Fix cut and paste error in last change
[official-gcc.git] / gcc / alias.c
blob55cc212de9f5016d8d18d57a28fe71700e2cce9b
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "insn-flags.h"
29 #include "expr.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "cselib.h"
36 #include "splay-tree.h"
37 #include "ggc.h"
39 /* The alias sets assigned to MEMs assist the back-end in determining
40 which MEMs can alias which other MEMs. In general, two MEMs in
41 different alias sets cannot alias each other, with one important
42 exception. Consider something like:
44 struct S {int i; double d; };
46 a store to an `S' can alias something of either type `int' or type
47 `double'. (However, a store to an `int' cannot alias a `double'
48 and vice versa.) We indicate this via a tree structure that looks
49 like:
50 struct S
51 / \
52 / \
53 |/_ _\|
54 int double
56 (The arrows are directed and point downwards.)
57 In this situation we say the alias set for `struct S' is the
58 `superset' and that those for `int' and `double' are `subsets'.
60 To see whether two alias sets can point to the same memory, we must
61 see if either alias set is a subset of the other. We need not trace
62 past immediate decendents, however, since we propagate all
63 grandchildren up one level.
65 Alias set zero is implicitly a superset of all other alias sets.
66 However, this is no actual entry for alias set zero. It is an
67 error to attempt to explicitly construct a subset of zero. */
69 typedef struct alias_set_entry
71 /* The alias set number, as stored in MEM_ALIAS_SET. */
72 HOST_WIDE_INT alias_set;
74 /* The children of the alias set. These are not just the immediate
75 children, but, in fact, all decendents. So, if we have:
77 struct T { struct S s; float f; }
79 continuing our example above, the children here will be all of
80 `int', `double', `float', and `struct S'. */
81 splay_tree children;
83 /* Nonzero if would have a child of zero: this effectively makes this
84 alias set the same as alias set zero. */
85 int has_zero_child;
86 } *alias_set_entry;
88 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
89 static rtx find_symbolic_term PARAMS ((rtx));
90 static rtx get_addr PARAMS ((rtx));
91 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
92 HOST_WIDE_INT));
93 static void record_set PARAMS ((rtx, rtx, void *));
94 static rtx find_base_term PARAMS ((rtx));
95 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
96 enum machine_mode));
97 static rtx find_base_value PARAMS ((rtx));
98 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
99 static int insert_subset_children PARAMS ((splay_tree_node, void*));
100 static tree find_base_decl PARAMS ((tree));
101 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
102 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
103 int (*) (rtx)));
104 static int aliases_everything_p PARAMS ((rtx));
105 static int write_dependence_p PARAMS ((rtx, rtx, int));
106 static int nonlocal_reference_p PARAMS ((rtx));
108 /* Set up all info needed to perform alias analysis on memory references. */
110 /* Returns the size in bytes of the mode of X. */
111 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
113 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
114 different alias sets. We ignore alias sets in functions making use
115 of variable arguments because the va_arg macros on some systems are
116 not legal ANSI C. */
117 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
118 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
120 /* Cap the number of passes we make over the insns propagating alias
121 information through set chains. 10 is a completely arbitrary choice. */
122 #define MAX_ALIAS_LOOP_PASSES 10
124 /* reg_base_value[N] gives an address to which register N is related.
125 If all sets after the first add or subtract to the current value
126 or otherwise modify it so it does not point to a different top level
127 object, reg_base_value[N] is equal to the address part of the source
128 of the first set.
130 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
131 expressions represent certain special values: function arguments and
132 the stack, frame, and argument pointers.
134 The contents of an ADDRESS is not normally used, the mode of the
135 ADDRESS determines whether the ADDRESS is a function argument or some
136 other special value. Pointer equality, not rtx_equal_p, determines whether
137 two ADDRESS expressions refer to the same base address.
139 The only use of the contents of an ADDRESS is for determining if the
140 current function performs nonlocal memory memory references for the
141 purposes of marking the function as a constant function. */
143 static rtx *reg_base_value;
144 static rtx *new_reg_base_value;
145 static unsigned int reg_base_value_size; /* size of reg_base_value array */
147 #define REG_BASE_VALUE(X) \
148 (REGNO (X) < reg_base_value_size ? reg_base_value[REGNO (X)] : 0)
150 /* Vector of known invariant relationships between registers. Set in
151 loop unrolling. Indexed by register number, if nonzero the value
152 is an expression describing this register in terms of another.
154 The length of this array is REG_BASE_VALUE_SIZE.
156 Because this array contains only pseudo registers it has no effect
157 after reload. */
158 static rtx *alias_invariant;
160 /* Vector indexed by N giving the initial (unchanging) value known for
161 pseudo-register N. This array is initialized in
162 init_alias_analysis, and does not change until end_alias_analysis
163 is called. */
164 rtx *reg_known_value;
166 /* Indicates number of valid entries in reg_known_value. */
167 static unsigned int reg_known_value_size;
169 /* Vector recording for each reg_known_value whether it is due to a
170 REG_EQUIV note. Future passes (viz., reload) may replace the
171 pseudo with the equivalent expression and so we account for the
172 dependences that would be introduced if that happens.
174 The REG_EQUIV notes created in assign_parms may mention the arg
175 pointer, and there are explicit insns in the RTL that modify the
176 arg pointer. Thus we must ensure that such insns don't get
177 scheduled across each other because that would invalidate the
178 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
179 wrong, but solving the problem in the scheduler will likely give
180 better code, so we do it here. */
181 char *reg_known_equiv_p;
183 /* True when scanning insns from the start of the rtl to the
184 NOTE_INSN_FUNCTION_BEG note. */
185 static int copying_arguments;
187 /* The splay-tree used to store the various alias set entries. */
188 static splay_tree alias_sets;
190 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
191 such an entry, or NULL otherwise. */
193 static alias_set_entry
194 get_alias_set_entry (alias_set)
195 HOST_WIDE_INT alias_set;
197 splay_tree_node sn
198 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
200 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
203 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
204 the two MEMs cannot alias each other. */
206 static int
207 mems_in_disjoint_alias_sets_p (mem1, mem2)
208 rtx mem1;
209 rtx mem2;
211 alias_set_entry ase;
213 #ifdef ENABLE_CHECKING
214 /* Perform a basic sanity check. Namely, that there are no alias sets
215 if we're not using strict aliasing. This helps to catch bugs
216 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
217 where a MEM is allocated in some way other than by the use of
218 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
219 use alias sets to indicate that spilled registers cannot alias each
220 other, we might need to remove this check. */
221 if (! flag_strict_aliasing
222 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
223 abort ();
224 #endif
226 /* The code used in varargs macros are often not conforming ANSI C,
227 which can trick the compiler into making incorrect aliasing
228 assumptions in these functions. So, we don't use alias sets in
229 such a function. FIXME: This should be moved into the front-end;
230 it is a language-dependent notion, and there's no reason not to
231 still use these checks to handle globals. */
232 if (current_function_stdarg || current_function_varargs)
233 return 0;
235 /* If have no alias set information for one of the MEMs, we have to assume
236 it can alias anything. */
237 if (MEM_ALIAS_SET (mem1) == 0 || MEM_ALIAS_SET (mem2) == 0)
238 return 0;
240 /* If the two alias sets are the same, they may alias. */
241 if (MEM_ALIAS_SET (mem1) == MEM_ALIAS_SET (mem2))
242 return 0;
244 /* See if the first alias set is a subset of the second. */
245 ase = get_alias_set_entry (MEM_ALIAS_SET (mem1));
246 if (ase != 0
247 && (ase->has_zero_child
248 || splay_tree_lookup (ase->children,
249 (splay_tree_key) MEM_ALIAS_SET (mem2))))
250 return 0;
252 /* Now do the same, but with the alias sets reversed. */
253 ase = get_alias_set_entry (MEM_ALIAS_SET (mem2));
254 if (ase != 0
255 && (ase->has_zero_child
256 || splay_tree_lookup (ase->children,
257 (splay_tree_key) MEM_ALIAS_SET (mem1))))
258 return 0;
260 /* The two MEMs are in distinct alias sets, and neither one is the
261 child of the other. Therefore, they cannot alias. */
262 return 1;
265 /* Insert the NODE into the splay tree given by DATA. Used by
266 record_alias_subset via splay_tree_foreach. */
268 static int
269 insert_subset_children (node, data)
270 splay_tree_node node;
271 void *data;
273 splay_tree_insert ((splay_tree) data, node->key, node->value);
275 return 0;
278 /* T is an expression with pointer type. Find the DECL on which this
279 expression is based. (For example, in `a[i]' this would be `a'.)
280 If there is no such DECL, or a unique decl cannot be determined,
281 NULL_TREE is retured. */
283 static tree
284 find_base_decl (t)
285 tree t;
287 tree d0, d1, d2;
289 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
290 return 0;
292 /* If this is a declaration, return it. */
293 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
294 return t;
296 /* Handle general expressions. It would be nice to deal with
297 COMPONENT_REFs here. If we could tell that `a' and `b' were the
298 same, then `a->f' and `b->f' are also the same. */
299 switch (TREE_CODE_CLASS (TREE_CODE (t)))
301 case '1':
302 return find_base_decl (TREE_OPERAND (t, 0));
304 case '2':
305 /* Return 0 if found in neither or both are the same. */
306 d0 = find_base_decl (TREE_OPERAND (t, 0));
307 d1 = find_base_decl (TREE_OPERAND (t, 1));
308 if (d0 == d1)
309 return d0;
310 else if (d0 == 0)
311 return d1;
312 else if (d1 == 0)
313 return d0;
314 else
315 return 0;
317 case '3':
318 d0 = find_base_decl (TREE_OPERAND (t, 0));
319 d1 = find_base_decl (TREE_OPERAND (t, 1));
320 d0 = find_base_decl (TREE_OPERAND (t, 0));
321 d2 = find_base_decl (TREE_OPERAND (t, 2));
323 /* Set any nonzero values from the last, then from the first. */
324 if (d1 == 0) d1 = d2;
325 if (d0 == 0) d0 = d1;
326 if (d1 == 0) d1 = d0;
327 if (d2 == 0) d2 = d1;
329 /* At this point all are nonzero or all are zero. If all three are the
330 same, return it. Otherwise, return zero. */
331 return (d0 == d1 && d1 == d2) ? d0 : 0;
333 default:
334 return 0;
338 /* Return the alias set for T, which may be either a type or an
339 expression. Call language-specific routine for help, if needed. */
341 HOST_WIDE_INT
342 get_alias_set (t)
343 tree t;
345 tree orig_t;
346 HOST_WIDE_INT set;
348 /* If we're not doing any alias analysis, just assume everything
349 aliases everything else. Also return 0 if this or its type is
350 an error. */
351 if (! flag_strict_aliasing || t == error_mark_node
352 || (! TYPE_P (t)
353 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
354 return 0;
356 /* We can be passed either an expression or a type. This and the
357 language-specific routine may make mutually-recursive calls to
358 each other to figure out what to do. At each juncture, we see if
359 this is a tree that the language may need to handle specially.
360 First handle things that aren't types and start by removing nops
361 since we care only about the actual object. */
362 if (! TYPE_P (t))
364 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
365 || TREE_CODE (t) == NON_LVALUE_EXPR)
366 t = TREE_OPERAND (t, 0);
368 /* Now give the language a chance to do something but record what we
369 gave it this time. */
370 orig_t = t;
371 if ((set = lang_get_alias_set (t)) != -1)
372 return set;
374 /* Now loop the same way as get_inner_reference and get the alias
375 set to use. Pick up the outermost object that we could have
376 a pointer to. */
377 while (1)
379 /* Unnamed bitfields are not an addressable object. */
380 if (TREE_CODE (t) == BIT_FIELD_REF)
382 else if (TREE_CODE (t) == COMPONENT_REF)
384 if (! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
385 /* Stop at an adressable decl. */
386 break;
388 else if (TREE_CODE (t) == ARRAY_REF)
390 if (! TYPE_NONALIASED_COMPONENT
391 (TREE_TYPE (TREE_OPERAND (t, 0))))
392 /* Stop at an addresssable array element. */
393 break;
395 else if (TREE_CODE (t) != NON_LVALUE_EXPR
396 && ! ((TREE_CODE (t) == NOP_EXPR
397 || TREE_CODE (t) == CONVERT_EXPR)
398 && (TYPE_MODE (TREE_TYPE (t))
399 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (t, 0))))))
400 /* Stop if not one of above and not mode-preserving conversion. */
401 break;
403 t = TREE_OPERAND (t, 0);
406 if (TREE_CODE (t) == INDIRECT_REF)
408 /* Check for accesses through restrict-qualified pointers. */
409 tree decl = find_base_decl (TREE_OPERAND (t, 0));
411 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
412 /* We use the alias set indicated in the declaration. */
413 return DECL_POINTER_ALIAS_SET (decl);
415 /* If we have an INDIRECT_REF via a void pointer, we don't
416 know anything about what that might alias. */
417 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE)
418 return 0;
421 /* Give the language another chance to do something special. */
422 if (orig_t != t
423 && (set = lang_get_alias_set (t)) != -1)
424 return set;
426 /* Now all we care about is the type. */
427 t = TREE_TYPE (t);
430 /* Variant qualifiers don't affect the alias set, so get the main
431 variant. If this is a type with a known alias set, return it. */
432 t = TYPE_MAIN_VARIANT (t);
433 if (TYPE_P (t) && TYPE_ALIAS_SET_KNOWN_P (t))
434 return TYPE_ALIAS_SET (t);
436 /* See if the language has special handling for this type. */
437 if ((set = lang_get_alias_set (t)) != -1)
439 /* If the alias set is now known, we are done. */
440 if (TYPE_ALIAS_SET_KNOWN_P (t))
441 return TYPE_ALIAS_SET (t);
444 /* There are no objects of FUNCTION_TYPE, so there's no point in
445 using up an alias set for them. (There are, of course, pointers
446 and references to functions, but that's different.) */
447 else if (TREE_CODE (t) == FUNCTION_TYPE)
448 set = 0;
449 else
450 /* Otherwise make a new alias set for this type. */
451 set = new_alias_set ();
453 TYPE_ALIAS_SET (t) = set;
455 /* If this is an aggregate type, we must record any component aliasing
456 information. */
457 if (AGGREGATE_TYPE_P (t))
458 record_component_aliases (t);
460 return set;
463 /* Return a brand-new alias set. */
465 HOST_WIDE_INT
466 new_alias_set ()
468 static HOST_WIDE_INT last_alias_set;
470 if (flag_strict_aliasing)
471 return ++last_alias_set;
472 else
473 return 0;
476 /* Indicate that things in SUBSET can alias things in SUPERSET, but
477 not vice versa. For example, in C, a store to an `int' can alias a
478 structure containing an `int', but not vice versa. Here, the
479 structure would be the SUPERSET and `int' the SUBSET. This
480 function should be called only once per SUPERSET/SUBSET pair.
482 It is illegal for SUPERSET to be zero; everything is implicitly a
483 subset of alias set zero. */
485 void
486 record_alias_subset (superset, subset)
487 HOST_WIDE_INT superset;
488 HOST_WIDE_INT subset;
490 alias_set_entry superset_entry;
491 alias_set_entry subset_entry;
493 if (superset == 0)
494 abort ();
496 superset_entry = get_alias_set_entry (superset);
497 if (superset_entry == 0)
499 /* Create an entry for the SUPERSET, so that we have a place to
500 attach the SUBSET. */
501 superset_entry
502 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
503 superset_entry->alias_set = superset;
504 superset_entry->children
505 = splay_tree_new (splay_tree_compare_ints, 0, 0);
506 superset_entry->has_zero_child = 0;
507 splay_tree_insert (alias_sets, (splay_tree_key) superset,
508 (splay_tree_value) superset_entry);
511 if (subset == 0)
512 superset_entry->has_zero_child = 1;
513 else
515 subset_entry = get_alias_set_entry (subset);
516 /* If there is an entry for the subset, enter all of its children
517 (if they are not already present) as children of the SUPERSET. */
518 if (subset_entry)
520 if (subset_entry->has_zero_child)
521 superset_entry->has_zero_child = 1;
523 splay_tree_foreach (subset_entry->children, insert_subset_children,
524 superset_entry->children);
527 /* Enter the SUBSET itself as a child of the SUPERSET. */
528 splay_tree_insert (superset_entry->children,
529 (splay_tree_key) subset, 0);
533 /* Record that component types of TYPE, if any, are part of that type for
534 aliasing purposes. For record types, we only record component types
535 for fields that are marked addressable. For array types, we always
536 record the component types, so the front end should not call this
537 function if the individual component aren't addressable. */
539 void
540 record_component_aliases (type)
541 tree type;
543 HOST_WIDE_INT superset = get_alias_set (type);
544 tree field;
546 if (superset == 0)
547 return;
549 switch (TREE_CODE (type))
551 case ARRAY_TYPE:
552 if (! TYPE_NONALIASED_COMPONENT (type))
553 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
554 break;
556 case RECORD_TYPE:
557 case UNION_TYPE:
558 case QUAL_UNION_TYPE:
559 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
560 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
561 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
562 break;
564 default:
565 break;
569 /* Allocate an alias set for use in storing and reading from the varargs
570 spill area. */
572 HOST_WIDE_INT
573 get_varargs_alias_set ()
575 static HOST_WIDE_INT set = -1;
577 if (set == -1)
578 set = new_alias_set ();
580 return set;
583 /* Likewise, but used for the fixed portions of the frame, e.g., register
584 save areas. */
586 HOST_WIDE_INT
587 get_frame_alias_set ()
589 static HOST_WIDE_INT set = -1;
591 if (set == -1)
592 set = new_alias_set ();
594 return set;
597 /* Inside SRC, the source of a SET, find a base address. */
599 static rtx
600 find_base_value (src)
601 register rtx src;
603 switch (GET_CODE (src))
605 case SYMBOL_REF:
606 case LABEL_REF:
607 return src;
609 case REG:
610 /* At the start of a function, argument registers have known base
611 values which may be lost later. Returning an ADDRESS
612 expression here allows optimization based on argument values
613 even when the argument registers are used for other purposes. */
614 if (REGNO (src) < FIRST_PSEUDO_REGISTER && copying_arguments)
615 return new_reg_base_value[REGNO (src)];
617 /* If a pseudo has a known base value, return it. Do not do this
618 for hard regs since it can result in a circular dependency
619 chain for registers which have values at function entry.
621 The test above is not sufficient because the scheduler may move
622 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
623 if (REGNO (src) >= FIRST_PSEUDO_REGISTER
624 && (unsigned) REGNO (src) < reg_base_value_size
625 && reg_base_value[REGNO (src)])
626 return reg_base_value[REGNO (src)];
628 return src;
630 case MEM:
631 /* Check for an argument passed in memory. Only record in the
632 copying-arguments block; it is too hard to track changes
633 otherwise. */
634 if (copying_arguments
635 && (XEXP (src, 0) == arg_pointer_rtx
636 || (GET_CODE (XEXP (src, 0)) == PLUS
637 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
638 return gen_rtx_ADDRESS (VOIDmode, src);
639 return 0;
641 case CONST:
642 src = XEXP (src, 0);
643 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
644 break;
646 /* ... fall through ... */
648 case PLUS:
649 case MINUS:
651 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
653 /* If either operand is a REG, then see if we already have
654 a known value for it. */
655 if (GET_CODE (src_0) == REG)
657 temp = find_base_value (src_0);
658 if (temp != 0)
659 src_0 = temp;
662 if (GET_CODE (src_1) == REG)
664 temp = find_base_value (src_1);
665 if (temp!= 0)
666 src_1 = temp;
669 /* Guess which operand is the base address:
670 If either operand is a symbol, then it is the base. If
671 either operand is a CONST_INT, then the other is the base. */
672 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
673 return find_base_value (src_0);
674 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
675 return find_base_value (src_1);
677 /* This might not be necessary anymore:
678 If either operand is a REG that is a known pointer, then it
679 is the base. */
680 else if (GET_CODE (src_0) == REG && REGNO_POINTER_FLAG (REGNO (src_0)))
681 return find_base_value (src_0);
682 else if (GET_CODE (src_1) == REG && REGNO_POINTER_FLAG (REGNO (src_1)))
683 return find_base_value (src_1);
685 return 0;
688 case LO_SUM:
689 /* The standard form is (lo_sum reg sym) so look only at the
690 second operand. */
691 return find_base_value (XEXP (src, 1));
693 case AND:
694 /* If the second operand is constant set the base
695 address to the first operand. */
696 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
697 return find_base_value (XEXP (src, 0));
698 return 0;
700 case ZERO_EXTEND:
701 case SIGN_EXTEND: /* used for NT/Alpha pointers */
702 case HIGH:
703 return find_base_value (XEXP (src, 0));
705 default:
706 break;
709 return 0;
712 /* Called from init_alias_analysis indirectly through note_stores. */
714 /* While scanning insns to find base values, reg_seen[N] is nonzero if
715 register N has been set in this function. */
716 static char *reg_seen;
718 /* Addresses which are known not to alias anything else are identified
719 by a unique integer. */
720 static int unique_id;
722 static void
723 record_set (dest, set, data)
724 rtx dest, set;
725 void *data ATTRIBUTE_UNUSED;
727 register unsigned regno;
728 rtx src;
730 if (GET_CODE (dest) != REG)
731 return;
733 regno = REGNO (dest);
735 if (regno >= reg_base_value_size)
736 abort ();
738 if (set)
740 /* A CLOBBER wipes out any old value but does not prevent a previously
741 unset register from acquiring a base address (i.e. reg_seen is not
742 set). */
743 if (GET_CODE (set) == CLOBBER)
745 new_reg_base_value[regno] = 0;
746 return;
748 src = SET_SRC (set);
750 else
752 if (reg_seen[regno])
754 new_reg_base_value[regno] = 0;
755 return;
757 reg_seen[regno] = 1;
758 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
759 GEN_INT (unique_id++));
760 return;
763 /* This is not the first set. If the new value is not related to the
764 old value, forget the base value. Note that the following code is
765 not detected:
766 extern int x, y; int *p = &x; p += (&y-&x);
767 ANSI C does not allow computing the difference of addresses
768 of distinct top level objects. */
769 if (new_reg_base_value[regno])
770 switch (GET_CODE (src))
772 case LO_SUM:
773 case PLUS:
774 case MINUS:
775 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
776 new_reg_base_value[regno] = 0;
777 break;
778 case AND:
779 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
780 new_reg_base_value[regno] = 0;
781 break;
782 default:
783 new_reg_base_value[regno] = 0;
784 break;
786 /* If this is the first set of a register, record the value. */
787 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
788 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
789 new_reg_base_value[regno] = find_base_value (src);
791 reg_seen[regno] = 1;
794 /* Called from loop optimization when a new pseudo-register is
795 created. It indicates that REGNO is being set to VAL. f INVARIANT
796 is true then this value also describes an invariant relationship
797 which can be used to deduce that two registers with unknown values
798 are different. */
800 void
801 record_base_value (regno, val, invariant)
802 unsigned int regno;
803 rtx val;
804 int invariant;
806 if (regno >= reg_base_value_size)
807 return;
809 if (invariant && alias_invariant)
810 alias_invariant[regno] = val;
812 if (GET_CODE (val) == REG)
814 if (REGNO (val) < reg_base_value_size)
815 reg_base_value[regno] = reg_base_value[REGNO (val)];
817 return;
820 reg_base_value[regno] = find_base_value (val);
823 /* Returns a canonical version of X, from the point of view alias
824 analysis. (For example, if X is a MEM whose address is a register,
825 and the register has a known value (say a SYMBOL_REF), then a MEM
826 whose address is the SYMBOL_REF is returned.) */
829 canon_rtx (x)
830 rtx x;
832 /* Recursively look for equivalences. */
833 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
834 && REGNO (x) < reg_known_value_size)
835 return reg_known_value[REGNO (x)] == x
836 ? x : canon_rtx (reg_known_value[REGNO (x)]);
837 else if (GET_CODE (x) == PLUS)
839 rtx x0 = canon_rtx (XEXP (x, 0));
840 rtx x1 = canon_rtx (XEXP (x, 1));
842 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
844 /* We can tolerate LO_SUMs being offset here; these
845 rtl are used for nothing other than comparisons. */
846 if (GET_CODE (x0) == CONST_INT)
847 return plus_constant_for_output (x1, INTVAL (x0));
848 else if (GET_CODE (x1) == CONST_INT)
849 return plus_constant_for_output (x0, INTVAL (x1));
850 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
854 /* This gives us much better alias analysis when called from
855 the loop optimizer. Note we want to leave the original
856 MEM alone, but need to return the canonicalized MEM with
857 all the flags with their original values. */
858 else if (GET_CODE (x) == MEM)
860 rtx addr = canon_rtx (XEXP (x, 0));
862 if (addr != XEXP (x, 0))
864 rtx new = gen_rtx_MEM (GET_MODE (x), addr);
866 MEM_COPY_ATTRIBUTES (new, x);
867 x = new;
870 return x;
873 /* Return 1 if X and Y are identical-looking rtx's.
875 We use the data in reg_known_value above to see if two registers with
876 different numbers are, in fact, equivalent. */
878 static int
879 rtx_equal_for_memref_p (x, y)
880 rtx x, y;
882 register int i;
883 register int j;
884 register enum rtx_code code;
885 register const char *fmt;
887 if (x == 0 && y == 0)
888 return 1;
889 if (x == 0 || y == 0)
890 return 0;
892 x = canon_rtx (x);
893 y = canon_rtx (y);
895 if (x == y)
896 return 1;
898 code = GET_CODE (x);
899 /* Rtx's of different codes cannot be equal. */
900 if (code != GET_CODE (y))
901 return 0;
903 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
904 (REG:SI x) and (REG:HI x) are NOT equivalent. */
906 if (GET_MODE (x) != GET_MODE (y))
907 return 0;
909 /* Some RTL can be compared without a recursive examination. */
910 switch (code)
912 case REG:
913 return REGNO (x) == REGNO (y);
915 case LABEL_REF:
916 return XEXP (x, 0) == XEXP (y, 0);
918 case SYMBOL_REF:
919 return XSTR (x, 0) == XSTR (y, 0);
921 case CONST_INT:
922 case CONST_DOUBLE:
923 /* There's no need to compare the contents of CONST_DOUBLEs or
924 CONST_INTs because pointer equality is a good enough
925 comparison for these nodes. */
926 return 0;
928 case ADDRESSOF:
929 return (REGNO (XEXP (x, 0)) == REGNO (XEXP (y, 0))
930 && XINT (x, 1) == XINT (y, 1));
932 default:
933 break;
936 /* For commutative operations, the RTX match if the operand match in any
937 order. Also handle the simple binary and unary cases without a loop. */
938 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
939 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
940 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
941 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
942 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
943 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
944 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
945 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
946 else if (GET_RTX_CLASS (code) == '1')
947 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
949 /* Compare the elements. If any pair of corresponding elements
950 fail to match, return 0 for the whole things.
952 Limit cases to types which actually appear in addresses. */
954 fmt = GET_RTX_FORMAT (code);
955 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
957 switch (fmt[i])
959 case 'i':
960 if (XINT (x, i) != XINT (y, i))
961 return 0;
962 break;
964 case 'E':
965 /* Two vectors must have the same length. */
966 if (XVECLEN (x, i) != XVECLEN (y, i))
967 return 0;
969 /* And the corresponding elements must match. */
970 for (j = 0; j < XVECLEN (x, i); j++)
971 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
972 XVECEXP (y, i, j)) == 0)
973 return 0;
974 break;
976 case 'e':
977 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
978 return 0;
979 break;
981 /* This can happen for an asm which clobbers memory. */
982 case '0':
983 break;
985 /* It is believed that rtx's at this level will never
986 contain anything but integers and other rtx's,
987 except for within LABEL_REFs and SYMBOL_REFs. */
988 default:
989 abort ();
992 return 1;
995 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
996 X and return it, or return 0 if none found. */
998 static rtx
999 find_symbolic_term (x)
1000 rtx x;
1002 register int i;
1003 register enum rtx_code code;
1004 register const char *fmt;
1006 code = GET_CODE (x);
1007 if (code == SYMBOL_REF || code == LABEL_REF)
1008 return x;
1009 if (GET_RTX_CLASS (code) == 'o')
1010 return 0;
1012 fmt = GET_RTX_FORMAT (code);
1013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1015 rtx t;
1017 if (fmt[i] == 'e')
1019 t = find_symbolic_term (XEXP (x, i));
1020 if (t != 0)
1021 return t;
1023 else if (fmt[i] == 'E')
1024 break;
1026 return 0;
1029 static rtx
1030 find_base_term (x)
1031 register rtx x;
1033 cselib_val *val;
1034 struct elt_loc_list *l;
1036 switch (GET_CODE (x))
1038 case REG:
1039 return REG_BASE_VALUE (x);
1041 case ZERO_EXTEND:
1042 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1043 case HIGH:
1044 case PRE_INC:
1045 case PRE_DEC:
1046 case POST_INC:
1047 case POST_DEC:
1048 return find_base_term (XEXP (x, 0));
1050 case VALUE:
1051 val = CSELIB_VAL_PTR (x);
1052 for (l = val->locs; l; l = l->next)
1053 if ((x = find_base_term (l->loc)) != 0)
1054 return x;
1055 return 0;
1057 case CONST:
1058 x = XEXP (x, 0);
1059 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1060 return 0;
1061 /* fall through */
1062 case LO_SUM:
1063 case PLUS:
1064 case MINUS:
1066 rtx tmp1 = XEXP (x, 0);
1067 rtx tmp2 = XEXP (x, 1);
1069 /* This is a litle bit tricky since we have to determine which of
1070 the two operands represents the real base address. Otherwise this
1071 routine may return the index register instead of the base register.
1073 That may cause us to believe no aliasing was possible, when in
1074 fact aliasing is possible.
1076 We use a few simple tests to guess the base register. Additional
1077 tests can certainly be added. For example, if one of the operands
1078 is a shift or multiply, then it must be the index register and the
1079 other operand is the base register. */
1081 /* If either operand is known to be a pointer, then use it
1082 to determine the base term. */
1083 if (REG_P (tmp1) && REGNO_POINTER_FLAG (REGNO (tmp1)))
1084 return find_base_term (tmp1);
1086 if (REG_P (tmp2) && REGNO_POINTER_FLAG (REGNO (tmp2)))
1087 return find_base_term (tmp2);
1089 /* Neither operand was known to be a pointer. Go ahead and find the
1090 base term for both operands. */
1091 tmp1 = find_base_term (tmp1);
1092 tmp2 = find_base_term (tmp2);
1094 /* If either base term is named object or a special address
1095 (like an argument or stack reference), then use it for the
1096 base term. */
1097 if (tmp1 != 0
1098 && (GET_CODE (tmp1) == SYMBOL_REF
1099 || GET_CODE (tmp1) == LABEL_REF
1100 || (GET_CODE (tmp1) == ADDRESS
1101 && GET_MODE (tmp1) != VOIDmode)))
1102 return tmp1;
1104 if (tmp2 != 0
1105 && (GET_CODE (tmp2) == SYMBOL_REF
1106 || GET_CODE (tmp2) == LABEL_REF
1107 || (GET_CODE (tmp2) == ADDRESS
1108 && GET_MODE (tmp2) != VOIDmode)))
1109 return tmp2;
1111 /* We could not determine which of the two operands was the
1112 base register and which was the index. So we can determine
1113 nothing from the base alias check. */
1114 return 0;
1117 case AND:
1118 if (GET_CODE (XEXP (x, 0)) == REG && GET_CODE (XEXP (x, 1)) == CONST_INT)
1119 return REG_BASE_VALUE (XEXP (x, 0));
1120 return 0;
1122 case SYMBOL_REF:
1123 case LABEL_REF:
1124 return x;
1126 default:
1127 return 0;
1131 /* Return 0 if the addresses X and Y are known to point to different
1132 objects, 1 if they might be pointers to the same object. */
1134 static int
1135 base_alias_check (x, y, x_mode, y_mode)
1136 rtx x, y;
1137 enum machine_mode x_mode, y_mode;
1139 rtx x_base = find_base_term (x);
1140 rtx y_base = find_base_term (y);
1142 /* If the address itself has no known base see if a known equivalent
1143 value has one. If either address still has no known base, nothing
1144 is known about aliasing. */
1145 if (x_base == 0)
1147 rtx x_c;
1149 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1150 return 1;
1152 x_base = find_base_term (x_c);
1153 if (x_base == 0)
1154 return 1;
1157 if (y_base == 0)
1159 rtx y_c;
1160 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1161 return 1;
1163 y_base = find_base_term (y_c);
1164 if (y_base == 0)
1165 return 1;
1168 /* If the base addresses are equal nothing is known about aliasing. */
1169 if (rtx_equal_p (x_base, y_base))
1170 return 1;
1172 /* The base addresses of the read and write are different expressions.
1173 If they are both symbols and they are not accessed via AND, there is
1174 no conflict. We can bring knowledge of object alignment into play
1175 here. For example, on alpha, "char a, b;" can alias one another,
1176 though "char a; long b;" cannot. */
1177 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1179 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1180 return 1;
1181 if (GET_CODE (x) == AND
1182 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1183 || GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1184 return 1;
1185 if (GET_CODE (y) == AND
1186 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1187 || GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1188 return 1;
1189 /* Differing symbols never alias. */
1190 return 0;
1193 /* If one address is a stack reference there can be no alias:
1194 stack references using different base registers do not alias,
1195 a stack reference can not alias a parameter, and a stack reference
1196 can not alias a global. */
1197 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1198 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1199 return 0;
1201 if (! flag_argument_noalias)
1202 return 1;
1204 if (flag_argument_noalias > 1)
1205 return 0;
1207 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1208 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1211 /* Convert the address X into something we can use. This is done by returning
1212 it unchanged unless it is a value; in the latter case we call cselib to get
1213 a more useful rtx. */
1215 static rtx
1216 get_addr (x)
1217 rtx x;
1219 cselib_val *v;
1220 struct elt_loc_list *l;
1222 if (GET_CODE (x) != VALUE)
1223 return x;
1224 v = CSELIB_VAL_PTR (x);
1225 for (l = v->locs; l; l = l->next)
1226 if (CONSTANT_P (l->loc))
1227 return l->loc;
1228 for (l = v->locs; l; l = l->next)
1229 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1230 return l->loc;
1231 if (v->locs)
1232 return v->locs->loc;
1233 return x;
1236 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1237 where SIZE is the size in bytes of the memory reference. If ADDR
1238 is not modified by the memory reference then ADDR is returned. */
1241 addr_side_effect_eval (addr, size, n_refs)
1242 rtx addr;
1243 int size;
1244 int n_refs;
1246 int offset = 0;
1248 switch (GET_CODE (addr))
1250 case PRE_INC:
1251 offset = (n_refs + 1) * size;
1252 break;
1253 case PRE_DEC:
1254 offset = -(n_refs + 1) * size;
1255 break;
1256 case POST_INC:
1257 offset = n_refs * size;
1258 break;
1259 case POST_DEC:
1260 offset = -n_refs * size;
1261 break;
1263 default:
1264 return addr;
1267 if (offset)
1268 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1269 else
1270 addr = XEXP (addr, 0);
1272 return addr;
1275 /* Return nonzero if X and Y (memory addresses) could reference the
1276 same location in memory. C is an offset accumulator. When
1277 C is nonzero, we are testing aliases between X and Y + C.
1278 XSIZE is the size in bytes of the X reference,
1279 similarly YSIZE is the size in bytes for Y.
1281 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1282 referenced (the reference was BLKmode), so make the most pessimistic
1283 assumptions.
1285 If XSIZE or YSIZE is negative, we may access memory outside the object
1286 being referenced as a side effect. This can happen when using AND to
1287 align memory references, as is done on the Alpha.
1289 Nice to notice that varying addresses cannot conflict with fp if no
1290 local variables had their addresses taken, but that's too hard now. */
1292 static int
1293 memrefs_conflict_p (xsize, x, ysize, y, c)
1294 register rtx x, y;
1295 int xsize, ysize;
1296 HOST_WIDE_INT c;
1298 if (GET_CODE (x) == VALUE)
1299 x = get_addr (x);
1300 if (GET_CODE (y) == VALUE)
1301 y = get_addr (y);
1302 if (GET_CODE (x) == HIGH)
1303 x = XEXP (x, 0);
1304 else if (GET_CODE (x) == LO_SUM)
1305 x = XEXP (x, 1);
1306 else
1307 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
1308 if (GET_CODE (y) == HIGH)
1309 y = XEXP (y, 0);
1310 else if (GET_CODE (y) == LO_SUM)
1311 y = XEXP (y, 1);
1312 else
1313 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
1315 if (rtx_equal_for_memref_p (x, y))
1317 if (xsize <= 0 || ysize <= 0)
1318 return 1;
1319 if (c >= 0 && xsize > c)
1320 return 1;
1321 if (c < 0 && ysize+c > 0)
1322 return 1;
1323 return 0;
1326 /* This code used to check for conflicts involving stack references and
1327 globals but the base address alias code now handles these cases. */
1329 if (GET_CODE (x) == PLUS)
1331 /* The fact that X is canonicalized means that this
1332 PLUS rtx is canonicalized. */
1333 rtx x0 = XEXP (x, 0);
1334 rtx x1 = XEXP (x, 1);
1336 if (GET_CODE (y) == PLUS)
1338 /* The fact that Y is canonicalized means that this
1339 PLUS rtx is canonicalized. */
1340 rtx y0 = XEXP (y, 0);
1341 rtx y1 = XEXP (y, 1);
1343 if (rtx_equal_for_memref_p (x1, y1))
1344 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1345 if (rtx_equal_for_memref_p (x0, y0))
1346 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1347 if (GET_CODE (x1) == CONST_INT)
1349 if (GET_CODE (y1) == CONST_INT)
1350 return memrefs_conflict_p (xsize, x0, ysize, y0,
1351 c - INTVAL (x1) + INTVAL (y1));
1352 else
1353 return memrefs_conflict_p (xsize, x0, ysize, y,
1354 c - INTVAL (x1));
1356 else if (GET_CODE (y1) == CONST_INT)
1357 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1359 return 1;
1361 else if (GET_CODE (x1) == CONST_INT)
1362 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1364 else if (GET_CODE (y) == PLUS)
1366 /* The fact that Y is canonicalized means that this
1367 PLUS rtx is canonicalized. */
1368 rtx y0 = XEXP (y, 0);
1369 rtx y1 = XEXP (y, 1);
1371 if (GET_CODE (y1) == CONST_INT)
1372 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1373 else
1374 return 1;
1377 if (GET_CODE (x) == GET_CODE (y))
1378 switch (GET_CODE (x))
1380 case MULT:
1382 /* Handle cases where we expect the second operands to be the
1383 same, and check only whether the first operand would conflict
1384 or not. */
1385 rtx x0, y0;
1386 rtx x1 = canon_rtx (XEXP (x, 1));
1387 rtx y1 = canon_rtx (XEXP (y, 1));
1388 if (! rtx_equal_for_memref_p (x1, y1))
1389 return 1;
1390 x0 = canon_rtx (XEXP (x, 0));
1391 y0 = canon_rtx (XEXP (y, 0));
1392 if (rtx_equal_for_memref_p (x0, y0))
1393 return (xsize == 0 || ysize == 0
1394 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1396 /* Can't properly adjust our sizes. */
1397 if (GET_CODE (x1) != CONST_INT)
1398 return 1;
1399 xsize /= INTVAL (x1);
1400 ysize /= INTVAL (x1);
1401 c /= INTVAL (x1);
1402 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1405 case REG:
1406 /* Are these registers known not to be equal? */
1407 if (alias_invariant)
1409 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1410 rtx i_x, i_y; /* invariant relationships of X and Y */
1412 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1413 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1415 if (i_x == 0 && i_y == 0)
1416 break;
1418 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1419 ysize, i_y ? i_y : y, c))
1420 return 0;
1422 break;
1424 default:
1425 break;
1428 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1429 as an access with indeterminate size. Assume that references
1430 besides AND are aligned, so if the size of the other reference is
1431 at least as large as the alignment, assume no other overlap. */
1432 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1434 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1435 xsize = -1;
1436 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1438 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1440 /* ??? If we are indexing far enough into the array/structure, we
1441 may yet be able to determine that we can not overlap. But we
1442 also need to that we are far enough from the end not to overlap
1443 a following reference, so we do nothing with that for now. */
1444 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1445 ysize = -1;
1446 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1449 if (CONSTANT_P (x))
1451 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1453 c += (INTVAL (y) - INTVAL (x));
1454 return (xsize <= 0 || ysize <= 0
1455 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1458 if (GET_CODE (x) == CONST)
1460 if (GET_CODE (y) == CONST)
1461 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1462 ysize, canon_rtx (XEXP (y, 0)), c);
1463 else
1464 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1465 ysize, y, c);
1467 if (GET_CODE (y) == CONST)
1468 return memrefs_conflict_p (xsize, x, ysize,
1469 canon_rtx (XEXP (y, 0)), c);
1471 if (CONSTANT_P (y))
1472 return (xsize < 0 || ysize < 0
1473 || (rtx_equal_for_memref_p (x, y)
1474 && (xsize == 0 || ysize == 0
1475 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1477 return 1;
1479 return 1;
1482 /* Functions to compute memory dependencies.
1484 Since we process the insns in execution order, we can build tables
1485 to keep track of what registers are fixed (and not aliased), what registers
1486 are varying in known ways, and what registers are varying in unknown
1487 ways.
1489 If both memory references are volatile, then there must always be a
1490 dependence between the two references, since their order can not be
1491 changed. A volatile and non-volatile reference can be interchanged
1492 though.
1494 A MEM_IN_STRUCT reference at a non-AND varying address can never
1495 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1496 also must allow AND addresses, because they may generate accesses
1497 outside the object being referenced. This is used to generate
1498 aligned addresses from unaligned addresses, for instance, the alpha
1499 storeqi_unaligned pattern. */
1501 /* Read dependence: X is read after read in MEM takes place. There can
1502 only be a dependence here if both reads are volatile. */
1505 read_dependence (mem, x)
1506 rtx mem;
1507 rtx x;
1509 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1512 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1513 MEM2 is a reference to a structure at a varying address, or returns
1514 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1515 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1516 to decide whether or not an address may vary; it should return
1517 nonzero whenever variation is possible.
1518 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1520 static rtx
1521 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1522 rtx mem1, mem2;
1523 rtx mem1_addr, mem2_addr;
1524 int (*varies_p) PARAMS ((rtx));
1526 if (! flag_strict_aliasing)
1527 return NULL_RTX;
1529 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1530 && !varies_p (mem1_addr) && varies_p (mem2_addr))
1531 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1532 varying address. */
1533 return mem1;
1535 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1536 && varies_p (mem1_addr) && !varies_p (mem2_addr))
1537 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1538 varying address. */
1539 return mem2;
1541 return NULL_RTX;
1544 /* Returns nonzero if something about the mode or address format MEM1
1545 indicates that it might well alias *anything*. */
1547 static int
1548 aliases_everything_p (mem)
1549 rtx mem;
1551 if (GET_CODE (XEXP (mem, 0)) == AND)
1552 /* If the address is an AND, its very hard to know at what it is
1553 actually pointing. */
1554 return 1;
1556 return 0;
1559 /* True dependence: X is read after store in MEM takes place. */
1562 true_dependence (mem, mem_mode, x, varies)
1563 rtx mem;
1564 enum machine_mode mem_mode;
1565 rtx x;
1566 int (*varies) PARAMS ((rtx));
1568 register rtx x_addr, mem_addr;
1570 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1571 return 1;
1573 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1574 return 0;
1576 /* If X is an unchanging read, then it can't possibly conflict with any
1577 non-unchanging store. It may conflict with an unchanging write though,
1578 because there may be a single store to this address to initialize it.
1579 Just fall through to the code below to resolve the case where we have
1580 both an unchanging read and an unchanging write. This won't handle all
1581 cases optimally, but the possible performance loss should be
1582 negligible. */
1583 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
1584 return 0;
1586 if (mem_mode == VOIDmode)
1587 mem_mode = GET_MODE (mem);
1589 x_addr = get_addr (XEXP (x, 0));
1590 mem_addr = get_addr (XEXP (mem, 0));
1592 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
1593 return 0;
1595 x_addr = canon_rtx (x_addr);
1596 mem_addr = canon_rtx (mem_addr);
1598 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
1599 SIZE_FOR_MODE (x), x_addr, 0))
1600 return 0;
1602 if (aliases_everything_p (x))
1603 return 1;
1605 /* We cannot use aliases_everyting_p to test MEM, since we must look
1606 at MEM_MODE, rather than GET_MODE (MEM). */
1607 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
1608 return 1;
1610 /* In true_dependence we also allow BLKmode to alias anything. Why
1611 don't we do this in anti_dependence and output_dependence? */
1612 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
1613 return 1;
1615 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
1616 varies);
1619 /* Returns non-zero if a write to X might alias a previous read from
1620 (or, if WRITEP is non-zero, a write to) MEM. */
1622 static int
1623 write_dependence_p (mem, x, writep)
1624 rtx mem;
1625 rtx x;
1626 int writep;
1628 rtx x_addr, mem_addr;
1629 rtx fixed_scalar;
1631 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
1632 return 1;
1634 if (DIFFERENT_ALIAS_SETS_P (x, mem))
1635 return 0;
1637 /* If MEM is an unchanging read, then it can't possibly conflict with
1638 the store to X, because there is at most one store to MEM, and it must
1639 have occurred somewhere before MEM. */
1640 if (!writep && RTX_UNCHANGING_P (mem))
1641 return 0;
1643 x_addr = get_addr (XEXP (x, 0));
1644 mem_addr = get_addr (XEXP (mem, 0));
1646 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
1647 GET_MODE (mem)))
1648 return 0;
1650 x_addr = canon_rtx (x_addr);
1651 mem_addr = canon_rtx (mem_addr);
1653 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
1654 SIZE_FOR_MODE (x), x_addr, 0))
1655 return 0;
1657 fixed_scalar
1658 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
1659 rtx_addr_varies_p);
1661 return (!(fixed_scalar == mem && !aliases_everything_p (x))
1662 && !(fixed_scalar == x && !aliases_everything_p (mem)));
1665 /* Anti dependence: X is written after read in MEM takes place. */
1668 anti_dependence (mem, x)
1669 rtx mem;
1670 rtx x;
1672 return write_dependence_p (mem, x, /*writep=*/0);
1675 /* Output dependence: X is written after store in MEM takes place. */
1678 output_dependence (mem, x)
1679 register rtx mem;
1680 register rtx x;
1682 return write_dependence_p (mem, x, /*writep=*/1);
1685 /* Returns non-zero if X might refer to something which is not
1686 local to the function and is not constant. */
1688 static int
1689 nonlocal_reference_p (x)
1690 rtx x;
1692 rtx base;
1693 register RTX_CODE code;
1694 int regno;
1696 code = GET_CODE (x);
1698 if (GET_RTX_CLASS (code) == 'i')
1700 /* Constant functions can be constant if they don't use
1701 scratch memory used to mark function w/o side effects. */
1702 if (code == CALL_INSN && CONST_CALL_P (x))
1704 x = CALL_INSN_FUNCTION_USAGE (x);
1705 if (x == 0)
1706 return 0;
1708 else
1709 x = PATTERN (x);
1710 code = GET_CODE (x);
1713 switch (code)
1715 case SUBREG:
1716 if (GET_CODE (SUBREG_REG (x)) == REG)
1718 /* Global registers are not local. */
1719 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
1720 && global_regs[REGNO (SUBREG_REG (x)) + SUBREG_WORD (x)])
1721 return 1;
1722 return 0;
1724 break;
1726 case REG:
1727 regno = REGNO (x);
1728 /* Global registers are not local. */
1729 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1730 return 1;
1731 return 0;
1733 case SCRATCH:
1734 case PC:
1735 case CC0:
1736 case CONST_INT:
1737 case CONST_DOUBLE:
1738 case CONST:
1739 case LABEL_REF:
1740 return 0;
1742 case SYMBOL_REF:
1743 /* Constants in the function's constants pool are constant. */
1744 if (CONSTANT_POOL_ADDRESS_P (x))
1745 return 0;
1746 return 1;
1748 case CALL:
1749 /* Recursion introduces no additional considerations. */
1750 if (GET_CODE (XEXP (x, 0)) == MEM
1751 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1752 && strcmp(XSTR (XEXP (XEXP (x, 0), 0), 0),
1753 IDENTIFIER_POINTER (
1754 DECL_ASSEMBLER_NAME (current_function_decl))) == 0)
1755 return 0;
1756 return 1;
1758 case MEM:
1759 /* Be overly conservative and consider any volatile memory
1760 reference as not local. */
1761 if (MEM_VOLATILE_P (x))
1762 return 1;
1763 base = find_base_term (XEXP (x, 0));
1764 if (base)
1766 /* A Pmode ADDRESS could be a reference via the structure value
1767 address or static chain. Such memory references are nonlocal.
1769 Thus, we have to examine the contents of the ADDRESS to find
1770 out if this is a local reference or not. */
1771 if (GET_CODE (base) == ADDRESS
1772 && GET_MODE (base) == Pmode
1773 && (XEXP (base, 0) == stack_pointer_rtx
1774 || XEXP (base, 0) == arg_pointer_rtx
1775 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1776 || XEXP (base, 0) == hard_frame_pointer_rtx
1777 #endif
1778 || XEXP (base, 0) == frame_pointer_rtx))
1779 return 0;
1780 /* Constants in the function's constant pool are constant. */
1781 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
1782 return 0;
1784 return 1;
1786 case ASM_INPUT:
1787 case ASM_OPERANDS:
1788 return 1;
1790 default:
1791 break;
1794 /* Recursively scan the operands of this expression. */
1797 register const char *fmt = GET_RTX_FORMAT (code);
1798 register int i;
1800 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1802 if (fmt[i] == 'e' && XEXP (x, i))
1804 if (nonlocal_reference_p (XEXP (x, i)))
1805 return 1;
1807 else if (fmt[i] == 'E')
1809 register int j;
1810 for (j = 0; j < XVECLEN (x, i); j++)
1811 if (nonlocal_reference_p (XVECEXP (x, i, j)))
1812 return 1;
1817 return 0;
1820 /* Mark the function if it is constant. */
1822 void
1823 mark_constant_function ()
1825 rtx insn;
1827 if (TREE_PUBLIC (current_function_decl)
1828 || TREE_READONLY (current_function_decl)
1829 || TREE_THIS_VOLATILE (current_function_decl)
1830 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode)
1831 return;
1833 /* Determine if this is a constant function. */
1835 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1836 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1837 && nonlocal_reference_p (insn))
1838 return;
1840 /* Mark the function. */
1842 TREE_READONLY (current_function_decl) = 1;
1846 static HARD_REG_SET argument_registers;
1848 void
1849 init_alias_once ()
1851 register int i;
1853 #ifndef OUTGOING_REGNO
1854 #define OUTGOING_REGNO(N) N
1855 #endif
1856 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1857 /* Check whether this register can hold an incoming pointer
1858 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1859 numbers, so translate if necessary due to register windows. */
1860 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
1861 && HARD_REGNO_MODE_OK (i, Pmode))
1862 SET_HARD_REG_BIT (argument_registers, i);
1864 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
1867 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
1868 array. */
1870 void
1871 init_alias_analysis ()
1873 int maxreg = max_reg_num ();
1874 int changed, pass;
1875 register int i;
1876 register unsigned int ui;
1877 register rtx insn;
1879 reg_known_value_size = maxreg;
1881 reg_known_value
1882 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
1883 - FIRST_PSEUDO_REGISTER;
1884 reg_known_equiv_p
1885 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
1886 - FIRST_PSEUDO_REGISTER;
1888 /* Overallocate reg_base_value to allow some growth during loop
1889 optimization. Loop unrolling can create a large number of
1890 registers. */
1891 reg_base_value_size = maxreg * 2;
1892 reg_base_value = (rtx *) xcalloc (reg_base_value_size, sizeof (rtx));
1893 if (ggc_p)
1894 ggc_add_rtx_root (reg_base_value, reg_base_value_size);
1896 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
1897 reg_seen = (char *) xmalloc (reg_base_value_size);
1898 if (! reload_completed && flag_unroll_loops)
1900 /* ??? Why are we realloc'ing if we're just going to zero it? */
1901 alias_invariant = (rtx *)xrealloc (alias_invariant,
1902 reg_base_value_size * sizeof (rtx));
1903 bzero ((char *)alias_invariant, reg_base_value_size * sizeof (rtx));
1907 /* The basic idea is that each pass through this loop will use the
1908 "constant" information from the previous pass to propagate alias
1909 information through another level of assignments.
1911 This could get expensive if the assignment chains are long. Maybe
1912 we should throttle the number of iterations, possibly based on
1913 the optimization level or flag_expensive_optimizations.
1915 We could propagate more information in the first pass by making use
1916 of REG_N_SETS to determine immediately that the alias information
1917 for a pseudo is "constant".
1919 A program with an uninitialized variable can cause an infinite loop
1920 here. Instead of doing a full dataflow analysis to detect such problems
1921 we just cap the number of iterations for the loop.
1923 The state of the arrays for the set chain in question does not matter
1924 since the program has undefined behavior. */
1926 pass = 0;
1929 /* Assume nothing will change this iteration of the loop. */
1930 changed = 0;
1932 /* We want to assign the same IDs each iteration of this loop, so
1933 start counting from zero each iteration of the loop. */
1934 unique_id = 0;
1936 /* We're at the start of the funtion each iteration through the
1937 loop, so we're copying arguments. */
1938 copying_arguments = 1;
1940 /* Wipe the potential alias information clean for this pass. */
1941 bzero ((char *) new_reg_base_value, reg_base_value_size * sizeof (rtx));
1943 /* Wipe the reg_seen array clean. */
1944 bzero ((char *) reg_seen, reg_base_value_size);
1946 /* Mark all hard registers which may contain an address.
1947 The stack, frame and argument pointers may contain an address.
1948 An argument register which can hold a Pmode value may contain
1949 an address even if it is not in BASE_REGS.
1951 The address expression is VOIDmode for an argument and
1952 Pmode for other registers. */
1954 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1955 if (TEST_HARD_REG_BIT (argument_registers, i))
1956 new_reg_base_value[i] = gen_rtx_ADDRESS (VOIDmode,
1957 gen_rtx_REG (Pmode, i));
1959 new_reg_base_value[STACK_POINTER_REGNUM]
1960 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
1961 new_reg_base_value[ARG_POINTER_REGNUM]
1962 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
1963 new_reg_base_value[FRAME_POINTER_REGNUM]
1964 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
1965 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1966 new_reg_base_value[HARD_FRAME_POINTER_REGNUM]
1967 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
1968 #endif
1969 if (struct_value_incoming_rtx
1970 && GET_CODE (struct_value_incoming_rtx) == REG)
1971 new_reg_base_value[REGNO (struct_value_incoming_rtx)]
1972 = gen_rtx_ADDRESS (Pmode, struct_value_incoming_rtx);
1974 if (static_chain_rtx
1975 && GET_CODE (static_chain_rtx) == REG)
1976 new_reg_base_value[REGNO (static_chain_rtx)]
1977 = gen_rtx_ADDRESS (Pmode, static_chain_rtx);
1979 /* Walk the insns adding values to the new_reg_base_value array. */
1980 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1982 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1984 rtx note, set;
1986 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
1987 if (prologue_epilogue_contains (insn))
1988 continue;
1989 #endif
1991 /* If this insn has a noalias note, process it, Otherwise,
1992 scan for sets. A simple set will have no side effects
1993 which could change the base value of any other register. */
1995 if (GET_CODE (PATTERN (insn)) == SET
1996 && REG_NOTES (insn) != 0
1997 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
1998 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
1999 else
2000 note_stores (PATTERN (insn), record_set, NULL);
2002 set = single_set (insn);
2004 if (set != 0
2005 && GET_CODE (SET_DEST (set)) == REG
2006 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2007 && REG_NOTES (insn) != 0
2008 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2009 && REG_N_SETS (REGNO (SET_DEST (set))) == 1)
2010 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2011 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2012 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2014 int regno = REGNO (SET_DEST (set));
2015 reg_known_value[regno] = XEXP (note, 0);
2016 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2019 else if (GET_CODE (insn) == NOTE
2020 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2021 copying_arguments = 0;
2024 /* Now propagate values from new_reg_base_value to reg_base_value. */
2025 for (ui = 0; ui < reg_base_value_size; ui++)
2027 if (new_reg_base_value[ui]
2028 && new_reg_base_value[ui] != reg_base_value[ui]
2029 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2031 reg_base_value[ui] = new_reg_base_value[ui];
2032 changed = 1;
2036 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2038 /* Fill in the remaining entries. */
2039 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2040 if (reg_known_value[i] == 0)
2041 reg_known_value[i] = regno_reg_rtx[i];
2043 /* Simplify the reg_base_value array so that no register refers to
2044 another register, except to special registers indirectly through
2045 ADDRESS expressions.
2047 In theory this loop can take as long as O(registers^2), but unless
2048 there are very long dependency chains it will run in close to linear
2049 time.
2051 This loop may not be needed any longer now that the main loop does
2052 a better job at propagating alias information. */
2053 pass = 0;
2056 changed = 0;
2057 pass++;
2058 for (ui = 0; ui < reg_base_value_size; ui++)
2060 rtx base = reg_base_value[ui];
2061 if (base && GET_CODE (base) == REG)
2063 unsigned int base_regno = REGNO (base);
2064 if (base_regno == ui) /* register set from itself */
2065 reg_base_value[ui] = 0;
2066 else
2067 reg_base_value[ui] = reg_base_value[base_regno];
2068 changed = 1;
2072 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2074 /* Clean up. */
2075 free (new_reg_base_value);
2076 new_reg_base_value = 0;
2077 free (reg_seen);
2078 reg_seen = 0;
2081 void
2082 end_alias_analysis ()
2084 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2085 reg_known_value = 0;
2086 reg_known_value_size = 0;
2087 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2088 reg_known_equiv_p = 0;
2089 if (reg_base_value)
2091 if (ggc_p)
2092 ggc_del_root (reg_base_value);
2093 free (reg_base_value);
2094 reg_base_value = 0;
2096 reg_base_value_size = 0;
2097 if (alias_invariant)
2099 free (alias_invariant);
2100 alias_invariant = 0;