1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
27 #include "hard-reg-set.h"
31 #include "basic-block.h"
34 #include "insn-config.h"
39 /* This pass of the compiler performs global register allocation.
40 It assigns hard register numbers to all the pseudo registers
41 that were not handled in local_alloc. Assignments are recorded
42 in the vector reg_renumber, not by changing the rtl code.
43 (Such changes are made by final). The entry point is
44 the function global_alloc.
46 After allocation is complete, the reload pass is run as a subroutine
47 of this pass, so that when a pseudo reg loses its hard reg due to
48 spilling it is possible to make a second attempt to find a hard
49 reg for it. The reload pass is independent in other respects
50 and it is run even when stupid register allocation is in use.
52 1. Assign allocation-numbers (allocnos) to the pseudo-registers
53 still needing allocations and to the pseudo-registers currently
54 allocated by local-alloc which may be spilled by reload.
55 Set up tables reg_allocno and allocno_reg to map
56 reg numbers to allocnos and vice versa.
57 max_allocno gets the number of allocnos in use.
59 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
60 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
61 for conflicts between allocnos and explicit hard register use
62 (which includes use of pseudo-registers allocated by local_alloc).
64 3. For each basic block
65 walk forward through the block, recording which
66 pseudo-registers and which hardware registers are live.
67 Build the conflict matrix between the pseudo-registers
68 and another of pseudo-registers versus hardware registers.
69 Also record the preferred hardware registers
70 for each pseudo-register.
72 4. Sort a table of the allocnos into order of
73 desirability of the variables.
75 5. Allocate the variables in that order; each if possible into
76 a preferred register, else into another register. */
78 /* Number of pseudo-registers which are candidates for allocation. */
80 static int max_allocno
;
82 /* Indexed by (pseudo) reg number, gives the allocno, or -1
83 for pseudo registers which are not to be allocated. */
85 static int *reg_allocno
;
90 /* Gives the number of consecutive hard registers needed by that
94 /* Number of calls crossed by each allocno. */
97 /* Number of refs (weighted) to each allocno. */
100 /* Guess at live length of each allocno.
101 This is actually the max of the live lengths of the regs. */
104 /* Set of hard regs conflicting with allocno N. */
106 HARD_REG_SET hard_reg_conflicts
;
108 /* Set of hard regs preferred by allocno N.
109 This is used to make allocnos go into regs that are copied to or from them,
110 when possible, to reduce register shuffling. */
112 HARD_REG_SET hard_reg_preferences
;
114 /* Similar, but just counts register preferences made in simple copy
115 operations, rather than arithmetic. These are given priority because
116 we can always eliminate an insn by using these, but using a register
117 in the above list won't always eliminate an insn. */
119 HARD_REG_SET hard_reg_copy_preferences
;
121 /* Similar to hard_reg_preferences, but includes bits for subsequent
122 registers when an allocno is multi-word. The above variable is used for
123 allocation while this is used to build reg_someone_prefers, below. */
125 HARD_REG_SET hard_reg_full_preferences
;
127 /* Set of hard registers that some later allocno has a preference for. */
129 HARD_REG_SET regs_someone_prefers
;
132 static struct allocno
*allocno
;
134 /* A vector of the integers from 0 to max_allocno-1,
135 sorted in the order of first-to-be-allocated first. */
137 static int *allocno_order
;
139 /* Indexed by (pseudo) reg number, gives the number of another
140 lower-numbered pseudo reg which can share a hard reg with this pseudo
141 *even if the two pseudos would otherwise appear to conflict*. */
143 static int *reg_may_share
;
145 /* Define the number of bits in each element of `conflicts' and what
146 type that element has. We use the largest integer format on the
149 #define INT_BITS HOST_BITS_PER_WIDE_INT
150 #define INT_TYPE HOST_WIDE_INT
152 /* max_allocno by max_allocno array of bits,
153 recording whether two allocno's conflict (can't go in the same
156 `conflicts' is symmetric after the call to mirror_conflicts. */
158 static INT_TYPE
*conflicts
;
160 /* Number of ints require to hold max_allocno bits.
161 This is the length of a row in `conflicts'. */
163 static int allocno_row_words
;
165 /* Two macros to test or store 1 in an element of `conflicts'. */
167 #define CONFLICTP(I, J) \
168 (conflicts[(I) * allocno_row_words + (unsigned)(J) / INT_BITS] \
169 & ((INT_TYPE) 1 << ((unsigned)(J) % INT_BITS)))
171 #define SET_CONFLICT(I, J) \
172 (conflicts[(I) * allocno_row_words + (unsigned)(J) / INT_BITS] \
173 |= ((INT_TYPE) 1 << ((unsigned)(J) % INT_BITS)))
175 /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
177 #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \
181 INT_TYPE *p_ = (ALLOCNO_SET); \
183 for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \
184 i_--, allocno_ += INT_BITS) \
186 unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \
188 for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \
196 /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */
198 /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
199 the conflicting allocno, and execute CODE. This macro assumes that
200 mirror_conflicts has been run. */
201 #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
202 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
206 /* Set of hard regs currently live (during scan of all insns). */
208 static HARD_REG_SET hard_regs_live
;
210 /* Set of registers that global-alloc isn't supposed to use. */
212 static HARD_REG_SET no_global_alloc_regs
;
214 /* Set of registers used so far. */
216 static HARD_REG_SET regs_used_so_far
;
218 /* Number of refs (weighted) to each hard reg, as used by local alloc.
219 It is zero for a reg that contains global pseudos or is explicitly used. */
221 static int local_reg_n_refs
[FIRST_PSEUDO_REGISTER
];
223 /* Guess at live length of each hard reg, as used by local alloc.
224 This is actually the sum of the live lengths of the specific regs. */
226 static int local_reg_live_length
[FIRST_PSEUDO_REGISTER
];
228 /* Test a bit in TABLE, a vector of HARD_REG_SETs,
229 for vector element I, and hard register number J. */
231 #define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (allocno[I].TABLE, J)
233 /* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
235 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J)
237 /* Bit mask for allocnos live at current point in the scan. */
239 static INT_TYPE
*allocnos_live
;
241 /* Test, set or clear bit number I in allocnos_live,
242 a bit vector indexed by allocno. */
244 #define ALLOCNO_LIVE_P(I) \
245 (allocnos_live[(unsigned)(I) / INT_BITS] \
246 & ((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
248 #define SET_ALLOCNO_LIVE(I) \
249 (allocnos_live[(unsigned)(I) / INT_BITS] \
250 |= ((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
252 #define CLEAR_ALLOCNO_LIVE(I) \
253 (allocnos_live[(unsigned)(I) / INT_BITS] \
254 &= ~((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
256 /* This is turned off because it doesn't work right for DImode.
257 (And it is only used for DImode, so the other cases are worthless.)
258 The problem is that it isn't true that there is NO possibility of conflict;
259 only that there is no conflict if the two pseudos get the exact same regs.
260 If they were allocated with a partial overlap, there would be a conflict.
261 We can't safely turn off the conflict unless we have another way to
262 prevent the partial overlap.
264 Idea: change hard_reg_conflicts so that instead of recording which
265 hard regs the allocno may not overlap, it records where the allocno
266 may not start. Change both where it is used and where it is updated.
267 Then there is a way to record that (reg:DI 108) may start at 10
268 but not at 9 or 11. There is still the question of how to record
269 this semi-conflict between two pseudos. */
271 /* Reg pairs for which conflict after the current insn
272 is inhibited by a REG_NO_CONFLICT note.
273 If the table gets full, we ignore any other notes--that is conservative. */
274 #define NUM_NO_CONFLICT_PAIRS 4
275 /* Number of pairs in use in this insn. */
276 int n_no_conflict_pairs
;
277 static struct { int allocno1
, allocno2
;}
278 no_conflict_pairs
[NUM_NO_CONFLICT_PAIRS
];
281 /* Record all regs that are set in any one insn.
282 Communication from mark_reg_{store,clobber} and global_conflicts. */
284 static rtx
*regs_set
;
285 static int n_regs_set
;
287 /* All registers that can be eliminated. */
289 static HARD_REG_SET eliminable_regset
;
291 static int allocno_compare
PARAMS ((const PTR
, const PTR
));
292 static void global_conflicts
PARAMS ((void));
293 static void mirror_conflicts
PARAMS ((void));
294 static void expand_preferences
PARAMS ((void));
295 static void prune_preferences
PARAMS ((void));
296 static void find_reg
PARAMS ((int, HARD_REG_SET
, int, int, int));
297 static void record_one_conflict
PARAMS ((int));
298 static void record_conflicts
PARAMS ((int *, int));
299 static void mark_reg_store
PARAMS ((rtx
, rtx
, void *));
300 static void mark_reg_clobber
PARAMS ((rtx
, rtx
, void *));
301 static void mark_reg_conflicts
PARAMS ((rtx
));
302 static void mark_reg_death
PARAMS ((rtx
));
303 static void mark_reg_live_nc
PARAMS ((int, enum machine_mode
));
304 static void set_preference
PARAMS ((rtx
, rtx
));
305 static void dump_conflicts
PARAMS ((FILE *));
306 static void reg_becomes_live
PARAMS ((rtx
, rtx
, void *));
307 static void reg_dies
PARAMS ((int, enum machine_mode
,
308 struct insn_chain
*));
310 /* Perform allocation of pseudo-registers not allocated by local_alloc.
311 FILE is a file to output debugging information on,
312 or zero if such output is not desired.
314 Return value is nonzero if reload failed
315 and we must not do any more for this function. */
322 #ifdef ELIMINABLE_REGS
323 static struct {int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
326 = (! flag_omit_frame_pointer
327 #ifdef EXIT_IGNORE_STACK
328 || (current_function_calls_alloca
&& EXIT_IGNORE_STACK
)
330 || FRAME_POINTER_REQUIRED
);
337 /* A machine may have certain hard registers that
338 are safe to use only within a basic block. */
340 CLEAR_HARD_REG_SET (no_global_alloc_regs
);
342 /* Build the regset of all eliminable registers and show we can't use those
343 that we already know won't be eliminated. */
344 #ifdef ELIMINABLE_REGS
345 for (i
= 0; i
< sizeof eliminables
/ sizeof eliminables
[0]; i
++)
347 SET_HARD_REG_BIT (eliminable_regset
, eliminables
[i
].from
);
349 if (! CAN_ELIMINATE (eliminables
[i
].from
, eliminables
[i
].to
)
350 || (eliminables
[i
].to
== STACK_POINTER_REGNUM
&& need_fp
))
351 SET_HARD_REG_BIT (no_global_alloc_regs
, eliminables
[i
].from
);
353 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
354 SET_HARD_REG_BIT (eliminable_regset
, HARD_FRAME_POINTER_REGNUM
);
356 SET_HARD_REG_BIT (no_global_alloc_regs
, HARD_FRAME_POINTER_REGNUM
);
360 SET_HARD_REG_BIT (eliminable_regset
, FRAME_POINTER_REGNUM
);
362 SET_HARD_REG_BIT (no_global_alloc_regs
, FRAME_POINTER_REGNUM
);
365 /* Track which registers have already been used. Start with registers
366 explicitly in the rtl, then registers allocated by local register
369 CLEAR_HARD_REG_SET (regs_used_so_far
);
370 #ifdef LEAF_REGISTERS
371 /* If we are doing the leaf function optimization, and this is a leaf
372 function, it means that the registers that take work to save are those
373 that need a register window. So prefer the ones that can be used in
377 char *leaf_regs
= LEAF_REGISTERS
;
379 if (only_leaf_regs_used () && leaf_function_p ())
380 cheap_regs
= leaf_regs
;
382 cheap_regs
= call_used_regs
;
383 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
384 if (regs_ever_live
[i
] || cheap_regs
[i
])
385 SET_HARD_REG_BIT (regs_used_so_far
, i
);
388 /* We consider registers that do not have to be saved over calls as if
389 they were already used since there is no cost in using them. */
390 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
391 if (regs_ever_live
[i
] || call_used_regs
[i
])
392 SET_HARD_REG_BIT (regs_used_so_far
, i
);
395 for (i
= FIRST_PSEUDO_REGISTER
; i
< (size_t) max_regno
; i
++)
396 if (reg_renumber
[i
] >= 0)
397 SET_HARD_REG_BIT (regs_used_so_far
, reg_renumber
[i
]);
399 /* Establish mappings from register number to allocation number
400 and vice versa. In the process, count the allocnos. */
402 reg_allocno
= (int *) xmalloc (max_regno
* sizeof (int));
404 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
407 /* Initialize the shared-hard-reg mapping
408 from the list of pairs that may share. */
409 reg_may_share
= (int *) xcalloc (max_regno
, sizeof (int));
410 for (x
= regs_may_share
; x
; x
= XEXP (XEXP (x
, 1), 1))
412 int r1
= REGNO (XEXP (x
, 0));
413 int r2
= REGNO (XEXP (XEXP (x
, 1), 0));
415 reg_may_share
[r1
] = r2
;
417 reg_may_share
[r2
] = r1
;
420 for (i
= FIRST_PSEUDO_REGISTER
; i
< (size_t) max_regno
; i
++)
421 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
422 that we are supposed to refrain from putting in a hard reg.
423 -2 means do make an allocno but don't allocate it. */
424 if (REG_N_REFS (i
) != 0 && REG_LIVE_LENGTH (i
) != -1
425 /* Don't allocate pseudos that cross calls,
426 if this function receives a nonlocal goto. */
427 && (! current_function_has_nonlocal_label
428 || REG_N_CALLS_CROSSED (i
) == 0))
430 if (reg_renumber
[i
] < 0 && reg_may_share
[i
] && reg_allocno
[reg_may_share
[i
]] >= 0)
431 reg_allocno
[i
] = reg_allocno
[reg_may_share
[i
]];
433 reg_allocno
[i
] = max_allocno
++;
434 if (REG_LIVE_LENGTH (i
) == 0)
440 allocno
= (struct allocno
*) xcalloc (max_allocno
, sizeof (struct allocno
));
442 for (i
= FIRST_PSEUDO_REGISTER
; i
< (size_t) max_regno
; i
++)
443 if (reg_allocno
[i
] >= 0)
445 int num
= reg_allocno
[i
];
446 allocno
[num
].reg
= i
;
447 allocno
[num
].size
= PSEUDO_REGNO_SIZE (i
);
448 allocno
[num
].calls_crossed
+= REG_N_CALLS_CROSSED (i
);
449 allocno
[num
].n_refs
+= REG_N_REFS (i
);
450 if (allocno
[num
].live_length
< REG_LIVE_LENGTH (i
))
451 allocno
[num
].live_length
= REG_LIVE_LENGTH (i
);
454 /* Calculate amount of usage of each hard reg by pseudos
455 allocated by local-alloc. This is to see if we want to
457 bzero ((char *) local_reg_live_length
, sizeof local_reg_live_length
);
458 bzero ((char *) local_reg_n_refs
, sizeof local_reg_n_refs
);
459 for (i
= FIRST_PSEUDO_REGISTER
; i
< (size_t) max_regno
; i
++)
460 if (reg_renumber
[i
] >= 0)
462 int regno
= reg_renumber
[i
];
463 int endregno
= regno
+ HARD_REGNO_NREGS (regno
, PSEUDO_REGNO_MODE (i
));
466 for (j
= regno
; j
< endregno
; j
++)
468 local_reg_n_refs
[j
] += REG_N_REFS (i
);
469 local_reg_live_length
[j
] += REG_LIVE_LENGTH (i
);
473 /* We can't override local-alloc for a reg used not just by local-alloc. */
474 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
475 if (regs_ever_live
[i
])
476 local_reg_n_refs
[i
] = 0;
478 allocno_row_words
= (max_allocno
+ INT_BITS
- 1) / INT_BITS
;
480 /* We used to use alloca here, but the size of what it would try to
481 allocate would occasionally cause it to exceed the stack limit and
482 cause unpredictable core dumps. Some examples were > 2Mb in size. */
483 conflicts
= (INT_TYPE
*) xcalloc (max_allocno
* allocno_row_words
,
486 allocnos_live
= (INT_TYPE
*) xmalloc (allocno_row_words
* sizeof (INT_TYPE
));
488 /* If there is work to be done (at least one reg to allocate),
489 perform global conflict analysis and allocate the regs. */
493 /* Scan all the insns and compute the conflicts among allocnos
494 and between allocnos and hard regs. */
500 /* Eliminate conflicts between pseudos and eliminable registers. If
501 the register is not eliminated, the pseudo won't really be able to
502 live in the eliminable register, so the conflict doesn't matter.
503 If we do eliminate the register, the conflict will no longer exist.
504 So in either case, we can ignore the conflict. Likewise for
507 for (i
= 0; i
< (size_t) max_allocno
; i
++)
509 AND_COMPL_HARD_REG_SET (allocno
[i
].hard_reg_conflicts
,
511 AND_COMPL_HARD_REG_SET (allocno
[i
].hard_reg_copy_preferences
,
513 AND_COMPL_HARD_REG_SET (allocno
[i
].hard_reg_preferences
,
517 /* Try to expand the preferences by merging them between allocnos. */
519 expand_preferences ();
521 /* Determine the order to allocate the remaining pseudo registers. */
523 allocno_order
= (int *) xmalloc (max_allocno
* sizeof (int));
524 for (i
= 0; i
< (size_t) max_allocno
; i
++)
525 allocno_order
[i
] = i
;
527 /* Default the size to 1, since allocno_compare uses it to divide by.
528 Also convert allocno_live_length of zero to -1. A length of zero
529 can occur when all the registers for that allocno have reg_live_length
530 equal to -2. In this case, we want to make an allocno, but not
531 allocate it. So avoid the divide-by-zero and set it to a low
534 for (i
= 0; i
< (size_t) max_allocno
; i
++)
536 if (allocno
[i
].size
== 0)
538 if (allocno
[i
].live_length
== 0)
539 allocno
[i
].live_length
= -1;
542 qsort (allocno_order
, max_allocno
, sizeof (int), allocno_compare
);
544 prune_preferences ();
547 dump_conflicts (file
);
549 /* Try allocating them, one by one, in that order,
550 except for parameters marked with reg_live_length[regno] == -2. */
552 for (i
= 0; i
< (size_t) max_allocno
; i
++)
553 if (reg_renumber
[allocno
[allocno_order
[i
]].reg
] < 0
554 && REG_LIVE_LENGTH (allocno
[allocno_order
[i
]].reg
) >= 0)
556 /* If we have more than one register class,
557 first try allocating in the class that is cheapest
558 for this pseudo-reg. If that fails, try any reg. */
559 if (N_REG_CLASSES
> 1)
561 find_reg (allocno_order
[i
], 0, 0, 0, 0);
562 if (reg_renumber
[allocno
[allocno_order
[i
]].reg
] >= 0)
565 if (reg_alternate_class (allocno
[allocno_order
[i
]].reg
) != NO_REGS
)
566 find_reg (allocno_order
[i
], 0, 1, 0, 0);
569 free (allocno_order
);
572 /* Do the reloads now while the allocno data still exist, so that we can
573 try to assign new hard regs to any pseudo regs that are spilled. */
575 #if 0 /* We need to eliminate regs even if there is no rtl code,
576 for the sake of debugging information. */
577 if (n_basic_blocks
> 0)
580 build_insn_chain (get_insns ());
581 retval
= reload (get_insns (), 1, file
);
586 free (reg_may_share
);
589 free (allocnos_live
);
594 /* Sort predicate for ordering the allocnos.
595 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
598 allocno_compare (v1p
, v2p
)
602 int v1
= *(const int *)v1p
, v2
= *(const int *)v2p
;
603 /* Note that the quotient will never be bigger than
604 the value of floor_log2 times the maximum number of
605 times a register can occur in one insn (surely less than 100).
606 Multiplying this by 10000 can't overflow. */
608 = (((double) (floor_log2 (allocno
[v1
].n_refs
) * allocno
[v1
].n_refs
)
609 / allocno
[v1
].live_length
)
610 * 10000 * allocno
[v1
].size
);
612 = (((double) (floor_log2 (allocno
[v2
].n_refs
) * allocno
[v2
].n_refs
)
613 / allocno
[v2
].live_length
)
614 * 10000 * allocno
[v2
].size
);
618 /* If regs are equally good, sort by allocno,
619 so that the results of qsort leave nothing to chance. */
623 /* Scan the rtl code and record all conflicts and register preferences in the
624 conflict matrices and preference tables. */
631 int *block_start_allocnos
;
633 /* Make a vector that mark_reg_{store,clobber} will store in. */
634 regs_set
= (rtx
*) xmalloc (max_parallel
* sizeof (rtx
) * 2);
636 block_start_allocnos
= (int *) xmalloc (max_allocno
* sizeof (int));
638 for (b
= 0; b
< n_basic_blocks
; b
++)
640 bzero ((char *) allocnos_live
, allocno_row_words
* sizeof (INT_TYPE
));
642 /* Initialize table of registers currently live
643 to the state at the beginning of this basic block.
644 This also marks the conflicts among hard registers
645 and any allocnos that are live.
647 For pseudo-regs, there is only one bit for each one
648 no matter how many hard regs it occupies.
649 This is ok; we know the size from PSEUDO_REGNO_SIZE.
650 For explicit hard regs, we cannot know the size that way
651 since one hard reg can be used with various sizes.
652 Therefore, we must require that all the hard regs
653 implicitly live as part of a multi-word hard reg
654 are explicitly marked in basic_block_live_at_start. */
657 register regset old
= BASIC_BLOCK (b
)->global_live_at_start
;
660 REG_SET_TO_HARD_REG_SET (hard_regs_live
, old
);
661 EXECUTE_IF_SET_IN_REG_SET (old
, FIRST_PSEUDO_REGISTER
, i
,
663 register int a
= reg_allocno
[i
];
666 SET_ALLOCNO_LIVE (a
);
667 block_start_allocnos
[ax
++] = a
;
669 else if ((a
= reg_renumber
[i
]) >= 0)
671 (a
, PSEUDO_REGNO_MODE (i
));
674 /* Record that each allocno now live conflicts with each hard reg
677 It is not necessary to mark any conflicts between pseudos as
678 this point, even for pseudos which are live at the start of
681 Given two pseudos X and Y and any point in the CFG P.
683 On any path to point P where X and Y are live one of the
684 following conditions must be true:
686 1. X is live at some instruction on the path that
689 2. Y is live at some instruction on the path that
692 3. Either X or Y is not evaluted on the path to P
693 (ie it is used uninitialized) and thus the
694 conflict can be ignored.
696 In cases #1 and #2 the conflict will be recorded when we
697 scan the instruction that makes either X or Y become live. */
698 record_conflicts (block_start_allocnos
, ax
);
702 /* Pseudos can't go in stack regs at the start of a basic block
703 that is reached by an abnormal edge. */
706 for (e
= BASIC_BLOCK (b
)->pred
; e
; e
= e
->pred_next
)
707 if (e
->flags
& EDGE_ABNORMAL
)
710 for (ax
= FIRST_STACK_REG
; ax
<= LAST_STACK_REG
; ax
++)
711 record_one_conflict (ax
);
716 insn
= BLOCK_HEAD (b
);
718 /* Scan the code of this basic block, noting which allocnos
719 and hard regs are born or die. When one is born,
720 record a conflict with all others currently live. */
724 register RTX_CODE code
= GET_CODE (insn
);
727 /* Make regs_set an empty set. */
731 if (code
== INSN
|| code
== CALL_INSN
|| code
== JUMP_INSN
)
736 for (link
= REG_NOTES (insn
);
737 link
&& i
< NUM_NO_CONFLICT_PAIRS
;
738 link
= XEXP (link
, 1))
739 if (REG_NOTE_KIND (link
) == REG_NO_CONFLICT
)
741 no_conflict_pairs
[i
].allocno1
742 = reg_allocno
[REGNO (SET_DEST (PATTERN (insn
)))];
743 no_conflict_pairs
[i
].allocno2
744 = reg_allocno
[REGNO (XEXP (link
, 0))];
749 /* Mark any registers clobbered by INSN as live,
750 so they conflict with the inputs. */
752 note_stores (PATTERN (insn
), mark_reg_clobber
, NULL
);
754 /* Mark any registers dead after INSN as dead now. */
756 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
757 if (REG_NOTE_KIND (link
) == REG_DEAD
)
758 mark_reg_death (XEXP (link
, 0));
760 /* Mark any registers set in INSN as live,
761 and mark them as conflicting with all other live regs.
762 Clobbers are processed again, so they conflict with
763 the registers that are set. */
765 note_stores (PATTERN (insn
), mark_reg_store
, NULL
);
768 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
769 if (REG_NOTE_KIND (link
) == REG_INC
)
770 mark_reg_store (XEXP (link
, 0), NULL_RTX
, NULL
);
773 /* If INSN has multiple outputs, then any reg that dies here
774 and is used inside of an output
775 must conflict with the other outputs.
777 It is unsafe to use !single_set here since it will ignore an
778 unused output. Just because an output is unused does not mean
779 the compiler can assume the side effect will not occur.
780 Consider if REG appears in the address of an output and we
781 reload the output. If we allocate REG to the same hard
782 register as an unused output we could set the hard register
783 before the output reload insn. */
784 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
785 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
786 if (REG_NOTE_KIND (link
) == REG_DEAD
)
788 int used_in_output
= 0;
790 rtx reg
= XEXP (link
, 0);
792 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
794 rtx set
= XVECEXP (PATTERN (insn
), 0, i
);
795 if (GET_CODE (set
) == SET
796 && GET_CODE (SET_DEST (set
)) != REG
797 && !rtx_equal_p (reg
, SET_DEST (set
))
798 && reg_overlap_mentioned_p (reg
, SET_DEST (set
)))
802 mark_reg_conflicts (reg
);
805 /* Mark any registers set in INSN and then never used. */
807 while (n_regs_set
> 0)
808 if (find_regno_note (insn
, REG_UNUSED
,
809 REGNO (regs_set
[--n_regs_set
])))
810 mark_reg_death (regs_set
[n_regs_set
]);
813 if (insn
== BLOCK_END (b
))
815 insn
= NEXT_INSN (insn
);
820 free (block_start_allocnos
);
823 /* Expand the preference information by looking for cases where one allocno
824 dies in an insn that sets an allocno. If those two allocnos don't conflict,
825 merge any preferences between those allocnos. */
828 expand_preferences ()
834 /* We only try to handle the most common cases here. Most of the cases
835 where this wins are reg-reg copies. */
837 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
838 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
839 && (set
= single_set (insn
)) != 0
840 && GET_CODE (SET_DEST (set
)) == REG
841 && reg_allocno
[REGNO (SET_DEST (set
))] >= 0)
842 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
843 if (REG_NOTE_KIND (link
) == REG_DEAD
844 && GET_CODE (XEXP (link
, 0)) == REG
845 && reg_allocno
[REGNO (XEXP (link
, 0))] >= 0
846 && ! CONFLICTP (reg_allocno
[REGNO (SET_DEST (set
))],
847 reg_allocno
[REGNO (XEXP (link
, 0))]))
849 int a1
= reg_allocno
[REGNO (SET_DEST (set
))];
850 int a2
= reg_allocno
[REGNO (XEXP (link
, 0))];
852 if (XEXP (link
, 0) == SET_SRC (set
))
854 IOR_HARD_REG_SET (allocno
[a1
].hard_reg_copy_preferences
,
855 allocno
[a2
].hard_reg_copy_preferences
);
856 IOR_HARD_REG_SET (allocno
[a2
].hard_reg_copy_preferences
,
857 allocno
[a1
].hard_reg_copy_preferences
);
860 IOR_HARD_REG_SET (allocno
[a1
].hard_reg_preferences
,
861 allocno
[a2
].hard_reg_preferences
);
862 IOR_HARD_REG_SET (allocno
[a2
].hard_reg_preferences
,
863 allocno
[a1
].hard_reg_preferences
);
864 IOR_HARD_REG_SET (allocno
[a1
].hard_reg_full_preferences
,
865 allocno
[a2
].hard_reg_full_preferences
);
866 IOR_HARD_REG_SET (allocno
[a2
].hard_reg_full_preferences
,
867 allocno
[a1
].hard_reg_full_preferences
);
871 /* Prune the preferences for global registers to exclude registers that cannot
874 Compute `regs_someone_prefers', which is a bitmask of the hard registers
875 that are preferred by conflicting registers of lower priority. If possible,
876 we will avoid using these registers. */
883 int *allocno_to_order
= (int *) xmalloc (max_allocno
* sizeof (int));
885 /* Scan least most important to most important.
886 For each allocno, remove from preferences registers that cannot be used,
887 either because of conflicts or register type. Then compute all registers
888 preferred by each lower-priority register that conflicts. */
890 for (i
= max_allocno
- 1; i
>= 0; i
--)
894 num
= allocno_order
[i
];
895 allocno_to_order
[num
] = i
;
896 COPY_HARD_REG_SET (temp
, allocno
[num
].hard_reg_conflicts
);
898 if (allocno
[num
].calls_crossed
== 0)
899 IOR_HARD_REG_SET (temp
, fixed_reg_set
);
901 IOR_HARD_REG_SET (temp
, call_used_reg_set
);
903 IOR_COMPL_HARD_REG_SET
905 reg_class_contents
[(int) reg_preferred_class (allocno
[num
].reg
)]);
907 AND_COMPL_HARD_REG_SET (allocno
[num
].hard_reg_preferences
, temp
);
908 AND_COMPL_HARD_REG_SET (allocno
[num
].hard_reg_copy_preferences
, temp
);
909 AND_COMPL_HARD_REG_SET (allocno
[num
].hard_reg_full_preferences
, temp
);
912 for (i
= max_allocno
- 1; i
>= 0; i
--)
914 /* Merge in the preferences of lower-priority registers (they have
915 already been pruned). If we also prefer some of those registers,
916 don't exclude them unless we are of a smaller size (in which case
917 we want to give the lower-priority allocno the first chance for
919 HARD_REG_SET temp
, temp2
;
922 num
= allocno_order
[i
];
924 CLEAR_HARD_REG_SET (temp
);
925 CLEAR_HARD_REG_SET (temp2
);
927 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts
+ num
* allocno_row_words
,
930 if (allocno_to_order
[allocno2
] > i
)
932 if (allocno
[allocno2
].size
<= allocno
[num
].size
)
933 IOR_HARD_REG_SET (temp
,
934 allocno
[allocno2
].hard_reg_full_preferences
);
936 IOR_HARD_REG_SET (temp2
,
937 allocno
[allocno2
].hard_reg_full_preferences
);
941 AND_COMPL_HARD_REG_SET (temp
, allocno
[num
].hard_reg_full_preferences
);
942 IOR_HARD_REG_SET (temp
, temp2
);
943 COPY_HARD_REG_SET (allocno
[num
].regs_someone_prefers
, temp
);
945 free (allocno_to_order
);
948 /* Assign a hard register to allocno NUM; look for one that is the beginning
949 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
950 The registers marked in PREFREGS are tried first.
952 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
953 be used for this allocation.
955 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
956 Otherwise ignore that preferred class and use the alternate class.
958 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
959 will have to be saved and restored at calls.
961 RETRYING is nonzero if this is called from retry_global_alloc.
963 If we find one, record it in reg_renumber.
964 If not, do nothing. */
967 find_reg (num
, losers
, alt_regs_p
, accept_call_clobbered
, retrying
)
971 int accept_call_clobbered
;
974 register int i
, best_reg
, pass
;
976 register /* Declare it register if it's a scalar. */
978 HARD_REG_SET used
, used1
, used2
;
980 enum reg_class
class = (alt_regs_p
981 ? reg_alternate_class (allocno
[num
].reg
)
982 : reg_preferred_class (allocno
[num
].reg
));
983 enum machine_mode mode
= PSEUDO_REGNO_MODE (allocno
[num
].reg
);
985 if (accept_call_clobbered
)
986 COPY_HARD_REG_SET (used1
, call_fixed_reg_set
);
987 else if (allocno
[num
].calls_crossed
== 0)
988 COPY_HARD_REG_SET (used1
, fixed_reg_set
);
990 COPY_HARD_REG_SET (used1
, call_used_reg_set
);
992 /* Some registers should not be allocated in global-alloc. */
993 IOR_HARD_REG_SET (used1
, no_global_alloc_regs
);
995 IOR_HARD_REG_SET (used1
, losers
);
997 IOR_COMPL_HARD_REG_SET (used1
, reg_class_contents
[(int) class]);
998 COPY_HARD_REG_SET (used2
, used1
);
1000 IOR_HARD_REG_SET (used1
, allocno
[num
].hard_reg_conflicts
);
1002 #ifdef CLASS_CANNOT_CHANGE_MODE
1003 if (REG_CHANGES_MODE (allocno
[num
].reg
))
1004 IOR_HARD_REG_SET (used1
,
1005 reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
]);
1008 /* Try each hard reg to see if it fits. Do this in two passes.
1009 In the first pass, skip registers that are preferred by some other pseudo
1010 to give it a better chance of getting one of those registers. Only if
1011 we can't get a register when excluding those do we take one of them.
1012 However, we never allocate a register for the first time in pass 0. */
1014 COPY_HARD_REG_SET (used
, used1
);
1015 IOR_COMPL_HARD_REG_SET (used
, regs_used_so_far
);
1016 IOR_HARD_REG_SET (used
, allocno
[num
].regs_someone_prefers
);
1019 for (i
= FIRST_PSEUDO_REGISTER
, pass
= 0;
1020 pass
<= 1 && i
>= FIRST_PSEUDO_REGISTER
;
1024 COPY_HARD_REG_SET (used
, used1
);
1025 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1027 #ifdef REG_ALLOC_ORDER
1028 int regno
= reg_alloc_order
[i
];
1032 if (! TEST_HARD_REG_BIT (used
, regno
)
1033 && HARD_REGNO_MODE_OK (regno
, mode
)
1034 && (allocno
[num
].calls_crossed
== 0
1035 || accept_call_clobbered
1036 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno
, mode
)))
1039 register int lim
= regno
+ HARD_REGNO_NREGS (regno
, mode
);
1042 && ! TEST_HARD_REG_BIT (used
, j
));
1049 #ifndef REG_ALLOC_ORDER
1050 i
= j
; /* Skip starting points we know will lose */
1056 /* See if there is a preferred register with the same class as the register
1057 we allocated above. Making this restriction prevents register
1058 preferencing from creating worse register allocation.
1060 Remove from the preferred registers and conflicting registers. Note that
1061 additional conflicts may have been added after `prune_preferences' was
1064 First do this for those register with copy preferences, then all
1065 preferred registers. */
1067 AND_COMPL_HARD_REG_SET (allocno
[num
].hard_reg_copy_preferences
, used
);
1068 GO_IF_HARD_REG_SUBSET (allocno
[num
].hard_reg_copy_preferences
,
1069 reg_class_contents
[(int) NO_REGS
], no_copy_prefs
);
1073 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1074 if (TEST_HARD_REG_BIT (allocno
[num
].hard_reg_copy_preferences
, i
)
1075 && HARD_REGNO_MODE_OK (i
, mode
)
1076 && (REGNO_REG_CLASS (i
) == REGNO_REG_CLASS (best_reg
)
1077 || reg_class_subset_p (REGNO_REG_CLASS (i
),
1078 REGNO_REG_CLASS (best_reg
))
1079 || reg_class_subset_p (REGNO_REG_CLASS (best_reg
),
1080 REGNO_REG_CLASS (i
))))
1083 register int lim
= i
+ HARD_REGNO_NREGS (i
, mode
);
1086 && ! TEST_HARD_REG_BIT (used
, j
)
1087 && (REGNO_REG_CLASS (j
)
1088 == REGNO_REG_CLASS (best_reg
+ (j
- i
))
1089 || reg_class_subset_p (REGNO_REG_CLASS (j
),
1090 REGNO_REG_CLASS (best_reg
+ (j
- i
)))
1091 || reg_class_subset_p (REGNO_REG_CLASS (best_reg
+ (j
- i
)),
1092 REGNO_REG_CLASS (j
))));
1103 AND_COMPL_HARD_REG_SET (allocno
[num
].hard_reg_preferences
, used
);
1104 GO_IF_HARD_REG_SUBSET (allocno
[num
].hard_reg_preferences
,
1105 reg_class_contents
[(int) NO_REGS
], no_prefs
);
1109 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1110 if (TEST_HARD_REG_BIT (allocno
[num
].hard_reg_preferences
, i
)
1111 && HARD_REGNO_MODE_OK (i
, mode
)
1112 && (REGNO_REG_CLASS (i
) == REGNO_REG_CLASS (best_reg
)
1113 || reg_class_subset_p (REGNO_REG_CLASS (i
),
1114 REGNO_REG_CLASS (best_reg
))
1115 || reg_class_subset_p (REGNO_REG_CLASS (best_reg
),
1116 REGNO_REG_CLASS (i
))))
1119 register int lim
= i
+ HARD_REGNO_NREGS (i
, mode
);
1122 && ! TEST_HARD_REG_BIT (used
, j
)
1123 && (REGNO_REG_CLASS (j
)
1124 == REGNO_REG_CLASS (best_reg
+ (j
- i
))
1125 || reg_class_subset_p (REGNO_REG_CLASS (j
),
1126 REGNO_REG_CLASS (best_reg
+ (j
- i
)))
1127 || reg_class_subset_p (REGNO_REG_CLASS (best_reg
+ (j
- i
)),
1128 REGNO_REG_CLASS (j
))));
1139 /* If we haven't succeeded yet, try with caller-saves.
1140 We need not check to see if the current function has nonlocal
1141 labels because we don't put any pseudos that are live over calls in
1142 registers in that case. */
1144 if (flag_caller_saves
&& best_reg
< 0)
1146 /* Did not find a register. If it would be profitable to
1147 allocate a call-clobbered register and save and restore it
1148 around calls, do that. */
1149 if (! accept_call_clobbered
1150 && allocno
[num
].calls_crossed
!= 0
1151 && CALLER_SAVE_PROFITABLE (allocno
[num
].n_refs
,
1152 allocno
[num
].calls_crossed
))
1154 HARD_REG_SET new_losers
;
1156 CLEAR_HARD_REG_SET (new_losers
);
1158 COPY_HARD_REG_SET (new_losers
, losers
);
1160 IOR_HARD_REG_SET(new_losers
, losing_caller_save_reg_set
);
1161 find_reg (num
, new_losers
, alt_regs_p
, 1, retrying
);
1162 if (reg_renumber
[allocno
[num
].reg
] >= 0)
1164 caller_save_needed
= 1;
1170 /* If we haven't succeeded yet,
1171 see if some hard reg that conflicts with us
1172 was utilized poorly by local-alloc.
1173 If so, kick out the regs that were put there by local-alloc
1174 so we can use it instead. */
1175 if (best_reg
< 0 && !retrying
1176 /* Let's not bother with multi-reg allocnos. */
1177 && allocno
[num
].size
== 1)
1179 /* Count from the end, to find the least-used ones first. */
1180 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
1182 #ifdef REG_ALLOC_ORDER
1183 int regno
= reg_alloc_order
[i
];
1188 if (local_reg_n_refs
[regno
] != 0
1189 /* Don't use a reg no good for this pseudo. */
1190 && ! TEST_HARD_REG_BIT (used2
, regno
)
1191 && HARD_REGNO_MODE_OK (regno
, mode
)
1192 #ifdef CLASS_CANNOT_CHANGE_MODE
1193 && ! (REG_CHANGES_MODE (allocno
[num
].reg
)
1194 && (TEST_HARD_REG_BIT
1195 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
1200 /* We explicitly evaluate the divide results into temporary
1201 variables so as to avoid excess precision problems that occur
1202 on a i386-unknown-sysv4.2 (unixware) host. */
1204 double tmp1
= ((double) local_reg_n_refs
[regno
]
1205 / local_reg_live_length
[regno
]);
1206 double tmp2
= ((double) allocno
[num
].n_refs
1207 / allocno
[num
].live_length
);
1211 /* Hard reg REGNO was used less in total by local regs
1212 than it would be used by this one allocno! */
1214 for (k
= 0; k
< max_regno
; k
++)
1215 if (reg_renumber
[k
] >= 0)
1217 int r
= reg_renumber
[k
];
1219 = r
+ HARD_REGNO_NREGS (r
, PSEUDO_REGNO_MODE (k
));
1221 if (regno
>= r
&& regno
< endregno
)
1222 reg_renumber
[k
] = -1;
1232 /* Did we find a register? */
1236 register int lim
, j
;
1237 HARD_REG_SET this_reg
;
1239 /* Yes. Record it as the hard register of this pseudo-reg. */
1240 reg_renumber
[allocno
[num
].reg
] = best_reg
;
1241 /* Also of any pseudo-regs that share with it. */
1242 if (reg_may_share
[allocno
[num
].reg
])
1243 for (j
= FIRST_PSEUDO_REGISTER
; j
< max_regno
; j
++)
1244 if (reg_allocno
[j
] == num
)
1245 reg_renumber
[j
] = best_reg
;
1247 /* Make a set of the hard regs being allocated. */
1248 CLEAR_HARD_REG_SET (this_reg
);
1249 lim
= best_reg
+ HARD_REGNO_NREGS (best_reg
, mode
);
1250 for (j
= best_reg
; j
< lim
; j
++)
1252 SET_HARD_REG_BIT (this_reg
, j
);
1253 SET_HARD_REG_BIT (regs_used_so_far
, j
);
1254 /* This is no longer a reg used just by local regs. */
1255 local_reg_n_refs
[j
] = 0;
1257 /* For each other pseudo-reg conflicting with this one,
1258 mark it as conflicting with the hard regs this one occupies. */
1260 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts
+ lim
* allocno_row_words
, j
,
1262 IOR_HARD_REG_SET (allocno
[j
].hard_reg_conflicts
, this_reg
);
1267 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1268 Perhaps it had previously seemed not worth a hard reg,
1269 or perhaps its old hard reg has been commandeered for reloads.
1270 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1271 they do not appear to be allocated.
1272 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1275 retry_global_alloc (regno
, forbidden_regs
)
1277 HARD_REG_SET forbidden_regs
;
1279 int allocno
= reg_allocno
[regno
];
1282 /* If we have more than one register class,
1283 first try allocating in the class that is cheapest
1284 for this pseudo-reg. If that fails, try any reg. */
1285 if (N_REG_CLASSES
> 1)
1286 find_reg (allocno
, forbidden_regs
, 0, 0, 1);
1287 if (reg_renumber
[regno
] < 0
1288 && reg_alternate_class (regno
) != NO_REGS
)
1289 find_reg (allocno
, forbidden_regs
, 1, 0, 1);
1291 /* If we found a register, modify the RTL for the register to
1292 show the hard register, and mark that register live. */
1293 if (reg_renumber
[regno
] >= 0)
1295 REGNO (regno_reg_rtx
[regno
]) = reg_renumber
[regno
];
1296 mark_home_live (regno
);
1301 /* Record a conflict between register REGNO
1302 and everything currently live.
1303 REGNO must not be a pseudo reg that was allocated
1304 by local_alloc; such numbers must be translated through
1305 reg_renumber before calling here. */
1308 record_one_conflict (regno
)
1313 if (regno
< FIRST_PSEUDO_REGISTER
)
1314 /* When a hard register becomes live,
1315 record conflicts with live pseudo regs. */
1316 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live
, j
,
1318 SET_HARD_REG_BIT (allocno
[j
].hard_reg_conflicts
, regno
);
1321 /* When a pseudo-register becomes live,
1322 record conflicts first with hard regs,
1323 then with other pseudo regs. */
1325 register int ialloc
= reg_allocno
[regno
];
1326 register int ialloc_prod
= ialloc
* allocno_row_words
;
1327 IOR_HARD_REG_SET (allocno
[ialloc
].hard_reg_conflicts
, hard_regs_live
);
1328 for (j
= allocno_row_words
- 1; j
>= 0; j
--)
1332 for (k
= 0; k
< n_no_conflict_pairs
; k
++)
1333 if (! ((j
== no_conflict_pairs
[k
].allocno1
1334 && ialloc
== no_conflict_pairs
[k
].allocno2
)
1336 (j
== no_conflict_pairs
[k
].allocno2
1337 && ialloc
== no_conflict_pairs
[k
].allocno1
)))
1339 conflicts
[ialloc_prod
+ j
] |= allocnos_live
[j
];
1344 /* Record all allocnos currently live as conflicting
1345 with all hard regs currently live.
1347 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1348 are currently live. Their bits are also flagged in allocnos_live. */
1351 record_conflicts (allocno_vec
, len
)
1352 register int *allocno_vec
;
1356 register int ialloc_prod
;
1360 num
= allocno_vec
[len
];
1361 ialloc_prod
= num
* allocno_row_words
;
1362 IOR_HARD_REG_SET (allocno
[num
].hard_reg_conflicts
, hard_regs_live
);
1366 /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */
1371 int rw
= allocno_row_words
;
1372 int rwb
= rw
* INT_BITS
;
1373 INT_TYPE
*p
= conflicts
;
1374 INT_TYPE
*q0
= conflicts
, *q1
, *q2
;
1375 unsigned INT_TYPE mask
;
1377 for (i
= max_allocno
- 1, mask
= 1; i
>= 0; i
--, mask
<<= 1)
1384 for (j
= allocno_row_words
- 1, q1
= q0
; j
>= 0; j
--, q1
+= rwb
)
1386 unsigned INT_TYPE word
;
1388 for (word
= (unsigned INT_TYPE
) *p
++, q2
= q1
; word
;
1389 word
>>= 1, q2
+= rw
)
1398 /* Handle the case where REG is set by the insn being scanned,
1399 during the forward scan to accumulate conflicts.
1400 Store a 1 in regs_live or allocnos_live for this register, record how many
1401 consecutive hardware registers it actually needs,
1402 and record a conflict with all other registers already live.
1404 Note that even if REG does not remain alive after this insn,
1405 we must mark it here as live, to ensure a conflict between
1406 REG and any other regs set in this insn that really do live.
1407 This is because those other regs could be considered after this.
1409 REG might actually be something other than a register;
1410 if so, we do nothing.
1412 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1413 a REG_INC note was found for it). */
1416 mark_reg_store (reg
, setter
, data
)
1418 void *data ATTRIBUTE_UNUSED
;
1422 /* WORD is which word of a multi-register group is being stored.
1423 For the case where the store is actually into a SUBREG of REG.
1424 Except we don't use it; I believe the entire REG needs to be
1428 if (GET_CODE (reg
) == SUBREG
)
1430 word
= SUBREG_WORD (reg
);
1431 reg
= SUBREG_REG (reg
);
1434 if (GET_CODE (reg
) != REG
)
1437 regs_set
[n_regs_set
++] = reg
;
1439 if (setter
&& GET_CODE (setter
) != CLOBBER
)
1440 set_preference (reg
, SET_SRC (setter
));
1442 regno
= REGNO (reg
);
1444 /* Either this is one of the max_allocno pseudo regs not allocated,
1445 or it is or has a hardware reg. First handle the pseudo-regs. */
1446 if (regno
>= FIRST_PSEUDO_REGISTER
)
1448 if (reg_allocno
[regno
] >= 0)
1450 SET_ALLOCNO_LIVE (reg_allocno
[regno
]);
1451 record_one_conflict (regno
);
1455 if (reg_renumber
[regno
] >= 0)
1456 regno
= reg_renumber
[regno
] /* + word */;
1458 /* Handle hardware regs (and pseudos allocated to hard regs). */
1459 if (regno
< FIRST_PSEUDO_REGISTER
&& ! fixed_regs
[regno
])
1461 register int last
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
1462 while (regno
< last
)
1464 record_one_conflict (regno
);
1465 SET_HARD_REG_BIT (hard_regs_live
, regno
);
1471 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1474 mark_reg_clobber (reg
, setter
, data
)
1476 void *data ATTRIBUTE_UNUSED
;
1478 if (GET_CODE (setter
) == CLOBBER
)
1479 mark_reg_store (reg
, setter
, data
);
1482 /* Record that REG has conflicts with all the regs currently live.
1483 Do not mark REG itself as live. */
1486 mark_reg_conflicts (reg
)
1491 if (GET_CODE (reg
) == SUBREG
)
1492 reg
= SUBREG_REG (reg
);
1494 if (GET_CODE (reg
) != REG
)
1497 regno
= REGNO (reg
);
1499 /* Either this is one of the max_allocno pseudo regs not allocated,
1500 or it is or has a hardware reg. First handle the pseudo-regs. */
1501 if (regno
>= FIRST_PSEUDO_REGISTER
)
1503 if (reg_allocno
[regno
] >= 0)
1504 record_one_conflict (regno
);
1507 if (reg_renumber
[regno
] >= 0)
1508 regno
= reg_renumber
[regno
];
1510 /* Handle hardware regs (and pseudos allocated to hard regs). */
1511 if (regno
< FIRST_PSEUDO_REGISTER
&& ! fixed_regs
[regno
])
1513 register int last
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
1514 while (regno
< last
)
1516 record_one_conflict (regno
);
1522 /* Mark REG as being dead (following the insn being scanned now).
1523 Store a 0 in regs_live or allocnos_live for this register. */
1526 mark_reg_death (reg
)
1529 register int regno
= REGNO (reg
);
1531 /* Either this is one of the max_allocno pseudo regs not allocated,
1532 or it is a hardware reg. First handle the pseudo-regs. */
1533 if (regno
>= FIRST_PSEUDO_REGISTER
)
1535 if (reg_allocno
[regno
] >= 0)
1536 CLEAR_ALLOCNO_LIVE (reg_allocno
[regno
]);
1539 /* For pseudo reg, see if it has been assigned a hardware reg. */
1540 if (reg_renumber
[regno
] >= 0)
1541 regno
= reg_renumber
[regno
];
1543 /* Handle hardware regs (and pseudos allocated to hard regs). */
1544 if (regno
< FIRST_PSEUDO_REGISTER
&& ! fixed_regs
[regno
])
1546 /* Pseudo regs already assigned hardware regs are treated
1547 almost the same as explicit hardware regs. */
1548 register int last
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
1549 while (regno
< last
)
1551 CLEAR_HARD_REG_BIT (hard_regs_live
, regno
);
1557 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1558 for the value stored in it. MODE determines how many consecutive
1559 registers are actually in use. Do not record conflicts;
1560 it is assumed that the caller will do that. */
1563 mark_reg_live_nc (regno
, mode
)
1565 enum machine_mode mode
;
1567 register int last
= regno
+ HARD_REGNO_NREGS (regno
, mode
);
1568 while (regno
< last
)
1570 SET_HARD_REG_BIT (hard_regs_live
, regno
);
1575 /* Try to set a preference for an allocno to a hard register.
1576 We are passed DEST and SRC which are the operands of a SET. It is known
1577 that SRC is a register. If SRC or the first operand of SRC is a register,
1578 try to set a preference. If one of the two is a hard register and the other
1579 is a pseudo-register, mark the preference.
1581 Note that we are not as aggressive as local-alloc in trying to tie a
1582 pseudo-register to a hard register. */
1585 set_preference (dest
, src
)
1588 unsigned int src_regno
, dest_regno
;
1589 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1590 to compensate for subregs in SRC or DEST. */
1595 if (GET_RTX_FORMAT (GET_CODE (src
))[0] == 'e')
1596 src
= XEXP (src
, 0), copy
= 0;
1598 /* Get the reg number for both SRC and DEST.
1599 If neither is a reg, give up. */
1601 if (GET_CODE (src
) == REG
)
1602 src_regno
= REGNO (src
);
1603 else if (GET_CODE (src
) == SUBREG
&& GET_CODE (SUBREG_REG (src
)) == REG
)
1605 src_regno
= REGNO (SUBREG_REG (src
));
1606 offset
+= SUBREG_WORD (src
);
1611 if (GET_CODE (dest
) == REG
)
1612 dest_regno
= REGNO (dest
);
1613 else if (GET_CODE (dest
) == SUBREG
&& GET_CODE (SUBREG_REG (dest
)) == REG
)
1615 dest_regno
= REGNO (SUBREG_REG (dest
));
1616 offset
-= SUBREG_WORD (dest
);
1621 /* Convert either or both to hard reg numbers. */
1623 if (reg_renumber
[src_regno
] >= 0)
1624 src_regno
= reg_renumber
[src_regno
];
1626 if (reg_renumber
[dest_regno
] >= 0)
1627 dest_regno
= reg_renumber
[dest_regno
];
1629 /* Now if one is a hard reg and the other is a global pseudo
1630 then give the other a preference. */
1632 if (dest_regno
< FIRST_PSEUDO_REGISTER
&& src_regno
>= FIRST_PSEUDO_REGISTER
1633 && reg_allocno
[src_regno
] >= 0)
1635 dest_regno
-= offset
;
1636 if (dest_regno
< FIRST_PSEUDO_REGISTER
)
1639 SET_REGBIT (hard_reg_copy_preferences
,
1640 reg_allocno
[src_regno
], dest_regno
);
1642 SET_REGBIT (hard_reg_preferences
,
1643 reg_allocno
[src_regno
], dest_regno
);
1644 for (i
= dest_regno
;
1645 i
< dest_regno
+ HARD_REGNO_NREGS (dest_regno
, GET_MODE (dest
));
1647 SET_REGBIT (hard_reg_full_preferences
, reg_allocno
[src_regno
], i
);
1651 if (src_regno
< FIRST_PSEUDO_REGISTER
&& dest_regno
>= FIRST_PSEUDO_REGISTER
1652 && reg_allocno
[dest_regno
] >= 0)
1654 src_regno
+= offset
;
1655 if (src_regno
< FIRST_PSEUDO_REGISTER
)
1658 SET_REGBIT (hard_reg_copy_preferences
,
1659 reg_allocno
[dest_regno
], src_regno
);
1661 SET_REGBIT (hard_reg_preferences
,
1662 reg_allocno
[dest_regno
], src_regno
);
1664 i
< src_regno
+ HARD_REGNO_NREGS (src_regno
, GET_MODE (src
));
1666 SET_REGBIT (hard_reg_full_preferences
, reg_allocno
[dest_regno
], i
);
1671 /* Indicate that hard register number FROM was eliminated and replaced with
1672 an offset from hard register number TO. The status of hard registers live
1673 at the start of a basic block is updated by replacing a use of FROM with
1677 mark_elimination (from
, to
)
1682 for (i
= 0; i
< n_basic_blocks
; i
++)
1684 register regset r
= BASIC_BLOCK (i
)->global_live_at_start
;
1685 if (REGNO_REG_SET_P (r
, from
))
1687 CLEAR_REGNO_REG_SET (r
, from
);
1688 SET_REGNO_REG_SET (r
, to
);
1693 /* Used for communication between the following functions. Holds the
1694 current life information. */
1695 static regset live_relevant_regs
;
1697 /* Record in live_relevant_regs and REGS_SET that register REG became live.
1698 This is called via note_stores. */
1700 reg_becomes_live (reg
, setter
, regs_set
)
1702 rtx setter ATTRIBUTE_UNUSED
;
1707 if (GET_CODE (reg
) == SUBREG
)
1708 reg
= SUBREG_REG (reg
);
1710 if (GET_CODE (reg
) != REG
)
1713 regno
= REGNO (reg
);
1714 if (regno
< FIRST_PSEUDO_REGISTER
)
1716 int nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
1719 SET_REGNO_REG_SET (live_relevant_regs
, regno
);
1720 if (! fixed_regs
[regno
])
1721 SET_REGNO_REG_SET ((regset
) regs_set
, regno
);
1725 else if (reg_renumber
[regno
] >= 0)
1727 SET_REGNO_REG_SET (live_relevant_regs
, regno
);
1728 SET_REGNO_REG_SET ((regset
) regs_set
, regno
);
1732 /* Record in live_relevant_regs that register REGNO died. */
1734 reg_dies (regno
, mode
, chain
)
1736 enum machine_mode mode
;
1737 struct insn_chain
*chain
;
1739 if (regno
< FIRST_PSEUDO_REGISTER
)
1741 int nregs
= HARD_REGNO_NREGS (regno
, mode
);
1744 CLEAR_REGNO_REG_SET (live_relevant_regs
, regno
);
1745 if (! fixed_regs
[regno
])
1746 SET_REGNO_REG_SET (&chain
->dead_or_set
, regno
);
1752 CLEAR_REGNO_REG_SET (live_relevant_regs
, regno
);
1753 if (reg_renumber
[regno
] >= 0)
1754 SET_REGNO_REG_SET (&chain
->dead_or_set
, regno
);
1758 /* Walk the insns of the current function and build reload_insn_chain,
1759 and record register life information. */
1761 build_insn_chain (first
)
1764 struct insn_chain
**p
= &reload_insn_chain
;
1765 struct insn_chain
*prev
= 0;
1767 regset_head live_relevant_regs_head
;
1769 live_relevant_regs
= INITIALIZE_REG_SET (live_relevant_regs_head
);
1771 for (; first
; first
= NEXT_INSN (first
))
1773 struct insn_chain
*c
;
1775 if (first
== BLOCK_HEAD (b
))
1779 CLEAR_REG_SET (live_relevant_regs
);
1781 EXECUTE_IF_SET_IN_BITMAP
1782 (BASIC_BLOCK (b
)->global_live_at_start
, 0, i
,
1784 if (i
< FIRST_PSEUDO_REGISTER
1785 ? ! TEST_HARD_REG_BIT (eliminable_regset
, i
)
1786 : reg_renumber
[i
] >= 0)
1787 SET_REGNO_REG_SET (live_relevant_regs
, i
);
1791 if (GET_CODE (first
) != NOTE
&& GET_CODE (first
) != BARRIER
)
1793 c
= new_insn_chain ();
1801 if (GET_RTX_CLASS (GET_CODE (first
)) == 'i')
1805 /* Mark the death of everything that dies in this instruction. */
1807 for (link
= REG_NOTES (first
); link
; link
= XEXP (link
, 1))
1808 if (REG_NOTE_KIND (link
) == REG_DEAD
1809 && GET_CODE (XEXP (link
, 0)) == REG
)
1810 reg_dies (REGNO (XEXP (link
, 0)), GET_MODE (XEXP (link
, 0)),
1813 COPY_REG_SET (&c
->live_throughout
, live_relevant_regs
);
1815 /* Mark everything born in this instruction as live. */
1817 note_stores (PATTERN (first
), reg_becomes_live
,
1821 COPY_REG_SET (&c
->live_throughout
, live_relevant_regs
);
1823 if (GET_RTX_CLASS (GET_CODE (first
)) == 'i')
1827 /* Mark anything that is set in this insn and then unused as dying. */
1829 for (link
= REG_NOTES (first
); link
; link
= XEXP (link
, 1))
1830 if (REG_NOTE_KIND (link
) == REG_UNUSED
1831 && GET_CODE (XEXP (link
, 0)) == REG
)
1832 reg_dies (REGNO (XEXP (link
, 0)), GET_MODE (XEXP (link
, 0)),
1837 if (first
== BLOCK_END (b
))
1840 /* Stop after we pass the end of the last basic block. Verify that
1841 no real insns are after the end of the last basic block.
1843 We may want to reorganize the loop somewhat since this test should
1844 always be the right exit test. */
1845 if (b
== n_basic_blocks
)
1847 for (first
= NEXT_INSN (first
) ; first
; first
= NEXT_INSN (first
))
1848 if (GET_RTX_CLASS (GET_CODE (first
)) == 'i'
1849 && GET_CODE (PATTERN (first
)) != USE
)
1854 FREE_REG_SET (live_relevant_regs
);
1858 /* Print debugging trace information if -dg switch is given,
1859 showing the information on which the allocation decisions are based. */
1862 dump_conflicts (file
)
1866 register int has_preferences
;
1869 for (i
= 0; i
< max_allocno
; i
++)
1871 if (reg_renumber
[allocno
[allocno_order
[i
]].reg
] >= 0)
1875 fprintf (file
, ";; %d regs to allocate:", nregs
);
1876 for (i
= 0; i
< max_allocno
; i
++)
1879 if (reg_renumber
[allocno
[allocno_order
[i
]].reg
] >= 0)
1881 fprintf (file
, " %d", allocno
[allocno_order
[i
]].reg
);
1882 for (j
= 0; j
< max_regno
; j
++)
1883 if (reg_allocno
[j
] == allocno_order
[i
]
1884 && j
!= allocno
[allocno_order
[i
]].reg
)
1885 fprintf (file
, "+%d", j
);
1886 if (allocno
[allocno_order
[i
]].size
!= 1)
1887 fprintf (file
, " (%d)", allocno
[allocno_order
[i
]].size
);
1889 fprintf (file
, "\n");
1891 for (i
= 0; i
< max_allocno
; i
++)
1894 fprintf (file
, ";; %d conflicts:", allocno
[i
].reg
);
1895 for (j
= 0; j
< max_allocno
; j
++)
1896 if (CONFLICTP (j
, i
))
1897 fprintf (file
, " %d", allocno
[j
].reg
);
1898 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1899 if (TEST_HARD_REG_BIT (allocno
[i
].hard_reg_conflicts
, j
))
1900 fprintf (file
, " %d", j
);
1901 fprintf (file
, "\n");
1903 has_preferences
= 0;
1904 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1905 if (TEST_HARD_REG_BIT (allocno
[i
].hard_reg_preferences
, j
))
1906 has_preferences
= 1;
1908 if (! has_preferences
)
1910 fprintf (file
, ";; %d preferences:", allocno
[i
].reg
);
1911 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
1912 if (TEST_HARD_REG_BIT (allocno
[i
].hard_reg_preferences
, j
))
1913 fprintf (file
, " %d", j
);
1914 fprintf (file
, "\n");
1916 fprintf (file
, "\n");
1920 dump_global_regs (file
)
1925 fprintf (file
, ";; Register dispositions:\n");
1926 for (i
= FIRST_PSEUDO_REGISTER
, j
= 0; i
< max_regno
; i
++)
1927 if (reg_renumber
[i
] >= 0)
1929 fprintf (file
, "%d in %d ", i
, reg_renumber
[i
]);
1931 fprintf (file
, "\n");
1934 fprintf (file
, "\n\n;; Hard regs used: ");
1935 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1936 if (regs_ever_live
[i
])
1937 fprintf (file
, " %d", i
);
1938 fprintf (file
, "\n\n");