations (loop, &nit))
3702 value_range_t maxvr = VR_INITIALIZER;
3703 double_int dtmp;
3704 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3705 bool overflow = false;
3707 dtmp = tree_to_double_int (step)
3708 .mul_with_sign (nit, unsigned_p, &overflow);
3709 /* If the multiplication overflowed we can't do a meaningful
3710 adjustment. Likewise if the result doesn't fit in the type
3711 of the induction variable. For a signed type we have to
3712 check whether the result has the expected signedness which
3713 is that of the step as number of iterations is unsigned. */
3714 if (!overflow
3715 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3716 && (unsigned_p
3717 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3719 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3720 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3721 TREE_TYPE (init), init, tem);
3722 /* Likewise if the addition did. */
3723 if (maxvr.type == VR_RANGE)
3725 tmin = maxvr.min;
3726 tmax = maxvr.max;
3732 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3734 min = tmin;
3735 max = tmax;
3737 /* For VARYING or UNDEFINED ranges, just about anything we get
3738 from scalar evolutions should be better. */
3740 if (dir == EV_DIR_DECREASES)
3741 max = init;
3742 else
3743 min = init;
3745 /* If we would create an invalid range, then just assume we
3746 know absolutely nothing. This may be over-conservative,
3747 but it's clearly safe, and should happen only in unreachable
3748 parts of code, or for invalid programs. */
3749 if (compare_values (min, max) == 1)
3750 return;
3752 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3754 else if (vr->type == VR_RANGE)
3756 min = vr->min;
3757 max = vr->max;
3759 if (dir == EV_DIR_DECREASES)
3761 /* INIT is the maximum value. If INIT is lower than VR->MAX
3762 but no smaller than VR->MIN, set VR->MAX to INIT. */
3763 if (compare_values (init, max) == -1)
3764 max = init;
3766 /* According to the loop information, the variable does not
3767 overflow. If we think it does, probably because of an
3768 overflow due to arithmetic on a different INF value,
3769 reset now. */
3770 if (is_negative_overflow_infinity (min)
3771 || compare_values (min, tmin) == -1)
3772 min = tmin;
3775 else
3777 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3778 if (compare_values (init, min) == 1)
3779 min = init;
3781 if (is_positive_overflow_infinity (max)
3782 || compare_values (tmax, max) == -1)
3783 max = tmax;
3786 /* If we just created an invalid range with the minimum
3787 greater than the maximum, we fail conservatively.
3788 This should happen only in unreachable
3789 parts of code, or for invalid programs. */
3790 if (compare_values (min, max) == 1)
3791 return;
3793 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3797 /* Return true if VAR may overflow at STMT. This checks any available
3798 loop information to see if we can determine that VAR does not
3799 overflow. */
3801 static bool
3802 vrp_var_may_overflow (tree var, gimple stmt)
3804 struct loop *l;
3805 tree chrec, init, step;
3807 if (current_loops == NULL)
3808 return true;
3810 l = loop_containing_stmt (stmt);
3811 if (l == NULL
3812 || !loop_outer (l))
3813 return true;
3815 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3816 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3817 return true;
3819 init = initial_condition_in_loop_num (chrec, l->num);
3820 step = evolution_part_in_loop_num (chrec, l->num);
3822 if (step == NULL_TREE
3823 || !is_gimple_min_invariant (step)
3824 || !valid_value_p (init))
3825 return true;
3827 /* If we get here, we know something useful about VAR based on the
3828 loop information. If it wraps, it may overflow. */
3830 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3831 true))
3832 return true;
3834 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3836 print_generic_expr (dump_file, var, 0);
3837 fprintf (dump_file, ": loop information indicates does not overflow\n");
3840 return false;
3844 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3846 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3847 all the values in the ranges.
3849 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3851 - Return NULL_TREE if it is not always possible to determine the
3852 value of the comparison.
3854 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3855 overflow infinity was used in the test. */
3858 static tree
3859 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3860 bool *strict_overflow_p)
3862 /* VARYING or UNDEFINED ranges cannot be compared. */
3863 if (vr0->type == VR_VARYING
3864 || vr0->type == VR_UNDEFINED
3865 || vr1->type == VR_VARYING
3866 || vr1->type == VR_UNDEFINED)
3867 return NULL_TREE;
3869 /* Anti-ranges need to be handled separately. */
3870 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3872 /* If both are anti-ranges, then we cannot compute any
3873 comparison. */
3874 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3875 return NULL_TREE;
3877 /* These comparisons are never statically computable. */
3878 if (comp == GT_EXPR
3879 || comp == GE_EXPR
3880 || comp == LT_EXPR
3881 || comp == LE_EXPR)
3882 return NULL_TREE;
3884 /* Equality can be computed only between a range and an
3885 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3886 if (vr0->type == VR_RANGE)
3888 /* To simplify processing, make VR0 the anti-range. */
3889 value_range_t *tmp = vr0;
3890 vr0 = vr1;
3891 vr1 = tmp;
3894 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3896 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3897 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3898 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3900 return NULL_TREE;
3903 if (!usable_range_p (vr0, strict_overflow_p)
3904 || !usable_range_p (vr1, strict_overflow_p))
3905 return NULL_TREE;
3907 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3908 operands around and change the comparison code. */
3909 if (comp == GT_EXPR || comp == GE_EXPR)
3911 value_range_t *tmp;
3912 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3913 tmp = vr0;
3914 vr0 = vr1;
3915 vr1 = tmp;
3918 if (comp == EQ_EXPR)
3920 /* Equality may only be computed if both ranges represent
3921 exactly one value. */
3922 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3923 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3925 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3926 strict_overflow_p);
3927 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3928 strict_overflow_p);
3929 if (cmp_min == 0 && cmp_max == 0)
3930 return boolean_true_node;
3931 else if (cmp_min != -2 && cmp_max != -2)
3932 return boolean_false_node;
3934 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3935 else if (compare_values_warnv (vr0->min, vr1->max,
3936 strict_overflow_p) == 1
3937 || compare_values_warnv (vr1->min, vr0->max,
3938 strict_overflow_p) == 1)
3939 return boolean_false_node;
3941 return NULL_TREE;
3943 else if (comp == NE_EXPR)
3945 int cmp1, cmp2;
3947 /* If VR0 is completely to the left or completely to the right
3948 of VR1, they are always different. Notice that we need to
3949 make sure that both comparisons yield similar results to
3950 avoid comparing values that cannot be compared at
3951 compile-time. */
3952 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3953 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3954 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3955 return boolean_true_node;
3957 /* If VR0 and VR1 represent a single value and are identical,
3958 return false. */
3959 else if (compare_values_warnv (vr0->min, vr0->max,
3960 strict_overflow_p) == 0
3961 && compare_values_warnv (vr1->min, vr1->max,
3962 strict_overflow_p) == 0
3963 && compare_values_warnv (vr0->min, vr1->min,
3964 strict_overflow_p) == 0
3965 && compare_values_warnv (vr0->max, vr1->max,
3966 strict_overflow_p) == 0)
3967 return boolean_false_node;
3969 /* Otherwise, they may or may not be different. */
3970 else
3971 return NULL_TREE;
3973 else if (comp == LT_EXPR || comp == LE_EXPR)
3975 int tst;
3977 /* If VR0 is to the left of VR1, return true. */
3978 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3979 if ((comp == LT_EXPR && tst == -1)
3980 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3982 if (overflow_infinity_range_p (vr0)
3983 || overflow_infinity_range_p (vr1))
3984 *strict_overflow_p = true;
3985 return boolean_true_node;
3988 /* If VR0 is to the right of VR1, return false. */
3989 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3990 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3991 || (comp == LE_EXPR && tst == 1))
3993 if (overflow_infinity_range_p (vr0)
3994 || overflow_infinity_range_p (vr1))
3995 *strict_overflow_p = true;
3996 return boolean_false_node;
3999 /* Otherwise, we don't know. */
4000 return NULL_TREE;
4003 gcc_unreachable ();
4007 /* Given a value range VR, a value VAL and a comparison code COMP, return
4008 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4009 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4010 always returns false. Return NULL_TREE if it is not always
4011 possible to determine the value of the comparison. Also set
4012 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4013 infinity was used in the test. */
4015 static tree
4016 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4017 bool *strict_overflow_p)
4019 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4020 return NULL_TREE;
4022 /* Anti-ranges need to be handled separately. */
4023 if (vr->type == VR_ANTI_RANGE)
4025 /* For anti-ranges, the only predicates that we can compute at
4026 compile time are equality and inequality. */
4027 if (comp == GT_EXPR
4028 || comp == GE_EXPR
4029 || comp == LT_EXPR
4030 || comp == LE_EXPR)
4031 return NULL_TREE;
4033 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4034 if (value_inside_range (val, vr->min, vr->max) == 1)
4035 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4037 return NULL_TREE;
4040 if (!usable_range_p (vr, strict_overflow_p))
4041 return NULL_TREE;
4043 if (comp == EQ_EXPR)
4045 /* EQ_EXPR may only be computed if VR represents exactly
4046 one value. */
4047 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4049 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4050 if (cmp == 0)
4051 return boolean_true_node;
4052 else if (cmp == -1 || cmp == 1 || cmp == 2)
4053 return boolean_false_node;
4055 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4056 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4057 return boolean_false_node;
4059 return NULL_TREE;
4061 else if (comp == NE_EXPR)
4063 /* If VAL is not inside VR, then they are always different. */
4064 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4065 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4066 return boolean_true_node;
4068 /* If VR represents exactly one value equal to VAL, then return
4069 false. */
4070 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4071 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4072 return boolean_false_node;
4074 /* Otherwise, they may or may not be different. */
4075 return NULL_TREE;
4077 else if (comp == LT_EXPR || comp == LE_EXPR)
4079 int tst;
4081 /* If VR is to the left of VAL, return true. */
4082 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4083 if ((comp == LT_EXPR && tst == -1)
4084 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4086 if (overflow_infinity_range_p (vr))
4087 *strict_overflow_p = true;
4088 return boolean_true_node;
4091 /* If VR is to the right of VAL, return false. */
4092 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4093 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4094 || (comp == LE_EXPR && tst == 1))
4096 if (overflow_infinity_range_p (vr))
4097 *strict_overflow_p = true;
4098 return boolean_false_node;
4101 /* Otherwise, we don't know. */
4102 return NULL_TREE;
4104 else if (comp == GT_EXPR || comp == GE_EXPR)
4106 int tst;
4108 /* If VR is to the right of VAL, return true. */
4109 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4110 if ((comp == GT_EXPR && tst == 1)
4111 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4113 if (overflow_infinity_range_p (vr))
4114 *strict_overflow_p = true;
4115 return boolean_true_node;
4118 /* If VR is to the left of VAL, return false. */
4119 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4120 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4121 || (comp == GE_EXPR && tst == -1))
4123 if (overflow_infinity_range_p (vr))
4124 *strict_overflow_p = true;
4125 return boolean_false_node;
4128 /* Otherwise, we don't know. */
4129 return NULL_TREE;
4132 gcc_unreachable ();
4136 /* Debugging dumps. */
4138 void dump_value_range (FILE *, value_range_t *);
4139 void debug_value_range (value_range_t *);
4140 void dump_all_value_ranges (FILE *);
4141 void debug_all_value_ranges (void);
4142 void dump_vr_equiv (FILE *, bitmap);
4143 void debug_vr_equiv (bitmap);
4146 /* Dump value range VR to FILE. */
4148 void
4149 dump_value_range (FILE *file, value_range_t *vr)
4151 if (vr == NULL)
4152 fprintf (file, "[]");
4153 else if (vr->type == VR_UNDEFINED)
4154 fprintf (file, "UNDEFINED");
4155 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4157 tree type = TREE_TYPE (vr->min);
4159 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4161 if (is_negative_overflow_infinity (vr->min))
4162 fprintf (file, "-INF(OVF)");
4163 else if (INTEGRAL_TYPE_P (type)
4164 && !TYPE_UNSIGNED (type)
4165 && vrp_val_is_min (vr->min))
4166 fprintf (file, "-INF");
4167 else
4168 print_generic_expr (file, vr->min, 0);
4170 fprintf (file, ", ");
4172 if (is_positive_overflow_infinity (vr->max))
4173 fprintf (file, "+INF(OVF)");
4174 else if (INTEGRAL_TYPE_P (type)
4175 && vrp_val_is_max (vr->max))
4176 fprintf (file, "+INF");
4177 else
4178 print_generic_expr (file, vr->max, 0);
4180 fprintf (file, "]");
4182 if (vr->equiv)
4184 bitmap_iterator bi;
4185 unsigned i, c = 0;
4187 fprintf (file, " EQUIVALENCES: { ");
4189 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4191 print_generic_expr (file, ssa_name (i), 0);
4192 fprintf (file, " ");
4193 c++;
4196 fprintf (file, "} (%u elements)", c);
4199 else if (vr->type == VR_VARYING)
4200 fprintf (file, "VARYING");
4201 else
4202 fprintf (file, "INVALID RANGE");
4206 /* Dump value range VR to stderr. */
4208 DEBUG_FUNCTION void
4209 debug_value_range (value_range_t *vr)
4211 dump_value_range (stderr, vr);
4212 fprintf (stderr, "\n");
4216 /* Dump value ranges of all SSA_NAMEs to FILE. */
4218 void
4219 dump_all_value_ranges (FILE *file)
4221 size_t i;
4223 for (i = 0; i < num_vr_values; i++)
4225 if (vr_value[i])
4227 print_generic_expr (file, ssa_name (i), 0);
4228 fprintf (file, ": ");
4229 dump_value_range (file, vr_value[i]);
4230 fprintf (file, "\n");
4234 fprintf (file, "\n");
4238 /* Dump all value ranges to stderr. */
4240 DEBUG_FUNCTION void
4241 debug_all_value_ranges (void)
4243 dump_all_value_ranges (stderr);
4247 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4248 create a new SSA name N and return the assertion assignment
4249 'V = ASSERT_EXPR <V, V OP W>'. */
4251 static gimple
4252 build_assert_expr_for (tree cond, tree v)
4254 tree a;
4255 gimple assertion;
4257 gcc_assert (TREE_CODE (v) == SSA_NAME
4258 && COMPARISON_CLASS_P (cond));
4260 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4261 assertion = gimple_build_assign (NULL_TREE, a);
4263 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4264 operand of the ASSERT_EXPR. Create it so the new name and the old one
4265 are registered in the replacement table so that we can fix the SSA web
4266 after adding all the ASSERT_EXPRs. */
4267 create_new_def_for (v, assertion, NULL);
4269 return assertion;
4273 /* Return false if EXPR is a predicate expression involving floating
4274 point values. */
4276 static inline bool
4277 fp_predicate (gimple stmt)
4279 GIMPLE_CHECK (stmt, GIMPLE_COND);
4281 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4285 /* If the range of values taken by OP can be inferred after STMT executes,
4286 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4287 describes the inferred range. Return true if a range could be
4288 inferred. */
4290 static bool
4291 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4293 *val_p = NULL_TREE;
4294 *comp_code_p = ERROR_MARK;
4296 /* Do not attempt to infer anything in names that flow through
4297 abnormal edges. */
4298 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4299 return false;
4301 /* Similarly, don't infer anything from statements that may throw
4302 exceptions. */
4303 if (stmt_could_throw_p (stmt))
4304 return false;
4306 /* If STMT is the last statement of a basic block with no
4307 successors, there is no point inferring anything about any of its
4308 operands. We would not be able to find a proper insertion point
4309 for the assertion, anyway. */
4310 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4311 return false;
4313 /* We can only assume that a pointer dereference will yield
4314 non-NULL if -fdelete-null-pointer-checks is enabled. */
4315 if (flag_delete_null_pointer_checks
4316 && POINTER_TYPE_P (TREE_TYPE (op))
4317 && gimple_code (stmt) != GIMPLE_ASM)
4319 unsigned num_uses, num_loads, num_stores;
4321 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4322 if (num_loads + num_stores > 0)
4324 *val_p = build_int_cst (TREE_TYPE (op), 0);
4325 *comp_code_p = NE_EXPR;
4326 return true;
4330 return false;
4334 void dump_asserts_for (FILE *, tree);
4335 void debug_asserts_for (tree);
4336 void dump_all_asserts (FILE *);
4337 void debug_all_asserts (void);
4339 /* Dump all the registered assertions for NAME to FILE. */
4341 void
4342 dump_asserts_for (FILE *file, tree name)
4344 assert_locus_t loc;
4346 fprintf (file, "Assertions to be inserted for ");
4347 print_generic_expr (file, name, 0);
4348 fprintf (file, "\n");
4350 loc = asserts_for[SSA_NAME_VERSION (name)];
4351 while (loc)
4353 fprintf (file, "\t");
4354 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4355 fprintf (file, "\n\tBB #%d", loc->bb->index);
4356 if (loc->e)
4358 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4359 loc->e->dest->index);
4360 dump_edge_info (file, loc->e, dump_flags, 0);
4362 fprintf (file, "\n\tPREDICATE: ");
4363 print_generic_expr (file, name, 0);
4364 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4365 print_generic_expr (file, loc->val, 0);
4366 fprintf (file, "\n\n");
4367 loc = loc->next;
4370 fprintf (file, "\n");
4374 /* Dump all the registered assertions for NAME to stderr. */
4376 DEBUG_FUNCTION void
4377 debug_asserts_for (tree name)
4379 dump_asserts_for (stderr, name);
4383 /* Dump all the registered assertions for all the names to FILE. */
4385 void
4386 dump_all_asserts (FILE *file)
4388 unsigned i;
4389 bitmap_iterator bi;
4391 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4392 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4393 dump_asserts_for (file, ssa_name (i));
4394 fprintf (file, "\n");
4398 /* Dump all the registered assertions for all the names to stderr. */
4400 DEBUG_FUNCTION void
4401 debug_all_asserts (void)
4403 dump_all_asserts (stderr);
4407 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4408 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4409 E->DEST, then register this location as a possible insertion point
4410 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4412 BB, E and SI provide the exact insertion point for the new
4413 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4414 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4415 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4416 must not be NULL. */
4418 static void
4419 register_new_assert_for (tree name, tree expr,
4420 enum tree_code comp_code,
4421 tree val,
4422 basic_block bb,
4423 edge e,
4424 gimple_stmt_iterator si)
4426 assert_locus_t n, loc, last_loc;
4427 basic_block dest_bb;
4429 gcc_checking_assert (bb == NULL || e == NULL);
4431 if (e == NULL)
4432 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4433 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4435 /* Never build an assert comparing against an integer constant with
4436 TREE_OVERFLOW set. This confuses our undefined overflow warning
4437 machinery. */
4438 if (TREE_CODE (val) == INTEGER_CST
4439 && TREE_OVERFLOW (val))
4440 val = build_int_cst_wide (TREE_TYPE (val),
4441 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4443 /* The new assertion A will be inserted at BB or E. We need to
4444 determine if the new location is dominated by a previously
4445 registered location for A. If we are doing an edge insertion,
4446 assume that A will be inserted at E->DEST. Note that this is not
4447 necessarily true.
4449 If E is a critical edge, it will be split. But even if E is
4450 split, the new block will dominate the same set of blocks that
4451 E->DEST dominates.
4453 The reverse, however, is not true, blocks dominated by E->DEST
4454 will not be dominated by the new block created to split E. So,
4455 if the insertion location is on a critical edge, we will not use
4456 the new location to move another assertion previously registered
4457 at a block dominated by E->DEST. */
4458 dest_bb = (bb) ? bb : e->dest;
4460 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4461 VAL at a block dominating DEST_BB, then we don't need to insert a new
4462 one. Similarly, if the same assertion already exists at a block
4463 dominated by DEST_BB and the new location is not on a critical
4464 edge, then update the existing location for the assertion (i.e.,
4465 move the assertion up in the dominance tree).
4467 Note, this is implemented as a simple linked list because there
4468 should not be more than a handful of assertions registered per
4469 name. If this becomes a performance problem, a table hashed by
4470 COMP_CODE and VAL could be implemented. */
4471 loc = asserts_for[SSA_NAME_VERSION (name)];
4472 last_loc = loc;
4473 while (loc)
4475 if (loc->comp_code == comp_code
4476 && (loc->val == val
4477 || operand_equal_p (loc->val, val, 0))
4478 && (loc->expr == expr
4479 || operand_equal_p (loc->expr, expr, 0)))
4481 /* If E is not a critical edge and DEST_BB
4482 dominates the existing location for the assertion, move
4483 the assertion up in the dominance tree by updating its
4484 location information. */
4485 if ((e == NULL || !EDGE_CRITICAL_P (e))
4486 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4488 loc->bb = dest_bb;
4489 loc->e = e;
4490 loc->si = si;
4491 return;
4495 /* Update the last node of the list and move to the next one. */
4496 last_loc = loc;
4497 loc = loc->next;
4500 /* If we didn't find an assertion already registered for
4501 NAME COMP_CODE VAL, add a new one at the end of the list of
4502 assertions associated with NAME. */
4503 n = XNEW (struct assert_locus_d);
4504 n->bb = dest_bb;
4505 n->e = e;
4506 n->si = si;
4507 n->comp_code = comp_code;
4508 n->val = val;
4509 n->expr = expr;
4510 n->next = NULL;
4512 if (last_loc)
4513 last_loc->next = n;
4514 else
4515 asserts_for[SSA_NAME_VERSION (name)] = n;
4517 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4520 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4521 Extract a suitable test code and value and store them into *CODE_P and
4522 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4524 If no extraction was possible, return FALSE, otherwise return TRUE.
4526 If INVERT is true, then we invert the result stored into *CODE_P. */
4528 static bool
4529 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4530 tree cond_op0, tree cond_op1,
4531 bool invert, enum tree_code *code_p,
4532 tree *val_p)
4534 enum tree_code comp_code;
4535 tree val;
4537 /* Otherwise, we have a comparison of the form NAME COMP VAL
4538 or VAL COMP NAME. */
4539 if (name == cond_op1)
4541 /* If the predicate is of the form VAL COMP NAME, flip
4542 COMP around because we need to register NAME as the
4543 first operand in the predicate. */
4544 comp_code = swap_tree_comparison (cond_code);
4545 val = cond_op0;
4547 else
4549 /* The comparison is of the form NAME COMP VAL, so the
4550 comparison code remains unchanged. */
4551 comp_code = cond_code;
4552 val = cond_op1;
4555 /* Invert the comparison code as necessary. */
4556 if (invert)
4557 comp_code = invert_tree_comparison (comp_code, 0);
4559 /* VRP does not handle float types. */
4560 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4561 return false;
4563 /* Do not register always-false predicates.
4564 FIXME: this works around a limitation in fold() when dealing with
4565 enumerations. Given 'enum { N1, N2 } x;', fold will not
4566 fold 'if (x > N2)' to 'if (0)'. */
4567 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4568 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4570 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4571 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4573 if (comp_code == GT_EXPR
4574 && (!max
4575 || compare_values (val, max) == 0))
4576 return false;
4578 if (comp_code == LT_EXPR
4579 && (!min
4580 || compare_values (val, min) == 0))
4581 return false;
4583 *code_p = comp_code;
4584 *val_p = val;
4585 return true;
4588 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4589 (otherwise return VAL). VAL and MASK must be zero-extended for
4590 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4591 (to transform signed values into unsigned) and at the end xor
4592 SGNBIT back. */
4594 static double_int
4595 masked_increment (double_int val, double_int mask, double_int sgnbit,
4596 unsigned int prec)
4598 double_int bit = double_int_one, res;
4599 unsigned int i;
4601 val ^= sgnbit;
4602 for (i = 0; i < prec; i++, bit += bit)
4604 res = mask;
4605 if ((res & bit).is_zero ())
4606 continue;
4607 res = bit - double_int_one;
4608 res = (val + bit).and_not (res);
4609 res &= mask;
4610 if (res.ugt (val))
4611 return res ^ sgnbit;
4613 return val ^ sgnbit;
4616 /* Try to register an edge assertion for SSA name NAME on edge E for
4617 the condition COND contributing to the conditional jump pointed to by BSI.
4618 Invert the condition COND if INVERT is true.
4619 Return true if an assertion for NAME could be registered. */
4621 static bool
4622 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4623 enum tree_code cond_code,
4624 tree cond_op0, tree cond_op1, bool invert)
4626 tree val;
4627 enum tree_code comp_code;
4628 bool retval = false;
4630 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4631 cond_op0,
4632 cond_op1,
4633 invert, &comp_code, &val))
4634 return false;
4636 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4637 reachable from E. */
4638 if (live_on_edge (e, name)
4639 && !has_single_use (name))
4641 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4642 retval = true;
4645 /* In the case of NAME <= CST and NAME being defined as
4646 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4647 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4648 This catches range and anti-range tests. */
4649 if ((comp_code == LE_EXPR
4650 || comp_code == GT_EXPR)
4651 && TREE_CODE (val) == INTEGER_CST
4652 && TYPE_UNSIGNED (TREE_TYPE (val)))
4654 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4655 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4657 /* Extract CST2 from the (optional) addition. */
4658 if (is_gimple_assign (def_stmt)
4659 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4661 name2 = gimple_assign_rhs1 (def_stmt);
4662 cst2 = gimple_assign_rhs2 (def_stmt);
4663 if (TREE_CODE (name2) == SSA_NAME
4664 && TREE_CODE (cst2) == INTEGER_CST)
4665 def_stmt = SSA_NAME_DEF_STMT (name2);
4668 /* Extract NAME2 from the (optional) sign-changing cast. */
4669 if (gimple_assign_cast_p (def_stmt))
4671 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4672 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4673 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4674 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4675 name3 = gimple_assign_rhs1 (def_stmt);
4678 /* If name3 is used later, create an ASSERT_EXPR for it. */
4679 if (name3 != NULL_TREE
4680 && TREE_CODE (name3) == SSA_NAME
4681 && (cst2 == NULL_TREE
4682 || TREE_CODE (cst2) == INTEGER_CST)
4683 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4684 && live_on_edge (e, name3)
4685 && !has_single_use (name3))
4687 tree tmp;
4689 /* Build an expression for the range test. */
4690 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4691 if (cst2 != NULL_TREE)
4692 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4694 if (dump_file)
4696 fprintf (dump_file, "Adding assert for ");
4697 print_generic_expr (dump_file, name3, 0);
4698 fprintf (dump_file, " from ");
4699 print_generic_expr (dump_file, tmp, 0);
4700 fprintf (dump_file, "\n");
4703 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4705 retval = true;
4708 /* If name2 is used later, create an ASSERT_EXPR for it. */
4709 if (name2 != NULL_TREE
4710 && TREE_CODE (name2) == SSA_NAME
4711 && TREE_CODE (cst2) == INTEGER_CST
4712 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4713 && live_on_edge (e, name2)
4714 && !has_single_use (name2))
4716 tree tmp;
4718 /* Build an expression for the range test. */
4719 tmp = name2;
4720 if (TREE_TYPE (name) != TREE_TYPE (name2))
4721 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4722 if (cst2 != NULL_TREE)
4723 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4725 if (dump_file)
4727 fprintf (dump_file, "Adding assert for ");
4728 print_generic_expr (dump_file, name2, 0);
4729 fprintf (dump_file, " from ");
4730 print_generic_expr (dump_file, tmp, 0);
4731 fprintf (dump_file, "\n");
4734 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4736 retval = true;
4740 /* In the case of post-in/decrement tests like if (i++) ... and uses
4741 of the in/decremented value on the edge the extra name we want to
4742 assert for is not on the def chain of the name compared. Instead
4743 it is in the set of use stmts. */
4744 if ((comp_code == NE_EXPR
4745 || comp_code == EQ_EXPR)
4746 && TREE_CODE (val) == INTEGER_CST)
4748 imm_use_iterator ui;
4749 gimple use_stmt;
4750 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4752 /* Cut off to use-stmts that are in the predecessor. */
4753 if (gimple_bb (use_stmt) != e->src)
4754 continue;
4756 if (!is_gimple_assign (use_stmt))
4757 continue;
4759 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4760 if (code != PLUS_EXPR
4761 && code != MINUS_EXPR)
4762 continue;
4764 tree cst = gimple_assign_rhs2 (use_stmt);
4765 if (TREE_CODE (cst) != INTEGER_CST)
4766 continue;
4768 tree name2 = gimple_assign_lhs (use_stmt);
4769 if (live_on_edge (e, name2))
4771 cst = int_const_binop (code, val, cst);
4772 register_new_assert_for (name2, name2, comp_code, cst,
4773 NULL, e, bsi);
4774 retval = true;
4779 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
4780 && TREE_CODE (val) == INTEGER_CST)
4782 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4783 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
4784 tree val2 = NULL_TREE;
4785 double_int mask = double_int_zero;
4786 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
4787 unsigned int nprec = prec;
4788 enum tree_code rhs_code = ERROR_MARK;
4790 if (is_gimple_assign (def_stmt))
4791 rhs_code = gimple_assign_rhs_code (def_stmt);
4793 /* Add asserts for NAME cmp CST and NAME being defined
4794 as NAME = (int) NAME2. */
4795 if (!TYPE_UNSIGNED (TREE_TYPE (val))
4796 && (comp_code == LE_EXPR || comp_code == LT_EXPR
4797 || comp_code == GT_EXPR || comp_code == GE_EXPR)
4798 && gimple_assign_cast_p (def_stmt))
4800 name2 = gimple_assign_rhs1 (def_stmt);
4801 if (CONVERT_EXPR_CODE_P (rhs_code)
4802 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4803 && TYPE_UNSIGNED (TREE_TYPE (name2))
4804 && prec == TYPE_PRECISION (TREE_TYPE (name2))
4805 && (comp_code == LE_EXPR || comp_code == GT_EXPR
4806 || !tree_int_cst_equal (val,
4807 TYPE_MIN_VALUE (TREE_TYPE (val))))
4808 && live_on_edge (e, name2)
4809 && !has_single_use (name2))
4811 tree tmp, cst;
4812 enum tree_code new_comp_code = comp_code;
4814 cst = fold_convert (TREE_TYPE (name2),
4815 TYPE_MIN_VALUE (TREE_TYPE (val)));
4816 /* Build an expression for the range test. */
4817 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
4818 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
4819 fold_convert (TREE_TYPE (name2), val));
4820 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
4822 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
4823 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
4824 build_int_cst (TREE_TYPE (name2), 1));
4827 if (dump_file)
4829 fprintf (dump_file, "Adding assert for ");
4830 print_generic_expr (dump_file, name2, 0);
4831 fprintf (dump_file, " from ");
4832 print_generic_expr (dump_file, tmp, 0);
4833 fprintf (dump_file, "\n");
4836 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
4837 e, bsi);
4839 retval = true;
4843 /* Add asserts for NAME cmp CST and NAME being defined as
4844 NAME = NAME2 >> CST2.
4846 Extract CST2 from the right shift. */
4847 if (rhs_code == RSHIFT_EXPR)
4849 name2 = gimple_assign_rhs1 (def_stmt);
4850 cst2 = gimple_assign_rhs2 (def_stmt);
4851 if (TREE_CODE (name2) == SSA_NAME
4852 && host_integerp (cst2, 1)
4853 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4854 && IN_RANGE (tree_low_cst (cst2, 1), 1, prec - 1)
4855 && prec <= HOST_BITS_PER_DOUBLE_INT
4856 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
4857 && live_on_edge (e, name2)
4858 && !has_single_use (name2))
4860 mask = double_int::mask (tree_low_cst (cst2, 1));
4861 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
4864 if (val2 != NULL_TREE
4865 && TREE_CODE (val2) == INTEGER_CST
4866 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
4867 TREE_TYPE (val),
4868 val2, cst2), val))
4870 enum tree_code new_comp_code = comp_code;
4871 tree tmp, new_val;
4873 tmp = name2;
4874 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
4876 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
4878 tree type = build_nonstandard_integer_type (prec, 1);
4879 tmp = build1 (NOP_EXPR, type, name2);
4880 val2 = fold_convert (type, val2);
4882 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
4883 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
4884 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
4886 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
4887 new_val = val2;
4888 else
4890 double_int maxval
4891 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
4892 mask |= tree_to_double_int (val2);
4893 if (mask == maxval)
4894 new_val = NULL_TREE;
4895 else
4896 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
4899 if (new_val)
4901 if (dump_file)
4903 fprintf (dump_file, "Adding assert for ");
4904 print_generic_expr (dump_file, name2, 0);
4905 fprintf (dump_file, " from ");
4906 print_generic_expr (dump_file, tmp, 0);
4907 fprintf (dump_file, "\n");
4910 register_new_assert_for (name2, tmp, new_comp_code, new_val,
4911 NULL, e, bsi);
4912 retval = true;
4916 /* Add asserts for NAME cmp CST and NAME being defined as
4917 NAME = NAME2 & CST2.
4919 Extract CST2 from the and.
4921 Also handle
4922 NAME = (unsigned) NAME2;
4923 casts where NAME's type is unsigned and has smaller precision
4924 than NAME2's type as if it was NAME = NAME2 & MASK. */
4925 names[0] = NULL_TREE;
4926 names[1] = NULL_TREE;
4927 cst2 = NULL_TREE;
4928 if (rhs_code == BIT_AND_EXPR
4929 || (CONVERT_EXPR_CODE_P (rhs_code)
4930 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
4931 && TYPE_UNSIGNED (TREE_TYPE (val))
4932 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4933 > prec
4934 && !retval))
4936 name2 = gimple_assign_rhs1 (def_stmt);
4937 if (rhs_code == BIT_AND_EXPR)
4938 cst2 = gimple_assign_rhs2 (def_stmt);
4939 else
4941 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
4942 nprec = TYPE_PRECISION (TREE_TYPE (name2));
4944 if (TREE_CODE (name2) == SSA_NAME
4945 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4946 && TREE_CODE (cst2) == INTEGER_CST
4947 && !integer_zerop (cst2)
4948 && nprec <= HOST_BITS_PER_DOUBLE_INT
4949 && (nprec > 1
4950 || TYPE_UNSIGNED (TREE_TYPE (val))))
4952 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
4953 if (gimple_assign_cast_p (def_stmt2))
4955 names[1] = gimple_assign_rhs1 (def_stmt2);
4956 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
4957 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
4958 || (TYPE_PRECISION (TREE_TYPE (name2))
4959 != TYPE_PRECISION (TREE_TYPE (names[1])))
4960 || !live_on_edge (e, names[1])
4961 || has_single_use (names[1]))
4962 names[1] = NULL_TREE;
4964 if (live_on_edge (e, name2)
4965 && !has_single_use (name2))
4966 names[0] = name2;
4969 if (names[0] || names[1])
4971 double_int minv, maxv = double_int_zero, valv, cst2v;
4972 double_int tem, sgnbit;
4973 bool valid_p = false, valn = false, cst2n = false;
4974 enum tree_code ccode = comp_code;
4976 valv = tree_to_double_int (val).zext (nprec);
4977 cst2v = tree_to_double_int (cst2).zext (nprec);
4978 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
4980 valn = valv.sext (nprec).is_negative ();
4981 cst2n = cst2v.sext (nprec).is_negative ();
4983 /* If CST2 doesn't have most significant bit set,
4984 but VAL is negative, we have comparison like
4985 if ((x & 0x123) > -4) (always true). Just give up. */
4986 if (!cst2n && valn)
4987 ccode = ERROR_MARK;
4988 if (cst2n)
4989 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
4990 else
4991 sgnbit = double_int_zero;
4992 minv = valv & cst2v;
4993 switch (ccode)
4995 case EQ_EXPR:
4996 /* Minimum unsigned value for equality is VAL & CST2
4997 (should be equal to VAL, otherwise we probably should
4998 have folded the comparison into false) and
4999 maximum unsigned value is VAL | ~CST2. */
5000 maxv = valv | ~cst2v;
5001 maxv = maxv.zext (nprec);
5002 valid_p = true;
5003 break;
5004 case NE_EXPR:
5005 tem = valv | ~cst2v;
5006 tem = tem.zext (nprec);
5007 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5008 if (valv.is_zero ())
5010 cst2n = false;
5011 sgnbit = double_int_zero;
5012 goto gt_expr;
5014 /* If (VAL | ~CST2) is all ones, handle it as
5015 (X & CST2) < VAL. */
5016 if (tem == double_int::mask (nprec))
5018 cst2n = false;
5019 valn = false;
5020 sgnbit = double_int_zero;
5021 goto lt_expr;
5023 if (!cst2n
5024 && cst2v.sext (nprec).is_negative ())
5025 sgnbit
5026 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5027 if (!sgnbit.is_zero ())
5029 if (valv == sgnbit)
5031 cst2n = true;
5032 valn = true;
5033 goto gt_expr;
5035 if (tem == double_int::mask (nprec - 1))
5037 cst2n = true;
5038 goto lt_expr;
5040 if (!cst2n)
5041 sgnbit = double_int_zero;
5043 break;
5044 case GE_EXPR:
5045 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5046 is VAL and maximum unsigned value is ~0. For signed
5047 comparison, if CST2 doesn't have most significant bit
5048 set, handle it similarly. If CST2 has MSB set,
5049 the minimum is the same, and maximum is ~0U/2. */
5050 if (minv != valv)
5052 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5053 VAL. */
5054 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5055 if (minv == valv)
5056 break;
5058 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5059 valid_p = true;
5060 break;
5061 case GT_EXPR:
5062 gt_expr:
5063 /* Find out smallest MINV where MINV > VAL
5064 && (MINV & CST2) == MINV, if any. If VAL is signed and
5065 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5066 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5067 if (minv == valv)
5068 break;
5069 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5070 valid_p = true;
5071 break;
5072 case LE_EXPR:
5073 /* Minimum unsigned value for <= is 0 and maximum
5074 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5075 Otherwise, find smallest VAL2 where VAL2 > VAL
5076 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5077 as maximum.
5078 For signed comparison, if CST2 doesn't have most
5079 significant bit set, handle it similarly. If CST2 has
5080 MSB set, the maximum is the same and minimum is INT_MIN. */
5081 if (minv == valv)
5082 maxv = valv;
5083 else
5085 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5086 if (maxv == valv)
5087 break;
5088 maxv -= double_int_one;
5090 maxv |= ~cst2v;
5091 maxv = maxv.zext (nprec);
5092 minv = sgnbit;
5093 valid_p = true;
5094 break;
5095 case LT_EXPR:
5096 lt_expr:
5097 /* Minimum unsigned value for < is 0 and maximum
5098 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5099 Otherwise, find smallest VAL2 where VAL2 > VAL
5100 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5101 as maximum.
5102 For signed comparison, if CST2 doesn't have most
5103 significant bit set, handle it similarly. If CST2 has
5104 MSB set, the maximum is the same and minimum is INT_MIN. */
5105 if (minv == valv)
5107 if (valv == sgnbit)
5108 break;
5109 maxv = valv;
5111 else
5113 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5114 if (maxv == valv)
5115 break;
5117 maxv -= double_int_one;
5118 maxv |= ~cst2v;
5119 maxv = maxv.zext (nprec);
5120 minv = sgnbit;
5121 valid_p = true;
5122 break;
5123 default:
5124 break;
5126 if (valid_p
5127 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5129 tree tmp, new_val, type;
5130 int i;
5132 for (i = 0; i < 2; i++)
5133 if (names[i])
5135 double_int maxv2 = maxv;
5136 tmp = names[i];
5137 type = TREE_TYPE (names[i]);
5138 if (!TYPE_UNSIGNED (type))
5140 type = build_nonstandard_integer_type (nprec, 1);
5141 tmp = build1 (NOP_EXPR, type, names[i]);
5143 if (!minv.is_zero ())
5145 tmp = build2 (PLUS_EXPR, type, tmp,
5146 double_int_to_tree (type, -minv));
5147 maxv2 = maxv - minv;
5149 new_val = double_int_to_tree (type, maxv2);
5151 if (dump_file)
5153 fprintf (dump_file, "Adding assert for ");
5154 print_generic_expr (dump_file, names[i], 0);
5155 fprintf (dump_file, " from ");
5156 print_generic_expr (dump_file, tmp, 0);
5157 fprintf (dump_file, "\n");
5160 register_new_assert_for (names[i], tmp, LE_EXPR,
5161 new_val, NULL, e, bsi);
5162 retval = true;
5168 return retval;
5171 /* OP is an operand of a truth value expression which is known to have
5172 a particular value. Register any asserts for OP and for any
5173 operands in OP's defining statement.
5175 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5176 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5178 static bool
5179 register_edge_assert_for_1 (tree op, enum tree_code code,
5180 edge e, gimple_stmt_iterator bsi)
5182 bool retval = false;
5183 gimple op_def;
5184 tree val;
5185 enum tree_code rhs_code;
5187 /* We only care about SSA_NAMEs. */
5188 if (TREE_CODE (op) != SSA_NAME)
5189 return false;
5191 /* We know that OP will have a zero or nonzero value. If OP is used
5192 more than once go ahead and register an assert for OP.
5194 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5195 it will always be set for OP (because OP is used in a COND_EXPR in
5196 the subgraph). */
5197 if (!has_single_use (op))
5199 val = build_int_cst (TREE_TYPE (op), 0);
5200 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5201 retval = true;
5204 /* Now look at how OP is set. If it's set from a comparison,
5205 a truth operation or some bit operations, then we may be able
5206 to register information about the operands of that assignment. */
5207 op_def = SSA_NAME_DEF_STMT (op);
5208 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5209 return retval;
5211 rhs_code = gimple_assign_rhs_code (op_def);
5213 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5215 bool invert = (code == EQ_EXPR ? true : false);
5216 tree op0 = gimple_assign_rhs1 (op_def);
5217 tree op1 = gimple_assign_rhs2 (op_def);
5219 if (TREE_CODE (op0) == SSA_NAME)
5220 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5221 invert);
5222 if (TREE_CODE (op1) == SSA_NAME)
5223 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5224 invert);
5226 else if ((code == NE_EXPR
5227 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5228 || (code == EQ_EXPR
5229 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5231 /* Recurse on each operand. */
5232 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5233 code, e, bsi);
5234 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
5235 code, e, bsi);
5237 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5238 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5240 /* Recurse, flipping CODE. */
5241 code = invert_tree_comparison (code, false);
5242 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5243 code, e, bsi);
5245 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5247 /* Recurse through the copy. */
5248 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5249 code, e, bsi);
5251 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5253 /* Recurse through the type conversion. */
5254 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5255 code, e, bsi);
5258 return retval;
5261 /* Try to register an edge assertion for SSA name NAME on edge E for
5262 the condition COND contributing to the conditional jump pointed to by SI.
5263 Return true if an assertion for NAME could be registered. */
5265 static bool
5266 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5267 enum tree_code cond_code, tree cond_op0,
5268 tree cond_op1)
5270 tree val;
5271 enum tree_code comp_code;
5272 bool retval = false;
5273 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5275 /* Do not attempt to infer anything in names that flow through
5276 abnormal edges. */
5277 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5278 return false;
5280 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5281 cond_op0, cond_op1,
5282 is_else_edge,
5283 &comp_code, &val))
5284 return false;
5286 /* Register ASSERT_EXPRs for name. */
5287 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5288 cond_op1, is_else_edge);
5291 /* If COND is effectively an equality test of an SSA_NAME against
5292 the value zero or one, then we may be able to assert values
5293 for SSA_NAMEs which flow into COND. */
5295 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5296 statement of NAME we can assert both operands of the BIT_AND_EXPR
5297 have nonzero value. */
5298 if (((comp_code == EQ_EXPR && integer_onep (val))
5299 || (comp_code == NE_EXPR && integer_zerop (val))))
5301 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5303 if (is_gimple_assign (def_stmt)
5304 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5306 tree op0 = gimple_assign_rhs1 (def_stmt);
5307 tree op1 = gimple_assign_rhs2 (def_stmt);
5308 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5309 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5313 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5314 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5315 have zero value. */
5316 if (((comp_code == EQ_EXPR && integer_zerop (val))
5317 || (comp_code == NE_EXPR && integer_onep (val))))
5319 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5321 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5322 necessarily zero value, or if type-precision is one. */
5323 if (is_gimple_assign (def_stmt)
5324 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5325 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5326 || comp_code == EQ_EXPR)))
5328 tree op0 = gimple_assign_rhs1 (def_stmt);
5329 tree op1 = gimple_assign_rhs2 (def_stmt);
5330 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5331 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5335 return retval;
5339 /* Determine whether the outgoing edges of BB should receive an
5340 ASSERT_EXPR for each of the operands of BB's LAST statement.
5341 The last statement of BB must be a COND_EXPR.
5343 If any of the sub-graphs rooted at BB have an interesting use of
5344 the predicate operands, an assert location node is added to the
5345 list of assertions for the corresponding operands. */
5347 static bool
5348 find_conditional_asserts (basic_block bb, gimple last)
5350 bool need_assert;
5351 gimple_stmt_iterator bsi;
5352 tree op;
5353 edge_iterator ei;
5354 edge e;
5355 ssa_op_iter iter;
5357 need_assert = false;
5358 bsi = gsi_for_stmt (last);
5360 /* Look for uses of the operands in each of the sub-graphs
5361 rooted at BB. We need to check each of the outgoing edges
5362 separately, so that we know what kind of ASSERT_EXPR to
5363 insert. */
5364 FOR_EACH_EDGE (e, ei, bb->succs)
5366 if (e->dest == bb)
5367 continue;
5369 /* Register the necessary assertions for each operand in the
5370 conditional predicate. */
5371 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5373 need_assert |= register_edge_assert_for (op, e, bsi,
5374 gimple_cond_code (last),
5375 gimple_cond_lhs (last),
5376 gimple_cond_rhs (last));
5380 return need_assert;
5383 struct case_info
5385 tree expr;
5386 basic_block bb;
5389 /* Compare two case labels sorting first by the destination bb index
5390 and then by the case value. */
5392 static int
5393 compare_case_labels (const void *p1, const void *p2)
5395 const struct case_info *ci1 = (const struct case_info *) p1;
5396 const struct case_info *ci2 = (const struct case_info *) p2;
5397 int idx1 = ci1->bb->index;
5398 int idx2 = ci2->bb->index;
5400 if (idx1 < idx2)
5401 return -1;
5402 else if (idx1 == idx2)
5404 /* Make sure the default label is first in a group. */
5405 if (!CASE_LOW (ci1->expr))
5406 return -1;
5407 else if (!CASE_LOW (ci2->expr))
5408 return 1;
5409 else
5410 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5411 CASE_LOW (ci2->expr));
5413 else
5414 return 1;
5417 /* Determine whether the outgoing edges of BB should receive an
5418 ASSERT_EXPR for each of the operands of BB's LAST statement.
5419 The last statement of BB must be a SWITCH_EXPR.
5421 If any of the sub-graphs rooted at BB have an interesting use of
5422 the predicate operands, an assert location node is added to the
5423 list of assertions for the corresponding operands. */
5425 static bool
5426 find_switch_asserts (basic_block bb, gimple last)
5428 bool need_assert;
5429 gimple_stmt_iterator bsi;
5430 tree op;
5431 edge e;
5432 struct case_info *ci;
5433 size_t n = gimple_switch_num_labels (last);
5434 #if GCC_VERSION >= 4000
5435 unsigned int idx;
5436 #else
5437 /* Work around GCC 3.4 bug (PR 37086). */
5438 volatile unsigned int idx;
5439 #endif
5441 need_assert = false;
5442 bsi = gsi_for_stmt (last);
5443 op = gimple_switch_index (last);
5444 if (TREE_CODE (op) != SSA_NAME)
5445 return false;
5447 /* Build a vector of case labels sorted by destination label. */
5448 ci = XNEWVEC (struct case_info, n);
5449 for (idx = 0; idx < n; ++idx)
5451 ci[idx].expr = gimple_switch_label (last, idx);
5452 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5454 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5456 for (idx = 0; idx < n; ++idx)
5458 tree min, max;
5459 tree cl = ci[idx].expr;
5460 basic_block cbb = ci[idx].bb;
5462 min = CASE_LOW (cl);
5463 max = CASE_HIGH (cl);
5465 /* If there are multiple case labels with the same destination
5466 we need to combine them to a single value range for the edge. */
5467 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5469 /* Skip labels until the last of the group. */
5470 do {
5471 ++idx;
5472 } while (idx < n && cbb == ci[idx].bb);
5473 --idx;
5475 /* Pick up the maximum of the case label range. */
5476 if (CASE_HIGH (ci[idx].expr))
5477 max = CASE_HIGH (ci[idx].expr);
5478 else
5479 max = CASE_LOW (ci[idx].expr);
5482 /* Nothing to do if the range includes the default label until we
5483 can register anti-ranges. */
5484 if (min == NULL_TREE)
5485 continue;
5487 /* Find the edge to register the assert expr on. */
5488 e = find_edge (bb, cbb);
5490 /* Register the necessary assertions for the operand in the
5491 SWITCH_EXPR. */
5492 need_assert |= register_edge_assert_for (op, e, bsi,
5493 max ? GE_EXPR : EQ_EXPR,
5495 fold_convert (TREE_TYPE (op),
5496 min));
5497 if (max)
5499 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5501 fold_convert (TREE_TYPE (op),
5502 max));
5506 XDELETEVEC (ci);
5507 return need_assert;
5511 /* Traverse all the statements in block BB looking for statements that
5512 may generate useful assertions for the SSA names in their operand.
5513 If a statement produces a useful assertion A for name N_i, then the
5514 list of assertions already generated for N_i is scanned to
5515 determine if A is actually needed.
5517 If N_i already had the assertion A at a location dominating the
5518 current location, then nothing needs to be done. Otherwise, the
5519 new location for A is recorded instead.
5521 1- For every statement S in BB, all the variables used by S are
5522 added to bitmap FOUND_IN_SUBGRAPH.
5524 2- If statement S uses an operand N in a way that exposes a known
5525 value range for N, then if N was not already generated by an
5526 ASSERT_EXPR, create a new assert location for N. For instance,
5527 if N is a pointer and the statement dereferences it, we can
5528 assume that N is not NULL.
5530 3- COND_EXPRs are a special case of #2. We can derive range
5531 information from the predicate but need to insert different
5532 ASSERT_EXPRs for each of the sub-graphs rooted at the
5533 conditional block. If the last statement of BB is a conditional
5534 expression of the form 'X op Y', then
5536 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5538 b) If the conditional is the only entry point to the sub-graph
5539 corresponding to the THEN_CLAUSE, recurse into it. On
5540 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5541 an ASSERT_EXPR is added for the corresponding variable.
5543 c) Repeat step (b) on the ELSE_CLAUSE.
5545 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5547 For instance,
5549 if (a == 9)
5550 b = a;
5551 else
5552 b = c + 1;
5554 In this case, an assertion on the THEN clause is useful to
5555 determine that 'a' is always 9 on that edge. However, an assertion
5556 on the ELSE clause would be unnecessary.
5558 4- If BB does not end in a conditional expression, then we recurse
5559 into BB's dominator children.
5561 At the end of the recursive traversal, every SSA name will have a
5562 list of locations where ASSERT_EXPRs should be added. When a new
5563 location for name N is found, it is registered by calling
5564 register_new_assert_for. That function keeps track of all the
5565 registered assertions to prevent adding unnecessary assertions.
5566 For instance, if a pointer P_4 is dereferenced more than once in a
5567 dominator tree, only the location dominating all the dereference of
5568 P_4 will receive an ASSERT_EXPR.
5570 If this function returns true, then it means that there are names
5571 for which we need to generate ASSERT_EXPRs. Those assertions are
5572 inserted by process_assert_insertions. */
5574 static bool
5575 find_assert_locations_1 (basic_block bb, sbitmap live)
5577 gimple_stmt_iterator si;
5578 gimple last;
5579 bool need_assert;
5581 need_assert = false;
5582 last = last_stmt (bb);
5584 /* If BB's last statement is a conditional statement involving integer
5585 operands, determine if we need to add ASSERT_EXPRs. */
5586 if (last
5587 && gimple_code (last) == GIMPLE_COND
5588 && !fp_predicate (last)
5589 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5590 need_assert |= find_conditional_asserts (bb, last);
5592 /* If BB's last statement is a switch statement involving integer
5593 operands, determine if we need to add ASSERT_EXPRs. */
5594 if (last
5595 && gimple_code (last) == GIMPLE_SWITCH
5596 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5597 need_assert |= find_switch_asserts (bb, last);
5599 /* Traverse all the statements in BB marking used names and looking
5600 for statements that may infer assertions for their used operands. */
5601 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5603 gimple stmt;
5604 tree op;
5605 ssa_op_iter i;
5607 stmt = gsi_stmt (si);
5609 if (is_gimple_debug (stmt))
5610 continue;
5612 /* See if we can derive an assertion for any of STMT's operands. */
5613 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5615 tree value;
5616 enum tree_code comp_code;
5618 /* If op is not live beyond this stmt, do not bother to insert
5619 asserts for it. */
5620 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5621 continue;
5623 /* If OP is used in such a way that we can infer a value
5624 range for it, and we don't find a previous assertion for
5625 it, create a new assertion location node for OP. */
5626 if (infer_value_range (stmt, op, &comp_code, &value))
5628 /* If we are able to infer a nonzero value range for OP,
5629 then walk backwards through the use-def chain to see if OP
5630 was set via a typecast.
5632 If so, then we can also infer a nonzero value range
5633 for the operand of the NOP_EXPR. */
5634 if (comp_code == NE_EXPR && integer_zerop (value))
5636 tree t = op;
5637 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5639 while (is_gimple_assign (def_stmt)
5640 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5641 && TREE_CODE
5642 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5643 && POINTER_TYPE_P
5644 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5646 t = gimple_assign_rhs1 (def_stmt);
5647 def_stmt = SSA_NAME_DEF_STMT (t);
5649 /* Note we want to register the assert for the
5650 operand of the NOP_EXPR after SI, not after the
5651 conversion. */
5652 if (! has_single_use (t))
5654 register_new_assert_for (t, t, comp_code, value,
5655 bb, NULL, si);
5656 need_assert = true;
5661 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5662 need_assert = true;
5666 /* Update live. */
5667 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5668 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5669 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5670 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5673 /* Traverse all PHI nodes in BB, updating live. */
5674 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
5676 use_operand_p arg_p;
5677 ssa_op_iter i;
5678 gimple phi = gsi_stmt (si);
5679 tree res = gimple_phi_result (phi);
5681 if (virtual_operand_p (res))
5682 continue;
5684 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5686 tree arg = USE_FROM_PTR (arg_p);
5687 if (TREE_CODE (arg) == SSA_NAME)
5688 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5691 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5694 return need_assert;
5697 /* Do an RPO walk over the function computing SSA name liveness
5698 on-the-fly and deciding on assert expressions to insert.
5699 Returns true if there are assert expressions to be inserted. */
5701 static bool
5702 find_assert_locations (void)
5704 int *rpo = XNEWVEC (int, last_basic_block);
5705 int *bb_rpo = XNEWVEC (int, last_basic_block);
5706 int *last_rpo = XCNEWVEC (int, last_basic_block);
5707 int rpo_cnt, i;
5708 bool need_asserts;
5710 live = XCNEWVEC (sbitmap, last_basic_block);
5711 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5712 for (i = 0; i < rpo_cnt; ++i)
5713 bb_rpo[rpo[i]] = i;
5715 need_asserts = false;
5716 for (i = rpo_cnt - 1; i >= 0; --i)
5718 basic_block bb = BASIC_BLOCK (rpo[i]);
5719 edge e;
5720 edge_iterator ei;
5722 if (!live[rpo[i]])
5724 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5725 bitmap_clear (live[rpo[i]]);
5728 /* Process BB and update the live information with uses in
5729 this block. */
5730 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5732 /* Merge liveness into the predecessor blocks and free it. */
5733 if (!bitmap_empty_p (live[rpo[i]]))
5735 int pred_rpo = i;
5736 FOR_EACH_EDGE (e, ei, bb->preds)
5738 int pred = e->src->index;
5739 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
5740 continue;
5742 if (!live[pred])
5744 live[pred] = sbitmap_alloc (num_ssa_names);
5745 bitmap_clear (live[pred]);
5747 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
5749 if (bb_rpo[pred] < pred_rpo)
5750 pred_rpo = bb_rpo[pred];
5753 /* Record the RPO number of the last visited block that needs
5754 live information from this block. */
5755 last_rpo[rpo[i]] = pred_rpo;
5757 else
5759 sbitmap_free (live[rpo[i]]);
5760 live[rpo[i]] = NULL;
5763 /* We can free all successors live bitmaps if all their
5764 predecessors have been visited already. */
5765 FOR_EACH_EDGE (e, ei, bb->succs)
5766 if (last_rpo[e->dest->index] == i
5767 && live[e->dest->index])
5769 sbitmap_free (live[e->dest->index]);
5770 live[e->dest->index] = NULL;
5774 XDELETEVEC (rpo);
5775 XDELETEVEC (bb_rpo);
5776 XDELETEVEC (last_rpo);
5777 for (i = 0; i < last_basic_block; ++i)
5778 if (live[i])
5779 sbitmap_free (live[i]);
5780 XDELETEVEC (live);
5782 return need_asserts;
5785 /* Create an ASSERT_EXPR for NAME and insert it in the location
5786 indicated by LOC. Return true if we made any edge insertions. */
5788 static bool
5789 process_assert_insertions_for (tree name, assert_locus_t loc)
5791 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5792 gimple stmt;
5793 tree cond;
5794 gimple assert_stmt;
5795 edge_iterator ei;
5796 edge e;
5798 /* If we have X <=> X do not insert an assert expr for that. */
5799 if (loc->expr == loc->val)
5800 return false;
5802 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5803 assert_stmt = build_assert_expr_for (cond, name);
5804 if (loc->e)
5806 /* We have been asked to insert the assertion on an edge. This
5807 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5808 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5809 || (gimple_code (gsi_stmt (loc->si))
5810 == GIMPLE_SWITCH));
5812 gsi_insert_on_edge (loc->e, assert_stmt);
5813 return true;
5816 /* Otherwise, we can insert right after LOC->SI iff the
5817 statement must not be the last statement in the block. */
5818 stmt = gsi_stmt (loc->si);
5819 if (!stmt_ends_bb_p (stmt))
5821 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5822 return false;
5825 /* If STMT must be the last statement in BB, we can only insert new
5826 assertions on the non-abnormal edge out of BB. Note that since
5827 STMT is not control flow, there may only be one non-abnormal edge
5828 out of BB. */
5829 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5830 if (!(e->flags & EDGE_ABNORMAL))
5832 gsi_insert_on_edge (e, assert_stmt);
5833 return true;
5836 gcc_unreachable ();
5840 /* Process all the insertions registered for every name N_i registered
5841 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5842 found in ASSERTS_FOR[i]. */
5844 static void
5845 process_assert_insertions (void)
5847 unsigned i;
5848 bitmap_iterator bi;
5849 bool update_edges_p = false;
5850 int num_asserts = 0;
5852 if (dump_file && (dump_flags & TDF_DETAILS))
5853 dump_all_asserts (dump_file);
5855 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5857 assert_locus_t loc = asserts_for[i];
5858 gcc_assert (loc);
5860 while (loc)
5862 assert_locus_t next = loc->next;
5863 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5864 free (loc);
5865 loc = next;
5866 num_asserts++;
5870 if (update_edges_p)
5871 gsi_commit_edge_inserts ();
5873 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5874 num_asserts);
5878 /* Traverse the flowgraph looking for conditional jumps to insert range
5879 expressions. These range expressions are meant to provide information
5880 to optimizations that need to reason in terms of value ranges. They
5881 will not be expanded into RTL. For instance, given:
5883 x = ...
5884 y = ...
5885 if (x < y)
5886 y = x - 2;
5887 else
5888 x = y + 3;
5890 this pass will transform the code into:
5892 x = ...
5893 y = ...
5894 if (x < y)
5896 x = ASSERT_EXPR <x, x < y>
5897 y = x - 2
5899 else
5901 y = ASSERT_EXPR <y, x <= y>
5902 x = y + 3
5905 The idea is that once copy and constant propagation have run, other
5906 optimizations will be able to determine what ranges of values can 'x'
5907 take in different paths of the code, simply by checking the reaching
5908 definition of 'x'. */
5910 static void
5911 insert_range_assertions (void)
5913 need_assert_for = BITMAP_ALLOC (NULL);
5914 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5916 calculate_dominance_info (CDI_DOMINATORS);
5918 if (find_assert_locations ())
5920 process_assert_insertions ();
5921 update_ssa (TODO_update_ssa_no_phi);
5924 if (dump_file && (dump_flags & TDF_DETAILS))
5926 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5927 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5930 free (asserts_for);
5931 BITMAP_FREE (need_assert_for);
5934 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5935 and "struct" hacks. If VRP can determine that the
5936 array subscript is a constant, check if it is outside valid
5937 range. If the array subscript is a RANGE, warn if it is
5938 non-overlapping with valid range.
5939 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5941 static void
5942 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5944 value_range_t* vr = NULL;
5945 tree low_sub, up_sub;
5946 tree low_bound, up_bound, up_bound_p1;
5947 tree base;
5949 if (TREE_NO_WARNING (ref))
5950 return;
5952 low_sub = up_sub = TREE_OPERAND (ref, 1);
5953 up_bound = array_ref_up_bound (ref);
5955 /* Can not check flexible arrays. */
5956 if (!up_bound
5957 || TREE_CODE (up_bound) != INTEGER_CST)
5958 return;
5960 /* Accesses to trailing arrays via pointers may access storage
5961 beyond the types array bounds. */
5962 base = get_base_address (ref);
5963 if (base && TREE_CODE (base) == MEM_REF)
5965 tree cref, next = NULL_TREE;
5967 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5968 return;
5970 cref = TREE_OPERAND (ref, 0);
5971 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5972 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5973 next && TREE_CODE (next) != FIELD_DECL;
5974 next = DECL_CHAIN (next))
5977 /* If this is the last field in a struct type or a field in a
5978 union type do not warn. */
5979 if (!next)
5980 return;
5983 low_bound = array_ref_low_bound (ref);
5984 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5986 if (TREE_CODE (low_sub) == SSA_NAME)
5988 vr = get_value_range (low_sub);
5989 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5991 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5992 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5996 if (vr && vr->type == VR_ANTI_RANGE)
5998 if (TREE_CODE (up_sub) == INTEGER_CST
5999 && tree_int_cst_lt (up_bound, up_sub)
6000 && TREE_CODE (low_sub) == INTEGER_CST
6001 && tree_int_cst_lt (low_sub, low_bound))
6003 warning_at (location, OPT_Warray_bounds,
6004 "array subscript is outside array bounds");
6005 TREE_NO_WARNING (ref) = 1;
6008 else if (TREE_CODE (up_sub) == INTEGER_CST
6009 && (ignore_off_by_one
6010 ? (tree_int_cst_lt (up_bound, up_sub)
6011 && !tree_int_cst_equal (up_bound_p1, up_sub))
6012 : (tree_int_cst_lt (up_bound, up_sub)
6013 || tree_int_cst_equal (up_bound_p1, up_sub))))
6015 if (dump_file && (dump_flags & TDF_DETAILS))
6017 fprintf (dump_file, "Array bound warning for ");
6018 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6020 warning_at (location, OPT_Warray_bounds,
6021 "array subscript is above array bounds");
6022 TREE_NO_WARNING (ref) = 1;
6024 else if (TREE_CODE (low_sub) == INTEGER_CST
6025 && tree_int_cst_lt (low_sub, low_bound))
6027 if (dump_file && (dump_flags & TDF_DETAILS))
6029 fprintf (dump_file, "Array bound warning for ");
6030 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6032 warning_at (location, OPT_Warray_bounds,
6033 "array subscript is below array bounds");
6034 TREE_NO_WARNING (ref) = 1;
6038 /* Searches if the expr T, located at LOCATION computes
6039 address of an ARRAY_REF, and call check_array_ref on it. */
6041 static void
6042 search_for_addr_array (tree t, location_t location)
6044 while (TREE_CODE (t) == SSA_NAME)
6046 gimple g = SSA_NAME_DEF_STMT (t);
6048 if (gimple_code (g) != GIMPLE_ASSIGN)
6049 return;
6051 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6052 != GIMPLE_SINGLE_RHS)
6053 return;
6055 t = gimple_assign_rhs1 (g);
6059 /* We are only interested in addresses of ARRAY_REF's. */
6060 if (TREE_CODE (t) != ADDR_EXPR)
6061 return;
6063 /* Check each ARRAY_REFs in the reference chain. */
6066 if (TREE_CODE (t) == ARRAY_REF)
6067 check_array_ref (location, t, true /*ignore_off_by_one*/);
6069 t = TREE_OPERAND (t, 0);
6071 while (handled_component_p (t));
6073 if (TREE_CODE (t) == MEM_REF
6074 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6075 && !TREE_NO_WARNING (t))
6077 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6078 tree low_bound, up_bound, el_sz;
6079 double_int idx;
6080 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6081 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6082 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6083 return;
6085 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6086 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6087 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6088 if (!low_bound
6089 || TREE_CODE (low_bound) != INTEGER_CST
6090 || !up_bound
6091 || TREE_CODE (up_bound) != INTEGER_CST
6092 || !el_sz
6093 || TREE_CODE (el_sz) != INTEGER_CST)
6094 return;
6096 idx = mem_ref_offset (t);
6097 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6098 if (idx.slt (double_int_zero))
6100 if (dump_file && (dump_flags & TDF_DETAILS))
6102 fprintf (dump_file, "Array bound warning for ");
6103 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6105 warning_at (location, OPT_Warray_bounds,
6106 "array subscript is below array bounds");
6107 TREE_NO_WARNING (t) = 1;
6109 else if (idx.sgt (tree_to_double_int (up_bound)
6110 - tree_to_double_int (low_bound)
6111 + double_int_one))
6113 if (dump_file && (dump_flags & TDF_DETAILS))
6115 fprintf (dump_file, "Array bound warning for ");
6116 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6118 warning_at (location, OPT_Warray_bounds,
6119 "array subscript is above array bounds");
6120 TREE_NO_WARNING (t) = 1;
6125 /* walk_tree() callback that checks if *TP is
6126 an ARRAY_REF inside an ADDR_EXPR (in which an array
6127 subscript one outside the valid range is allowed). Call
6128 check_array_ref for each ARRAY_REF found. The location is
6129 passed in DATA. */
6131 static tree
6132 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6134 tree t = *tp;
6135 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6136 location_t location;
6138 if (EXPR_HAS_LOCATION (t))
6139 location = EXPR_LOCATION (t);
6140 else
6142 location_t *locp = (location_t *) wi->info;
6143 location = *locp;
6146 *walk_subtree = TRUE;
6148 if (TREE_CODE (t) == ARRAY_REF)
6149 check_array_ref (location, t, false /*ignore_off_by_one*/);
6151 if (TREE_CODE (t) == MEM_REF
6152 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6153 search_for_addr_array (TREE_OPERAND (t, 0), location);
6155 if (TREE_CODE (t) == ADDR_EXPR)
6156 *walk_subtree = FALSE;
6158 return NULL_TREE;
6161 /* Walk over all statements of all reachable BBs and call check_array_bounds
6162 on them. */
6164 static void
6165 check_all_array_refs (void)
6167 basic_block bb;
6168 gimple_stmt_iterator si;
6170 FOR_EACH_BB (bb)
6172 edge_iterator ei;
6173 edge e;
6174 bool executable = false;
6176 /* Skip blocks that were found to be unreachable. */
6177 FOR_EACH_EDGE (e, ei, bb->preds)
6178 executable |= !!(e->flags & EDGE_EXECUTABLE);
6179 if (!executable)
6180 continue;
6182 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6184 gimple stmt = gsi_stmt (si);
6185 struct walk_stmt_info wi;
6186 if (!gimple_has_location (stmt))
6187 continue;
6189 if (is_gimple_call (stmt))
6191 size_t i;
6192 size_t n = gimple_call_num_args (stmt);
6193 for (i = 0; i < n; i++)
6195 tree arg = gimple_call_arg (stmt, i);
6196 search_for_addr_array (arg, gimple_location (stmt));
6199 else
6201 memset (&wi, 0, sizeof (wi));
6202 wi.info = CONST_CAST (void *, (const void *)
6203 gimple_location_ptr (stmt));
6205 walk_gimple_op (gsi_stmt (si),
6206 check_array_bounds,
6207 &wi);
6213 /* Convert range assertion expressions into the implied copies and
6214 copy propagate away the copies. Doing the trivial copy propagation
6215 here avoids the need to run the full copy propagation pass after
6216 VRP.
6218 FIXME, this will eventually lead to copy propagation removing the
6219 names that had useful range information attached to them. For
6220 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6221 then N_i will have the range [3, +INF].
6223 However, by converting the assertion into the implied copy
6224 operation N_i = N_j, we will then copy-propagate N_j into the uses
6225 of N_i and lose the range information. We may want to hold on to
6226 ASSERT_EXPRs a little while longer as the ranges could be used in
6227 things like jump threading.
6229 The problem with keeping ASSERT_EXPRs around is that passes after
6230 VRP need to handle them appropriately.
6232 Another approach would be to make the range information a first
6233 class property of the SSA_NAME so that it can be queried from
6234 any pass. This is made somewhat more complex by the need for
6235 multiple ranges to be associated with one SSA_NAME. */
6237 static void
6238 remove_range_assertions (void)
6240 basic_block bb;
6241 gimple_stmt_iterator si;
6243 /* Note that the BSI iterator bump happens at the bottom of the
6244 loop and no bump is necessary if we're removing the statement
6245 referenced by the current BSI. */
6246 FOR_EACH_BB (bb)
6247 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
6249 gimple stmt = gsi_stmt (si);
6250 gimple use_stmt;
6252 if (is_gimple_assign (stmt)
6253 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6255 tree rhs = gimple_assign_rhs1 (stmt);
6256 tree var;
6257 tree cond = fold (ASSERT_EXPR_COND (rhs));
6258 use_operand_p use_p;
6259 imm_use_iterator iter;
6261 gcc_assert (cond != boolean_false_node);
6263 /* Propagate the RHS into every use of the LHS. */
6264 var = ASSERT_EXPR_VAR (rhs);
6265 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
6266 gimple_assign_lhs (stmt))
6267 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6269 SET_USE (use_p, var);
6270 gcc_assert (TREE_CODE (var) == SSA_NAME);
6273 /* And finally, remove the copy, it is not needed. */
6274 gsi_remove (&si, true);
6275 release_defs (stmt);
6277 else
6278 gsi_next (&si);
6283 /* Return true if STMT is interesting for VRP. */
6285 static bool
6286 stmt_interesting_for_vrp (gimple stmt)
6288 if (gimple_code (stmt) == GIMPLE_PHI)
6290 tree res = gimple_phi_result (stmt);
6291 return (!virtual_operand_p (res)
6292 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6293 || POINTER_TYPE_P (TREE_TYPE (res))));
6295 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6297 tree lhs = gimple_get_lhs (stmt);
6299 /* In general, assignments with virtual operands are not useful
6300 for deriving ranges, with the obvious exception of calls to
6301 builtin functions. */
6302 if (lhs && TREE_CODE (lhs) == SSA_NAME
6303 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6304 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6305 && ((is_gimple_call (stmt)
6306 && gimple_call_fndecl (stmt) != NULL_TREE
6307 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
6308 || !gimple_vuse (stmt)))
6309 return true;
6311 else if (gimple_code (stmt) == GIMPLE_COND
6312 || gimple_code (stmt) == GIMPLE_SWITCH)
6313 return true;
6315 return false;
6319 /* Initialize local data structures for VRP. */
6321 static void
6322 vrp_initialize (void)
6324 basic_block bb;
6326 values_propagated = false;
6327 num_vr_values = num_ssa_names;
6328 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6329 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6331 FOR_EACH_BB (bb)
6333 gimple_stmt_iterator si;
6335 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6337 gimple phi = gsi_stmt (si);
6338 if (!stmt_interesting_for_vrp (phi))
6340 tree lhs = PHI_RESULT (phi);
6341 set_value_range_to_varying (get_value_range (lhs));
6342 prop_set_simulate_again (phi, false);
6344 else
6345 prop_set_simulate_again (phi, true);
6348 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6350 gimple stmt = gsi_stmt (si);
6352 /* If the statement is a control insn, then we do not
6353 want to avoid simulating the statement once. Failure
6354 to do so means that those edges will never get added. */
6355 if (stmt_ends_bb_p (stmt))
6356 prop_set_simulate_again (stmt, true);
6357 else if (!stmt_interesting_for_vrp (stmt))
6359 ssa_op_iter i;
6360 tree def;
6361 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6362 set_value_range_to_varying (get_value_range (def));
6363 prop_set_simulate_again (stmt, false);
6365 else
6366 prop_set_simulate_again (stmt, true);
6371 /* Return the singleton value-range for NAME or NAME. */
6373 static inline tree
6374 vrp_valueize (tree name)
6376 if (TREE_CODE (name) == SSA_NAME)
6378 value_range_t *vr = get_value_range (name);
6379 if (vr->type == VR_RANGE
6380 && (vr->min == vr->max
6381 || operand_equal_p (vr->min, vr->max, 0)))
6382 return vr->min;
6384 return name;
6387 /* Visit assignment STMT. If it produces an interesting range, record
6388 the SSA name in *OUTPUT_P. */
6390 static enum ssa_prop_result
6391 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6393 tree def, lhs;
6394 ssa_op_iter iter;
6395 enum gimple_code code = gimple_code (stmt);
6396 lhs = gimple_get_lhs (stmt);
6398 /* We only keep track of ranges in integral and pointer types. */
6399 if (TREE_CODE (lhs) == SSA_NAME
6400 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6401 /* It is valid to have NULL MIN/MAX values on a type. See
6402 build_range_type. */
6403 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6404 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6405 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6407 value_range_t new_vr = VR_INITIALIZER;
6409 /* Try folding the statement to a constant first. */
6410 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6411 if (tem && !is_overflow_infinity (tem))
6412 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
6413 /* Then dispatch to value-range extracting functions. */
6414 else if (code == GIMPLE_CALL)
6415 extract_range_basic (&new_vr, stmt);
6416 else
6417 extract_range_from_assignment (&new_vr, stmt);
6419 if (update_value_range (lhs, &new_vr))
6421 *output_p = lhs;
6423 if (dump_file && (dump_flags & TDF_DETAILS))
6425 fprintf (dump_file, "Found new range for ");
6426 print_generic_expr (dump_file, lhs, 0);
6427 fprintf (dump_file, ": ");
6428 dump_value_range (dump_file, &new_vr);
6429 fprintf (dump_file, "\n\n");
6432 if (new_vr.type == VR_VARYING)
6433 return SSA_PROP_VARYING;
6435 return SSA_PROP_INTERESTING;
6438 return SSA_PROP_NOT_INTERESTING;
6441 /* Every other statement produces no useful ranges. */
6442 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6443 set_value_range_to_varying (get_value_range (def));
6445 return SSA_PROP_VARYING;
6448 /* Helper that gets the value range of the SSA_NAME with version I
6449 or a symbolic range containing the SSA_NAME only if the value range
6450 is varying or undefined. */
6452 static inline value_range_t
6453 get_vr_for_comparison (int i)
6455 value_range_t vr = *get_value_range (ssa_name (i));
6457 /* If name N_i does not have a valid range, use N_i as its own
6458 range. This allows us to compare against names that may
6459 have N_i in their ranges. */
6460 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6462 vr.type = VR_RANGE;
6463 vr.min = ssa_name (i);
6464 vr.max = ssa_name (i);
6467 return vr;
6470 /* Compare all the value ranges for names equivalent to VAR with VAL
6471 using comparison code COMP. Return the same value returned by
6472 compare_range_with_value, including the setting of
6473 *STRICT_OVERFLOW_P. */
6475 static tree
6476 compare_name_with_value (enum tree_code comp, tree var, tree val,
6477 bool *strict_overflow_p)
6479 bitmap_iterator bi;
6480 unsigned i;
6481 bitmap e;
6482 tree retval, t;
6483 int used_strict_overflow;
6484 bool sop;
6485 value_range_t equiv_vr;
6487 /* Get the set of equivalences for VAR. */
6488 e = get_value_range (var)->equiv;
6490 /* Start at -1. Set it to 0 if we do a comparison without relying
6491 on overflow, or 1 if all comparisons rely on overflow. */
6492 used_strict_overflow = -1;
6494 /* Compare vars' value range with val. */
6495 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6496 sop = false;
6497 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6498 if (retval)
6499 used_strict_overflow = sop ? 1 : 0;
6501 /* If the equiv set is empty we have done all work we need to do. */
6502 if (e == NULL)
6504 if (retval
6505 && used_strict_overflow > 0)
6506 *strict_overflow_p = true;
6507 return retval;
6510 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6512 equiv_vr = get_vr_for_comparison (i);
6513 sop = false;
6514 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6515 if (t)
6517 /* If we get different answers from different members
6518 of the equivalence set this check must be in a dead
6519 code region. Folding it to a trap representation
6520 would be correct here. For now just return don't-know. */
6521 if (retval != NULL
6522 && t != retval)
6524 retval = NULL_TREE;
6525 break;
6527 retval = t;
6529 if (!sop)
6530 used_strict_overflow = 0;
6531 else if (used_strict_overflow < 0)
6532 used_strict_overflow = 1;
6536 if (retval
6537 && used_strict_overflow > 0)
6538 *strict_overflow_p = true;
6540 return retval;
6544 /* Given a comparison code COMP and names N1 and N2, compare all the
6545 ranges equivalent to N1 against all the ranges equivalent to N2
6546 to determine the value of N1 COMP N2. Return the same value
6547 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6548 whether we relied on an overflow infinity in the comparison. */
6551 static tree
6552 compare_names (enum tree_code comp, tree n1, tree n2,
6553 bool *strict_overflow_p)
6555 tree t, retval;
6556 bitmap e1, e2;
6557 bitmap_iterator bi1, bi2;
6558 unsigned i1, i2;
6559 int used_strict_overflow;
6560 static bitmap_obstack *s_obstack = NULL;
6561 static bitmap s_e1 = NULL, s_e2 = NULL;
6563 /* Compare the ranges of every name equivalent to N1 against the
6564 ranges of every name equivalent to N2. */
6565 e1 = get_value_range (n1)->equiv;
6566 e2 = get_value_range (n2)->equiv;
6568 /* Use the fake bitmaps if e1 or e2 are not available. */
6569 if (s_obstack == NULL)
6571 s_obstack = XNEW (bitmap_obstack);
6572 bitmap_obstack_initialize (s_obstack);
6573 s_e1 = BITMAP_ALLOC (s_obstack);
6574 s_e2 = BITMAP_ALLOC (s_obstack);
6576 if (e1 == NULL)
6577 e1 = s_e1;
6578 if (e2 == NULL)
6579 e2 = s_e2;
6581 /* Add N1 and N2 to their own set of equivalences to avoid
6582 duplicating the body of the loop just to check N1 and N2
6583 ranges. */
6584 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6585 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6587 /* If the equivalence sets have a common intersection, then the two
6588 names can be compared without checking their ranges. */
6589 if (bitmap_intersect_p (e1, e2))
6591 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6592 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6594 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6595 ? boolean_true_node
6596 : boolean_false_node;
6599 /* Start at -1. Set it to 0 if we do a comparison without relying
6600 on overflow, or 1 if all comparisons rely on overflow. */
6601 used_strict_overflow = -1;
6603 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6604 N2 to their own set of equivalences to avoid duplicating the body
6605 of the loop just to check N1 and N2 ranges. */
6606 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6608 value_range_t vr1 = get_vr_for_comparison (i1);
6610 t = retval = NULL_TREE;
6611 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6613 bool sop = false;
6615 value_range_t vr2 = get_vr_for_comparison (i2);
6617 t = compare_ranges (comp, &vr1, &vr2, &sop);
6618 if (t)
6620 /* If we get different answers from different members
6621 of the equivalence set this check must be in a dead
6622 code region. Folding it to a trap representation
6623 would be correct here. For now just return don't-know. */
6624 if (retval != NULL
6625 && t != retval)
6627 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6628 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6629 return NULL_TREE;
6631 retval = t;
6633 if (!sop)
6634 used_strict_overflow = 0;
6635 else if (used_strict_overflow < 0)
6636 used_strict_overflow = 1;
6640 if (retval)
6642 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6643 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6644 if (used_strict_overflow > 0)
6645 *strict_overflow_p = true;
6646 return retval;
6650 /* None of the equivalent ranges are useful in computing this
6651 comparison. */
6652 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6653 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6654 return NULL_TREE;
6657 /* Helper function for vrp_evaluate_conditional_warnv. */
6659 static tree
6660 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
6661 tree op0, tree op1,
6662 bool * strict_overflow_p)
6664 value_range_t *vr0, *vr1;
6666 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
6667 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
6669 if (vr0 && vr1)
6670 return compare_ranges (code, vr0, vr1, strict_overflow_p);
6671 else if (vr0 && vr1 == NULL)
6672 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
6673 else if (vr0 == NULL && vr1)
6674 return (compare_range_with_value
6675 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
6676 return NULL;
6679 /* Helper function for vrp_evaluate_conditional_warnv. */
6681 static tree
6682 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
6683 tree op1, bool use_equiv_p,
6684 bool *strict_overflow_p, bool *only_ranges)
6686 tree ret;
6687 if (only_ranges)
6688 *only_ranges = true;
6690 /* We only deal with integral and pointer types. */
6691 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
6692 && !POINTER_TYPE_P (TREE_TYPE (op0)))
6693 return NULL_TREE;
6695 if (use_equiv_p)
6697 if (only_ranges
6698 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
6699 (code, op0, op1, strict_overflow_p)))
6700 return ret;
6701 *only_ranges = false;
6702 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
6703 return compare_names (code, op0, op1, strict_overflow_p);
6704 else if (TREE_CODE (op0) == SSA_NAME)
6705 return compare_name_with_value (code, op0, op1, strict_overflow_p);
6706 else if (TREE_CODE (op1) == SSA_NAME)
6707 return (compare_name_with_value
6708 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
6710 else
6711 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
6712 strict_overflow_p);
6713 return NULL_TREE;
6716 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
6717 information. Return NULL if the conditional can not be evaluated.
6718 The ranges of all the names equivalent with the operands in COND
6719 will be used when trying to compute the value. If the result is
6720 based on undefined signed overflow, issue a warning if
6721 appropriate. */
6723 static tree
6724 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
6726 bool sop;
6727 tree ret;
6728 bool only_ranges;
6730 /* Some passes and foldings leak constants with overflow flag set
6731 into the IL. Avoid doing wrong things with these and bail out. */
6732 if ((TREE_CODE (op0) == INTEGER_CST
6733 && TREE_OVERFLOW (op0))
6734 || (TREE_CODE (op1) == INTEGER_CST
6735 && TREE_OVERFLOW (op1)))
6736 return NULL_TREE;
6738 sop = false;
6739 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6740 &only_ranges);
6742 if (ret && sop)
6744 enum warn_strict_overflow_code wc;
6745 const char* warnmsg;
6747 if (is_gimple_min_invariant (ret))
6749 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6750 warnmsg = G_("assuming signed overflow does not occur when "
6751 "simplifying conditional to constant");
6753 else
6755 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6756 warnmsg = G_("assuming signed overflow does not occur when "
6757 "simplifying conditional");
6760 if (issue_strict_overflow_warning (wc))
6762 location_t location;
6764 if (!gimple_has_location (stmt))
6765 location = input_location;
6766 else
6767 location = gimple_location (stmt);
6768 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6772 if (warn_type_limits
6773 && ret && only_ranges
6774 && TREE_CODE_CLASS (code) == tcc_comparison
6775 && TREE_CODE (op0) == SSA_NAME)
6777 /* If the comparison is being folded and the operand on the LHS
6778 is being compared against a constant value that is outside of
6779 the natural range of OP0's type, then the predicate will
6780 always fold regardless of the value of OP0. If -Wtype-limits
6781 was specified, emit a warning. */
6782 tree type = TREE_TYPE (op0);
6783 value_range_t *vr0 = get_value_range (op0);
6785 if (vr0->type != VR_VARYING
6786 && INTEGRAL_TYPE_P (type)
6787 && vrp_val_is_min (vr0->min)
6788 && vrp_val_is_max (vr0->max)
6789 && is_gimple_min_invariant (op1))
6791 location_t location;
6793 if (!gimple_has_location (stmt))
6794 location = input_location;
6795 else
6796 location = gimple_location (stmt);
6798 warning_at (location, OPT_Wtype_limits,
6799 integer_zerop (ret)
6800 ? G_("comparison always false "
6801 "due to limited range of data type")
6802 : G_("comparison always true "
6803 "due to limited range of data type"));
6807 return ret;
6811 /* Visit conditional statement STMT. If we can determine which edge
6812 will be taken out of STMT's basic block, record it in
6813 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6814 SSA_PROP_VARYING. */
6816 static enum ssa_prop_result
6817 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6819 tree val;
6820 bool sop;
6822 *taken_edge_p = NULL;
6824 if (dump_file && (dump_flags & TDF_DETAILS))
6826 tree use;
6827 ssa_op_iter i;
6829 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6830 print_gimple_stmt (dump_file, stmt, 0, 0);
6831 fprintf (dump_file, "\nWith known ranges\n");
6833 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6835 fprintf (dump_file, "\t");
6836 print_generic_expr (dump_file, use, 0);
6837 fprintf (dump_file, ": ");
6838 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6841 fprintf (dump_file, "\n");
6844 /* Compute the value of the predicate COND by checking the known
6845 ranges of each of its operands.
6847 Note that we cannot evaluate all the equivalent ranges here
6848 because those ranges may not yet be final and with the current
6849 propagation strategy, we cannot determine when the value ranges
6850 of the names in the equivalence set have changed.
6852 For instance, given the following code fragment
6854 i_5 = PHI <8, i_13>
6856 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6857 if (i_14 == 1)
6860 Assume that on the first visit to i_14, i_5 has the temporary
6861 range [8, 8] because the second argument to the PHI function is
6862 not yet executable. We derive the range ~[0, 0] for i_14 and the
6863 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6864 the first time, since i_14 is equivalent to the range [8, 8], we
6865 determine that the predicate is always false.
6867 On the next round of propagation, i_13 is determined to be
6868 VARYING, which causes i_5 to drop down to VARYING. So, another
6869 visit to i_14 is scheduled. In this second visit, we compute the
6870 exact same range and equivalence set for i_14, namely ~[0, 0] and
6871 { i_5 }. But we did not have the previous range for i_5
6872 registered, so vrp_visit_assignment thinks that the range for
6873 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6874 is not visited again, which stops propagation from visiting
6875 statements in the THEN clause of that if().
6877 To properly fix this we would need to keep the previous range
6878 value for the names in the equivalence set. This way we would've
6879 discovered that from one visit to the other i_5 changed from
6880 range [8, 8] to VR_VARYING.
6882 However, fixing this apparent limitation may not be worth the
6883 additional checking. Testing on several code bases (GCC, DLV,
6884 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6885 4 more predicates folded in SPEC. */
6886 sop = false;
6888 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6889 gimple_cond_lhs (stmt),
6890 gimple_cond_rhs (stmt),
6891 false, &sop, NULL);
6892 if (val)
6894 if (!sop)
6895 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6896 else
6898 if (dump_file && (dump_flags & TDF_DETAILS))
6899 fprintf (dump_file,
6900 "\nIgnoring predicate evaluation because "
6901 "it assumes that signed overflow is undefined");
6902 val = NULL_TREE;
6906 if (dump_file && (dump_flags & TDF_DETAILS))
6908 fprintf (dump_file, "\nPredicate evaluates to: ");
6909 if (val == NULL_TREE)
6910 fprintf (dump_file, "DON'T KNOW\n");
6911 else
6912 print_generic_stmt (dump_file, val, 0);
6915 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6918 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6919 that includes the value VAL. The search is restricted to the range
6920 [START_IDX, n - 1] where n is the size of VEC.
6922 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6923 returned.
6925 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6926 it is placed in IDX and false is returned.
6928 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6929 returned. */
6931 static bool
6932 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6934 size_t n = gimple_switch_num_labels (stmt);
6935 size_t low, high;
6937 /* Find case label for minimum of the value range or the next one.
6938 At each iteration we are searching in [low, high - 1]. */
6940 for (low = start_idx, high = n; high != low; )
6942 tree t;
6943 int cmp;
6944 /* Note that i != high, so we never ask for n. */
6945 size_t i = (high + low) / 2;
6946 t = gimple_switch_label (stmt, i);
6948 /* Cache the result of comparing CASE_LOW and val. */
6949 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6951 if (cmp == 0)
6953 /* Ranges cannot be empty. */
6954 *idx = i;
6955 return true;
6957 else if (cmp > 0)
6958 high = i;
6959 else
6961 low = i + 1;
6962 if (CASE_HIGH (t) != NULL
6963 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6965 *idx = i;
6966 return true;
6971 *idx = high;
6972 return false;
6975 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6976 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6977 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6978 then MAX_IDX < MIN_IDX.
6979 Returns true if the default label is not needed. */
6981 static bool
6982 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6983 size_t *max_idx)
6985 size_t i, j;
6986 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6987 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6989 if (i == j
6990 && min_take_default
6991 && max_take_default)
6993 /* Only the default case label reached.
6994 Return an empty range. */
6995 *min_idx = 1;
6996 *max_idx = 0;
6997 return false;
6999 else
7001 bool take_default = min_take_default || max_take_default;
7002 tree low, high;
7003 size_t k;
7005 if (max_take_default)
7006 j--;
7008 /* If the case label range is continuous, we do not need
7009 the default case label. Verify that. */
7010 high = CASE_LOW (gimple_switch_label (stmt, i));
7011 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7012 high = CASE_HIGH (gimple_switch_label (stmt, i));
7013 for (k = i + 1; k <= j; ++k)
7015 low = CASE_LOW (gimple_switch_label (stmt, k));
7016 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7018 take_default = true;
7019 break;
7021 high = low;
7022 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7023 high = CASE_HIGH (gimple_switch_label (stmt, k));
7026 *min_idx = i;
7027 *max_idx = j;
7028 return !take_default;
7032 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7033 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7034 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7035 Returns true if the default label is not needed. */
7037 static bool
7038 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7039 size_t *max_idx1, size_t *min_idx2,
7040 size_t *max_idx2)
7042 size_t i, j, k, l;
7043 unsigned int n = gimple_switch_num_labels (stmt);
7044 bool take_default;
7045 tree case_low, case_high;
7046 tree min = vr->min, max = vr->max;
7048 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7050 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7052 /* Set second range to emtpy. */
7053 *min_idx2 = 1;
7054 *max_idx2 = 0;
7056 if (vr->type == VR_RANGE)
7058 *min_idx1 = i;
7059 *max_idx1 = j;
7060 return !take_default;
7063 /* Set first range to all case labels. */
7064 *min_idx1 = 1;
7065 *max_idx1 = n - 1;
7067 if (i > j)
7068 return false;
7070 /* Make sure all the values of case labels [i , j] are contained in
7071 range [MIN, MAX]. */
7072 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7073 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7074 if (tree_int_cst_compare (case_low, min) < 0)
7075 i += 1;
7076 if (case_high != NULL_TREE
7077 && tree_int_cst_compare (max, case_high) < 0)
7078 j -= 1;
7080 if (i > j)
7081 return false;
7083 /* If the range spans case labels [i, j], the corresponding anti-range spans
7084 the labels [1, i - 1] and [j + 1, n - 1]. */
7085 k = j + 1;
7086 l = n - 1;
7087 if (k > l)
7089 k = 1;
7090 l = 0;
7093 j = i - 1;
7094 i = 1;
7095 if (i > j)
7097 i = k;
7098 j = l;
7099 k = 1;
7100 l = 0;
7103 *min_idx1 = i;
7104 *max_idx1 = j;
7105 *min_idx2 = k;
7106 *max_idx2 = l;
7107 return false;
7110 /* Visit switch statement STMT. If we can determine which edge
7111 will be taken out of STMT's basic block, record it in
7112 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7113 SSA_PROP_VARYING. */
7115 static enum ssa_prop_result
7116 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7118 tree op, val;
7119 value_range_t *vr;
7120 size_t i = 0, j = 0, k, l;
7121 bool take_default;
7123 *taken_edge_p = NULL;
7124 op = gimple_switch_index (stmt);
7125 if (TREE_CODE (op) != SSA_NAME)
7126 return SSA_PROP_VARYING;
7128 vr = get_value_range (op);
7129 if (dump_file && (dump_flags & TDF_DETAILS))
7131 fprintf (dump_file, "\nVisiting switch expression with operand ");
7132 print_generic_expr (dump_file, op, 0);
7133 fprintf (dump_file, " with known range ");
7134 dump_value_range (dump_file, vr);
7135 fprintf (dump_file, "\n");
7138 if ((vr->type != VR_RANGE
7139 && vr->type != VR_ANTI_RANGE)
7140 || symbolic_range_p (vr))
7141 return SSA_PROP_VARYING;
7143 /* Find the single edge that is taken from the switch expression. */
7144 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7146 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7147 label */
7148 if (j < i)
7150 gcc_assert (take_default);
7151 val = gimple_switch_default_label (stmt);
7153 else
7155 /* Check if labels with index i to j and maybe the default label
7156 are all reaching the same label. */
7158 val = gimple_switch_label (stmt, i);
7159 if (take_default
7160 && CASE_LABEL (gimple_switch_default_label (stmt))
7161 != CASE_LABEL (val))
7163 if (dump_file && (dump_flags & TDF_DETAILS))
7164 fprintf (dump_file, " not a single destination for this "
7165 "range\n");
7166 return SSA_PROP_VARYING;
7168 for (++i; i <= j; ++i)
7170 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7172 if (dump_file && (dump_flags & TDF_DETAILS))
7173 fprintf (dump_file, " not a single destination for this "
7174 "range\n");
7175 return SSA_PROP_VARYING;
7178 for (; k <= l; ++k)
7180 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7182 if (dump_file && (dump_flags & TDF_DETAILS))
7183 fprintf (dump_file, " not a single destination for this "
7184 "range\n");
7185 return SSA_PROP_VARYING;
7190 *taken_edge_p = find_edge (gimple_bb (stmt),
7191 label_to_block (CASE_LABEL (val)));
7193 if (dump_file && (dump_flags & TDF_DETAILS))
7195 fprintf (dump_file, " will take edge to ");
7196 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7199 return SSA_PROP_INTERESTING;
7203 /* Evaluate statement STMT. If the statement produces a useful range,
7204 return SSA_PROP_INTERESTING and record the SSA name with the
7205 interesting range into *OUTPUT_P.
7207 If STMT is a conditional branch and we can determine its truth
7208 value, the taken edge is recorded in *TAKEN_EDGE_P.
7210 If STMT produces a varying value, return SSA_PROP_VARYING. */
7212 static enum ssa_prop_result
7213 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7215 tree def;
7216 ssa_op_iter iter;
7218 if (dump_file && (dump_flags & TDF_DETAILS))
7220 fprintf (dump_file, "\nVisiting statement:\n");
7221 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7222 fprintf (dump_file, "\n");
7225 if (!stmt_interesting_for_vrp (stmt))
7226 gcc_assert (stmt_ends_bb_p (stmt));
7227 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7229 /* In general, assignments with virtual operands are not useful
7230 for deriving ranges, with the obvious exception of calls to
7231 builtin functions. */
7232 if ((is_gimple_call (stmt)
7233 && gimple_call_fndecl (stmt) != NULL_TREE
7234 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
7235 || !gimple_vuse (stmt))
7236 return vrp_visit_assignment_or_call (stmt, output_p);
7238 else if (gimple_code (stmt) == GIMPLE_COND)
7239 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7240 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7241 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7243 /* All other statements produce nothing of interest for VRP, so mark
7244 their outputs varying and prevent further simulation. */
7245 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7246 set_value_range_to_varying (get_value_range (def));
7248 return SSA_PROP_VARYING;
7251 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7252 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7253 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7254 possible such range. The resulting range is not canonicalized. */
7256 static void
7257 union_ranges (enum value_range_type *vr0type,
7258 tree *vr0min, tree *vr0max,
7259 enum value_range_type vr1type,
7260 tree vr1min, tree vr1max)
7262 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7263 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7265 /* [] is vr0, () is vr1 in the following classification comments. */
7266 if (mineq && maxeq)
7268 /* [( )] */
7269 if (*vr0type == vr1type)
7270 /* Nothing to do for equal ranges. */
7272 else if ((*vr0type == VR_RANGE
7273 && vr1type == VR_ANTI_RANGE)
7274 || (*vr0type == VR_ANTI_RANGE
7275 && vr1type == VR_RANGE))
7277 /* For anti-range with range union the result is varying. */
7278 goto give_up;
7280 else
7281 gcc_unreachable ();
7283 else if (operand_less_p (*vr0max, vr1min) == 1
7284 || operand_less_p (vr1max, *vr0min) == 1)
7286 /* [ ] ( ) or ( ) [ ]
7287 If the ranges have an empty intersection, result of the union
7288 operation is the anti-range or if both are anti-ranges
7289 it covers all. */
7290 if (*vr0type == VR_ANTI_RANGE
7291 && vr1type == VR_ANTI_RANGE)
7292 goto give_up;
7293 else if (*vr0type == VR_ANTI_RANGE
7294 && vr1type == VR_RANGE)
7296 else if (*vr0type == VR_RANGE
7297 && vr1type == VR_ANTI_RANGE)
7299 *vr0type = vr1type;
7300 *vr0min = vr1min;
7301 *vr0max = vr1max;
7303 else if (*vr0type == VR_RANGE
7304 && vr1type == VR_RANGE)
7306 /* The result is the convex hull of both ranges. */
7307 if (operand_less_p (*vr0max, vr1min) == 1)
7309 /* If the result can be an anti-range, create one. */
7310 if (TREE_CODE (*vr0max) == INTEGER_CST
7311 && TREE_CODE (vr1min) == INTEGER_CST
7312 && vrp_val_is_min (*vr0min)
7313 && vrp_val_is_max (vr1max))
7315 tree min = int_const_binop (PLUS_EXPR,
7316 *vr0max, integer_one_node);
7317 tree max = int_const_binop (MINUS_EXPR,
7318 vr1min, integer_one_node);
7319 if (!operand_less_p (max, min))
7321 *vr0type = VR_ANTI_RANGE;
7322 *vr0min = min;
7323 *vr0max = max;
7325 else
7326 *vr0max = vr1max;
7328 else
7329 *vr0max = vr1max;
7331 else
7333 /* If the result can be an anti-range, create one. */
7334 if (TREE_CODE (vr1max) == INTEGER_CST
7335 && TREE_CODE (*vr0min) == INTEGER_CST
7336 && vrp_val_is_min (vr1min)
7337 && vrp_val_is_max (*vr0max))
7339 tree min = int_const_binop (PLUS_EXPR,
7340 vr1max, integer_one_node);
7341 tree max = int_const_binop (MINUS_EXPR,
7342 *vr0min, integer_one_node);
7343 if (!operand_less_p (max, min))
7345 *vr0type = VR_ANTI_RANGE;
7346 *vr0min = min;
7347 *vr0max = max;
7349 else
7350 *vr0min = vr1min;
7352 else
7353 *vr0min = vr1min;
7356 else
7357 gcc_unreachable ();
7359 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7360 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7362 /* [ ( ) ] or [( ) ] or [ ( )] */
7363 if (*vr0type == VR_RANGE
7364 && vr1type == VR_RANGE)
7366 else if (*vr0type == VR_ANTI_RANGE
7367 && vr1type == VR_ANTI_RANGE)
7369 *vr0type = vr1type;
7370 *vr0min = vr1min;
7371 *vr0max = vr1max;
7373 else if (*vr0type == VR_ANTI_RANGE
7374 && vr1type == VR_RANGE)
7376 /* Arbitrarily choose the right or left gap. */
7377 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7378 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7379 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7380 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7381 else
7382 goto give_up;
7384 else if (*vr0type == VR_RANGE
7385 && vr1type == VR_ANTI_RANGE)
7386 /* The result covers everything. */
7387 goto give_up;
7388 else
7389 gcc_unreachable ();
7391 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7392 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7394 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7395 if (*vr0type == VR_RANGE
7396 && vr1type == VR_RANGE)
7398 *vr0type = vr1type;
7399 *vr0min = vr1min;
7400 *vr0max = vr1max;
7402 else if (*vr0type == VR_ANTI_RANGE
7403 && vr1type == VR_ANTI_RANGE)
7405 else if (*vr0type == VR_RANGE
7406 && vr1type == VR_ANTI_RANGE)
7408 *vr0type = VR_ANTI_RANGE;
7409 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7411 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7412 *vr0min = vr1min;
7414 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7416 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7417 *vr0max = vr1max;
7419 else
7420 goto give_up;
7422 else if (*vr0type == VR_ANTI_RANGE
7423 && vr1type == VR_RANGE)
7424 /* The result covers everything. */
7425 goto give_up;
7426 else
7427 gcc_unreachable ();
7429 else if ((operand_less_p (vr1min, *vr0max) == 1
7430 || operand_equal_p (vr1min, *vr0max, 0))
7431 && operand_less_p (*vr0min, vr1min) == 1)
7433 /* [ ( ] ) or [ ]( ) */
7434 if (*vr0type == VR_RANGE
7435 && vr1type == VR_RANGE)
7436 *vr0max = vr1max;
7437 else if (*vr0type == VR_ANTI_RANGE
7438 && vr1type == VR_ANTI_RANGE)
7439 *vr0min = vr1min;
7440 else if (*vr0type == VR_ANTI_RANGE
7441 && vr1type == VR_RANGE)
7443 if (TREE_CODE (vr1min) == INTEGER_CST)
7444 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7445 else
7446 goto give_up;
7448 else if (*vr0type == VR_RANGE
7449 && vr1type == VR_ANTI_RANGE)
7451 if (TREE_CODE (*vr0max) == INTEGER_CST)
7453 *vr0type = vr1type;
7454 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7455 *vr0max = vr1max;
7457 else
7458 goto give_up;
7460 else
7461 gcc_unreachable ();
7463 else if ((operand_less_p (*vr0min, vr1max) == 1
7464 || operand_equal_p (*vr0min, vr1max, 0))
7465 && operand_less_p (vr1min, *vr0min) == 1)
7467 /* ( [ ) ] or ( )[ ] */
7468 if (*vr0type == VR_RANGE
7469 && vr1type == VR_RANGE)
7470 *vr0min = vr1min;
7471 else if (*vr0type == VR_ANTI_RANGE
7472 && vr1type == VR_ANTI_RANGE)
7473 *vr0max = vr1max;
7474 else if (*vr0type == VR_ANTI_RANGE
7475 && vr1type == VR_RANGE)
7477 if (TREE_CODE (vr1max) == INTEGER_CST)
7478 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7479 else
7480 goto give_up;
7482 else if (*vr0type == VR_RANGE
7483 && vr1type == VR_ANTI_RANGE)
7485 if (TREE_CODE (*vr0min) == INTEGER_CST)
7487 *vr0type = vr1type;
7488 *vr0min = vr1min;
7489 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7491 else
7492 goto give_up;
7494 else
7495 gcc_unreachable ();
7497 else
7498 goto give_up;
7500 return;
7502 give_up:
7503 *vr0type = VR_VARYING;
7504 *vr0min = NULL_TREE;
7505 *vr0max = NULL_TREE;
7508 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7509 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7510 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7511 possible such range. The resulting range is not canonicalized. */
7513 static void
7514 intersect_ranges (enum value_range_type *vr0type,
7515 tree *vr0min, tree *vr0max,
7516 enum value_range_type vr1type,
7517 tree vr1min, tree vr1max)
7519 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7520 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7522 /* [] is vr0, () is vr1 in the following classification comments. */
7523 if (mineq && maxeq)
7525 /* [( )] */
7526 if (*vr0type == vr1type)
7527 /* Nothing to do for equal ranges. */
7529 else if ((*vr0type == VR_RANGE
7530 && vr1type == VR_ANTI_RANGE)
7531 || (*vr0type == VR_ANTI_RANGE
7532 && vr1type == VR_RANGE))
7534 /* For anti-range with range intersection the result is empty. */
7535 *vr0type = VR_UNDEFINED;
7536 *vr0min = NULL_TREE;
7537 *vr0max = NULL_TREE;
7539 else
7540 gcc_unreachable ();
7542 else if (operand_less_p (*vr0max, vr1min) == 1
7543 || operand_less_p (vr1max, *vr0min) == 1)
7545 /* [ ] ( ) or ( ) [ ]
7546 If the ranges have an empty intersection, the result of the
7547 intersect operation is the range for intersecting an
7548 anti-range with a range or empty when intersecting two ranges. */
7549 if (*vr0type == VR_RANGE
7550 && vr1type == VR_ANTI_RANGE)
7552 else if (*vr0type == VR_ANTI_RANGE
7553 && vr1type == VR_RANGE)
7555 *vr0type = vr1type;
7556 *vr0min = vr1min;
7557 *vr0max = vr1max;
7559 else if (*vr0type == VR_RANGE
7560 && vr1type == VR_RANGE)
7562 *vr0type = VR_UNDEFINED;
7563 *vr0min = NULL_TREE;
7564 *vr0max = NULL_TREE;
7566 else if (*vr0type == VR_ANTI_RANGE
7567 && vr1type == VR_ANTI_RANGE)
7569 /* If the anti-ranges are adjacent to each other merge them. */
7570 if (TREE_CODE (*vr0max) == INTEGER_CST
7571 && TREE_CODE (vr1min) == INTEGER_CST
7572 && operand_less_p (*vr0max, vr1min) == 1
7573 && integer_onep (int_const_binop (MINUS_EXPR,
7574 vr1min, *vr0max)))
7575 *vr0max = vr1max;
7576 else if (TREE_CODE (vr1max) == INTEGER_CST
7577 && TREE_CODE (*vr0min) == INTEGER_CST
7578 && operand_less_p (vr1max, *vr0min) == 1
7579 && integer_onep (int_const_binop (MINUS_EXPR,
7580 *vr0min, vr1max)))
7581 *vr0min = vr1min;
7582 /* Else arbitrarily take VR0. */
7585 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7586 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7588 /* [ ( ) ] or [( ) ] or [ ( )] */
7589 if (*vr0type == VR_RANGE
7590 && vr1type == VR_RANGE)
7592 /* If both are ranges the result is the inner one. */
7593 *vr0type = vr1type;
7594 *vr0min = vr1min;
7595 *vr0max = vr1max;
7597 else if (*vr0type == VR_RANGE
7598 && vr1type == VR_ANTI_RANGE)
7600 /* Choose the right gap if the left one is empty. */
7601 if (mineq)
7603 if (TREE_CODE (vr1max) == INTEGER_CST)
7604 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7605 else
7606 *vr0min = vr1max;
7608 /* Choose the left gap if the right one is empty. */
7609 else if (maxeq)
7611 if (TREE_CODE (vr1min) == INTEGER_CST)
7612 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7613 integer_one_node);
7614 else
7615 *vr0max = vr1min;
7617 /* Choose the anti-range if the range is effectively varying. */
7618 else if (vrp_val_is_min (*vr0min)
7619 && vrp_val_is_max (*vr0max))
7621 *vr0type = vr1type;
7622 *vr0min = vr1min;
7623 *vr0max = vr1max;
7625 /* Else choose the range. */
7627 else if (*vr0type == VR_ANTI_RANGE
7628 && vr1type == VR_ANTI_RANGE)
7629 /* If both are anti-ranges the result is the outer one. */
7631 else if (*vr0type == VR_ANTI_RANGE
7632 && vr1type == VR_RANGE)
7634 /* The intersection is empty. */
7635 *vr0type = VR_UNDEFINED;
7636 *vr0min = NULL_TREE;
7637 *vr0max = NULL_TREE;
7639 else
7640 gcc_unreachable ();
7642 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7643 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7645 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7646 if (*vr0type == VR_RANGE
7647 && vr1type == VR_RANGE)
7648 /* Choose the inner range. */
7650 else if (*vr0type == VR_ANTI_RANGE
7651 && vr1type == VR_RANGE)
7653 /* Choose the right gap if the left is empty. */
7654 if (mineq)
7656 *vr0type = VR_RANGE;
7657 if (TREE_CODE (*vr0max) == INTEGER_CST)
7658 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7659 integer_one_node);
7660 else
7661 *vr0min = *vr0max;
7662 *vr0max = vr1max;
7664 /* Choose the left gap if the right is empty. */
7665 else if (maxeq)
7667 *vr0type = VR_RANGE;
7668 if (TREE_CODE (*vr0min) == INTEGER_CST)
7669 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7670 integer_one_node);
7671 else
7672 *vr0max = *vr0min;
7673 *vr0min = vr1min;
7675 /* Choose the anti-range if the range is effectively varying. */
7676 else if (vrp_val_is_min (vr1min)
7677 && vrp_val_is_max (vr1max))
7679 /* Else choose the range. */
7680 else
7682 *vr0type = vr1type;
7683 *vr0min = vr1min;
7684 *vr0max = vr1max;
7687 else if (*vr0type == VR_ANTI_RANGE
7688 && vr1type == VR_ANTI_RANGE)
7690 /* If both are anti-ranges the result is the outer one. */
7691 *vr0type = vr1type;
7692 *vr0min = vr1min;
7693 *vr0max = vr1max;
7695 else if (vr1type == VR_ANTI_RANGE
7696 && *vr0type == VR_RANGE)
7698 /* The intersection is empty. */
7699 *vr0type = VR_UNDEFINED;
7700 *vr0min = NULL_TREE;
7701 *vr0max = NULL_TREE;
7703 else
7704 gcc_unreachable ();
7706 else if ((operand_less_p (vr1min, *vr0max) == 1
7707 || operand_equal_p (vr1min, *vr0max, 0))
7708 && operand_less_p (*vr0min, vr1min) == 1)
7710 /* [ ( ] ) or [ ]( ) */
7711 if (*vr0type == VR_ANTI_RANGE
7712 && vr1type == VR_ANTI_RANGE)
7713 *vr0max = vr1max;
7714 else if (*vr0type == VR_RANGE
7715 && vr1type == VR_RANGE)
7716 *vr0min = vr1min;
7717 else if (*vr0type == VR_RANGE
7718 && vr1type == VR_ANTI_RANGE)
7720 if (TREE_CODE (vr1min) == INTEGER_CST)
7721 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7722 integer_one_node);
7723 else
7724 *vr0max = vr1min;
7726 else if (*vr0type == VR_ANTI_RANGE
7727 && vr1type == VR_RANGE)
7729 *vr0type = VR_RANGE;
7730 if (TREE_CODE (*vr0max) == INTEGER_CST)
7731 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7732 integer_one_node);
7733 else
7734 *vr0min = *vr0max;
7735 *vr0max = vr1max;
7737 else
7738 gcc_unreachable ();
7740 else if ((operand_less_p (*vr0min, vr1max) == 1
7741 || operand_equal_p (*vr0min, vr1max, 0))
7742 && operand_less_p (vr1min, *vr0min) == 1)
7744 /* ( [ ) ] or ( )[ ] */
7745 if (*vr0type == VR_ANTI_RANGE
7746 && vr1type == VR_ANTI_RANGE)
7747 *vr0min = vr1min;
7748 else if (*vr0type == VR_RANGE
7749 && vr1type == VR_RANGE)
7750 *vr0max = vr1max;
7751 else if (*vr0type == VR_RANGE
7752 && vr1type == VR_ANTI_RANGE)
7754 if (TREE_CODE (vr1max) == INTEGER_CST)
7755 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
7756 integer_one_node);
7757 else
7758 *vr0min = vr1max;
7760 else if (*vr0type == VR_ANTI_RANGE
7761 && vr1type == VR_RANGE)
7763 *vr0type = VR_RANGE;
7764 if (TREE_CODE (*vr0min) == INTEGER_CST)
7765 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7766 integer_one_node);
7767 else
7768 *vr0max = *vr0min;
7769 *vr0min = vr1min;
7771 else
7772 gcc_unreachable ();
7775 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
7776 result for the intersection. That's always a conservative
7777 correct estimate. */
7779 return;
7783 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
7784 in *VR0. This may not be the smallest possible such range. */
7786 static void
7787 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
7789 value_range_t saved;
7791 /* If either range is VR_VARYING the other one wins. */
7792 if (vr1->type == VR_VARYING)
7793 return;
7794 if (vr0->type == VR_VARYING)
7796 copy_value_range (vr0, vr1);
7797 return;
7800 /* When either range is VR_UNDEFINED the resulting range is
7801 VR_UNDEFINED, too. */
7802 if (vr0->type == VR_UNDEFINED)
7803 return;
7804 if (vr1->type == VR_UNDEFINED)
7806 set_value_range_to_undefined (vr0);
7807 return;
7810 /* Save the original vr0 so we can return it as conservative intersection
7811 result when our worker turns things to varying. */
7812 saved = *vr0;
7813 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
7814 vr1->type, vr1->min, vr1->max);
7815 /* Make sure to canonicalize the result though as the inversion of a
7816 VR_RANGE can still be a VR_RANGE. */
7817 set_and_canonicalize_value_range (vr0, vr0->type,
7818 vr0->min, vr0->max, vr0->equiv);
7819 /* If that failed, use the saved original VR0. */
7820 if (vr0->type == VR_VARYING)
7822 *vr0 = saved;
7823 return;
7825 /* If the result is VR_UNDEFINED there is no need to mess with
7826 the equivalencies. */
7827 if (vr0->type == VR_UNDEFINED)
7828 return;
7830 /* The resulting set of equivalences for range intersection is the union of
7831 the two sets. */
7832 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
7833 bitmap_ior_into (vr0->equiv, vr1->equiv);
7834 else if (vr1->equiv && !vr0->equiv)
7835 bitmap_copy (vr0->equiv, vr1->equiv);
7838 static void
7839 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
7841 if (dump_file && (dump_flags & TDF_DETAILS))
7843 fprintf (dump_file, "Intersecting\n ");
7844 dump_value_range (dump_file, vr0);
7845 fprintf (dump_file, "\nand\n ");
7846 dump_value_range (dump_file, vr1);
7847 fprintf (dump_file, "\n");
7849 vrp_intersect_ranges_1 (vr0, vr1);
7850 if (dump_file && (dump_flags & TDF_DETAILS))
7852 fprintf (dump_file, "to\n ");
7853 dump_value_range (dump_file, vr0);
7854 fprintf (dump_file, "\n");
7858 /* Meet operation for value ranges. Given two value ranges VR0 and
7859 VR1, store in VR0 a range that contains both VR0 and VR1. This
7860 may not be the smallest possible such range. */
7862 static void
7863 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
7865 value_range_t saved;
7867 if (vr0->type == VR_UNDEFINED)
7869 /* Drop equivalences. See PR53465. */
7870 set_value_range (vr0, vr1->type, vr1->min, vr1->max, NULL);
7871 return;
7874 if (vr1->type == VR_UNDEFINED)
7876 /* VR0 already has the resulting range, just drop equivalences.
7877 See PR53465. */
7878 if (vr0->equiv)
7879 bitmap_clear (vr0->equiv);
7880 return;
7883 if (vr0->type == VR_VARYING)
7885 /* Nothing to do. VR0 already has the resulting range. */
7886 return;
7889 if (vr1->type == VR_VARYING)
7891 set_value_range_to_varying (vr0);
7892 return;
7895 saved = *vr0;
7896 union_ranges (&vr0->type, &vr0->min, &vr0->max,
7897 vr1->type, vr1->min, vr1->max);
7898 if (vr0->type == VR_VARYING)
7900 /* Failed to find an efficient meet. Before giving up and setting
7901 the result to VARYING, see if we can at least derive a useful
7902 anti-range. FIXME, all this nonsense about distinguishing
7903 anti-ranges from ranges is necessary because of the odd
7904 semantics of range_includes_zero_p and friends. */
7905 if (((saved.type == VR_RANGE
7906 && range_includes_zero_p (saved.min, saved.max) == 0)
7907 || (saved.type == VR_ANTI_RANGE
7908 && range_includes_zero_p (saved.min, saved.max) == 1))
7909 && ((vr1->type == VR_RANGE
7910 && range_includes_zero_p (vr1->min, vr1->max) == 0)
7911 || (vr1->type == VR_ANTI_RANGE
7912 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
7914 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
7916 /* Since this meet operation did not result from the meeting of
7917 two equivalent names, VR0 cannot have any equivalences. */
7918 if (vr0->equiv)
7919 bitmap_clear (vr0->equiv);
7920 return;
7923 set_value_range_to_varying (vr0);
7924 return;
7926 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
7927 vr0->equiv);
7928 if (vr0->type == VR_VARYING)
7929 return;
7931 /* The resulting set of equivalences is always the intersection of
7932 the two sets. */
7933 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
7934 bitmap_and_into (vr0->equiv, vr1->equiv);
7935 else if (vr0->equiv && !vr1->equiv)
7936 bitmap_clear (vr0->equiv);
7939 static void
7940 vrp_meet (value_range_t *vr0, value_range_t *vr1)
7942 if (dump_file && (dump_flags & TDF_DETAILS))
7944 fprintf (dump_file, "Meeting\n ");
7945 dump_value_range (dump_file, vr0);
7946 fprintf (dump_file, "\nand\n ");
7947 dump_value_range (dump_file, vr1);
7948 fprintf (dump_file, "\n");
7950 vrp_meet_1 (vr0, vr1);
7951 if (dump_file && (dump_flags & TDF_DETAILS))
7953 fprintf (dump_file, "to\n ");
7954 dump_value_range (dump_file, vr0);
7955 fprintf (dump_file, "\n");
7960 /* Visit all arguments for PHI node PHI that flow through executable
7961 edges. If a valid value range can be derived from all the incoming
7962 value ranges, set a new range for the LHS of PHI. */
7964 static enum ssa_prop_result
7965 vrp_visit_phi_node (gimple phi)
7967 size_t i;
7968 tree lhs = PHI_RESULT (phi);
7969 value_range_t *lhs_vr = get_value_range (lhs);
7970 value_range_t vr_result = VR_INITIALIZER;
7971 bool first = true;
7972 int edges, old_edges;
7973 struct loop *l;
7975 if (dump_file && (dump_flags & TDF_DETAILS))
7977 fprintf (dump_file, "\nVisiting PHI node: ");
7978 print_gimple_stmt (dump_file, phi, 0, dump_flags);
7981 edges = 0;
7982 for (i = 0; i < gimple_phi_num_args (phi); i++)
7984 edge e = gimple_phi_arg_edge (phi, i);
7986 if (dump_file && (dump_flags & TDF_DETAILS))
7988 fprintf (dump_file,
7989 "\n Argument #%d (%d -> %d %sexecutable)\n",
7990 (int) i, e->src->index, e->dest->index,
7991 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
7994 if (e->flags & EDGE_EXECUTABLE)
7996 tree arg = PHI_ARG_DEF (phi, i);
7997 value_range_t vr_arg;
7999 ++edges;
8001 if (TREE_CODE (arg) == SSA_NAME)
8003 vr_arg = *(get_value_range (arg));
8005 else
8007 if (is_overflow_infinity (arg))
8009 arg = copy_node (arg);
8010 TREE_OVERFLOW (arg) = 0;
8013 vr_arg.type = VR_RANGE;
8014 vr_arg.min = arg;
8015 vr_arg.max = arg;
8016 vr_arg.equiv = NULL;
8019 if (dump_file && (dump_flags & TDF_DETAILS))
8021 fprintf (dump_file, "\t");
8022 print_generic_expr (dump_file, arg, dump_flags);
8023 fprintf (dump_file, "\n\tValue: ");
8024 dump_value_range (dump_file, &vr_arg);
8025 fprintf (dump_file, "\n");
8028 if (first)
8029 copy_value_range (&vr_result, &vr_arg);
8030 else
8031 vrp_meet (&vr_result, &vr_arg);
8032 first = false;
8034 if (vr_result.type == VR_VARYING)
8035 break;
8039 if (vr_result.type == VR_VARYING)
8040 goto varying;
8041 else if (vr_result.type == VR_UNDEFINED)
8042 goto update_range;
8044 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8045 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8047 /* To prevent infinite iterations in the algorithm, derive ranges
8048 when the new value is slightly bigger or smaller than the
8049 previous one. We don't do this if we have seen a new executable
8050 edge; this helps us avoid an overflow infinity for conditionals
8051 which are not in a loop. If the old value-range was VR_UNDEFINED
8052 use the updated range and iterate one more time. */
8053 if (edges > 0
8054 && gimple_phi_num_args (phi) > 1
8055 && edges == old_edges
8056 && lhs_vr->type != VR_UNDEFINED)
8058 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8059 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8061 /* For non VR_RANGE or for pointers fall back to varying if
8062 the range changed. */
8063 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8064 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8065 && (cmp_min != 0 || cmp_max != 0))
8066 goto varying;
8068 /* If the new minimum is smaller or larger than the previous
8069 one, go all the way to -INF. In the first case, to avoid
8070 iterating millions of times to reach -INF, and in the
8071 other case to avoid infinite bouncing between different
8072 minimums. */
8073 if (cmp_min > 0 || cmp_min < 0)
8075 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
8076 || !vrp_var_may_overflow (lhs, phi))
8077 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
8078 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
8079 vr_result.min =
8080 negative_overflow_infinity (TREE_TYPE (vr_result.min));
8083 /* Similarly, if the new maximum is smaller or larger than
8084 the previous one, go all the way to +INF. */
8085 if (cmp_max < 0 || cmp_max > 0)
8087 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
8088 || !vrp_var_may_overflow (lhs, phi))
8089 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
8090 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
8091 vr_result.max =
8092 positive_overflow_infinity (TREE_TYPE (vr_result.max));
8095 /* If we dropped either bound to +-INF then if this is a loop
8096 PHI node SCEV may known more about its value-range. */
8097 if ((cmp_min > 0 || cmp_min < 0
8098 || cmp_max < 0 || cmp_max > 0)
8099 && current_loops
8100 && (l = loop_containing_stmt (phi))
8101 && l->header == gimple_bb (phi))
8102 adjust_range_with_scev (&vr_result, l, phi, lhs);
8104 /* If we will end up with a (-INF, +INF) range, set it to
8105 VARYING. Same if the previous max value was invalid for
8106 the type and we end up with vr_result.min > vr_result.max. */
8107 if ((vrp_val_is_max (vr_result.max)
8108 && vrp_val_is_min (vr_result.min))
8109 || compare_values (vr_result.min,
8110 vr_result.max) > 0)
8111 goto varying;
8114 /* If the new range is different than the previous value, keep
8115 iterating. */
8116 update_range:
8117 if (update_value_range (lhs, &vr_result))
8119 if (dump_file && (dump_flags & TDF_DETAILS))
8121 fprintf (dump_file, "Found new range for ");
8122 print_generic_expr (dump_file, lhs, 0);
8123 fprintf (dump_file, ": ");
8124 dump_value_range (dump_file, &vr_result);
8125 fprintf (dump_file, "\n\n");
8128 return SSA_PROP_INTERESTING;
8131 /* Nothing changed, don't add outgoing edges. */
8132 return SSA_PROP_NOT_INTERESTING;
8134 /* No match found. Set the LHS to VARYING. */
8135 varying:
8136 set_value_range_to_varying (lhs_vr);
8137 return SSA_PROP_VARYING;
8140 /* Simplify boolean operations if the source is known
8141 to be already a boolean. */
8142 static bool
8143 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8145 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8146 tree lhs, op0, op1;
8147 bool need_conversion;
8149 /* We handle only !=/== case here. */
8150 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8152 op0 = gimple_assign_rhs1 (stmt);
8153 if (!op_with_boolean_value_range_p (op0))
8154 return false;
8156 op1 = gimple_assign_rhs2 (stmt);
8157 if (!op_with_boolean_value_range_p (op1))
8158 return false;
8160 /* Reduce number of cases to handle to NE_EXPR. As there is no
8161 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8162 if (rhs_code == EQ_EXPR)
8164 if (TREE_CODE (op1) == INTEGER_CST)
8165 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8166 else
8167 return false;
8170 lhs = gimple_assign_lhs (stmt);
8171 need_conversion
8172 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8174 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8175 if (need_conversion
8176 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8177 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8178 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8179 return false;
8181 /* For A != 0 we can substitute A itself. */
8182 if (integer_zerop (op1))
8183 gimple_assign_set_rhs_with_ops (gsi,
8184 need_conversion
8185 ? NOP_EXPR : TREE_CODE (op0),
8186 op0, NULL_TREE);
8187 /* For A != B we substitute A ^ B. Either with conversion. */
8188 else if (need_conversion)
8190 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8191 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8192 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8193 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8195 /* Or without. */
8196 else
8197 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8198 update_stmt (gsi_stmt (*gsi));
8200 return true;
8203 /* Simplify a division or modulo operator to a right shift or
8204 bitwise and if the first operand is unsigned or is greater
8205 than zero and the second operand is an exact power of two. */
8207 static bool
8208 simplify_div_or_mod_using_ranges (gimple stmt)
8210 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8211 tree val = NULL;
8212 tree op0 = gimple_assign_rhs1 (stmt);
8213 tree op1 = gimple_assign_rhs2 (stmt);
8214 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8216 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8218 val = integer_one_node;
8220 else
8222 bool sop = false;
8224 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8226 if (val
8227 && sop
8228 && integer_onep (val)
8229 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8231 location_t location;
8233 if (!gimple_has_location (stmt))
8234 location = input_location;
8235 else
8236 location = gimple_location (stmt);
8237 warning_at (location, OPT_Wstrict_overflow,
8238 "assuming signed overflow does not occur when "
8239 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8243 if (val && integer_onep (val))
8245 tree t;
8247 if (rhs_code == TRUNC_DIV_EXPR)
8249 t = build_int_cst (integer_type_node, tree_log2 (op1));
8250 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8251 gimple_assign_set_rhs1 (stmt, op0);
8252 gimple_assign_set_rhs2 (stmt, t);
8254 else
8256 t = build_int_cst (TREE_TYPE (op1), 1);
8257 t = int_const_binop (MINUS_EXPR, op1, t);
8258 t = fold_convert (TREE_TYPE (op0), t);
8260 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8261 gimple_assign_set_rhs1 (stmt, op0);
8262 gimple_assign_set_rhs2 (stmt, t);
8265 update_stmt (stmt);
8266 return true;
8269 return false;
8272 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8273 ABS_EXPR. If the operand is <= 0, then simplify the
8274 ABS_EXPR into a NEGATE_EXPR. */
8276 static bool
8277 simplify_abs_using_ranges (gimple stmt)
8279 tree val = NULL;
8280 tree op = gimple_assign_rhs1 (stmt);
8281 tree type = TREE_TYPE (op);
8282 value_range_t *vr = get_value_range (op);
8284 if (TYPE_UNSIGNED (type))
8286 val = integer_zero_node;
8288 else if (vr)
8290 bool sop = false;
8292 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8293 if (!val)
8295 sop = false;
8296 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8297 &sop);
8299 if (val)
8301 if (integer_zerop (val))
8302 val = integer_one_node;
8303 else if (integer_onep (val))
8304 val = integer_zero_node;
8308 if (val
8309 && (integer_onep (val) || integer_zerop (val)))
8311 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8313 location_t location;
8315 if (!gimple_has_location (stmt))
8316 location = input_location;
8317 else
8318 location = gimple_location (stmt);
8319 warning_at (location, OPT_Wstrict_overflow,
8320 "assuming signed overflow does not occur when "
8321 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8324 gimple_assign_set_rhs1 (stmt, op);
8325 if (integer_onep (val))
8326 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8327 else
8328 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8329 update_stmt (stmt);
8330 return true;
8334 return false;
8337 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8338 If all the bits that are being cleared by & are already
8339 known to be zero from VR, or all the bits that are being
8340 set by | are already known to be one from VR, the bit
8341 operation is redundant. */
8343 static bool
8344 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8346 tree op0 = gimple_assign_rhs1 (stmt);
8347 tree op1 = gimple_assign_rhs2 (stmt);
8348 tree op = NULL_TREE;
8349 value_range_t vr0 = VR_INITIALIZER;
8350 value_range_t vr1 = VR_INITIALIZER;
8351 double_int may_be_nonzero0, may_be_nonzero1;
8352 double_int must_be_nonzero0, must_be_nonzero1;
8353 double_int mask;
8355 if (TREE_CODE (op0) == SSA_NAME)
8356 vr0 = *(get_value_range (op0));
8357 else if (is_gimple_min_invariant (op0))
8358 set_value_range_to_value (&vr0, op0, NULL);
8359 else
8360 return false;
8362 if (TREE_CODE (op1) == SSA_NAME)
8363 vr1 = *(get_value_range (op1));
8364 else if (is_gimple_min_invariant (op1))
8365 set_value_range_to_value (&vr1, op1, NULL);
8366 else
8367 return false;
8369 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8370 return false;
8371 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8372 return false;
8374 switch (gimple_assign_rhs_code (stmt))
8376 case BIT_AND_EXPR:
8377 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8378 if (mask.is_zero ())
8380 op = op0;
8381 break;
8383 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8384 if (mask.is_zero ())
8386 op = op1;
8387 break;
8389 break;
8390 case BIT_IOR_EXPR:
8391 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8392 if (mask.is_zero ())
8394 op = op1;
8395 break;
8397 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8398 if (mask.is_zero ())
8400 op = op0;
8401 break;
8403 break;
8404 default:
8405 gcc_unreachable ();
8408 if (op == NULL_TREE)
8409 return false;
8411 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8412 update_stmt (gsi_stmt (*gsi));
8413 return true;
8416 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8417 a known value range VR.
8419 If there is one and only one value which will satisfy the
8420 conditional, then return that value. Else return NULL. */
8422 static tree
8423 test_for_singularity (enum tree_code cond_code, tree op0,
8424 tree op1, value_range_t *vr)
8426 tree min = NULL;
8427 tree max = NULL;
8429 /* Extract minimum/maximum values which satisfy the
8430 the conditional as it was written. */
8431 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8433 /* This should not be negative infinity; there is no overflow
8434 here. */
8435 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8437 max = op1;
8438 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8440 tree one = build_int_cst (TREE_TYPE (op0), 1);
8441 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8442 if (EXPR_P (max))
8443 TREE_NO_WARNING (max) = 1;
8446 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8448 /* This should not be positive infinity; there is no overflow
8449 here. */
8450 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8452 min = op1;
8453 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8455 tree one = build_int_cst (TREE_TYPE (op0), 1);
8456 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8457 if (EXPR_P (min))
8458 TREE_NO_WARNING (min) = 1;
8462 /* Now refine the minimum and maximum values using any
8463 value range information we have for op0. */
8464 if (min && max)
8466 if (compare_values (vr->min, min) == 1)
8467 min = vr->min;
8468 if (compare_values (vr->max, max) == -1)
8469 max = vr->max;
8471 /* If the new min/max values have converged to a single value,
8472 then there is only one value which can satisfy the condition,
8473 return that value. */
8474 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8475 return min;
8477 return NULL;
8480 /* Simplify a conditional using a relational operator to an equality
8481 test if the range information indicates only one value can satisfy
8482 the original conditional. */
8484 static bool
8485 simplify_cond_using_ranges (gimple stmt)
8487 tree op0 = gimple_cond_lhs (stmt);
8488 tree op1 = gimple_cond_rhs (stmt);
8489 enum tree_code cond_code = gimple_cond_code (stmt);
8491 if (cond_code != NE_EXPR
8492 && cond_code != EQ_EXPR
8493 && TREE_CODE (op0) == SSA_NAME
8494 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8495 && is_gimple_min_invariant (op1))
8497 value_range_t *vr = get_value_range (op0);
8499 /* If we have range information for OP0, then we might be
8500 able to simplify this conditional. */
8501 if (vr->type == VR_RANGE)
8503 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8505 if (new_tree)
8507 if (dump_file)
8509 fprintf (dump_file, "Simplified relational ");
8510 print_gimple_stmt (dump_file, stmt, 0, 0);
8511 fprintf (dump_file, " into ");
8514 gimple_cond_set_code (stmt, EQ_EXPR);
8515 gimple_cond_set_lhs (stmt, op0);
8516 gimple_cond_set_rhs (stmt, new_tree);
8518 update_stmt (stmt);
8520 if (dump_file)
8522 print_gimple_stmt (dump_file, stmt, 0, 0);
8523 fprintf (dump_file, "\n");
8526 return true;
8529 /* Try again after inverting the condition. We only deal
8530 with integral types here, so no need to worry about
8531 issues with inverting FP comparisons. */
8532 cond_code = invert_tree_comparison (cond_code, false);
8533 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8535 if (new_tree)
8537 if (dump_file)
8539 fprintf (dump_file, "Simplified relational ");
8540 print_gimple_stmt (dump_file, stmt, 0, 0);
8541 fprintf (dump_file, " into ");
8544 gimple_cond_set_code (stmt, NE_EXPR);
8545 gimple_cond_set_lhs (stmt, op0);
8546 gimple_cond_set_rhs (stmt, new_tree);
8548 update_stmt (stmt);
8550 if (dump_file)
8552 print_gimple_stmt (dump_file, stmt, 0, 0);
8553 fprintf (dump_file, "\n");
8556 return true;
8561 return false;
8564 /* Simplify a switch statement using the value range of the switch
8565 argument. */
8567 static bool
8568 simplify_switch_using_ranges (gimple stmt)
8570 tree op = gimple_switch_index (stmt);
8571 value_range_t *vr;
8572 bool take_default;
8573 edge e;
8574 edge_iterator ei;
8575 size_t i = 0, j = 0, n, n2;
8576 tree vec2;
8577 switch_update su;
8578 size_t k = 1, l = 0;
8580 if (TREE_CODE (op) == SSA_NAME)
8582 vr = get_value_range (op);
8584 /* We can only handle integer ranges. */
8585 if ((vr->type != VR_RANGE
8586 && vr->type != VR_ANTI_RANGE)
8587 || symbolic_range_p (vr))
8588 return false;
8590 /* Find case label for min/max of the value range. */
8591 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
8593 else if (TREE_CODE (op) == INTEGER_CST)
8595 take_default = !find_case_label_index (stmt, 1, op, &i);
8596 if (take_default)
8598 i = 1;
8599 j = 0;
8601 else
8603 j = i;
8606 else
8607 return false;
8609 n = gimple_switch_num_labels (stmt);
8611 /* Bail out if this is just all edges taken. */
8612 if (i == 1
8613 && j == n - 1
8614 && take_default)
8615 return false;
8617 /* Build a new vector of taken case labels. */
8618 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
8619 n2 = 0;
8621 /* Add the default edge, if necessary. */
8622 if (take_default)
8623 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
8625 for (; i <= j; ++i, ++n2)
8626 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
8628 for (; k <= l; ++k, ++n2)
8629 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
8631 /* Mark needed edges. */
8632 for (i = 0; i < n2; ++i)
8634 e = find_edge (gimple_bb (stmt),
8635 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
8636 e->aux = (void *)-1;
8639 /* Queue not needed edges for later removal. */
8640 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
8642 if (e->aux == (void *)-1)
8644 e->aux = NULL;
8645 continue;
8648 if (dump_file && (dump_flags & TDF_DETAILS))
8650 fprintf (dump_file, "removing unreachable case label\n");
8652 to_remove_edges.safe_push (e);
8653 e->flags &= ~EDGE_EXECUTABLE;
8656 /* And queue an update for the stmt. */
8657 su.stmt = stmt;
8658 su.vec = vec2;
8659 to_update_switch_stmts.safe_push (su);
8660 return false;
8663 /* Simplify an integral conversion from an SSA name in STMT. */
8665 static bool
8666 simplify_conversion_using_ranges (gimple stmt)
8668 tree innerop, middleop, finaltype;
8669 gimple def_stmt;
8670 value_range_t *innervr;
8671 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
8672 unsigned inner_prec, middle_prec, final_prec;
8673 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
8675 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
8676 if (!INTEGRAL_TYPE_P (finaltype))
8677 return false;
8678 middleop = gimple_assign_rhs1 (stmt);
8679 def_stmt = SSA_NAME_DEF_STMT (middleop);
8680 if (!is_gimple_assign (def_stmt)
8681 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8682 return false;
8683 innerop = gimple_assign_rhs1 (def_stmt);
8684 if (TREE_CODE (innerop) != SSA_NAME)
8685 return false;
8687 /* Get the value-range of the inner operand. */
8688 innervr = get_value_range (innerop);
8689 if (innervr->type != VR_RANGE
8690 || TREE_CODE (innervr->min) != INTEGER_CST
8691 || TREE_CODE (innervr->max) != INTEGER_CST)
8692 return false;
8694 /* Simulate the conversion chain to check if the result is equal if
8695 the middle conversion is removed. */
8696 innermin = tree_to_double_int (innervr->min);
8697 innermax = tree_to_double_int (innervr->max);
8699 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
8700 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
8701 final_prec = TYPE_PRECISION (finaltype);
8703 /* If the first conversion is not injective, the second must not
8704 be widening. */
8705 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
8706 && middle_prec < final_prec)
8707 return false;
8708 /* We also want a medium value so that we can track the effect that
8709 narrowing conversions with sign change have. */
8710 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
8711 if (inner_unsigned_p)
8712 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
8713 else
8714 innermed = double_int_zero;
8715 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
8716 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
8717 innermed = innermin;
8719 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
8720 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
8721 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
8722 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
8724 /* Require that the final conversion applied to both the original
8725 and the intermediate range produces the same result. */
8726 final_unsigned_p = TYPE_UNSIGNED (finaltype);
8727 if (middlemin.ext (final_prec, final_unsigned_p)
8728 != innermin.ext (final_prec, final_unsigned_p)
8729 || middlemed.ext (final_prec, final_unsigned_p)
8730 != innermed.ext (final_prec, final_unsigned_p)
8731 || middlemax.ext (final_prec, final_unsigned_p)
8732 != innermax.ext (final_prec, final_unsigned_p))
8733 return false;
8735 gimple_assign_set_rhs1 (stmt, innerop);
8736 update_stmt (stmt);
8737 return true;
8740 /* Return whether the value range *VR fits in an integer type specified
8741 by PRECISION and UNSIGNED_P. */
8743 static bool
8744 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8746 tree src_type;
8747 unsigned src_precision;
8748 double_int tem;
8750 /* We can only handle integral and pointer types. */
8751 src_type = TREE_TYPE (vr->min);
8752 if (!INTEGRAL_TYPE_P (src_type)
8753 && !POINTER_TYPE_P (src_type))
8754 return false;
8756 /* An extension is always fine, so is an identity transform. */
8757 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8758 if (src_precision < precision
8759 || (src_precision == precision
8760 && TYPE_UNSIGNED (src_type) == unsigned_p))
8761 return true;
8763 /* Now we can only handle ranges with constant bounds. */
8764 if (vr->type != VR_RANGE
8765 || TREE_CODE (vr->min) != INTEGER_CST
8766 || TREE_CODE (vr->max) != INTEGER_CST)
8767 return false;
8769 /* For sign changes, the MSB of the double_int has to be clear.
8770 An unsigned value with its MSB set cannot be represented by
8771 a signed double_int, while a negative value cannot be represented
8772 by an unsigned double_int. */
8773 if (TYPE_UNSIGNED (src_type) != unsigned_p
8774 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8775 return false;
8777 /* Then we can perform the conversion on both ends and compare
8778 the result for equality. */
8779 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8780 if (tree_to_double_int (vr->min) != tem)
8781 return false;
8782 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8783 if (tree_to_double_int (vr->max) != tem)
8784 return false;
8786 return true;
8789 /* Simplify a conversion from integral SSA name to float in STMT. */
8791 static bool
8792 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8794 tree rhs1 = gimple_assign_rhs1 (stmt);
8795 value_range_t *vr = get_value_range (rhs1);
8796 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
8797 enum machine_mode mode;
8798 tree tem;
8799 gimple conv;
8801 /* We can only handle constant ranges. */
8802 if (vr->type != VR_RANGE
8803 || TREE_CODE (vr->min) != INTEGER_CST
8804 || TREE_CODE (vr->max) != INTEGER_CST)
8805 return false;
8807 /* First check if we can use a signed type in place of an unsigned. */
8808 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
8809 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
8810 != CODE_FOR_nothing)
8811 && range_fits_type_p (vr, GET_MODE_PRECISION
8812 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
8813 mode = TYPE_MODE (TREE_TYPE (rhs1));
8814 /* If we can do the conversion in the current input mode do nothing. */
8815 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
8816 TYPE_UNSIGNED (TREE_TYPE (rhs1))))
8817 return false;
8818 /* Otherwise search for a mode we can use, starting from the narrowest
8819 integer mode available. */
8820 else
8822 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
8825 /* If we cannot do a signed conversion to float from mode
8826 or if the value-range does not fit in the signed type
8827 try with a wider mode. */
8828 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
8829 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
8830 break;
8832 mode = GET_MODE_WIDER_MODE (mode);
8833 /* But do not widen the input. Instead leave that to the
8834 optabs expansion code. */
8835 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
8836 return false;
8838 while (mode != VOIDmode);
8839 if (mode == VOIDmode)
8840 return false;
8843 /* It works, insert a truncation or sign-change before the
8844 float conversion. */
8845 tem = make_ssa_name (build_nonstandard_integer_type
8846 (GET_MODE_PRECISION (mode), 0), NULL);
8847 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
8848 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
8849 gimple_assign_set_rhs1 (stmt, tem);
8850 update_stmt (stmt);
8852 return true;
8855 /* Simplify STMT using ranges if possible. */
8857 static bool
8858 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
8860 gimple stmt = gsi_stmt (*gsi);
8861 if (is_gimple_assign (stmt))
8863 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8864 tree rhs1 = gimple_assign_rhs1 (stmt);
8866 switch (rhs_code)
8868 case EQ_EXPR:
8869 case NE_EXPR:
8870 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
8871 if the RHS is zero or one, and the LHS are known to be boolean
8872 values. */
8873 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
8874 return simplify_truth_ops_using_ranges (gsi, stmt);
8875 break;
8877 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
8878 and BIT_AND_EXPR respectively if the first operand is greater
8879 than zero and the second operand is an exact power of two. */
8880 case TRUNC_DIV_EXPR:
8881 case TRUNC_MOD_EXPR:
8882 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
8883 && integer_pow2p (gimple_assign_rhs2 (stmt)))
8884 return simplify_div_or_mod_using_ranges (stmt);
8885 break;
8887 /* Transform ABS (X) into X or -X as appropriate. */
8888 case ABS_EXPR:
8889 if (TREE_CODE (rhs1) == SSA_NAME
8890 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
8891 return simplify_abs_using_ranges (stmt);
8892 break;
8894 case BIT_AND_EXPR:
8895 case BIT_IOR_EXPR:
8896 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
8897 if all the bits being cleared are already cleared or
8898 all the bits being set are already set. */
8899 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
8900 return simplify_bit_ops_using_ranges (gsi, stmt);
8901 break;
8903 CASE_CONVERT:
8904 if (TREE_CODE (rhs1) == SSA_NAME
8905 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
8906 return simplify_conversion_using_ranges (stmt);
8907 break;
8909 case FLOAT_EXPR:
8910 if (TREE_CODE (rhs1) == SSA_NAME
8911 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
8912 return simplify_float_conversion_using_ranges (gsi, stmt);
8913 break;
8915 default:
8916 break;
8919 else if (gimple_code (stmt) == GIMPLE_COND)
8920 return simplify_cond_using_ranges (stmt);
8921 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8922 return simplify_switch_using_ranges (stmt);
8924 return false;
8927 /* If the statement pointed by SI has a predicate whose value can be
8928 computed using the value range information computed by VRP, compute
8929 its value and return true. Otherwise, return false. */
8931 static bool
8932 fold_predicate_in (gimple_stmt_iterator *si)
8934 bool assignment_p = false;
8935 tree val;
8936 gimple stmt = gsi_stmt (*si);
8938 if (is_gimple_assign (stmt)
8939 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
8941 assignment_p = true;
8942 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
8943 gimple_assign_rhs1 (stmt),
8944 gimple_assign_rhs2 (stmt),
8945 stmt);
8947 else if (gimple_code (stmt) == GIMPLE_COND)
8948 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
8949 gimple_cond_lhs (stmt),
8950 gimple_cond_rhs (stmt),
8951 stmt);
8952 else
8953 return false;
8955 if (val)
8957 if (assignment_p)
8958 val = fold_convert (gimple_expr_type (stmt), val);
8960 if (dump_file)
8962 fprintf (dump_file, "Folding predicate ");
8963 print_gimple_expr (dump_file, stmt, 0, 0);
8964 fprintf (dump_file, " to ");
8965 print_generic_expr (dump_file, val, 0);
8966 fprintf (dump_file, "\n");
8969 if (is_gimple_assign (stmt))
8970 gimple_assign_set_rhs_from_tree (si, val);
8971 else
8973 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
8974 if (integer_zerop (val))
8975 gimple_cond_make_false (stmt);
8976 else if (integer_onep (val))
8977 gimple_cond_make_true (stmt);
8978 else
8979 gcc_unreachable ();
8982 return true;
8985 return false;
8988 /* Callback for substitute_and_fold folding the stmt at *SI. */
8990 static bool
8991 vrp_fold_stmt (gimple_stmt_iterator *si)
8993 if (fold_predicate_in (si))
8994 return true;
8996 return simplify_stmt_using_ranges (si);
8999 /* Stack of dest,src equivalency pairs that need to be restored after
9000 each attempt to thread a block's incoming edge to an outgoing edge.
9002 A NULL entry is used to mark the end of pairs which need to be
9003 restored. */
9004 static vec<tree> equiv_stack;
9006 /* A trivial wrapper so that we can present the generic jump threading
9007 code with a simple API for simplifying statements. STMT is the
9008 statement we want to simplify, WITHIN_STMT provides the location
9009 for any overflow warnings. */
9011 static tree
9012 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9014 /* We only use VRP information to simplify conditionals. This is
9015 overly conservative, but it's unclear if doing more would be
9016 worth the compile time cost. */
9017 if (gimple_code (stmt) != GIMPLE_COND)
9018 return NULL;
9020 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9021 gimple_cond_lhs (stmt),
9022 gimple_cond_rhs (stmt), within_stmt);
9025 /* Blocks which have more than one predecessor and more than
9026 one successor present jump threading opportunities, i.e.,
9027 when the block is reached from a specific predecessor, we
9028 may be able to determine which of the outgoing edges will
9029 be traversed. When this optimization applies, we are able
9030 to avoid conditionals at runtime and we may expose secondary
9031 optimization opportunities.
9033 This routine is effectively a driver for the generic jump
9034 threading code. It basically just presents the generic code
9035 with edges that may be suitable for jump threading.
9037 Unlike DOM, we do not iterate VRP if jump threading was successful.
9038 While iterating may expose new opportunities for VRP, it is expected
9039 those opportunities would be very limited and the compile time cost
9040 to expose those opportunities would be significant.
9042 As jump threading opportunities are discovered, they are registered
9043 for later realization. */
9045 static void
9046 identify_jump_threads (void)
9048 basic_block bb;
9049 gimple dummy;
9050 int i;
9051 edge e;
9053 /* Ugh. When substituting values earlier in this pass we can
9054 wipe the dominance information. So rebuild the dominator
9055 information as we need it within the jump threading code. */
9056 calculate_dominance_info (CDI_DOMINATORS);
9058 /* We do not allow VRP information to be used for jump threading
9059 across a back edge in the CFG. Otherwise it becomes too
9060 difficult to avoid eliminating loop exit tests. Of course
9061 EDGE_DFS_BACK is not accurate at this time so we have to
9062 recompute it. */
9063 mark_dfs_back_edges ();
9065 /* Do not thread across edges we are about to remove. Just marking
9066 them as EDGE_DFS_BACK will do. */
9067 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9068 e->flags |= EDGE_DFS_BACK;
9070 /* Allocate our unwinder stack to unwind any temporary equivalences
9071 that might be recorded. */
9072 equiv_stack.create (20);
9074 /* To avoid lots of silly node creation, we create a single
9075 conditional and just modify it in-place when attempting to
9076 thread jumps. */
9077 dummy = gimple_build_cond (EQ_EXPR,
9078 integer_zero_node, integer_zero_node,
9079 NULL, NULL);
9081 /* Walk through all the blocks finding those which present a
9082 potential jump threading opportunity. We could set this up
9083 as a dominator walker and record data during the walk, but
9084 I doubt it's worth the effort for the classes of jump
9085 threading opportunities we are trying to identify at this
9086 point in compilation. */
9087 FOR_EACH_BB (bb)
9089 gimple last;
9091 /* If the generic jump threading code does not find this block
9092 interesting, then there is nothing to do. */
9093 if (! potentially_threadable_block (bb))
9094 continue;
9096 /* We only care about blocks ending in a COND_EXPR. While there
9097 may be some value in handling SWITCH_EXPR here, I doubt it's
9098 terribly important. */
9099 last = gsi_stmt (gsi_last_bb (bb));
9101 /* We're basically looking for a switch or any kind of conditional with
9102 integral or pointer type arguments. Note the type of the second
9103 argument will be the same as the first argument, so no need to
9104 check it explicitly. */
9105 if (gimple_code (last) == GIMPLE_SWITCH
9106 || (gimple_code (last) == GIMPLE_COND
9107 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9108 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9109 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9110 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9111 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9113 edge_iterator ei;
9115 /* We've got a block with multiple predecessors and multiple
9116 successors which also ends in a suitable conditional or
9117 switch statement. For each predecessor, see if we can thread
9118 it to a specific successor. */
9119 FOR_EACH_EDGE (e, ei, bb->preds)
9121 /* Do not thread across back edges or abnormal edges
9122 in the CFG. */
9123 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9124 continue;
9126 thread_across_edge (dummy, e, true, &equiv_stack,
9127 simplify_stmt_for_jump_threading);
9132 /* We do not actually update the CFG or SSA graphs at this point as
9133 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9134 handle ASSERT_EXPRs gracefully. */
9137 /* We identified all the jump threading opportunities earlier, but could
9138 not transform the CFG at that time. This routine transforms the
9139 CFG and arranges for the dominator tree to be rebuilt if necessary.
9141 Note the SSA graph update will occur during the normal TODO
9142 processing by the pass manager. */
9143 static void
9144 finalize_jump_threads (void)
9146 thread_through_all_blocks (false);
9147 equiv_stack.release ();
9151 /* Traverse all the blocks folding conditionals with known ranges. */
9153 static void
9154 vrp_finalize (void)
9156 size_t i;
9158 values_propagated = true;
9160 if (dump_file)
9162 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9163 dump_all_value_ranges (dump_file);
9164 fprintf (dump_file, "\n");
9167 substitute_and_fold (op_with_constant_singleton_value_range,
9168 vrp_fold_stmt, false);
9170 if (warn_array_bounds)
9171 check_all_array_refs ();
9173 /* We must identify jump threading opportunities before we release
9174 the datastructures built by VRP. */
9175 identify_jump_threads ();
9177 /* Free allocated memory. */
9178 for (i = 0; i < num_vr_values; i++)
9179 if (vr_value[i])
9181 BITMAP_FREE (vr_value[i]->equiv);
9182 free (vr_value[i]);
9185 free (vr_value);
9186 free (vr_phi_edge_counts);
9188 /* So that we can distinguish between VRP data being available
9189 and not available. */
9190 vr_value = NULL;
9191 vr_phi_edge_counts = NULL;
9195 /* Main entry point to VRP (Value Range Propagation). This pass is
9196 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9197 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9198 Programming Language Design and Implementation, pp. 67-78, 1995.
9199 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9201 This is essentially an SSA-CCP pass modified to deal with ranges
9202 instead of constants.
9204 While propagating ranges, we may find that two or more SSA name
9205 have equivalent, though distinct ranges. For instance,
9207 1 x_9 = p_3->a;
9208 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9209 3 if (p_4 == q_2)
9210 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9211 5 endif
9212 6 if (q_2)
9214 In the code above, pointer p_5 has range [q_2, q_2], but from the
9215 code we can also determine that p_5 cannot be NULL and, if q_2 had
9216 a non-varying range, p_5's range should also be compatible with it.
9218 These equivalences are created by two expressions: ASSERT_EXPR and
9219 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9220 result of another assertion, then we can use the fact that p_5 and
9221 p_4 are equivalent when evaluating p_5's range.
9223 Together with value ranges, we also propagate these equivalences
9224 between names so that we can take advantage of information from
9225 multiple ranges when doing final replacement. Note that this
9226 equivalency relation is transitive but not symmetric.
9228 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9229 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9230 in contexts where that assertion does not hold (e.g., in line 6).
9232 TODO, the main difference between this pass and Patterson's is that
9233 we do not propagate edge probabilities. We only compute whether
9234 edges can be taken or not. That is, instead of having a spectrum
9235 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9236 DON'T KNOW. In the future, it may be worthwhile to propagate
9237 probabilities to aid branch prediction. */
9239 static unsigned int
9240 execute_vrp (void)
9242 int i;
9243 edge e;
9244 switch_update *su;
9246 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9247 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9248 scev_initialize ();
9250 insert_range_assertions ();
9252 to_remove_edges.create (10);
9253 to_update_switch_stmts.create (5);
9254 threadedge_initialize_values ();
9256 vrp_initialize ();
9257 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9258 vrp_finalize ();
9260 free_numbers_of_iterations_estimates ();
9262 /* ASSERT_EXPRs must be removed before finalizing jump threads
9263 as finalizing jump threads calls the CFG cleanup code which
9264 does not properly handle ASSERT_EXPRs. */
9265 remove_range_assertions ();
9267 /* If we exposed any new variables, go ahead and put them into
9268 SSA form now, before we handle jump threading. This simplifies
9269 interactions between rewriting of _DECL nodes into SSA form
9270 and rewriting SSA_NAME nodes into SSA form after block
9271 duplication and CFG manipulation. */
9272 update_ssa (TODO_update_ssa);
9274 finalize_jump_threads ();
9276 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9277 CFG in a broken state and requires a cfg_cleanup run. */
9278 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9279 remove_edge (e);
9280 /* Update SWITCH_EXPR case label vector. */
9281 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9283 size_t j;
9284 size_t n = TREE_VEC_LENGTH (su->vec);
9285 tree label;
9286 gimple_switch_set_num_labels (su->stmt, n);
9287 for (j = 0; j < n; j++)
9288 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9289 /* As we may have replaced the default label with a regular one
9290 make sure to make it a real default label again. This ensures
9291 optimal expansion. */
9292 label = gimple_switch_label (su->stmt, 0);
9293 CASE_LOW (label) = NULL_TREE;
9294 CASE_HIGH (label) = NULL_TREE;
9297 if (to_remove_edges.length () > 0)
9298 free_dominance_info (CDI_DOMINATORS);
9300 to_remove_edges.release ();
9301 to_update_switch_stmts.release ();
9302 threadedge_finalize_values ();
9304 scev_finalize ();
9305 loop_optimizer_finalize ();
9306 return 0;
9309 static bool
9310 gate_vrp (void)
9312 return flag_tree_vrp != 0;
9315 struct gimple_opt_pass pass_vrp =
9318 GIMPLE_PASS,
9319 "vrp", /* name */
9320 OPTGROUP_NONE, /* optinfo_flags */
9321 gate_vrp, /* gate */
9322 execute_vrp, /* execute */
9323 NULL, /* sub */
9324 NULL, /* next */
9325 0, /* static_pass_number */
9326 TV_TREE_VRP, /* tv_id */
9327 PROP_ssa, /* properties_required */
9328 0, /* properties_provided */
9329 0, /* properties_destroyed */
9330 0, /* todo_flags_start */
9331 TODO_cleanup_cfg
9332 | TODO_update_ssa
9333 | TODO_verify_ssa
9334 | TODO_verify_flow
9335 | TODO_ggc_collect /* todo_flags_finish */